| //===-- SparcInstrSelection.cpp -------------------------------------------===// |
| // |
| // BURS instruction selection for SPARC V9 architecture. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SparcInternals.h" |
| #include "SparcInstrSelectionSupport.h" |
| #include "SparcRegClassInfo.h" |
| #include "llvm/CodeGen/InstrSelectionSupport.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineInstrAnnot.h" |
| #include "llvm/CodeGen/InstrForest.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Function.h" |
| #include "llvm/Constants.h" |
| #include "llvm/ConstantHandling.h" |
| #include "Support/MathExtras.h" |
| #include <math.h> |
| |
| static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, |
| std::vector<MachineInstr*>& mvec) { |
| mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) |
| .addReg(Node->rightChild()->getValue()) |
| .addRegDef(Node->getValue())); |
| } |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: GetMemInstArgs |
| // |
| // Purpose: |
| // Get the pointer value and the index vector for a memory operation |
| // (GetElementPtr, Load, or Store). If all indices of the given memory |
| // operation are constant, fold in constant indices in a chain of |
| // preceding GetElementPtr instructions (if any), and return the |
| // pointer value of the first instruction in the chain. |
| // All folded instructions are marked so no code is generated for them. |
| // |
| // Return values: |
| // Returns the pointer Value to use. |
| // Returns the resulting IndexVector in idxVec. |
| // Returns true/false in allConstantIndices if all indices are/aren't const. |
| //--------------------------------------------------------------------------- |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: FoldGetElemChain |
| // |
| // Purpose: |
| // Fold a chain of GetElementPtr instructions containing only |
| // constant offsets into an equivalent (Pointer, IndexVector) pair. |
| // Returns the pointer Value, and stores the resulting IndexVector |
| // in argument chainIdxVec. This is a helper function for |
| // FoldConstantIndices that does the actual folding. |
| //--------------------------------------------------------------------------- |
| |
| |
| // Check for a constant 0. |
| inline bool |
| IsZero(Value* idx) |
| { |
| return (idx == ConstantSInt::getNullValue(idx->getType())); |
| } |
| |
| static Value* |
| FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec, |
| bool lastInstHasLeadingNonZero) |
| { |
| InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode); |
| GetElementPtrInst* gepInst = |
| dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0); |
| |
| // ptr value is not computed in this tree or ptr value does not come from GEP |
| // instruction |
| if (gepInst == NULL) |
| return NULL; |
| |
| // Return NULL if we don't fold any instructions in. |
| Value* ptrVal = NULL; |
| |
| // Now chase the chain of getElementInstr instructions, if any. |
| // Check for any non-constant indices and stop there. |
| // Also, stop if the first index of child is a non-zero array index |
| // and the last index of the current node is a non-array index: |
| // in that case, a non-array declared type is being accessed as an array |
| // which is not type-safe, but could be legal. |
| // |
| InstructionNode* ptrChild = gepNode; |
| while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| ptrChild->getOpLabel() == GetElemPtrIdx)) |
| { |
| // Child is a GetElemPtr instruction |
| gepInst = cast<GetElementPtrInst>(ptrChild->getValue()); |
| User::op_iterator OI, firstIdx = gepInst->idx_begin(); |
| User::op_iterator lastIdx = gepInst->idx_end(); |
| bool allConstantOffsets = true; |
| |
| // The first index of every GEP must be an array index. |
| assert((*firstIdx)->getType() == Type::LongTy && |
| "INTERNAL ERROR: Structure index for a pointer type!"); |
| |
| // If the last instruction had a leading non-zero index, check if the |
| // current one references a sequential (i.e., indexable) type. |
| // If not, the code is not type-safe and we would create an illegal GEP |
| // by folding them, so don't fold any more instructions. |
| // |
| if (lastInstHasLeadingNonZero) |
| if (! isa<SequentialType>(gepInst->getType()->getElementType())) |
| break; // cannot fold in any preceding getElementPtr instrs. |
| |
| // Check that all offsets are constant for this instruction |
| for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) |
| allConstantOffsets = isa<ConstantInt>(*OI); |
| |
| if (allConstantOffsets) |
| { // Get pointer value out of ptrChild. |
| ptrVal = gepInst->getPointerOperand(); |
| |
| // Remember if it has leading zero index: it will be discarded later. |
| lastInstHasLeadingNonZero = ! IsZero(*firstIdx); |
| |
| // Insert its index vector at the start, skipping any leading [0] |
| chainIdxVec.insert(chainIdxVec.begin(), |
| firstIdx + !lastInstHasLeadingNonZero, lastIdx); |
| |
| // Mark the folded node so no code is generated for it. |
| ((InstructionNode*) ptrChild)->markFoldedIntoParent(); |
| |
| // Get the previous GEP instruction and continue trying to fold |
| ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild()); |
| } |
| else // cannot fold this getElementPtr instr. or any preceding ones |
| break; |
| } |
| |
| // If the first getElementPtr instruction had a leading [0], add it back. |
| // Note that this instruction is the *last* one successfully folded above. |
| if (ptrVal && ! lastInstHasLeadingNonZero) |
| chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); |
| |
| return ptrVal; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: GetGEPInstArgs |
| // |
| // Purpose: |
| // Helper function for GetMemInstArgs that handles the final getElementPtr |
| // instruction used by (or same as) the memory operation. |
| // Extracts the indices of the current instruction and tries to fold in |
| // preceding ones if all indices of the current one are constant. |
| //--------------------------------------------------------------------------- |
| |
| static Value * |
| GetGEPInstArgs(InstructionNode* gepNode, |
| std::vector<Value*>& idxVec, |
| bool& allConstantIndices) |
| { |
| allConstantIndices = true; |
| GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = gepI->getPointerOperand(); |
| InstrTreeNode* ptrChild = gepNode->leftChild(); |
| |
| // Extract the index vector of the GEP instructin. |
| // If all indices are constant and first index is zero, try to fold |
| // in preceding GEPs with all constant indices. |
| for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); |
| allConstantIndices && OI != OE; ++OI) |
| if (! isa<Constant>(*OI)) |
| allConstantIndices = false; // note: this also terminates loop! |
| |
| // If we have only constant indices, fold chains of constant indices |
| // in this and any preceding GetElemPtr instructions. |
| bool foldedGEPs = false; |
| bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); |
| if (allConstantIndices) |
| if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) |
| { |
| ptrVal = newPtr; |
| foldedGEPs = true; |
| } |
| |
| // Append the index vector of the current instruction. |
| // Skip the leading [0] index if preceding GEPs were folded into this. |
| idxVec.insert(idxVec.end(), |
| gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), |
| gepI->idx_end()); |
| |
| return ptrVal; |
| } |
| |
| //--------------------------------------------------------------------------- |
| // Function: GetMemInstArgs |
| // |
| // Purpose: |
| // Get the pointer value and the index vector for a memory operation |
| // (GetElementPtr, Load, or Store). If all indices of the given memory |
| // operation are constant, fold in constant indices in a chain of |
| // preceding GetElementPtr instructions (if any), and return the |
| // pointer value of the first instruction in the chain. |
| // All folded instructions are marked so no code is generated for them. |
| // |
| // Return values: |
| // Returns the pointer Value to use. |
| // Returns the resulting IndexVector in idxVec. |
| // Returns true/false in allConstantIndices if all indices are/aren't const. |
| //--------------------------------------------------------------------------- |
| |
| static Value* |
| GetMemInstArgs(InstructionNode* memInstrNode, |
| std::vector<Value*>& idxVec, |
| bool& allConstantIndices) |
| { |
| allConstantIndices = false; |
| Instruction* memInst = memInstrNode->getInstruction(); |
| assert(idxVec.size() == 0 && "Need empty vector to return indices"); |
| |
| // If there is a GetElemPtr instruction to fold in to this instr, |
| // it must be in the left child for Load and GetElemPtr, and in the |
| // right child for Store instructions. |
| InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store |
| ? memInstrNode->rightChild() |
| : memInstrNode->leftChild()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = ptrChild->getValue(); |
| |
| // Find the "last" GetElemPtr instruction: this one or the immediate child. |
| // There will be none if this is a load or a store from a scalar pointer. |
| InstructionNode* gepNode = NULL; |
| if (isa<GetElementPtrInst>(memInst)) |
| gepNode = memInstrNode; |
| else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) |
| { // Child of load/store is a GEP and memInst is its only use. |
| // Use its indices and mark it as folded. |
| gepNode = cast<InstructionNode>(ptrChild); |
| gepNode->markFoldedIntoParent(); |
| } |
| |
| // If there are no indices, return the current pointer. |
| // Else extract the pointer from the GEP and fold the indices. |
| return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) |
| : ptrVal; |
| } |
| |
| |
| //************************ Internal Functions ******************************/ |
| |
| |
| static inline MachineOpCode |
| ChooseBprInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode; |
| |
| Instruction* setCCInstr = |
| ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BRZ; break; |
| case Instruction::SetNE: opCode = V9::BRNZ; break; |
| case Instruction::SetLE: opCode = V9::BRLEZ; break; |
| case Instruction::SetGE: opCode = V9::BRGEZ; break; |
| case Instruction::SetLT: opCode = V9::BRLZ; break; |
| case Instruction::SetGT: opCode = V9::BRGZ; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| opCode = V9::INVALID_OPCODE; |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| |
| if (isSigned) |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLE; break; |
| case Instruction::SetGE: opCode = V9::BGE; break; |
| case Instruction::SetLT: opCode = V9::BL; break; |
| case Instruction::SetGT: opCode = V9::BG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| else |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLEU; break; |
| case Instruction::SetGE: opCode = V9::BCC; break; |
| case Instruction::SetLT: opCode = V9::BCS; break; |
| case Instruction::SetGT: opCode = V9::BGU; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseBFpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::FBE; break; |
| case Instruction::SetNE: opCode = V9::FBNE; break; |
| case Instruction::SetLE: opCode = V9::FBLE; break; |
| case Instruction::SetGE: opCode = V9::FBGE; break; |
| case Instruction::SetLT: opCode = V9::FBL; break; |
| case Instruction::SetGT: opCode = V9::FBG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Create a unique TmpInstruction for a boolean value, |
| // representing the CC register used by a branch on that value. |
| // For now, hack this using a little static cache of TmpInstructions. |
| // Eventually the entire BURG instruction selection should be put |
| // into a separate class that can hold such information. |
| // The static cache is not too bad because the memory for these |
| // TmpInstructions will be freed along with the rest of the Function anyway. |
| // |
| static TmpInstruction* |
| GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType) |
| { |
| typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache; |
| static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* |
| static const Function *lastFunction = 0;// Use to flush cache between funcs |
| |
| assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); |
| |
| if (lastFunction != F) |
| { |
| lastFunction = F; |
| boolToTmpCache.clear(); |
| } |
| |
| // Look for tmpI and create a new one otherwise. The new value is |
| // directly written to map using the ref returned by operator[]. |
| TmpInstruction*& tmpI = boolToTmpCache[boolVal]; |
| if (tmpI == NULL) |
| tmpI = new TmpInstruction(ccType, boolVal); |
| |
| return tmpI; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBccInstruction(const InstructionNode* instrNode, |
| bool& isFPBranch) |
| { |
| InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction()); |
| const Type* setCCType = setCCInstr->getOperand(0)->getType(); |
| |
| isFPBranch = setCCType->isFloatingPoint(); // Return value: don't delete! |
| |
| if (isFPBranch) |
| return ChooseBFpccInstruction(instrNode, setCCInstr); |
| else |
| return ChooseBpccInstruction(instrNode, setCCInstr); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseMovFpccInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::MOVFE; break; |
| case Instruction::SetNE: opCode = V9::MOVFNE; break; |
| case Instruction::SetLE: opCode = V9::MOVFLE; break; |
| case Instruction::SetGE: opCode = V9::MOVFGE; break; |
| case Instruction::SetLT: opCode = V9::MOVFL; break; |
| case Instruction::SetGT: opCode = V9::MOVFG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Assumes that SUBcc v1, v2 -> v3 has been executed. |
| // In most cases, we want to clear v3 and then follow it by instruction |
| // MOVcc 1 -> v3. |
| // Set mustClearReg=false if v3 need not be cleared before conditional move. |
| // Set valueToMove=0 if we want to conditionally move 0 instead of 1 |
| // (i.e., we want to test inverse of a condition) |
| // (The latter two cases do not seem to arise because SetNE needs nothing.) |
| // |
| static MachineOpCode |
| ChooseMovpccAfterSub(const InstructionNode* instrNode, |
| bool& mustClearReg, |
| int& valueToMove) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| mustClearReg = true; |
| valueToMove = 1; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::MOVE; break; |
| case Instruction::SetLE: opCode = V9::MOVLE; break; |
| case Instruction::SetGE: opCode = V9::MOVGE; break; |
| case Instruction::SetLT: opCode = V9::MOVL; break; |
| case Instruction::SetGT: opCode = V9::MOVG; break; |
| case Instruction::SetNE: assert(0 && "No move required!"); break; |
| default: assert(0 && "Unrecognized VM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(vopCode) |
| { |
| case ToFloatTy: |
| if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| opCode = V9::FITOS; |
| else if (opType == Type::LongTy) |
| opCode = V9::FXTOS; |
| else if (opType == Type::DoubleTy) |
| opCode = V9::FDTOS; |
| else if (opType == Type::FloatTy) |
| ; |
| else |
| assert(0 && "Cannot convert this type to FLOAT on SPARC"); |
| break; |
| |
| case ToDoubleTy: |
| // This is usually used in conjunction with CreateCodeToCopyIntToFloat(). |
| // Both functions should treat the integer as a 32-bit value for types |
| // of 4 bytes or less, and as a 64-bit value otherwise. |
| if (opType == Type::SByteTy || opType == Type::UByteTy || |
| opType == Type::ShortTy || opType == Type::UShortTy || |
| opType == Type::IntTy || opType == Type::UIntTy) |
| opCode = V9::FITOD; |
| else if (opType == Type::LongTy || opType == Type::ULongTy) |
| opCode = V9::FXTOD; |
| else if (opType == Type::FloatTy) |
| opCode = V9::FSTOD; |
| else if (opType == Type::DoubleTy) |
| ; |
| else |
| assert(0 && "Cannot convert this type to DOUBLE on SPARC"); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertFPToIntInstr(Type::PrimitiveID tid, const Type* opType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE;; |
| |
| assert((opType == Type::FloatTy || opType == Type::DoubleTy) |
| && "This function should only be called for FLOAT or DOUBLE"); |
| |
| if (tid==Type::UIntTyID) |
| { |
| assert(tid != Type::UIntTyID && "FP-to-uint conversions must be expanded" |
| " into FP->long->uint for SPARC v9: SO RUN PRESELECTION PASS!"); |
| } |
| else if (tid==Type::SByteTyID || tid==Type::ShortTyID || tid==Type::IntTyID || |
| tid==Type::UByteTyID || tid==Type::UShortTyID) |
| { |
| opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; |
| } |
| else if (tid==Type::LongTyID || tid==Type::ULongTyID) |
| { |
| opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; |
| } |
| else |
| assert(0 && "Should not get here, Mo!"); |
| |
| return opCode; |
| } |
| |
| MachineInstr* |
| CreateConvertFPToIntInstr(Type::PrimitiveID destTID, |
| Value* srcVal, Value* destVal) |
| { |
| MachineOpCode opCode = ChooseConvertFPToIntInstr(destTID, srcVal->getType()); |
| assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); |
| return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); |
| } |
| |
| // CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer |
| // The FP value must be converted to the dest type in an FP register, |
| // and the result is then copied from FP to int register via memory. |
| // |
| // Since fdtoi converts to signed integers, any FP value V between MAXINT+1 |
| // and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly |
| // *only* when converting to an unsigned. (Unsigned byte, short or long |
| // don't have this problem.) |
| // For unsigned int, we therefore have to generate the code sequence: |
| // |
| // if (V > (float) MAXINT) { |
| // unsigned result = (unsigned) (V - (float) MAXINT); |
| // result = result + (unsigned) MAXINT; |
| // } |
| // else |
| // result = (unsigned) V; |
| // |
| static void |
| CreateCodeToConvertFloatToInt(const TargetMachine& target, |
| Value* opVal, |
| Instruction* destI, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| // Create a temporary to represent the FP register into which the |
| // int value will placed after conversion. The type of this temporary |
| // depends on the type of FP register to use: single-prec for a 32-bit |
| // int or smaller; double-prec for a 64-bit int. |
| // |
| size_t destSize = target.getTargetData().getTypeSize(destI->getType()); |
| const Type* destTypeToUse = (destSize > 4)? Type::DoubleTy : Type::FloatTy; |
| TmpInstruction* destForCast = new TmpInstruction(destTypeToUse, opVal); |
| mcfi.addTemp(destForCast); |
| |
| // Create the fp-to-int conversion code |
| MachineInstr* M =CreateConvertFPToIntInstr(destI->getType()->getPrimitiveID(), |
| opVal, destForCast); |
| mvec.push_back(M); |
| |
| // Create the fpreg-to-intreg copy code |
| target.getInstrInfo(). |
| CreateCodeToCopyFloatToInt(target, destI->getParent()->getParent(), |
| destForCast, destI, mvec, mcfi); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseAddInstruction(const InstructionNode* instrNode) |
| { |
| return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); |
| } |
| |
| |
| static inline MachineInstr* |
| CreateMovFloatInstruction(const InstructionNode* instrNode, |
| const Type* resultType) |
| { |
| return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(instrNode->leftChild()->getValue()) |
| .addRegDef(instrNode->getValue()); |
| } |
| |
| static inline MachineInstr* |
| CreateAddConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Add with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FADD (1 vs 3 cycles). There is no integer MOV. |
| // |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseSubInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) |
| { |
| opCode = V9::SUB; |
| } |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FSUBS; break; |
| case Type::DoubleTyID: opCode = V9::FSUBD; break; |
| default: assert(0 && "Invalid type for SUB instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineInstr* |
| CreateSubConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Sub with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. |
| // |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseFcmpInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) { |
| case Type::FloatTyID: opCode = V9::FCMPS; break; |
| case Type::DoubleTyID: opCode = V9::FCMPD; break; |
| default: assert(0 && "Invalid type for FCMP instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Assumes that leftArg and rightArg are both cast instructions. |
| // |
| static inline bool |
| BothFloatToDouble(const InstructionNode* instrNode) |
| { |
| InstrTreeNode* leftArg = instrNode->leftChild(); |
| InstrTreeNode* rightArg = instrNode->rightChild(); |
| InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); |
| |
| // Check if both arguments are floats cast to double |
| return (leftArg->getValue()->getType() == Type::DoubleTy && |
| leftArgArg->getValue()->getType() == Type::FloatTy && |
| rightArgArg->getValue()->getType() == Type::FloatTy); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseMulInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger()) |
| opCode = V9::MULX; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FMULS; break; |
| case Type::DoubleTyID: opCode = V9::FMULD; break; |
| default: assert(0 && "Invalid type for MUL instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| |
| static inline MachineInstr* |
| CreateIntNegInstruction(const TargetMachine& target, |
| Value* vreg) |
| { |
| return BuildMI(V9::SUB, 3).addMReg(target.getRegInfo().getZeroRegNum()) |
| .addReg(vreg).addRegDef(vreg); |
| } |
| |
| |
| // Create instruction sequence for any shift operation. |
| // SLL or SLLX on an operand smaller than the integer reg. size (64bits) |
| // requires a second instruction for explicit sign-extension. |
| // Note that we only have to worry about a sign-bit appearing in the |
| // most significant bit of the operand after shifting (e.g., bit 32 of |
| // Int or bit 16 of Short), so we do not have to worry about results |
| // that are as large as a normal integer register. |
| // |
| static inline void |
| CreateShiftInstructions(const TargetMachine& target, |
| Function* F, |
| MachineOpCode shiftOpCode, |
| Value* argVal1, |
| Value* optArgVal2, /* Use optArgVal2 if not NULL */ |
| unsigned optShiftNum, /* else use optShiftNum */ |
| Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| assert((optArgVal2 != NULL || optShiftNum <= 64) && |
| "Large shift sizes unexpected, but can be handled below: " |
| "You need to check whether or not it fits in immed field below"); |
| |
| // If this is a logical left shift of a type smaller than the standard |
| // integer reg. size, we have to extend the sign-bit into upper bits |
| // of dest, so we need to put the result of the SLL into a temporary. |
| // |
| Value* shiftDest = destVal; |
| unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); |
| if ((shiftOpCode == V9::SLL || shiftOpCode == V9::SLLX) && opSize < 8) |
| { // put SLL result into a temporary |
| shiftDest = new TmpInstruction(argVal1, optArgVal2, "sllTmp"); |
| mcfi.addTemp(shiftDest); |
| } |
| |
| MachineInstr* M = (optArgVal2 != NULL) |
| ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) |
| .addReg(shiftDest, MOTy::Def) |
| : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) |
| .addReg(shiftDest, MOTy::Def); |
| mvec.push_back(M); |
| |
| if (shiftDest != destVal) |
| { // extend the sign-bit of the result into all upper bits of dest |
| assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); |
| target.getInstrInfo(). |
| CreateSignExtensionInstructions(target, F, shiftDest, destVal, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // This returns the approximate cost of the instructions generated, |
| // which is used to pick the cheapest when both operands are constant. |
| static inline unsigned |
| CreateMulConstInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| /* Use max. multiply cost, viz., cost of MULX */ |
| unsigned cost = target.getInstrInfo().minLatency(V9::MULX); |
| unsigned firstNewInstr = mvec.size(); |
| |
| Value* constOp = rval; |
| if (! isa<Constant>(constOp)) |
| return cost; |
| |
| // Cases worth optimizing are: |
| // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Multiply by 2^x for integer types: replace with Shift |
| // |
| const Type* resultType = destVal->getType(); |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) { |
| bool isValidConst; |
| int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| if (isValidConst) { |
| unsigned pow; |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 0 || C == 1) { |
| cost = target.getInstrInfo().minLatency(V9::ADD); |
| unsigned Zero = target.getRegInfo().getZeroRegNum(); |
| MachineInstr* M; |
| if (C == 0) |
| M = BuildMI(V9::ADD,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); |
| else |
| M = BuildMI(V9::ADD,3).addReg(lval).addMReg(Zero).addRegDef(destVal); |
| mvec.push_back(M); |
| } |
| else if (isPowerOf2(C, pow)) { |
| unsigned opSize = target.getTargetData().getTypeSize(resultType); |
| MachineOpCode opCode = (opSize <= 32)? V9::SLL : V9::SLLX; |
| CreateShiftInstructions(target, F, opCode, lval, NULL, pow, |
| destVal, mvec, mcfi); |
| } |
| |
| if (mvec.size() > 0 && needNeg) |
| { // insert <reg = SUB 0, reg> after the instr to flip the sign |
| MachineInstr* M = CreateIntNegInstruction(target, destVal); |
| mvec.push_back(M); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| MachineOpCode opCode = (dval < 0) |
| ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); |
| } |
| } |
| } |
| |
| if (firstNewInstr < mvec.size()) { |
| cost = 0; |
| for (unsigned i=firstNewInstr; i < mvec.size(); ++i) |
| cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode()); |
| } |
| |
| return cost; |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // |
| static inline void |
| CreateCheapestMulConstInstruction(const TargetMachine &target, |
| Function* F, |
| Value* lval, Value* rval, |
| Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| Value* constOp; |
| if (isa<Constant>(lval) && isa<Constant>(rval)) |
| { // both operands are constant: evaluate and "set" in dest |
| Constant* P = ConstantFoldBinaryInstruction(Instruction::Mul, |
| cast<Constant>(lval), cast<Constant>(rval)); |
| target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi); |
| } |
| else if (isa<Constant>(rval)) // rval is constant, but not lval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| else if (isa<Constant>(lval)) // lval is constant, but not rval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| |
| // else neither is constant |
| return; |
| } |
| |
| // Return NULL if we cannot exploit constant to create a cheaper instruction |
| static inline void |
| CreateMulInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi, |
| MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE) |
| { |
| unsigned L = mvec.size(); |
| CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); |
| if (mvec.size() == L) { |
| // no instructions were added so create MUL reg, reg, reg. |
| // Use FSMULD if both operands are actually floats cast to doubles. |
| // Otherwise, use the default opcode for the appropriate type. |
| MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE) |
| ? forceMulOp |
| : ChooseMulInstructionByType(destVal->getType())); |
| mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) |
| .addRegDef(destVal)); |
| } |
| } |
| |
| |
| // Generate a divide instruction for Div or Rem. |
| // For Rem, this assumes that the operand type will be signed if the result |
| // type is signed. This is correct because they must have the same sign. |
| // |
| static inline MachineOpCode |
| ChooseDivInstruction(TargetMachine &target, |
| const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) |
| opCode = resultType->isSigned()? V9::SDIVX : V9::UDIVX; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FDIVS; break; |
| case Type::DoubleTyID: opCode = V9::FDIVD; break; |
| default: assert(0 && "Invalid type for DIV instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Return if we cannot exploit constant to create a cheaper instruction |
| static inline void |
| CreateDivConstInstruction(TargetMachine &target, |
| const InstructionNode* instrNode, |
| std::vector<MachineInstr*>& mvec) |
| { |
| Value* LHS = instrNode->leftChild()->getValue(); |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| if (!isa<Constant>(constOp)) |
| return; |
| |
| Value* DestVal = instrNode->getValue(); |
| unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); |
| |
| // Cases worth optimizing are: |
| // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} |
| // |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) |
| { |
| unsigned pow; |
| bool isValidConst; |
| int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| if (isValidConst) { |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 1) { |
| mvec.push_back(BuildMI(V9::ADD, 3).addReg(LHS).addMReg(ZeroReg) |
| .addRegDef(DestVal)); |
| } else if (isPowerOf2(C, pow)) { |
| unsigned opCode= ((resultType->isSigned()) |
| ? (resultType==Type::LongTy) ? V9::SRAX : V9::SRA |
| : (resultType==Type::LongTy) ? V9::SRLX : V9::SRL); |
| mvec.push_back(BuildMI(opCode, 3).addReg(LHS).addZImm(pow) |
| .addRegDef(DestVal)); |
| } |
| |
| if (needNeg && (C == 1 || isPowerOf2(C, pow))) { |
| // insert <reg = SUB 0, reg> after the instr to flip the sign |
| mvec.push_back(CreateIntNegInstruction(target, DestVal)); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| unsigned opCode = |
| (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| |
| mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(DestVal)); |
| } |
| } |
| } |
| } |
| |
| |
| static void |
| CreateCodeForVariableSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned tsize, |
| Value* numElementsVal, |
| std::vector<MachineInstr*>& getMvec) |
| { |
| Value* totalSizeVal; |
| MachineInstr* M; |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); |
| Function *F = result->getParent()->getParent(); |
| |
| // Enforce the alignment constraints on the stack pointer at |
| // compile time if the total size is a known constant. |
| if (isa<Constant>(numElementsVal)) |
| { |
| bool isValid; |
| int64_t numElem = GetConstantValueAsSignedInt(numElementsVal, isValid); |
| assert(isValid && "Unexpectedly large array dimension in alloca!"); |
| int64_t total = numElem * tsize; |
| if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment()) |
| total += target.getFrameInfo().getStackFrameSizeAlignment() - extra; |
| totalSizeVal = ConstantSInt::get(Type::IntTy, total); |
| } |
| else |
| { |
| // The size is not a constant. Generate code to compute it and |
| // code to pad the size for stack alignment. |
| // Create a Value to hold the (constant) element size |
| Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); |
| |
| // Create temporary values to hold the result of MUL, SLL, SRL |
| // THIS CASE IS INCOMPLETE AND WILL BE FIXED SHORTLY. |
| TmpInstruction* tmpProd = new TmpInstruction(numElementsVal, tsizeVal); |
| TmpInstruction* tmpSLL = new TmpInstruction(numElementsVal, tmpProd); |
| TmpInstruction* tmpSRL = new TmpInstruction(numElementsVal, tmpSLL); |
| mcfi.addTemp(tmpProd); |
| mcfi.addTemp(tmpSLL); |
| mcfi.addTemp(tmpSRL); |
| |
| // Instruction 1: mul numElements, typeSize -> tmpProd |
| // This will optimize the MUL as far as possible. |
| CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd,getMvec, |
| mcfi, INVALID_MACHINE_OPCODE); |
| |
| assert(0 && "Need to insert padding instructions here!"); |
| |
| totalSizeVal = tmpProd; |
| } |
| |
| // Get the constant offset from SP for dynamically allocated storage |
| // and create a temporary Value to hold it. |
| MachineFunction& mcInfo = MachineFunction::get(F); |
| bool growUp; |
| ConstantSInt* dynamicAreaOffset = |
| ConstantSInt::get(Type::IntTy, |
| target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp)); |
| assert(! growUp && "Has SPARC v9 stack frame convention changed?"); |
| |
| unsigned SPReg = target.getRegInfo().getStackPointer(); |
| |
| // Instruction 2: sub %sp, totalSizeVal -> %sp |
| getMvec.push_back(BuildMI(V9::SUB, 3).addMReg(SPReg).addReg(totalSizeVal) |
| .addMReg(SPReg,MOTy::Def)); |
| |
| // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result |
| getMvec.push_back(BuildMI(V9::ADD, 3).addMReg(SPReg).addReg(dynamicAreaOffset) |
| .addRegDef(result)); |
| } |
| |
| |
| static void |
| CreateCodeForFixedSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned tsize, |
| unsigned numElements, |
| std::vector<MachineInstr*>& getMvec) |
| { |
| assert(tsize > 0 && "Illegal (zero) type size for alloca"); |
| assert(result && result->getParent() && |
| "Result value is not part of a function?"); |
| Function *F = result->getParent()->getParent(); |
| MachineFunction &mcInfo = MachineFunction::get(F); |
| |
| // Check if the offset would small enough to use as an immediate in |
| // load/stores (check LDX because all load/stores have the same-size immediate |
| // field). If not, put the variable in the dynamically sized area of the |
| // frame. |
| unsigned paddedSizeIgnored; |
| int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result, |
| paddedSizeIgnored, |
| tsize * numElements); |
| if (! target.getInstrInfo().constantFitsInImmedField(V9::LDX, offsetFromFP)) { |
| CreateCodeForVariableSizeAlloca(target, result, tsize, |
| ConstantSInt::get(Type::IntTy,numElements), |
| getMvec); |
| return; |
| } |
| |
| // else offset fits in immediate field so go ahead and allocate it. |
| offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements); |
| |
| // Create a temporary Value to hold the constant offset. |
| // This is needed because it may not fit in the immediate field. |
| ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); |
| |
| // Instruction 1: add %fp, offsetFromFP -> result |
| unsigned FPReg = target.getRegInfo().getFramePointer(); |
| getMvec.push_back(BuildMI(V9::ADD, 3).addMReg(FPReg).addReg(offsetVal) |
| .addRegDef(result)); |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // Function SetOperandsForMemInstr |
| // |
| // Choose addressing mode for the given load or store instruction. |
| // Use [reg+reg] if it is an indexed reference, and the index offset is |
| // not a constant or if it cannot fit in the offset field. |
| // Use [reg+offset] in all other cases. |
| // |
| // This assumes that all array refs are "lowered" to one of these forms: |
| // %x = load (subarray*) ptr, constant ; single constant offset |
| // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| // Generally, this should happen via strength reduction + LICM. |
| // Also, strength reduction should take care of using the same register for |
| // the loop index variable and an array index, when that is profitable. |
| //------------------------------------------------------------------------ |
| |
| static void |
| SetOperandsForMemInstr(unsigned Opcode, |
| std::vector<MachineInstr*>& mvec, |
| InstructionNode* vmInstrNode, |
| const TargetMachine& target) |
| { |
| Instruction* memInst = vmInstrNode->getInstruction(); |
| // Index vector, ptr value, and flag if all indices are const. |
| std::vector<Value*> idxVec; |
| bool allConstantIndices; |
| Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); |
| |
| // Now create the appropriate operands for the machine instruction. |
| // First, initialize so we default to storing the offset in a register. |
| int64_t smallConstOffset = 0; |
| Value* valueForRegOffset = NULL; |
| MachineOperand::MachineOperandType offsetOpType = |
| MachineOperand::MO_VirtualRegister; |
| |
| // Check if there is an index vector and if so, compute the |
| // right offset for structures and for arrays |
| // |
| if (!idxVec.empty()) |
| { |
| const PointerType* ptrType = cast<PointerType>(ptrVal->getType()); |
| |
| // If all indices are constant, compute the combined offset directly. |
| if (allConstantIndices) |
| { |
| // Compute the offset value using the index vector. Create a |
| // virtual reg. for it since it may not fit in the immed field. |
| uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); |
| valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); |
| } |
| else |
| { |
| // There is at least one non-constant offset. Therefore, this must |
| // be an array ref, and must have been lowered to a single non-zero |
| // offset. (An extra leading zero offset, if any, can be ignored.) |
| // Generate code sequence to compute address from index. |
| // |
| bool firstIdxIsZero = IsZero(idxVec[0]); |
| assert(idxVec.size() == 1U + firstIdxIsZero |
| && "Array refs must be lowered before Instruction Selection"); |
| |
| Value* idxVal = idxVec[firstIdxIsZero]; |
| |
| std::vector<MachineInstr*> mulVec; |
| Instruction* addr = new TmpInstruction(Type::ULongTy, memInst); |
| MachineCodeForInstruction::get(memInst).addTemp(addr); |
| |
| // Get the array type indexed by idxVal, and compute its element size. |
| // The call to getTypeSize() will fail if size is not constant. |
| const Type* vecType = (firstIdxIsZero |
| ? GetElementPtrInst::getIndexedType(ptrType, |
| std::vector<Value*>(1U, idxVec[0]), |
| /*AllowCompositeLeaf*/ true) |
| : ptrType); |
| const Type* eltType = cast<SequentialType>(vecType)->getElementType(); |
| ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, |
| target.getTargetData().getTypeSize(eltType)); |
| |
| // CreateMulInstruction() folds constants intelligently enough. |
| CreateMulInstruction(target, memInst->getParent()->getParent(), |
| idxVal, /* lval, not likely to be const*/ |
| eltSizeVal, /* rval, likely to be constant */ |
| addr, /* result */ |
| mulVec, MachineCodeForInstruction::get(memInst), |
| INVALID_MACHINE_OPCODE); |
| |
| assert(mulVec.size() > 0 && "No multiply code created?"); |
| mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); |
| |
| valueForRegOffset = addr; |
| } |
| } |
| else |
| { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| |
| // For STORE: |
| // Operand 0 is value, operand 1 is ptr, operand 2 is offset |
| // For LOAD or GET_ELEMENT_PTR, |
| // Operand 0 is ptr, operand 1 is offset, operand 2 is result. |
| // |
| unsigned offsetOpNum, ptrOpNum; |
| MachineInstr *MI; |
| if (memInst->getOpcode() == Instruction::Store) { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addReg(valueForRegOffset); |
| else |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addSImm(smallConstOffset); |
| } else { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) |
| .addRegDef(memInst); |
| else |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) |
| .addRegDef(memInst); |
| } |
| mvec.push_back(MI); |
| } |
| |
| |
| // |
| // Substitute operand `operandNum' of the instruction in node `treeNode' |
| // in place of the use(s) of that instruction in node `parent'. |
| // Check both explicit and implicit operands! |
| // Also make sure to skip over a parent who: |
| // (1) is a list node in the Burg tree, or |
| // (2) itself had its results forwarded to its parent |
| // |
| static void |
| ForwardOperand(InstructionNode* treeNode, |
| InstrTreeNode* parent, |
| int operandNum) |
| { |
| assert(treeNode && parent && "Invalid invocation of ForwardOperand"); |
| |
| Instruction* unusedOp = treeNode->getInstruction(); |
| Value* fwdOp = unusedOp->getOperand(operandNum); |
| |
| // The parent itself may be a list node, so find the real parent instruction |
| while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) |
| { |
| parent = parent->parent(); |
| assert(parent && "ERROR: Non-instruction node has no parent in tree."); |
| } |
| InstructionNode* parentInstrNode = (InstructionNode*) parent; |
| |
| Instruction* userInstr = parentInstrNode->getInstruction(); |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); |
| |
| // The parent's mvec would be empty if it was itself forwarded. |
| // Recursively call ForwardOperand in that case... |
| // |
| if (mvec.size() == 0) |
| { |
| assert(parent->parent() != NULL && |
| "Parent could not have been forwarded, yet has no instructions?"); |
| ForwardOperand(treeNode, parent->parent(), operandNum); |
| } |
| else |
| { |
| for (unsigned i=0, N=mvec.size(); i < N; i++) |
| { |
| MachineInstr* minstr = mvec[i]; |
| for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) |
| { |
| const MachineOperand& mop = minstr->getOperand(i); |
| if (mop.getType() == MachineOperand::MO_VirtualRegister && |
| mop.getVRegValue() == unusedOp) |
| minstr->SetMachineOperandVal(i, |
| MachineOperand::MO_VirtualRegister, fwdOp); |
| } |
| |
| for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i) |
| if (minstr->getImplicitRef(i) == unusedOp) |
| minstr->setImplicitRef(i, fwdOp, |
| minstr->implicitRefIsDefined(i), |
| minstr->implicitRefIsDefinedAndUsed(i)); |
| } |
| } |
| } |
| |
| |
| inline bool |
| AllUsesAreBranches(const Instruction* setccI) |
| { |
| for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end(); |
| UI != UE; ++UI) |
| if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here |
| && cast<Instruction>(*UI)->getOpcode() != Instruction::Br) |
| return false; |
| return true; |
| } |
| |
| //******************* Externally Visible Functions *************************/ |
| |
| //------------------------------------------------------------------------ |
| // External Function: ThisIsAChainRule |
| // |
| // Purpose: |
| // Check if a given BURG rule is a chain rule. |
| //------------------------------------------------------------------------ |
| |
| extern bool |
| ThisIsAChainRule(int eruleno) |
| { |
| switch(eruleno) |
| { |
| case 111: // stmt: reg |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 133: |
| case 155: |
| case 221: |
| case 222: |
| case 241: |
| case 242: |
| case 243: |
| case 244: |
| case 245: |
| case 321: |
| return true; break; |
| |
| default: |
| return false; break; |
| } |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // External Function: GetInstructionsByRule |
| // |
| // Purpose: |
| // Choose machine instructions for the SPARC according to the |
| // patterns chosen by the BURG-generated parser. |
| //------------------------------------------------------------------------ |
| |
| void |
| GetInstructionsByRule(InstructionNode* subtreeRoot, |
| int ruleForNode, |
| short* nts, |
| TargetMachine &target, |
| std::vector<MachineInstr*>& mvec) |
| { |
| bool checkCast = false; // initialize here to use fall-through |
| bool maskUnsignedResult = false; |
| int nextRule; |
| int forwardOperandNum = -1; |
| unsigned allocaSize = 0; |
| MachineInstr* M, *M2; |
| unsigned L; |
| |
| mvec.clear(); |
| |
| // If the code for this instruction was folded into the parent (user), |
| // then do nothing! |
| if (subtreeRoot->isFoldedIntoParent()) |
| return; |
| |
| // |
| // Let's check for chain rules outside the switch so that we don't have |
| // to duplicate the list of chain rule production numbers here again |
| // |
| if (ThisIsAChainRule(ruleForNode)) |
| { |
| // Chain rules have a single nonterminal on the RHS. |
| // Get the rule that matches the RHS non-terminal and use that instead. |
| // |
| assert(nts[0] && ! nts[1] |
| && "A chain rule should have only one RHS non-terminal!"); |
| nextRule = burm_rule(subtreeRoot->state, nts[0]); |
| nts = burm_nts[nextRule]; |
| GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); |
| } |
| else |
| { |
| switch(ruleForNode) { |
| case 1: // stmt: Ret |
| case 2: // stmt: RetValue(reg) |
| { // NOTE: Prepass of register allocation is responsible |
| // for moving return value to appropriate register. |
| // Mark the return-address register as a hidden virtual reg. |
| // Mark the return value register as an implicit ref of |
| // the machine instruction. |
| // Finally put a NOP in the delay slot. |
| ReturnInst *returnInstr = |
| cast<ReturnInst>(subtreeRoot->getInstruction()); |
| assert(returnInstr->getOpcode() == Instruction::Ret); |
| |
| Instruction* returnReg = new TmpInstruction(returnInstr); |
| MachineCodeForInstruction::get(returnInstr).addTemp(returnReg); |
| |
| M = BuildMI(V9::JMPLRET, 3).addReg(returnReg).addSImm(8) |
| .addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def); |
| |
| if (returnInstr->getReturnValue() != NULL) |
| M->addImplicitRef(returnInstr->getReturnValue()); |
| |
| mvec.push_back(M); |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| break; |
| } |
| |
| case 3: // stmt: Store(reg,reg) |
| case 4: // stmt: Store(reg,ptrreg) |
| SetOperandsForMemInstr(ChooseStoreInstruction( |
| subtreeRoot->leftChild()->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 5: // stmt: BrUncond |
| { |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 206: // stmt: BrCond(setCCconst) |
| { // setCCconst => boolean was computed with `%b = setCC type reg1 const' |
| // If the constant is ZERO, we can use the branch-on-integer-register |
| // instructions and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 5, so just fall through. |
| // |
| InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isInteger() |
| || isa<PointerType>(constVal->getType())) |
| && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is a zero after all... |
| // Use the left child of setCC as the first argument! |
| // Mark the setCC node so that no code is generated for it. |
| InstructionNode* setCCNode = (InstructionNode*) |
| subtreeRoot->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| setCCNode->markFoldedIntoParent(); |
| |
| BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction()); |
| |
| M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) |
| .addReg(setCCNode->leftChild()->getValue()) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1) |
| .addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 6: // stmt: BrCond(setCC) |
| { // bool => boolean was computed with SetCC. |
| // The branch to use depends on whether it is FP, signed, or unsigned. |
| // If it is an integer CC, we also need to find the unique |
| // TmpInstruction representing that CC. |
| // |
| BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction()); |
| bool isFPBranch; |
| unsigned Opcode = ChooseBccInstruction(subtreeRoot, isFPBranch); |
| Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), |
| brInst->getParent()->getParent(), |
| isFPBranch? Type::FloatTy : Type::IntTy); |
| M = BuildMI(Opcode, 2).addCCReg(ccValue) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 208: // stmt: BrCond(boolconst) |
| { |
| // boolconst => boolean is a constant; use BA to first or second label |
| Constant* constVal = |
| cast<Constant>(subtreeRoot->leftChild()->getValue()); |
| unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1; |
| |
| M = BuildMI(V9::BA, 1).addPCDisp( |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 8: // stmt: BrCond(boolreg) |
| { // boolreg => boolean is stored in an existing register. |
| // Just use the branch-on-integer-register instruction! |
| // |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) |
| .addPCDisp(BI->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 9: // stmt: Switch(reg) |
| assert(0 && "*** SWITCH instruction is not implemented yet."); |
| break; |
| |
| case 10: // reg: VRegList(reg, reg) |
| assert(0 && "VRegList should never be the topmost non-chain rule"); |
| break; |
| |
| case 21: // bool: Not(bool,reg): Both these are implemented as: |
| case 421: // reg: BNot(reg,reg): reg = reg XOR-NOT 0 |
| { // First find the unary operand. It may be left or right, usually right. |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(subtreeRoot->getInstruction())); |
| unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); |
| mvec.push_back(BuildMI(V9::XNOR, 3).addReg(notArg).addMReg(ZeroReg) |
| .addRegDef(subtreeRoot->getValue())); |
| break; |
| } |
| |
| case 22: // reg: ToBoolTy(reg): |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || isa<PointerType>(opType)); |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| } |
| |
| case 23: // reg: ToUByteTy(reg) |
| case 24: // reg: ToSByteTy(reg) |
| case 25: // reg: ToUShortTy(reg) |
| case 26: // reg: ToShortTy(reg) |
| case 27: // reg: ToUIntTy(reg) |
| case 28: // reg: ToIntTy(reg) |
| { |
| //====================================================================== |
| // Rules for integer conversions: |
| // |
| //-------- |
| // From ISO 1998 C++ Standard, Sec. 4.7: |
| // |
| // 2. If the destination type is unsigned, the resulting value is |
| // the least unsigned integer congruent to the source integer |
| // (modulo 2n where n is the number of bits used to represent the |
| // unsigned type). [Note: In a two s complement representation, |
| // this conversion is conceptual and there is no change in the |
| // bit pattern (if there is no truncation). ] |
| // |
| // 3. If the destination type is signed, the value is unchanged if |
| // it can be represented in the destination type (and bitfield width); |
| // otherwise, the value is implementation-defined. |
| //-------- |
| // |
| // Since we assume 2s complement representations, this implies: |
| // |
| // -- if operand is smaller than destination, zero-extend or sign-extend |
| // according to the signedness of the *operand*: source decides. |
| // ==> we have to do nothing here! |
| // |
| // -- if operand is same size as or larger than destination, and the |
| // destination is *unsigned*, zero-extend the operand: dest. decides |
| // |
| // -- if operand is same size as or larger than destination, and the |
| // destination is *signed*, the choice is implementation defined: |
| // we sign-extend the operand: i.e., again dest. decides. |
| // Note: this matches both Sun's cc and gcc3.2. |
| //====================================================================== |
| |
| Instruction* destI = subtreeRoot->getInstruction(); |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = opVal->getType(); |
| if (opType->isIntegral() || isa<PointerType>(opType)) |
| { |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| unsigned destSize = target.getTargetData().getTypeSize(destI->getType()); |
| if (opSize >= destSize) |
| { // Operand is same size as or larger than dest: |
| // zero- or sign-extend, according to the signeddness of |
| // the destination (see above). |
| if (destI->getType()->isSigned()) |
| target.getInstrInfo().CreateSignExtensionInstructions(target, |
| destI->getParent()->getParent(), opVal, destI, 8*destSize, |
| mvec, MachineCodeForInstruction::get(destI)); |
| else |
| target.getInstrInfo().CreateZeroExtensionInstructions(target, |
| destI->getParent()->getParent(), opVal, destI, 8*destSize, |
| mvec, MachineCodeForInstruction::get(destI)); |
| } |
| else |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| else if (opType->isFloatingPoint()) |
| { |
| CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, |
| MachineCodeForInstruction::get(destI)); |
| if (destI->getType()->isUnsigned()) |
| maskUnsignedResult = true; // not handled by fp->int code |
| } |
| else |
| assert(0 && "Unrecognized operand type for convert-to-unsigned"); |
| |
| break; |
| } |
| |
| case 29: // reg: ToULongTy(reg) |
| case 30: // reg: ToLongTy(reg) |
| { |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = opVal->getType(); |
| if (opType->isIntegral() || isa<PointerType>(opType)) |
| forwardOperandNum = 0; // forward first operand to user |
| else if (opType->isFloatingPoint()) |
| { |
| Instruction* destI = subtreeRoot->getInstruction(); |
| CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, |
| MachineCodeForInstruction::get(destI)); |
| } |
| else |
| assert(0 && "Unrecognized operand type for convert-to-signed"); |
| break; |
| } |
| |
| case 31: // reg: ToFloatTy(reg): |
| case 32: // reg: ToDoubleTy(reg): |
| case 232: // reg: ToDoubleTy(Constant): |
| |
| // If this instruction has a parent (a user) in the tree |
| // and the user is translated as an FsMULd instruction, |
| // then the cast is unnecessary. So check that first. |
| // In the future, we'll want to do the same for the FdMULq instruction, |
| // so do the check here instead of only for ToFloatTy(reg). |
| // |
| if (subtreeRoot->parent() != NULL) |
| { |
| const MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get( |
| cast<InstructionNode>(subtreeRoot->parent())->getInstruction()); |
| if (mcfi.size() == 0 || mcfi.front()->getOpCode() == V9::FSMULD) |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| |
| if (forwardOperandNum != 0) // we do need the cast |
| { |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| MachineOpCode opCode=ChooseConvertToFloatInstr( |
| subtreeRoot->getOpLabel(), opType); |
| if (opCode == V9::INVALID_OPCODE) // no conversion needed |
| { |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| else |
| { |
| // If the source operand is a non-FP type it must be |
| // first copied from int to float register via memory! |
| Instruction *dest = subtreeRoot->getInstruction(); |
| Value* srcForCast; |
| int n = 0; |
| if (! opType->isFloatingPoint()) |
| { |
| // Create a temporary to represent the FP register |
| // into which the integer will be copied via memory. |
| // The type of this temporary will determine the FP |
| // register used: single-prec for a 32-bit int or smaller, |
| // double-prec for a 64-bit int. |
| // |
| uint64_t srcSize = |
| target.getTargetData().getTypeSize(leftVal->getType()); |
| Type* tmpTypeToUse = |
| (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; |
| srcForCast = new TmpInstruction(tmpTypeToUse, dest); |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(dest); |
| destMCFI.addTemp(srcForCast); |
| |
| target.getInstrInfo().CreateCodeToCopyIntToFloat(target, |
| dest->getParent()->getParent(), |
| leftVal, cast<Instruction>(srcForCast), |
| mvec, destMCFI); |
| } |
| else |
| srcForCast = leftVal; |
| |
| M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); |
| mvec.push_back(M); |
| } |
| } |
| break; |
| |
| case 19: // reg: ToArrayTy(reg): |
| case 20: // reg: ToPointerTy(reg): |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| |
| case 233: // reg: Add(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateAddConstInstruction(subtreeRoot); |
| if (M != NULL) |
| { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 33: // reg: Add(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); |
| break; |
| |
| case 234: // reg: Sub(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateSubConstInstruction(subtreeRoot); |
| if (M != NULL) |
| { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 34: // reg: Sub(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType()), |
| subtreeRoot, mvec); |
| break; |
| |
| case 135: // reg: Mul(todouble, todouble) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 35: // reg: Mul(reg, reg) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? V9::FSMULD |
| : INVALID_MACHINE_OPCODE); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr),forceOp); |
| break; |
| } |
| case 335: // reg: Mul(todouble, todoubleConst) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 235: // reg: Mul(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? V9::FSMULD |
| : INVALID_MACHINE_OPCODE); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr), |
| forceOp); |
| break; |
| } |
| case 236: // reg: Div(reg, Constant) |
| maskUnsignedResult = true; |
| L = mvec.size(); |
| CreateDivConstInstruction(target, subtreeRoot, mvec); |
| if (mvec.size() > L) |
| break; |
| // ELSE FALL THROUGH |
| |
| case 36: // reg: Div(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseDivInstruction(target, subtreeRoot), |
| subtreeRoot, mvec); |
| break; |
| |
| case 37: // reg: Rem(reg, reg) |
| case 237: // reg: Rem(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| Instruction* remInstr = subtreeRoot->getInstruction(); |
| |
| TmpInstruction* quot = new TmpInstruction( |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue()); |
| TmpInstruction* prod = new TmpInstruction( |
| quot, |
| subtreeRoot->rightChild()->getValue()); |
| MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod); |
| |
| M = BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addReg(subtreeRoot->rightChild()->getValue()) |
| .addRegDef(quot); |
| mvec.push_back(M); |
| |
| unsigned MulOpcode = |
| ChooseMulInstructionByType(subtreeRoot->getInstruction()->getType()); |
| Value *MulRHS = subtreeRoot->rightChild()->getValue(); |
| M = BuildMI(MulOpcode, 3).addReg(quot).addReg(MulRHS).addReg(prod, |
| MOTy::Def); |
| mvec.push_back(M); |
| |
| unsigned Opcode = ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType()); |
| M = BuildMI(Opcode, 3).addReg(subtreeRoot->leftChild()->getValue()) |
| .addReg(prod).addRegDef(subtreeRoot->getValue()); |
| mvec.push_back(M); |
| break; |
| } |
| |
| case 38: // bool: And(bool, bool) |
| case 238: // bool: And(bool, boolconst) |
| case 338: // reg : BAnd(reg, reg) |
| case 538: // reg : BAnd(reg, Constant) |
| Add3OperandInstr(V9::AND, subtreeRoot, mvec); |
| break; |
| |
| case 138: // bool: And(bool, not) |
| case 438: // bool: BAnd(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *LHS = subtreeRoot->leftChild()->getValue(); |
| Value *Dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::ANDN, 3).addReg(LHS).addReg(notArg) |
| .addReg(Dest, MOTy::Def)); |
| break; |
| } |
| |
| case 39: // bool: Or(bool, bool) |
| case 239: // bool: Or(bool, boolconst) |
| case 339: // reg : BOr(reg, reg) |
| case 539: // reg : BOr(reg, Constant) |
| Add3OperandInstr(V9::OR, subtreeRoot, mvec); |
| break; |
| |
| case 139: // bool: Or(bool, not) |
| case 439: // bool: BOr(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *LHS = subtreeRoot->leftChild()->getValue(); |
| Value *Dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::ORN, 3).addReg(LHS).addReg(notArg) |
| .addReg(Dest, MOTy::Def)); |
| break; |
| } |
| |
| case 40: // bool: Xor(bool, bool) |
| case 240: // bool: Xor(bool, boolconst) |
| case 340: // reg : BXor(reg, reg) |
| case 540: // reg : BXor(reg, Constant) |
| Add3OperandInstr(V9::XOR, subtreeRoot, mvec); |
| break; |
| |
| case 140: // bool: Xor(bool, not) |
| case 440: // bool: BXor(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *LHS = subtreeRoot->leftChild()->getValue(); |
| Value *Dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::XNOR, 3).addReg(LHS).addReg(notArg) |
| .addReg(Dest, MOTy::Def)); |
| break; |
| } |
| |
| case 41: // boolconst: SetCC(reg, Constant) |
| // |
| // If the SetCC was folded into the user (parent), it will be |
| // caught above. All other cases are the same as case 42, |
| // so just fall through. |
| // |
| case 42: // bool: SetCC(reg, reg): |
| { |
| // This generates a SUBCC instruction, putting the difference in |
| // a result register, and setting a condition code. |
| // |
| // If the boolean result of the SetCC is used by anything other |
| // than a branch instruction, or if it is used outside the current |
| // basic block, the boolean must be |
| // computed and stored in the result register. Otherwise, discard |
| // the difference (by using %g0) and keep only the condition code. |
| // |
| // To compute the boolean result in a register we use a conditional |
| // move, unless the result of the SUBCC instruction can be used as |
| // the bool! This assumes that zero is FALSE and any non-zero |
| // integer is TRUE. |
| // |
| InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| |
| bool keepBoolVal = parentNode == NULL || |
| ! AllUsesAreBranches(setCCInstr); |
| bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE; |
| bool keepSubVal = keepBoolVal && subValIsBoolVal; |
| bool computeBoolVal = keepBoolVal && ! subValIsBoolVal; |
| |
| bool mustClearReg; |
| int valueToMove; |
| MachineOpCode movOpCode = 0; |
| |
| // Mark the 4th operand as being a CC register, and as a def |
| // A TmpInstruction is created to represent the CC "result". |
| // Unlike other instances of TmpInstruction, this one is used |
| // by machine code of multiple LLVM instructions, viz., |
| // the SetCC and the branch. Make sure to get the same one! |
| // Note that we do this even for FP CC registers even though they |
| // are explicit operands, because the type of the operand |
| // needs to be a floating point condition code, not an integer |
| // condition code. Think of this as casting the bool result to |
| // a FP condition code register. |
| // |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| bool isFPCompare = leftVal->getType()->isFloatingPoint(); |
| |
| TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, |
| setCCInstr->getParent()->getParent(), |
| isFPCompare ? Type::FloatTy : Type::IntTy); |
| MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC); |
| |
| if (! isFPCompare) |
| { |
| // Integer condition: dest. should be %g0 or an integer register. |
| // If result must be saved but condition is not SetEQ then we need |
| // a separate instruction to compute the bool result, so discard |
| // result of SUBcc instruction anyway. |
| // |
| if (keepSubVal) { |
| M = BuildMI(V9::SUBcc, 4) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addReg(subtreeRoot->rightChild()->getValue()) |
| .addRegDef(subtreeRoot->getValue()) |
| .addCCReg(tmpForCC, MOTy::Def); |
| } else { |
| M = BuildMI(V9::SUBcc, 4) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addReg(subtreeRoot->rightChild()->getValue()) |
| .addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def) |
| .addCCReg(tmpForCC, MOTy::Def); |
| } |
| mvec.push_back(M); |
| |
| if (computeBoolVal) |
| { // recompute bool using the integer condition codes |
| movOpCode = |
| ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove); |
| } |
| } |
| else |
| { |
| // FP condition: dest of FCMP should be some FCCn register |
| M = BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) |
| .addCCReg(tmpForCC, MOTy::Def) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addRegDef(subtreeRoot->rightChild()->getValue()); |
| mvec.push_back(M); |
| |
| if (computeBoolVal) |
| {// recompute bool using the FP condition codes |
| mustClearReg = true; |
| valueToMove = 1; |
| movOpCode = ChooseMovFpccInstruction(subtreeRoot); |
| } |
| } |
| |
| if (computeBoolVal) |
| { |
| if (mustClearReg) |
| {// Unconditionally set register to 0 |
| M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); |
| mvec.push_back(M); |
| } |
| |
| // Now conditionally move `valueToMove' (0 or 1) into the register |
| // Mark the register as a use (as well as a def) because the old |
| // value should be retained if the condition is false. |
| M = BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(valueToMove) |
| .addReg(setCCInstr, MOTy::UseAndDef); |
| mvec.push_back(M); |
| } |
| break; |
| } |
| |
| case 51: // reg: Load(reg) |
| case 52: // reg: Load(ptrreg) |
| SetOperandsForMemInstr(ChooseLoadInstruction( |
| subtreeRoot->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 55: // reg: GetElemPtr(reg) |
| case 56: // reg: GetElemPtrIdx(reg,reg) |
| // If the GetElemPtr was folded into the user (parent), it will be |
| // caught above. For other cases, we have to compute the address. |
| SetOperandsForMemInstr(V9::ADD, mvec, subtreeRoot, target); |
| break; |
| |
| case 57: // reg: Alloca: Implement as 1 instruction: |
| { // add %fp, offsetFromFP -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| unsigned tsize = |
| target.getTargetData().getTypeSize(instr->getAllocatedType()); |
| assert(tsize != 0); |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); |
| break; |
| } |
| |
| case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| // mul num, typeSz -> tmp |
| // sub %sp, tmp -> %sp |
| { // add %sp, frameSizeBelowDynamicArea -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| const Type* eltType = instr->getAllocatedType(); |
| |
| // If #elements is constant, use simpler code for fixed-size allocas |
| int tsize = (int) target.getTargetData().getTypeSize(eltType); |
| Value* numElementsVal = NULL; |
| bool isArray = instr->isArrayAllocation(); |
| |
| if (!isArray || |
| isa<Constant>(numElementsVal = instr->getArraySize())) |
| { // total size is constant: generate code for fixed-size alloca |
| unsigned numElements = isArray? |
| cast<ConstantUInt>(numElementsVal)->getValue() : 1; |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, |
| numElements, mvec); |
| } |
| else // total size is not constant. |
| CreateCodeForVariableSizeAlloca(target, instr, tsize, |
| numElementsVal, mvec); |
| break; |
| } |
| |
| case 61: // reg: Call |
| { // Generate a direct (CALL) or indirect (JMPL) call. |
| // Mark the return-address register, the indirection |
| // register (for indirect calls), the operands of the Call, |
| // and the return value (if any) as implicit operands |
| // of the machine instruction. |
| // |
| // If this is a varargs function, floating point arguments |
| // have to passed in integer registers so insert |
| // copy-float-to-int instructions for each float operand. |
| // |
| CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); |
| Value *callee = callInstr->getCalledValue(); |
| |
| // Create hidden virtual register for return address with type void* |
| TmpInstruction* retAddrReg = |
| new TmpInstruction(PointerType::get(Type::VoidTy), callInstr); |
| MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg); |
| |
| // Generate the machine instruction and its operands. |
| // Use CALL for direct function calls; this optimistically assumes |
| // the PC-relative address fits in the CALL address field (22 bits). |
| // Use JMPL for indirect calls. |
| // |
| if (isa<Function>(callee)) // direct function call |
| M = BuildMI(V9::CALL, 1).addPCDisp(callee); |
| else // indirect function call |
| M = BuildMI(V9::JMPLCALL, 3).addReg(callee).addSImm((int64_t)0) |
| .addRegDef(retAddrReg); |
| mvec.push_back(M); |
| |
| const FunctionType* funcType = |
| cast<FunctionType>(cast<PointerType>(callee->getType()) |
| ->getElementType()); |
| bool isVarArgs = funcType->isVarArg(); |
| bool noPrototype = isVarArgs && funcType->getNumParams() == 0; |
| |
| // Use a descriptor to pass information about call arguments |
| // to the register allocator. This descriptor will be "owned" |
| // and freed automatically when the MachineCodeForInstruction |
| // object for the callInstr goes away. |
| CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr, |
| retAddrReg, isVarArgs, noPrototype); |
| |
| assert(callInstr->getOperand(0) == callee |
| && "This is assumed in the loop below!"); |
| |
| for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) |
| { |
| Value* argVal = callInstr->getOperand(i); |
| Instruction* intArgReg = NULL; |
| |
| // Check for FP arguments to varargs functions. |
| // Any such argument in the first $K$ args must be passed in an |
| // integer register, where K = #integer argument registers. |
| if (isVarArgs && argVal->getType()->isFloatingPoint()) |
| { |
| // If it is a function with no prototype, pass value |
| // as an FP value as well as a varargs value |
| if (noPrototype) |
| argDesc->getArgInfo(i-1).setUseFPArgReg(); |
| |
| // If this arg. is in the first $K$ regs, add a copy |
| // float-to-int instruction to pass the value as an integer. |
| if (i <= target.getRegInfo().GetNumOfIntArgRegs()) |
| { |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(callInstr); |
| intArgReg = new TmpInstruction(Type::IntTy, argVal); |
| destMCFI.addTemp(intArgReg); |
| |
| std::vector<MachineInstr*> copyMvec; |
| target.getInstrInfo().CreateCodeToCopyFloatToInt(target, |
| callInstr->getParent()->getParent(), |
| argVal, (TmpInstruction*) intArgReg, |
| copyMvec, destMCFI); |
| mvec.insert(mvec.begin(),copyMvec.begin(),copyMvec.end()); |
| |
| argDesc->getArgInfo(i-1).setUseIntArgReg(); |
| argDesc->getArgInfo(i-1).setArgCopy(intArgReg); |
| } |
| else |
| // Cannot fit in first $K$ regs so pass the arg on the stack |
| argDesc->getArgInfo(i-1).setUseStackSlot(); |
| } |
| |
| if (intArgReg) |
| mvec.back()->addImplicitRef(intArgReg); |
| |
| mvec.back()->addImplicitRef(argVal); |
| } |
| |
| // Add the return value as an implicit ref. The call operands |
| // were added above. |
| if (callInstr->getType() != Type::VoidTy) |
| mvec.back()->addImplicitRef(callInstr, /*isDef*/ true); |
| |
| // For the CALL instruction, the ret. addr. reg. is also implicit |
| if (isa<Function>(callee)) |
| mvec.back()->addImplicitRef(retAddrReg, /*isDef*/ true); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 62: // reg: Shl(reg, reg) |
| { |
| Value* argVal1 = subtreeRoot->leftChild()->getValue(); |
| Value* argVal2 = subtreeRoot->rightChild()->getValue(); |
| Instruction* shlInstr = subtreeRoot->getInstruction(); |
| |
| const Type* opType = argVal1->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shl unsupported for other types"); |
| |
| CreateShiftInstructions(target, shlInstr->getParent()->getParent(), |
| (opType == Type::LongTy)? V9::SLLX : V9::SLL, |
| argVal1, argVal2, 0, shlInstr, mvec, |
| MachineCodeForInstruction::get(shlInstr)); |
| break; |
| } |
| |
| case 63: // reg: Shr(reg, reg) |
| { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shr unsupported for other types"); |
| Add3OperandInstr(opType->isSigned() |
| ? (opType == Type::LongTy ? V9::SRAX : V9::SRA) |
| : (opType == Type::LongTy ? V9::SRLX : V9::SRL), |
| subtreeRoot, mvec); |
| break; |
| } |
| |
| case 64: // reg: Phi(reg,reg) |
| break; // don't forward the value |
| |
| case 71: // reg: VReg |
| case 72: // reg: Constant |
| break; // don't forward the value |
| |
| default: |
| assert(0 && "Unrecognized BURG rule"); |
| break; |
| } |
| } |
| |
| if (forwardOperandNum >= 0) |
| { // We did not generate a machine instruction but need to use operand. |
| // If user is in the same tree, replace Value in its machine operand. |
| // If not, insert a copy instruction which should get coalesced away |
| // by register allocation. |
| if (subtreeRoot->parent() != NULL) |
| ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); |
| else |
| { |
| std::vector<MachineInstr*> minstrVec; |
| Instruction* instr = subtreeRoot->getInstruction(); |
| target.getInstrInfo(). |
| CreateCopyInstructionsByType(target, |
| instr->getParent()->getParent(), |
| instr->getOperand(forwardOperandNum), |
| instr, minstrVec, |
| MachineCodeForInstruction::get(instr)); |
| assert(minstrVec.size() > 0); |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| } |
| |
| if (maskUnsignedResult) |
| { // If result is unsigned and smaller than int reg size, |
| // we need to clear high bits of result value. |
| assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); |
| Instruction* dest = subtreeRoot->getInstruction(); |
| if (dest->getType()->isUnsigned()) |
| { |
| unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); |
| if (destSize <= 4) |
| { // Mask high bits. Use a TmpInstruction to represent the |
| // intermediate result before masking. Since those instructions |
| // have already been generated, go back and substitute tmpI |
| // for dest in the result position of each one of them. |
| TmpInstruction *tmpI = new TmpInstruction(dest->getType(), dest, |
| NULL, "maskHi"); |
| MachineCodeForInstruction::get(dest).addTemp(tmpI); |
| |
| for (unsigned i=0, N=mvec.size(); i < N; ++i) |
| mvec[i]->substituteValue(dest, tmpI); |
| |
| M = BuildMI(V9::SRL, 3).addReg(tmpI).addZImm(8*(4-destSize)) |
| .addReg(dest, MOTy::Def); |
| mvec.push_back(M); |
| } |
| else if (destSize < 8) |
| assert(0 && "Unsupported type size: 32 < size < 64 bits"); |
| } |
| } |
| } |