|  | //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the pass which inserts x86 AVX vzeroupper instructions | 
|  | // before calls to SSE encoded functions. This avoids transition latency | 
|  | // penalty when tranfering control between AVX encoded instructions and old | 
|  | // SSE encoding mode. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-vzeroupper" | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); | 
|  |  | 
|  | namespace { | 
|  | struct VZeroUpperInserter : public MachineFunctionPass { | 
|  | static char ID; | 
|  | VZeroUpperInserter() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  |  | 
|  | virtual const char *getPassName() const { return "X86 vzeroupper inserter";} | 
|  |  | 
|  | private: | 
|  | const TargetInstrInfo *TII; // Machine instruction info. | 
|  |  | 
|  | // Any YMM register live-in to this function? | 
|  | bool FnHasLiveInYmm; | 
|  |  | 
|  | // BBState - Contains the state of each MBB: unknown, clean, dirty | 
|  | SmallVector<uint8_t, 8> BBState; | 
|  |  | 
|  | // BBSolved - Keep track of all MBB which had been already analyzed | 
|  | // and there is no further processing required. | 
|  | BitVector BBSolved; | 
|  |  | 
|  | // Machine Basic Blocks are classified according this pass: | 
|  | // | 
|  | //  ST_UNKNOWN - The MBB state is unknown, meaning from the entry state | 
|  | //    until the MBB exit there isn't a instruction using YMM to change | 
|  | //    the state to dirty, or one of the incoming predecessors is unknown | 
|  | //    and there's not a dirty predecessor between them. | 
|  | // | 
|  | //  ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have | 
|  | //    instructions using YMM and be marked ST_CLEAN, as long as the state | 
|  | //    is cleaned by a vzeroupper before any call. | 
|  | // | 
|  | //  ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a | 
|  | //    vzeroupper instruction. | 
|  | // | 
|  | //  ST_INIT - Placeholder for an empty state set | 
|  | // | 
|  | enum { | 
|  | ST_UNKNOWN = 0, | 
|  | ST_CLEAN   = 1, | 
|  | ST_DIRTY   = 2, | 
|  | ST_INIT    = 3 | 
|  | }; | 
|  |  | 
|  | // computeState - Given two states, compute the resulting state, in | 
|  | // the following way | 
|  | // | 
|  | //  1) One dirty state yields another dirty state | 
|  | //  2) All states must be clean for the result to be clean | 
|  | //  3) If none above and one unknown, the result state is also unknown | 
|  | // | 
|  | static unsigned computeState(unsigned PrevState, unsigned CurState) { | 
|  | if (PrevState == ST_INIT) | 
|  | return CurState; | 
|  |  | 
|  | if (PrevState == ST_DIRTY || CurState == ST_DIRTY) | 
|  | return ST_DIRTY; | 
|  |  | 
|  | if (PrevState == ST_CLEAN && CurState == ST_CLEAN) | 
|  | return ST_CLEAN; | 
|  |  | 
|  | return ST_UNKNOWN; | 
|  | } | 
|  |  | 
|  | }; | 
|  | char VZeroUpperInserter::ID = 0; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createX86IssueVZeroUpperPass() { | 
|  | return new VZeroUpperInserter(); | 
|  | } | 
|  |  | 
|  | static bool isYmmReg(unsigned Reg) { | 
|  | if (Reg >= X86::YMM0 && Reg <= X86::YMM15) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) { | 
|  | for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(), | 
|  | E = MRI.livein_end(); I != E; ++I) | 
|  | if (isYmmReg(I->first)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool hasYmmReg(MachineInstr *MI) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.isDebug()) | 
|  | continue; | 
|  | if (isYmmReg(MO.getReg())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - Loop over all of the basic blocks, inserting | 
|  | /// vzero upper instructions before function calls. | 
|  | bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { | 
|  | TII = MF.getTarget().getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool EverMadeChange = false; | 
|  |  | 
|  | // Fast check: if the function doesn't use any ymm registers, we don't need | 
|  | // to insert any VZEROUPPER instructions.  This is constant-time, so it is | 
|  | // cheap in the common case of no ymm use. | 
|  | bool YMMUsed = false; | 
|  | const TargetRegisterClass *RC = &X86::VR256RegClass; | 
|  | for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); | 
|  | i != e; i++) { | 
|  | if (MRI.isPhysRegUsed(*i)) { | 
|  | YMMUsed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!YMMUsed) | 
|  | return EverMadeChange; | 
|  |  | 
|  | // Pre-compute the existence of any live-in YMM registers to this function | 
|  | FnHasLiveInYmm = checkFnHasLiveInYmm(MRI); | 
|  |  | 
|  | assert(BBState.empty()); | 
|  | BBState.resize(MF.getNumBlockIDs(), 0); | 
|  | BBSolved.resize(MF.getNumBlockIDs(), 0); | 
|  |  | 
|  | // Each BB state depends on all predecessors, loop over until everything | 
|  | // converges.  (Once we converge, we can implicitly mark everything that is | 
|  | // still ST_UNKNOWN as ST_CLEAN.) | 
|  | while (1) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Process all basic blocks. | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | MadeChange |= processBasicBlock(MF, *I); | 
|  |  | 
|  | // If this iteration over the code changed anything, keep iterating. | 
|  | if (!MadeChange) break; | 
|  | EverMadeChange = true; | 
|  | } | 
|  |  | 
|  | BBState.clear(); | 
|  | BBSolved.clear(); | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | /// processBasicBlock - Loop over all of the instructions in the basic block, | 
|  | /// inserting vzero upper instructions before function calls. | 
|  | bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF, | 
|  | MachineBasicBlock &BB) { | 
|  | bool Changed = false; | 
|  | unsigned BBNum = BB.getNumber(); | 
|  |  | 
|  | // Don't process already solved BBs | 
|  | if (BBSolved[BBNum]) | 
|  | return false; // No changes | 
|  |  | 
|  | // Check the state of all predecessors | 
|  | unsigned EntryState = ST_INIT; | 
|  | for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(), | 
|  | PE = BB.pred_end(); PI != PE; ++PI) { | 
|  | EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]); | 
|  | if (EntryState == ST_DIRTY) | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | // The entry MBB for the function may set the initial state to dirty if | 
|  | // the function receives any YMM incoming arguments | 
|  | if (&BB == MF.begin()) { | 
|  | EntryState = ST_CLEAN; | 
|  | if (FnHasLiveInYmm) | 
|  | EntryState = ST_DIRTY; | 
|  | } | 
|  |  | 
|  | // The current state is initialized according to the predecessors | 
|  | unsigned CurState = EntryState; | 
|  | bool BBHasCall = false; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { | 
|  | MachineInstr *MI = I; | 
|  | DebugLoc dl = I->getDebugLoc(); | 
|  | bool isControlFlow = MI->isCall() || MI->isReturn(); | 
|  |  | 
|  | // Shortcut: don't need to check regular instructions in dirty state. | 
|  | if (!isControlFlow && CurState == ST_DIRTY) | 
|  | continue; | 
|  |  | 
|  | if (hasYmmReg(MI)) { | 
|  | // We found a ymm-using instruction; this could be an AVX instruction, | 
|  | // or it could be control flow. | 
|  | CurState = ST_DIRTY; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for control-flow out of the current function (which might | 
|  | // indirectly execute SSE instructions). | 
|  | if (!isControlFlow) | 
|  | continue; | 
|  |  | 
|  | BBHasCall = true; | 
|  |  | 
|  | // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX | 
|  | // registers. This instruction has zero latency. In addition, the processor | 
|  | // changes back to Clean state, after which execution of Intel SSE | 
|  | // instructions or Intel AVX instructions has no transition penalty. Add | 
|  | // the VZEROUPPER instruction before any function call/return that might | 
|  | // execute SSE code. | 
|  | // FIXME: In some cases, we may want to move the VZEROUPPER into a | 
|  | // predecessor block. | 
|  | if (CurState == ST_DIRTY) { | 
|  | // Only insert the VZEROUPPER in case the entry state isn't unknown. | 
|  | // When unknown, only compute the information within the block to have | 
|  | // it available in the exit if possible, but don't change the block. | 
|  | if (EntryState != ST_UNKNOWN) { | 
|  | BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER)); | 
|  | ++NumVZU; | 
|  | } | 
|  |  | 
|  | // After the inserted VZEROUPPER the state becomes clean again, but | 
|  | // other YMM may appear before other subsequent calls or even before | 
|  | // the end of the BB. | 
|  | CurState = ST_CLEAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "MBB #" << BBNum | 
|  | << ", current state: " << CurState << '\n'); | 
|  |  | 
|  | // A BB can only be considered solved when we both have done all the | 
|  | // necessary transformations, and have computed the exit state.  This happens | 
|  | // in two cases: | 
|  | //  1) We know the entry state: this immediately implies the exit state and | 
|  | //     all the necessary transformations. | 
|  | //  2) There are no calls, and and a non-call instruction marks this block: | 
|  | //     no transformations are necessary, and we know the exit state. | 
|  | if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN)) | 
|  | BBSolved[BBNum] = true; | 
|  |  | 
|  | if (CurState != BBState[BBNum]) | 
|  | Changed = true; | 
|  |  | 
|  | BBState[BBNum] = CurState; | 
|  | return Changed; | 
|  | } |