|  | //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run | 
|  | // both before and after the DAG is legalized. | 
|  | // | 
|  | // This pass is not a substitute for the LLVM IR instcombine pass. This pass is | 
|  | // primarily intended to handle simplification opportunities that are implicit | 
|  | // in the LLVM IR and exposed by the various codegen lowering phases. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "dagcombine" | 
|  |  | 
|  | STATISTIC(NodesCombined   , "Number of dag nodes combined"); | 
|  | STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | 
|  | STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | 
|  | STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); | 
|  | STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int"); | 
|  | STATISTIC(SlicedLoads, "Number of load sliced"); | 
|  |  | 
|  | namespace { | 
|  | static cl::opt<bool> | 
|  | CombinerAA("combiner-alias-analysis", cl::Hidden, | 
|  | cl::desc("Enable DAG combiner alias-analysis heuristics")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | 
|  | cl::desc("Enable DAG combiner's use of IR alias analysis")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable DAG combiner's use of TBAA")); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<std::string> | 
|  | CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, | 
|  | cl::desc("Only use DAG-combiner alias analysis in this" | 
|  | " function")); | 
|  | #endif | 
|  |  | 
|  | /// Hidden option to stress test load slicing, i.e., when this option | 
|  | /// is enabled, load slicing bypasses most of its profitability guards. | 
|  | static cl::opt<bool> | 
|  | StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, | 
|  | cl::desc("Bypass the profitability model of load " | 
|  | "slicing"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), | 
|  | cl::desc("DAG combiner may split indexing from loads")); | 
|  |  | 
|  | //------------------------------ DAGCombiner ---------------------------------// | 
|  |  | 
|  | class DAGCombiner { | 
|  | SelectionDAG &DAG; | 
|  | const TargetLowering &TLI; | 
|  | CombineLevel Level; | 
|  | CodeGenOpt::Level OptLevel; | 
|  | bool LegalOperations; | 
|  | bool LegalTypes; | 
|  | bool ForCodeSize; | 
|  |  | 
|  | /// \brief Worklist of all of the nodes that need to be simplified. | 
|  | /// | 
|  | /// This must behave as a stack -- new nodes to process are pushed onto the | 
|  | /// back and when processing we pop off of the back. | 
|  | /// | 
|  | /// The worklist will not contain duplicates but may contain null entries | 
|  | /// due to nodes being deleted from the underlying DAG. | 
|  | SmallVector<SDNode *, 64> Worklist; | 
|  |  | 
|  | /// \brief Mapping from an SDNode to its position on the worklist. | 
|  | /// | 
|  | /// This is used to find and remove nodes from the worklist (by nulling | 
|  | /// them) when they are deleted from the underlying DAG. It relies on | 
|  | /// stable indices of nodes within the worklist. | 
|  | DenseMap<SDNode *, unsigned> WorklistMap; | 
|  |  | 
|  | /// \brief Set of nodes which have been combined (at least once). | 
|  | /// | 
|  | /// This is used to allow us to reliably add any operands of a DAG node | 
|  | /// which have not yet been combined to the worklist. | 
|  | SmallPtrSet<SDNode *, 32> CombinedNodes; | 
|  |  | 
|  | // AA - Used for DAG load/store alias analysis. | 
|  | AliasAnalysis &AA; | 
|  |  | 
|  | /// When an instruction is simplified, add all users of the instruction to | 
|  | /// the work lists because they might get more simplified now. | 
|  | void AddUsersToWorklist(SDNode *N) { | 
|  | for (SDNode *Node : N->uses()) | 
|  | AddToWorklist(Node); | 
|  | } | 
|  |  | 
|  | /// Call the node-specific routine that folds each particular type of node. | 
|  | SDValue visit(SDNode *N); | 
|  |  | 
|  | public: | 
|  | /// Add to the worklist making sure its instance is at the back (next to be | 
|  | /// processed.) | 
|  | void AddToWorklist(SDNode *N) { | 
|  | // Skip handle nodes as they can't usefully be combined and confuse the | 
|  | // zero-use deletion strategy. | 
|  | if (N->getOpcode() == ISD::HANDLENODE) | 
|  | return; | 
|  |  | 
|  | if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) | 
|  | Worklist.push_back(N); | 
|  | } | 
|  |  | 
|  | /// Remove all instances of N from the worklist. | 
|  | void removeFromWorklist(SDNode *N) { | 
|  | CombinedNodes.erase(N); | 
|  |  | 
|  | auto It = WorklistMap.find(N); | 
|  | if (It == WorklistMap.end()) | 
|  | return; // Not in the worklist. | 
|  |  | 
|  | // Null out the entry rather than erasing it to avoid a linear operation. | 
|  | Worklist[It->second] = nullptr; | 
|  | WorklistMap.erase(It); | 
|  | } | 
|  |  | 
|  | void deleteAndRecombine(SDNode *N); | 
|  | bool recursivelyDeleteUnusedNodes(SDNode *N); | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo = true); | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | 
|  | return CombineTo(N, &Res, 1, AddTo); | 
|  | } | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | 
|  | bool AddTo = true) { | 
|  | SDValue To[] = { Res0, Res1 }; | 
|  | return CombineTo(N, To, 2, AddTo); | 
|  | } | 
|  |  | 
|  | void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// Check the specified integer node value to see if it can be simplified or | 
|  | /// if things it uses can be simplified by bit propagation. | 
|  | /// If so, return true. | 
|  | bool SimplifyDemandedBits(SDValue Op) { | 
|  | unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); | 
|  | APInt Demanded = APInt::getAllOnesValue(BitWidth); | 
|  | return SimplifyDemandedBits(Op, Demanded); | 
|  | } | 
|  |  | 
|  | bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); | 
|  |  | 
|  | bool CombineToPreIndexedLoadStore(SDNode *N); | 
|  | bool CombineToPostIndexedLoadStore(SDNode *N); | 
|  | SDValue SplitIndexingFromLoad(LoadSDNode *LD); | 
|  | bool SliceUpLoad(SDNode *N); | 
|  |  | 
|  | /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed | 
|  | ///   load. | 
|  | /// | 
|  | /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. | 
|  | /// \param InVecVT type of the input vector to EVE with bitcasts resolved. | 
|  | /// \param EltNo index of the vector element to load. | 
|  | /// \param OriginalLoad load that EVE came from to be replaced. | 
|  | /// \returns EVE on success SDValue() on failure. | 
|  | SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( | 
|  | SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); | 
|  | void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); | 
|  | SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); | 
|  | SDValue SExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue PromoteIntBinOp(SDValue Op); | 
|  | SDValue PromoteIntShiftOp(SDValue Op); | 
|  | SDValue PromoteExtend(SDValue Op); | 
|  | bool PromoteLoad(SDValue Op); | 
|  |  | 
|  | void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
|  | SDValue Trunc, SDValue ExtLoad, SDLoc DL, | 
|  | ISD::NodeType ExtType); | 
|  |  | 
|  | /// Call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. If that doesn't do anything, try the | 
|  | /// target-specific DAG combines. | 
|  | SDValue combine(SDNode *N); | 
|  |  | 
|  | // Visitation implementation - Implement dag node combining for different | 
|  | // node types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //   SDValue.getNode() == 0 - No change was made | 
|  | //   SDValue.getNode() == N - N was replaced, is dead and has been handled. | 
|  | //   otherwise              - N should be replaced by the returned Operand. | 
|  | // | 
|  | SDValue visitTokenFactor(SDNode *N); | 
|  | SDValue visitMERGE_VALUES(SDNode *N); | 
|  | SDValue visitADD(SDNode *N); | 
|  | SDValue visitSUB(SDNode *N); | 
|  | SDValue visitADDC(SDNode *N); | 
|  | SDValue visitSUBC(SDNode *N); | 
|  | SDValue visitADDE(SDNode *N); | 
|  | SDValue visitSUBE(SDNode *N); | 
|  | SDValue visitMUL(SDNode *N); | 
|  | SDValue useDivRem(SDNode *N); | 
|  | SDValue visitSDIV(SDNode *N); | 
|  | SDValue visitUDIV(SDNode *N); | 
|  | SDValue visitREM(SDNode *N); | 
|  | SDValue visitMULHU(SDNode *N); | 
|  | SDValue visitMULHS(SDNode *N); | 
|  | SDValue visitSMUL_LOHI(SDNode *N); | 
|  | SDValue visitUMUL_LOHI(SDNode *N); | 
|  | SDValue visitSMULO(SDNode *N); | 
|  | SDValue visitUMULO(SDNode *N); | 
|  | SDValue visitIMINMAX(SDNode *N); | 
|  | SDValue visitAND(SDNode *N); | 
|  | SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); | 
|  | SDValue visitOR(SDNode *N); | 
|  | SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); | 
|  | SDValue visitXOR(SDNode *N); | 
|  | SDValue SimplifyVBinOp(SDNode *N); | 
|  | SDValue visitSHL(SDNode *N); | 
|  | SDValue visitSRA(SDNode *N); | 
|  | SDValue visitSRL(SDNode *N); | 
|  | SDValue visitRotate(SDNode *N); | 
|  | SDValue visitBSWAP(SDNode *N); | 
|  | SDValue visitCTLZ(SDNode *N); | 
|  | SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTTZ(SDNode *N); | 
|  | SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTPOP(SDNode *N); | 
|  | SDValue visitSELECT(SDNode *N); | 
|  | SDValue visitVSELECT(SDNode *N); | 
|  | SDValue visitSELECT_CC(SDNode *N); | 
|  | SDValue visitSETCC(SDNode *N); | 
|  | SDValue visitSETCCE(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND(SDNode *N); | 
|  | SDValue visitZERO_EXTEND(SDNode *N); | 
|  | SDValue visitANY_EXTEND(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_INREG(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); | 
|  | SDValue visitTRUNCATE(SDNode *N); | 
|  | SDValue visitBITCAST(SDNode *N); | 
|  | SDValue visitBUILD_PAIR(SDNode *N); | 
|  | SDValue visitFADD(SDNode *N); | 
|  | SDValue visitFSUB(SDNode *N); | 
|  | SDValue visitFMUL(SDNode *N); | 
|  | SDValue visitFMA(SDNode *N); | 
|  | SDValue visitFDIV(SDNode *N); | 
|  | SDValue visitFREM(SDNode *N); | 
|  | SDValue visitFSQRT(SDNode *N); | 
|  | SDValue visitFCOPYSIGN(SDNode *N); | 
|  | SDValue visitSINT_TO_FP(SDNode *N); | 
|  | SDValue visitUINT_TO_FP(SDNode *N); | 
|  | SDValue visitFP_TO_SINT(SDNode *N); | 
|  | SDValue visitFP_TO_UINT(SDNode *N); | 
|  | SDValue visitFP_ROUND(SDNode *N); | 
|  | SDValue visitFP_ROUND_INREG(SDNode *N); | 
|  | SDValue visitFP_EXTEND(SDNode *N); | 
|  | SDValue visitFNEG(SDNode *N); | 
|  | SDValue visitFABS(SDNode *N); | 
|  | SDValue visitFCEIL(SDNode *N); | 
|  | SDValue visitFTRUNC(SDNode *N); | 
|  | SDValue visitFFLOOR(SDNode *N); | 
|  | SDValue visitFMINNUM(SDNode *N); | 
|  | SDValue visitFMAXNUM(SDNode *N); | 
|  | SDValue visitBRCOND(SDNode *N); | 
|  | SDValue visitBR_CC(SDNode *N); | 
|  | SDValue visitLOAD(SDNode *N); | 
|  |  | 
|  | SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); | 
|  | SDValue replaceStoreOfFPConstant(StoreSDNode *ST); | 
|  |  | 
|  | SDValue visitSTORE(SDNode *N); | 
|  | SDValue visitINSERT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitBUILD_VECTOR(SDNode *N); | 
|  | SDValue visitCONCAT_VECTORS(SDNode *N); | 
|  | SDValue visitEXTRACT_SUBVECTOR(SDNode *N); | 
|  | SDValue visitVECTOR_SHUFFLE(SDNode *N); | 
|  | SDValue visitSCALAR_TO_VECTOR(SDNode *N); | 
|  | SDValue visitINSERT_SUBVECTOR(SDNode *N); | 
|  | SDValue visitMLOAD(SDNode *N); | 
|  | SDValue visitMSTORE(SDNode *N); | 
|  | SDValue visitMGATHER(SDNode *N); | 
|  | SDValue visitMSCATTER(SDNode *N); | 
|  | SDValue visitFP_TO_FP16(SDNode *N); | 
|  | SDValue visitFP16_TO_FP(SDNode *N); | 
|  |  | 
|  | SDValue visitFADDForFMACombine(SDNode *N); | 
|  | SDValue visitFSUBForFMACombine(SDNode *N); | 
|  | SDValue visitFMULForFMACombine(SDNode *N); | 
|  |  | 
|  | SDValue XformToShuffleWithZero(SDNode *N); | 
|  | SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); | 
|  |  | 
|  | SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); | 
|  |  | 
|  | bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | 
|  | SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); | 
|  | SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); | 
|  | SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, | 
|  | SDValue N3, ISD::CondCode CC, | 
|  | bool NotExtCompare = false); | 
|  | SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, | 
|  | SDLoc DL, bool foldBooleans = true); | 
|  |  | 
|  | bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) const; | 
|  | bool isOneUseSetCC(SDValue N) const; | 
|  |  | 
|  | SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp); | 
|  | SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); | 
|  | SDValue CombineExtLoad(SDNode *N); | 
|  | SDValue combineRepeatedFPDivisors(SDNode *N); | 
|  | SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); | 
|  | SDValue BuildSDIV(SDNode *N); | 
|  | SDValue BuildSDIVPow2(SDNode *N); | 
|  | SDValue BuildUDIV(SDNode *N); | 
|  | SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); | 
|  | SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); | 
|  | SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, | 
|  | SDNodeFlags *Flags); | 
|  | SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, | 
|  | SDNodeFlags *Flags); | 
|  | SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits = true); | 
|  | SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); | 
|  | SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, | 
|  | SDValue InnerPos, SDValue InnerNeg, | 
|  | unsigned PosOpcode, unsigned NegOpcode, | 
|  | SDLoc DL); | 
|  | SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); | 
|  | SDValue ReduceLoadWidth(SDNode *N); | 
|  | SDValue ReduceLoadOpStoreWidth(SDNode *N); | 
|  | SDValue TransformFPLoadStorePair(SDNode *N); | 
|  | SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); | 
|  | SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); | 
|  |  | 
|  | SDValue GetDemandedBits(SDValue V, const APInt &Mask); | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVectorImpl<SDValue> &Aliases); | 
|  |  | 
|  | /// Return true if there is any possibility that the two addresses overlap. | 
|  | bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, looking for a better | 
|  | /// chain (aliasing node.) | 
|  | SDValue FindBetterChain(SDNode *N, SDValue Chain); | 
|  |  | 
|  | /// Do FindBetterChain for a store and any possibly adjacent stores on | 
|  | /// consecutive chains. | 
|  | bool findBetterNeighborChains(StoreSDNode *St); | 
|  |  | 
|  | /// Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); | 
|  |  | 
|  | /// Holds a pointer to an LSBaseSDNode as well as information on where it | 
|  | /// is located in a sequence of memory operations connected by a chain. | 
|  | struct MemOpLink { | 
|  | MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): | 
|  | MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } | 
|  | // Ptr to the mem node. | 
|  | LSBaseSDNode *MemNode; | 
|  | // Offset from the base ptr. | 
|  | int64_t OffsetFromBase; | 
|  | // What is the sequence number of this mem node. | 
|  | // Lowest mem operand in the DAG starts at zero. | 
|  | unsigned SequenceNum; | 
|  | }; | 
|  |  | 
|  | /// This is a helper function for visitMUL to check the profitability | 
|  | /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
|  | /// MulNode is the original multiply, AddNode is (add x, c1), | 
|  | /// and ConstNode is c2. | 
|  | bool isMulAddWithConstProfitable(SDNode *MulNode, | 
|  | SDValue &AddNode, | 
|  | SDValue &ConstNode); | 
|  |  | 
|  | /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a | 
|  | /// constant build_vector of the stored constant values in Stores. | 
|  | SDValue getMergedConstantVectorStore(SelectionDAG &DAG, | 
|  | SDLoc SL, | 
|  | ArrayRef<MemOpLink> Stores, | 
|  | SmallVectorImpl<SDValue> &Chains, | 
|  | EVT Ty) const; | 
|  |  | 
|  | /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns | 
|  | /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns | 
|  | /// the type of the loaded value to be extended.  LoadedVT returns the type | 
|  | /// of the original loaded value.  NarrowLoad returns whether the load would | 
|  | /// need to be narrowed in order to match. | 
|  | bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
|  | EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, | 
|  | bool &NarrowLoad); | 
|  |  | 
|  | /// This is a helper function for MergeConsecutiveStores. When the source | 
|  | /// elements of the consecutive stores are all constants or all extracted | 
|  | /// vector elements, try to merge them into one larger store. | 
|  | /// \return True if a merged store was created. | 
|  | bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | EVT MemVT, unsigned NumStores, | 
|  | bool IsConstantSrc, bool UseVector); | 
|  |  | 
|  | /// This is a helper function for MergeConsecutiveStores. | 
|  | /// Stores that may be merged are placed in StoreNodes. | 
|  | /// Loads that may alias with those stores are placed in AliasLoadNodes. | 
|  | void getStoreMergeAndAliasCandidates( | 
|  | StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); | 
|  |  | 
|  | /// Merge consecutive store operations into a wide store. | 
|  | /// This optimization uses wide integers or vectors when possible. | 
|  | /// \return True if some memory operations were changed. | 
|  | bool MergeConsecutiveStores(StoreSDNode *N); | 
|  |  | 
|  | /// \brief Try to transform a truncation where C is a constant: | 
|  | ///     (trunc (and X, C)) -> (and (trunc X), (trunc C)) | 
|  | /// | 
|  | /// \p N needs to be a truncation and its first operand an AND. Other | 
|  | /// requirements are checked by the function (e.g. that trunc is | 
|  | /// single-use) and if missed an empty SDValue is returned. | 
|  | SDValue distributeTruncateThroughAnd(SDNode *N); | 
|  |  | 
|  | public: | 
|  | DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) | 
|  | : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), | 
|  | OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { | 
|  | ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); | 
|  | } | 
|  |  | 
|  | /// Runs the dag combiner on all nodes in the work list | 
|  | void Run(CombineLevel AtLevel); | 
|  |  | 
|  | SelectionDAG &getDAG() const { return DAG; } | 
|  |  | 
|  | /// Returns a type large enough to hold any valid shift amount - before type | 
|  | /// legalization these can be huge. | 
|  | EVT getShiftAmountTy(EVT LHSTy) { | 
|  | assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | 
|  | if (LHSTy.isVector()) | 
|  | return LHSTy; | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) | 
|  | : TLI.getPointerTy(DL); | 
|  | } | 
|  |  | 
|  | /// This method returns true if we are running before type legalization or | 
|  | /// if the specified VT is legal. | 
|  | bool isTypeLegal(const EVT &VT) { | 
|  | if (!LegalTypes) return true; | 
|  | return TLI.isTypeLegal(VT); | 
|  | } | 
|  |  | 
|  | /// Convenience wrapper around TargetLowering::getSetCCResultType | 
|  | EVT getSetCCResultType(EVT VT) const { | 
|  | return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// This class is a DAGUpdateListener that removes any deleted | 
|  | /// nodes from the worklist. | 
|  | class WorklistRemover : public SelectionDAG::DAGUpdateListener { | 
|  | DAGCombiner &DC; | 
|  | public: | 
|  | explicit WorklistRemover(DAGCombiner &dc) | 
|  | : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | 
|  |  | 
|  | void NodeDeleted(SDNode *N, SDNode *E) override { | 
|  | DC.removeFromWorklist(N); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetLowering::DAGCombinerInfo implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->AddToWorklist(N); | 
|  | } | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->removeFromWorklist(N); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); | 
|  | } | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::deleteAndRecombine(SDNode *N) { | 
|  | removeFromWorklist(N); | 
|  |  | 
|  | // If the operands of this node are only used by the node, they will now be | 
|  | // dead. Make sure to re-visit them and recursively delete dead nodes. | 
|  | for (const SDValue &Op : N->ops()) | 
|  | // For an operand generating multiple values, one of the values may | 
|  | // become dead allowing further simplification (e.g. split index | 
|  | // arithmetic from an indexed load). | 
|  | if (Op->hasOneUse() || Op->getNumValues() > 1) | 
|  | AddToWorklist(Op.getNode()); | 
|  |  | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  |  | 
|  | /// Return 1 if we can compute the negated form of the specified expression for | 
|  | /// the same cost as the expression itself, or 2 if we can compute the negated | 
|  | /// form more cheaply than the expression itself. | 
|  | static char isNegatibleForFree(SDValue Op, bool LegalOperations, | 
|  | const TargetLowering &TLI, | 
|  | const TargetOptions *Options, | 
|  | unsigned Depth = 0) { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return 2; | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | if (!Op.hasOneUse()) return 0; | 
|  |  | 
|  | // Don't recurse exponentially. | 
|  | if (Depth > 6) return 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: return false; | 
|  | case ISD::ConstantFP: | 
|  | // Don't invert constant FP values after legalize.  The negated constant | 
|  | // isn't necessarily legal. | 
|  | return LegalOperations ? 0 : 1; | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | if (!Options->UnsafeFPMath) return 0; | 
|  |  | 
|  | // After operation legalization, it might not be legal to create new FSUBs. | 
|  | if (LegalOperations && | 
|  | !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType())) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | 
|  | Options, Depth + 1)) | 
|  | return V; | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | 
|  | Depth + 1); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | if (!Options->UnsafeFPMath) return 0; | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return 1; | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | if (Options->HonorSignDependentRoundingFPMath()) return 0; | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | 
|  | Options, Depth + 1)) | 
|  | return V; | 
|  |  | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | 
|  | Depth + 1); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FSIN: | 
|  | return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, | 
|  | Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If isNegatibleForFree returns true, return the newly negated expression. | 
|  | static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, | 
|  | bool LegalOperations, unsigned Depth = 0) { | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); | 
|  |  | 
|  | // Don't allow anything with multiple uses. | 
|  | assert(Op.hasOneUse() && "Unknown reuse!"); | 
|  |  | 
|  | assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); | 
|  |  | 
|  | const SDNodeFlags *Flags = Op.getNode()->getFlags(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown code"); | 
|  | case ISD::ConstantFP: { | 
|  | APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); | 
|  | } | 
|  | case ISD::FADD: | 
|  | // FIXME: determine better conditions for this xform. | 
|  | assert(Options.UnsafeFPMath); | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | DAG.getTargetLoweringInfo(), &Options, Depth+1)) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1), Flags); | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(0), Flags); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | assert(Options.UnsafeFPMath); | 
|  |  | 
|  | // fold (fneg (fsub 0, B)) -> B | 
|  | if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) | 
|  | if (N0CFP->isZero()) | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(0), Flags); | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | assert(!Options.HonorSignDependentRoundingFPMath()); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | DAG.getTargetLoweringInfo(), &Options, Depth+1)) | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1), Flags); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, Depth+1), Flags); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1)); | 
|  | case ISD::FP_ROUND: | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, Depth+1), | 
|  | Op.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if this node is a setcc, or is a select_cc | 
|  | // that selects between the target values used for true and false, making it | 
|  | // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to | 
|  | // the appropriate nodes based on the type of node we are checking. This | 
|  | // simplifies life a bit for the callers. | 
|  | bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) const { | 
|  | if (N.getOpcode() == ISD::SETCC) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::SELECT_CC || | 
|  | !TLI.isConstTrueVal(N.getOperand(2).getNode()) || | 
|  | !TLI.isConstFalseVal(N.getOperand(3).getNode())) | 
|  | return false; | 
|  |  | 
|  | if (TLI.getBooleanContents(N.getValueType()) == | 
|  | TargetLowering::UndefinedBooleanContent) | 
|  | return false; | 
|  |  | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(4); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a SetCC-equivalent operation with only one use. | 
|  | /// If this is true, it allows the users to invert the operation for free when | 
|  | /// it is profitable to do so. | 
|  | bool DAGCombiner::isOneUseSetCC(SDValue N) const { | 
|  | SDValue N0, N1, N2; | 
|  | if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if N is a BUILD_VECTOR node whose | 
|  | /// elements are all the same constant or undefined. | 
|  | static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { | 
|  | BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | APInt SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | EVT EltVT = N->getValueType(0).getVectorElementType(); | 
|  | return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs) && | 
|  | EltVT.getSizeInBits() >= SplatBitSize); | 
|  | } | 
|  |  | 
|  | // \brief Returns the SDNode if it is a constant float BuildVector | 
|  | // or constant float. | 
|  | static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { | 
|  | if (isa<ConstantFPSDNode>(N)) | 
|  | return N.getNode(); | 
|  | if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) | 
|  | return N.getNode(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // \brief Returns the SDNode if it is a constant splat BuildVector or constant | 
|  | // int. | 
|  | static ConstantSDNode *isConstOrConstSplat(SDValue N) { | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) | 
|  | return CN; | 
|  |  | 
|  | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { | 
|  | BitVector UndefElements; | 
|  | ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); | 
|  |  | 
|  | // BuildVectors can truncate their operands. Ignore that case here. | 
|  | // FIXME: We blindly ignore splats which include undef which is overly | 
|  | // pessimistic. | 
|  | if (CN && UndefElements.none() && | 
|  | CN->getValueType(0) == N.getValueType().getScalarType()) | 
|  | return CN; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // \brief Returns the SDNode if it is a constant splat BuildVector or constant | 
|  | // float. | 
|  | static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { | 
|  | if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) | 
|  | return CN; | 
|  |  | 
|  | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { | 
|  | BitVector UndefElements; | 
|  | ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); | 
|  |  | 
|  | if (CN && UndefElements.none()) | 
|  | return CN; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, | 
|  | SDValue N0, SDValue N1) { | 
|  | EVT VT = N0.getValueType(); | 
|  | if (N0.getOpcode() == Opc) { | 
|  | if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { | 
|  | if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
|  | // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) | 
|  | if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) | 
|  | return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); | 
|  | return SDValue(); | 
|  | } | 
|  | if (N0.hasOneUse()) { | 
|  | // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one | 
|  | // use | 
|  | SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); | 
|  | if (!OpNode.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == Opc) { | 
|  | if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { | 
|  | if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | 
|  | // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) | 
|  | if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) | 
|  | return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); | 
|  | return SDValue(); | 
|  | } | 
|  | if (N1.hasOneUse()) { | 
|  | // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one | 
|  | // use | 
|  | SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); | 
|  | if (!OpNode.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo) { | 
|  | assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.1 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | To[0].getNode()->dump(&DAG); | 
|  | dbgs() << " and " << NumTo-1 << " other values\n"); | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) | 
|  | assert((!To[i].getNode() || | 
|  | N->getValueType(i) == To[i].getValueType()) && | 
|  | "Cannot combine value to value of different type!"); | 
|  |  | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesWith(N, To); | 
|  | if (AddTo) { | 
|  | // Push the new nodes and any users onto the worklist | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) { | 
|  | if (To[i].getNode()) { | 
|  | AddToWorklist(To[i].getNode()); | 
|  | AddUsersToWorklist(To[i].getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (N->use_empty()) | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | void DAGCombiner:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | // Replace all uses.  If any nodes become isomorphic to other nodes and | 
|  | // are deleted, make sure to remove them from our worklist. | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); | 
|  |  | 
|  | // Push the new node and any (possibly new) users onto the worklist. | 
|  | AddToWorklist(TLO.New.getNode()); | 
|  | AddUsersToWorklist(TLO.New.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (TLO.Old.getNode()->use_empty()) | 
|  | deleteAndRecombine(TLO.Old.getNode()); | 
|  | } | 
|  |  | 
|  | /// Check the specified integer node value to see if it can be simplified or if | 
|  | /// things it uses can be simplified by bit propagation. If so, return true. | 
|  | bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
|  | APInt KnownZero, KnownOne; | 
|  | if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) | 
|  | return false; | 
|  |  | 
|  | // Revisit the node. | 
|  | AddToWorklist(Op.getNode()); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.2 "; | 
|  | TLO.Old.getNode()->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | TLO.New.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | CommitTargetLoweringOpt(TLO); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { | 
|  | SDLoc dl(Load); | 
|  | EVT VT = Load->getValueType(0); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); | 
|  |  | 
|  | DEBUG(dbgs() << "\nReplacing.9 "; | 
|  | Load->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Trunc.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); | 
|  | deleteAndRecombine(Load); | 
|  | AddToWorklist(Trunc.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { | 
|  | Replace = false; | 
|  | SDLoc dl(Op); | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | 
|  | ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD) | 
|  | : LD->getExtensionType(); | 
|  | Replace = true; | 
|  | return DAG.getExtLoad(ExtType, dl, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | MemVT, LD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::AssertSext: | 
|  | return DAG.getNode(ISD::AssertSext, dl, PVT, | 
|  | SExtPromoteOperand(Op.getOperand(0), PVT), | 
|  | Op.getOperand(1)); | 
|  | case ISD::AssertZext: | 
|  | return DAG.getNode(ISD::AssertZext, dl, PVT, | 
|  | ZExtPromoteOperand(Op.getOperand(0), PVT), | 
|  | Op.getOperand(1)); | 
|  | case ISD::Constant: { | 
|  | unsigned ExtOpc = | 
|  | Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOpc, dl, PVT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) | 
|  | return SDValue(); | 
|  | EVT OldVT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (!NewOp.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, | 
|  | DAG.getValueType(OldVT)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | EVT OldVT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (!NewOp.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getZeroExtendInReg(NewOp, dl, OldVT); | 
|  | } | 
|  |  | 
|  | /// Promote the specified integer binary operation if the target indicates it is | 
|  | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
|  | /// i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | bool Replace0 = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue NN0 = PromoteOperand(N0, PVT, Replace0); | 
|  | if (!NN0.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | bool Replace1 = false; | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue NN1; | 
|  | if (N0 == N1) | 
|  | NN1 = NN0; | 
|  | else { | 
|  | NN1 = PromoteOperand(N1, PVT, Replace1); | 
|  | if (!NN1.getNode()) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | AddToWorklist(NN0.getNode()); | 
|  | if (NN1.getNode()) | 
|  | AddToWorklist(NN1.getNode()); | 
|  |  | 
|  | if (Replace0) | 
|  | ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); | 
|  | if (Replace1) | 
|  | ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Opc, dl, PVT, NN0, NN1)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Promote the specified integer shift operation if the target indicates it is | 
|  | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
|  | /// i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | bool Replace = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | if (Opc == ISD::SRA) | 
|  | N0 = SExtPromoteOperand(Op.getOperand(0), PVT); | 
|  | else if (Opc == ISD::SRL) | 
|  | N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); | 
|  | else | 
|  | N0 = PromoteOperand(N0, PVT, Replace); | 
|  | if (!N0.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | AddToWorklist(N0.getNode()); | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteExtend(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | Op.getNode()->dump(&DAG)); | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::PromoteLoad(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return false; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return false; | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDNode *N = Op.getNode(); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | 
|  | ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD) | 
|  | : LD->getExtensionType(); | 
|  | SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | MemVT, LD->getMemOperand()); | 
|  | SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPromoting "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nTo: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); | 
|  | deleteAndRecombine(N); | 
|  | AddToWorklist(Result.getNode()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Recursively delete a node which has no uses and any operands for | 
|  | /// which it is the only use. | 
|  | /// | 
|  | /// Note that this both deletes the nodes and removes them from the worklist. | 
|  | /// It also adds any nodes who have had a user deleted to the worklist as they | 
|  | /// may now have only one use and subject to other combines. | 
|  | bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { | 
|  | if (!N->use_empty()) | 
|  | return false; | 
|  |  | 
|  | SmallSetVector<SDNode *, 16> Nodes; | 
|  | Nodes.insert(N); | 
|  | do { | 
|  | N = Nodes.pop_back_val(); | 
|  | if (!N) | 
|  | continue; | 
|  |  | 
|  | if (N->use_empty()) { | 
|  | for (const SDValue &ChildN : N->op_values()) | 
|  | Nodes.insert(ChildN.getNode()); | 
|  |  | 
|  | removeFromWorklist(N); | 
|  | DAG.DeleteNode(N); | 
|  | } else { | 
|  | AddToWorklist(N); | 
|  | } | 
|  | } while (!Nodes.empty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Main DAG Combiner implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::Run(CombineLevel AtLevel) { | 
|  | // set the instance variables, so that the various visit routines may use it. | 
|  | Level = AtLevel; | 
|  | LegalOperations = Level >= AfterLegalizeVectorOps; | 
|  | LegalTypes = Level >= AfterLegalizeTypes; | 
|  |  | 
|  | // Add all the dag nodes to the worklist. | 
|  | for (SDNode &Node : DAG.allnodes()) | 
|  | AddToWorklist(&Node); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds a reference | 
|  | // to the root node, preventing it from being deleted, and tracking any | 
|  | // changes of the root. | 
|  | HandleSDNode Dummy(DAG.getRoot()); | 
|  |  | 
|  | // while the worklist isn't empty, find a node and | 
|  | // try and combine it. | 
|  | while (!WorklistMap.empty()) { | 
|  | SDNode *N; | 
|  | // The Worklist holds the SDNodes in order, but it may contain null entries. | 
|  | do { | 
|  | N = Worklist.pop_back_val(); | 
|  | } while (!N); | 
|  |  | 
|  | bool GoodWorklistEntry = WorklistMap.erase(N); | 
|  | (void)GoodWorklistEntry; | 
|  | assert(GoodWorklistEntry && | 
|  | "Found a worklist entry without a corresponding map entry!"); | 
|  |  | 
|  | // If N has no uses, it is dead.  Make sure to revisit all N's operands once | 
|  | // N is deleted from the DAG, since they too may now be dead or may have a | 
|  | // reduced number of uses, allowing other xforms. | 
|  | if (recursivelyDeleteUnusedNodes(N)) | 
|  | continue; | 
|  |  | 
|  | WorklistRemover DeadNodes(*this); | 
|  |  | 
|  | // If this combine is running after legalizing the DAG, re-legalize any | 
|  | // nodes pulled off the worklist. | 
|  | if (Level == AfterLegalizeDAG) { | 
|  | SmallSetVector<SDNode *, 16> UpdatedNodes; | 
|  | bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); | 
|  |  | 
|  | for (SDNode *LN : UpdatedNodes) { | 
|  | AddToWorklist(LN); | 
|  | AddUsersToWorklist(LN); | 
|  | } | 
|  | if (!NIsValid) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); | 
|  |  | 
|  | // Add any operands of the new node which have not yet been combined to the | 
|  | // worklist as well. Because the worklist uniques things already, this | 
|  | // won't repeatedly process the same operand. | 
|  | CombinedNodes.insert(N); | 
|  | for (const SDValue &ChildN : N->op_values()) | 
|  | if (!CombinedNodes.count(ChildN.getNode())) | 
|  | AddToWorklist(ChildN.getNode()); | 
|  |  | 
|  | SDValue RV = combine(N); | 
|  |  | 
|  | if (!RV.getNode()) | 
|  | continue; | 
|  |  | 
|  | ++NodesCombined; | 
|  |  | 
|  | // If we get back the same node we passed in, rather than a new node or | 
|  | // zero, we know that the node must have defined multiple values and | 
|  | // CombineTo was used.  Since CombineTo takes care of the worklist | 
|  | // mechanics for us, we have no work to do in this case. | 
|  | if (RV.getNode() == N) | 
|  | continue; | 
|  |  | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | RV.getNode()->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned new node!"); | 
|  |  | 
|  | DEBUG(dbgs() << " ... into: "; | 
|  | RV.getNode()->dump(&DAG)); | 
|  |  | 
|  | // Transfer debug value. | 
|  | DAG.TransferDbgValues(SDValue(N, 0), RV); | 
|  | if (N->getNumValues() == RV.getNode()->getNumValues()) | 
|  | DAG.ReplaceAllUsesWith(N, RV.getNode()); | 
|  | else { | 
|  | assert(N->getValueType(0) == RV.getValueType() && | 
|  | N->getNumValues() == 1 && "Type mismatch"); | 
|  | SDValue OpV = RV; | 
|  | DAG.ReplaceAllUsesWith(N, &OpV); | 
|  | } | 
|  |  | 
|  | // Push the new node and any users onto the worklist | 
|  | AddToWorklist(RV.getNode()); | 
|  | AddUsersToWorklist(RV.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. This will also take care of adding any | 
|  | // operands which have lost a user to the worklist. | 
|  | recursivelyDeleteUnusedNodes(N); | 
|  | } | 
|  |  | 
|  | // If the root changed (e.g. it was a dead load, update the root). | 
|  | DAG.setRoot(Dummy.getValue()); | 
|  | DAG.RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visit(SDNode *N) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::TokenFactor:        return visitTokenFactor(N); | 
|  | case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); | 
|  | case ISD::ADD:                return visitADD(N); | 
|  | case ISD::SUB:                return visitSUB(N); | 
|  | case ISD::ADDC:               return visitADDC(N); | 
|  | case ISD::SUBC:               return visitSUBC(N); | 
|  | case ISD::ADDE:               return visitADDE(N); | 
|  | case ISD::SUBE:               return visitSUBE(N); | 
|  | case ISD::MUL:                return visitMUL(N); | 
|  | case ISD::SDIV:               return visitSDIV(N); | 
|  | case ISD::UDIV:               return visitUDIV(N); | 
|  | case ISD::SREM: | 
|  | case ISD::UREM:               return visitREM(N); | 
|  | case ISD::MULHU:              return visitMULHU(N); | 
|  | case ISD::MULHS:              return visitMULHS(N); | 
|  | case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); | 
|  | case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); | 
|  | case ISD::SMULO:              return visitSMULO(N); | 
|  | case ISD::UMULO:              return visitUMULO(N); | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX:               return visitIMINMAX(N); | 
|  | case ISD::AND:                return visitAND(N); | 
|  | case ISD::OR:                 return visitOR(N); | 
|  | case ISD::XOR:                return visitXOR(N); | 
|  | case ISD::SHL:                return visitSHL(N); | 
|  | case ISD::SRA:                return visitSRA(N); | 
|  | case ISD::SRL:                return visitSRL(N); | 
|  | case ISD::ROTR: | 
|  | case ISD::ROTL:               return visitRotate(N); | 
|  | case ISD::BSWAP:              return visitBSWAP(N); | 
|  | case ISD::CTLZ:               return visitCTLZ(N); | 
|  | case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N); | 
|  | case ISD::CTTZ:               return visitCTTZ(N); | 
|  | case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N); | 
|  | case ISD::CTPOP:              return visitCTPOP(N); | 
|  | case ISD::SELECT:             return visitSELECT(N); | 
|  | case ISD::VSELECT:            return visitVSELECT(N); | 
|  | case ISD::SELECT_CC:          return visitSELECT_CC(N); | 
|  | case ISD::SETCC:              return visitSETCC(N); | 
|  | case ISD::SETCCE:             return visitSETCCE(N); | 
|  | case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); | 
|  | case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); | 
|  | case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); | 
|  | case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); | 
|  | case ISD::TRUNCATE:           return visitTRUNCATE(N); | 
|  | case ISD::BITCAST:            return visitBITCAST(N); | 
|  | case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); | 
|  | case ISD::FADD:               return visitFADD(N); | 
|  | case ISD::FSUB:               return visitFSUB(N); | 
|  | case ISD::FMUL:               return visitFMUL(N); | 
|  | case ISD::FMA:                return visitFMA(N); | 
|  | case ISD::FDIV:               return visitFDIV(N); | 
|  | case ISD::FREM:               return visitFREM(N); | 
|  | case ISD::FSQRT:              return visitFSQRT(N); | 
|  | case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); | 
|  | case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); | 
|  | case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); | 
|  | case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); | 
|  | case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); | 
|  | case ISD::FP_ROUND:           return visitFP_ROUND(N); | 
|  | case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N); | 
|  | case ISD::FP_EXTEND:          return visitFP_EXTEND(N); | 
|  | case ISD::FNEG:               return visitFNEG(N); | 
|  | case ISD::FABS:               return visitFABS(N); | 
|  | case ISD::FFLOOR:             return visitFFLOOR(N); | 
|  | case ISD::FMINNUM:            return visitFMINNUM(N); | 
|  | case ISD::FMAXNUM:            return visitFMAXNUM(N); | 
|  | case ISD::FCEIL:              return visitFCEIL(N); | 
|  | case ISD::FTRUNC:             return visitFTRUNC(N); | 
|  | case ISD::BRCOND:             return visitBRCOND(N); | 
|  | case ISD::BR_CC:              return visitBR_CC(N); | 
|  | case ISD::LOAD:               return visitLOAD(N); | 
|  | case ISD::STORE:              return visitSTORE(N); | 
|  | case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | 
|  | case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); | 
|  | case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N); | 
|  | case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); | 
|  | case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N); | 
|  | case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N); | 
|  | case ISD::MGATHER:            return visitMGATHER(N); | 
|  | case ISD::MLOAD:              return visitMLOAD(N); | 
|  | case ISD::MSCATTER:           return visitMSCATTER(N); | 
|  | case ISD::MSTORE:             return visitMSTORE(N); | 
|  | case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N); | 
|  | case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::combine(SDNode *N) { | 
|  | SDValue RV = visit(N); | 
|  |  | 
|  | // If nothing happened, try a target-specific DAG combine. | 
|  | if (!RV.getNode()) { | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned NULL!"); | 
|  |  | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner impls. | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, Level, false, this); | 
|  |  | 
|  | RV = TLI.PerformDAGCombine(N, DagCombineInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If nothing happened still, try promoting the operation. | 
|  | if (!RV.getNode()) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | RV = PromoteIntBinOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | RV = PromoteIntShiftOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | RV = PromoteExtend(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::LOAD: | 
|  | if (PromoteLoad(SDValue(N, 0))) | 
|  | RV = SDValue(N, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If N is a commutative binary node, try commuting it to enable more | 
|  | // sdisel CSE. | 
|  | if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && | 
|  | N->getNumValues() == 1) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Constant operands are canonicalized to RHS. | 
|  | if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { | 
|  | SDValue Ops[] = {N1, N0}; | 
|  | SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, | 
|  | N->getFlags()); | 
|  | if (CSENode) | 
|  | return SDValue(CSENode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | /// Given a node, return its input chain if it has one, otherwise return a null | 
|  | /// sd operand. | 
|  | static SDValue getInputChainForNode(SDNode *N) { | 
|  | if (unsigned NumOps = N->getNumOperands()) { | 
|  | if (N->getOperand(0).getValueType() == MVT::Other) | 
|  | return N->getOperand(0); | 
|  | if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | return N->getOperand(NumOps-1); | 
|  | for (unsigned i = 1; i < NumOps-1; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | return N->getOperand(i); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | 
|  | // If N has two operands, where one has an input chain equal to the other, | 
|  | // the 'other' chain is redundant. | 
|  | if (N->getNumOperands() == 2) { | 
|  | if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | 
|  | return N->getOperand(0); | 
|  | if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | 
|  | return N->getOperand(1); | 
|  | } | 
|  |  | 
|  | SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. | 
|  | SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor. | 
|  | SmallPtrSet<SDNode*, 16> SeenOps; | 
|  | bool Changed = false;             // If we should replace this token factor. | 
|  |  | 
|  | // Start out with this token factor. | 
|  | TFs.push_back(N); | 
|  |  | 
|  | // Iterate through token factors.  The TFs grows when new token factors are | 
|  | // encountered. | 
|  | for (unsigned i = 0; i < TFs.size(); ++i) { | 
|  | SDNode *TF = TFs[i]; | 
|  |  | 
|  | // Check each of the operands. | 
|  | for (const SDValue &Op : TF->op_values()) { | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry tokens don't need to be added to the list. They are | 
|  | // redundant. | 
|  | Changed = true; | 
|  | break; | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | if (Op.hasOneUse() && | 
|  | std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { | 
|  | // Queue up for processing. | 
|  | TFs.push_back(Op.getNode()); | 
|  | // Clean up in case the token factor is removed. | 
|  | AddToWorklist(Op.getNode()); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | // Fall thru | 
|  |  | 
|  | default: | 
|  | // Only add if it isn't already in the list. | 
|  | if (SeenOps.insert(Op.getNode()).second) | 
|  | Ops.push_back(Op); | 
|  | else | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Result; | 
|  |  | 
|  | // If we've changed things around then replace token factor. | 
|  | if (Changed) { | 
|  | if (Ops.empty()) { | 
|  | // The entry token is the only possible outcome. | 
|  | Result = DAG.getEntryNode(); | 
|  | } else { | 
|  | // New and improved token factor. | 
|  | Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | // Add users to worklist if AA is enabled, since it may introduce | 
|  | // a lot of new chained token factors while removing memory deps. | 
|  | bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  | return CombineTo(N, Result, UseAA /*add to worklist*/); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// MERGE_VALUES can always be eliminated. | 
|  | SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | 
|  | WorklistRemover DeadNodes(*this); | 
|  | // Replacing results may cause a different MERGE_VALUES to suddenly | 
|  | // be CSE'd with N, and carry its uses with it. Iterate until no | 
|  | // uses remain, to ensure that the node can be safely deleted. | 
|  | // First add the users of this node to the work list so that they | 
|  | // can be tried again once they have new operands. | 
|  | AddUsersToWorklist(N); | 
|  | do { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); | 
|  | } while (!N->use_empty()); | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | /// If \p N is a ContantSDNode with isOpaque() == false return it casted to a | 
|  | /// ContantSDNode pointer else nullptr. | 
|  | static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { | 
|  | ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); | 
|  | return Const != nullptr && !Const->isOpaque() ? Const : nullptr; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (add x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | // fold (add x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | 
|  | // canonicalize constant to RHS | 
|  | if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); | 
|  | // fold (add c1, c2) -> c1+c2 | 
|  | return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, | 
|  | N0.getNode(), N1.getNode()); | 
|  | } | 
|  | // fold (add x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  | // fold ((c1-A)+c2) -> (c1+c2)-A | 
|  | if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) { | 
|  | if (N0.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(N1C->getAPIntValue()+ | 
|  | N0C->getAPIntValue(), DL, VT), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  | // reassociate add | 
|  | if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) | 
|  | return RADD; | 
|  | // fold ((0-A) + B) -> B-A | 
|  | if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); | 
|  | // fold (A + (0-B)) -> A-B | 
|  | if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); | 
|  | // fold (A+(B-A)) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) | 
|  | return N1.getOperand(0); | 
|  | // fold ((B-A)+A) -> B | 
|  | if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) | 
|  | return N0.getOperand(0); | 
|  | // fold (A+(B-(A+C))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(0)) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(1)); | 
|  | // fold (A+(B-(C+A))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(1)) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(0)); | 
|  | // fold (A+((B-A)+or-C)) to (B+or-C) | 
|  | if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && | 
|  | N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | N0 == N1.getOperand(0).getOperand(1)) | 
|  | return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, | 
|  | N1.getOperand(0).getOperand(0), N1.getOperand(1)); | 
|  |  | 
|  | // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant | 
|  | if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | SDValue N11 = N1.getOperand(1); | 
|  |  | 
|  | if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), | 
|  | DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); | 
|  | } | 
|  |  | 
|  | if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (a+b) -> (a|b) iff a and b share no bits. | 
|  | if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::OR, VT)) && | 
|  | VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) | 
|  | if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | isNullConstant(N1.getOperand(0).getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, | 
|  | DAG.getNode(ISD::SHL, SDLoc(N), VT, | 
|  | N1.getOperand(0).getOperand(1), | 
|  | N1.getOperand(1))); | 
|  | if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && | 
|  | isNullConstant(N0.getOperand(0).getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, | 
|  | DAG.getNode(ISD::SHL, SDLoc(N), VT, | 
|  | N0.getOperand(0).getOperand(1), | 
|  | N0.getOperand(1))); | 
|  |  | 
|  | if (N1.getOpcode() == ISD::AND) { | 
|  | SDValue AndOp0 = N1.getOperand(0); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); | 
|  | unsigned DestBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) | 
|  | // and similar xforms where the inner op is either ~0 or 0. | 
|  | if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // add (sext i1), X -> sub X, (zext i1) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND && | 
|  | N0.getOperand(0).getValueType() == MVT::i1 && | 
|  | !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { | 
|  | SDLoc DL(N); | 
|  | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); | 
|  | } | 
|  |  | 
|  | // add X, (sextinreg Y i1) -> sub X, (and Y 1) | 
|  | if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
|  | if (TN->getVT() == MVT::i1) { | 
|  | SDLoc DL(N); | 
|  | SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // If the flag result is dead, turn this into an ADD. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, | 
|  | SDLoc(N), MVT::Glue)); | 
|  |  | 
|  | // canonicalize constant to RHS. | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); | 
|  |  | 
|  | // fold (addc x, 0) -> x + no carry out | 
|  | if (isNullConstant(N1)) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, | 
|  | SDLoc(N), MVT::Glue)); | 
|  |  | 
|  | // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. | 
|  | APInt LHSZero, LHSOne; | 
|  | APInt RHSZero, RHSOne; | 
|  | DAG.computeKnownBits(N0, LHSZero, LHSOne); | 
|  |  | 
|  | if (LHSZero.getBoolValue()) { | 
|  | DAG.computeKnownBits(N1, RHSZero, RHSOne); | 
|  |  | 
|  | // If all possibly-set bits on the LHS are clear on the RHS, return an OR. | 
|  | // If all possibly-set bits on the RHS are clear on the LHS, return an OR. | 
|  | if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) | 
|  | return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, | 
|  | SDLoc(N), MVT::Glue)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), | 
|  | N1, N0, CarryIn); | 
|  |  | 
|  | // fold (adde x, y, false) -> (addc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Since it may not be valid to emit a fold to zero for vector initializers | 
|  | // check if we can before folding. | 
|  | static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, | 
|  | SelectionDAG &DAG, | 
|  | bool LegalOperations, bool LegalTypes) { | 
|  | if (!VT.isVector()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (sub x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (sub x, x) -> 0 | 
|  | // FIXME: Refactor this and xor and other similar operations together. | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
|  | // fold (sub c1, c2) -> c1-c2 | 
|  | return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, | 
|  | N0.getNode(), N1.getNode()); | 
|  | } | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  | // fold (sub x, c) -> (add x, -c) | 
|  | if (N1C) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, | 
|  | DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | 
|  | } | 
|  | // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) | 
|  | if (isAllOnesConstant(N0)) | 
|  | return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); | 
|  | // fold A-(A-B) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) | 
|  | return N1.getOperand(1); | 
|  | // fold (A+B)-A -> B | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | 
|  | return N0.getOperand(1); | 
|  | // fold (A+B)-B -> A | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | 
|  | return N0.getOperand(0); | 
|  | // fold C2-(A+C1) -> (C2-C1)-A | 
|  | ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : | 
|  | dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); | 
|  | if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { | 
|  | SDLoc DL(N); | 
|  | SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), | 
|  | DL, VT); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, NewC, | 
|  | N1.getOperand(0)); | 
|  | } | 
|  | // fold ((A+(B+or-C))-B) -> A+or-C | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | (N0.getOperand(1).getOpcode() == ISD::SUB || | 
|  | N0.getOperand(1).getOpcode() == ISD::ADD) && | 
|  | N0.getOperand(1).getOperand(0) == N1) | 
|  | return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(1)); | 
|  | // fold ((A+(C+B))-B) -> A+C | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(0)); | 
|  | // fold ((A-(B-C))-C) -> A-B | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1).getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::SUB, SDLoc(N), VT, | 
|  | N0.getOperand(0), N0.getOperand(1).getOperand(0)); | 
|  |  | 
|  | // If either operand of a sub is undef, the result is undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | // If the relocation model supports it, consider symbol offsets. | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | 
|  | if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { | 
|  | // fold (sub Sym, c) -> Sym-c | 
|  | if (N1C && GA->getOpcode() == ISD::GlobalAddress) | 
|  | return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, | 
|  | GA->getOffset() - | 
|  | (uint64_t)N1C->getSExtValue()); | 
|  | // fold (sub Sym+c1, Sym+c2) -> c1-c2 | 
|  | if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) | 
|  | if (GA->getGlobal() == GB->getGlobal()) | 
|  | return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), | 
|  | SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // sub X, (sextinreg Y i1) -> add X, (and Y 1) | 
|  | if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
|  | if (TN->getVT() == MVT::i1) { | 
|  | SDLoc DL(N); | 
|  | SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag result is dead, turn this into an SUB. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // fold (subc x, x) -> 0 + no borrow | 
|  | if (N0 == N1) | 
|  | return CombineTo(N, DAG.getConstant(0, DL, VT), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // fold (subc x, 0) -> x + no borrow | 
|  | if (isNullConstant(N1)) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow | 
|  | if (isAllOnesConstant(N0)) | 
|  | return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  |  | 
|  | // fold (sube x, y, false) -> (subc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (mul x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | bool N0IsConst = false; | 
|  | bool N1IsConst = false; | 
|  | bool N1IsOpaqueConst = false; | 
|  | bool N0IsOpaqueConst = false; | 
|  | APInt ConstValue0, ConstValue1; | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); | 
|  | N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); | 
|  | } else { | 
|  | N0IsConst = isa<ConstantSDNode>(N0); | 
|  | if (N0IsConst) { | 
|  | ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); | 
|  | N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); | 
|  | } | 
|  | N1IsConst = isa<ConstantSDNode>(N1); | 
|  | if (N1IsConst) { | 
|  | ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); | 
|  | N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (mul c1, c2) -> c1*c2 | 
|  | if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) | 
|  | return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, | 
|  | N0.getNode(), N1.getNode()); | 
|  |  | 
|  | // canonicalize constant to RHS (vector doesn't have to splat) | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); | 
|  | // fold (mul x, 0) -> 0 | 
|  | if (N1IsConst && ConstValue1 == 0) | 
|  | return N1; | 
|  | // We require a splat of the entire scalar bit width for non-contiguous | 
|  | // bit patterns. | 
|  | bool IsFullSplat = | 
|  | ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); | 
|  | // fold (mul x, 1) -> x | 
|  | if (N1IsConst && ConstValue1 == 1 && IsFullSplat) | 
|  | return N0; | 
|  | // fold (mul x, -1) -> 0-x | 
|  | if (N1IsConst && ConstValue1.isAllOnesValue()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(0, DL, VT), N0); | 
|  | } | 
|  | // fold (mul x, (1 << c)) -> x << c | 
|  | if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && | 
|  | IsFullSplat) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0, | 
|  | DAG.getConstant(ConstValue1.logBase2(), DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | } | 
|  | // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | 
|  | if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && | 
|  | IsFullSplat) { | 
|  | unsigned Log2Val = (-ConstValue1).logBase2(); | 
|  | SDLoc DL(N); | 
|  | // FIXME: If the input is something that is easily negated (e.g. a | 
|  | // single-use add), we should put the negate there. | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(0, DL, VT), | 
|  | DAG.getNode(ISD::SHL, DL, VT, N0, | 
|  | DAG.getConstant(Log2Val, DL, | 
|  | getShiftAmountTy(N0.getValueType())))); | 
|  | } | 
|  |  | 
|  | APInt Val; | 
|  | // (mul (shl X, c1), c2) -> (mul X, c2 << c1) | 
|  | if (N1IsConst && N0.getOpcode() == ISD::SHL && | 
|  | (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || | 
|  | isa<ConstantSDNode>(N0.getOperand(1)))) { | 
|  | SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, | 
|  | N1, N0.getOperand(1)); | 
|  | AddToWorklist(C3.getNode()); | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, | 
|  | N0.getOperand(0), C3); | 
|  | } | 
|  |  | 
|  | // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | 
|  | // use. | 
|  | { | 
|  | SDValue Sh(nullptr,0), Y(nullptr,0); | 
|  | // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). | 
|  | if (N0.getOpcode() == ISD::SHL && | 
|  | (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | Sh = N0; Y = N1; | 
|  | } else if (N1.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(N1.getOperand(1)) && | 
|  | N1.getNode()->hasOneUse()) { | 
|  | Sh = N1; Y = N0; | 
|  | } | 
|  |  | 
|  | if (Sh.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, | 
|  | Sh.getOperand(0), Y); | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, | 
|  | Mul, Sh.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && | 
|  | N0.getOpcode() == ISD::ADD && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && | 
|  | isMulAddWithConstProfitable(N, N0, N1)) | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::MUL, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1), | 
|  | DAG.getNode(ISD::MUL, SDLoc(N1), VT, | 
|  | N0.getOperand(1), N1)); | 
|  |  | 
|  | // reassociate mul | 
|  | if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) | 
|  | return RMUL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return true if divmod libcall is available. | 
|  | static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, | 
|  | const TargetLowering &TLI) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: return false; // No libcall for vector types. | 
|  | case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
|  | case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
|  | case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
|  | case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
|  | case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | return TLI.getLibcallName(LC) != nullptr; | 
|  | } | 
|  |  | 
|  | /// Issue divrem if both quotient and remainder are needed. | 
|  | SDValue DAGCombiner::useDivRem(SDNode *Node) { | 
|  | if (Node->use_empty()) | 
|  | return SDValue(); // This is a dead node, leave it alone. | 
|  |  | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (!TLI.isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); | 
|  |  | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | // If DIVREM is going to get expanded into a libcall, | 
|  | // but there is no libcall available, then don't combine. | 
|  | if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && | 
|  | !isDivRemLibcallAvailable(Node, isSigned, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If div is legal, it's better to do the normal expansion | 
|  | unsigned OtherOpcode = 0; | 
|  | if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { | 
|  | OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; | 
|  | if (TLI.isOperationLegalOrCustom(Opcode, VT)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue combined; | 
|  | for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | 
|  | UE = Op0.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == Node || User->use_empty()) | 
|  | continue; | 
|  | // Convert the other matching node(s), too; | 
|  | // otherwise, the DIVREM may get target-legalized into something | 
|  | // target-specific that we won't be able to recognize. | 
|  | unsigned UserOpc = User->getOpcode(); | 
|  | if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && | 
|  | User->getOperand(0) == Op0 && | 
|  | User->getOperand(1) == Op1) { | 
|  | if (!combined) { | 
|  | if (UserOpc == OtherOpcode) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); | 
|  | } else if (UserOpc == DivRemOpc) { | 
|  | combined = SDValue(User, 0); | 
|  | } else { | 
|  | assert(UserOpc == Opcode); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) | 
|  | CombineTo(User, combined); | 
|  | else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) | 
|  | CombineTo(User, combined.getValue(1)); | 
|  | } | 
|  | } | 
|  | return combined; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (sdiv c1, c2) -> c1/c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); | 
|  | // fold (sdiv X, 1) -> X | 
|  | if (N1C && N1C->isOne()) | 
|  | return N0; | 
|  | // fold (sdiv X, -1) -> 0-X | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(0, DL, VT), N0); | 
|  |  | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); | 
|  | } | 
|  |  | 
|  | // fold (sdiv X, pow2) -> simple ops after legalize | 
|  | // FIXME: We check for the exact bit here because the generic lowering gives | 
|  | // better results in that case. The target-specific lowering should learn how | 
|  | // to handle exact sdivs efficiently. | 
|  | if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && | 
|  | !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && | 
|  | (N1C->getAPIntValue().isPowerOf2() || | 
|  | (-N1C->getAPIntValue()).isPowerOf2())) { | 
|  | // Target-specific implementation of sdiv x, pow2. | 
|  | if (SDValue Res = BuildSDIVPow2(N)) | 
|  | return Res; | 
|  |  | 
|  | unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); | 
|  |  | 
|  | // Splat the sign bit into the register | 
|  | SDValue SGN = | 
|  | DAG.getNode(ISD::SRA, DL, VT, N0, | 
|  | DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | AddToWorklist(SGN.getNode()); | 
|  |  | 
|  | // Add (N0 < 0) ? abs2 - 1 : 0; | 
|  | SDValue SRL = | 
|  | DAG.getNode(ISD::SRL, DL, VT, SGN, | 
|  | DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, | 
|  | getShiftAmountTy(SGN.getValueType()))); | 
|  | SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); | 
|  | AddToWorklist(SRL.getNode()); | 
|  | AddToWorklist(ADD.getNode());    // Divide by pow2 | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, | 
|  | DAG.getConstant(lg2, DL, | 
|  | getShiftAmountTy(ADD.getValueType()))); | 
|  |  | 
|  | // If we're dividing by a positive value, we're done.  Otherwise, we must | 
|  | // negate the result. | 
|  | if (N1C->getAPIntValue().isNonNegative()) | 
|  | return SRA; | 
|  |  | 
|  | AddToWorklist(SRA.getNode()); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); | 
|  | } | 
|  |  | 
|  | // If integer divide is expensive and we satisfy the requirements, emit an | 
|  | // alternate sequence.  Targets may check function attributes for size/speed | 
|  | // trade-offs. | 
|  | AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | 
|  | if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue Op = BuildSDIV(N)) | 
|  | return Op; | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. | 
|  | // Otherwise, we break the simplification logic in visitREM(). | 
|  | if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem; | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (udiv c1, c2) -> c1/c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C) | 
|  | if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, | 
|  | N0C, N1C)) | 
|  | return Folded; | 
|  | // fold (udiv x, (1 << c)) -> x >>u c | 
|  | if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  |  | 
|  | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | EVT ADDVT = N1.getOperand(1).getValueType(); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, | 
|  | N1.getOperand(1), | 
|  | DAG.getConstant(SHC->getAPIntValue() | 
|  | .logBase2(), | 
|  | DL, ADDVT)); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (udiv x, c) -> alternate | 
|  | AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | 
|  | if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue Op = BuildUDIV(N)) | 
|  | return Op; | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. | 
|  | // Otherwise, we break the simplification logic in visitREM(). | 
|  | if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem; | 
|  |  | 
|  | // undef / X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | // X / undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // handles ISD::SREM and ISD::UREM | 
|  | SDValue DAGCombiner::visitREM(SDNode *N) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | bool isSigned = (Opcode == ISD::SREM); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (rem c1, c2) -> c1%c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C) | 
|  | if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) | 
|  | return Folded; | 
|  |  | 
|  | if (isSigned) { | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | 
|  | if (!VT.isVector()) { | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UREM, DL, VT, N0, N1); | 
|  | } | 
|  | } else { | 
|  | // fold (urem x, pow2) -> (and x, pow2-1) | 
|  | if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && | 
|  | N1C->getAPIntValue().isPowerOf2()) { | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0, | 
|  | DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); | 
|  | } | 
|  | // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { | 
|  | if (SHC->getAPIntValue().isPowerOf2()) { | 
|  | SDValue Add = | 
|  | DAG.getNode(ISD::ADD, DL, VT, N1, | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, | 
|  | VT)); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0, Add); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | // To avoid mangling nodes, this simplification requires that the combine() | 
|  | // call for the speculative DIV must not cause a DIVREM conversion.  We guard | 
|  | // against this by skipping the simplification if isIntDivCheap().  When | 
|  | // div is not cheap, combine will not return a DIVREM.  Regardless, | 
|  | // checking cheapness here makes sense since the simplification results in | 
|  | // fatter code. | 
|  | if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { | 
|  | unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); | 
|  | AddToWorklist(Div.getNode()); | 
|  | SDValue OptimizedDiv = combine(Div.getNode()); | 
|  | if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | 
|  | assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && | 
|  | (OptimizedDiv.getOpcode() != ISD::SDIVREM)); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
|  | AddToWorklist(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem.getValue(1); | 
|  |  | 
|  | // undef % X -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | // X % undef -> undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (mulhs x, 0) -> 0 | 
|  | if (isNullConstant(N1)) | 
|  | return N1; | 
|  | // fold (mulhs x, 1) -> (sra x, size(x)-1) | 
|  | if (isOneConstant(N1)) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, | 
|  | DAG.getConstant(N0.getValueType().getSizeInBits() - 1, | 
|  | DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | } | 
|  | // fold (mulhs x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhs to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHU(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (mulhu x, 0) -> 0 | 
|  | if (isNullConstant(N1)) | 
|  | return N1; | 
|  | // fold (mulhu x, 1) -> 0 | 
|  | if (isOneConstant(N1)) | 
|  | return DAG.getConstant(0, DL, N0.getValueType()); | 
|  | // fold (mulhu x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Perform optimizations common to nodes that compute two values. LoOp and HiOp | 
|  | /// give the opcodes for the two computations that are being performed. Return | 
|  | /// true if a simplification was made. | 
|  | SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp) { | 
|  | // If the high half is not needed, just compute the low half. | 
|  | bool HiExists = N->hasAnyUseOfValue(1); | 
|  | if (!HiExists && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { | 
|  | SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If the low half is not needed, just compute the high half. | 
|  | bool LoExists = N->hasAnyUseOfValue(0); | 
|  | if (!LoExists && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(HiOp, N->getValueType(1)))) { | 
|  | SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If both halves are used, return as it is. | 
|  | if (LoExists && HiExists) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the two computed results can be simplified separately, separate them. | 
|  | if (LoExists) { | 
|  | SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
|  | AddToWorklist(Lo.getNode()); | 
|  | SDValue LoOpt = combine(Lo.getNode()); | 
|  | if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) | 
|  | return CombineTo(N, LoOpt, LoOpt); | 
|  | } | 
|  |  | 
|  | if (HiExists) { | 
|  | SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  | SDValue HiOpt = combine(Hi.getNode()); | 
|  | if (HiOpt.getNode() && HiOpt != Hi && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) | 
|  | return CombineTo(N, HiOpt, HiOpt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | 
|  | if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the type is twice as wide is legal, transform the mulhu to a wider | 
|  | // multiply plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | 
|  | if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the type is twice as wide is legal, transform the mulhu to a wider | 
|  | // multiply plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMULO(SDNode *N) { | 
|  | // (smulo x, 2) -> (saddo x, x) | 
|  | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (C2->getAPIntValue() == 2) | 
|  | return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), | 
|  | N->getOperand(0), N->getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMULO(SDNode *N) { | 
|  | // (umulo x, 2) -> (uaddo x, x) | 
|  | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (C2->getAPIntValue() == 2) | 
|  | return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), | 
|  | N->getOperand(0), N->getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitIMINMAX(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (add c1, c2) -> c1+c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If this is a binary operator with two operands of the same opcode, try to | 
|  | /// simplify it. | 
|  | SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); | 
|  |  | 
|  | // Bail early if none of these transforms apply. | 
|  | if (N0.getNode()->getNumOperands() == 0) return SDValue(); | 
|  |  | 
|  | // For each of OP in AND/OR/XOR: | 
|  | // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) | 
|  | // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) | 
|  | // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) | 
|  | // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) | 
|  | // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) | 
|  | // | 
|  | // do not sink logical op inside of a vector extend, since it may combine | 
|  | // into a vsetcc. | 
|  | EVT Op0VT = N0.getOperand(0).getValueType(); | 
|  | if ((N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N0.getOpcode() == ISD::BSWAP || | 
|  | // Avoid infinite looping with PromoteIntBinOp. | 
|  | (N0.getOpcode() == ISD::ANY_EXTEND && | 
|  | (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || | 
|  | (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (!TLI.isZExtFree(VT, Op0VT) || | 
|  | !TLI.isTruncateFree(Op0VT, VT)) && | 
|  | TLI.isTypeLegal(Op0VT))) && | 
|  | !VT.isVector() && | 
|  | Op0VT == N1.getOperand(0).getValueType() && | 
|  | (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorklist(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); | 
|  | } | 
|  |  | 
|  | // For each of OP in SHL/SRL/SRA/AND... | 
|  | //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) | 
|  | //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z) | 
|  | //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || | 
|  | N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && | 
|  | N0.getOperand(1) == N1.getOperand(1)) { | 
|  | SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), | 
|  | N0.getOperand(0).getValueType(), | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | AddToWorklist(ORNode.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, | 
|  | ORNode, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) | 
|  | // Only perform this optimization after type legalization and before | 
|  | // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by | 
|  | // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and | 
|  | // we don't want to undo this promotion. | 
|  | // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper | 
|  | // on scalars. | 
|  | if ((N0.getOpcode() == ISD::BITCAST || | 
|  | N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && | 
|  | Level == AfterLegalizeTypes) { | 
|  | SDValue In0 = N0.getOperand(0); | 
|  | SDValue In1 = N1.getOperand(0); | 
|  | EVT In0Ty = In0.getValueType(); | 
|  | EVT In1Ty = In1.getValueType(); | 
|  | SDLoc DL(N); | 
|  | // If both incoming values are integers, and the original types are the | 
|  | // same. | 
|  | if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { | 
|  | SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); | 
|  | SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); | 
|  | AddToWorklist(Op.getNode()); | 
|  | return BC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). | 
|  | // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) | 
|  | // If both shuffles use the same mask, and both shuffle within a single | 
|  | // vector, then it is worthwhile to move the swizzle after the operation. | 
|  | // The type-legalizer generates this pattern when loading illegal | 
|  | // vector types from memory. In many cases this allows additional shuffle | 
|  | // optimizations. | 
|  | // There are other cases where moving the shuffle after the xor/and/or | 
|  | // is profitable even if shuffles don't perform a swizzle. | 
|  | // If both shuffles use the same mask, and both shuffles have the same first | 
|  | // or second operand, then it might still be profitable to move the shuffle | 
|  | // after the xor/and/or operation. | 
|  | if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { | 
|  | ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); | 
|  | ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); | 
|  |  | 
|  | assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && | 
|  | "Inputs to shuffles are not the same type"); | 
|  |  | 
|  | // Check that both shuffles use the same mask. The masks are known to be of | 
|  | // the same length because the result vector type is the same. | 
|  | // Check also that shuffles have only one use to avoid introducing extra | 
|  | // instructions. | 
|  | if (SVN0->hasOneUse() && SVN1->hasOneUse() && | 
|  | SVN0->getMask().equals(SVN1->getMask())) { | 
|  | SDValue ShOp = N0->getOperand(1); | 
|  |  | 
|  | // Don't try to fold this node if it requires introducing a | 
|  | // build vector of all zeros that might be illegal at this stage. | 
|  | if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { | 
|  | if (!LegalTypes) | 
|  | ShOp = DAG.getConstant(0, SDLoc(N), VT); | 
|  | else | 
|  | ShOp = SDValue(); | 
|  | } | 
|  |  | 
|  | // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) | 
|  | // (OR  (shuf (A, C), shuf (B, C)) -> shuf (OR  (A, B), C) | 
|  | // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) | 
|  | if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { | 
|  | SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | 
|  | N0->getOperand(0), N1->getOperand(0)); | 
|  | AddToWorklist(NewNode.getNode()); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, | 
|  | &SVN0->getMask()[0]); | 
|  | } | 
|  |  | 
|  | // Don't try to fold this node if it requires introducing a | 
|  | // build vector of all zeros that might be illegal at this stage. | 
|  | ShOp = N0->getOperand(0); | 
|  | if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { | 
|  | if (!LegalTypes) | 
|  | ShOp = DAG.getConstant(0, SDLoc(N), VT); | 
|  | else | 
|  | ShOp = SDValue(); | 
|  | } | 
|  |  | 
|  | // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) | 
|  | // (OR  (shuf (C, A), shuf (C, B)) -> shuf (C, OR  (A, B)) | 
|  | // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) | 
|  | if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { | 
|  | SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | 
|  | N0->getOperand(1), N1->getOperand(1)); | 
|  | AddToWorklist(NewNode.getNode()); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, | 
|  | &SVN0->getMask()[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// This contains all DAGCombine rules which reduce two values combined by | 
|  | /// an And operation to a single value. This makes them reusable in the context | 
|  | /// of visitSELECT(). Rules involving constants are not included as | 
|  | /// visitSELECT() already handles those cases. | 
|  | SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, | 
|  | SDNode *LocReference) { | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // fold (and x, undef) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, SDLoc(LocReference), VT); | 
|  | // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && | 
|  | LL.getValueType().isInteger()) { | 
|  | // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) | 
|  | if (isNullConstant(LR) && Op1 == ISD::SETEQ) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorklist(ORNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); | 
|  | } | 
|  | if (isAllOnesConstant(LR)) { | 
|  | // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) | 
|  | if (Op1 == ISD::SETEQ) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorklist(ANDNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); | 
|  | } | 
|  | // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) | 
|  | if (Op1 == ISD::SETGT) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorklist(ORNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) | 
|  | if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && | 
|  | Op0 == Op1 && LL.getValueType().isInteger() && | 
|  | Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || | 
|  | (isAllOnesConstant(LR) && isNullConstant(RR)))) { | 
|  | SDLoc DL(N0); | 
|  | SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), | 
|  | LL, DAG.getConstant(1, DL, | 
|  | LL.getValueType())); | 
|  | AddToWorklist(ADDNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, | 
|  | DAG.getConstant(2, DL, LL.getValueType()), | 
|  | ISD::SETUGE); | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID && | 
|  | (!LegalOperations || | 
|  | (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && | 
|  | TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { | 
|  | EVT CCVT = getSetCCResultType(LL.getValueType()); | 
|  | if (N0.getValueType() == CCVT || | 
|  | (!LegalOperations && N0.getValueType() == MVT::i1)) | 
|  | return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), | 
|  | LL, LR, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && | 
|  | VT.getSizeInBits() <= 64) { | 
|  | if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | APInt ADDC = ADDI->getAPIntValue(); | 
|  | if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
|  | // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal | 
|  | // immediate for an add, but it is legal if its top c2 bits are set, | 
|  | // transform the ADD so the immediate doesn't need to be materialized | 
|  | // in a register. | 
|  | if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { | 
|  | APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), | 
|  | SRLI->getZExtValue()); | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { | 
|  | ADDC |= Mask; | 
|  | if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
|  | SDLoc DL(N0); | 
|  | SDValue NewAdd = | 
|  | DAG.getNode(ISD::ADD, DL, VT, | 
|  | N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); | 
|  | CombineTo(N0.getNode(), NewAdd); | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(LocReference, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
|  | EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, | 
|  | bool &NarrowLoad) { | 
|  | uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); | 
|  |  | 
|  | if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) | 
|  | return false; | 
|  |  | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
|  | LoadedVT = LoadN->getMemoryVT(); | 
|  |  | 
|  | if (ExtVT == LoadedVT && | 
|  | (!LegalOperations || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { | 
|  | // ZEXTLOAD will match without needing to change the size of the value being | 
|  | // loaded. | 
|  | NarrowLoad = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Do not change the width of a volatile load. | 
|  | if (LoadN->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) | 
|  | return false; | 
|  |  | 
|  | if (LegalOperations && | 
|  | !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) | 
|  | return false; | 
|  |  | 
|  | if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) | 
|  | return false; | 
|  |  | 
|  | NarrowLoad = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitAND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (and x, 0) -> 0, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | // do not return N0, because undef node may exist in N0 | 
|  | return DAG.getConstant( | 
|  | APInt::getNullValue( | 
|  | N0.getValueType().getScalarType().getSizeInBits()), | 
|  | SDLoc(N), N0.getValueType()); | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | // do not return N1, because undef node may exist in N1 | 
|  | return DAG.getConstant( | 
|  | APInt::getNullValue( | 
|  | N1.getValueType().getScalarType().getSizeInBits()), | 
|  | SDLoc(N), N1.getValueType()); | 
|  |  | 
|  | // fold (and x, -1) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllOnes(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (and c1, c2) -> c1&c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); | 
|  | // fold (and x, -1) -> x | 
|  | if (isAllOnesConstant(N1)) | 
|  | return N0; | 
|  | // if (and x, c) is known to be zero, return 0 | 
|  | unsigned BitWidth = VT.getScalarType().getSizeInBits(); | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(BitWidth))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  | // reassociate and | 
|  | if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) | 
|  | return RAND; | 
|  | // fold (and (or x, C), D) -> D if (C & D) == D | 
|  | if (N1C && N0.getOpcode() == ISD::OR) | 
|  | if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) | 
|  | return N1; | 
|  | // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | APInt Mask = ~N1C->getAPIntValue(); | 
|  | Mask = Mask.trunc(N0Op0.getValueSizeInBits()); | 
|  | if (DAG.MaskedValueIsZero(N0Op0, Mask)) { | 
|  | SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), | 
|  | N0.getValueType(), N0Op0); | 
|  |  | 
|  | // Replace uses of the AND with uses of the Zero extend node. | 
|  | CombineTo(N, Zext); | 
|  |  | 
|  | // We actually want to replace all uses of the any_extend with the | 
|  | // zero_extend, to avoid duplicating things.  This will later cause this | 
|  | // AND to be folded. | 
|  | CombineTo(N0.getNode(), Zext); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> | 
|  | // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must | 
|  | // already be zero by virtue of the width of the base type of the load. | 
|  | // | 
|  | // the 'X' node here can either be nothing or an extract_vector_elt to catch | 
|  | // more cases. | 
|  | if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | N0.getOperand(0).getOpcode() == ISD::LOAD) || | 
|  | N0.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? | 
|  | N0 : N0.getOperand(0) ); | 
|  |  | 
|  | // Get the constant (if applicable) the zero'th operand is being ANDed with. | 
|  | // This can be a pure constant or a vector splat, in which case we treat the | 
|  | // vector as a scalar and use the splat value. | 
|  | APInt Constant = APInt::getNullValue(1); | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { | 
|  | Constant = C->getAPIntValue(); | 
|  | } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, | 
|  | SplatBitSize, HasAnyUndefs); | 
|  | if (IsSplat) { | 
|  | // Undef bits can contribute to a possible optimisation if set, so | 
|  | // set them. | 
|  | SplatValue |= SplatUndef; | 
|  |  | 
|  | // The splat value may be something like "0x00FFFFFF", which means 0 for | 
|  | // the first vector value and FF for the rest, repeating. We need a mask | 
|  | // that will apply equally to all members of the vector, so AND all the | 
|  | // lanes of the constant together. | 
|  | EVT VT = Vector->getValueType(0); | 
|  | unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // If the splat value has been compressed to a bitlength lower | 
|  | // than the size of the vector lane, we need to re-expand it to | 
|  | // the lane size. | 
|  | if (BitWidth > SplatBitSize) | 
|  | for (SplatValue = SplatValue.zextOrTrunc(BitWidth); | 
|  | SplatBitSize < BitWidth; | 
|  | SplatBitSize = SplatBitSize * 2) | 
|  | SplatValue |= SplatValue.shl(SplatBitSize); | 
|  |  | 
|  | // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a | 
|  | // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. | 
|  | if (SplatBitSize % BitWidth == 0) { | 
|  | Constant = APInt::getAllOnesValue(BitWidth); | 
|  | for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) | 
|  | Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is | 
|  | // actually legal and isn't going to get expanded, else this is a false | 
|  | // optimisation. | 
|  | bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, | 
|  | Load->getValueType(0), | 
|  | Load->getMemoryVT()); | 
|  |  | 
|  | // Resize the constant to the same size as the original memory access before | 
|  | // extension. If it is still the AllOnesValue then this AND is completely | 
|  | // unneeded. | 
|  | Constant = | 
|  | Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); | 
|  |  | 
|  | bool B; | 
|  | switch (Load->getExtensionType()) { | 
|  | default: B = false; break; | 
|  | case ISD::EXTLOAD: B = CanZextLoadProfitably; break; | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::NON_EXTLOAD: B = true; break; | 
|  | } | 
|  |  | 
|  | if (B && Constant.isAllOnesValue()) { | 
|  | // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to | 
|  | // preserve semantics once we get rid of the AND. | 
|  | SDValue NewLoad(Load, 0); | 
|  | if (Load->getExtensionType() == ISD::EXTLOAD) { | 
|  | NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, | 
|  | Load->getValueType(0), SDLoc(Load), | 
|  | Load->getChain(), Load->getBasePtr(), | 
|  | Load->getOffset(), Load->getMemoryVT(), | 
|  | Load->getMemOperand()); | 
|  | // Replace uses of the EXTLOAD with the new ZEXTLOAD. | 
|  | if (Load->getNumValues() == 3) { | 
|  | // PRE/POST_INC loads have 3 values. | 
|  | SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), | 
|  | NewLoad.getValue(2) }; | 
|  | CombineTo(Load, To, 3, true); | 
|  | } else { | 
|  | CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold the AND away, taking care not to fold to the old load node if we | 
|  | // replaced it. | 
|  | CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); | 
|  |  | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (load x), 255) -> (zextload x, i8) | 
|  | // fold (and (extload x, i16), 255) -> (zextload x, i8) | 
|  | // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) | 
|  | if (N1C && (N0.getOpcode() == ISD::LOAD || | 
|  | (N0.getOpcode() == ISD::ANY_EXTEND && | 
|  | N0.getOperand(0).getOpcode() == ISD::LOAD))) { | 
|  | bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; | 
|  | LoadSDNode *LN0 = HasAnyExt | 
|  | ? cast<LoadSDNode>(N0.getOperand(0)) | 
|  | : cast<LoadSDNode>(N0); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD && | 
|  | LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { | 
|  | auto NarrowLoad = false; | 
|  | EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; | 
|  | EVT ExtVT, LoadedVT; | 
|  | if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, | 
|  | NarrowLoad)) { | 
|  | if (!NarrowLoad) { | 
|  | SDValue NewLoad = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, | 
|  | LN0->getChain(), LN0->getBasePtr(), ExtVT, | 
|  | LN0->getMemOperand()); | 
|  | AddToWorklist(N); | 
|  | CombineTo(LN0, NewLoad, NewLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } else { | 
|  | EVT PtrType = LN0->getOperand(1).getValueType(); | 
|  |  | 
|  | unsigned Alignment = LN0->getAlignment(); | 
|  | SDValue NewPtr = LN0->getBasePtr(); | 
|  |  | 
|  | // For big endian targets, we need to add an offset to the pointer | 
|  | // to load the correct bytes.  For little endian systems, we merely | 
|  | // need to read fewer bytes from the same pointer. | 
|  | if (DAG.getDataLayout().isBigEndian()) { | 
|  | unsigned LVTStoreBytes = LoadedVT.getStoreSize(); | 
|  | unsigned EVTStoreBytes = ExtVT.getStoreSize(); | 
|  | unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; | 
|  | SDLoc DL(LN0); | 
|  | NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, | 
|  | NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); | 
|  | Alignment = MinAlign(Alignment, PtrOff); | 
|  | } | 
|  |  | 
|  | AddToWorklist(NewPtr.getNode()); | 
|  |  | 
|  | SDValue Load = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, | 
|  | LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo(), | 
|  | ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), Alignment, LN0->getAAInfo()); | 
|  | AddToWorklist(N); | 
|  | CombineTo(LN0, Load, Load.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitANDLike(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) | 
|  | if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | 
|  | return Tmp; | 
|  |  | 
|  | // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | 
|  | // fold (and (sra)) -> (and (srl)) when possible. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (zext_inreg (extload x)) -> (zextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - MemVT.getScalarType().getSizeInBits())) && | 
|  | ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | MemVT, LN0->getMemOperand()); | 
|  | AddToWorklist(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | 
|  | if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - MemVT.getScalarType().getSizeInBits())) && | 
|  | ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | MemVT, LN0->getMemOperand()); | 
|  | AddToWorklist(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) | 
|  | if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
|  | N0.getOperand(1), false)) | 
|  | return BSwap; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. | 
|  | SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) | 
|  | bool LookPassAnd0 = false; | 
|  | bool LookPassAnd1 = false; | 
|  | if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) | 
|  | std::swap(N0, N1); | 
|  | if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | if (!N0.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N01C || N01C->getZExtValue() != 0xFF00) | 
|  | return SDValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::AND) { | 
|  | if (!N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N11C || N11C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N1 = N1.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.getNode()->hasOneUse() || | 
|  | !N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N01C || !N11C) | 
|  | return SDValue(); | 
|  | if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { | 
|  | if (!N00.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); | 
|  | if (!N001C || N001C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N00 = N00.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | SDValue N10 = N1->getOperand(0); | 
|  | if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { | 
|  | if (!N10.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); | 
|  | if (!N101C || N101C->getZExtValue() != 0xFF00) | 
|  | return SDValue(); | 
|  | N10 = N10.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N00 != N10) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure everything beyond the low halfword gets set to zero since the SRL | 
|  | // 16 will clear the top bits. | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  | if (DemandHighBits && OpSizeInBits > 16) { | 
|  | // If the left-shift isn't masked out then the only way this is a bswap is | 
|  | // if all bits beyond the low 8 are 0. In that case the entire pattern | 
|  | // reduces to a left shift anyway: leave it for other parts of the combiner. | 
|  | if (!LookPassAnd0) | 
|  | return SDValue(); | 
|  |  | 
|  | // However, if the right shift isn't masked out then it might be because | 
|  | // it's not needed. See if we can spot that too. | 
|  | if (!LookPassAnd1 && | 
|  | !DAG.MaskedValueIsZero( | 
|  | N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); | 
|  | if (OpSizeInBits > 16) { | 
|  | SDLoc DL(N); | 
|  | Res = DAG.getNode(ISD::SRL, DL, VT, Res, | 
|  | DAG.getConstant(OpSizeInBits - 16, DL, | 
|  | getShiftAmountTy(VT))); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified node is an element that makes up a 32-bit | 
|  | /// packed halfword byteswap. | 
|  | /// ((x & 0x000000ff) << 8) | | 
|  | /// ((x & 0x0000ff00) >> 8) | | 
|  | /// ((x & 0x00ff0000) << 8) | | 
|  | /// ((x & 0xff000000) >> 8) | 
|  | static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { | 
|  | if (!N.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = N.getOpcode(); | 
|  | if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!N1C) | 
|  | return false; | 
|  |  | 
|  | unsigned Num; | 
|  | switch (N1C->getZExtValue()) { | 
|  | default: | 
|  | return false; | 
|  | case 0xFF:       Num = 0; break; | 
|  | case 0xFF00:     Num = 1; break; | 
|  | case 0xFF0000:   Num = 2; break; | 
|  | case 0xFF000000: Num = 3; break; | 
|  | } | 
|  |  | 
|  | // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). | 
|  | SDValue N0 = N.getOperand(0); | 
|  | if (Opc == ISD::AND) { | 
|  | if (Num == 0 || Num == 2) { | 
|  | // (x >> 8) & 0xff | 
|  | // (x >> 8) & 0xff0000 | 
|  | if (N0.getOpcode() != ISD::SRL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { | 
|  | // (x << 8) & 0xff00 | 
|  | // (x << 8) & 0xff000000 | 
|  | if (N0.getOpcode() != ISD::SHL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  | } else if (Opc == ISD::SHL) { | 
|  | // (x & 0xff) << 8 | 
|  | // (x & 0xff0000) << 8 | 
|  | if (Num != 0 && Num != 2) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { // Opc == ISD::SRL | 
|  | // (x & 0xff00) >> 8 | 
|  | // (x & 0xff000000) >> 8 | 
|  | if (Num != 1 && Num != 3) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Parts[Num]) | 
|  | return false; | 
|  |  | 
|  | Parts[Num] = N0.getOperand(0).getNode(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Match a 32-bit packed halfword bswap. That is | 
|  | /// ((x & 0x000000ff) << 8) | | 
|  | /// ((x & 0x0000ff00) >> 8) | | 
|  | /// ((x & 0x00ff0000) << 8) | | 
|  | /// ((x & 0xff000000) >> 8) | 
|  | /// => (rotl (bswap x), 16) | 
|  | SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look for either | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (N0.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | SDNode *Parts[4] = {}; | 
|  |  | 
|  | if (N1.getOpcode() == ISD::OR && | 
|  | N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (!isBSwapHWordElement(N000, Parts)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | if (!isBSwapHWordElement(N001, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N010 = N01.getOperand(0); | 
|  | if (!isBSwapHWordElement(N010, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N011 = N01.getOperand(1); | 
|  | if (!isBSwapHWordElement(N011, Parts)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (!isBSwapHWordElement(N1, Parts)) | 
|  | return SDValue(); | 
|  | if (!isBSwapHWordElement(N01, Parts)) | 
|  | return SDValue(); | 
|  | if (N00.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (!isBSwapHWordElement(N000, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | if (!isBSwapHWordElement(N001, Parts)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Make sure the parts are all coming from the same node. | 
|  | if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, | 
|  | SDValue(Parts[0], 0)); | 
|  |  | 
|  | // Result of the bswap should be rotated by 16. If it's not legal, then | 
|  | // do  (x << 16) | (x >> 16). | 
|  | SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); | 
|  | return DAG.getNode(ISD::OR, DL, VT, | 
|  | DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), | 
|  | DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); | 
|  | } | 
|  |  | 
|  | /// This contains all DAGCombine rules which reduce two values combined by | 
|  | /// an Or operation to a single value \see visitANDLike(). | 
|  | SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { | 
|  | EVT VT = N1.getValueType(); | 
|  | // fold (or x, undef) -> -1 | 
|  | if (!LegalOperations && | 
|  | (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { | 
|  | EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; | 
|  | return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), | 
|  | SDLoc(LocReference), VT); | 
|  | } | 
|  | // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) | 
|  | SDValue LL, LR, RL, RR, CC0, CC1; | 
|  | if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ | 
|  | ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); | 
|  | ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); | 
|  |  | 
|  | if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { | 
|  | // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) | 
|  | // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) | 
|  | if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { | 
|  | SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorklist(ORNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); | 
|  | } | 
|  | // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) | 
|  | // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1) | 
|  | if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { | 
|  | SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), | 
|  | LR.getValueType(), LL, RL); | 
|  | AddToWorklist(ANDNode.getNode()); | 
|  | return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); | 
|  | } | 
|  | } | 
|  | // canonicalize equivalent to ll == rl | 
|  | if (LL == RR && LR == RL) { | 
|  | Op1 = ISD::getSetCCSwappedOperands(Op1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  | if (LL == RL && LR == RR) { | 
|  | bool isInteger = LL.getValueType().isInteger(); | 
|  | ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); | 
|  | if (Result != ISD::SETCC_INVALID && | 
|  | (!LegalOperations || | 
|  | (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && | 
|  | TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { | 
|  | EVT CCVT = getSetCCResultType(LL.getValueType()); | 
|  | if (N0.getValueType() == CCVT || | 
|  | (!LegalOperations && N0.getValueType() == MVT::i1)) | 
|  | return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), | 
|  | LL, LR, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. | 
|  | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | // We can only do this xform if we know that bits from X that are set in C2 | 
|  | // but not in C1 are already zero.  Likewise for Y. | 
|  | if (const ConstantSDNode *N0O1C = | 
|  | getAsNonOpaqueConstant(N0.getOperand(1))) { | 
|  | if (const ConstantSDNode *N1O1C = | 
|  | getAsNonOpaqueConstant(N1.getOperand(1))) { | 
|  | // We can only do this xform if we know that bits from X that are set in | 
|  | // C2 but not in C1 are already zero.  Likewise for Y. | 
|  | const APInt &LHSMask = N0O1C->getAPIntValue(); | 
|  | const APInt &RHSMask = N1O1C->getAPIntValue(); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | 
|  | DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | 
|  | SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | SDLoc DL(LocReference); | 
|  | return DAG.getNode(ISD::AND, DL, VT, X, | 
|  | DAG.getConstant(LHSMask | RHSMask, DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (or (and X, M), (and X, N)) -> (and X, (or M, N)) | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N1.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0) == N1.getOperand(0) && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
|  | N0.getOperand(1), N1.getOperand(1)); | 
|  | return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (or x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  |  | 
|  | // fold (or x, -1) -> -1, vector edition | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | // do not return N0, because undef node may exist in N0 | 
|  | return DAG.getConstant( | 
|  | APInt::getAllOnesValue( | 
|  | N0.getValueType().getScalarType().getSizeInBits()), | 
|  | SDLoc(N), N0.getValueType()); | 
|  | if (ISD::isBuildVectorAllOnes(N1.getNode())) | 
|  | // do not return N1, because undef node may exist in N1 | 
|  | return DAG.getConstant( | 
|  | APInt::getAllOnesValue( | 
|  | N1.getValueType().getScalarType().getSizeInBits()), | 
|  | SDLoc(N), N1.getValueType()); | 
|  |  | 
|  | // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) | 
|  | // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) | 
|  | // Do this only if the resulting shuffle is legal. | 
|  | if (isa<ShuffleVectorSDNode>(N0) && | 
|  | isa<ShuffleVectorSDNode>(N1) && | 
|  | // Avoid folding a node with illegal type. | 
|  | TLI.isTypeLegal(VT) && | 
|  | N0->getOperand(1) == N1->getOperand(1) && | 
|  | ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { | 
|  | bool CanFold = true; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); | 
|  | const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); | 
|  | // We construct two shuffle masks: | 
|  | // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand | 
|  | // and N1 as the second operand. | 
|  | // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand | 
|  | // and N0 as the second operand. | 
|  | // We do this because OR is commutable and therefore there might be | 
|  | // two ways to fold this node into a shuffle. | 
|  | SmallVector<int,4> Mask1; | 
|  | SmallVector<int,4> Mask2; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElts && CanFold; ++i) { | 
|  | int M0 = SV0->getMaskElt(i); | 
|  | int M1 = SV1->getMaskElt(i); | 
|  |  | 
|  | // Both shuffle indexes are undef. Propagate Undef. | 
|  | if (M0 < 0 && M1 < 0) { | 
|  | Mask1.push_back(M0); | 
|  | Mask2.push_back(M0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (M0 < 0 || M1 < 0 || | 
|  | (M0 < (int)NumElts && M1 < (int)NumElts) || | 
|  | (M0 >= (int)NumElts && M1 >= (int)NumElts)) { | 
|  | CanFold = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); | 
|  | Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | // Fold this sequence only if the resulting shuffle is 'legal'. | 
|  | if (TLI.isShuffleMaskLegal(Mask1, VT)) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), | 
|  | N1->getOperand(0), &Mask1[0]); | 
|  | if (TLI.isShuffleMaskLegal(Mask2, VT)) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), | 
|  | N0->getOperand(0), &Mask2[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or c1, c2) -> c1|c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); | 
|  | // fold (or x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  | // fold (or x, -1) -> -1 | 
|  | if (isAllOnesConstant(N1)) | 
|  | return N1; | 
|  | // fold (or x, c) -> c iff (x & ~c) == 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | 
|  | return N1; | 
|  |  | 
|  | if (SDValue Combined = visitORLike(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) | 
|  | if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) | 
|  | return BSwap; | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) | 
|  | return BSwap; | 
|  |  | 
|  | // reassociate or | 
|  | if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) | 
|  | return ROR; | 
|  | // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | 
|  | // iff (c1 & c2) == 0. | 
|  | if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { | 
|  | if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, | 
|  | N1C, C1)) | 
|  | return DAG.getNode( | 
|  | ISD::AND, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) | 
|  | if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | 
|  | return Tmp; | 
|  |  | 
|  | // See if this is some rotate idiom. | 
|  | if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) | 
|  | return SDValue(Rot, 0); | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { | 
|  | if (Op.getOpcode() == ISD::AND) { | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { | 
|  | Mask = Op.getOperand(1); | 
|  | Op = Op.getOperand(0); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | 
|  | Shift = Op; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if we can prove that, whenever Neg and Pos are both in the | 
|  | // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that | 
|  | // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: | 
|  | // | 
|  | //     (or (shift1 X, Neg), (shift2 X, Pos)) | 
|  | // | 
|  | // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate | 
|  | // in direction shift1 by Neg.  The range [0, EltSize) means that we only need | 
|  | // to consider shift amounts with defined behavior. | 
|  | static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { | 
|  | // If EltSize is a power of 2 then: | 
|  | // | 
|  | //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) | 
|  | //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). | 
|  | // | 
|  | // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check | 
|  | // for the stronger condition: | 
|  | // | 
|  | //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A] | 
|  | // | 
|  | // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) | 
|  | // we can just replace Neg with Neg' for the rest of the function. | 
|  | // | 
|  | // In other cases we check for the even stronger condition: | 
|  | // | 
|  | //     Neg == EltSize - Pos                                    [B] | 
|  | // | 
|  | // for all Neg and Pos.  Note that the (or ...) then invokes undefined | 
|  | // behavior if Pos == 0 (and consequently Neg == EltSize). | 
|  | // | 
|  | // We could actually use [A] whenever EltSize is a power of 2, but the | 
|  | // only extra cases that it would match are those uninteresting ones | 
|  | // where Neg and Pos are never in range at the same time.  E.g. for | 
|  | // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) | 
|  | // as well as (sub 32, Pos), but: | 
|  | // | 
|  | //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) | 
|  | // | 
|  | // always invokes undefined behavior for 32-bit X. | 
|  | // | 
|  | // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. | 
|  | unsigned MaskLoBits = 0; | 
|  | if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { | 
|  | if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { | 
|  | if (NegC->getAPIntValue() == EltSize - 1) { | 
|  | Neg = Neg.getOperand(0); | 
|  | MaskLoBits = Log2_64(EltSize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. | 
|  | if (Neg.getOpcode() != ISD::SUB) | 
|  | return false; | 
|  | ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); | 
|  | if (!NegC) | 
|  | return false; | 
|  | SDValue NegOp1 = Neg.getOperand(1); | 
|  |  | 
|  | // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with | 
|  | // Pos'.  The truncation is redundant for the purpose of the equality. | 
|  | if (MaskLoBits && Pos.getOpcode() == ISD::AND) | 
|  | if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | 
|  | if (PosC->getAPIntValue() == EltSize - 1) | 
|  | Pos = Pos.getOperand(0); | 
|  |  | 
|  | // The condition we need is now: | 
|  | // | 
|  | //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask | 
|  | // | 
|  | // If NegOp1 == Pos then we need: | 
|  | // | 
|  | //              EltSize & Mask == NegC & Mask | 
|  | // | 
|  | // (because "x & Mask" is a truncation and distributes through subtraction). | 
|  | APInt Width; | 
|  | if (Pos == NegOp1) | 
|  | Width = NegC->getAPIntValue(); | 
|  |  | 
|  | // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. | 
|  | // Then the condition we want to prove becomes: | 
|  | // | 
|  | //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask | 
|  | // | 
|  | // which, again because "x & Mask" is a truncation, becomes: | 
|  | // | 
|  | //                NegC & Mask == (EltSize - PosC) & Mask | 
|  | //             EltSize & Mask == (NegC + PosC) & Mask | 
|  | else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { | 
|  | if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | 
|  | Width = PosC->getAPIntValue() + NegC->getAPIntValue(); | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Now we just need to check that EltSize & Mask == Width & Mask. | 
|  | if (MaskLoBits) | 
|  | // EltSize & Mask is 0 since Mask is EltSize - 1. | 
|  | return Width.getLoBits(MaskLoBits) == 0; | 
|  | return Width == EltSize; | 
|  | } | 
|  |  | 
|  | // A subroutine of MatchRotate used once we have found an OR of two opposite | 
|  | // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces | 
|  | // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the | 
|  | // former being preferred if supported.  InnerPos and InnerNeg are Pos and | 
|  | // Neg with outer conversions stripped away. | 
|  | SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, | 
|  | SDValue Neg, SDValue InnerPos, | 
|  | SDValue InnerNeg, unsigned PosOpcode, | 
|  | unsigned NegOpcode, SDLoc DL) { | 
|  | // fold (or (shl x, (*ext y)), | 
|  | //          (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotl x, y) or (rotr x, (sub 32, y)) | 
|  | // | 
|  | // fold (or (shl x, (*ext (sub 32, y))), | 
|  | //          (srl x, (*ext y))) -> | 
|  | //   (rotr x, y) or (rotl x, (sub 32, y)) | 
|  | EVT VT = Shifted.getValueType(); | 
|  | if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { | 
|  | bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); | 
|  | return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, | 
|  | HasPos ? Pos : Neg).getNode(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // MatchRotate - Handle an 'or' of two operands.  If this is one of the many | 
|  | // idioms for rotate, and if the target supports rotation instructions, generate | 
|  | // a rot[lr]. | 
|  | SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { | 
|  | // Must be a legal type.  Expanded 'n promoted things won't work with rotates. | 
|  | EVT VT = LHS.getValueType(); | 
|  | if (!TLI.isTypeLegal(VT)) return nullptr; | 
|  |  | 
|  | // The target must have at least one rotate flavor. | 
|  | bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); | 
|  | bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); | 
|  | if (!HasROTL && !HasROTR) return nullptr; | 
|  |  | 
|  | // Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | SDValue LHSShift;   // The shift. | 
|  | SDValue LHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) | 
|  | return nullptr; // Not part of a rotate. | 
|  |  | 
|  | SDValue RHSShift;   // The shift. | 
|  | SDValue RHSMask;    // AND value if any. | 
|  | if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) | 
|  | return nullptr; // Not part of a rotate. | 
|  |  | 
|  | if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) | 
|  | return nullptr;   // Not shifting the same value. | 
|  |  | 
|  | if (LHSShift.getOpcode() == RHSShift.getOpcode()) | 
|  | return nullptr;   // Shifts must disagree. | 
|  |  | 
|  | // Canonicalize shl to left side in a shl/srl pair. | 
|  | if (RHSShift.getOpcode() == ISD::SHL) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSShift, RHSShift); | 
|  | std::swap(LHSMask, RHSMask); | 
|  | } | 
|  |  | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | SDValue LHSShiftArg = LHSShift.getOperand(0); | 
|  | SDValue LHSShiftAmt = LHSShift.getOperand(1); | 
|  | SDValue RHSShiftArg = RHSShift.getOperand(0); | 
|  | SDValue RHSShiftAmt = RHSShift.getOperand(1); | 
|  |  | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) | 
|  | if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { | 
|  | uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); | 
|  | uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); | 
|  | if ((LShVal + RShVal) != EltSizeInBits) | 
|  | return nullptr; | 
|  |  | 
|  | SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, | 
|  | LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); | 
|  |  | 
|  | // If there is an AND of either shifted operand, apply it to the result. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) { | 
|  | APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); | 
|  | SDValue Mask = DAG.getConstant(AllBits, DL, VT); | 
|  |  | 
|  | if (LHSMask.getNode()) { | 
|  | APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); | 
|  | Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
|  | DAG.getNode(ISD::OR, DL, VT, LHSMask, | 
|  | DAG.getConstant(RHSBits, DL, VT))); | 
|  | } | 
|  | if (RHSMask.getNode()) { | 
|  | APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); | 
|  | Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
|  | DAG.getNode(ISD::OR, DL, VT, RHSMask, | 
|  | DAG.getConstant(LHSBits, DL, VT))); | 
|  | } | 
|  |  | 
|  | Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); | 
|  | } | 
|  |  | 
|  | return Rot.getNode(); | 
|  | } | 
|  |  | 
|  | // If there is a mask here, and we have a variable shift, we can't be sure | 
|  | // that we're masking out the right stuff. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the shift amount is sign/zext/any-extended just peel it off. | 
|  | SDValue LExtOp0 = LHSShiftAmt; | 
|  | SDValue RExtOp0 = RHSShiftAmt; | 
|  | if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && | 
|  | (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { | 
|  | LExtOp0 = LHSShiftAmt.getOperand(0); | 
|  | RExtOp0 = RHSShiftAmt.getOperand(0); | 
|  | } | 
|  |  | 
|  | SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, | 
|  | LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); | 
|  | if (TryL) | 
|  | return TryL; | 
|  |  | 
|  | SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, | 
|  | RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); | 
|  | if (TryR) | 
|  | return TryR; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitXOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (xor x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (xor undef, undef) -> 0. This is a common idiom (misuse). | 
|  | if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  | // fold (xor x, undef) -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return N0; | 
|  | if (N1.getOpcode() == ISD::UNDEF) | 
|  | return N1; | 
|  | // fold (xor c1, c2) -> c1^c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); | 
|  | // fold (xor x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  | // reassociate xor | 
|  | if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) | 
|  | return RXOR; | 
|  |  | 
|  | // fold !(x cc y) -> (x !cc y) | 
|  | SDValue LHS, RHS, CC; | 
|  | if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { | 
|  | bool isInt = LHS.getValueType().isInteger(); | 
|  | ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | isInt); | 
|  |  | 
|  | if (!LegalOperations || | 
|  | TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { | 
|  | switch (N0.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled SetCC Equivalent!"); | 
|  | case ISD::SETCC: | 
|  | return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); | 
|  | case ISD::SELECT_CC: | 
|  | return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), | 
|  | N0.getOperand(3), NotCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | 
|  | if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | 
|  | SDValue V = N0.getOperand(0); | 
|  | SDLoc DL(N0); | 
|  | V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, | 
|  | DAG.getConstant(1, DL, V.getValueType())); | 
|  | AddToWorklist(V.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); | 
|  | } | 
|  |  | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc | 
|  | if (isOneConstant(N1) && VT == MVT::i1 && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants | 
|  | if (isAllOnesConstant(N1) && | 
|  | (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { | 
|  | unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (xor (and x, y), y) -> (and (not x), y) | 
|  | if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | N0->getOperand(1) == N1) { | 
|  | SDValue X = N0->getOperand(0); | 
|  | SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); | 
|  | AddToWorklist(NotX.getNode()); | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); | 
|  | } | 
|  | // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::XOR) { | 
|  | if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), | 
|  | DAG.getConstant(N1C->getAPIntValue() ^ | 
|  | N00C->getAPIntValue(), DL, VT)); | 
|  | } | 
|  | if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(N1C->getAPIntValue() ^ | 
|  | N01C->getAPIntValue(), DL, VT)); | 
|  | } | 
|  | } | 
|  | // fold (xor x, x) -> 0 | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); | 
|  |  | 
|  | // fold (xor (shl 1, x), -1) -> (rotl ~1, x) | 
|  | // Here is a concrete example of this equivalence: | 
|  | // i16   x ==  14 | 
|  | // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000 | 
|  | // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 | 
|  | // | 
|  | // => | 
|  | // | 
|  | // i16     ~1      == 0b1111111111111110 | 
|  | // i16 rol(~1, 14) == 0b1011111111111111 | 
|  | // | 
|  | // Some additional tips to help conceptualize this transform: | 
|  | // - Try to see the operation as placing a single zero in a value of all ones. | 
|  | // - There exists no value for x which would allow the result to contain zero. | 
|  | // - Values of x larger than the bitwidth are undefined and do not require a | 
|  | //   consistent result. | 
|  | // - Pushing the zero left requires shifting one bits in from the right. | 
|  | // A rotate left of ~1 is a nice way of achieving the desired result. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL | 
|  | && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) | 
|  | if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | 
|  | return Tmp; | 
|  |  | 
|  | // Simplify the expression using non-local knowledge. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Handle transforms common to the three shifts, when the shift amount is a | 
|  | /// constant. | 
|  | SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { | 
|  | SDNode *LHS = N->getOperand(0).getNode(); | 
|  | if (!LHS->hasOneUse()) return SDValue(); | 
|  |  | 
|  | // We want to pull some binops through shifts, so that we have (and (shift)) | 
|  | // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of | 
|  | // thing happens with address calculations, so it's important to canonicalize | 
|  | // it. | 
|  | bool HighBitSet = false;  // Can we transform this if the high bit is set? | 
|  |  | 
|  | switch (LHS->getOpcode()) { | 
|  | default: return SDValue(); | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | case ISD::AND: | 
|  | HighBitSet = true;  // We can only transform sra if the high bit is set. | 
|  | break; | 
|  | case ISD::ADD: | 
|  | if (N->getOpcode() != ISD::SHL) | 
|  | return SDValue(); // only shl(add) not sr[al](add). | 
|  | HighBitSet = false; // We can only transform sra if the high bit is clear. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We require the RHS of the binop to be a constant and not opaque as well. | 
|  | ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); | 
|  | if (!BinOpCst) return SDValue(); | 
|  |  | 
|  | // FIXME: disable this unless the input to the binop is a shift by a constant. | 
|  | // If it is not a shift, it pessimizes some common cases like: | 
|  | // | 
|  | //    void foo(int *X, int i) { X[i & 1235] = 1; } | 
|  | //    int bar(int *X, int i) { return X[i & 255]; } | 
|  | SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); | 
|  | if ((BinOpLHSVal->getOpcode() != ISD::SHL && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRA && | 
|  | BinOpLHSVal->getOpcode() != ISD::SRL) || | 
|  | !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is a signed shift right, and the high bit is modified by the | 
|  | // logical operation, do not perform the transformation. The highBitSet | 
|  | // boolean indicates the value of the high bit of the constant which would | 
|  | // cause it to be modified for this operation. | 
|  | if (N->getOpcode() == ISD::SRA) { | 
|  | bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); | 
|  | if (BinOpRHSSignSet != HighBitSet) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (!TLI.isDesirableToCommuteWithShift(LHS)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Fold the constants, shifting the binop RHS by the shift amount. | 
|  | SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), | 
|  | N->getValueType(0), | 
|  | LHS->getOperand(1), N->getOperand(1)); | 
|  | assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); | 
|  |  | 
|  | // Create the new shift. | 
|  | SDValue NewShift = DAG.getNode(N->getOpcode(), | 
|  | SDLoc(LHS->getOperand(0)), | 
|  | VT, LHS->getOperand(0), N->getOperand(1)); | 
|  |  | 
|  | // Create the new binop. | 
|  | return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::TRUNCATE); | 
|  | assert(N->getOperand(0).getOpcode() == ISD::AND); | 
|  |  | 
|  | // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) | 
|  | if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { | 
|  | SDValue N01 = N->getOperand(0).getOperand(1); | 
|  |  | 
|  | if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { | 
|  | if (!N01C->isOpaque()) { | 
|  | EVT TruncVT = N->getValueType(0); | 
|  | SDValue N00 = N->getOperand(0).getOperand(0); | 
|  | APInt TruncC = N01C->getAPIntValue(); | 
|  | TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, TruncVT, | 
|  | DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), | 
|  | DAG.getConstant(TruncC, DL, TruncVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitRotate(SDNode *N) { | 
|  | // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). | 
|  | if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && | 
|  | N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = | 
|  | distributeTruncateThroughAnd(N->getOperand(1).getNode())) | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), NewOp1); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSHL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); | 
|  | // If setcc produces all-one true value then: | 
|  | // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) | 
|  | if (N1CV && N1CV->isConstant()) { | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | SDValue N01 = N0->getOperand(1); | 
|  | BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); | 
|  |  | 
|  | if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && | 
|  | TLI.getBooleanContents(N00.getOperand(0).getValueType()) == | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
|  | if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, | 
|  | N01CV, N1CV)) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); | 
|  | } | 
|  | } else { | 
|  | N1C = isConstOrConstSplat(N1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl c1, c2) -> c1<<c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); | 
|  | // fold (shl 0, x) -> 0 | 
|  | if (isNullConstant(N0)) | 
|  | return N0; | 
|  | // fold (shl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (shl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (shl undef, x) -> 0 | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  | // if (shl x, c) is known to be zero, return 0 | 
|  | if (DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  | // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | uint64_t c1 = N0C1->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, DL, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) | 
|  | // For this to be valid, the second form must not preserve any of the bits | 
|  | // that are shifted out by the inner shift in the first form.  This means | 
|  | // the outer shift size must be >= the number of bits added by the ext. | 
|  | // As a corollary, we don't care what kind of ext it is. | 
|  | if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | N0.getOperand(0).getOpcode() == ISD::SHL) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { | 
|  | uint64_t c1 = N0Op0C1->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | EVT InnerShiftVT = N0Op0.getValueType(); | 
|  | uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); | 
|  | if (c2 >= OpSizeInBits - InnerShiftSize) { | 
|  | SDLoc DL(N0); | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, | 
|  | DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | N0Op0->getOperand(0)), | 
|  | DAG.getConstant(c1 + c2, DL, N1.getValueType())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) | 
|  | // Only fold this if the inner zext has no other uses to avoid increasing | 
|  | // the total number of instructions. | 
|  | if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { | 
|  | uint64_t c1 = N0Op0C1->getZExtValue(); | 
|  | if (c1 < VT.getScalarSizeInBits()) { | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | if (c1 == c2) { | 
|  | SDValue NewOp0 = N0.getOperand(0); | 
|  | EVT CountVT = NewOp0.getOperand(1).getValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), | 
|  | NewOp0, | 
|  | DAG.getConstant(c2, DL, CountVT)); | 
|  | AddToWorklist(NewSHL.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2 | 
|  | // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2 | 
|  | if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && | 
|  | cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | uint64_t C1 = N0C1->getZExtValue(); | 
|  | uint64_t C2 = N1C->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  | if (C1 <= C2) | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(C2 - C1, DL, N1.getValueType())); | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(C1 - C2, DL, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or | 
|  | //                               (and (srl x, (sub c1, c2), MASK) | 
|  | // Only fold this if the inner shift has no other uses -- if it does, folding | 
|  | // this will increase the total number of instructions. | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | uint64_t c1 = N0C1->getZExtValue(); | 
|  | if (c1 < OpSizeInBits) { | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); | 
|  | SDValue Shift; | 
|  | if (c2 > c1) { | 
|  | Mask = Mask.shl(c2 - c1); | 
|  | SDLoc DL(N); | 
|  | Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c2 - c1, DL, N1.getValueType())); | 
|  | } else { | 
|  | Mask = Mask.lshr(c1 - c2); | 
|  | SDLoc DL(N); | 
|  | Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 - c2, DL, N1.getValueType())); | 
|  | } | 
|  | SDLoc DL(N0); | 
|  | return DAG.getNode(ISD::AND, DL, VT, Shift, | 
|  | DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  | // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { | 
|  | unsigned BitSize = VT.getScalarSizeInBits(); | 
|  | SDLoc DL(N); | 
|  | SDValue HiBitsMask = | 
|  | DAG.getConstant(APInt::getHighBitsSet(BitSize, | 
|  | BitSize - N1C->getZExtValue()), | 
|  | DL, VT); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), | 
|  | HiBitsMask); | 
|  | } | 
|  |  | 
|  | // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) | 
|  | // Variant of version done on multiply, except mul by a power of 2 is turned | 
|  | // into a shift. | 
|  | APInt Val; | 
|  | if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && | 
|  | (isa<ConstantSDNode>(N0.getOperand(1)) || | 
|  | isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { | 
|  | SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); | 
|  | SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); | 
|  | } | 
|  |  | 
|  | // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) | 
|  | if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | if (SDValue Folded = | 
|  | DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSHL = visitShiftByConstant(N, N1C)) | 
|  | return NewSHL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | N1C = isConstOrConstSplat(N1); | 
|  | } | 
|  |  | 
|  | // fold (sra c1, c2) -> (sra c1, c2) | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); | 
|  | // fold (sra 0, x) -> 0 | 
|  | if (isNullConstant(N0)) | 
|  | return N0; | 
|  | // fold (sra -1, x) -> -1 | 
|  | if (isAllOnesConstant(N0)) | 
|  | return N0; | 
|  | // fold (sra x, (setge c, size(x))) -> undef | 
|  | if (N1C && N1C->getZExtValue() >= OpSizeInBits) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (sra x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports | 
|  | // sext_inreg. | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { | 
|  | unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); | 
|  | EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); | 
|  | if (VT.isVector()) | 
|  | ExtVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ExtVT, VT.getVectorNumElements()); | 
|  | if ((!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | N0.getOperand(0), DAG.getValueType(ExtVT)); | 
|  | } | 
|  |  | 
|  | // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRA) { | 
|  | if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); | 
|  | if (Sum >= OpSizeInBits) | 
|  | Sum = OpSizeInBits - 1; | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(Sum, DL, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra (shl X, m), (sub result_size, n)) | 
|  | // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for | 
|  | // result_size - n != m. | 
|  | // If truncate is free for the target sext(shl) is likely to result in better | 
|  | // code. | 
|  | if (N0.getOpcode() == ISD::SHL && N1C) { | 
|  | // Get the two constanst of the shifts, CN0 = m, CN = n. | 
|  | const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); | 
|  | if (N01C) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | // Determine what the truncate's result bitsize and type would be. | 
|  | EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); | 
|  |  | 
|  | if (VT.isVector()) | 
|  | TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); | 
|  |  | 
|  | // Determine the residual right-shift amount. | 
|  | signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); | 
|  |  | 
|  | // If the shift is not a no-op (in which case this should be just a sign | 
|  | // extend already), the truncated to type is legal, sign_extend is legal | 
|  | // on that type, and the truncate to that type is both legal and free, | 
|  | // perform the transform. | 
|  | if ((ShiftAmt > 0) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && | 
|  | TLI.isTruncateFree(VT, TruncVT)) { | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue Amt = DAG.getConstant(ShiftAmt, DL, | 
|  | getShiftAmountTy(N0.getOperand(0).getValueType())); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, | 
|  | N0.getOperand(0), Amt); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, | 
|  | Shift); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, DL, | 
|  | N->getValueType(0), Trunc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) | 
|  | //      if c1 is equal to the number of bits the trunc removes | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (N0.getOperand(0).getOpcode() == ISD::SRL || | 
|  | N0.getOperand(0).getOpcode() == ISD::SRA) && | 
|  | N0.getOperand(0).hasOneUse() && | 
|  | N0.getOperand(0).getOperand(1).hasOneUse() && | 
|  | N1C) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { | 
|  | unsigned LargeShiftVal = LargeShift->getZExtValue(); | 
|  | EVT LargeVT = N0Op0.getValueType(); | 
|  |  | 
|  | if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { | 
|  | SDLoc DL(N); | 
|  | SDValue Amt = | 
|  | DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, | 
|  | getShiftAmountTy(N0Op0.getOperand(0).getValueType())); | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, | 
|  | N0Op0.getOperand(0), Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify, based on bits shifted out of the LHS. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  |  | 
|  | // If the sign bit is known to be zero, switch this to a SRL. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSRA = visitShiftByConstant(N, N1C)) | 
|  | return NewSRA; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | N1C = isConstOrConstSplat(N1); | 
|  | } | 
|  |  | 
|  | // fold (srl c1, c2) -> c1 >>u c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); | 
|  | // fold (srl 0, x) -> 0 | 
|  | if (isNullConstant(N0)) | 
|  | return N0; | 
|  | // fold (srl x, c >= size(x)) -> undef | 
|  | if (N1C && N1C->getZExtValue() >= OpSizeInBits) | 
|  | return DAG.getUNDEF(VT); | 
|  | // fold (srl x, 0) -> x | 
|  | if (N1C && N1C->isNullValue()) | 
|  | return N0; | 
|  | // if (srl x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) | 
|  | if (N1C && N0.getOpcode() == ISD::SRL) { | 
|  | if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | uint64_t c1 = N01C->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  | if (c1 + c2 >= OpSizeInBits) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 + c2, DL, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) | 
|  | if (N1C && N0.getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(0).getOpcode() == ISD::SRL && | 
|  | isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { | 
|  | uint64_t c1 = | 
|  | cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | EVT InnerShiftVT = N0.getOperand(0).getValueType(); | 
|  | EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); | 
|  | uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); | 
|  | // This is only valid if the OpSizeInBits + c1 = size of inner shift. | 
|  | if (c1 + OpSizeInBits == InnerShiftSize) { | 
|  | SDLoc DL(N0); | 
|  | if (c1 + c2 >= InnerShiftSize) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, | 
|  | DAG.getNode(ISD::SRL, DL, InnerShiftVT, | 
|  | N0.getOperand(0)->getOperand(0), | 
|  | DAG.getConstant(c1 + c2, DL, | 
|  | ShiftCountVT))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (shl x, c), c) -> (and x, cst2) | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { | 
|  | unsigned BitSize = N0.getScalarValueSizeInBits(); | 
|  | if (BitSize <= 64) { | 
|  | uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(~0ULL >> ShAmt, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // Shifting in all undef bits? | 
|  | EVT SmallVT = N0.getOperand(0).getValueType(); | 
|  | unsigned BitSize = SmallVT.getScalarSizeInBits(); | 
|  | if (N1C->getZExtValue() >= BitSize) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { | 
|  | uint64_t ShiftAmt = N1C->getZExtValue(); | 
|  | SDLoc DL0(N0); | 
|  | SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, | 
|  | N0.getOperand(0), | 
|  | DAG.getConstant(ShiftAmt, DL0, | 
|  | getShiftAmountTy(SmallVT))); | 
|  | AddToWorklist(SmallShift.getNode()); | 
|  | APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), | 
|  | DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign | 
|  | // bit, which is unmodified by sra. | 
|  | if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { | 
|  | if (N0.getOpcode() == ISD::SRA) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). | 
|  | if (N1C && N0.getOpcode() == ISD::CTLZ && | 
|  | N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { | 
|  | APInt KnownZero, KnownOne; | 
|  | DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); | 
|  |  | 
|  | // If any of the input bits are KnownOne, then the input couldn't be all | 
|  | // zeros, thus the result of the srl will always be zero. | 
|  | if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); | 
|  |  | 
|  | // If all of the bits input the to ctlz node are known to be zero, then | 
|  | // the result of the ctlz is "32" and the result of the shift is one. | 
|  | APInt UnknownBits = ~KnownZero; | 
|  | if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); | 
|  |  | 
|  | // Otherwise, check to see if there is exactly one bit input to the ctlz. | 
|  | if ((UnknownBits & (UnknownBits - 1)) == 0) { | 
|  | // Okay, we know that only that the single bit specified by UnknownBits | 
|  | // could be set on input to the CTLZ node. If this bit is set, the SRL | 
|  | // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair | 
|  | // to an SRL/XOR pair, which is likely to simplify more. | 
|  | unsigned ShAmt = UnknownBits.countTrailingZeros(); | 
|  | SDValue Op = N0.getOperand(0); | 
|  |  | 
|  | if (ShAmt) { | 
|  | SDLoc DL(N0); | 
|  | Op = DAG.getNode(ISD::SRL, DL, VT, Op, | 
|  | DAG.getConstant(ShAmt, DL, | 
|  | getShiftAmountTy(Op.getValueType()))); | 
|  | AddToWorklist(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, | 
|  | Op, DAG.getConstant(1, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | // fold operands of srl based on knowledge that the low bits are not | 
|  | // demanded. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSRL = visitShiftByConstant(N, N1C)) | 
|  | return NewSRL; | 
|  |  | 
|  | // Attempt to convert a srl of a load into a narrower zero-extending load. | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N)) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // Here is a common situation. We want to optimize: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // However when after the source operand of SRL is optimized into AND, the SRL | 
|  | // itself may not be optimized further. Look for it and add the BRCOND into | 
|  | // the worklist. | 
|  | if (N->hasOneUse()) { | 
|  | SDNode *Use = *N->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorklist(Use); | 
|  | else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { | 
|  | // Also look pass the truncate. | 
|  | Use = *Use->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorklist(Use); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBSWAP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (bswap c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); | 
|  | // fold (bswap (bswap x)) -> x | 
|  | if (N0.getOpcode() == ISD::BSWAP) | 
|  | return N0->getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz_zero_undef c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz_zero_undef c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTPOP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctpop c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Generate Min/Max node | 
|  | static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, | 
|  | SDValue True, SDValue False, | 
|  | ISD::CondCode CC, const TargetLowering &TLI, | 
|  | SelectionDAG &DAG) { | 
|  | if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) | 
|  | return SDValue(); | 
|  |  | 
|  | switch (CC) { | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: { | 
|  | unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; | 
|  | if (TLI.isOperationLegal(Opcode, VT)) | 
|  | return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: { | 
|  | unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; | 
|  | if (TLI.isOperationLegal(Opcode, VT)) | 
|  | return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT VT0 = N0.getValueType(); | 
|  |  | 
|  | // fold (select C, X, X) -> X | 
|  | if (N1 == N2) | 
|  | return N1; | 
|  | if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { | 
|  | // fold (select true, X, Y) -> X | 
|  | // fold (select false, X, Y) -> Y | 
|  | return !N0C->isNullValue() ? N1 : N2; | 
|  | } | 
|  | // fold (select C, 1, X) -> (or C, X) | 
|  | if (VT == MVT::i1 && isOneConstant(N1)) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); | 
|  | // fold (select C, 0, 1) -> (xor C, 1) | 
|  | // We can't do this reliably if integer based booleans have different contents | 
|  | // to floating point based booleans. This is because we can't tell whether we | 
|  | // have an integer-based boolean or a floating-point-based boolean unless we | 
|  | // can find the SETCC that produced it and inspect its operands. This is | 
|  | // fairly easy if C is the SETCC node, but it can potentially be | 
|  | // undiscoverable (or not reasonably discoverable). For example, it could be | 
|  | // in another basic block or it could require searching a complicated | 
|  | // expression. | 
|  | if (VT.isInteger() && | 
|  | (VT0 == MVT::i1 || (VT0.isInteger() && | 
|  | TLI.getBooleanContents(false, false) == | 
|  | TLI.getBooleanContents(false, true) && | 
|  | TLI.getBooleanContents(false, false) == | 
|  | TargetLowering::ZeroOrOneBooleanContent)) && | 
|  | isNullConstant(N1) && isOneConstant(N2)) { | 
|  | SDValue XORNode; | 
|  | if (VT == VT0) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::XOR, DL, VT0, | 
|  | N0, DAG.getConstant(1, DL, VT0)); | 
|  | } | 
|  | SDLoc DL0(N0); | 
|  | XORNode = DAG.getNode(ISD::XOR, DL0, VT0, | 
|  | N0, DAG.getConstant(1, DL0, VT0)); | 
|  | AddToWorklist(XORNode.getNode()); | 
|  | if (VT.bitsGT(VT0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); | 
|  | } | 
|  | // fold (select C, 0, X) -> (and (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { | 
|  | SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | 
|  | AddToWorklist(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); | 
|  | } | 
|  | // fold (select C, X, 1) -> (or (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { | 
|  | SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | 
|  | AddToWorklist(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); | 
|  | } | 
|  | // fold (select C, X, 0) -> (and C, X) | 
|  | if (VT == MVT::i1 && isNullConstant(N2)) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); | 
|  | // fold (select X, X, Y) -> (or X, Y) | 
|  | // fold (select X, 1, Y) -> (or X, Y) | 
|  | if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); | 
|  | // fold (select X, Y, X) -> (and X, Y) | 
|  | // fold (select X, Y, 0) -> (and X, Y) | 
|  | if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | if (VT0 == MVT::i1) { | 
|  | // The code in this block deals with the following 2 equivalences: | 
|  | //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) | 
|  | //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) | 
|  | // The target can specify its prefered form with the | 
|  | // shouldNormalizeToSelectSequence() callback. However we always transform | 
|  | // to the right anyway if we find the inner select exists in the DAG anyway | 
|  | // and we always transform to the left side if we know that we can further | 
|  | // optimize the combination of the conditions. | 
|  | bool normalizeToSequence | 
|  | = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); | 
|  | // select (and Cond0, Cond1), X, Y | 
|  | //   -> select Cond0, (select Cond1, X, Y), Y | 
|  | if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { | 
|  | SDValue Cond0 = N0->getOperand(0); | 
|  | SDValue Cond1 = N0->getOperand(1); | 
|  | SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), | 
|  | N1.getValueType(), Cond1, N1, N2); | 
|  | if (normalizeToSequence || !InnerSelect.use_empty()) | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, | 
|  | InnerSelect, N2); | 
|  | } | 
|  | // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) | 
|  | if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { | 
|  | SDValue Cond0 = N0->getOperand(0); | 
|  | SDValue Cond1 = N0->getOperand(1); | 
|  | SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), | 
|  | N1.getValueType(), Cond1, N1, N2); | 
|  | if (normalizeToSequence || !InnerSelect.use_empty()) | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, | 
|  | InnerSelect); | 
|  | } | 
|  |  | 
|  | // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y | 
|  | if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { | 
|  | SDValue N1_0 = N1->getOperand(0); | 
|  | SDValue N1_1 = N1->getOperand(1); | 
|  | SDValue N1_2 = N1->getOperand(2); | 
|  | if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { | 
|  | // Create the actual and node if we can generate good code for it. | 
|  | if (!normalizeToSequence) { | 
|  | SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), | 
|  | N0, N1_0); | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, | 
|  | N1_1, N2); | 
|  | } | 
|  | // Otherwise see if we can optimize the "and" to a better pattern. | 
|  | if (SDValue Combined = visitANDLike(N0, N1_0, N)) | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, | 
|  | N1_1, N2); | 
|  | } | 
|  | } | 
|  | // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y | 
|  | if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { | 
|  | SDValue N2_0 = N2->getOperand(0); | 
|  | SDValue N2_1 = N2->getOperand(1); | 
|  | SDValue N2_2 = N2->getOperand(2); | 
|  | if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { | 
|  | // Create the actual or node if we can generate good code for it. | 
|  | if (!normalizeToSequence) { | 
|  | SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), | 
|  | N0, N2_0); | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, | 
|  | N1, N2_2); | 
|  | } | 
|  | // Otherwise see if we can optimize to a better pattern. | 
|  | if (SDValue Combined = visitORLike(N0, N2_0, N)) | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, | 
|  | N1, N2_2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold selects based on a setcc into other things, such as min/max/abs | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // select x, y (fcmp lt x, y) -> fminnum x, y | 
|  | // select x, y (fcmp gt x, y) -> fmaxnum x, y | 
|  | // | 
|  | // This is OK if we don't care about what happens if either operand is a | 
|  | // NaN. | 
|  | // | 
|  |  | 
|  | // FIXME: Instead of testing for UnsafeFPMath, this should be checking for | 
|  | // no signed zeros as well as no nans. | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | if (Options.UnsafeFPMath && | 
|  | VT.isFloatingPoint() && N0.hasOneUse() && | 
|  | DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  |  | 
|  | if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), N1, N2, CC, | 
|  | TLI, DAG)) | 
|  | return FMinMax; | 
|  | } | 
|  |  | 
|  | if ((!LegalOperations && | 
|  | TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || | 
|  | TLI.isOperationLegal(ISD::SELECT_CC, VT)) | 
|  | return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | N1, N2, N0.getOperand(2)); | 
|  | return SimplifySelect(SDLoc(N), N0, N1, N2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static | 
|  | std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); | 
|  |  | 
|  | // Split the inputs. | 
|  | SDValue Lo, Hi, LL, LH, RL, RH; | 
|  | std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); | 
|  | std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); | 
|  |  | 
|  | Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); | 
|  | Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); | 
|  |  | 
|  | return std::make_pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | // This function assumes all the vselect's arguments are CONCAT_VECTOR | 
|  | // nodes and that the condition is a BV of ConstantSDNodes (or undefs). | 
|  | static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc dl(N); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | RHS.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | Cond.getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about | 
|  | // binary ones here. | 
|  | if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // We're sure we have an even number of elements due to the | 
|  | // concat_vectors we have as arguments to vselect. | 
|  | // Skip BV elements until we find one that's not an UNDEF | 
|  | // After we find an UNDEF element, keep looping until we get to half the | 
|  | // length of the BV and see if all the non-undef nodes are the same. | 
|  | ConstantSDNode *BottomHalf = nullptr; | 
|  | for (int i = 0; i < NumElems / 2; ++i) { | 
|  | if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | if (BottomHalf == nullptr) | 
|  | BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
|  | else if (Cond->getOperand(i).getNode() != BottomHalf) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Do the same for the second half of the BuildVector | 
|  | ConstantSDNode *TopHalf = nullptr; | 
|  | for (int i = NumElems / 2; i < NumElems; ++i) { | 
|  | if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | if (TopHalf == nullptr) | 
|  | TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
|  | else if (Cond->getOperand(i).getNode() != TopHalf) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(TopHalf && BottomHalf && | 
|  | "One half of the selector was all UNDEFs and the other was all the " | 
|  | "same value. This should have been addressed before this function."); | 
|  | return DAG.getNode( | 
|  | ISD::CONCAT_VECTORS, dl, VT, | 
|  | BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), | 
|  | TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMSCATTER(SDNode *N) { | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); | 
|  | SDValue Mask = MSC->getMask(); | 
|  | SDValue Data  = MSC->getValue(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the MSCATTER data type requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (Mask.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); | 
|  |  | 
|  | SDValue Chain = MSC->getChain(); | 
|  |  | 
|  | EVT MemoryVT = MSC->getMemoryVT(); | 
|  | unsigned Alignment = MSC->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue DataLo, DataHi; | 
|  | std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | 
|  |  | 
|  | SDValue BasePtr = MSC->getBasePtr(); | 
|  | SDValue IndexLo, IndexHi; | 
|  | std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MSC->getPointerInfo(), | 
|  | MachineMemOperand::MOStore,  LoMemVT.getStoreSize(), | 
|  | Alignment, MSC->getAAInfo(), MSC->getRanges()); | 
|  |  | 
|  | SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; | 
|  | Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), | 
|  | DL, OpsLo, MMO); | 
|  |  | 
|  | SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; | 
|  | Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), | 
|  | DL, OpsHi, MMO); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMSTORE(SDNode *N) { | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); | 
|  | SDValue Mask = MST->getMask(); | 
|  | SDValue Data  = MST->getValue(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the MSTORE data type requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (Mask.getOpcode() == ISD::SETCC) { | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); | 
|  |  | 
|  | SDValue Chain = MST->getChain(); | 
|  | SDValue Ptr   = MST->getBasePtr(); | 
|  |  | 
|  | EVT MemoryVT = MST->getMemoryVT(); | 
|  | unsigned Alignment = MST->getOriginalAlignment(); | 
|  |  | 
|  | // if Alignment is equal to the vector size, | 
|  | // take the half of it for the second part | 
|  | unsigned SecondHalfAlignment = | 
|  | (Alignment == Data->getValueType(0).getSizeInBits()/8) ? | 
|  | Alignment/2 : Alignment; | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue DataLo, DataHi; | 
|  | std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MST->getPointerInfo(), | 
|  | MachineMemOperand::MOStore,  LoMemVT.getStoreSize(), | 
|  | Alignment, MST->getAAInfo(), MST->getRanges()); | 
|  |  | 
|  | Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, | 
|  | MST->isTruncatingStore()); | 
|  |  | 
|  | unsigned IncrementSize = LoMemVT.getSizeInBits()/8; | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); | 
|  |  | 
|  | MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MST->getPointerInfo(), | 
|  | MachineMemOperand::MOStore,  HiMemVT.getStoreSize(), | 
|  | SecondHalfAlignment, MST->getAAInfo(), | 
|  | MST->getRanges()); | 
|  |  | 
|  | Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, | 
|  | MST->isTruncatingStore()); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMGATHER(SDNode *N) { | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); | 
|  | SDValue Mask = MGT->getMask(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the MGATHER result requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  |  | 
|  | if (Mask.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | SDValue Src0 = MGT->getValue(); | 
|  | SDValue Src0Lo, Src0Hi; | 
|  | std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); | 
|  |  | 
|  | SDValue Chain = MGT->getChain(); | 
|  | EVT MemoryVT = MGT->getMemoryVT(); | 
|  | unsigned Alignment = MGT->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue BasePtr = MGT->getBasePtr(); | 
|  | SDValue Index = MGT->getIndex(); | 
|  | SDValue IndexLo, IndexHi; | 
|  | std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MGT->getPointerInfo(), | 
|  | MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(), | 
|  | Alignment, MGT->getAAInfo(), MGT->getRanges()); | 
|  |  | 
|  | SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; | 
|  | Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, | 
|  | MMO); | 
|  |  | 
|  | SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; | 
|  | Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, | 
|  | MMO); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Legalized the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); | 
|  |  | 
|  | SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  |  | 
|  | SDValue RetOps[] = { GatherRes, Chain }; | 
|  | return DAG.getMergeValues(RetOps, DL); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMLOAD(SDNode *N) { | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); | 
|  | SDValue Mask = MLD->getMask(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the MLOAD result requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  |  | 
|  | if (Mask.getOpcode() == ISD::SETCC) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | SDValue Src0 = MLD->getSrc0(); | 
|  | SDValue Src0Lo, Src0Hi; | 
|  | std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); | 
|  |  | 
|  | SDValue Chain = MLD->getChain(); | 
|  | SDValue Ptr   = MLD->getBasePtr(); | 
|  | EVT MemoryVT = MLD->getMemoryVT(); | 
|  | unsigned Alignment = MLD->getOriginalAlignment(); | 
|  |  | 
|  | // if Alignment is equal to the vector size, | 
|  | // take the half of it for the second part | 
|  | unsigned SecondHalfAlignment = | 
|  | (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? | 
|  | Alignment/2 : Alignment; | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MLD->getPointerInfo(), | 
|  | MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(), | 
|  | Alignment, MLD->getAAInfo(), MLD->getRanges()); | 
|  |  | 
|  | Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, | 
|  | ISD::NON_EXTLOAD); | 
|  |  | 
|  | unsigned IncrementSize = LoMemVT.getSizeInBits()/8; | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); | 
|  |  | 
|  | MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MLD->getPointerInfo(), | 
|  | MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(), | 
|  | SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); | 
|  |  | 
|  | Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, | 
|  | ISD::NON_EXTLOAD); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Legalized the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); | 
|  |  | 
|  | SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  |  | 
|  | SDValue RetOps[] = { LoadRes, Chain }; | 
|  | return DAG.getMergeValues(RetOps, DL); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Canonicalize integer abs. | 
|  | // vselect (setg[te] X,  0),  X, -X -> | 
|  | // vselect (setgt    X, -1),  X, -X -> | 
|  | // vselect (setl[te] X,  0), -X,  X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | bool isAbs = false; | 
|  | bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || | 
|  | (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && | 
|  | N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) | 
|  | isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); | 
|  | else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && | 
|  | N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) | 
|  | isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | 
|  |  | 
|  | if (isAbs) { | 
|  | EVT VT = LHS.getValueType(); | 
|  | SDValue Shift = DAG.getNode( | 
|  | ISD::SRA, DL, VT, LHS, | 
|  | DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // If the VSELECT result requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; | 
|  | std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); | 
|  | std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); | 
|  | std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); | 
|  |  | 
|  | Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); | 
|  | Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); | 
|  |  | 
|  | // Add the new VSELECT nodes to the work list in case they need to be split | 
|  | // again. | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  | } | 
|  |  | 
|  | // Fold (vselect (build_vector all_ones), N1, N2) -> N1 | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | return N1; | 
|  | // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N2; | 
|  |  | 
|  | // The ConvertSelectToConcatVector function is assuming both the above | 
|  | // checks for (vselect (build_vector all{ones,zeros) ...) have been made | 
|  | // and addressed. | 
|  | if (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | N2.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { | 
|  | if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) | 
|  | return CV; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDValue N3 = N->getOperand(3); | 
|  | SDValue N4 = N->getOperand(4); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | 
|  |  | 
|  | // fold select_cc lhs, rhs, x, x, cc -> x | 
|  | if (N2 == N3) | 
|  | return N2; | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, | 
|  | CC, SDLoc(N), false)) { | 
|  | AddToWorklist(SCC.getNode()); | 
|  |  | 
|  | if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { | 
|  | if (!SCCC->isNullValue()) | 
|  | return N2;    // cond always true -> true val | 
|  | else | 
|  | return N3;    // cond always false -> false val | 
|  | } else if (SCC->getOpcode() == ISD::UNDEF) { | 
|  | // When the condition is UNDEF, just return the first operand. This is | 
|  | // coherent the DAG creation, no setcc node is created in this case | 
|  | return N2; | 
|  | } else if (SCC.getOpcode() == ISD::SETCC) { | 
|  | // Fold to a simpler select_cc | 
|  | return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), N2, N3, | 
|  | SCC.getOperand(2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N2, N3)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold select_cc into other things, such as min/max/abs | 
|  | return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCC(SDNode *N) { | 
|  | return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), | 
|  | cast<CondCodeSDNode>(N->getOperand(2))->get(), | 
|  | SDLoc(N)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCCE(SDNode *N) { | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Carry = N->getOperand(2); | 
|  | SDValue Cond = N->getOperand(3); | 
|  |  | 
|  | // If Carry is false, fold to a regular SETCC. | 
|  | if (Carry.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or | 
|  | /// a build_vector of constants. | 
|  | /// This function is called by the DAGCombiner when visiting sext/zext/aext | 
|  | /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). | 
|  | /// Vector extends are not folded if operations are legal; this is to | 
|  | /// avoid introducing illegal build_vector dag nodes. | 
|  | static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, | 
|  | SelectionDAG &DAG, bool LegalTypes, | 
|  | bool LegalOperations) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || | 
|  | Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) | 
|  | && "Expected EXTEND dag node in input!"); | 
|  |  | 
|  | // fold (sext c1) -> c1 | 
|  | // fold (zext c1) -> c1 | 
|  | // fold (aext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); | 
|  |  | 
|  | // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | EVT SVT = VT.getScalarType(); | 
|  | if (!(VT.isVector() && | 
|  | (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) | 
|  | return nullptr; | 
|  |  | 
|  | // We can fold this node into a build_vector. | 
|  | unsigned VTBits = SVT.getSizeInBits(); | 
|  | unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | for (unsigned i=0; i != NumElts; ++i) { | 
|  | SDValue Op = N0->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(DAG.getUNDEF(SVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | // Get the constant value and if needed trunc it to the size of the type. | 
|  | // Nodes like build_vector might have constants wider than the scalar type. | 
|  | APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); | 
|  | if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) | 
|  | Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); | 
|  | else | 
|  | Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); | 
|  | } | 
|  |  | 
|  | // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | 
|  | // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" | 
|  | // transformation. Returns true if extension are possible and the above | 
|  | // mentioned transformation is profitable. | 
|  | static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, | 
|  | unsigned ExtOpc, | 
|  | SmallVectorImpl<SDNode *> &ExtendNodes, | 
|  | const TargetLowering &TLI) { | 
|  | bool HasCopyToRegUses = false; | 
|  | bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); | 
|  | for (SDNode::use_iterator UI = N0.getNode()->use_begin(), | 
|  | UE = N0.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == N) | 
|  | continue; | 
|  | if (UI.getUse().getResNo() != N0.getResNo()) | 
|  | continue; | 
|  | // FIXME: Only extend SETCC N, N and SETCC N, c for now. | 
|  | if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
|  | if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | 
|  | // Sign bits will be lost after a zext. | 
|  | return false; | 
|  | bool Add = false; | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp == N0) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(UseOp)) | 
|  | return false; | 
|  | Add = true; | 
|  | } | 
|  | if (Add) | 
|  | ExtendNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  | // If truncates aren't free and there are users we can't | 
|  | // extend, it isn't worthwhile. | 
|  | if (!isTruncFree) | 
|  | return false; | 
|  | // Remember if this value is live-out. | 
|  | if (User->getOpcode() == ISD::CopyToReg) | 
|  | HasCopyToRegUses = true; | 
|  | } | 
|  |  | 
|  | if (HasCopyToRegUses) { | 
|  | bool BothLiveOut = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDUse &Use = UI.getUse(); | 
|  | if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { | 
|  | BothLiveOut = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (BothLiveOut) | 
|  | // Both unextended and extended values are live out. There had better be | 
|  | // a good reason for the transformation. | 
|  | return ExtendNodes.size(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
|  | SDValue Trunc, SDValue ExtLoad, SDLoc DL, | 
|  | ISD::NodeType ExtType) { | 
|  | // Extend SetCC uses if necessary. | 
|  | for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { | 
|  | SDNode *SetCC = SetCCs[i]; | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | SDValue SOp = SetCC->getOperand(j); | 
|  | if (SOp == Trunc) | 
|  | Ops.push_back(ExtLoad); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); | 
|  | } | 
|  |  | 
|  | Ops.push_back(SetCC->getOperand(2)); | 
|  | CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). | 
|  | SDValue DAGCombiner::CombineExtLoad(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT DstVT = N->getValueType(0); | 
|  | EVT SrcVT = N0.getValueType(); | 
|  |  | 
|  | assert((N->getOpcode() == ISD::SIGN_EXTEND || | 
|  | N->getOpcode() == ISD::ZERO_EXTEND) && | 
|  | "Unexpected node type (not an extend)!"); | 
|  |  | 
|  | // fold (sext (load x)) to multiple smaller sextloads; same for zext. | 
|  | // For example, on a target with legal v4i32, but illegal v8i32, turn: | 
|  | //   (v8i32 (sext (v8i16 (load x)))) | 
|  | // into: | 
|  | //   (v8i32 (concat_vectors (v4i32 (sextload x)), | 
|  | //                          (v4i32 (sextload (x + 16))))) | 
|  | // Where uses of the original load, i.e.: | 
|  | //   (v8i16 (load x)) | 
|  | // are replaced with: | 
|  | //   (v8i16 (truncate | 
|  | //     (v8i32 (concat_vectors (v4i32 (sextload x)), | 
|  | //                            (v4i32 (sextload (x + 16))))))) | 
|  | // | 
|  | // This combine is only applicable to illegal, but splittable, vectors. | 
|  | // All legal types, and illegal non-vector types, are handled elsewhere. | 
|  | // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. | 
|  | // | 
|  | if (N0->getOpcode() != ISD::LOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  |  | 
|  | if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || | 
|  | !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || | 
|  | !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode *, 4> SetCCs; | 
|  | if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = | 
|  | N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
|  |  | 
|  | // Try to split the vector types to get down to legal types. | 
|  | EVT SplitSrcVT = SrcVT; | 
|  | EVT SplitDstVT = DstVT; | 
|  | while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && | 
|  | SplitSrcVT.getVectorNumElements() > 1) { | 
|  | SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; | 
|  | SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; | 
|  | } | 
|  |  | 
|  | if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | const unsigned NumSplits = | 
|  | DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); | 
|  | const unsigned Stride = SplitSrcVT.getStoreSize(); | 
|  | SmallVector<SDValue, 4> Loads; | 
|  | SmallVector<SDValue, 4> Chains; | 
|  |  | 
|  | SDValue BasePtr = LN0->getBasePtr(); | 
|  | for (unsigned Idx = 0; Idx < NumSplits; Idx++) { | 
|  | const unsigned Offset = Idx * Stride; | 
|  | const unsigned Align = MinAlign(LN0->getAlignment(), Offset); | 
|  |  | 
|  | SDValue SplitLoad = DAG.getExtLoad( | 
|  | ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, | 
|  | LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), | 
|  | Align, LN0->getAAInfo()); | 
|  |  | 
|  | BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, | 
|  | DAG.getConstant(Stride, DL, BasePtr.getValueType())); | 
|  |  | 
|  | Loads.push_back(SplitLoad.getValue(0)); | 
|  | Chains.push_back(SplitLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); | 
|  |  | 
|  | CombineTo(N, NewValue); | 
|  |  | 
|  | // Replace uses of the original load (before extension) | 
|  | // with a truncate of the concatenated sextloaded vectors. | 
|  | SDValue Trunc = | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); | 
|  | CombineTo(N0.getNode(), Trunc, NewChain); | 
|  | ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, | 
|  | (ISD::NodeType)N->getOpcode()); | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | 
|  | LegalOperations)) | 
|  | return SDValue(Res, 0); | 
|  |  | 
|  | // fold (sext (sext x)) -> (sext x) | 
|  | // fold (sext (aext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (sext (truncate (load x))) -> (sext (smaller load x)) | 
|  | // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // See if the value being truncated is already sign extended.  If so, just | 
|  | // eliminate the trunc/sext pair. | 
|  | SDValue Op = N0.getOperand(0); | 
|  | unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits(); | 
|  | unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits(); | 
|  | unsigned DestBits = VT.getScalarType().getSizeInBits(); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(Op); | 
|  |  | 
|  | if (OpBits == DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
|  | // bits, it is already ready. | 
|  | if (NumSignBits > DestBits-MidBits) | 
|  | return Op; | 
|  | } else if (OpBits < DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
|  | // bits, just sext from i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); | 
|  | } else { | 
|  | // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
|  | // bits, just truncate to i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); | 
|  | } | 
|  |  | 
|  | // fold (sext (truncate x)) -> (sextinreg x). | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | 
|  | N0.getValueType())) { | 
|  | if (OpBits < DestBits) | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); | 
|  | else if (OpBits > DestBits) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, | 
|  | DAG.getValueType(N0.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (load x)) -> (sext (truncate (sextload x))) | 
|  | // Only generate vector extloads when 1) they're legal, and 2) they are | 
|  | // deemed desirable by the target. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | ((!LegalOperations && !VT.isVector() && | 
|  | !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); | 
|  | if (VT.isVector()) | 
|  | DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), | 
|  | ISD::SIGN_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (load x)) to multiple smaller sextloads. | 
|  | // Only on illegal but splittable vectors. | 
|  | if (SDValue ExtLoad = CombineExtLoad(N)) | 
|  | return ExtLoad; | 
|  |  | 
|  | // fold (sext (sextload x)) -> (sext (truncate (sextload x))) | 
|  | // fold (sext ( extload x)) -> (sext (truncate (sextload x))) | 
|  | if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), MemVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (sextload x), (sext cst)) | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && | 
|  | (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, | 
|  | SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->getMemOperand()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.sext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | 
|  | SDLoc(N0.getOperand(0)), | 
|  | N0.getOperand(0).getValueType(), ExtLoad); | 
|  | CombineTo(N, And); | 
|  | CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, | 
|  | ISD::SIGN_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | // sext(setcc) -> sext_in_reg(vsetcc) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations && | 
|  | TLI.getBooleanContents(N0VT) == | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
|  | // On some architectures (such as SSE/NEON/etc) the SETCC result type is | 
|  | // of the same size as the compared operands. Only optimize sext(setcc()) | 
|  | // if this is the case. | 
|  | EVT SVT = getSetCCResultType(N0VT); | 
|  |  | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == SVT.getSizeInBits()) | 
|  | return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend | 
|  | EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); | 
|  | if (SVT == MatchingVectorType) { | 
|  | SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) | 
|  | unsigned ElementWidth = VT.getScalarType().getSizeInBits(); | 
|  | SDLoc DL(N); | 
|  | SDValue NegOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); | 
|  | if (SDValue SCC = SimplifySelectCC( | 
|  | DL, N0.getOperand(0), N0.getOperand(1), NegOne, | 
|  | DAG.getConstant(0, DL, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
|  | return SCC; | 
|  |  | 
|  | if (!VT.isVector()) { | 
|  | EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { | 
|  | SDLoc DL(N); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | SDValue SetCC = DAG.getSetCC(DL, SetCCVT, | 
|  | N0.getOperand(0), N0.getOperand(1), CC); | 
|  | return DAG.getSelect(DL, VT, SetCC, | 
|  | NegOne, DAG.getConstant(0, DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext x) -> (zext x) if the sign bit is known zero. | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | 
|  | DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // isTruncateOf - If N is a truncate of some other value, return true, record | 
|  | // the value being truncated in Op and which of Op's bits are zero in KnownZero. | 
|  | // This function computes KnownZero to avoid a duplicated call to | 
|  | // computeKnownBits in the caller. | 
|  | static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, | 
|  | APInt &KnownZero) { | 
|  | APInt KnownOne; | 
|  | if (N->getOpcode() == ISD::TRUNCATE) { | 
|  | Op = N->getOperand(0); | 
|  | DAG.computeKnownBits(Op, KnownZero, KnownOne); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || | 
|  | cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) | 
|  | return false; | 
|  |  | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | assert(Op0.getValueType() == Op1.getValueType()); | 
|  |  | 
|  | if (isNullConstant(Op0)) | 
|  | Op = Op1; | 
|  | else if (isNullConstant(Op1)) | 
|  | Op = Op0; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | DAG.computeKnownBits(Op, KnownZero, KnownOne); | 
|  |  | 
|  | if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | 
|  | LegalOperations)) | 
|  | return SDValue(Res, 0); | 
|  |  | 
|  | // fold (zext (zext x)) -> (zext x) | 
|  | // fold (zext (aext x)) -> (zext x) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (zext (truncate x)) -> (zext x) or | 
|  | //      (zext (truncate x)) -> (truncate x) | 
|  | // This is valid when the truncated bits of x are already zero. | 
|  | // FIXME: We should extend this to work for vectors too. | 
|  | SDValue Op; | 
|  | APInt KnownZero; | 
|  | if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { | 
|  | APInt TruncatedBits = | 
|  | (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? | 
|  | APInt(Op.getValueSizeInBits(), 0) : | 
|  | APInt::getBitsSet(Op.getValueSizeInBits(), | 
|  | N0.getValueSizeInBits(), | 
|  | std::min(Op.getValueSizeInBits(), | 
|  | VT.getSizeInBits())); | 
|  | if (TruncatedBits == (KnownZero & TruncatedBits)) { | 
|  | if (VT.bitsGT(Op.getValueType())) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); | 
|  | if (VT.bitsLT(Op.getValueType())) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (truncate x)) -> (and x, mask) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode *oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | EVT SrcVT = N0.getOperand(0).getValueType(); | 
|  | EVT MinVT = N0.getValueType(); | 
|  |  | 
|  | // Try to mask before the extension to avoid having to generate a larger mask, | 
|  | // possibly over several sub-vectors. | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && | 
|  | TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { | 
|  | SDValue Op = N0.getOperand(0); | 
|  | Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | 
|  | AddToWorklist(Op.getNode()); | 
|  | return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { | 
|  | SDValue Op = N0.getOperand(0); | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); | 
|  | AddToWorklist(Op.getNode()); | 
|  | } else if (SrcVT.bitsGT(VT)) { | 
|  | Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); | 
|  | AddToWorklist(Op.getNode()); | 
|  | } | 
|  | return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold (zext (and (trunc x), cst)) -> (and x, cst), | 
|  | // if either of the casts is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType()) || | 
|  | !TLI.isZExtFree(N0.getValueType(), VT))) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | X, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (zext (load x)) -> (zext (truncate (zextload x))) | 
|  | // Only generate vector extloads when 1) they're legal, and 2) they are | 
|  | // deemed desirable by the target. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | ((!LegalOperations && !VT.isVector() && | 
|  | !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); | 
|  | if (VT.isVector()) | 
|  | DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  |  | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), | 
|  | ISD::ZERO_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (load x)) to multiple smaller zextloads. | 
|  | // Only on illegal but splittable vectors. | 
|  | if (SDValue ExtLoad = CombineExtLoad(N)) | 
|  | return ExtLoad; | 
|  |  | 
|  | // fold (zext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (zextload x), (zext cst)) | 
|  | // Unless (and (load x) cst) will match as a zextload already and has | 
|  | // additional users. | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && | 
|  | (!LegalOperations && TLI.isOperationLegalOrCustom(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) { | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | auto NarrowLoad = false; | 
|  | EVT LoadResultTy = AndC->getValueType(0); | 
|  | EVT ExtVT, LoadedVT; | 
|  | if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, | 
|  | NarrowLoad)) | 
|  | DoXform = false; | 
|  | } | 
|  | if (DoXform) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), | 
|  | ISD::ZERO_EXTEND, SetCCs, TLI); | 
|  | } | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, | 
|  | LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->getMemOperand()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | 
|  | SDLoc(N0.getOperand(0)), | 
|  | N0.getOperand(0).getValueType(), ExtLoad); | 
|  | CombineTo(N, And); | 
|  | CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, | 
|  | ISD::ZERO_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (zextload x)) -> (zext (truncate (zextload x))) | 
|  | // fold (zext ( extload x)) -> (zext (truncate (zextload x))) | 
|  | if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), MemVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), | 
|  | ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | if (!LegalOperations && VT.isVector() && | 
|  | N0.getValueType().getVectorElementType() == MVT::i1) { | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | if (getSetCCResultType(N0VT) == N0.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | SDLoc DL(N); | 
|  | SDValue VecOnes = DAG.getConstant(1, DL, VT); | 
|  | if (VT.getSizeInBits() == N0VT.getSizeInBits()) | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getSetCC(DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()), | 
|  | VecOnes); | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend | 
|  | EVT MatchingElementType = | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | N0VT.getScalarType().getSizeInBits()); | 
|  | EVT MatchingVectorType = | 
|  | EVT::getVectorVT(*DAG.getContext(), MatchingElementType, | 
|  | N0VT.getVectorNumElements()); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getSExtOrTrunc(VsetCC, DL, VT), | 
|  | VecOnes); | 
|  | } | 
|  |  | 
|  | // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDLoc DL(N); | 
|  | if (SDValue SCC = SimplifySelectCC( | 
|  | DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | // (zext (shl (zext x), cst)) -> (shl (zext x), cst) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.hasOneUse()) { | 
|  | SDValue ShAmt = N0.getOperand(1); | 
|  | unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | SDValue InnerZExt = N0.getOperand(0); | 
|  | // If the original shl may be shifting out bits, do not perform this | 
|  | // transformation. | 
|  | unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - | 
|  | InnerZExt.getOperand(0).getValueType().getSizeInBits(); | 
|  | if (ShAmtVal > KnownZeroBits) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Ensure that the shift amount is wide enough for the shifted value. | 
|  | if (VT.getSizeInBits() >= 256) | 
|  | ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); | 
|  |  | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), | 
|  | ShAmt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | 
|  | LegalOperations)) | 
|  | return SDValue(Res, 0); | 
|  |  | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::ANY_EXTEND  || | 
|  | N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (aext (truncate (load x))) -> (aext (smaller load x)) | 
|  | // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode* oye = N0.getNode()->getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (truncate x)) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue TruncOp = N0.getOperand(0); | 
|  | if (TruncOp.getValueType() == VT) | 
|  | return TruncOp; // x iff x size == zext size. | 
|  | if (TruncOp.getValueType().bitsGT(VT)) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); | 
|  | } | 
|  |  | 
|  | // Fold (aext (and (trunc x), cst)) -> (and x, cst) | 
|  | // if the trunc is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType())) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | if (X.getValueType().bitsLT(VT)) { | 
|  | X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); | 
|  | } else if (X.getValueType().bitsGT(VT)) { | 
|  | X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); | 
|  | } | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | X, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (aext (load x)) -> (aext (truncate (extload x))) | 
|  | // None of the supported targets knows how to perform load and any_ext | 
|  | // on vectors in one instruction.  We only perform this transformation on | 
|  | // scalars. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | 
|  | ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), | 
|  | ISD::ANY_EXTEND); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (zextload x)) -> (aext (truncate (zextload x))) | 
|  | // fold (aext (sextload x)) -> (aext (truncate (sextload x))) | 
|  | // fold (aext ( extload x)) -> (aext (truncate (extload  x))) | 
|  | if (N0.getOpcode() == ISD::LOAD && | 
|  | !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | ISD::LoadExtType ExtType = LN0->getExtensionType(); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), | 
|  | VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | MemVT, LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // For vectors: | 
|  | // aext(setcc) -> vsetcc | 
|  | // aext(setcc) -> truncate(vsetcc) | 
|  | // aext(setcc) -> aext(vsetcc) | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations) { | 
|  | EVT N0VT = N0.getOperand(0).getValueType(); | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == N0VT.getSizeInBits()) | 
|  | return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/any extend | 
|  | else { | 
|  | EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDLoc DL(N); | 
|  | if (SDValue SCC = SimplifySelectCC( | 
|  | DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// See if the specified operand can be simplified with the knowledge that only | 
|  | /// the bits specified by Mask are used.  If so, return the simpler operand, | 
|  | /// otherwise return a null SDValue. | 
|  | SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::Constant: { | 
|  | const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); | 
|  | assert(CV && "Const value should be ConstSDNode."); | 
|  | const APInt &CVal = CV->getAPIntValue(); | 
|  | APInt NewVal = CVal & Mask; | 
|  | if (NewVal != CVal) | 
|  | return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // If the LHS or RHS don't contribute bits to the or, drop them. | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) | 
|  | return V.getOperand(1); | 
|  | if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) | 
|  | return V.getOperand(0); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | // Only look at single-use SRLs. | 
|  | if (!V.getNode()->hasOneUse()) | 
|  | break; | 
|  | if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { | 
|  | // See if we can recursively simplify the LHS. | 
|  | unsigned Amt = RHSC->getZExtValue(); | 
|  |  | 
|  | // Watch out for shift count overflow though. | 
|  | if (Amt >= Mask.getBitWidth()) break; | 
|  | APInt NewMask = Mask << Amt; | 
|  | if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), | 
|  | SimplifyLHS, V.getOperand(1)); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If the result of a wider load is shifted to right of N  bits and then | 
|  | /// truncated to a narrower type and where N is a multiple of number of bits of | 
|  | /// the narrower type, transform it to a narrower load from address + N / num of | 
|  | /// bits of new type. If the result is to be extended, also fold the extension | 
|  | /// to form a extending load. | 
|  | SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ExtVT = VT; | 
|  |  | 
|  | // This transformation isn't valid for vector loads. | 
|  | if (VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then | 
|  | // extended to VT. | 
|  | if (Opc == ISD::SIGN_EXTEND_INREG) { | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | } else if (Opc == ISD::SRL) { | 
|  | // Another special-case: SRL is basically zero-extending a narrower value. | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | N0 = SDValue(N, 0); | 
|  | ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N01) return SDValue(); | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | VT.getSizeInBits() - N01->getZExtValue()); | 
|  | } | 
|  | if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!ExtVT.isRound()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ShAmt = 0; | 
|  | if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShAmt = N01->getZExtValue(); | 
|  | // Is the shift amount a multiple of size of VT? | 
|  | if ((ShAmt & (EVTBits-1)) == 0) { | 
|  | N0 = N0.getOperand(0); | 
|  | // Is the load width a multiple of size of VT? | 
|  | if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // At this point, we must have a load or else we can't do the transform. | 
|  | if (!isa<LoadSDNode>(N0)) return SDValue(); | 
|  |  | 
|  | // Because a SRL must be assumed to *need* to zero-extend the high bits | 
|  | // (as opposed to anyext the high bits), we can't combine the zextload | 
|  | // lowering of SRL and an sextload. | 
|  | if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the shift amount is larger than the input type then we're not | 
|  | // accessing any of the loaded bytes.  If the load was a zextload/extload | 
|  | // then the result of the shift+trunc is zero/undef (handled elsewhere). | 
|  | if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the load is shifted left (and the result isn't shifted back right), | 
|  | // we can fold the truncate through the shift. | 
|  | unsigned ShLeftAmt = 0; | 
|  | if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
|  | ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShLeftAmt = N01->getZExtValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we haven't found a load, we can't narrow it.  Don't transform one with | 
|  | // multiple uses, this would require adding a new load. | 
|  | if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't change the width of a volatile load. | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | if (LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Verify that we are actually reducing a load width here. | 
|  | if (LN0->getMemoryVT().getSizeInBits() < EVTBits) | 
|  | return SDValue(); | 
|  |  | 
|  | // For the transform to be legal, the load must produce only two values | 
|  | // (the value loaded and the chain).  Don't transform a pre-increment | 
|  | // load, for example, which produces an extra value.  Otherwise the | 
|  | // transformation is not equivalent, and the downstream logic to replace | 
|  | // uses gets things wrong. | 
|  | if (LN0->getNumValues() > 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the load that we're shrinking is an extload and we're not just | 
|  | // discarding the extension we can't simply shrink the load. Bail. | 
|  | // TODO: It would be possible to merge the extensions in some cases. | 
|  | if (LN0->getExtensionType() != ISD::NON_EXTLOAD && | 
|  | LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PtrType = N0.getOperand(1).getValueType(); | 
|  |  | 
|  | if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
|  | // It's not possible to generate a constant of extended or untyped type. | 
|  | return SDValue(); | 
|  |  | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (DAG.getDataLayout().isBigEndian()) { | 
|  | unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); | 
|  | unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); | 
|  | ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; | 
|  | } | 
|  |  | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); | 
|  | SDLoc DL(LN0); | 
|  | // The original load itself didn't wrap, so an offset within it doesn't. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, DL, | 
|  | PtrType, LN0->getBasePtr(), | 
|  | DAG.getConstant(PtrOff, DL, PtrType), | 
|  | &Flags); | 
|  | AddToWorklist(NewPtr.getNode()); | 
|  |  | 
|  | SDValue Load; | 
|  | if (ExtType == ISD::NON_EXTLOAD) | 
|  | Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), NewAlign, LN0->getAAInfo()); | 
|  | else | 
|  | Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), | 
|  | ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), NewAlign, LN0->getAAInfo()); | 
|  |  | 
|  | // Replace the old load's chain with the new load's chain. | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
|  |  | 
|  | // Shift the result left, if we've swallowed a left shift. | 
|  | SDValue Result = Load; | 
|  | if (ShLeftAmt != 0) { | 
|  | EVT ShImmTy = getShiftAmountTy(Result.getValueType()); | 
|  | if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) | 
|  | ShImmTy = VT; | 
|  | // If the shift amount is as large as the result size (but, presumably, | 
|  | // no larger than the source) then the useful bits of the result are | 
|  | // zero; we can't simply return the shortened shift, because the result | 
|  | // of that operation is undefined. | 
|  | SDLoc DL(N0); | 
|  | if (ShLeftAmt >= VT.getSizeInBits()) | 
|  | Result = DAG.getConstant(0, DL, VT); | 
|  | else | 
|  | Result = DAG.getNode(ISD::SHL, DL, VT, | 
|  | Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); | 
|  | } | 
|  |  | 
|  | // Return the new loaded value. | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N1)->getVT(); | 
|  | unsigned VTBits = VT.getScalarType().getSizeInBits(); | 
|  | unsigned EVTBits = EVT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // fold (sext_in_reg c1) -> c1 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // If the input is already sign extended, just drop the extension. | 
|  | if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) | 
|  | return N0; | 
|  |  | 
|  | // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | N0.getOperand(0), N1); | 
|  |  | 
|  | // fold (sext_in_reg (sext x)) -> (sext x) | 
|  | // fold (sext_in_reg (aext x)) -> (sext x) | 
|  | // if x is small enough. | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | 
|  | if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) | 
|  | return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); | 
|  |  | 
|  | // fold operands of sext_in_reg based on knowledge that the top bits are not | 
|  | // demanded. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (sext_in_reg (load x)) -> (smaller sextload x) | 
|  | // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N)) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) | 
|  | // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. | 
|  | // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | 
|  | if (N0.getOpcode() == ISD::SRL) { | 
|  | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if (ShAmt->getZExtValue()+EVTBits <= VTBits) { | 
|  | // We can turn this into an SRA iff the input to the SRL is already sign | 
|  | // extended enough. | 
|  | unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | 
|  | if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) | 
|  | return DAG.getNode(ISD::SRA, SDLoc(N), VT, | 
|  | N0.getOperand(0), N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext_inreg (extload x)) -> (sextload x) | 
|  | if (ISD::isEXTLoad(N0.getNode()) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), EVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | AddToWorklist(ExtLoad.getNode()); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | 
|  | if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse() && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), EVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) | 
|  | if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
|  | N0.getOperand(1), false)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | BSwap, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | 
|  | LegalOperations)) | 
|  | return SDValue(Res, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  |  | 
|  | // noop truncate | 
|  | if (N0.getValueType() == N->getValueType(0)) | 
|  | return N0; | 
|  | // fold (truncate c1) -> c1 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); | 
|  | // fold (truncate (truncate x)) -> (truncate x) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | 
|  | // fold (truncate (ext x)) -> (ext x) or (truncate x) or x | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // if the source is smaller than the dest, we still need an extend. | 
|  | if (N0.getOperand(0).getValueType().bitsLT(VT)) | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | 
|  | // if the source is larger than the dest, than we just need the truncate. | 
|  | if (N0.getOperand(0).getValueType().bitsGT(VT)) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | 
|  | // if the source and dest are the same type, we can drop both the extend | 
|  | // and the truncate. | 
|  | return N0.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Fold extract-and-trunc into a narrow extract. For example: | 
|  | //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) | 
|  | //   i32 y = TRUNCATE(i64 x) | 
|  | //        -- becomes -- | 
|  | //   v16i8 b = BITCAST (v2i64 val) | 
|  | //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) | 
|  | // | 
|  | // Note: We only run this optimization after type legalization (which often | 
|  | // creates this pattern) and before operation legalization after which | 
|  | // we need to be more careful about the vector instructions that we generate. | 
|  | if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { | 
|  |  | 
|  | EVT VecTy = N0.getOperand(0).getValueType(); | 
|  | EVT ExTy = N0.getValueType(); | 
|  | EVT TrTy = N->getValueType(0); | 
|  |  | 
|  | unsigned NumElem = VecTy.getVectorNumElements(); | 
|  | unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); | 
|  | assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); | 
|  |  | 
|  | SDValue EltNo = N0->getOperand(1); | 
|  | if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, | 
|  | DAG.getBitcast(NVT, N0.getOperand(0)), | 
|  | DAG.getConstant(Index, DL, IndexTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // trunc (select c, a, b) -> select c, (trunc a), (trunc b) | 
|  | if (N0.getOpcode() == ISD::SELECT) { | 
|  | EVT SrcVT = N0.getValueType(); | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && | 
|  | TLI.isTruncateFree(SrcVT, VT)) { | 
|  | SDLoc SL(N0); | 
|  | SDValue Cond = N0.getOperand(0); | 
|  | SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | 
|  | SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold a series of buildvector, bitcast, and truncate if possible. | 
|  | // For example fold | 
|  | //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to | 
|  | //   (2xi32 (buildvector x, y)). | 
|  | if (Level == AfterLegalizeVectorOps && VT.isVector() && | 
|  | N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  |  | 
|  | SDValue BuildVect = N0.getOperand(0); | 
|  | EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); | 
|  | EVT TruncVecEltTy = VT.getVectorElementType(); | 
|  |  | 
|  | // Check that the element types match. | 
|  | if (BuildVectEltTy == TruncVecEltTy) { | 
|  | // Now we only need to compute the offset of the truncated elements. | 
|  | unsigned BuildVecNumElts =  BuildVect.getNumOperands(); | 
|  | unsigned TruncVecNumElts = VT.getVectorNumElements(); | 
|  | unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; | 
|  |  | 
|  | assert((BuildVecNumElts % TruncVecNumElts) == 0 && | 
|  | "Invalid number of elements"); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) | 
|  | Opnds.push_back(BuildVect.getOperand(i)); | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can simplify the input to this truncate through knowledge that | 
|  | // only the low bits are being used. | 
|  | // For example "trunc (or (shl x, 8), y)" // -> trunc y | 
|  | // Currently we only perform this optimization on scalars because vectors | 
|  | // may have different active low bits. | 
|  | if (!VT.isVector()) { | 
|  | if (SDValue Shorter = | 
|  | GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), | 
|  | VT.getSizeInBits()))) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); | 
|  | } | 
|  | // fold (truncate (load x)) -> (smaller load x) | 
|  | // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { | 
|  | if (SDValue Reduced = ReduceLoadWidth(N)) | 
|  | return Reduced; | 
|  |  | 
|  | // Handle the case where the load remains an extending load even | 
|  | // after truncation. | 
|  | if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | if (!LN0->isVolatile() && | 
|  | LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { | 
|  | SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), | 
|  | VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->getMemOperand()); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); | 
|  | return NewLoad; | 
|  | } | 
|  | } | 
|  | } | 
|  | // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), | 
|  | // where ... are all 'undef'. | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { | 
|  | SmallVector<EVT, 8> VTs; | 
|  | SDValue V; | 
|  | unsigned Idx = 0; | 
|  | unsigned NumDefs = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { | 
|  | SDValue X = N0.getOperand(i); | 
|  | if (X.getOpcode() != ISD::UNDEF) { | 
|  | V = X; | 
|  | Idx = i; | 
|  | NumDefs++; | 
|  | } | 
|  | // Stop if more than one members are non-undef. | 
|  | if (NumDefs > 1) | 
|  | break; | 
|  | VTs.push_back(EVT::getVectorVT(*DAG.getContext(), | 
|  | VT.getVectorElementType(), | 
|  | X.getValueType().getVectorNumElements())); | 
|  | } | 
|  |  | 
|  | if (NumDefs == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (NumDefs == 1) { | 
|  | assert(V.getNode() && "The single defined operand is empty!"); | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
|  | if (i != Idx) { | 
|  | Opnds.push_back(DAG.getUNDEF(VTs[i])); | 
|  | continue; | 
|  | } | 
|  | SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); | 
|  | AddToWorklist(NV.getNode()); | 
|  | Opnds.push_back(NV); | 
|  | } | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | 
|  | SDValue Elt = N->getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::MERGE_VALUES) | 
|  | return Elt.getNode(); | 
|  | return Elt.getOperand(Elt.getResNo()).getNode(); | 
|  | } | 
|  |  | 
|  | /// build_pair (load, load) -> load | 
|  | /// if load locations are consecutive. | 
|  | SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { | 
|  | assert(N->getOpcode() == ISD::BUILD_PAIR); | 
|  |  | 
|  | LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); | 
|  | LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); | 
|  | if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || | 
|  | LD1->getAddressSpace() != LD2->getAddressSpace()) | 
|  | return SDValue(); | 
|  | EVT LD1VT = LD1->getValueType(0); | 
|  |  | 
|  | if (ISD::isNON_EXTLoad(LD2) && | 
|  | LD2->hasOneUse() && | 
|  | // If both are volatile this would reduce the number of volatile loads. | 
|  | // If one is volatile it might be ok, but play conservative and bail out. | 
|  | !LD1->isVolatile() && | 
|  | !LD2->isVolatile() && | 
|  | DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { | 
|  | unsigned Align = LD1->getAlignment(); | 
|  | unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | 
|  | VT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign <= Align && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) | 
|  | return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), | 
|  | LD1->getBasePtr(), LD1->getPointerInfo(), | 
|  | false, false, false, Align); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { | 
|  | // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi | 
|  | // and Lo parts; on big-endian machines it doesn't. | 
|  | return DAG.getDataLayout().isBigEndian() ? 1 : 0; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBITCAST(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If the input is a BUILD_VECTOR with all constant elements, fold this now. | 
|  | // Only do this before legalize, since afterward the target may be depending | 
|  | // on the bitconvert. | 
|  | // First check to see if this is all constant. | 
|  | if (!LegalTypes && | 
|  | N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && | 
|  | VT.isVector()) { | 
|  | bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); | 
|  |  | 
|  | EVT DestEltVT = N->getValueType(0).getVectorElementType(); | 
|  | assert(!DestEltVT.isVector() && | 
|  | "Element type of vector ValueType must not be vector!"); | 
|  | if (isSimple) | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); | 
|  | } | 
|  |  | 
|  | // If the input is a constant, let getNode fold it. | 
|  | if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { | 
|  | // If we can't allow illegal operations, we need to check that this is just | 
|  | // a fp -> int or int -> conversion and that the resulting operation will | 
|  | // be legal. | 
|  | if (!LegalOperations || | 
|  | (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && | 
|  | TLI.isOperationLegal(ISD::ConstantFP, VT)) || | 
|  | (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && | 
|  | TLI.isOperationLegal(ISD::Constant, VT))) | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | // (conv (conv x, t1), t2) -> (conv x, t2) | 
|  | if (N0.getOpcode() == ISD::BITCAST) | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (conv (load x)) -> (load (conv*)x) | 
|  | // If the resultant load doesn't need a higher alignment than the original! | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | // Do not change the width of a volatile load. | 
|  | !cast<LoadSDNode>(N0)->isVolatile() && | 
|  | // Do not remove the cast if the types differ in endian layout. | 
|  | TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == | 
|  | TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && | 
|  | TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | unsigned Align = DAG.getDataLayout().getABITypeAlignment( | 
|  | VT.getTypeForEVT(*DAG.getContext())); | 
|  | unsigned OrigAlign = LN0->getAlignment(); | 
|  |  | 
|  | if (Align <= OrigAlign) { | 
|  | SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), | 
|  | LN0->getBasePtr(), LN0->getPointerInfo(), | 
|  | LN0->isVolatile(), LN0->isNonTemporal(), | 
|  | LN0->isInvariant(), OrigAlign, | 
|  | LN0->getAAInfo()); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
|  | return Load; | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) | 
|  | // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) | 
|  | // | 
|  | // For ppc_fp128: | 
|  | // fold (bitcast (fneg x)) -> | 
|  | //     flipbit = signbit | 
|  | //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
|  | // | 
|  | // fold (bitcast (fabs x)) -> | 
|  | //     flipbit = (and (extract_element (bitcast x), 0), signbit) | 
|  | //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
|  | // This often reduces constant pool loads. | 
|  | if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || | 
|  | (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && | 
|  | N0.getNode()->hasOneUse() && VT.isInteger() && | 
|  | !VT.isVector() && !N0.getValueType().isVector()) { | 
|  | SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, | 
|  | N0.getOperand(0)); | 
|  | AddToWorklist(NewConv.getNode()); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
|  | assert(VT.getSizeInBits() == 128); | 
|  | SDValue SignBit = DAG.getConstant( | 
|  | APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); | 
|  | SDValue FlipBit; | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | FlipBit = SignBit; | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | } else { | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | SDValue Hi = | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, | 
|  | DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
|  | SDLoc(NewConv))); | 
|  | AddToWorklist(Hi.getNode()); | 
|  | FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | } | 
|  | SDValue FlipBits = | 
|  | DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
|  | AddToWorklist(FlipBits.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); | 
|  | } | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | if (N0.getOpcode() == ISD::FNEG) | 
|  | return DAG.getNode(ISD::XOR, DL, VT, | 
|  | NewConv, DAG.getConstant(SignBit, DL, VT)); | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | NewConv, DAG.getConstant(~SignBit, DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (bitconvert (fcopysign cst, x)) -> | 
|  | //         (or (and (bitconvert x), sign), (and cst, (not sign))) | 
|  | // Note that we don't handle (copysign x, cst) because this can always be | 
|  | // folded to an fneg or fabs. | 
|  | // | 
|  | // For ppc_fp128: | 
|  | // fold (bitcast (fcopysign cst, x)) -> | 
|  | //     flipbit = (and (extract_element | 
|  | //                     (xor (bitcast cst), (bitcast x)), 0), | 
|  | //                    signbit) | 
|  | //     (xor (bitcast cst) (build_pair flipbit, flipbit)) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantFPSDNode>(N0.getOperand(0)) && | 
|  | VT.isInteger() && !VT.isVector()) { | 
|  | unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); | 
|  | EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); | 
|  | if (isTypeLegal(IntXVT)) { | 
|  | SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), | 
|  | IntXVT, N0.getOperand(1)); | 
|  | AddToWorklist(X.getNode()); | 
|  |  | 
|  | // If X has a different width than the result/lhs, sext it or truncate it. | 
|  | unsigned VTWidth = VT.getSizeInBits(); | 
|  | if (OrigXWidth < VTWidth) { | 
|  | X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); | 
|  | AddToWorklist(X.getNode()); | 
|  | } else if (OrigXWidth > VTWidth) { | 
|  | // To get the sign bit in the right place, we have to shift it right | 
|  | // before truncating. | 
|  | SDLoc DL(X); | 
|  | X = DAG.getNode(ISD::SRL, DL, | 
|  | X.getValueType(), X, | 
|  | DAG.getConstant(OrigXWidth-VTWidth, DL, | 
|  | X.getValueType())); | 
|  | AddToWorklist(X.getNode()); | 
|  | X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | 
|  | AddToWorklist(X.getNode()); | 
|  | } | 
|  |  | 
|  | if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); | 
|  | SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | 
|  | AddToWorklist(Cst.getNode()); | 
|  | SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); | 
|  | AddToWorklist(X.getNode()); | 
|  | SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); | 
|  | AddToWorklist(XorResult.getNode()); | 
|  | SDValue XorResult64 = DAG.getNode( | 
|  | ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, | 
|  | DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
|  | SDLoc(XorResult))); | 
|  | AddToWorklist(XorResult64.getNode()); | 
|  | SDValue FlipBit = | 
|  | DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, | 
|  | DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | SDValue FlipBits = | 
|  | DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
|  | AddToWorklist(FlipBits.getNode()); | 
|  | return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); | 
|  | } | 
|  | APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); | 
|  | X = DAG.getNode(ISD::AND, SDLoc(X), VT, | 
|  | X, DAG.getConstant(SignBit, SDLoc(X), VT)); | 
|  | AddToWorklist(X.getNode()); | 
|  |  | 
|  | SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), | 
|  | VT, N0.getOperand(0)); | 
|  | Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, | 
|  | Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); | 
|  | AddToWorklist(Cst.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | 
|  | if (N0.getOpcode() == ISD::BUILD_PAIR) | 
|  | if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) | 
|  | return CombineLD; | 
|  |  | 
|  | // Remove double bitcasts from shuffles - this is often a legacy of | 
|  | // XformToShuffleWithZero being used to combine bitmaskings (of | 
|  | // float vectors bitcast to integer vectors) into shuffles. | 
|  | // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) | 
|  | if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && | 
|  | N0->getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && | 
|  | !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); | 
|  |  | 
|  | // If operands are a bitcast, peek through if it casts the original VT. | 
|  | // If operands are a constant, just bitcast back to original VT. | 
|  | auto PeekThroughBitcast = [&](SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::BITCAST && | 
|  | Op.getOperand(0).getValueType() == VT) | 
|  | return SDValue(Op.getOperand(0)); | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || | 
|  | ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); | 
|  | SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); | 
|  | if (!(SV0 && SV1)) | 
|  | return SDValue(); | 
|  |  | 
|  | int MaskScale = | 
|  | VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : SVN->getMask()) | 
|  | for (int i = 0; i != MaskScale; ++i) | 
|  | NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); | 
|  |  | 
|  | bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | 
|  | if (!LegalMask) { | 
|  | std::swap(SV0, SV1); | 
|  | ShuffleVectorSDNode::commuteMask(NewMask); | 
|  | LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | 
|  | } | 
|  |  | 
|  | if (LegalMask) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | return CombineConsecutiveLoads(N, VT); | 
|  | } | 
|  |  | 
|  | /// We know that BV is a build_vector node with Constant, ConstantFP or Undef | 
|  | /// operands. DstEltVT indicates the destination element value type. | 
|  | SDValue DAGCombiner:: | 
|  | ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { | 
|  | EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | // If this is already the right type, we're done. | 
|  | if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | 
|  |  | 
|  | unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | 
|  | unsigned DstBitSize = DstEltVT.getSizeInBits(); | 
|  |  | 
|  | // If this is a conversion of N elements of one type to N elements of another | 
|  | // type, convert each element.  This handles FP<->INT cases. | 
|  | if (SrcBitSize == DstBitSize) { | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | BV->getValueType(0).getVectorNumElements()); | 
|  |  | 
|  | // Due to the FP element handling below calling this routine recursively, | 
|  | // we can end up with a scalar-to-vector node here. | 
|  | if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, | 
|  | DAG.getNode(ISD::BITCAST, SDLoc(BV), | 
|  | DstEltVT, BV->getOperand(0))); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (SDValue Op : BV->op_values()) { | 
|  | // If the vector element type is not legal, the BUILD_VECTOR operands | 
|  | // are promoted and implicitly truncated.  Make that explicit here. | 
|  | if (Op.getValueType() != SrcEltVT) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); | 
|  | Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), | 
|  | DstEltVT, Op)); | 
|  | AddToWorklist(Ops.back().getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); | 
|  | } | 
|  |  | 
|  | // Otherwise, we're growing or shrinking the elements.  To avoid having to | 
|  | // handle annoying details of growing/shrinking FP values, we convert them to | 
|  | // int first. | 
|  | if (SrcEltVT.isFloatingPoint()) { | 
|  | // Convert the input float vector to a int vector where the elements are the | 
|  | // same sizes. | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); | 
|  | BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); | 
|  | SrcEltVT = IntVT; | 
|  | } | 
|  |  | 
|  | // Now we know the input is an integer vector.  If the output is a FP type, | 
|  | // convert to integer first, then to FP of the right size. | 
|  | if (DstEltVT.isFloatingPoint()) { | 
|  | EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); | 
|  | SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); | 
|  |  | 
|  | // Next, convert to FP elements of the same size. | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); | 
|  | } | 
|  |  | 
|  | SDLoc DL(BV); | 
|  |  | 
|  | // Okay, we know the src/dst types are both integers of differing types. | 
|  | // Handling growing first. | 
|  | assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | 
|  | if (SrcBitSize < DstBitSize) { | 
|  | unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; | 
|  | i += NumInputsPerOutput) { | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  | APInt NewBits = APInt(DstBitSize, 0); | 
|  | bool EltIsUndef = true; | 
|  | for (unsigned j = 0; j != NumInputsPerOutput; ++j) { | 
|  | // Shift the previously computed bits over. | 
|  | NewBits <<= SrcBitSize; | 
|  | SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); | 
|  | if (Op.getOpcode() == ISD::UNDEF) continue; | 
|  | EltIsUndef = false; | 
|  |  | 
|  | NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). | 
|  | zextOrTrunc(SrcBitSize).zext(DstBitSize); | 
|  | } | 
|  |  | 
|  | if (EltIsUndef) | 
|  | Ops.push_back(DAG.getUNDEF(DstEltVT)); | 
|  | else | 
|  | Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); | 
|  | } | 
|  |  | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | // Finally, this must be the case where we are shrinking elements: each input | 
|  | // turns into multiple outputs. | 
|  | unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | NumOutputsPerInput*BV->getNumOperands()); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | for (const SDValue &Op : BV->op_values()) { | 
|  | if (Op.getOpcode() == ISD::UNDEF) { | 
|  | Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt OpVal = cast<ConstantSDNode>(Op)-> | 
|  | getAPIntValue().zextOrTrunc(SrcBitSize); | 
|  |  | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) { | 
|  | APInt ThisVal = OpVal.trunc(DstBitSize); | 
|  | Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); | 
|  | OpVal = OpVal.lshr(DstBitSize); | 
|  | } | 
|  |  | 
|  | // For big endian targets, swap the order of the pieces of each element. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FADD node. | 
|  | SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | bool AllowFusion = | 
|  | (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); | 
|  |  | 
|  | // Floating-point multiply-add with intermediate rounding. | 
|  | bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  | bool LookThroughFPExt = TLI.isFPExtFree(VT); | 
|  |  | 
|  | // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), | 
|  | // prefer to fold the multiply with fewer uses. | 
|  | if (Aggressive && N0.getOpcode() == ISD::FMUL && | 
|  | N1.getOpcode() == ISD::FMUL) { | 
|  | if (N0.getNode()->use_size() > N1.getNode()->use_size()) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  |  | 
|  | // fold (fadd (fmul x, y), z) -> (fma x, y, z) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | (Aggressive || N0->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), N1); | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fmul y, z)) -> (fma y, z, x) | 
|  | // Note: Commutes FADD operands. | 
|  | if (N1.getOpcode() == ISD::FMUL && | 
|  | (Aggressive || N1->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(0), N1.getOperand(1), N0); | 
|  | } | 
|  |  | 
|  | // Look through FP_EXTEND nodes to do more combining. | 
|  | if (AllowFusion && LookThroughFPExt) { | 
|  | // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), N1); | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) | 
|  | // Note: Commutes FADD operands. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (N10.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(1)), N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // More folding opportunities when target permits. | 
|  | if ((AllowFusion || HasFMAD)  && Aggressive) { | 
|  | // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) | 
|  | if (N0.getOpcode() == PreferredFusedOpcode && | 
|  | N0.getOperand(2).getOpcode() == ISD::FMUL) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(2).getOperand(0), | 
|  | N0.getOperand(2).getOperand(1), | 
|  | N1)); | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) | 
|  | if (N1->getOpcode() == PreferredFusedOpcode && | 
|  | N1.getOperand(2).getOpcode() == ISD::FMUL) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(0), N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(2).getOperand(0), | 
|  | N1.getOperand(2).getOperand(1), | 
|  | N0)); | 
|  | } | 
|  |  | 
|  | if (AllowFusion && LookThroughFPExt) { | 
|  | // fold (fadd (fma x, y, (fpext (fmul u, v))), z) | 
|  | //   -> (fma x, y, (fma (fpext u), (fpext v), z)) | 
|  | auto FoldFAddFMAFPExtFMul = [&] ( | 
|  | SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | 
|  | Z)); | 
|  | }; | 
|  | if (N0.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N02 = N0.getOperand(2); | 
|  | if (N02.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N020 = N02.getOperand(0); | 
|  | if (N020.getOpcode() == ISD::FMUL) | 
|  | return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), | 
|  | N020.getOperand(0), N020.getOperand(1), | 
|  | N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd (fpext (fma x, y, (fmul u, v))), z) | 
|  | //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | auto FoldFAddFPExtFMAFMul = [&] ( | 
|  | SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, X), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | 
|  | Z)); | 
|  | }; | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N002 = N00.getOperand(2); | 
|  | if (N002.getOpcode() == ISD::FMUL) | 
|  | return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), | 
|  | N002.getOperand(0), N002.getOperand(1), | 
|  | N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fma y, z, (fpext (fmul u, v))) | 
|  | //   -> (fma y, z, (fma (fpext u), (fpext v), x)) | 
|  | if (N1.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N12 = N1.getOperand(2); | 
|  | if (N12.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N120 = N12.getOperand(0); | 
|  | if (N120.getOpcode() == ISD::FMUL) | 
|  | return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), | 
|  | N120.getOperand(0), N120.getOperand(1), | 
|  | N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fpext (fma y, z, (fmul u, v))) | 
|  | //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (N10.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N102 = N10.getOperand(2); | 
|  | if (N102.getOpcode() == ISD::FMUL) | 
|  | return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), | 
|  | N102.getOperand(0), N102.getOperand(1), | 
|  | N0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FSUB node. | 
|  | SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | bool AllowFusion = | 
|  | (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); | 
|  |  | 
|  | // Floating-point multiply-add with intermediate rounding. | 
|  | bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  | bool LookThroughFPExt = TLI.isFPExtFree(VT); | 
|  |  | 
|  | // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | (Aggressive || N0->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1)); | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) | 
|  | // Note: Commutes FSUB operands. | 
|  | if (N1.getOpcode() == ISD::FMUL && | 
|  | (Aggressive || N1->hasOneUse())) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1.getOperand(0)), | 
|  | N1.getOperand(1), N0); | 
|  |  | 
|  | // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) | 
|  | if (N0.getOpcode() == ISD::FNEG && | 
|  | N0.getOperand(0).getOpcode() == ISD::FMUL && | 
|  | (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { | 
|  | SDValue N00 = N0.getOperand(0).getOperand(0); | 
|  | SDValue N01 = N0.getOperand(0).getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N00), N01, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1)); | 
|  | } | 
|  |  | 
|  | // Look through FP_EXTEND nodes to do more combining. | 
|  | if (AllowFusion && LookThroughFPExt) { | 
|  | // fold (fsub (fpext (fmul x, y)), z) | 
|  | //   -> (fma (fpext x), (fpext y), (fneg z)) | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1)); | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fpext (fmul y, z))) | 
|  | //   -> (fma (fneg (fpext y)), (fpext z), x) | 
|  | // Note: Commutes FSUB operands. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (N10.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(0))), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(1)), | 
|  | N0); | 
|  | } | 
|  |  | 
|  | // fold (fsub (fpext (fneg (fmul, x, y))), z) | 
|  | //   -> (fneg (fma (fpext x), (fpext y), z)) | 
|  | // Note: This could be removed with appropriate canonicalization of the | 
|  | // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
|  | // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
|  | // from implementing the canonicalization in visitFSUB. | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FNEG) { | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (N000.getOpcode() == ISD::FMUL) { | 
|  | return DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(1)), | 
|  | N1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub (fneg (fpext (fmul, x, y))), z) | 
|  | //   -> (fneg (fma (fpext x)), (fpext y), z) | 
|  | // Note: This could be removed with appropriate canonicalization of the | 
|  | // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
|  | // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
|  | // from implementing the canonicalization in visitFSUB. | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (N000.getOpcode() == ISD::FMUL) { | 
|  | return DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(1)), | 
|  | N1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // More folding opportunities when target permits. | 
|  | if ((AllowFusion || HasFMAD) && Aggressive) { | 
|  | // fold (fsub (fma x, y, (fmul u, v)), z) | 
|  | //   -> (fma x, y (fma u, v, (fneg z))) | 
|  | if (N0.getOpcode() == PreferredFusedOpcode && | 
|  | N0.getOperand(2).getOpcode() == ISD::FMUL) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(2).getOperand(0), | 
|  | N0.getOperand(2).getOperand(1), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1))); | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fma y, z, (fmul u, v))) | 
|  | //   -> (fma (fneg y), z, (fma (fneg u), v, x)) | 
|  | if (N1.getOpcode() == PreferredFusedOpcode && | 
|  | N1.getOperand(2).getOpcode() == ISD::FMUL) { | 
|  | SDValue N20 = N1.getOperand(2).getOperand(0); | 
|  | SDValue N21 = N1.getOperand(2).getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1.getOperand(0)), | 
|  | N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N20), | 
|  |  | 
|  | N21, N0)); | 
|  | } | 
|  |  | 
|  | if (AllowFusion && LookThroughFPExt) { | 
|  | // fold (fsub (fma x, y, (fpext (fmul u, v))), z) | 
|  | //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) | 
|  | if (N0.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N02 = N0.getOperand(2); | 
|  | if (N02.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N020 = N02.getOperand(0); | 
|  | if (N020.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N020.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N020.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub (fpext (fma x, y, (fmul u, v))), z) | 
|  | //   -> (fma (fpext x), (fpext y), | 
|  | //           (fma (fpext u), (fpext v), (fneg z))) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N002 = N00.getOperand(2); | 
|  | if (N002.getOpcode() == ISD::FMUL) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N002.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N002.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) | 
|  | //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) | 
|  | if (N1.getOpcode() == PreferredFusedOpcode && | 
|  | N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N120 = N1.getOperand(2).getOperand(0); | 
|  | if (N120.getOpcode() == ISD::FMUL) { | 
|  | SDValue N1200 = N120.getOperand(0); | 
|  | SDValue N1201 = N120.getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), | 
|  | N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, | 
|  | VT, N1200)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N1201), | 
|  | N0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) | 
|  | //   -> (fma (fneg (fpext y)), (fpext z), | 
|  | //           (fma (fneg (fpext u)), (fpext v), x)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND && | 
|  | N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N100 = N1.getOperand(0).getOperand(0); | 
|  | SDValue N101 = N1.getOperand(0).getOperand(1); | 
|  | SDValue N102 = N1.getOperand(0).getOperand(2); | 
|  | if (N102.getOpcode() == ISD::FMUL) { | 
|  | SDValue N1020 = N102.getOperand(0); | 
|  | SDValue N1021 = N102.getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N100)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, | 
|  | VT, N1020)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N1021), | 
|  | N0)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FMUL node. | 
|  | SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | bool AllowFusion = | 
|  | (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); | 
|  |  | 
|  | // Floating-point multiply-add with intermediate rounding. | 
|  | bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  |  | 
|  | // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) | 
|  | // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) | 
|  | auto FuseFADD = [&](SDValue X, SDValue Y) { | 
|  | if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { | 
|  | auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); | 
|  | if (XC1 && XC1->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); | 
|  | if (XC1 && XC1->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue FMA = FuseFADD(N0, N1)) | 
|  | return FMA; | 
|  | if (SDValue FMA = FuseFADD(N1, N0)) | 
|  | return FMA; | 
|  |  | 
|  | // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) | 
|  | // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) | 
|  | // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) | 
|  | // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) | 
|  | auto FuseFSUB = [&](SDValue X, SDValue Y) { | 
|  | if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { | 
|  | auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); | 
|  | if (XC0 && XC0->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
|  | Y); | 
|  | if (XC0 && XC0->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
|  |  | 
|  | auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); | 
|  | if (XC1 && XC1->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
|  | if (XC1 && XC1->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue FMA = FuseFSUB(N0, N1)) | 
|  | return FMA; | 
|  | if (SDValue FMA = FuseFSUB(N1, N0)) | 
|  | return FMA; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); | 
|  | bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fadd c1, c2) -> c1 + c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); | 
|  |  | 
|  | // fold (fadd A, (fneg B)) -> (fsub A, B) | 
|  | if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | 
|  | isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations), Flags); | 
|  |  | 
|  | // fold (fadd (fneg A), B) -> (fsub B, A) | 
|  | if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | 
|  | isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N1, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations), Flags); | 
|  |  | 
|  | // If 'unsafe math' is enabled, fold lots of things. | 
|  | if (Options.UnsafeFPMath) { | 
|  | // No FP constant should be created after legalization as Instruction | 
|  | // Selection pass has a hard time dealing with FP constants. | 
|  | bool AllowNewConst = (Level < AfterLegalizeDAG); | 
|  |  | 
|  | // fold (fadd A, 0) -> A | 
|  | if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) | 
|  | if (N1C->isZero()) | 
|  | return N0; | 
|  |  | 
|  | // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) | 
|  | if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && | 
|  | isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, | 
|  | Flags), | 
|  | Flags); | 
|  |  | 
|  | // If allowed, fold (fadd (fneg x), x) -> 0.0 | 
|  | if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) | 
|  | return DAG.getConstantFP(0.0, DL, VT); | 
|  |  | 
|  | // If allowed, fold (fadd x, (fneg x)) -> 0.0 | 
|  | if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) | 
|  | return DAG.getConstantFP(0.0, DL, VT); | 
|  |  | 
|  | // We can fold chains of FADD's of the same value into multiplications. | 
|  | // This transform is not safe in general because we are reducing the number | 
|  | // of rounding steps. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { | 
|  | if (N0.getOpcode() == ISD::FMUL) { | 
|  | bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
|  | bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); | 
|  |  | 
|  | // (fadd (fmul x, c), x) -> (fmul x, c+1) | 
|  | if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); | 
|  | } | 
|  |  | 
|  | // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) | 
|  | if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && | 
|  | N1.getOperand(0) == N1.getOperand(1) && | 
|  | N0.getOperand(0) == N1.getOperand(0)) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
|  | DAG.getConstantFP(2.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::FMUL) { | 
|  | bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
|  | bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); | 
|  |  | 
|  | // (fadd x, (fmul x, c)) -> (fmul x, c+1) | 
|  | if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); | 
|  | } | 
|  |  | 
|  | // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) | 
|  | if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && | 
|  | N0.getOperand(0) == N0.getOperand(1) && | 
|  | N1.getOperand(0) == N0.getOperand(0)) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
|  | DAG.getConstantFP(2.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::FADD && AllowNewConst) { | 
|  | bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
|  | // (fadd (fadd x, x), x) -> (fmul x, 3.0) | 
|  | if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && | 
|  | (N0.getOperand(0) == N1)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | N1, DAG.getConstantFP(3.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::FADD && AllowNewConst) { | 
|  | bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
|  | // (fadd x, (fadd x, x)) -> (fmul x, 3.0) | 
|  | if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && | 
|  | N1.getOperand(0) == N0) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | N0, DAG.getConstantFP(3.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) | 
|  | if (AllowNewConst && | 
|  | N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && | 
|  | N0.getOperand(0) == N0.getOperand(1) && | 
|  | N1.getOperand(0) == N1.getOperand(1) && | 
|  | N0.getOperand(0) == N1.getOperand(0)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstantFP(4.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  | } // enable-unsafe-fp-math | 
|  |  | 
|  | // FADD -> FMA combines: | 
|  | if (SDValue Fused = visitFADDForFMACombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | 
|  | ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fsub c1, c2) -> c1-c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); | 
|  |  | 
|  | // fold (fsub A, (fneg B)) -> (fadd A, B) | 
|  | if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) | 
|  | return DAG.getNode(ISD::FADD, dl, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations), Flags); | 
|  |  | 
|  | // If 'unsafe math' is enabled, fold lots of things. | 
|  | if (Options.UnsafeFPMath) { | 
|  | // (fsub A, 0) -> A | 
|  | if (N1CFP && N1CFP->isZero()) | 
|  | return N0; | 
|  |  | 
|  | // (fsub 0, B) -> -B | 
|  | if (N0CFP && N0CFP->isZero()) { | 
|  | if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) | 
|  | return GetNegatedExpression(N1, DAG, LegalOperations); | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, dl, VT, N1); | 
|  | } | 
|  |  | 
|  | // (fsub x, x) -> 0.0 | 
|  | if (N0 == N1) | 
|  | return DAG.getConstantFP(0.0f, dl, VT); | 
|  |  | 
|  | // (fsub x, (fadd x, y)) -> (fneg y) | 
|  | // (fsub x, (fadd y, x)) -> (fneg y) | 
|  | if (N1.getOpcode() == ISD::FADD) { | 
|  | SDValue N10 = N1->getOperand(0); | 
|  | SDValue N11 = N1->getOperand(1); | 
|  |  | 
|  | if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) | 
|  | return GetNegatedExpression(N11, DAG, LegalOperations); | 
|  |  | 
|  | if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) | 
|  | return GetNegatedExpression(N10, DAG, LegalOperations); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FSUB -> FMA combines: | 
|  | if (SDValue Fused = visitFSUBForFMACombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | 
|  | ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | // This just handles C1 * C2 for vectors. Other vector folds are below. | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fmul c1, c2) -> c1*c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); | 
|  |  | 
|  | // fold (fmul A, 1.0) -> A | 
|  | if (N1CFP && N1CFP->isExactlyValue(1.0)) | 
|  | return N0; | 
|  |  | 
|  | if (Options.UnsafeFPMath) { | 
|  | // fold (fmul A, 0) -> 0 | 
|  | if (N1CFP && N1CFP->isZero()) | 
|  | return N1; | 
|  |  | 
|  | // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) | 
|  | if (N0.getOpcode() == ISD::FMUL) { | 
|  | // Fold scalars or any vector constants (not just splats). | 
|  | // This fold is done in general by InstCombine, but extra fmul insts | 
|  | // may have been generated during lowering. | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); | 
|  | auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); | 
|  | auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); | 
|  |  | 
|  | // Check 1: Make sure that the first operand of the inner multiply is NOT | 
|  | // a constant. Otherwise, we may induce infinite looping. | 
|  | if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { | 
|  | // Check 2: Make sure that the second operand of the inner multiply and | 
|  | // the second operand of the outer multiply are constants. | 
|  | if ((N1CFP && isConstOrConstSplatFP(N01)) || | 
|  | (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { | 
|  | SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) | 
|  | // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs | 
|  | // during an early run of DAGCombiner can prevent folding with fmuls | 
|  | // inserted during lowering. | 
|  | if (N0.getOpcode() == ISD::FADD && | 
|  | (N0.getOperand(0) == N0.getOperand(1)) && | 
|  | N0.hasOneUse()) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, DL, VT); | 
|  | SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fmul X, 2.0) -> (fadd X, X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(+2.0)) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); | 
|  |  | 
|  | // fold (fmul X, -1.0) -> (fneg X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(-1.0)) | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, N0); | 
|  |  | 
|  | // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations), | 
|  | Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FMUL -> FMA combines: | 
|  | if (SDValue Fused = visitFMULForFMACombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  |  | 
|  | // Constant fold FMA. | 
|  | if (isa<ConstantFPSDNode>(N0) && | 
|  | isa<ConstantFPSDNode>(N1) && | 
|  | isa<ConstantFPSDNode>(N2)) { | 
|  | return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if (Options.UnsafeFPMath) { | 
|  | if (N0CFP && N0CFP->isZero()) | 
|  | return N2; | 
|  | if (N1CFP && N1CFP->isZero()) | 
|  | return N2; | 
|  | } | 
|  | // TODO: The FMA node should have flags that propagate to these nodes. | 
|  | if (N0CFP && N0CFP->isExactlyValue(1.0)) | 
|  | return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); | 
|  | if (N1CFP && N1CFP->isExactlyValue(1.0)) | 
|  | return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); | 
|  |  | 
|  | // Canonicalize (fma c, x, y) -> (fma x, c, y) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); | 
|  |  | 
|  | // TODO: FMA nodes should have flags that propagate to the created nodes. | 
|  | // For now, create a Flags object for use with all unsafe math transforms. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setUnsafeAlgebra(true); | 
|  |  | 
|  | if (Options.UnsafeFPMath) { | 
|  | // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) | 
|  | if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && | 
|  | isConstantFPBuildVectorOrConstantFP(N1) && | 
|  | isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { | 
|  | return DAG.getNode(ISD::FMUL, dl, VT, N0, | 
|  | DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), | 
|  | &Flags), &Flags); | 
|  | } | 
|  |  | 
|  | // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | isConstantFPBuildVectorOrConstantFP(N1) && | 
|  | isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | 
|  | return DAG.getNode(ISD::FMA, dl, VT, | 
|  | N0.getOperand(0), | 
|  | DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), | 
|  | &Flags), | 
|  | N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fma x, 1, y) -> (fadd x, y) | 
|  | // (fma x, -1, y) -> (fadd (fneg x), y) | 
|  | if (N1CFP) { | 
|  | if (N1CFP->isExactlyValue(1.0)) | 
|  | // TODO: The FMA node should have flags that propagate to this node. | 
|  | return DAG.getNode(ISD::FADD, dl, VT, N0, N2); | 
|  |  | 
|  | if (N1CFP->isExactlyValue(-1.0) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { | 
|  | SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); | 
|  | AddToWorklist(RHSNeg.getNode()); | 
|  | // TODO: The FMA node should have flags that propagate to this node. | 
|  | return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Options.UnsafeFPMath) { | 
|  | // (fma x, c, x) -> (fmul x, (c+1)) | 
|  | if (N1CFP && N0 == N2) { | 
|  | return DAG.getNode(ISD::FMUL, dl, VT, N0, | 
|  | DAG.getNode(ISD::FADD, dl, VT, | 
|  | N1, DAG.getConstantFP(1.0, dl, VT), | 
|  | &Flags), &Flags); | 
|  | } | 
|  |  | 
|  | // (fma x, c, (fneg x)) -> (fmul x, (c-1)) | 
|  | if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { | 
|  | return DAG.getNode(ISD::FMUL, dl, VT, N0, | 
|  | DAG.getNode(ISD::FADD, dl, VT, | 
|  | N1, DAG.getConstantFP(-1.0, dl, VT), | 
|  | &Flags), &Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | 
|  | // reciprocal. | 
|  | // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) | 
|  | // Notice that this is not always beneficial. One reason is different target | 
|  | // may have different costs for FDIV and FMUL, so sometimes the cost of two | 
|  | // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason | 
|  | // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". | 
|  | SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { | 
|  | bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; | 
|  | const SDNodeFlags *Flags = N->getFlags(); | 
|  | if (!UnsafeMath && !Flags->hasAllowReciprocal()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Skip if current node is a reciprocal. | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | if (N0CFP && N0CFP->isExactlyValue(1.0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Exit early if the target does not want this transform or if there can't | 
|  | // possibly be enough uses of the divisor to make the transform worthwhile. | 
|  | SDValue N1 = N->getOperand(1); | 
|  | unsigned MinUses = TLI.combineRepeatedFPDivisors(); | 
|  | if (!MinUses || N1->use_size() < MinUses) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find all FDIV users of the same divisor. | 
|  | // Use a set because duplicates may be present in the user list. | 
|  | SetVector<SDNode *> Users; | 
|  | for (auto *U : N1->uses()) { | 
|  | if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { | 
|  | // This division is eligible for optimization only if global unsafe math | 
|  | // is enabled or if this division allows reciprocal formation. | 
|  | if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) | 
|  | Users.insert(U); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have the actual number of divisor uses, make sure it meets | 
|  | // the minimum threshold specified by the target. | 
|  | if (Users.size() < MinUses) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
|  | SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); | 
|  |  | 
|  | // Dividend / Divisor -> Dividend * Reciprocal | 
|  | for (auto *U : Users) { | 
|  | SDValue Dividend = U->getOperand(0); | 
|  | if (Dividend != FPOne) { | 
|  | SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, | 
|  | Reciprocal, Flags); | 
|  | CombineTo(U, NewNode); | 
|  | } else if (U != Reciprocal.getNode()) { | 
|  | // In the absence of fast-math-flags, this user node is always the | 
|  | // same node as Reciprocal, but with FMF they may be different nodes. | 
|  | CombineTo(U, Reciprocal); | 
|  | } | 
|  | } | 
|  | return SDValue(N, 0);  // N was replaced. | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fdiv c1, c2) -> c1/c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); | 
|  |  | 
|  | if (Options.UnsafeFPMath) { | 
|  | // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. | 
|  | if (N1CFP) { | 
|  | // Compute the reciprocal 1.0 / c2. | 
|  | APFloat N1APF = N1CFP->getValueAPF(); | 
|  | APFloat Recip(N1APF.getSemantics(), 1); // 1.0 | 
|  | APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); | 
|  | // Only do the transform if the reciprocal is a legal fp immediate that | 
|  | // isn't too nasty (eg NaN, denormal, ...). | 
|  | if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty | 
|  | (!LegalOperations || | 
|  | // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM | 
|  | // backend)... we should handle this gracefully after Legalize. | 
|  | // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || | 
|  | TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || | 
|  | TLI.isFPImmLegal(Recip, VT))) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
|  | DAG.getConstantFP(Recip, DL, VT), Flags); | 
|  | } | 
|  |  | 
|  | // If this FDIV is part of a reciprocal square root, it may be folded | 
|  | // into a target-specific square root estimate instruction. | 
|  | if (N1.getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FP_EXTEND && | 
|  | N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), | 
|  | Flags)) { | 
|  | RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FP_ROUND && | 
|  | N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), | 
|  | Flags)) { | 
|  | RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FMUL) { | 
|  | // Look through an FMUL. Even though this won't remove the FDIV directly, | 
|  | // it's still worthwhile to get rid of the FSQRT if possible. | 
|  | SDValue SqrtOp; | 
|  | SDValue OtherOp; | 
|  | if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | SqrtOp = N1.getOperand(0); | 
|  | OtherOp = N1.getOperand(1); | 
|  | } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { | 
|  | SqrtOp = N1.getOperand(1); | 
|  | OtherOp = N1.getOperand(0); | 
|  | } | 
|  | if (SqrtOp.getNode()) { | 
|  | // We found a FSQRT, so try to make this fold: | 
|  | // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) | 
|  | if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { | 
|  | RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold into a reciprocal estimate and multiply instead of a real divide. | 
|  | if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FDIV, SDLoc(N), VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations), | 
|  | Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) | 
|  | return CombineRepeatedDivisors; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (frem c1, c2) -> fmod(c1,c2) | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, | 
|  | &cast<BinaryWithFlagsSDNode>(N)->Flags); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSQRT(SDNode *N) { | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: FSQRT nodes should have flags that propagate to the created nodes. | 
|  | // For now, create a Flags object for use with all unsafe math transforms. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setUnsafeAlgebra(true); | 
|  |  | 
|  | // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) | 
|  | SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); | 
|  | if (!RV) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = RV.getValueType(); | 
|  | SDLoc DL(N); | 
|  | RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); | 
|  | AddToWorklist(RV.getNode()); | 
|  |  | 
|  | // Unfortunately, RV is now NaN if the input was exactly 0. | 
|  | // Select out this case and force the answer to 0. | 
|  | SDValue Zero = DAG.getConstantFP(0.0, DL, VT); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  | SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); | 
|  | AddToWorklist(ZeroCmp.getNode()); | 
|  | AddToWorklist(RV.getNode()); | 
|  |  | 
|  | return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, | 
|  | ZeroCmp, Zero, RV); | 
|  | } | 
|  |  | 
|  | /// copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | /// copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if ((N1.getOpcode() == ISD::FP_EXTEND || | 
|  | N1.getOpcode() == ISD::FP_ROUND)) { | 
|  | // Do not optimize out type conversion of f128 type yet. | 
|  | // For some targets like x86_64, configuration is changed to keep one f128 | 
|  | // value in one SSE register, but instruction selection cannot handle | 
|  | // FCOPYSIGN on SSE registers yet. | 
|  | EVT N1VT = N1->getValueType(0); | 
|  | EVT N1Op0VT = N1->getOperand(0)->getValueType(0); | 
|  | return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0CFP && N1CFP)  // Constant fold | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | if (N1CFP) { | 
|  | const APFloat& V = N1CFP->getValueAPF(); | 
|  | // copysign(x, c1) -> fabs(x)       iff ispos(c1) | 
|  | // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | 
|  | if (!V.isNegative()) { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  | } else { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // copysign(fabs(x), y) -> copysign(x, y) | 
|  | // copysign(fneg(x), y) -> copysign(x, y) | 
|  | // copysign(copysign(x,z), y) -> copysign(x, y) | 
|  | if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | 
|  | N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | 
|  | N0.getOperand(0), N1); | 
|  |  | 
|  | // copysign(x, abs(y)) -> abs(x) | 
|  | if (N1.getOpcode() == ISD::FABS) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  |  | 
|  | // copysign(x, copysign(y,z)) -> copysign(x, z) | 
|  | if (N1.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | 
|  | N0, N1.getOperand(1)); | 
|  |  | 
|  | // copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | // copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | 
|  | N0, N1.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (sint_to_fp c1) -> c1fp | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and SINT_TO_FP is not legal on this target, | 
|  | // but UINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to UINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | // The next optimizations are desirable only if SELECT_CC can be lowered. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | 
|  | // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | 
|  | if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && | 
|  | !VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | // fold (sint_to_fp (zext (setcc x, y, cc))) -> | 
|  | //      (select_cc x, y, 1.0, 0.0,, cc) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(0).getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // fold (uint_to_fp c1) -> c1fp | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and UINT_TO_FP is not legal on this target, | 
|  | // but SINT_TO_FP is legal on this target, try to convert. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to SINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | // The next optimizations are desirable only if SELECT_CC can be lowered. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | 
|  | // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x | 
|  | static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Src = N0.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; | 
|  | bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
|  |  | 
|  | // We can safely assume the conversion won't overflow the output range, | 
|  | // because (for example) (uint8_t)18293.f is undefined behavior. | 
|  |  | 
|  | // Since we can assume the conversion won't overflow, our decision as to | 
|  | // whether the input will fit in the float should depend on the minimum | 
|  | // of the input range and output range. | 
|  |  | 
|  | // This means this is also safe for a signed input and unsigned output, since | 
|  | // a negative input would lead to undefined behavior. | 
|  | unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; | 
|  | unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; | 
|  | unsigned ActualSize = std::min(InputSize, OutputSize); | 
|  | const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); | 
|  |  | 
|  | // We can only fold away the float conversion if the input range can be | 
|  | // represented exactly in the float range. | 
|  | if (APFloat::semanticsPrecision(sem) >= ActualSize) { | 
|  | if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { | 
|  | unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND | 
|  | : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOp, SDLoc(N), VT, Src); | 
|  | } | 
|  | if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); | 
|  | return DAG.getBitcast(VT, Src); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_sint c1fp) -> c1 | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); | 
|  |  | 
|  | return FoldIntToFPToInt(N, DAG); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_uint c1fp) -> c1 | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); | 
|  |  | 
|  | return FoldIntToFPToInt(N, DAG); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_round c1fp) -> c1fp | 
|  | if (N0CFP) | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // fold (fp_round (fp_extend x)) -> x | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold (fp_round (fp_round x)) -> (fp_round x) | 
|  | if (N0.getOpcode() == ISD::FP_ROUND) { | 
|  | const bool NIsTrunc = N->getConstantOperandVal(1) == 1; | 
|  | const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; | 
|  |  | 
|  | // Skip this folding if it results in an fp_round from f80 to f16. | 
|  | // | 
|  | // f80 to f16 always generates an expensive (and as yet, unimplemented) | 
|  | // libcall to __truncxfhf2 instead of selecting native f16 conversion | 
|  | // instructions from f32 or f64.  Moreover, the first (value-preserving) | 
|  | // fp_round from f80 to either f32 or f64 may become a NOP in platforms like | 
|  | // x86. | 
|  | if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the first fp_round isn't a value preserving truncation, it might | 
|  | // introduce a tie in the second fp_round, that wouldn't occur in the | 
|  | // single-step fp_round we want to fold to. | 
|  | // In other words, double rounding isn't the same as rounding. | 
|  | // Also, this is a value preserving truncation iff both fp_round's are. | 
|  | if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), | 
|  | DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { | 
|  | SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1); | 
|  | AddToWorklist(Tmp.getNode()); | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | 
|  | Tmp, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  |  | 
|  | // fold (fp_round_inreg c1fp) -> c1fp | 
|  | if (N0CFP && isTypeLegal(EVT)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); | 
|  | return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | 
|  | if (N->hasOneUse() && | 
|  | N->use_begin()->getOpcode() == ISD::FP_ROUND) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (fp_extend c1fp) -> c1fp | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); | 
|  |  | 
|  | // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) | 
|  | if (N0.getOpcode() == ISD::FP16_TO_FP && | 
|  | TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | 
|  | // value of X. | 
|  | if (N0.getOpcode() == ISD::FP_ROUND | 
|  | && N0.getNode()->getConstantOperandVal(1) == 1) { | 
|  | SDValue In = N0.getOperand(0); | 
|  | if (In.getValueType() == VT) return In; | 
|  | if (VT.bitsLT(In.getValueType())) | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, | 
|  | In, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); | 
|  | } | 
|  |  | 
|  | // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::FP_ROUND, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad, | 
|  | DAG.getIntPtrConstant(1, SDLoc(N0))), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCEIL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fceil c1) -> fceil(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFTRUNC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ftrunc c1) -> ftrunc(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFFLOOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ffloor c1) -> ffloor(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: FNEG and FABS have a lot in common; refactor. | 
|  | SDValue DAGCombiner::visitFNEG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Constant fold FNEG. | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); | 
|  |  | 
|  | if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), | 
|  | &DAG.getTarget().Options)) | 
|  | return GetNegatedExpression(N0, DAG, LegalOperations); | 
|  |  | 
|  | // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (!TLI.isFNegFree(VT) && | 
|  | N0.getOpcode() == ISD::BITCAST && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | APInt SignMask; | 
|  | if (N0.getValueType().isVector()) { | 
|  | // For a vector, get a mask such as 0x80... per scalar element | 
|  | // and splat it. | 
|  | SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); | 
|  | SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | 
|  | } else { | 
|  | // For a scalar, just generate 0x80... | 
|  | SignMask = APInt::getSignBit(IntVT.getSizeInBits()); | 
|  | } | 
|  | SDLoc DL0(N0); | 
|  | Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, | 
|  | DAG.getConstant(SignMask, DL0, IntVT)); | 
|  | AddToWorklist(Int.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fneg (fmul c, x)) -> (fmul -c, x) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { | 
|  | ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); | 
|  | if (CFP1) { | 
|  | APFloat CVal = CFP1->getValueAPF(); | 
|  | CVal.changeSign(); | 
|  | if (Level >= AfterLegalizeDAG && | 
|  | (TLI.isFPImmLegal(CVal, VT) || | 
|  | TLI.isOperationLegal(ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FNEG, SDLoc(N), VT, | 
|  | N0.getOperand(1)), | 
|  | &cast<BinaryWithFlagsSDNode>(N0)->Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMINNUM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | 
|  | const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | 
|  |  | 
|  | if (N0CFP && N1CFP) { | 
|  | const APFloat &C0 = N0CFP->getValueAPF(); | 
|  | const APFloat &C1 = N1CFP->getValueAPF(); | 
|  | return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // Canonicalize to constant on RHS. | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | 
|  | const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | 
|  |  | 
|  | if (N0CFP && N1CFP) { | 
|  | const APFloat &C0 = N0CFP->getValueAPF(); | 
|  | const APFloat &C1 = N1CFP->getValueAPF(); | 
|  | return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // Canonicalize to constant on RHS. | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFABS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fabs c1) -> fabs(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  |  | 
|  | // fold (fabs (fabs x)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FABS) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // fold (fabs (fneg x)) -> (fabs x) | 
|  | // fold (fabs (fcopysign x, y)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (!TLI.isFAbsFree(VT) && | 
|  | N0.getOpcode() == ISD::BITCAST && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | APInt SignMask; | 
|  | if (N0.getValueType().isVector()) { | 
|  | // For a vector, get a mask such as 0x7f... per scalar element | 
|  | // and splat it. | 
|  | SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); | 
|  | SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | 
|  | } else { | 
|  | // For a scalar, just generate 0x7f... | 
|  | SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); | 
|  | } | 
|  | SDLoc DL(N0); | 
|  | Int = DAG.getNode(ISD::AND, DL, IntVT, Int, | 
|  | DAG.getConstant(SignMask, DL, IntVT)); | 
|  | AddToWorklist(Int.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBRCOND(SDNode *N) { | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | 
|  | // on the target. | 
|  | if (N1.getOpcode() == ISD::SETCC && | 
|  | TLI.isOperationLegalOrCustom(ISD::BR_CC, | 
|  | N1.getOperand(0).getValueType())) { | 
|  | return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
|  | Chain, N1.getOperand(2), | 
|  | N1.getOperand(0), N1.getOperand(1), N2); | 
|  | } | 
|  |  | 
|  | if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || | 
|  | ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && | 
|  | (N1.getOperand(0).hasOneUse() && | 
|  | N1.getOperand(0).getOpcode() == ISD::SRL))) { | 
|  | SDNode *Trunc = nullptr; | 
|  | if (N1.getOpcode() == ISD::TRUNCATE) { | 
|  | // Look pass the truncate. | 
|  | Trunc = N1.getNode(); | 
|  | N1 = N1.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Match this pattern so that we can generate simpler code: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // This applies only when the AND constant value has one bit set and the | 
|  | // SRL constant is equal to the log2 of the AND constant. The back-end is | 
|  | // smart enough to convert the result into a TEST/JMP sequence. | 
|  | SDValue Op0 = N1.getOperand(0); | 
|  | SDValue Op1 = N1.getOperand(1); | 
|  |  | 
|  | if (Op0.getOpcode() == ISD::AND && | 
|  | Op1.getOpcode() == ISD::Constant) { | 
|  | SDValue AndOp1 = Op0.getOperand(1); | 
|  |  | 
|  | if (AndOp1.getOpcode() == ISD::Constant) { | 
|  | const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); | 
|  |  | 
|  | if (AndConst.isPowerOf2() && | 
|  | cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { | 
|  | SDLoc DL(N); | 
|  | SDValue SetCC = | 
|  | DAG.getSetCC(DL, | 
|  | getSetCCResultType(Op0.getValueType()), | 
|  | Op0, DAG.getConstant(0, DL, Op0.getValueType()), | 
|  | ISD::SETNE); | 
|  |  | 
|  | SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, | 
|  | MVT::Other, Chain, SetCC, N2); | 
|  | // Don't add the new BRCond into the worklist or else SimplifySelectCC | 
|  | // will convert it back to (X & C1) >> C2. | 
|  | CombineTo(N, NewBRCond, false); | 
|  | // Truncate is dead. | 
|  | if (Trunc) | 
|  | deleteAndRecombine(Trunc); | 
|  | // Replace the uses of SRL with SETCC | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, SetCC); | 
|  | deleteAndRecombine(N1.getNode()); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Trunc) | 
|  | // Restore N1 if the above transformation doesn't match. | 
|  | N1 = N->getOperand(1); | 
|  | } | 
|  |  | 
|  | // Transform br(xor(x, y)) -> br(x != y) | 
|  | // Transform br(xor(xor(x,y), 1)) -> br (x == y) | 
|  | if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { | 
|  | SDNode *TheXor = N1.getNode(); | 
|  | SDValue Op0 = TheXor->getOperand(0); | 
|  | SDValue Op1 = TheXor->getOperand(1); | 
|  | if (Op0.getOpcode() == Op1.getOpcode()) { | 
|  | // Avoid missing important xor optimizations. | 
|  | if (SDValue Tmp = visitXOR(TheXor)) { | 
|  | if (Tmp.getNode() != TheXor) { | 
|  | DEBUG(dbgs() << "\nReplacing.8 "; | 
|  | TheXor->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Tmp.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, Tmp); | 
|  | deleteAndRecombine(TheXor); | 
|  | return DAG.getNode(ISD::BRCOND, SDLoc(N), | 
|  | MVT::Other, Chain, Tmp, N2); | 
|  | } | 
|  |  | 
|  | // visitXOR has changed XOR's operands or replaced the XOR completely, | 
|  | // bail out. | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { | 
|  | bool Equal = false; | 
|  | if (isOneConstant(Op0) && Op0.hasOneUse() && | 
|  | Op0.getOpcode() == ISD::XOR) { | 
|  | TheXor = Op0.getNode(); | 
|  | Equal = true; | 
|  | } | 
|  |  | 
|  | EVT SetCCVT = N1.getValueType(); | 
|  | if (LegalTypes) | 
|  | SetCCVT = getSetCCResultType(SetCCVT); | 
|  | SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), | 
|  | SetCCVT, | 
|  | Op0, Op1, | 
|  | Equal ? ISD::SETEQ : ISD::SETNE); | 
|  | // Replace the uses of XOR with SETCC | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N1, SetCC); | 
|  | deleteAndRecombine(N1.getNode()); | 
|  | return DAG.getNode(ISD::BRCOND, SDLoc(N), | 
|  | MVT::Other, Chain, SetCC, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | 
|  | // | 
|  | SDValue DAGCombiner::visitBR_CC(SDNode *N) { | 
|  | CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | 
|  | SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // Use SimplifySetCC to simplify SETCC's. | 
|  | SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), | 
|  | CondLHS, CondRHS, CC->get(), SDLoc(N), | 
|  | false); | 
|  | if (Simp.getNode()) AddToWorklist(Simp.getNode()); | 
|  |  | 
|  | // fold to a simpler setcc | 
|  | if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
|  | N->getOperand(0), Simp.getOperand(2), | 
|  | Simp.getOperand(0), Simp.getOperand(1), | 
|  | N->getOperand(4)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return true if 'Use' is a load or a store that uses N as its base pointer | 
|  | /// and that N may be folded in the load / store addressing mode. | 
|  | static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | EVT VT; | 
|  | unsigned AS; | 
|  |  | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) { | 
|  | if (LD->isIndexed() || LD->getBasePtr().getNode() != N) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | AS = LD->getAddressSpace(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) { | 
|  | if (ST->isIndexed() || ST->getBasePtr().getNode() != N) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | AS = ST->getAddressSpace(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | TargetLowering::AddrMode AM; | 
|  | if (N->getOpcode() == ISD::ADD) { | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (Offset) | 
|  | // [reg +/- imm] | 
|  | AM.BaseOffs = Offset->getSExtValue(); | 
|  | else | 
|  | // [reg +/- reg] | 
|  | AM.Scale = 1; | 
|  | } else if (N->getOpcode() == ISD::SUB) { | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (Offset) | 
|  | // [reg +/- imm] | 
|  | AM.BaseOffs = -Offset->getSExtValue(); | 
|  | else | 
|  | // [reg +/- reg] | 
|  | AM.Scale = 1; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, | 
|  | VT.getTypeForEVT(*DAG.getContext()), AS); | 
|  | } | 
|  |  | 
|  | /// Try turning a load/store into a pre-indexed load/store when the base | 
|  | /// pointer is an add or subtract and it has other uses besides the load/store. | 
|  | /// After the transformation, the new indexed load/store has effectively folded | 
|  | /// the add/subtract in and all of its other uses are redirected to the | 
|  | /// new load/store. | 
|  | bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | 
|  | // out.  There is no reason to make this a preinc/predec. | 
|  | if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | 
|  | Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Ask the target to do addressing mode selection. | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | 
|  | return false; | 
|  |  | 
|  | // Backends without true r+i pre-indexed forms may need to pass a | 
|  | // constant base with a variable offset so that constant coercion | 
|  | // will work with the patterns in canonical form. | 
|  | bool Swapped = false; | 
|  | if (isa<ConstantSDNode>(BasePtr)) { | 
|  | std::swap(BasePtr, Offset); | 
|  | Swapped = true; | 
|  | } | 
|  |  | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isNullConstant(Offset)) | 
|  | return false; | 
|  |  | 
|  | // Try turning it into a pre-indexed load / store except when: | 
|  | // 1) The new base ptr is a frame index. | 
|  | // 2) If N is a store and the new base ptr is either the same as or is a | 
|  | //    predecessor of the value being stored. | 
|  | // 3) Another use of old base ptr is a predecessor of N. If ptr is folded | 
|  | //    that would create a cycle. | 
|  | // 4) All uses are load / store ops that use it as old base ptr. | 
|  |  | 
|  | // Check #1.  Preinc'ing a frame index would require copying the stack pointer | 
|  | // (plus the implicit offset) to a register to preinc anyway. | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | return false; | 
|  |  | 
|  | // Check #2. | 
|  | if (!isLoad) { | 
|  | SDValue Val = cast<StoreSDNode>(N)->getValue(); | 
|  | if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Caches for hasPredecessorHelper. | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  |  | 
|  | // If the offset is a constant, there may be other adds of constants that | 
|  | // can be folded with this one. We should do this to avoid having to keep | 
|  | // a copy of the original base pointer. | 
|  | SmallVector<SDNode *, 16> OtherUses; | 
|  | if (isa<ConstantSDNode>(Offset)) | 
|  | for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), | 
|  | UE = BasePtr.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDUse &Use = UI.getUse(); | 
|  | // Skip the use that is Ptr and uses of other results from BasePtr's | 
|  | // node (important for nodes that return multiple results). | 
|  | if (Use.getUser() == Ptr.getNode() || Use != BasePtr) | 
|  | continue; | 
|  |  | 
|  | if (N->hasPredecessorHelper(Use.getUser(), Visited, Worklist)) | 
|  | continue; | 
|  |  | 
|  | if (Use.getUser()->getOpcode() != ISD::ADD && | 
|  | Use.getUser()->getOpcode() != ISD::SUB) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); | 
|  | if (!isa<ConstantSDNode>(Op1)) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: In some cases, we can be smarter about this. | 
|  | if (Op1.getValueType() != Offset.getValueType()) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | OtherUses.push_back(Use.getUser()); | 
|  | } | 
|  |  | 
|  | if (Swapped) | 
|  | std::swap(BasePtr, Offset); | 
|  |  | 
|  | // Now check for #3 and #4. | 
|  | bool RealUse = false; | 
|  |  | 
|  | for (SDNode *Use : Ptr.getNode()->uses()) { | 
|  | if (Use == N) | 
|  | continue; | 
|  | if (N->hasPredecessorHelper(Use, Visited, Worklist)) | 
|  | return false; | 
|  |  | 
|  | // If Ptr may be folded in addressing mode of other use, then it's | 
|  | // not profitable to do this transformation. | 
|  | if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) | 
|  | return false; | 
|  |  | 
|  | SDValue Result; | 
|  | if (isLoad) | 
|  | Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | else | 
|  | Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | ++PreIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.4 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | if (Swapped) | 
|  | std::swap(BasePtr, Offset); | 
|  |  | 
|  | // Replace other uses of BasePtr that can be updated to use Ptr | 
|  | for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { | 
|  | unsigned OffsetIdx = 1; | 
|  | if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) | 
|  | OffsetIdx = 0; | 
|  | assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == | 
|  | BasePtr.getNode() && "Expected BasePtr operand"); | 
|  |  | 
|  | // We need to replace ptr0 in the following expression: | 
|  | //   x0 * offset0 + y0 * ptr0 = t0 | 
|  | // knowing that | 
|  | //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) | 
|  | // | 
|  | // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the | 
|  | // indexed load/store and the expresion that needs to be re-written. | 
|  | // | 
|  | // Therefore, we have: | 
|  | //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 | 
|  |  | 
|  | ConstantSDNode *CN = | 
|  | cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); | 
|  | int X0, X1, Y0, Y1; | 
|  | APInt Offset0 = CN->getAPIntValue(); | 
|  | APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); | 
|  |  | 
|  | X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; | 
|  | Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; | 
|  | X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; | 
|  | Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; | 
|  |  | 
|  | unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; | 
|  |  | 
|  | APInt CNV = Offset0; | 
|  | if (X0 < 0) CNV = -CNV; | 
|  | if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; | 
|  | else CNV = CNV - Offset1; | 
|  |  | 
|  | SDLoc DL(OtherUses[i]); | 
|  |  | 
|  | // We can now generate the new expression. | 
|  | SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); | 
|  | SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); | 
|  |  | 
|  | SDValue NewUse = DAG.getNode(Opcode, | 
|  | DL, | 
|  | OtherUses[i]->getValueType(0), NewOp1, NewOp2); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); | 
|  | deleteAndRecombine(OtherUses[i]); | 
|  | } | 
|  |  | 
|  | // Replace the uses of Ptr with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); | 
|  | deleteAndRecombine(Ptr.getNode()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to combine a load/store with a add/sub of the base pointer node into a | 
|  | /// post-indexed load/store. The transformation folded the add/subtract into the | 
|  | /// new indexed load/store effectively and all of its uses are redirected to the | 
|  | /// new load/store. | 
|  | bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | for (SDNode *Op : Ptr.getNode()->uses()) { | 
|  | if (Op == N || | 
|  | (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) | 
|  | continue; | 
|  |  | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isNullConstant(Offset)) | 
|  | continue; | 
|  |  | 
|  | // Try turning it into a post-indexed load / store except when | 
|  | // 1) All uses are load / store ops that use it as base ptr (and | 
|  | //    it may be folded as addressing mmode). | 
|  | // 2) Op must be independent of N, i.e. Op is neither a predecessor | 
|  | //    nor a successor of N. Otherwise, if Op is folded that would | 
|  | //    create a cycle. | 
|  |  | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | continue; | 
|  |  | 
|  | // Check for #1. | 
|  | bool TryNext = false; | 
|  | for (SDNode *Use : BasePtr.getNode()->uses()) { | 
|  | if (Use == Ptr.getNode()) | 
|  | continue; | 
|  |  | 
|  | // If all the uses are load / store addresses, then don't do the | 
|  | // transformation. | 
|  | if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ | 
|  | bool RealUse = false; | 
|  | for (SDNode *UseUse : Use->uses()) { | 
|  | if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) { | 
|  | TryNext = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TryNext) | 
|  | continue; | 
|  |  | 
|  | // Check for #2 | 
|  | if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { | 
|  | SDValue Result = isLoad | 
|  | ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM) | 
|  | : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | ++PostIndexedNodes; | 
|  | ++NodesCombined; | 
|  | DEBUG(dbgs() << "\nReplacing.5 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | // Replace the uses of Use with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | 
|  | Result.getValue(isLoad ? 1 : 0)); | 
|  | deleteAndRecombine(Op); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Return the base-pointer arithmetic from an indexed \p LD. | 
|  | SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | assert(AM != ISD::UNINDEXED); | 
|  | SDValue BP = LD->getOperand(1); | 
|  | SDValue Inc = LD->getOperand(2); | 
|  |  | 
|  | // Some backends use TargetConstants for load offsets, but don't expect | 
|  | // TargetConstants in general ADD nodes. We can convert these constants into | 
|  | // regular Constants (if the constant is not opaque). | 
|  | assert((Inc.getOpcode() != ISD::TargetConstant || | 
|  | !cast<ConstantSDNode>(Inc)->isOpaque()) && | 
|  | "Cannot split out indexing using opaque target constants"); | 
|  | if (Inc.getOpcode() == ISD::TargetConstant) { | 
|  | ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); | 
|  | Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), | 
|  | ConstInc->getValueType(0)); | 
|  | } | 
|  |  | 
|  | unsigned Opc = | 
|  | (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); | 
|  | return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitLOAD(SDNode *N) { | 
|  | LoadSDNode *LD  = cast<LoadSDNode>(N); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr   = LD->getBasePtr(); | 
|  |  | 
|  | // If load is not volatile and there are no uses of the loaded value (and | 
|  | // the updated indexed value in case of indexed loads), change uses of the | 
|  | // chain value into uses of the chain input (i.e. delete the dead load). | 
|  | if (!LD->isVolatile()) { | 
|  | if (N->getValueType(1) == MVT::Other) { | 
|  | // Unindexed loads. | 
|  | if (!N->hasAnyUseOfValue(0)) { | 
|  | // It's not safe to use the two value CombineTo variant here. e.g. | 
|  | // v1, chain2 = load chain1, loc | 
|  | // v2, chain3 = load chain2, loc | 
|  | // v3         = add v2, c | 
|  | // Now we replace use of chain2 with chain1.  This makes the second load | 
|  | // isomorphic to the one we are deleting, and thus makes this load live. | 
|  | DEBUG(dbgs() << "\nReplacing.6 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith chain: "; | 
|  | Chain.getNode()->dump(&DAG); | 
|  | dbgs() << "\n"); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
|  |  | 
|  | if (N->use_empty()) | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } else { | 
|  | // Indexed loads. | 
|  | assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | 
|  |  | 
|  | // If this load has an opaque TargetConstant offset, then we cannot split | 
|  | // the indexing into an add/sub directly (that TargetConstant may not be | 
|  | // valid for a different type of node, and we cannot convert an opaque | 
|  | // target constant into a regular constant). | 
|  | bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && | 
|  | cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); | 
|  |  | 
|  | if (!N->hasAnyUseOfValue(0) && | 
|  | ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { | 
|  | SDValue Undef = DAG.getUNDEF(N->getValueType(0)); | 
|  | SDValue Index; | 
|  | if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { | 
|  | Index = SplitIndexingFromLoad(LD); | 
|  | // Try to fold the base pointer arithmetic into subsequent loads and | 
|  | // stores. | 
|  | AddUsersToWorklist(N); | 
|  | } else | 
|  | Index = DAG.getUNDEF(N->getValueType(1)); | 
|  | DEBUG(dbgs() << "\nReplacing.7 "; | 
|  | N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; | 
|  | Undef.getNode()->dump(&DAG); | 
|  | dbgs() << " and 2 other values\n"); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this load is directly stored, replace the load value with the stored | 
|  | // value. | 
|  | // TODO: Handle store large -> read small portion. | 
|  | // TODO: Handle TRUNCSTORE/LOADEXT | 
|  | if (ISD::isNormalLoad(N) && !LD->isVolatile()) { | 
|  | if (ISD::isNON_TRUNCStore(Chain.getNode())) { | 
|  | StoreSDNode *PrevST = cast<StoreSDNode>(Chain); | 
|  | if (PrevST->getBasePtr() == Ptr && | 
|  | PrevST->getValue().getValueType() == N->getValueType(0)) | 
|  | return CombineTo(N, Chain.getOperand(1), Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to infer better alignment information than the load already has. | 
|  | if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > LD->getMemOperand()->getBaseAlignment()) { | 
|  | SDValue NewLoad = | 
|  | DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), | 
|  | LD->getValueType(0), | 
|  | Chain, Ptr, LD->getPointerInfo(), | 
|  | LD->getMemoryVT(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), Align, LD->getAAInfo()); | 
|  | if (NewLoad.getNode() != N) | 
|  | return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  | #ifndef NDEBUG | 
|  | if (CombinerAAOnlyFunc.getNumOccurrences() && | 
|  | CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | 
|  | UseAA = false; | 
|  | #endif | 
|  | if (UseAA && LD->isUnindexed()) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(N, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | SDValue ReplLoad; | 
|  |  | 
|  | // Replace the chain to void dependency. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), | 
|  | BetterChain, Ptr, LD->getMemOperand()); | 
|  | } else { | 
|  | ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), | 
|  | LD->getValueType(0), | 
|  | BetterChain, Ptr, LD->getMemoryVT(), | 
|  | LD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Create token factor to keep old chain connected. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), | 
|  | MVT::Other, Chain, ReplLoad.getValue(1)); | 
|  |  | 
|  | // Make sure the new and old chains are cleaned up. | 
|  | AddToWorklist(Token.getNode()); | 
|  |  | 
|  | // Replace uses with load result and token factor. Don't add users | 
|  | // to work list. | 
|  | return CombineTo(N, ReplLoad.getValue(0), Token, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed load. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // Try to slice up N to more direct loads if the slices are mapped to | 
|  | // different register banks or pairing can take place. | 
|  | if (SliceUpLoad(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Helper structure used to slice a load in smaller loads. | 
|  | /// Basically a slice is obtained from the following sequence: | 
|  | /// Origin = load Ty1, Base | 
|  | /// Shift = srl Ty1 Origin, CstTy Amount | 
|  | /// Inst = trunc Shift to Ty2 | 
|  | /// | 
|  | /// Then, it will be rewriten into: | 
|  | /// Slice = load SliceTy, Base + SliceOffset | 
|  | /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 | 
|  | /// | 
|  | /// SliceTy is deduced from the number of bits that are actually used to | 
|  | /// build Inst. | 
|  | struct LoadedSlice { | 
|  | /// \brief Helper structure used to compute the cost of a slice. | 
|  | struct Cost { | 
|  | /// Are we optimizing for code size. | 
|  | bool ForCodeSize; | 
|  | /// Various cost. | 
|  | unsigned Loads; | 
|  | unsigned Truncates; | 
|  | unsigned CrossRegisterBanksCopies; | 
|  | unsigned ZExts; | 
|  | unsigned Shift; | 
|  |  | 
|  | Cost(bool ForCodeSize = false) | 
|  | : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), | 
|  | CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} | 
|  |  | 
|  | /// \brief Get the cost of one isolated slice. | 
|  | Cost(const LoadedSlice &LS, bool ForCodeSize = false) | 
|  | : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), | 
|  | CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { | 
|  | EVT TruncType = LS.Inst->getValueType(0); | 
|  | EVT LoadedType = LS.getLoadedType(); | 
|  | if (TruncType != LoadedType && | 
|  | !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) | 
|  | ZExts = 1; | 
|  | } | 
|  |  | 
|  | /// \brief Account for slicing gain in the current cost. | 
|  | /// Slicing provide a few gains like removing a shift or a | 
|  | /// truncate. This method allows to grow the cost of the original | 
|  | /// load with the gain from this slice. | 
|  | void addSliceGain(const LoadedSlice &LS) { | 
|  | // Each slice saves a truncate. | 
|  | const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); | 
|  | if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), | 
|  | LS.Inst->getValueType(0))) | 
|  | ++Truncates; | 
|  | // If there is a shift amount, this slice gets rid of it. | 
|  | if (LS.Shift) | 
|  | ++Shift; | 
|  | // If this slice can merge a cross register bank copy, account for it. | 
|  | if (LS.canMergeExpensiveCrossRegisterBankCopy()) | 
|  | ++CrossRegisterBanksCopies; | 
|  | } | 
|  |  | 
|  | Cost &operator+=(const Cost &RHS) { | 
|  | Loads += RHS.Loads; | 
|  | Truncates += RHS.Truncates; | 
|  | CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; | 
|  | ZExts += RHS.ZExts; | 
|  | Shift += RHS.Shift; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator==(const Cost &RHS) const { | 
|  | return Loads == RHS.Loads && Truncates == RHS.Truncates && | 
|  | CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && | 
|  | ZExts == RHS.ZExts && Shift == RHS.Shift; | 
|  | } | 
|  |  | 
|  | bool operator!=(const Cost &RHS) const { return !(*this == RHS); } | 
|  |  | 
|  | bool operator<(const Cost &RHS) const { | 
|  | // Assume cross register banks copies are as expensive as loads. | 
|  | // FIXME: Do we want some more target hooks? | 
|  | unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; | 
|  | unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; | 
|  | // Unless we are optimizing for code size, consider the | 
|  | // expensive operation first. | 
|  | if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) | 
|  | return ExpensiveOpsLHS < ExpensiveOpsRHS; | 
|  | return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < | 
|  | (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); | 
|  | } | 
|  |  | 
|  | bool operator>(const Cost &RHS) const { return RHS < *this; } | 
|  |  | 
|  | bool operator<=(const Cost &RHS) const { return !(RHS < *this); } | 
|  |  | 
|  | bool operator>=(const Cost &RHS) const { return !(*this < RHS); } | 
|  | }; | 
|  | // The last instruction that represent the slice. This should be a | 
|  | // truncate instruction. | 
|  | SDNode *Inst; | 
|  | // The original load instruction. | 
|  | LoadSDNode *Origin; | 
|  | // The right shift amount in bits from the original load. | 
|  | unsigned Shift; | 
|  | // The DAG from which Origin came from. | 
|  | // This is used to get some contextual information about legal types, etc. | 
|  | SelectionDAG *DAG; | 
|  |  | 
|  | LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, | 
|  | unsigned Shift = 0, SelectionDAG *DAG = nullptr) | 
|  | : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} | 
|  |  | 
|  | /// \brief Get the bits used in a chunk of bits \p BitWidth large. | 
|  | /// \return Result is \p BitWidth and has used bits set to 1 and | 
|  | ///         not used bits set to 0. | 
|  | APInt getUsedBits() const { | 
|  | // Reproduce the trunc(lshr) sequence: | 
|  | // - Start from the truncated value. | 
|  | // - Zero extend to the desired bit width. | 
|  | // - Shift left. | 
|  | assert(Origin && "No original load to compare against."); | 
|  | unsigned BitWidth = Origin->getValueSizeInBits(0); | 
|  | assert(Inst && "This slice is not bound to an instruction"); | 
|  | assert(Inst->getValueSizeInBits(0) <= BitWidth && | 
|  | "Extracted slice is bigger than the whole type!"); | 
|  | APInt UsedBits(Inst->getValueSizeInBits(0), 0); | 
|  | UsedBits.setAllBits(); | 
|  | UsedBits = UsedBits.zext(BitWidth); | 
|  | UsedBits <<= Shift; | 
|  | return UsedBits; | 
|  | } | 
|  |  | 
|  | /// \brief Get the size of the slice to be loaded in bytes. | 
|  | unsigned getLoadedSize() const { | 
|  | unsigned SliceSize = getUsedBits().countPopulation(); | 
|  | assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); | 
|  | return SliceSize / 8; | 
|  | } | 
|  |  | 
|  | /// \brief Get the type that will be loaded for this slice. | 
|  | /// Note: This may not be the final type for the slice. | 
|  | EVT getLoadedType() const { | 
|  | assert(DAG && "Missing context"); | 
|  | LLVMContext &Ctxt = *DAG->getContext(); | 
|  | return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); | 
|  | } | 
|  |  | 
|  | /// \brief Get the alignment of the load used for this slice. | 
|  | unsigned getAlignment() const { | 
|  | unsigned Alignment = Origin->getAlignment(); | 
|  | unsigned Offset = getOffsetFromBase(); | 
|  | if (Offset != 0) | 
|  | Alignment = MinAlign(Alignment, Alignment + Offset); | 
|  | return Alignment; | 
|  | } | 
|  |  | 
|  | /// \brief Check if this slice can be rewritten with legal operations. | 
|  | bool isLegal() const { | 
|  | // An invalid slice is not legal. | 
|  | if (!Origin || !Inst || !DAG) | 
|  | return false; | 
|  |  | 
|  | // Offsets are for indexed load only, we do not handle that. | 
|  | if (Origin->getOffset().getOpcode() != ISD::UNDEF) | 
|  | return false; | 
|  |  | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  |  | 
|  | // Check that the type is legal. | 
|  | EVT SliceType = getLoadedType(); | 
|  | if (!TLI.isTypeLegal(SliceType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the load is legal for this type. | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the offset can be computed. | 
|  | // 1. Check its type. | 
|  | EVT PtrType = Origin->getBasePtr().getValueType(); | 
|  | if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
|  | return false; | 
|  |  | 
|  | // 2. Check that it fits in the immediate. | 
|  | if (!TLI.isLegalAddImmediate(getOffsetFromBase())) | 
|  | return false; | 
|  |  | 
|  | // 3. Check that the computation is legal. | 
|  | if (!TLI.isOperationLegal(ISD::ADD, PtrType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the zext is legal if it needs one. | 
|  | EVT TruncateType = Inst->getValueType(0); | 
|  | if (TruncateType != SliceType && | 
|  | !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Get the offset in bytes of this slice in the original chunk of | 
|  | /// bits. | 
|  | /// \pre DAG != nullptr. | 
|  | uint64_t getOffsetFromBase() const { | 
|  | assert(DAG && "Missing context."); | 
|  | bool IsBigEndian = DAG->getDataLayout().isBigEndian(); | 
|  | assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); | 
|  | uint64_t Offset = Shift / 8; | 
|  | unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; | 
|  | assert(!(Origin->getValueSizeInBits(0) & 0x7) && | 
|  | "The size of the original loaded type is not a multiple of a" | 
|  | " byte."); | 
|  | // If Offset is bigger than TySizeInBytes, it means we are loading all | 
|  | // zeros. This should have been optimized before in the process. | 
|  | assert(TySizeInBytes > Offset && | 
|  | "Invalid shift amount for given loaded size"); | 
|  | if (IsBigEndian) | 
|  | Offset = TySizeInBytes - Offset - getLoadedSize(); | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// \brief Generate the sequence of instructions to load the slice | 
|  | /// represented by this object and redirect the uses of this slice to | 
|  | /// this new sequence of instructions. | 
|  | /// \pre this->Inst && this->Origin are valid Instructions and this | 
|  | /// object passed the legal check: LoadedSlice::isLegal returned true. | 
|  | /// \return The last instruction of the sequence used to load the slice. | 
|  | SDValue loadSlice() const { | 
|  | assert(Inst && Origin && "Unable to replace a non-existing slice."); | 
|  | const SDValue &OldBaseAddr = Origin->getBasePtr(); | 
|  | SDValue BaseAddr = OldBaseAddr; | 
|  | // Get the offset in that chunk of bytes w.r.t. the endianess. | 
|  | int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); | 
|  | assert(Offset >= 0 && "Offset too big to fit in int64_t!"); | 
|  | if (Offset) { | 
|  | // BaseAddr = BaseAddr + Offset. | 
|  | EVT ArithType = BaseAddr.getValueType(); | 
|  | SDLoc DL(Origin); | 
|  | BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, | 
|  | DAG->getConstant(Offset, DL, ArithType)); | 
|  | } | 
|  |  | 
|  | // Create the type of the loaded slice according to its size. | 
|  | EVT SliceType = getLoadedType(); | 
|  |  | 
|  | // Create the load for the slice. | 
|  | SDValue LastInst = DAG->getLoad( | 
|  | SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, | 
|  | Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), | 
|  | Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); | 
|  | // If the final type is not the same as the loaded type, this means that | 
|  | // we have to pad with zero. Create a zero extend for that. | 
|  | EVT FinalType = Inst->getValueType(0); | 
|  | if (SliceType != FinalType) | 
|  | LastInst = | 
|  | DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); | 
|  | return LastInst; | 
|  | } | 
|  |  | 
|  | /// \brief Check if this slice can be merged with an expensive cross register | 
|  | /// bank copy. E.g., | 
|  | /// i = load i32 | 
|  | /// f = bitcast i32 i to float | 
|  | bool canMergeExpensiveCrossRegisterBankCopy() const { | 
|  | if (!Inst || !Inst->hasOneUse()) | 
|  | return false; | 
|  | SDNode *Use = *Inst->use_begin(); | 
|  | if (Use->getOpcode() != ISD::BITCAST) | 
|  | return false; | 
|  | assert(DAG && "Missing context"); | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  | EVT ResVT = Use->getValueType(0); | 
|  | const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); | 
|  | const TargetRegisterClass *ArgRC = | 
|  | TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); | 
|  | if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
|  | return false; | 
|  |  | 
|  | // At this point, we know that we perform a cross-register-bank copy. | 
|  | // Check if it is expensive. | 
|  | const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); | 
|  | // Assume bitcasts are cheap, unless both register classes do not | 
|  | // explicitly share a common sub class. | 
|  | if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) | 
|  | return false; | 
|  |  | 
|  | // Check if it will be merged with the load. | 
|  | // 1. Check the alignment constraint. | 
|  | unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( | 
|  | ResVT.getTypeForEVT(*DAG->getContext())); | 
|  |  | 
|  | if (RequiredAlignment > getAlignment()) | 
|  | return false; | 
|  |  | 
|  | // 2. Check that the load is a legal operation for that type. | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
|  | return false; | 
|  |  | 
|  | // 3. Check that we do not have a zext in the way. | 
|  | if (Inst->getValueType(0) != getLoadedType()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., | 
|  | /// \p UsedBits looks like 0..0 1..1 0..0. | 
|  | static bool areUsedBitsDense(const APInt &UsedBits) { | 
|  | // If all the bits are one, this is dense! | 
|  | if (UsedBits.isAllOnesValue()) | 
|  | return true; | 
|  |  | 
|  | // Get rid of the unused bits on the right. | 
|  | APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); | 
|  | // Get rid of the unused bits on the left. | 
|  | if (NarrowedUsedBits.countLeadingZeros()) | 
|  | NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); | 
|  | // Check that the chunk of bits is completely used. | 
|  | return NarrowedUsedBits.isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Check whether or not \p First and \p Second are next to each other | 
|  | /// in memory. This means that there is no hole between the bits loaded | 
|  | /// by \p First and the bits loaded by \p Second. | 
|  | static bool areSlicesNextToEachOther(const LoadedSlice &First, | 
|  | const LoadedSlice &Second) { | 
|  | assert(First.Origin == Second.Origin && First.Origin && | 
|  | "Unable to match different memory origins."); | 
|  | APInt UsedBits = First.getUsedBits(); | 
|  | assert((UsedBits & Second.getUsedBits()) == 0 && | 
|  | "Slices are not supposed to overlap."); | 
|  | UsedBits |= Second.getUsedBits(); | 
|  | return areUsedBitsDense(UsedBits); | 
|  | } | 
|  |  | 
|  | /// \brief Adjust the \p GlobalLSCost according to the target | 
|  | /// paring capabilities and the layout of the slices. | 
|  | /// \pre \p GlobalLSCost should account for at least as many loads as | 
|  | /// there is in the slices in \p LoadedSlices. | 
|  | static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
|  | LoadedSlice::Cost &GlobalLSCost) { | 
|  | unsigned NumberOfSlices = LoadedSlices.size(); | 
|  | // If there is less than 2 elements, no pairing is possible. | 
|  | if (NumberOfSlices < 2) | 
|  | return; | 
|  |  | 
|  | // Sort the slices so that elements that are likely to be next to each | 
|  | // other in memory are next to each other in the list. | 
|  | std::sort(LoadedSlices.begin(), LoadedSlices.end(), | 
|  | [](const LoadedSlice &LHS, const LoadedSlice &RHS) { | 
|  | assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); | 
|  | return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); | 
|  | }); | 
|  | const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); | 
|  | // First (resp. Second) is the first (resp. Second) potentially candidate | 
|  | // to be placed in a paired load. | 
|  | const LoadedSlice *First = nullptr; | 
|  | const LoadedSlice *Second = nullptr; | 
|  | for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, | 
|  | // Set the beginning of the pair. | 
|  | First = Second) { | 
|  |  | 
|  | Second = &LoadedSlices[CurrSlice]; | 
|  |  | 
|  | // If First is NULL, it means we start a new pair. | 
|  | // Get to the next slice. | 
|  | if (!First) | 
|  | continue; | 
|  |  | 
|  | EVT LoadedType = First->getLoadedType(); | 
|  |  | 
|  | // If the types of the slices are different, we cannot pair them. | 
|  | if (LoadedType != Second->getLoadedType()) | 
|  | continue; | 
|  |  | 
|  | // Check if the target supplies paired loads for this type. | 
|  | unsigned RequiredAlignment = 0; | 
|  | if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { | 
|  | // move to the next pair, this type is hopeless. | 
|  | Second = nullptr; | 
|  | continue; | 
|  | } | 
|  | // Check if we meet the alignment requirement. | 
|  | if (RequiredAlignment > First->getAlignment()) | 
|  | continue; | 
|  |  | 
|  | // Check that both loads are next to each other in memory. | 
|  | if (!areSlicesNextToEachOther(*First, *Second)) | 
|  | continue; | 
|  |  | 
|  | assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); | 
|  | --GlobalLSCost.Loads; | 
|  | // Move to the next pair. | 
|  | Second = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Check the profitability of all involved LoadedSlice. | 
|  | /// Currently, it is considered profitable if there is exactly two | 
|  | /// involved slices (1) which are (2) next to each other in memory, and | 
|  | /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). | 
|  | /// | 
|  | /// Note: The order of the elements in \p LoadedSlices may be modified, but not | 
|  | /// the elements themselves. | 
|  | /// | 
|  | /// FIXME: When the cost model will be mature enough, we can relax | 
|  | /// constraints (1) and (2). | 
|  | static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
|  | const APInt &UsedBits, bool ForCodeSize) { | 
|  | unsigned NumberOfSlices = LoadedSlices.size(); | 
|  | if (StressLoadSlicing) | 
|  | return NumberOfSlices > 1; | 
|  |  | 
|  | // Check (1). | 
|  | if (NumberOfSlices != 2) | 
|  | return false; | 
|  |  | 
|  | // Check (2). | 
|  | if (!areUsedBitsDense(UsedBits)) | 
|  | return false; | 
|  |  | 
|  | // Check (3). | 
|  | LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); | 
|  | // The original code has one big load. | 
|  | OrigCost.Loads = 1; | 
|  | for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { | 
|  | const LoadedSlice &LS = LoadedSlices[CurrSlice]; | 
|  | // Accumulate the cost of all the slices. | 
|  | LoadedSlice::Cost SliceCost(LS, ForCodeSize); | 
|  | GlobalSlicingCost += SliceCost; | 
|  |  | 
|  | // Account as cost in the original configuration the gain obtained | 
|  | // with the current slices. | 
|  | OrigCost.addSliceGain(LS); | 
|  | } | 
|  |  | 
|  | // If the target supports paired load, adjust the cost accordingly. | 
|  | adjustCostForPairing(LoadedSlices, GlobalSlicingCost); | 
|  | return OrigCost > GlobalSlicingCost; | 
|  | } | 
|  |  | 
|  | /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) | 
|  | /// operations, split it in the various pieces being extracted. | 
|  | /// | 
|  | /// This sort of thing is introduced by SROA. | 
|  | /// This slicing takes care not to insert overlapping loads. | 
|  | /// \pre LI is a simple load (i.e., not an atomic or volatile load). | 
|  | bool DAGCombiner::SliceUpLoad(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | if (LD->isVolatile() || !ISD::isNormalLoad(LD) || | 
|  | !LD->getValueType(0).isInteger()) | 
|  | return false; | 
|  |  | 
|  | // Keep track of already used bits to detect overlapping values. | 
|  | // In that case, we will just abort the transformation. | 
|  | APInt UsedBits(LD->getValueSizeInBits(0), 0); | 
|  |  | 
|  | SmallVector<LoadedSlice, 4> LoadedSlices; | 
|  |  | 
|  | // Check if this load is used as several smaller chunks of bits. | 
|  | // Basically, look for uses in trunc or trunc(lshr) and record a new chain | 
|  | // of computation for each trunc. | 
|  | for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); | 
|  | UI != UIEnd; ++UI) { | 
|  | // Skip the uses of the chain. | 
|  | if (UI.getUse().getResNo() != 0) | 
|  | continue; | 
|  |  | 
|  | SDNode *User = *UI; | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // Check if this is a trunc(lshr). | 
|  | if (User->getOpcode() == ISD::SRL && User->hasOneUse() && | 
|  | isa<ConstantSDNode>(User->getOperand(1))) { | 
|  | Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | // At this point, User is a Truncate, iff we encountered, trunc or | 
|  | // trunc(lshr). | 
|  | if (User->getOpcode() != ISD::TRUNCATE) | 
|  | return false; | 
|  |  | 
|  | // The width of the type must be a power of 2 and greater than 8-bits. | 
|  | // Otherwise the load cannot be represented in LLVM IR. | 
|  | // Moreover, if we shifted with a non-8-bits multiple, the slice | 
|  | // will be across several bytes. We do not support that. | 
|  | unsigned Width = User->getValueSizeInBits(0); | 
|  | if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) | 
|  | return 0; | 
|  |  | 
|  | // Build the slice for this chain of computations. | 
|  | LoadedSlice LS(User, LD, Shift, &DAG); | 
|  | APInt CurrentUsedBits = LS.getUsedBits(); | 
|  |  | 
|  | // Check if this slice overlaps with another. | 
|  | if ((CurrentUsedBits & UsedBits) != 0) | 
|  | return false; | 
|  | // Update the bits used globally. | 
|  | UsedBits |= CurrentUsedBits; | 
|  |  | 
|  | // Check if the new slice would be legal. | 
|  | if (!LS.isLegal()) | 
|  | return false; | 
|  |  | 
|  | // Record the slice. | 
|  | LoadedSlices.push_back(LS); | 
|  | } | 
|  |  | 
|  | // Abort slicing if it does not seem to be profitable. | 
|  | if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) | 
|  | return false; | 
|  |  | 
|  | ++SlicedLoads; | 
|  |  | 
|  | // Rewrite each chain to use an independent load. | 
|  | // By construction, each chain can be represented by a unique load. | 
|  |  | 
|  | // Prepare the argument for the new token factor for all the slices. | 
|  | SmallVector<SDValue, 8> ArgChains; | 
|  | for (SmallVectorImpl<LoadedSlice>::const_iterator | 
|  | LSIt = LoadedSlices.begin(), | 
|  | LSItEnd = LoadedSlices.end(); | 
|  | LSIt != LSItEnd; ++LSIt) { | 
|  | SDValue SliceInst = LSIt->loadSlice(); | 
|  | CombineTo(LSIt->Inst, SliceInst, true); | 
|  | if (SliceInst.getNode()->getOpcode() != ISD::LOAD) | 
|  | SliceInst = SliceInst.getOperand(0); | 
|  | assert(SliceInst->getOpcode() == ISD::LOAD && | 
|  | "It takes more than a zext to get to the loaded slice!!"); | 
|  | ArgChains.push_back(SliceInst.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, | 
|  | ArgChains); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check to see if V is (and load (ptr), imm), where the load is having | 
|  | /// specific bytes cleared out.  If so, return the byte size being masked out | 
|  | /// and the shift amount. | 
|  | static std::pair<unsigned, unsigned> | 
|  | CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { | 
|  | std::pair<unsigned, unsigned> Result(0, 0); | 
|  |  | 
|  | // Check for the structure we're looking for. | 
|  | if (V->getOpcode() != ISD::AND || | 
|  | !isa<ConstantSDNode>(V->getOperand(1)) || | 
|  | !ISD::isNormalLoad(V->getOperand(0).getNode())) | 
|  | return Result; | 
|  |  | 
|  | // Check the chain and pointer. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); | 
|  | if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. | 
|  |  | 
|  | // The store should be chained directly to the load or be an operand of a | 
|  | // tokenfactor. | 
|  | if (LD == Chain.getNode()) | 
|  | ; // ok. | 
|  | else if (Chain->getOpcode() != ISD::TokenFactor) | 
|  | return Result; // Fail. | 
|  | else { | 
|  | bool isOk = false; | 
|  | for (const SDValue &ChainOp : Chain->op_values()) | 
|  | if (ChainOp.getNode() == LD) { | 
|  | isOk = true; | 
|  | break; | 
|  | } | 
|  | if (!isOk) return Result; | 
|  | } | 
|  |  | 
|  | // This only handles simple types. | 
|  | if (V.getValueType() != MVT::i16 && | 
|  | V.getValueType() != MVT::i32 && | 
|  | V.getValueType() != MVT::i64) | 
|  | return Result; | 
|  |  | 
|  | // Check the constant mask.  Invert it so that the bits being masked out are | 
|  | // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits | 
|  | // follow the sign bit for uniformity. | 
|  | uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); | 
|  | unsigned NotMaskLZ = countLeadingZeros(NotMask); | 
|  | if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. | 
|  | unsigned NotMaskTZ = countTrailingZeros(NotMask); | 
|  | if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. | 
|  | if (NotMaskLZ == 64) return Result;  // All zero mask. | 
|  |  | 
|  | // See if we have a continuous run of bits.  If so, we have 0*1+0* | 
|  | if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) | 
|  | return Result; | 
|  |  | 
|  | // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. | 
|  | if (V.getValueType() != MVT::i64 && NotMaskLZ) | 
|  | NotMaskLZ -= 64-V.getValueSizeInBits(); | 
|  |  | 
|  | unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; | 
|  | switch (MaskedBytes) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: break; | 
|  | default: return Result; // All one mask, or 5-byte mask. | 
|  | } | 
|  |  | 
|  | // Verify that the first bit starts at a multiple of mask so that the access | 
|  | // is aligned the same as the access width. | 
|  | if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; | 
|  |  | 
|  | Result.first = MaskedBytes; | 
|  | Result.second = NotMaskTZ/8; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Check to see if IVal is something that provides a value as specified by | 
|  | /// MaskInfo. If so, replace the specified store with a narrower store of | 
|  | /// truncated IVal. | 
|  | static SDNode * | 
|  | ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, | 
|  | SDValue IVal, StoreSDNode *St, | 
|  | DAGCombiner *DC) { | 
|  | unsigned NumBytes = MaskInfo.first; | 
|  | unsigned ByteShift = MaskInfo.second; | 
|  | SelectionDAG &DAG = DC->getDAG(); | 
|  |  | 
|  | // Check to see if IVal is all zeros in the part being masked in by the 'or' | 
|  | // that uses this.  If not, this is not a replacement. | 
|  | APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), | 
|  | ByteShift*8, (ByteShift+NumBytes)*8); | 
|  | if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; | 
|  |  | 
|  | // Check that it is legal on the target to do this.  It is legal if the new | 
|  | // VT we're shrinking to (i8/i16/i32) is legal or we're still before type | 
|  | // legalization. | 
|  | MVT VT = MVT::getIntegerVT(NumBytes*8); | 
|  | if (!DC->isTypeLegal(VT)) | 
|  | return nullptr; | 
|  |  | 
|  | // Okay, we can do this!  Replace the 'St' store with a store of IVal that is | 
|  | // shifted by ByteShift and truncated down to NumBytes. | 
|  | if (ByteShift) { | 
|  | SDLoc DL(IVal); | 
|  | IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, | 
|  | DAG.getConstant(ByteShift*8, DL, | 
|  | DC->getShiftAmountTy(IVal.getValueType()))); | 
|  | } | 
|  |  | 
|  | // Figure out the offset for the store and the alignment of the access. | 
|  | unsigned StOffset; | 
|  | unsigned NewAlign = St->getAlignment(); | 
|  |  | 
|  | if (DAG.getDataLayout().isLittleEndian()) | 
|  | StOffset = ByteShift; | 
|  | else | 
|  | StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; | 
|  |  | 
|  | SDValue Ptr = St->getBasePtr(); | 
|  | if (StOffset) { | 
|  | SDLoc DL(IVal); | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), | 
|  | Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); | 
|  | NewAlign = MinAlign(NewAlign, StOffset); | 
|  | } | 
|  |  | 
|  | // Truncate down to the new size. | 
|  | IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); | 
|  |  | 
|  | ++OpsNarrowed; | 
|  | return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, | 
|  | St->getPointerInfo().getWithOffset(StOffset), | 
|  | false, false, NewAlign).getNode(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Look for sequence of load / op / store where op is one of 'or', 'xor', and | 
|  | /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try | 
|  | /// narrowing the load and store if it would end up being a win for performance | 
|  | /// or code size. | 
|  | SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | if (ST->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  | EVT VT = Value.getValueType(); | 
|  |  | 
|  | if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opc = Value.getOpcode(); | 
|  |  | 
|  | // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst | 
|  | // is a byte mask indicating a consecutive number of bytes, check to see if | 
|  | // Y is known to provide just those bytes.  If so, we try to replace the | 
|  | // load + replace + store sequence with a single (narrower) store, which makes | 
|  | // the load dead. | 
|  | if (Opc == ISD::OR) { | 
|  | std::pair<unsigned, unsigned> MaskedLoad; | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(1), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  |  | 
|  | // Or is commutative, so try swapping X and Y. | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(0), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  | } | 
|  |  | 
|  | if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || | 
|  | Value.getOperand(1).getOpcode() != ISD::Constant) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = Value.getOperand(0); | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | Chain == SDValue(N0.getNode(), 1)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N0); | 
|  | if (LD->getBasePtr() != Ptr || | 
|  | LD->getPointerInfo().getAddrSpace() != | 
|  | ST->getPointerInfo().getAddrSpace()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the type to narrow it the load / op / store to. | 
|  | SDValue N1 = Value.getOperand(1); | 
|  | unsigned BitWidth = N1.getValueSizeInBits(); | 
|  | APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); | 
|  | if (Opc == ISD::AND) | 
|  | Imm ^= APInt::getAllOnesValue(BitWidth); | 
|  | if (Imm == 0 || Imm.isAllOnesValue()) | 
|  | return SDValue(); | 
|  | unsigned ShAmt = Imm.countTrailingZeros(); | 
|  | unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; | 
|  | unsigned NewBW = NextPowerOf2(MSB - ShAmt); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | // The narrowing should be profitable, the load/store operation should be | 
|  | // legal (or custom) and the store size should be equal to the NewVT width. | 
|  | while (NewBW < BitWidth && | 
|  | (NewVT.getStoreSizeInBits() != NewBW || | 
|  | !TLI.isOperationLegalOrCustom(Opc, NewVT) || | 
|  | !TLI.isNarrowingProfitable(VT, NewVT))) { | 
|  | NewBW = NextPowerOf2(NewBW); | 
|  | NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | } | 
|  | if (NewBW >= BitWidth) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the lsb changed does not start at the type bitwidth boundary, | 
|  | // start at the previous one. | 
|  | if (ShAmt % NewBW) | 
|  | ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; | 
|  | APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, | 
|  | std::min(BitWidth, ShAmt + NewBW)); | 
|  | if ((Imm & Mask) == Imm) { | 
|  | APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); | 
|  | if (Opc == ISD::AND) | 
|  | NewImm ^= APInt::getAllOnesValue(NewBW); | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; | 
|  |  | 
|  | unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); | 
|  | Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); | 
|  | if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), | 
|  | Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(PtrOff, SDLoc(LD), | 
|  | Ptr.getValueType())); | 
|  | SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), | 
|  | LD->getChain(), NewPtr, | 
|  | LD->getPointerInfo().getWithOffset(PtrOff), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), NewAlign, | 
|  | LD->getAAInfo()); | 
|  | SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, | 
|  | DAG.getConstant(NewImm, SDLoc(Value), | 
|  | NewVT)); | 
|  | SDValue NewST = DAG.getStore(Chain, SDLoc(N), | 
|  | NewVal, NewPtr, | 
|  | ST->getPointerInfo().getWithOffset(PtrOff), | 
|  | false, false, NewAlign); | 
|  |  | 
|  | AddToWorklist(NewPtr.getNode()); | 
|  | AddToWorklist(NewLD.getNode()); | 
|  | AddToWorklist(NewVal.getNode()); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); | 
|  | ++OpsNarrowed; | 
|  | return NewST; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// For a given floating point load / store pair, if the load value isn't used | 
|  | /// by any other operations, then consider transforming the pair to integer | 
|  | /// load / store operations if the target deems the transformation profitable. | 
|  | SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && | 
|  | Value.hasOneUse() && | 
|  | Chain == SDValue(Value.getNode(), 1)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Value); | 
|  | EVT VT = LD->getMemoryVT(); | 
|  | if (!VT.isFloatingPoint() || | 
|  | VT != ST->getMemoryVT() || | 
|  | LD->isNonTemporal() || | 
|  | ST->isNonTemporal() || | 
|  | LD->getPointerInfo().getAddrSpace() != 0 || | 
|  | ST->getPointerInfo().getAddrSpace() != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || | 
|  | !TLI.isOperationLegal(ISD::STORE, IntVT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned LDAlign = LD->getAlignment(); | 
|  | unsigned STAlign = ST->getAlignment(); | 
|  | Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); | 
|  | if (LDAlign < ABIAlign || STAlign < ABIAlign) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | LD->getPointerInfo(), | 
|  | false, false, false, LDAlign); | 
|  |  | 
|  | SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), | 
|  | NewLD, ST->getBasePtr(), | 
|  | ST->getPointerInfo(), | 
|  | false, false, STAlign); | 
|  |  | 
|  | AddToWorklist(NewLD.getNode()); | 
|  | AddToWorklist(NewST.getNode()); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); | 
|  | ++LdStFP2Int; | 
|  | return NewST; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Helper struct to parse and store a memory address as base + index + offset. | 
|  | /// We ignore sign extensions when it is safe to do so. | 
|  | /// The following two expressions are not equivalent. To differentiate we need | 
|  | /// to store whether there was a sign extension involved in the index | 
|  | /// computation. | 
|  | ///  (load (i64 add (i64 copyfromreg %c) | 
|  | ///                 (i64 signextend (add (i8 load %index) | 
|  | ///                                      (i8 1)))) | 
|  | /// vs | 
|  | /// | 
|  | /// (load (i64 add (i64 copyfromreg %c) | 
|  | ///                (i64 signextend (i32 add (i32 signextend (i8 load %index)) | 
|  | ///                                         (i32 1))))) | 
|  | struct BaseIndexOffset { | 
|  | SDValue Base; | 
|  | SDValue Index; | 
|  | int64_t Offset; | 
|  | bool IsIndexSignExt; | 
|  |  | 
|  | BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} | 
|  |  | 
|  | BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, | 
|  | bool IsIndexSignExt) : | 
|  | Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} | 
|  |  | 
|  | bool equalBaseIndex(const BaseIndexOffset &Other) { | 
|  | return Other.Base == Base && Other.Index == Index && | 
|  | Other.IsIndexSignExt == IsIndexSignExt; | 
|  | } | 
|  |  | 
|  | /// Parses tree in Ptr for base, index, offset addresses. | 
|  | static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { | 
|  | bool IsIndexSignExt = false; | 
|  |  | 
|  | // Split up a folded GlobalAddress+Offset into its component parts. | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) | 
|  | if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { | 
|  | return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), | 
|  | SDLoc(GA), | 
|  | GA->getValueType(0), | 
|  | /*Offset=*/0, | 
|  | /*isTargetGA=*/false, | 
|  | GA->getTargetFlags()), | 
|  | SDValue(), | 
|  | GA->getOffset(), | 
|  | IsIndexSignExt); | 
|  | } | 
|  |  | 
|  | // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD | 
|  | // instruction, then it could be just the BASE or everything else we don't | 
|  | // know how to handle. Just use Ptr as BASE and give up. | 
|  | if (Ptr->getOpcode() != ISD::ADD) | 
|  | return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); | 
|  |  | 
|  | // We know that we have at least an ADD instruction. Try to pattern match | 
|  | // the simple case of BASE + OFFSET. | 
|  | if (isa<ConstantSDNode>(Ptr->getOperand(1))) { | 
|  | int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); | 
|  | return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, | 
|  | IsIndexSignExt); | 
|  | } | 
|  |  | 
|  | // Inside a loop the current BASE pointer is calculated using an ADD and a | 
|  | // MUL instruction. In this case Ptr is the actual BASE pointer. | 
|  | // (i64 add (i64 %array_ptr) | 
|  | //          (i64 mul (i64 %induction_var) | 
|  | //                   (i64 %element_size))) | 
|  | if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) | 
|  | return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); | 
|  |  | 
|  | // Look at Base + Index + Offset cases. | 
|  | SDValue Base = Ptr->getOperand(0); | 
|  | SDValue IndexOffset = Ptr->getOperand(1); | 
|  |  | 
|  | // Skip signextends. | 
|  | if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { | 
|  | IndexOffset = IndexOffset->getOperand(0); | 
|  | IsIndexSignExt = true; | 
|  | } | 
|  |  | 
|  | // Either the case of Base + Index (no offset) or something else. | 
|  | if (IndexOffset->getOpcode() != ISD::ADD) | 
|  | return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); | 
|  |  | 
|  | // Now we have the case of Base + Index + offset. | 
|  | SDValue Index = IndexOffset->getOperand(0); | 
|  | SDValue Offset = IndexOffset->getOperand(1); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Offset)) | 
|  | return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); | 
|  |  | 
|  | // Ignore signextends. | 
|  | if (Index->getOpcode() == ISD::SIGN_EXTEND) { | 
|  | Index = Index->getOperand(0); | 
|  | IsIndexSignExt = true; | 
|  | } else IsIndexSignExt = false; | 
|  |  | 
|  | int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); | 
|  | return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | // This is a helper function for visitMUL to check the profitability | 
|  | // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
|  | // MulNode is the original multiply, AddNode is (add x, c1), | 
|  | // and ConstNode is c2. | 
|  | // | 
|  | // If the (add x, c1) has multiple uses, we could increase | 
|  | // the number of adds if we make this transformation. | 
|  | // It would only be worth doing this if we can remove a | 
|  | // multiply in the process. Check for that here. | 
|  | // To illustrate: | 
|  | //     (A + c1) * c3 | 
|  | //     (A + c2) * c3 | 
|  | // We're checking for cases where we have common "c3 * A" expressions. | 
|  | bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, | 
|  | SDValue &AddNode, | 
|  | SDValue &ConstNode) { | 
|  | APInt Val; | 
|  |  | 
|  | // If the add only has one use, this would be OK to do. | 
|  | if (AddNode.getNode()->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Walk all the users of the constant with which we're multiplying. | 
|  | for (SDNode *Use : ConstNode->uses()) { | 
|  |  | 
|  | if (Use == MulNode) // This use is the one we're on right now. Skip it. | 
|  | continue; | 
|  |  | 
|  | if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. | 
|  | SDNode *OtherOp; | 
|  | SDNode *MulVar = AddNode.getOperand(0).getNode(); | 
|  |  | 
|  | // OtherOp is what we're multiplying against the constant. | 
|  | if (Use->getOperand(0) == ConstNode) | 
|  | OtherOp = Use->getOperand(1).getNode(); | 
|  | else | 
|  | OtherOp = Use->getOperand(0).getNode(); | 
|  |  | 
|  | // Check to see if multiply is with the same operand of our "add". | 
|  | // | 
|  | //     ConstNode  = CONST | 
|  | //     Use = ConstNode * A  <-- visiting Use. OtherOp is A. | 
|  | //     ... | 
|  | //     AddNode  = (A + c1)  <-- MulVar is A. | 
|  | //         = AddNode * ConstNode   <-- current visiting instruction. | 
|  | // | 
|  | // If we make this transformation, we will have a common | 
|  | // multiply (ConstNode * A) that we can save. | 
|  | if (OtherOp == MulVar) | 
|  | return true; | 
|  |  | 
|  | // Now check to see if a future expansion will give us a common | 
|  | // multiply. | 
|  | // | 
|  | //     ConstNode  = CONST | 
|  | //     AddNode    = (A + c1) | 
|  | //     ...   = AddNode * ConstNode <-- current visiting instruction. | 
|  | //     ... | 
|  | //     OtherOp = (A + c2) | 
|  | //     Use     = OtherOp * ConstNode <-- visiting Use. | 
|  | // | 
|  | // If we make this transformation, we will have a common | 
|  | // multiply (CONST * A) after we also do the same transformation | 
|  | // to the "t2" instruction. | 
|  | if (OtherOp->getOpcode() == ISD::ADD && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && | 
|  | OtherOp->getOperand(0).getNode() == MulVar) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Didn't find a case where this would be profitable. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG, | 
|  | SDLoc SL, | 
|  | ArrayRef<MemOpLink> Stores, | 
|  | SmallVectorImpl<SDValue> &Chains, | 
|  | EVT Ty) const { | 
|  | SmallVector<SDValue, 8> BuildVector; | 
|  |  | 
|  | for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); | 
|  | Chains.push_back(St->getChain()); | 
|  | BuildVector.push_back(St->getValue()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::MergeStoresOfConstantsOrVecElts( | 
|  | SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, | 
|  | unsigned NumStores, bool IsConstantSrc, bool UseVector) { | 
|  | // Make sure we have something to merge. | 
|  | if (NumStores < 2) | 
|  | return false; | 
|  |  | 
|  | int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | unsigned LatestNodeUsed = 0; | 
|  |  | 
|  | for (unsigned i=0; i < NumStores; ++i) { | 
|  | // Find a chain for the new wide-store operand. Notice that some | 
|  | // of the store nodes that we found may not be selected for inclusion | 
|  | // in the wide store. The chain we use needs to be the chain of the | 
|  | // latest store node which is *used* and replaced by the wide store. | 
|  | if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) | 
|  | LatestNodeUsed = i; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> Chains; | 
|  |  | 
|  | // The latest Node in the DAG. | 
|  | LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; | 
|  | SDLoc DL(StoreNodes[0].MemNode); | 
|  |  | 
|  | SDValue StoredVal; | 
|  | if (UseVector) { | 
|  | bool IsVec = MemVT.isVector(); | 
|  | unsigned Elts = NumStores; | 
|  | if (IsVec) { | 
|  | // When merging vector stores, get the total number of elements. | 
|  | Elts *= MemVT.getVectorNumElements(); | 
|  | } | 
|  | // Get the type for the merged vector store. | 
|  | EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
|  | assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); | 
|  |  | 
|  | if (IsConstantSrc) { | 
|  | StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); | 
|  | } else { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | SDValue Val = St->getValue(); | 
|  | // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. | 
|  | if (Val.getValueType() != MemVT) | 
|  | return false; | 
|  | Ops.push_back(Val); | 
|  | Chains.push_back(St->getChain()); | 
|  | } | 
|  |  | 
|  | // Build the extracted vector elements back into a vector. | 
|  | StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, | 
|  | DL, Ty, Ops);    } | 
|  | } else { | 
|  | // We should always use a vector store when merging extracted vector | 
|  | // elements, so this path implies a store of constants. | 
|  | assert(IsConstantSrc && "Merged vector elements should use vector store"); | 
|  |  | 
|  | unsigned SizeInBits = NumStores * ElementSizeBytes * 8; | 
|  | APInt StoreInt(SizeInBits, 0); | 
|  |  | 
|  | // Construct a single integer constant which is made of the smaller | 
|  | // constant inputs. | 
|  | bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | unsigned Idx = IsLE ? (NumStores - 1 - i) : i; | 
|  | StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode); | 
|  | Chains.push_back(St->getChain()); | 
|  |  | 
|  | SDValue Val = St->getValue(); | 
|  | StoreInt <<= ElementSizeBytes * 8; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { | 
|  | StoreInt |= C->getAPIntValue().zext(SizeInBits); | 
|  | } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { | 
|  | StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); | 
|  | } else { | 
|  | llvm_unreachable("Invalid constant element type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the new Load and Store operations. | 
|  | EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); | 
|  | StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); | 
|  | } | 
|  |  | 
|  | assert(!Chains.empty()); | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, | 
|  | FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), | 
|  | false, false, | 
|  | FirstInChain->getAlignment()); | 
|  |  | 
|  | // Replace the last store with the new store | 
|  | CombineTo(LatestOp, NewStore); | 
|  | // Erase all other stores. | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | if (StoreNodes[i].MemNode == LatestOp) | 
|  | continue; | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | // ReplaceAllUsesWith will replace all uses that existed when it was | 
|  | // called, but graph optimizations may cause new ones to appear. For | 
|  | // example, the case in pr14333 looks like | 
|  | // | 
|  | //  St's chain -> St -> another store -> X | 
|  | // | 
|  | // And the only difference from St to the other store is the chain. | 
|  | // When we change it's chain to be St's chain they become identical, | 
|  | // get CSEed and the net result is that X is now a use of St. | 
|  | // Since we know that St is redundant, just iterate. | 
|  | while (!St->use_empty()) | 
|  | DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); | 
|  | deleteAndRecombine(St); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::getStoreMergeAndAliasCandidates( | 
|  | StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { | 
|  | // This holds the base pointer, index, and the offset in bytes from the base | 
|  | // pointer. | 
|  | BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); | 
|  |  | 
|  | // We must have a base and an offset. | 
|  | if (!BasePtr.Base.getNode()) | 
|  | return; | 
|  |  | 
|  | // Do not handle stores to undef base pointers. | 
|  | if (BasePtr.Base.getOpcode() == ISD::UNDEF) | 
|  | return; | 
|  |  | 
|  | // Walk up the chain and look for nodes with offsets from the same | 
|  | // base pointer. Stop when reaching an instruction with a different kind | 
|  | // or instruction which has a different base pointer. | 
|  | EVT MemVT = St->getMemoryVT(); | 
|  | unsigned Seq = 0; | 
|  | StoreSDNode *Index = St; | 
|  |  | 
|  |  | 
|  | bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  |  | 
|  | if (UseAA) { | 
|  | // Look at other users of the same chain. Stores on the same chain do not | 
|  | // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized | 
|  | // to be on the same chain, so don't bother looking at adjacent chains. | 
|  |  | 
|  | SDValue Chain = St->getChain(); | 
|  | for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { | 
|  | if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { | 
|  | if (I.getOperandNo() != 0) | 
|  | continue; | 
|  |  | 
|  | if (OtherST->isVolatile() || OtherST->isIndexed()) | 
|  | continue; | 
|  |  | 
|  | if (OtherST->getMemoryVT() != MemVT) | 
|  | continue; | 
|  |  | 
|  | BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); | 
|  |  | 
|  | if (Ptr.equalBaseIndex(BasePtr)) | 
|  | StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (Index) { | 
|  | // If the chain has more than one use, then we can't reorder the mem ops. | 
|  | if (Index != St && !SDValue(Index, 0)->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // Find the base pointer and offset for this memory node. | 
|  | BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); | 
|  |  | 
|  | // Check that the base pointer is the same as the original one. | 
|  | if (!Ptr.equalBaseIndex(BasePtr)) | 
|  | break; | 
|  |  | 
|  | // The memory operands must not be volatile. | 
|  | if (Index->isVolatile() || Index->isIndexed()) | 
|  | break; | 
|  |  | 
|  | // No truncation. | 
|  | if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index)) | 
|  | if (St->isTruncatingStore()) | 
|  | break; | 
|  |  | 
|  | // The stored memory type must be the same. | 
|  | if (Index->getMemoryVT() != MemVT) | 
|  | break; | 
|  |  | 
|  | // We do not allow under-aligned stores in order to prevent | 
|  | // overriding stores. NOTE: this is a bad hack. Alignment SHOULD | 
|  | // be irrelevant here; what MATTERS is that we not move memory | 
|  | // operations that potentially overlap past each-other. | 
|  | if (Index->getAlignment() < MemVT.getStoreSize()) | 
|  | break; | 
|  |  | 
|  | // We found a potential memory operand to merge. | 
|  | StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); | 
|  |  | 
|  | // Find the next memory operand in the chain. If the next operand in the | 
|  | // chain is a store then move up and continue the scan with the next | 
|  | // memory operand. If the next operand is a load save it and use alias | 
|  | // information to check if it interferes with anything. | 
|  | SDNode *NextInChain = Index->getChain().getNode(); | 
|  | while (1) { | 
|  | if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { | 
|  | // We found a store node. Use it for the next iteration. | 
|  | Index = STn; | 
|  | break; | 
|  | } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { | 
|  | if (Ldn->isVolatile()) { | 
|  | Index = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Save the load node for later. Continue the scan. | 
|  | AliasLoadNodes.push_back(Ldn); | 
|  | NextInChain = Ldn->getChain().getNode(); | 
|  | continue; | 
|  | } else { | 
|  | Index = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return false; | 
|  |  | 
|  | EVT MemVT = St->getMemoryVT(); | 
|  | int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; | 
|  | bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( | 
|  | Attribute::NoImplicitFloat); | 
|  |  | 
|  | // This function cannot currently deal with non-byte-sized memory sizes. | 
|  | if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | if (!MemVT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | // Perform an early exit check. Do not bother looking at stored values that | 
|  | // are not constants, loads, or extracted vector elements. | 
|  | SDValue StoredVal = St->getValue(); | 
|  | bool IsLoadSrc = isa<LoadSDNode>(StoredVal); | 
|  | bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || | 
|  | isa<ConstantFPSDNode>(StoredVal); | 
|  | bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
|  | StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); | 
|  |  | 
|  | if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) | 
|  | return false; | 
|  |  | 
|  | // Don't merge vectors into wider vectors if the source data comes from loads. | 
|  | // TODO: This restriction can be lifted by using logic similar to the | 
|  | // ExtractVecSrc case. | 
|  | if (MemVT.isVector() && IsLoadSrc) | 
|  | return false; | 
|  |  | 
|  | // Only look at ends of store sequences. | 
|  | SDValue Chain = SDValue(St, 0); | 
|  | if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) | 
|  | return false; | 
|  |  | 
|  | // Save the LoadSDNodes that we find in the chain. | 
|  | // We need to make sure that these nodes do not interfere with | 
|  | // any of the store nodes. | 
|  | SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; | 
|  |  | 
|  | // Save the StoreSDNodes that we find in the chain. | 
|  | SmallVector<MemOpLink, 8> StoreNodes; | 
|  |  | 
|  | getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); | 
|  |  | 
|  | // Check if there is anything to merge. | 
|  | if (StoreNodes.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // Sort the memory operands according to their distance from the | 
|  | // base pointer.  As a secondary criteria: make sure stores coming | 
|  | // later in the code come first in the list. This is important for | 
|  | // the non-UseAA case, because we're merging stores into the FINAL | 
|  | // store along a chain which potentially contains aliasing stores. | 
|  | // Thus, if there are multiple stores to the same address, the last | 
|  | // one can be considered for merging but not the others. | 
|  | std::sort(StoreNodes.begin(), StoreNodes.end(), | 
|  | [](MemOpLink LHS, MemOpLink RHS) { | 
|  | return LHS.OffsetFromBase < RHS.OffsetFromBase || | 
|  | (LHS.OffsetFromBase == RHS.OffsetFromBase && | 
|  | LHS.SequenceNum < RHS.SequenceNum); | 
|  | }); | 
|  |  | 
|  | // Scan the memory operations on the chain and find the first non-consecutive | 
|  | // store memory address. | 
|  | unsigned LastConsecutiveStore = 0; | 
|  | int64_t StartAddress = StoreNodes[0].OffsetFromBase; | 
|  | for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { | 
|  |  | 
|  | // Check that the addresses are consecutive starting from the second | 
|  | // element in the list of stores. | 
|  | if (i > 0) { | 
|  | int64_t CurrAddress = StoreNodes[i].OffsetFromBase; | 
|  | if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if this store interferes with any of the loads that we found. | 
|  | // If we find a load that alias with this store. Stop the sequence. | 
|  | if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(), | 
|  | [&](LSBaseSDNode* Ldn) { | 
|  | return isAlias(Ldn, StoreNodes[i].MemNode); | 
|  | })) | 
|  | break; | 
|  |  | 
|  | // Mark this node as useful. | 
|  | LastConsecutiveStore = i; | 
|  | } | 
|  |  | 
|  | // The node with the lowest store address. | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
|  | unsigned FirstStoreAlign = FirstInChain->getAlignment(); | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  |  | 
|  | // Store the constants into memory as one consecutive store. | 
|  | if (IsConstantSrc) { | 
|  | unsigned LastLegalType = 0; | 
|  | unsigned LastLegalVectorType = 0; | 
|  | bool NonZero = false; | 
|  | for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { | 
|  | StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | SDValue StoredVal = St->getValue(); | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { | 
|  | NonZero |= !C->isNullValue(); | 
|  | } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { | 
|  | NonZero |= !C->getConstantFPValue()->isNullValue(); | 
|  | } else { | 
|  | // Non-constant. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Find a legal type for the constant store. | 
|  | unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; | 
|  | EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
|  | bool IsFast; | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | 
|  | FirstStoreAlign, &IsFast) && IsFast) { | 
|  | LastLegalType = i+1; | 
|  | // Or check whether a truncstore is legal. | 
|  | } else if (TLI.getTypeAction(Context, StoreTy) == | 
|  | TargetLowering::TypePromoteInteger) { | 
|  | EVT LegalizedStoredValueTy = | 
|  | TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); | 
|  | if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | 
|  | FirstStoreAS, FirstStoreAlign, &IsFast) && | 
|  | IsFast) { | 
|  | LastLegalType = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We only use vectors if the constant is known to be zero or the target | 
|  | // allows it and the function is not marked with the noimplicitfloat | 
|  | // attribute. | 
|  | if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, | 
|  | FirstStoreAS)) && | 
|  | !NoVectors) { | 
|  | // Find a legal type for the vector store. | 
|  | EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); | 
|  | if (TLI.isTypeLegal(Ty) && | 
|  | TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, | 
|  | FirstStoreAlign, &IsFast) && IsFast) | 
|  | LastLegalVectorType = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we found a legal integer type to store. | 
|  | if (LastLegalType == 0 && LastLegalVectorType == 0) | 
|  | return false; | 
|  |  | 
|  | bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; | 
|  | unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; | 
|  |  | 
|  | return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, | 
|  | true, UseVector); | 
|  | } | 
|  |  | 
|  | // When extracting multiple vector elements, try to store them | 
|  | // in one vector store rather than a sequence of scalar stores. | 
|  | if (IsExtractVecSrc) { | 
|  | unsigned NumStoresToMerge = 0; | 
|  | bool IsVec = MemVT.isVector(); | 
|  | for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { | 
|  | StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | unsigned StoreValOpcode = St->getValue().getOpcode(); | 
|  | // This restriction could be loosened. | 
|  | // Bail out if any stored values are not elements extracted from a vector. | 
|  | // It should be possible to handle mixed sources, but load sources need | 
|  | // more careful handling (see the block of code below that handles | 
|  | // consecutive loads). | 
|  | if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && | 
|  | StoreValOpcode != ISD::EXTRACT_SUBVECTOR) | 
|  | return false; | 
|  |  | 
|  | // Find a legal type for the vector store. | 
|  | unsigned Elts = i + 1; | 
|  | if (IsVec) { | 
|  | // When merging vector stores, get the total number of elements. | 
|  | Elts *= MemVT.getVectorNumElements(); | 
|  | } | 
|  | EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
|  | bool IsFast; | 
|  | if (TLI.isTypeLegal(Ty) && | 
|  | TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, | 
|  | FirstStoreAlign, &IsFast) && IsFast) | 
|  | NumStoresToMerge = i + 1; | 
|  | } | 
|  |  | 
|  | return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, | 
|  | false, true); | 
|  | } | 
|  |  | 
|  | // Below we handle the case of multiple consecutive stores that | 
|  | // come from multiple consecutive loads. We merge them into a single | 
|  | // wide load and a single wide store. | 
|  |  | 
|  | // Look for load nodes which are used by the stored values. | 
|  | SmallVector<MemOpLink, 8> LoadNodes; | 
|  |  | 
|  | // Find acceptable loads. Loads need to have the same chain (token factor), | 
|  | // must not be zext, volatile, indexed, and they must be consecutive. | 
|  | BaseIndexOffset LdBasePtr; | 
|  | for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { | 
|  | StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); | 
|  | if (!Ld) break; | 
|  |  | 
|  | // Loads must only have one use. | 
|  | if (!Ld->hasNUsesOfValue(1, 0)) | 
|  | break; | 
|  |  | 
|  | // The memory operands must not be volatile. | 
|  | if (Ld->isVolatile() || Ld->isIndexed()) | 
|  | break; | 
|  |  | 
|  | // We do not accept ext loads. | 
|  | if (Ld->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | break; | 
|  |  | 
|  | // The stored memory type must be the same. | 
|  | if (Ld->getMemoryVT() != MemVT) | 
|  | break; | 
|  |  | 
|  | BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); | 
|  | // If this is not the first ptr that we check. | 
|  | if (LdBasePtr.Base.getNode()) { | 
|  | // The base ptr must be the same. | 
|  | if (!LdPtr.equalBaseIndex(LdBasePtr)) | 
|  | break; | 
|  | } else { | 
|  | // Check that all other base pointers are the same as this one. | 
|  | LdBasePtr = LdPtr; | 
|  | } | 
|  |  | 
|  | // We found a potential memory operand to merge. | 
|  | LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); | 
|  | } | 
|  |  | 
|  | if (LoadNodes.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // If we have load/store pair instructions and we only have two values, | 
|  | // don't bother. | 
|  | unsigned RequiredAlignment; | 
|  | if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && | 
|  | St->getAlignment() >= RequiredAlignment) | 
|  | return false; | 
|  |  | 
|  | LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); | 
|  | unsigned FirstLoadAS = FirstLoad->getAddressSpace(); | 
|  | unsigned FirstLoadAlign = FirstLoad->getAlignment(); | 
|  |  | 
|  | // Scan the memory operations on the chain and find the first non-consecutive | 
|  | // load memory address. These variables hold the index in the store node | 
|  | // array. | 
|  | unsigned LastConsecutiveLoad = 0; | 
|  | // This variable refers to the size and not index in the array. | 
|  | unsigned LastLegalVectorType = 0; | 
|  | unsigned LastLegalIntegerType = 0; | 
|  | StartAddress = LoadNodes[0].OffsetFromBase; | 
|  | SDValue FirstChain = FirstLoad->getChain(); | 
|  | for (unsigned i = 1; i < LoadNodes.size(); ++i) { | 
|  | // All loads must share the same chain. | 
|  | if (LoadNodes[i].MemNode->getChain() != FirstChain) | 
|  | break; | 
|  |  | 
|  | int64_t CurrAddress = LoadNodes[i].OffsetFromBase; | 
|  | if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
|  | break; | 
|  | LastConsecutiveLoad = i; | 
|  | // Find a legal type for the vector store. | 
|  | EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); | 
|  | bool IsFastSt, IsFastLd; | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | 
|  | FirstStoreAlign, &IsFastSt) && IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, | 
|  | FirstLoadAlign, &IsFastLd) && IsFastLd) { | 
|  | LastLegalVectorType = i + 1; | 
|  | } | 
|  |  | 
|  | // Find a legal type for the integer store. | 
|  | unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; | 
|  | StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | 
|  | FirstStoreAlign, &IsFastSt) && IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, | 
|  | FirstLoadAlign, &IsFastLd) && IsFastLd) | 
|  | LastLegalIntegerType = i + 1; | 
|  | // Or check whether a truncstore and extload is legal. | 
|  | else if (TLI.getTypeAction(Context, StoreTy) == | 
|  | TargetLowering::TypePromoteInteger) { | 
|  | EVT LegalizedStoredValueTy = | 
|  | TLI.getTypeToTransformTo(Context, StoreTy); | 
|  | if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | 
|  | FirstStoreAS, FirstStoreAlign, &IsFastSt) && | 
|  | IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | 
|  | FirstLoadAS, FirstLoadAlign, &IsFastLd) && | 
|  | IsFastLd) | 
|  | LastLegalIntegerType = i+1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only use vector types if the vector type is larger than the integer type. | 
|  | // If they are the same, use integers. | 
|  | bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; | 
|  | unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); | 
|  |  | 
|  | // We add +1 here because the LastXXX variables refer to location while | 
|  | // the NumElem refers to array/index size. | 
|  | unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; | 
|  | NumElem = std::min(LastLegalType, NumElem); | 
|  |  | 
|  | if (NumElem < 2) | 
|  | return false; | 
|  |  | 
|  | // Collect the chains from all merged stores. | 
|  | SmallVector<SDValue, 8> MergeStoreChains; | 
|  | MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); | 
|  |  | 
|  | // The latest Node in the DAG. | 
|  | unsigned LatestNodeUsed = 0; | 
|  | for (unsigned i=1; i<NumElem; ++i) { | 
|  | // Find a chain for the new wide-store operand. Notice that some | 
|  | // of the store nodes that we found may not be selected for inclusion | 
|  | // in the wide store. The chain we use needs to be the chain of the | 
|  | // latest store node which is *used* and replaced by the wide store. | 
|  | if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) | 
|  | LatestNodeUsed = i; | 
|  |  | 
|  | MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); | 
|  | } | 
|  |  | 
|  | LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; | 
|  |  | 
|  | // Find if it is better to use vectors or integers to load and store | 
|  | // to memory. | 
|  | EVT JointMemOpVT; | 
|  | if (UseVectorTy) { | 
|  | JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); | 
|  | } else { | 
|  | unsigned SizeInBits = NumElem * ElementSizeBytes * 8; | 
|  | JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); | 
|  | } | 
|  |  | 
|  | SDLoc LoadDL(LoadNodes[0].MemNode); | 
|  | SDLoc StoreDL(StoreNodes[0].MemNode); | 
|  |  | 
|  | // The merged loads are required to have the same incoming chain, so | 
|  | // using the first's chain is acceptable. | 
|  | SDValue NewLoad = DAG.getLoad( | 
|  | JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), | 
|  | FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); | 
|  |  | 
|  | SDValue NewStoreChain = | 
|  | DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); | 
|  |  | 
|  | SDValue NewStore = DAG.getStore( | 
|  | NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); | 
|  |  | 
|  | // Transfer chain users from old loads to the new load. | 
|  | for (unsigned i = 0; i < NumElem; ++i) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), | 
|  | SDValue(NewLoad.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | // Replace the last store with the new store. | 
|  | CombineTo(LatestOp, NewStore); | 
|  | // Erase all other stores. | 
|  | for (unsigned i = 0; i < NumElem ; ++i) { | 
|  | // Remove all Store nodes. | 
|  | if (StoreNodes[i].MemNode == LatestOp) | 
|  | continue; | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); | 
|  | deleteAndRecombine(St); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { | 
|  | SDLoc SL(ST); | 
|  | SDValue ReplStore; | 
|  |  | 
|  | // Replace the chain to avoid dependency. | 
|  | if (ST->isTruncatingStore()) { | 
|  | ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), | 
|  | ST->getBasePtr(), ST->getMemoryVT(), | 
|  | ST->getMemOperand()); | 
|  | } else { | 
|  | ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), | 
|  | ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Create token to keep both nodes around. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, SL, | 
|  | MVT::Other, ST->getChain(), ReplStore); | 
|  |  | 
|  | // Make sure the new and old chains are cleaned up. | 
|  | AddToWorklist(Token.getNode()); | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(ST, Token, false); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { | 
|  | SDValue Value = ST->getValue(); | 
|  | if (Value.getOpcode() == ISD::TargetConstantFP) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(ST); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  |  | 
|  | const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); | 
|  |  | 
|  | // NOTE: If the original store is volatile, this transform must not increase | 
|  | // the number of stores.  For example, on x86-32 an f64 can be stored in one | 
|  | // processor operation but an i64 (which is not legal) requires two.  So the | 
|  | // transform should not be done in this case. | 
|  |  | 
|  | SDValue Tmp; | 
|  | switch (CFP->getSimpleValueType(0).SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unknown FP type"); | 
|  | case MVT::f16:    // We don't do this for these yet. | 
|  | case MVT::f80: | 
|  | case MVT::f128: | 
|  | case MVT::ppcf128: | 
|  | return SDValue(); | 
|  | case MVT::f32: | 
|  | if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | ; | 
|  | Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | 
|  | bitcastToAPInt().getZExtValue(), SDLoc(CFP), | 
|  | MVT::i32); | 
|  | return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | case MVT::f64: | 
|  | if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && | 
|  | !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { | 
|  | ; | 
|  | Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | getZExtValue(), SDLoc(CFP), MVT::i64); | 
|  | return DAG.getStore(Chain, DL, Tmp, | 
|  | Ptr, ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | if (!ST->isVolatile() && | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | // Many FP stores are not made apparent until after legalize, e.g. for | 
|  | // argument passing.  Since this is so common, custom legalize the | 
|  | // 64-bit integer store into two 32-bit stores. | 
|  | uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
|  | SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  | bool isNonTemporal = ST->isNonTemporal(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  |  | 
|  | SDValue St0 = DAG.getStore(Chain, DL, Lo, | 
|  | Ptr, ST->getPointerInfo(), | 
|  | isVolatile, isNonTemporal, | 
|  | ST->getAlignment(), AAInfo); | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(4, DL, Ptr.getValueType())); | 
|  | Alignment = MinAlign(Alignment, 4U); | 
|  | SDValue St1 = DAG.getStore(Chain, DL, Hi, | 
|  | Ptr, ST->getPointerInfo().getWithOffset(4), | 
|  | isVolatile, isNonTemporal, | 
|  | Alignment, AAInfo); | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | St0, St1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSTORE(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  |  | 
|  | // If this is a store of a bit convert, store the input value if the | 
|  | // resultant store does not need a higher alignment than the original. | 
|  | if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && | 
|  | ST->isUnindexed()) { | 
|  | unsigned OrigAlign = ST->getAlignment(); | 
|  | EVT SVT = Value.getOperand(0).getValueType(); | 
|  | unsigned Align = DAG.getDataLayout().getABITypeAlignment( | 
|  | SVT.getTypeForEVT(*DAG.getContext())); | 
|  | if (Align <= OrigAlign && | 
|  | ((!LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) | 
|  | return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), | 
|  | Ptr, ST->getPointerInfo(), ST->isVolatile(), | 
|  | ST->isNonTemporal(), OrigAlign, | 
|  | ST->getAAInfo()); | 
|  | } | 
|  |  | 
|  | // Turn 'store undef, Ptr' -> nothing. | 
|  | if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) | 
|  | return Chain; | 
|  |  | 
|  | // Try to infer better alignment information than the store already has. | 
|  | if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > ST->getAlignment()) { | 
|  | SDValue NewStore = | 
|  | DAG.getTruncStore(Chain, SDLoc(N), Value, | 
|  | Ptr, ST->getPointerInfo(), ST->getMemoryVT(), | 
|  | ST->isVolatile(), ST->isNonTemporal(), Align, | 
|  | ST->getAAInfo()); | 
|  | if (NewStore.getNode() != N) | 
|  | return CombineTo(ST, NewStore, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming a pair floating point load / store ops to integer | 
|  | // load / store ops. | 
|  | if (SDValue NewST = TransformFPLoadStorePair(N)) | 
|  | return NewST; | 
|  |  | 
|  | bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  | #ifndef NDEBUG | 
|  | if (CombinerAAOnlyFunc.getNumOccurrences() && | 
|  | CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | 
|  | UseAA = false; | 
|  | #endif | 
|  | if (UseAA && ST->isUnindexed()) { | 
|  | // FIXME: We should do this even without AA enabled. AA will just allow | 
|  | // FindBetterChain to work in more situations. The problem with this is that | 
|  | // any combine that expects memory operations to be on consecutive chains | 
|  | // first needs to be updated to look for users of the same chain. | 
|  |  | 
|  | // Walk up chain skipping non-aliasing memory nodes, on this store and any | 
|  | // adjacent stores. | 
|  | if (findBetterNeighborChains(ST)) { | 
|  | // replaceStoreChain uses CombineTo, which handled all of the worklist | 
|  | // manipulation. Return the original node to not do anything else. | 
|  | return SDValue(ST, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed store. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // FIXME: is there such a thing as a truncating indexed store? | 
|  | if (ST->isTruncatingStore() && ST->isUnindexed() && | 
|  | Value.getValueType().isInteger()) { | 
|  | // See if we can simplify the input to this truncstore with knowledge that | 
|  | // only the low bits are being used.  For example: | 
|  | // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" | 
|  | SDValue Shorter = | 
|  | GetDemandedBits(Value, | 
|  | APInt::getLowBitsSet( | 
|  | Value.getValueType().getScalarType().getSizeInBits(), | 
|  | ST->getMemoryVT().getScalarType().getSizeInBits())); | 
|  | AddToWorklist(Value.getNode()); | 
|  | if (Shorter.getNode()) | 
|  | return DAG.getTruncStore(Chain, SDLoc(N), Shorter, | 
|  | Ptr, ST->getMemoryVT(), ST->getMemOperand()); | 
|  |  | 
|  | // Otherwise, see if we can simplify the operation with | 
|  | // SimplifyDemandedBits, which only works if the value has a single use. | 
|  | if (SimplifyDemandedBits(Value, | 
|  | APInt::getLowBitsSet( | 
|  | Value.getValueType().getScalarType().getSizeInBits(), | 
|  | ST->getMemoryVT().getScalarType().getSizeInBits()))) | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // If this is a load followed by a store to the same location, then the store | 
|  | // is dead/noop. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { | 
|  | if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | 
|  | ST->isUnindexed() && !ST->isVolatile() && | 
|  | // There can't be any side effects between the load and store, such as | 
|  | // a call or store. | 
|  | Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | 
|  | // The store is dead, remove it. | 
|  | return Chain; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a store followed by a store with the same value to the same | 
|  | // location, then the store is dead/noop. | 
|  | if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { | 
|  | if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && | 
|  | ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && | 
|  | ST1->isUnindexed() && !ST1->isVolatile()) { | 
|  | // The store is dead, remove it. | 
|  | return Chain; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an FP_ROUND or TRUNC followed by a store, fold this into a | 
|  | // truncating store.  We can do this even if this is already a truncstore. | 
|  | if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) | 
|  | && Value.getNode()->hasOneUse() && ST->isUnindexed() && | 
|  | TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), | 
|  | ST->getMemoryVT())) { | 
|  | return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), | 
|  | Ptr, ST->getMemoryVT(), ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Only perform this optimization before the types are legal, because we | 
|  | // don't want to perform this optimization on every DAGCombine invocation. | 
|  | if (!LegalTypes) { | 
|  | bool EverChanged = false; | 
|  |  | 
|  | do { | 
|  | // There can be multiple store sequences on the same chain. | 
|  | // Keep trying to merge store sequences until we are unable to do so | 
|  | // or until we merge the last store on the chain. | 
|  | bool Changed = MergeConsecutiveStores(ST); | 
|  | EverChanged |= Changed; | 
|  | if (!Changed) break; | 
|  | } while (ST->getOpcode() != ISD::DELETED_NODE); | 
|  |  | 
|  | if (EverChanged) | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | // | 
|  | // Make sure to do this only after attempting to merge stores in order to | 
|  | //  avoid changing the types of some subset of stores due to visit order, | 
|  | //  preventing their merging. | 
|  | if (isa<ConstantFPSDNode>(Value)) { | 
|  | if (SDValue NewSt = replaceStoreOfFPConstant(ST)) | 
|  | return NewSt; | 
|  | } | 
|  |  | 
|  | return ReduceLoadOpStoreWidth(N); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue InVal = N->getOperand(1); | 
|  | SDValue EltNo = N->getOperand(2); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // If the inserted element is an UNDEF, just use the input vector. | 
|  | if (InVal.getOpcode() == ISD::UNDEF) | 
|  | return InVec; | 
|  |  | 
|  | EVT VT = InVec.getValueType(); | 
|  |  | 
|  | // If we can't generate a legal BUILD_VECTOR, exit | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that we know which element is being inserted | 
|  | if (!isa<ConstantSDNode>(EltNo)) | 
|  | return SDValue(); | 
|  | unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  |  | 
|  | // Canonicalize insert_vector_elt dag nodes. | 
|  | // Example: | 
|  | // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) | 
|  | // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) | 
|  | // | 
|  | // Do this only if the child insert_vector node has one use; also | 
|  | // do this only if indices are both constants and Idx1 < Idx0. | 
|  | if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() | 
|  | && isa<ConstantSDNode>(InVec.getOperand(2))) { | 
|  | unsigned OtherElt = | 
|  | cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); | 
|  | if (Elt < OtherElt) { | 
|  | // Swap nodes. | 
|  | SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, | 
|  | InVec.getOperand(0), InVal, EltNo); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), | 
|  | VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially | 
|  | // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the | 
|  | // vector elements. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | // Do not combine these two vectors if the output vector will not replace | 
|  | // the input vector. | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { | 
|  | Ops.append(InVec.getNode()->op_begin(), | 
|  | InVec.getNode()->op_end()); | 
|  | } else if (InVec.getOpcode() == ISD::UNDEF) { | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  | Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Insert the element | 
|  | if (Elt < Ops.size()) { | 
|  | // All the operands of BUILD_VECTOR must have the same type; | 
|  | // we enforce that here. | 
|  | EVT OpVT = Ops[0].getValueType(); | 
|  | if (InVal.getValueType() != OpVT) | 
|  | InVal = OpVT.bitsGT(InVal.getValueType()) ? | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : | 
|  | DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); | 
|  | Ops[Elt] = InVal; | 
|  | } | 
|  |  | 
|  | // Return the new vector | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( | 
|  | SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { | 
|  | EVT ResultVT = EVE->getValueType(0); | 
|  | EVT VecEltVT = InVecVT.getVectorElementType(); | 
|  | unsigned Align = OriginalLoad->getAlignment(); | 
|  | unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | 
|  | VecEltVT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | Align = NewAlign; | 
|  |  | 
|  | SDValue NewPtr = OriginalLoad->getBasePtr(); | 
|  | SDValue Offset; | 
|  | EVT PtrType = NewPtr.getValueType(); | 
|  | MachinePointerInfo MPI; | 
|  | SDLoc DL(EVE); | 
|  | if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { | 
|  | int Elt = ConstEltNo->getZExtValue(); | 
|  | unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; | 
|  | Offset = DAG.getConstant(PtrOff, DL, PtrType); | 
|  | MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); | 
|  | } else { | 
|  | Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); | 
|  | Offset = DAG.getNode( | 
|  | ISD::MUL, DL, PtrType, Offset, | 
|  | DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); | 
|  | MPI = OriginalLoad->getPointerInfo(); | 
|  | } | 
|  | NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); | 
|  |  | 
|  | // The replacement we need to do here is a little tricky: we need to | 
|  | // replace an extractelement of a load with a load. | 
|  | // Use ReplaceAllUsesOfValuesWith to do the replacement. | 
|  | // Note that this replacement assumes that the extractvalue is the only | 
|  | // use of the load; that's okay because we don't want to perform this | 
|  | // transformation in other cases anyway. | 
|  | SDValue Load; | 
|  | SDValue Chain; | 
|  | if (ResultVT.bitsGT(VecEltVT)) { | 
|  | // If the result type of vextract is wider than the load, then issue an | 
|  | // extending load instead. | 
|  | ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, | 
|  | VecEltVT) | 
|  | ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD; | 
|  | Load = DAG.getExtLoad( | 
|  | ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, | 
|  | VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), | 
|  | OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); | 
|  | Chain = Load.getValue(1); | 
|  | } else { | 
|  | Load = DAG.getLoad( | 
|  | VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, | 
|  | OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), | 
|  | OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); | 
|  | Chain = Load.getValue(1); | 
|  | if (ResultVT.bitsLT(VecEltVT)) | 
|  | Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); | 
|  | else | 
|  | Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); | 
|  | } | 
|  | WorklistRemover DeadNodes(*this); | 
|  | SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; | 
|  | SDValue To[] = { Load, Chain }; | 
|  | DAG.ReplaceAllUsesOfValuesWith(From, To, 2); | 
|  | // Since we're explicitly calling ReplaceAllUses, add the new node to the | 
|  | // worklist explicitly as well. | 
|  | AddToWorklist(Load.getNode()); | 
|  | AddUsersToWorklist(Load.getNode()); // Add users too | 
|  | // Make sure to revisit this node to clean it up; it will usually be dead. | 
|  | AddToWorklist(EVE); | 
|  | ++OpsNarrowed; | 
|  | return SDValue(EVE, 0); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | 
|  | // (vextract (scalar_to_vector val, 0) -> val | 
|  | SDValue InVec = N->getOperand(0); | 
|  | EVT VT = InVec.getValueType(); | 
|  | EVT NVT = N->getValueType(0); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | // Check if the result type doesn't match the inserted element type. A | 
|  | // SCALAR_TO_VECTOR may truncate the inserted element and the | 
|  | // EXTRACT_VECTOR_ELT may widen the extracted vector. | 
|  | SDValue InOp = InVec.getOperand(0); | 
|  | if (InOp.getValueType() != NVT) { | 
|  | assert(InOp.getValueType().isInteger() && NVT.isInteger()); | 
|  | return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); | 
|  | } | 
|  | return InOp; | 
|  | } | 
|  |  | 
|  | SDValue EltNo = N->getOperand(1); | 
|  | ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); | 
|  |  | 
|  | // extract_vector_elt (build_vector x, y), 1 -> y | 
|  | if (ConstEltNo && | 
|  | InVec.getOpcode() == ISD::BUILD_VECTOR && | 
|  | TLI.isTypeLegal(VT) && | 
|  | (InVec.hasOneUse() || | 
|  | TLI.aggressivelyPreferBuildVectorSources(VT))) { | 
|  | SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); | 
|  | EVT InEltVT = Elt.getValueType(); | 
|  |  | 
|  | // Sometimes build_vector's scalar input types do not match result type. | 
|  | if (NVT == InEltVT) | 
|  | return Elt; | 
|  |  | 
|  | // TODO: It may be useful to truncate if free if the build_vector implicitly | 
|  | // converts. | 
|  | } | 
|  |  | 
|  | // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) | 
|  | if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && | 
|  | ConstEltNo->isNullValue()) { | 
|  | SDValue BCSrc = InVec.getOperand(0); | 
|  | if (BCSrc.getValueType().isScalarInteger()) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); | 
|  | } | 
|  |  | 
|  | // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. | 
|  | // We only perform this optimization before the op legalization phase because | 
|  | // we may introduce new vector instructions which are not backed by TD | 
|  | // patterns. For example on AVX, extracting elements from a wide vector | 
|  | // without using extract_subvector. However, if we can find an underlying | 
|  | // scalar value, then we can always use that. | 
|  | if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | int NumElem = VT.getVectorNumElements(); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); | 
|  | // Find the new index to extract from. | 
|  | int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); | 
|  |  | 
|  | // Extracting an undef index is undef. | 
|  | if (OrigElt == -1) | 
|  | return DAG.getUNDEF(NVT); | 
|  |  | 
|  | // Select the right vector half to extract from. | 
|  | SDValue SVInVec; | 
|  | if (OrigElt < NumElem) { | 
|  | SVInVec = InVec->getOperand(0); | 
|  | } else { | 
|  | SVInVec = InVec->getOperand(1); | 
|  | OrigElt -= NumElem; | 
|  | } | 
|  |  | 
|  | if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SDValue InOp = SVInVec.getOperand(OrigElt); | 
|  | if (InOp.getValueType() != NVT) { | 
|  | assert(InOp.getValueType().isInteger() && NVT.isInteger()); | 
|  | InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); | 
|  | } | 
|  |  | 
|  | return InOp; | 
|  | } | 
|  |  | 
|  | // FIXME: We should handle recursing on other vector shuffles and | 
|  | // scalar_to_vector here as well. | 
|  |  | 
|  | if (!LegalOperations) { | 
|  | EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, | 
|  | DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BCNumEltsChanged = false; | 
|  | EVT ExtVT = VT.getVectorElementType(); | 
|  | EVT LVT = ExtVT; | 
|  |  | 
|  | // If the result of load has to be truncated, then it's not necessarily | 
|  | // profitable. | 
|  | if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT BCVT = InVec.getOperand(0).getValueType(); | 
|  | if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) | 
|  | return SDValue(); | 
|  | if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) | 
|  | BCNumEltsChanged = true; | 
|  | InVec = InVec.getOperand(0); | 
|  | ExtVT = BCVT.getVectorElementType(); | 
|  | } | 
|  |  | 
|  | // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) | 
|  | if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && | 
|  | ISD::isNormalLoad(InVec.getNode()) && | 
|  | !N->getOperand(1)->hasPredecessor(InVec.getNode())) { | 
|  | SDValue Index = N->getOperand(1); | 
|  | if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) | 
|  | return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, | 
|  | OrigLoad); | 
|  | } | 
|  |  | 
|  | // Perform only after legalization to ensure build_vector / vector_shuffle | 
|  | // optimizations have already been done. | 
|  | if (!LegalOperations) return SDValue(); | 
|  |  | 
|  | // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | 
|  |  | 
|  | if (ConstEltNo) { | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = nullptr; | 
|  | const ShuffleVectorSDNode *SVN = nullptr; | 
|  | if (ISD::isNormalLoad(InVec.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | InVec.getOperand(0).getValueType() == ExtVT && | 
|  | ISD::isNormalLoad(InVec.getOperand(0).getNode())) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | LN0 = cast<LoadSDNode>(InVec.getOperand(0)); | 
|  | } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { | 
|  | // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | 
|  | // => | 
|  | // (load $addr+1*size) | 
|  |  | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the bit convert changed the number of elements, it is unsafe | 
|  | // to examine the mask. | 
|  | if (BCNumEltsChanged) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); | 
|  | InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | InVec = InVec.getOperand(0); | 
|  | } | 
|  | if (ISD::isNormalLoad(InVec.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(InVec); | 
|  | Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; | 
|  | EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we found a non-volatile load and the extractelement is | 
|  | // the only use. | 
|  | if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If Idx was -1 above, Elt is going to be -1, so just return undef. | 
|  | if (Elt == -1) | 
|  | return DAG.getUNDEF(LVT); | 
|  |  | 
|  | return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Simplify (build_vec (ext )) to (bitcast (build_vec )) | 
|  | SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { | 
|  | // We perform this optimization post type-legalization because | 
|  | // the type-legalizer often scalarizes integer-promoted vectors. | 
|  | // Performing this optimization before may create bit-casts which | 
|  | // will be type-legalized to complex code sequences. | 
|  | // We perform this optimization only before the operation legalizer because we | 
|  | // may introduce illegal operations. | 
|  | if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of values | 
|  | // which come from any_extend or zero_extend nodes. If so, we can create | 
|  | // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR | 
|  | // optimizations. We do not handle sign-extend because we can't fill the sign | 
|  | // using shuffles. | 
|  | EVT SourceType = MVT::Other; | 
|  | bool AllAnyExt = true; | 
|  |  | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | SDValue In = N->getOperand(i); | 
|  | // Ignore undef inputs. | 
|  | if (In.getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND; | 
|  | bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; | 
|  |  | 
|  | // Abort if the element is not an extension. | 
|  | if (!ZeroExt && !AnyExt) { | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The input is a ZeroExt or AnyExt. Check the original type. | 
|  | EVT InTy = In.getOperand(0).getValueType(); | 
|  |  | 
|  | // Check that all of the widened source types are the same. | 
|  | if (SourceType == MVT::Other) | 
|  | // First time. | 
|  | SourceType = InTy; | 
|  | else if (InTy != SourceType) { | 
|  | // Multiple income types. Abort. | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if all of the extends are ANY_EXTENDs. | 
|  | AllAnyExt &= AnyExt; | 
|  | } | 
|  |  | 
|  | // In order to have valid types, all of the inputs must be extended from the | 
|  | // same source type and all of the inputs must be any or zero extend. | 
|  | // Scalar sizes must be a power of two. | 
|  | EVT OutScalarTy = VT.getScalarType(); | 
|  | bool ValidTypes = SourceType != MVT::Other && | 
|  | isPowerOf2_32(OutScalarTy.getSizeInBits()) && | 
|  | isPowerOf2_32(SourceType.getSizeInBits()); | 
|  |  | 
|  | // Create a new simpler BUILD_VECTOR sequence which other optimizations can | 
|  | // turn into a single shuffle instruction. | 
|  | if (!ValidTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  | unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); | 
|  | assert(ElemRatio > 1 && "Invalid element size ratio"); | 
|  | SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): | 
|  | DAG.getConstant(0, SDLoc(N), SourceType); | 
|  |  | 
|  | unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> Ops(NewBVElems, Filler); | 
|  |  | 
|  | // Populate the new build_vector | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDValue Cast = N->getOperand(i); | 
|  | assert((Cast.getOpcode() == ISD::ANY_EXTEND || | 
|  | Cast.getOpcode() == ISD::ZERO_EXTEND || | 
|  | Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); | 
|  | SDValue In; | 
|  | if (Cast.getOpcode() == ISD::UNDEF) | 
|  | In = DAG.getUNDEF(SourceType); | 
|  | else | 
|  | In = Cast->getOperand(0); | 
|  | unsigned Index = isLE ? (i * ElemRatio) : | 
|  | (i * ElemRatio + (ElemRatio - 1)); | 
|  |  | 
|  | assert(Index < Ops.size() && "Invalid index"); | 
|  | Ops[Index] = In; | 
|  | } | 
|  |  | 
|  | // The type of the new BUILD_VECTOR node. | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); | 
|  | assert(VecVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Invalid vector size"); | 
|  | // Check if the new vector type is legal. | 
|  | if (!isTypeLegal(VecVT)) return SDValue(); | 
|  |  | 
|  | // Make the new BUILD_VECTOR. | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); | 
|  |  | 
|  | // The new BUILD_VECTOR node has the potential to be further optimized. | 
|  | AddToWorklist(BV.getNode()); | 
|  | // Bitcast to the desired type. | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, BV); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | EVT SrcVT = MVT::Other; | 
|  | unsigned Opcode = ISD::DELETED_NODE; | 
|  | unsigned NumDefs = 0; | 
|  |  | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | SDValue In = N->getOperand(i); | 
|  | unsigned Opc = In.getOpcode(); | 
|  |  | 
|  | if (Opc == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | // If all scalar values are floats and converted from integers. | 
|  | if (Opcode == ISD::DELETED_NODE && | 
|  | (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { | 
|  | Opcode = Opc; | 
|  | } | 
|  |  | 
|  | if (Opc != Opcode) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT InVT = In.getOperand(0).getValueType(); | 
|  |  | 
|  | // If all scalar values are typed differently, bail out. It's chosen to | 
|  | // simplify BUILD_VECTOR of integer types. | 
|  | if (SrcVT == MVT::Other) | 
|  | SrcVT = InVT; | 
|  | if (SrcVT != InVT) | 
|  | return SDValue(); | 
|  | NumDefs++; | 
|  | } | 
|  |  | 
|  | // If the vector has just one element defined, it's not worth to fold it into | 
|  | // a vectorized one. | 
|  | if (NumDefs < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) | 
|  | && "Should only handle conversion from integer to float."); | 
|  | assert(SrcVT != MVT::Other && "Cannot determine source type!"); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); | 
|  |  | 
|  | if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Just because the floating-point vector type is legal does not necessarily | 
|  | // mean that the corresponding integer vector type is. | 
|  | if (!isTypeLegal(NVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | SDValue In = N->getOperand(i); | 
|  |  | 
|  | if (In.getOpcode() == ISD::UNDEF) | 
|  | Opnds.push_back(DAG.getUNDEF(SrcVT)); | 
|  | else | 
|  | Opnds.push_back(In.getOperand(0)); | 
|  | } | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds); | 
|  | AddToWorklist(BV.getNode()); | 
|  |  | 
|  | return DAG.getNode(Opcode, dl, VT, BV); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // A vector built entirely of undefs is undef. | 
|  | if (ISD::allOperandsUndef(N)) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) | 
|  | return V; | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | 
|  | // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from | 
|  | // at most two distinct vectors, turn this into a shuffle node. | 
|  |  | 
|  | // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // May only combine to shuffle after legalize if shuffle is legal. | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue VecIn1, VecIn2; | 
|  | bool UsesZeroVector = false; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  | // Ignore undef inputs. | 
|  | if (Op.getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | // See if we can combine this build_vector into a blend with a zero vector. | 
|  | if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { | 
|  | UsesZeroVector = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this input is something other than a EXTRACT_VECTOR_ELT with a | 
|  | // constant index, bail out. | 
|  | if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(Op.getOperand(1))) { | 
|  | VecIn1 = VecIn2 = SDValue(nullptr, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We allow up to two distinct input vectors. | 
|  | SDValue ExtractedFromVec = Op.getOperand(0); | 
|  | if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) | 
|  | continue; | 
|  |  | 
|  | if (!VecIn1.getNode()) { | 
|  | VecIn1 = ExtractedFromVec; | 
|  | } else if (!VecIn2.getNode() && !UsesZeroVector) { | 
|  | VecIn2 = ExtractedFromVec; | 
|  | } else { | 
|  | // Too many inputs. | 
|  | VecIn1 = VecIn2 = SDValue(nullptr, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If everything is good, we can make a shuffle operation. | 
|  | if (VecIn1.getNode()) { | 
|  | unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | unsigned Opcode = N->getOperand(i).getOpcode(); | 
|  | if (Opcode == ISD::UNDEF) { | 
|  | Mask.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Operands can also be zero. | 
|  | if (Opcode != ISD::EXTRACT_VECTOR_ELT) { | 
|  | assert(UsesZeroVector && | 
|  | (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && | 
|  | "Unexpected node found!"); | 
|  | Mask.push_back(NumInScalars+i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If extracting from the first vector, just use the index directly. | 
|  | SDValue Extract = N->getOperand(i); | 
|  | SDValue ExtVal = Extract.getOperand(1); | 
|  | unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); | 
|  | if (Extract.getOperand(0) == VecIn1) { | 
|  | Mask.push_back(ExtIndex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, use InIdx + InputVecSize | 
|  | Mask.push_back(InNumElements + ExtIndex); | 
|  | } | 
|  |  | 
|  | // Avoid introducing illegal shuffles with zero. | 
|  | if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can't generate a shuffle node with mismatched input and output types. | 
|  | // Attempt to transform a single input vector to the correct type. | 
|  | if ((VT != VecIn1.getValueType())) { | 
|  | // If the input vector type has a different base type to the output | 
|  | // vector type, bail out. | 
|  | EVT VTElemType = VT.getVectorElementType(); | 
|  | if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || | 
|  | (VecIn2.getNode() && | 
|  | (VecIn2.getValueType().getVectorElementType() != VTElemType))) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the input vector is too small, widen it. | 
|  | // We only support widening of vectors which are half the size of the | 
|  | // output registers. For example XMM->YMM widening on X86 with AVX. | 
|  | EVT VecInT = VecIn1.getValueType(); | 
|  | if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { | 
|  | // If we only have one small input, widen it by adding undef values. | 
|  | if (!VecIn2.getNode()) | 
|  | VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, | 
|  | DAG.getUNDEF(VecIn1.getValueType())); | 
|  | else if (VecIn1.getValueType() == VecIn2.getValueType()) { | 
|  | // If we have two small inputs of the same type, try to concat them. | 
|  | VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); | 
|  | VecIn2 = SDValue(nullptr, 0); | 
|  | } else | 
|  | return SDValue(); | 
|  | } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { | 
|  | // If the input vector is too large, try to split it. | 
|  | // We don't support having two input vectors that are too large. | 
|  | // If the zero vector was used, we can not split the vector, | 
|  | // since we'd need 3 inputs. | 
|  | if (UsesZeroVector || VecIn2.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to replace VecIn1 with two extract_subvectors | 
|  | // No need to update the masks, they should still be correct. | 
|  | VecIn2 = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, | 
|  | DAG.getConstant(VT.getVectorNumElements(), dl, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | VecIn1 = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, | 
|  | DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (UsesZeroVector) | 
|  | VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : | 
|  | DAG.getConstantFP(0.0, dl, VT); | 
|  | else | 
|  | // If VecIn2 is unused then change it to undef. | 
|  | VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); | 
|  |  | 
|  | // Check that we were able to transform all incoming values to the same | 
|  | // type. | 
|  | if (VecIn2.getValueType() != VecIn1.getValueType() || | 
|  | VecIn1.getValueType() != VT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return the new VECTOR_SHUFFLE node. | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = VecIn1; | 
|  | Ops[1] = VecIn2; | 
|  | return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT OpVT = N->getOperand(0).getValueType(); | 
|  |  | 
|  | // If the operands are legal vectors, leave them alone. | 
|  | if (TLI.isTypeLegal(OpVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); | 
|  | SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | 
|  |  | 
|  | // Keep track of what we encounter. | 
|  | bool AnyInteger = false; | 
|  | bool AnyFP = false; | 
|  | for (const SDValue &Op : N->ops()) { | 
|  | if (ISD::BITCAST == Op.getOpcode() && | 
|  | !Op.getOperand(0).getValueType().isVector()) | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | else if (ISD::UNDEF == Op.getOpcode()) | 
|  | Ops.push_back(ScalarUndef); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Note whether we encounter an integer or floating point scalar. | 
|  | // If it's neither, bail out, it could be something weird like x86mmx. | 
|  | EVT LastOpVT = Ops.back().getValueType(); | 
|  | if (LastOpVT.isFloatingPoint()) | 
|  | AnyFP = true; | 
|  | else if (LastOpVT.isInteger()) | 
|  | AnyInteger = true; | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If any of the operands is a floating point scalar bitcast to a vector, | 
|  | // use floating point types throughout, and bitcast everything. | 
|  | // Replace UNDEFs by another scalar UNDEF node, of the final desired type. | 
|  | if (AnyFP) { | 
|  | SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); | 
|  | ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | 
|  | if (AnyInteger) { | 
|  | for (SDValue &Op : Ops) { | 
|  | if (Op.getValueType() == SVT) | 
|  | continue; | 
|  | if (Op.getOpcode() == ISD::UNDEF) | 
|  | Op = ScalarUndef; | 
|  | else | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, | 
|  | VT.getSizeInBits() / SVT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops)); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR | 
|  | // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at | 
|  | // most two distinct vectors the same size as the result, attempt to turn this | 
|  | // into a legal shuffle. | 
|  | static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N->getOperand(0).getValueType(); | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | int NumOpElts = OpVT.getVectorNumElements(); | 
|  |  | 
|  | SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); | 
|  | SmallVector<int, 8> Mask; | 
|  |  | 
|  | for (SDValue Op : N->ops()) { | 
|  | // Peek through any bitcast. | 
|  | while (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | // UNDEF nodes convert to UNDEF shuffle mask values. | 
|  | if (Op.getOpcode() == ISD::UNDEF) { | 
|  | Mask.append((unsigned)NumOpElts, -1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // What vector are we extracting the subvector from and at what index? | 
|  | SDValue ExtVec = Op.getOperand(0); | 
|  |  | 
|  | // We want the EVT of the original extraction to correctly scale the | 
|  | // extraction index. | 
|  | EVT ExtVT = ExtVec.getValueType(); | 
|  |  | 
|  | // Peek through any bitcast. | 
|  | while (ExtVec.getOpcode() == ISD::BITCAST) | 
|  | ExtVec = ExtVec.getOperand(0); | 
|  |  | 
|  | // UNDEF nodes convert to UNDEF shuffle mask values. | 
|  | if (ExtVec.getOpcode() == ISD::UNDEF) { | 
|  | Mask.append((unsigned)NumOpElts, -1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDValue(); | 
|  | int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  |  | 
|  | // Ensure that we are extracting a subvector from a vector the same | 
|  | // size as the result. | 
|  | if (ExtVT.getSizeInBits() != VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Scale the subvector index to account for any bitcast. | 
|  | int NumExtElts = ExtVT.getVectorNumElements(); | 
|  | if (0 == (NumExtElts % NumElts)) | 
|  | ExtIdx /= (NumExtElts / NumElts); | 
|  | else if (0 == (NumElts % NumExtElts)) | 
|  | ExtIdx *= (NumElts / NumExtElts); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // At most we can reference 2 inputs in the final shuffle. | 
|  | if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) { | 
|  | SV0 = ExtVec; | 
|  | for (int i = 0; i != NumOpElts; ++i) | 
|  | Mask.push_back(i + ExtIdx); | 
|  | } else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) { | 
|  | SV1 = ExtVec; | 
|  | for (int i = 0; i != NumOpElts; ++i) | 
|  | Mask.push_back(i + ExtIdx + NumElts); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), | 
|  | DAG.getBitcast(VT, SV1), Mask); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | 
|  | // If we only have one input vector, we don't need to do any concatenation. | 
|  | if (N->getNumOperands() == 1) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // Check if all of the operands are undefs. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (ISD::allOperandsUndef(N)) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Optimize concat_vectors where all but the first of the vectors are undef. | 
|  | if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { | 
|  | return Op.getOpcode() == ISD::UNDEF; | 
|  | })) { | 
|  | SDValue In = N->getOperand(0); | 
|  | assert(In.getValueType().isVector() && "Must concat vectors"); | 
|  |  | 
|  | // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). | 
|  | if (In->getOpcode() == ISD::BITCAST && | 
|  | !In->getOperand(0)->getValueType(0).isVector()) { | 
|  | SDValue Scalar = In->getOperand(0); | 
|  |  | 
|  | // If the bitcast type isn't legal, it might be a trunc of a legal type; | 
|  | // look through the trunc so we can still do the transform: | 
|  | //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) | 
|  | if (Scalar->getOpcode() == ISD::TRUNCATE && | 
|  | !TLI.isTypeLegal(Scalar.getValueType()) && | 
|  | TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) | 
|  | Scalar = Scalar->getOperand(0); | 
|  |  | 
|  | EVT SclTy = Scalar->getValueType(0); | 
|  |  | 
|  | if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, | 
|  | VT.getSizeInBits() / SclTy.getSizeInBits()); | 
|  | if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl = SDLoc(N); | 
|  | SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Res); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. | 
|  | // We have already tested above for an UNDEF only concatenation. | 
|  | // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) | 
|  | // -> (BUILD_VECTOR A, B, ..., C, D, ...) | 
|  | auto IsBuildVectorOrUndef = [](const SDValue &Op) { | 
|  | return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); | 
|  | }; | 
|  | bool AllBuildVectorsOrUndefs = | 
|  | std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef); | 
|  | if (AllBuildVectorsOrUndefs) { | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | EVT SVT = VT.getScalarType(); | 
|  |  | 
|  | EVT MinVT = SVT; | 
|  | if (!SVT.isFloatingPoint()) { | 
|  | // If BUILD_VECTOR are from built from integer, they may have different | 
|  | // operand types. Get the smallest type and truncate all operands to it. | 
|  | bool FoundMinVT = false; | 
|  | for (const SDValue &Op : N->ops()) | 
|  | if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
|  | EVT OpSVT = Op.getOperand(0)->getValueType(0); | 
|  | MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; | 
|  | FoundMinVT = true; | 
|  | } | 
|  | assert(FoundMinVT && "Concat vector type mismatch"); | 
|  | } | 
|  |  | 
|  | for (const SDValue &Op : N->ops()) { | 
|  | EVT OpVT = Op.getValueType(); | 
|  | unsigned NumElts = OpVT.getVectorNumElements(); | 
|  |  | 
|  | if (ISD::UNDEF == Op.getOpcode()) | 
|  | Opnds.append(NumElts, DAG.getUNDEF(MinVT)); | 
|  |  | 
|  | if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
|  | if (SVT.isFloatingPoint()) { | 
|  | assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); | 
|  | Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); | 
|  | } else { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Opnds.push_back( | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(VT.getVectorNumElements() == Opnds.size() && | 
|  | "Concat vector type mismatch"); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); | 
|  | } | 
|  |  | 
|  | // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. | 
|  | if (SDValue V = combineConcatVectorOfScalars(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. | 
|  | if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) | 
|  | if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR | 
|  | // nodes often generate nop CONCAT_VECTOR nodes. | 
|  | // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that | 
|  | // place the incoming vectors at the exact same location. | 
|  | SDValue SingleSource = SDValue(); | 
|  | unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | // Check if this is the identity extract: | 
|  | if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the single incoming vector for the extract_subvector. | 
|  | if (SingleSource.getNode()) { | 
|  | if (Op.getOperand(0) != SingleSource) | 
|  | return SDValue(); | 
|  | } else { | 
|  | SingleSource = Op.getOperand(0); | 
|  |  | 
|  | // Check the source type is the same as the type of the result. | 
|  | // If not, this concat may extend the vector, so we can not | 
|  | // optimize it away. | 
|  | if (SingleSource.getValueType() != N->getValueType(0)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | unsigned IdentityIndex = i * PartNumElem; | 
|  | ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | // The extract index must be constant. | 
|  | if (!CS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that we are reading from the identity index. | 
|  | if (CS->getZExtValue() != IdentityIndex) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (SingleSource.getNode()) | 
|  | return SingleSource; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { | 
|  | EVT NVT = N->getValueType(0); | 
|  | SDValue V = N->getOperand(0); | 
|  |  | 
|  | if (V->getOpcode() == ISD::CONCAT_VECTORS) { | 
|  | // Combine: | 
|  | //    (extract_subvec (concat V1, V2, ...), i) | 
|  | // Into: | 
|  | //    Vi if possible | 
|  | // Only operand 0 is checked as 'concat' assumes all inputs of the same | 
|  | // type. | 
|  | if (V->getOperand(0).getValueType() != NVT) | 
|  | return SDValue(); | 
|  | unsigned Idx = N->getConstantOperandVal(1); | 
|  | unsigned NumElems = NVT.getVectorNumElements(); | 
|  | assert((Idx % NumElems) == 0 && | 
|  | "IDX in concat is not a multiple of the result vector length."); | 
|  | return V->getOperand(Idx / NumElems); | 
|  | } | 
|  |  | 
|  | // Skip bitcasting | 
|  | if (V->getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { | 
|  | SDLoc dl(N); | 
|  | // Handle only simple case where vector being inserted and vector | 
|  | // being extracted are of same type, and are half size of larger vectors. | 
|  | EVT BigVT = V->getOperand(0).getValueType(); | 
|  | EVT SmallVT = V->getOperand(1).getValueType(); | 
|  | if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only handle cases where both indexes are constants with the same type. | 
|  | ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); | 
|  |  | 
|  | if (InsIdx && ExtIdx && | 
|  | InsIdx->getValueType(0).getSizeInBits() <= 64 && | 
|  | ExtIdx->getValueType(0).getSizeInBits() <= 64) { | 
|  | // Combine: | 
|  | //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) | 
|  | // Into: | 
|  | //    indices are equal or bit offsets are equal => V1 | 
|  | //    otherwise => (extract_subvec V1, ExtIdx) | 
|  | if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == | 
|  | ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | N->getOperand(0).getValueType(), | 
|  | V->getOperand(0)), N->getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, | 
|  | SDValue V, SelectionDAG &DAG) { | 
|  | SDLoc DL(V); | 
|  | EVT VT = V.getValueType(); | 
|  |  | 
|  | switch (V.getOpcode()) { | 
|  | default: | 
|  | return V; | 
|  |  | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | EVT OpVT = V->getOperand(0).getValueType(); | 
|  | int OpSize = OpVT.getVectorNumElements(); | 
|  | SmallBitVector OpUsedElements(OpSize, false); | 
|  | bool FoundSimplification = false; | 
|  | SmallVector<SDValue, 4> NewOps; | 
|  | NewOps.reserve(V->getNumOperands()); | 
|  | for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { | 
|  | SDValue Op = V->getOperand(i); | 
|  | bool OpUsed = false; | 
|  | for (int j = 0; j < OpSize; ++j) | 
|  | if (UsedElements[i * OpSize + j]) { | 
|  | OpUsedElements[j] = true; | 
|  | OpUsed = true; | 
|  | } | 
|  | NewOps.push_back( | 
|  | OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) | 
|  | : DAG.getUNDEF(OpVT)); | 
|  | FoundSimplification |= Op == NewOps.back(); | 
|  | OpUsedElements.reset(); | 
|  | } | 
|  | if (FoundSimplification) | 
|  | V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | case ISD::INSERT_SUBVECTOR: { | 
|  | SDValue BaseV = V->getOperand(0); | 
|  | SDValue SubV = V->getOperand(1); | 
|  | auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); | 
|  | if (!IdxN) | 
|  | return V; | 
|  |  | 
|  | int SubSize = SubV.getValueType().getVectorNumElements(); | 
|  | int Idx = IdxN->getZExtValue(); | 
|  | bool SubVectorUsed = false; | 
|  | SmallBitVector SubUsedElements(SubSize, false); | 
|  | for (int i = 0; i < SubSize; ++i) | 
|  | if (UsedElements[i + Idx]) { | 
|  | SubVectorUsed = true; | 
|  | SubUsedElements[i] = true; | 
|  | UsedElements[i + Idx] = false; | 
|  | } | 
|  |  | 
|  | // Now recurse on both the base and sub vectors. | 
|  | SDValue SimplifiedSubV = | 
|  | SubVectorUsed | 
|  | ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) | 
|  | : DAG.getUNDEF(SubV.getValueType()); | 
|  | SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); | 
|  | if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) | 
|  | V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, | 
|  | SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); | 
|  | return V; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, | 
|  | SDValue N1, SelectionDAG &DAG) { | 
|  | EVT VT = SVN->getValueType(0); | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); | 
|  | for (int M : SVN->getMask()) | 
|  | if (M >= 0 && M < NumElts) | 
|  | N0UsedElements[M] = true; | 
|  | else if (M >= NumElts) | 
|  | N1UsedElements[M - NumElts] = true; | 
|  |  | 
|  | SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); | 
|  | SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); | 
|  | if (S0 == N0 && S1 == N1) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); | 
|  | } | 
|  |  | 
|  | // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, | 
|  | // or turn a shuffle of a single concat into simpler shuffle then concat. | 
|  | static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | EVT ConcatVT = N0.getOperand(0).getValueType(); | 
|  | unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); | 
|  | unsigned NumConcats = NumElts / NumElemsPerConcat; | 
|  |  | 
|  | // Special case: shuffle(concat(A,B)) can be more efficiently represented | 
|  | // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high | 
|  | // half vector elements. | 
|  | if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF && | 
|  | std::all_of(SVN->getMask().begin() + NumElemsPerConcat, | 
|  | SVN->getMask().end(), [](int i) { return i == -1; })) { | 
|  | N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), | 
|  | makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); | 
|  | N1 = DAG.getUNDEF(ConcatVT); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); | 
|  | } | 
|  |  | 
|  | // Look at every vector that's inserted. We're looking for exact | 
|  | // subvector-sized copies from a concatenated vector | 
|  | for (unsigned I = 0; I != NumConcats; ++I) { | 
|  | // Make sure we're dealing with a copy. | 
|  | unsigned Begin = I * NumElemsPerConcat; | 
|  | bool AllUndef = true, NoUndef = true; | 
|  | for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { | 
|  | if (SVN->getMaskElt(J) >= 0) | 
|  | AllUndef = false; | 
|  | else | 
|  | NoUndef = false; | 
|  | } | 
|  |  | 
|  | if (NoUndef) { | 
|  | if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | for (unsigned J = 1; J != NumElemsPerConcat; ++J) | 
|  | if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; | 
|  | if (FirstElt < N0.getNumOperands()) | 
|  | Ops.push_back(N0.getOperand(FirstElt)); | 
|  | else | 
|  | Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); | 
|  |  | 
|  | } else if (AllUndef) { | 
|  | Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); | 
|  | } else { // Mixed with general masks and undefs, can't do optimization. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); | 
|  |  | 
|  | // Canonicalize shuffle undef, undef -> undef | 
|  | if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | // Canonicalize shuffle v, v -> v, undef | 
|  | if (N0 == N1) { | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx >= (int)NumElts) Idx -= NumElts; | 
|  | NewMask.push_back(Idx); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), | 
|  | &NewMask[0]); | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask. | 
|  | if (N0.getOpcode() == ISD::UNDEF) { | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx >= 0) { | 
|  | if (Idx >= (int)NumElts) | 
|  | Idx -= NumElts; | 
|  | else | 
|  | Idx = -1; // remove reference to lhs | 
|  | } | 
|  | NewMask.push_back(Idx); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), | 
|  | &NewMask[0]); | 
|  | } | 
|  |  | 
|  | // Remove references to rhs if it is undef | 
|  | if (N1.getOpcode() == ISD::UNDEF) { | 
|  | bool Changed = false; | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx >= (int)NumElts) { | 
|  | Idx = -1; | 
|  | Changed = true; | 
|  | } | 
|  | NewMask.push_back(Idx); | 
|  | } | 
|  | if (Changed) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); | 
|  | } | 
|  |  | 
|  | // If it is a splat, check if the argument vector is another splat or a | 
|  | // build_vector. | 
|  | if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { | 
|  | SDNode *V = N0.getNode(); | 
|  |  | 
|  | // If this is a bit convert that changes the element type of the vector but | 
|  | // not the number of vector elements, look through it.  Be careful not to | 
|  | // look though conversions that change things like v4f32 to v2f64. | 
|  | if (V->getOpcode() == ISD::BITCAST) { | 
|  | SDValue ConvInput = V->getOperand(0); | 
|  | if (ConvInput.getValueType().isVector() && | 
|  | ConvInput.getValueType().getVectorNumElements() == NumElts) | 
|  | V = ConvInput.getNode(); | 
|  | } | 
|  |  | 
|  | if (V->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | assert(V->getNumOperands() == NumElts && | 
|  | "BUILD_VECTOR has wrong number of operands"); | 
|  | SDValue Base; | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (V->getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | Base = V->getOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <u, u, u, u>, return <u, u, u, u> | 
|  | if (!Base.getNode()) | 
|  | return N0; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (V->getOperand(i) != Base) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <x, x, x, x>, return <x, x, x, x> | 
|  | if (AllSame) | 
|  | return N0; | 
|  |  | 
|  | // Canonicalize any other splat as a build_vector. | 
|  | const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); | 
|  | SmallVector<SDValue, 8> Ops(NumElts, Splatted); | 
|  | SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), | 
|  | V->getValueType(0), Ops); | 
|  |  | 
|  | // We may have jumped through bitcasts, so the type of the | 
|  | // BUILD_VECTOR may not match the type of the shuffle. | 
|  | if (V->getValueType(0) != VT) | 
|  | NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV); | 
|  | return NewBV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // There are various patterns used to build up a vector from smaller vectors, | 
|  | // subvectors, or elements. Scan chains of these and replace unused insertions | 
|  | // or components with undef. | 
|  | if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) | 
|  | return S; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | Level < AfterLegalizeVectorOps && | 
|  | (N1.getOpcode() == ISD::UNDEF || | 
|  | (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { | 
|  | if (SDValue V = partitionShuffleOfConcats(N, DAG)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | 
|  | // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | 
|  | if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (int M : SVN->getMask()) { | 
|  | SDValue Op = DAG.getUNDEF(VT.getScalarType()); | 
|  | if (M >= 0) { | 
|  | int Idx = M % NumElts; | 
|  | SDValue &S = (M < (int)NumElts ? N0 : N1); | 
|  | if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { | 
|  | Op = S.getOperand(Idx); | 
|  | } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { | 
|  | if (Idx == 0) | 
|  | Op = S.getOperand(0); | 
|  | } else { | 
|  | // Operand can't be combined - bail out. | 
|  | break; | 
|  | } | 
|  | } | 
|  | Ops.push_back(Op); | 
|  | } | 
|  | if (Ops.size() == VT.getVectorNumElements()) { | 
|  | // BUILD_VECTOR requires all inputs to be of the same type, find the | 
|  | // maximum type and extend them all. | 
|  | EVT SVT = VT.getScalarType(); | 
|  | if (SVT.isInteger()) | 
|  | for (SDValue &Op : Ops) | 
|  | SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); | 
|  | if (SVT != VT.getScalarType()) | 
|  | for (SDValue &Op : Ops) | 
|  | Op = TLI.isZExtFree(Op.getValueType(), SVT) | 
|  | ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) | 
|  | : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this shuffle only has a single input that is a bitcasted shuffle, | 
|  | // attempt to merge the 2 shuffles and suitably bitcast the inputs/output | 
|  | // back to their original types. | 
|  | if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
|  | N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps && | 
|  | TLI.isTypeLegal(VT)) { | 
|  |  | 
|  | // Peek through the bitcast only if there is one user. | 
|  | SDValue BC0 = N0; | 
|  | while (BC0.getOpcode() == ISD::BITCAST) { | 
|  | if (!BC0.hasOneUse()) | 
|  | break; | 
|  | BC0 = BC0.getOperand(0); | 
|  | } | 
|  |  | 
|  | auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { | 
|  | if (Scale == 1) | 
|  | return SmallVector<int, 8>(Mask.begin(), Mask.end()); | 
|  |  | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : Mask) | 
|  | for (int s = 0; s != Scale; ++s) | 
|  | NewMask.push_back(M < 0 ? -1 : Scale * M + s); | 
|  | return NewMask; | 
|  | }; | 
|  |  | 
|  | if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT InnerVT = BC0->getValueType(0); | 
|  | EVT InnerSVT = InnerVT.getScalarType(); | 
|  |  | 
|  | // Determine which shuffle works with the smaller scalar type. | 
|  | EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; | 
|  | EVT ScaleSVT = ScaleVT.getScalarType(); | 
|  |  | 
|  | if (TLI.isTypeLegal(ScaleVT) && | 
|  | 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && | 
|  | 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { | 
|  |  | 
|  | int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
|  | int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
|  |  | 
|  | // Scale the shuffle masks to the smaller scalar type. | 
|  | ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); | 
|  | SmallVector<int, 8> InnerMask = | 
|  | ScaleShuffleMask(InnerSVN->getMask(), InnerScale); | 
|  | SmallVector<int, 8> OuterMask = | 
|  | ScaleShuffleMask(SVN->getMask(), OuterScale); | 
|  |  | 
|  | // Merge the shuffle masks. | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : OuterMask) | 
|  | NewMask.push_back(M < 0 ? -1 : InnerMask[M]); | 
|  |  | 
|  | // Test for shuffle mask legality over both commutations. | 
|  | SDValue SV0 = BC0->getOperand(0); | 
|  | SDValue SV1 = BC0->getOperand(1); | 
|  | bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
|  | if (!LegalMask) { | 
|  | std::swap(SV0, SV1); | 
|  | ShuffleVectorSDNode::commuteMask(NewMask); | 
|  | LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
|  | } | 
|  |  | 
|  | if (LegalMask) { | 
|  | SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0); | 
|  | SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1); | 
|  | return DAG.getNode( | 
|  | ISD::BITCAST, SDLoc(N), VT, | 
|  | DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffles according to rules: | 
|  | //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) | 
|  | //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) | 
|  | //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) | 
|  | if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && | 
|  | TLI.isTypeLegal(VT)) { | 
|  | // The incoming shuffle must be of the same type as the result of the | 
|  | // current shuffle. | 
|  | assert(N1->getOperand(0).getValueType() == VT && | 
|  | "Shuffle types don't match"); | 
|  |  | 
|  | SDValue SV0 = N1->getOperand(0); | 
|  | SDValue SV1 = N1->getOperand(1); | 
|  | bool HasSameOp0 = N0 == SV0; | 
|  | bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; | 
|  | if (HasSameOp0 || IsSV1Undef || N0 == SV1) | 
|  | // Commute the operands of this shuffle so that next rule | 
|  | // will trigger. | 
|  | return DAG.getCommutedVectorShuffle(*SVN); | 
|  | } | 
|  |  | 
|  | // Try to fold according to rules: | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
|  | // Don't try to fold shuffles with illegal type. | 
|  | // Only fold if this shuffle is the only user of the other shuffle. | 
|  | if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && | 
|  | Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { | 
|  | ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); | 
|  |  | 
|  | // The incoming shuffle must be of the same type as the result of the | 
|  | // current shuffle. | 
|  | assert(OtherSV->getOperand(0).getValueType() == VT && | 
|  | "Shuffle types don't match"); | 
|  |  | 
|  | SDValue SV0, SV1; | 
|  | SmallVector<int, 4> Mask; | 
|  | // Compute the combined shuffle mask for a shuffle with SV0 as the first | 
|  | // operand, and SV1 as the second operand. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx < 0) { | 
|  | // Propagate Undef. | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue CurrentVec; | 
|  | if (Idx < (int)NumElts) { | 
|  | // This shuffle index refers to the inner shuffle N0. Lookup the inner | 
|  | // shuffle mask to identify which vector is actually referenced. | 
|  | Idx = OtherSV->getMaskElt(Idx); | 
|  | if (Idx < 0) { | 
|  | // Propagate Undef. | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) | 
|  | : OtherSV->getOperand(1); | 
|  | } else { | 
|  | // This shuffle index references an element within N1. | 
|  | CurrentVec = N1; | 
|  | } | 
|  |  | 
|  | // Simple case where 'CurrentVec' is UNDEF. | 
|  | if (CurrentVec.getOpcode() == ISD::UNDEF) { | 
|  | Mask.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Canonicalize the shuffle index. We don't know yet if CurrentVec | 
|  | // will be the first or second operand of the combined shuffle. | 
|  | Idx = Idx % NumElts; | 
|  | if (!SV0.getNode() || SV0 == CurrentVec) { | 
|  | // Ok. CurrentVec is the left hand side. | 
|  | // Update the mask accordingly. | 
|  | SV0 = CurrentVec; | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bail out if we cannot convert the shuffle pair into a single shuffle. | 
|  | if (SV1.getNode() && SV1 != CurrentVec) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok. CurrentVec is the right hand side. | 
|  | // Update the mask accordingly. | 
|  | SV1 = CurrentVec; | 
|  | Mask.push_back(Idx + NumElts); | 
|  | } | 
|  |  | 
|  | // Check if all indices in Mask are Undef. In case, propagate Undef. | 
|  | bool isUndefMask = true; | 
|  | for (unsigned i = 0; i != NumElts && isUndefMask; ++i) | 
|  | isUndefMask &= Mask[i] < 0; | 
|  |  | 
|  | if (isUndefMask) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (!SV0.getNode()) | 
|  | SV0 = DAG.getUNDEF(VT); | 
|  | if (!SV1.getNode()) | 
|  | SV1 = DAG.getUNDEF(VT); | 
|  |  | 
|  | // Avoid introducing shuffles with illegal mask. | 
|  | if (!TLI.isShuffleMaskLegal(Mask, VT)) { | 
|  | ShuffleVectorSDNode::commuteMask(Mask); | 
|  |  | 
|  | if (!TLI.isShuffleMaskLegal(Mask, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) | 
|  | std::swap(SV0, SV1); | 
|  | } | 
|  |  | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { | 
|  | SDValue InVal = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern | 
|  | // with a VECTOR_SHUFFLE. | 
|  | if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | SDValue InVec = InVal->getOperand(0); | 
|  | SDValue EltNo = InVal->getOperand(1); | 
|  |  | 
|  | // FIXME: We could support implicit truncation if the shuffle can be | 
|  | // scaled to a smaller vector scalar type. | 
|  | ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); | 
|  | if (C0 && VT == InVec.getValueType() && | 
|  | VT.getScalarType() == InVal.getValueType()) { | 
|  | SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); | 
|  | int Elt = C0->getZExtValue(); | 
|  | NewMask[0] = Elt; | 
|  |  | 
|  | if (TLI.isShuffleMaskLegal(NewMask, VT)) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), | 
|  | NewMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N2 = N->getOperand(2); | 
|  |  | 
|  | // If the input vector is a concatenation, and the insert replaces | 
|  | // one of the halves, we can optimize into a single concat_vectors. | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { | 
|  | APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> | 
|  | // (concat_vectors Z, Y) | 
|  | if (InsIdx == 0) | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, | 
|  | N->getOperand(1), N0.getOperand(1)); | 
|  |  | 
|  | // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> | 
|  | // (concat_vectors X, Z) | 
|  | if (InsIdx == VT.getVectorNumElements()/2) | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, | 
|  | N0.getOperand(0), N->getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // fold (fp_to_fp16 (fp16_to_fp op)) -> op | 
|  | if (N0->getOpcode() == ISD::FP16_TO_FP) | 
|  | return N0->getOperand(0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) | 
|  | if (N0->getOpcode() == ISD::AND) { | 
|  | ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); | 
|  | if (AndConst && AndConst->getAPIntValue() == 0xffff) { | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), | 
|  | N0.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle | 
|  | /// with the destination vector and a zero vector. | 
|  | /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | 
|  | ///      vector_shuffle V, Zero, <0, 4, 2, 4> | 
|  | SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Make sure we're not running after operation legalization where it | 
|  | // may have custom lowered the vector shuffles. | 
|  | if (LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N->getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::BITCAST) | 
|  | RHS = RHS.getOperand(0); | 
|  |  | 
|  | if (RHS.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT RVT = RHS.getValueType(); | 
|  | unsigned NumElts = RHS.getNumOperands(); | 
|  |  | 
|  | // Attempt to create a valid clear mask, splitting the mask into | 
|  | // sub elements and checking to see if each is | 
|  | // all zeros or all ones - suitable for shuffle masking. | 
|  | auto BuildClearMask = [&](int Split) { | 
|  | int NumSubElts = NumElts * Split; | 
|  | int NumSubBits = RVT.getScalarSizeInBits() / Split; | 
|  |  | 
|  | SmallVector<int, 8> Indices; | 
|  | for (int i = 0; i != NumSubElts; ++i) { | 
|  | int EltIdx = i / Split; | 
|  | int SubIdx = i % Split; | 
|  | SDValue Elt = RHS.getOperand(EltIdx); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) { | 
|  | Indices.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt Bits; | 
|  | if (isa<ConstantSDNode>(Elt)) | 
|  | Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); | 
|  | else if (isa<ConstantFPSDNode>(Elt)) | 
|  | Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Extract the sub element from the constant bit mask. | 
|  | if (DAG.getDataLayout().isBigEndian()) { | 
|  | Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); | 
|  | } else { | 
|  | Bits = Bits.lshr(SubIdx * NumSubBits); | 
|  | } | 
|  |  | 
|  | if (Split > 1) | 
|  | Bits = Bits.trunc(NumSubBits); | 
|  |  | 
|  | if (Bits.isAllOnesValue()) | 
|  | Indices.push_back(i); | 
|  | else if (Bits == 0) | 
|  | Indices.push_back(i + NumSubElts); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Let's see if the target supports this vector_shuffle. | 
|  | EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); | 
|  | EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); | 
|  | if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, dl, ClearVT); | 
|  | return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, | 
|  | DAG.getBitcast(ClearVT, LHS), | 
|  | Zero, &Indices[0])); | 
|  | }; | 
|  |  | 
|  | // Determine maximum split level (byte level masking). | 
|  | int MaxSplit = 1; | 
|  | if (RVT.getScalarSizeInBits() % 8 == 0) | 
|  | MaxSplit = RVT.getScalarSizeInBits() / 8; | 
|  |  | 
|  | for (int Split = 1; Split <= MaxSplit; ++Split) | 
|  | if (RVT.getScalarSizeInBits() % Split == 0) | 
|  | if (SDValue S = BuildClearMask(Split)) | 
|  | return S; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Visit a binary vector operation, like ADD. | 
|  | SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { | 
|  | assert(N->getValueType(0).isVector() && | 
|  | "SimplifyVBinOp only works on vectors!"); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Ops[] = {LHS, RHS}; | 
|  |  | 
|  | // See if we can constant fold the vector operation. | 
|  | if (SDValue Fold = DAG.FoldConstantVectorArithmetic( | 
|  | N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) | 
|  | return Fold; | 
|  |  | 
|  | // Try to convert a constant mask AND into a shuffle clear mask. | 
|  | if (SDValue Shuffle = XformToShuffleWithZero(N)) | 
|  | return Shuffle; | 
|  |  | 
|  | // Type legalization might introduce new shuffles in the DAG. | 
|  | // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) | 
|  | //   -> (shuffle (VBinOp (A, B)), Undef, Mask). | 
|  | if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && | 
|  | isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && | 
|  | LHS.getOperand(1).getOpcode() == ISD::UNDEF && | 
|  | RHS.getOperand(1).getOpcode() == ISD::UNDEF) { | 
|  | ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); | 
|  | ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); | 
|  |  | 
|  | if (SVN0->getMask().equals(SVN1->getMask())) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue UndefVector = LHS.getOperand(1); | 
|  | SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | 
|  | LHS.getOperand(0), RHS.getOperand(0), | 
|  | N->getFlags()); | 
|  | AddUsersToWorklist(N); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, | 
|  | &SVN0->getMask()[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, | 
|  | SDValue N1, SDValue N2){ | 
|  | assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); | 
|  |  | 
|  | SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  |  | 
|  | // If we got a simplified select_cc node back from SimplifySelectCC, then | 
|  | // break it down into a new SETCC node, and a new SELECT node, and then return | 
|  | // the SELECT node, since we were called with a SELECT node. | 
|  | if (SCC.getNode()) { | 
|  | // Check to see if we got a select_cc back (to turn into setcc/select). | 
|  | // Otherwise, just return whatever node we got back, like fabs. | 
|  | if (SCC.getOpcode() == ISD::SELECT_CC) { | 
|  | SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), | 
|  | N0.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), | 
|  | SCC.getOperand(4)); | 
|  | AddToWorklist(SETCC.getNode()); | 
|  | return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, | 
|  | SCC.getOperand(2), SCC.getOperand(3)); | 
|  | } | 
|  |  | 
|  | return SCC; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values | 
|  | /// being selected between, see if we can simplify the select.  Callers of this | 
|  | /// should assume that TheSelect is deleted if this returns true.  As such, they | 
|  | /// should return the appropriate thing (e.g. the node) back to the top-level of | 
|  | /// the DAG combiner loop to avoid it being looked at. | 
|  | bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | 
|  | SDValue RHS) { | 
|  |  | 
|  | // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
|  | // The select + setcc is redundant, because fsqrt returns NaN for X < 0. | 
|  | if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { | 
|  | if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { | 
|  | // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) | 
|  | SDValue Sqrt = RHS; | 
|  | ISD::CondCode CC; | 
|  | SDValue CmpLHS; | 
|  | const ConstantFPSDNode *Zero = nullptr; | 
|  |  | 
|  | if (TheSelect->getOpcode() == ISD::SELECT_CC) { | 
|  | CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); | 
|  | CmpLHS = TheSelect->getOperand(0); | 
|  | Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); | 
|  | } else { | 
|  | // SELECT or VSELECT | 
|  | SDValue Cmp = TheSelect->getOperand(0); | 
|  | if (Cmp.getOpcode() == ISD::SETCC) { | 
|  | CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); | 
|  | CmpLHS = Cmp.getOperand(0); | 
|  | Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); | 
|  | } | 
|  | } | 
|  | if (Zero && Zero->isZero() && | 
|  | Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || | 
|  | CC == ISD::SETULT || CC == ISD::SETLT)) { | 
|  | // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
|  | CombineTo(TheSelect, Sqrt); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Cannot simplify select with vector condition | 
|  | if (TheSelect->getOperand(0).getValueType().isVector()) return false; | 
|  |  | 
|  | // If this is a select from two identical things, try to pull the operation | 
|  | // through the select. | 
|  | if (LHS.getOpcode() != RHS.getOpcode() || | 
|  | !LHS.hasOneUse() || !RHS.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // If this is a load and the token chain is identical, replace the select | 
|  | // of two loads with a load through a select of the address to load from. | 
|  | // This triggers in things like "select bool X, 10.0, 123.0" after the FP | 
|  | // constants have been dropped into the constant pool. | 
|  | if (LHS.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LLD = cast<LoadSDNode>(LHS); | 
|  | LoadSDNode *RLD = cast<LoadSDNode>(RHS); | 
|  |  | 
|  | // Token chains must be identical. | 
|  | if (LHS.getOperand(0) != RHS.getOperand(0) || | 
|  | // Do not let this transformation reduce the number of volatile loads. | 
|  | LLD->isVolatile() || RLD->isVolatile() || | 
|  | // FIXME: If either is a pre/post inc/dec load, | 
|  | // we'd need to split out the address adjustment. | 
|  | LLD->isIndexed() || RLD->isIndexed() || | 
|  | // If this is an EXTLOAD, the VT's must match. | 
|  | LLD->getMemoryVT() != RLD->getMemoryVT() || | 
|  | // If this is an EXTLOAD, the kind of extension must match. | 
|  | (LLD->getExtensionType() != RLD->getExtensionType() && | 
|  | // The only exception is if one of the extensions is anyext. | 
|  | LLD->getExtensionType() != ISD::EXTLOAD && | 
|  | RLD->getExtensionType() != ISD::EXTLOAD) || | 
|  | // FIXME: this discards src value information.  This is | 
|  | // over-conservative. It would be beneficial to be able to remember | 
|  | // both potential memory locations.  Since we are discarding | 
|  | // src value info, don't do the transformation if the memory | 
|  | // locations are not in the default address space. | 
|  | LLD->getPointerInfo().getAddrSpace() != 0 || | 
|  | RLD->getPointerInfo().getAddrSpace() != 0 || | 
|  | !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), | 
|  | LLD->getBasePtr().getValueType())) | 
|  | return false; | 
|  |  | 
|  | // Check that the select condition doesn't reach either load.  If so, | 
|  | // folding this will induce a cycle into the DAG.  If not, this is safe to | 
|  | // xform, so create a select of the addresses. | 
|  | SDValue Addr; | 
|  | if (TheSelect->getOpcode() == ISD::SELECT) { | 
|  | SDNode *CondNode = TheSelect->getOperand(0).getNode(); | 
|  | if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || | 
|  | (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) | 
|  | return false; | 
|  | // The loads must not depend on one another. | 
|  | if (LLD->isPredecessorOf(RLD) || | 
|  | RLD->isPredecessorOf(LLD)) | 
|  | return false; | 
|  | Addr = DAG.getSelect(SDLoc(TheSelect), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), LLD->getBasePtr(), | 
|  | RLD->getBasePtr()); | 
|  | } else {  // Otherwise SELECT_CC | 
|  | SDNode *CondLHS = TheSelect->getOperand(0).getNode(); | 
|  | SDNode *CondRHS = TheSelect->getOperand(1).getNode(); | 
|  |  | 
|  | if ((LLD->hasAnyUseOfValue(1) && | 
|  | (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || | 
|  | (RLD->hasAnyUseOfValue(1) && | 
|  | (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) | 
|  | return false; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), | 
|  | TheSelect->getOperand(1), | 
|  | LLD->getBasePtr(), RLD->getBasePtr(), | 
|  | TheSelect->getOperand(4)); | 
|  | } | 
|  |  | 
|  | SDValue Load; | 
|  | // It is safe to replace the two loads if they have different alignments, | 
|  | // but the new load must be the minimum (most restrictive) alignment of the | 
|  | // inputs. | 
|  | bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); | 
|  | unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); | 
|  | if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | Load = DAG.getLoad(TheSelect->getValueType(0), | 
|  | SDLoc(TheSelect), | 
|  | // FIXME: Discards pointer and AA info. | 
|  | LLD->getChain(), Addr, MachinePointerInfo(), | 
|  | LLD->isVolatile(), LLD->isNonTemporal(), | 
|  | isInvariant, Alignment); | 
|  | } else { | 
|  | Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? | 
|  | RLD->getExtensionType() : LLD->getExtensionType(), | 
|  | SDLoc(TheSelect), | 
|  | TheSelect->getValueType(0), | 
|  | // FIXME: Discards pointer and AA info. | 
|  | LLD->getChain(), Addr, MachinePointerInfo(), | 
|  | LLD->getMemoryVT(), LLD->isVolatile(), | 
|  | LLD->isNonTemporal(), isInvariant, Alignment); | 
|  | } | 
|  |  | 
|  | // Users of the select now use the result of the load. | 
|  | CombineTo(TheSelect, Load); | 
|  |  | 
|  | // Users of the old loads now use the new load's chain.  We know the | 
|  | // old-load value is dead now. | 
|  | CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 | 
|  | /// where 'cond' is the comparison specified by CC. | 
|  | SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC, bool NotExtCompare) { | 
|  | // (x ? y : y) -> y. | 
|  | if (N2 == N3) return N2; | 
|  |  | 
|  | EVT VT = N2.getValueType(); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC, DL, false); | 
|  | if (SCC.getNode()) AddToWorklist(SCC.getNode()); | 
|  |  | 
|  | if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { | 
|  | // fold select_cc true, x, y -> x | 
|  | // fold select_cc false, x, y -> y | 
|  | return !SCCC->isNullValue() ? N2 : N3; | 
|  | } | 
|  |  | 
|  | // Check to see if we can simplify the select into an fabs node | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { | 
|  | // Allow either -0.0 or 0.0 | 
|  | if (CFP->isZero()) { | 
|  | // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs | 
|  | if ((CC == ISD::SETGE || CC == ISD::SETGT) && | 
|  | N0 == N2 && N3.getOpcode() == ISD::FNEG && | 
|  | N2 == N3.getOperand(0)) | 
|  | return DAG.getNode(ISD::FABS, DL, VT, N0); | 
|  |  | 
|  | // select (setl[te] X, +/-0.0), fneg(X), X -> fabs | 
|  | if ((CC == ISD::SETLT || CC == ISD::SETLE) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::FNEG && | 
|  | N2.getOperand(0) == N3) | 
|  | return DAG.getNode(ISD::FABS, DL, VT, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" | 
|  | // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 | 
|  | // in it.  This is a win when the constant is not otherwise available because | 
|  | // it replaces two constant pool loads with one.  We only do this if the FP | 
|  | // type is known to be legal, because if it isn't, then we are before legalize | 
|  | // types an we want the other legalization to happen first (e.g. to avoid | 
|  | // messing with soft float) and if the ConstantFP is not legal, because if | 
|  | // it is legal, we may not need to store the FP constant in a constant pool. | 
|  | if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) | 
|  | if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { | 
|  | if (TLI.isTypeLegal(N2.getValueType()) && | 
|  | (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != | 
|  | TargetLowering::Legal && | 
|  | !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && | 
|  | !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && | 
|  | // If both constants have multiple uses, then we won't need to do an | 
|  | // extra load, they are likely around in registers for other users. | 
|  | (TV->hasOneUse() || FV->hasOneUse())) { | 
|  | Constant *Elts[] = { | 
|  | const_cast<ConstantFP*>(FV->getConstantFPValue()), | 
|  | const_cast<ConstantFP*>(TV->getConstantFPValue()) | 
|  | }; | 
|  | Type *FPTy = Elts[0]->getType(); | 
|  | const DataLayout &TD = DAG.getDataLayout(); | 
|  |  | 
|  | // Create a ConstantArray of the two constants. | 
|  | Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); | 
|  | SDValue CPIdx = | 
|  | DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), | 
|  | TD.getPrefTypeAlignment(FPTy)); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  |  | 
|  | // Get the offsets to the 0 and 1 element of the array so that we can | 
|  | // select between them. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0, DL); | 
|  | unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); | 
|  | SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); | 
|  |  | 
|  | SDValue Cond = DAG.getSetCC(DL, | 
|  | getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC); | 
|  | AddToWorklist(Cond.getNode()); | 
|  | SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), | 
|  | Cond, One, Zero); | 
|  | AddToWorklist(CstOffset.getNode()); | 
|  | CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, | 
|  | CstOffset); | 
|  | AddToWorklist(CPIdx.getNode()); | 
|  | return DAG.getLoad( | 
|  | TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, Alignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we can perform the "gzip trick", transforming | 
|  | // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) | 
|  | if (isNullConstant(N3) && CC == ISD::SETLT && | 
|  | (isNullConstant(N1) ||                 // (a < 0) ? b : 0 | 
|  | (isOneConstant(N1) && N0 == N2))) {   // (a < 1) ? a : 0 | 
|  | EVT XType = N0.getValueType(); | 
|  | EVT AType = N2.getValueType(); | 
|  | if (XType.bitsGE(AType)) { | 
|  | // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a | 
|  | // single-bit constant. | 
|  | if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { | 
|  | unsigned ShCtV = N2C->getAPIntValue().logBase2(); | 
|  | ShCtV = XType.getSizeInBits() - ShCtV - 1; | 
|  | SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), | 
|  | getShiftAmountTy(N0.getValueType())); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), | 
|  | XType, N0, ShCt); | 
|  | AddToWorklist(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  |  | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), | 
|  | XType, N0, | 
|  | DAG.getConstant(XType.getSizeInBits() - 1, | 
|  | SDLoc(N0), | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | AddToWorklist(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) | 
|  | // where y is has a single bit set. | 
|  | // A plaintext description would be, we can turn the SELECT_CC into an AND | 
|  | // when the condition can be materialized as an all-ones register.  Any | 
|  | // single bit-test can be materialized as an all-ones register with | 
|  | // shift-left and shift-right-arith. | 
|  | if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && | 
|  | N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { | 
|  | SDValue AndLHS = N0->getOperand(0); | 
|  | ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { | 
|  | // Shift the tested bit over the sign bit. | 
|  | APInt AndMask = ConstAndRHS->getAPIntValue(); | 
|  | SDValue ShlAmt = | 
|  | DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), | 
|  | getShiftAmountTy(AndLHS.getValueType())); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); | 
|  |  | 
|  | // Now arithmetic right shift it all the way over, so the result is either | 
|  | // all-ones, or zero. | 
|  | SDValue ShrAmt = | 
|  | DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), | 
|  | getShiftAmountTy(Shl.getValueType())); | 
|  | SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, VT, Shr, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold select C, 16, 0 -> shl C, 4 | 
|  | if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && | 
|  | TLI.getBooleanContents(N0.getValueType()) == | 
|  | TargetLowering::ZeroOrOneBooleanContent) { | 
|  |  | 
|  | // If the caller doesn't want us to simplify this into a zext of a compare, | 
|  | // don't do it. | 
|  | if (NotExtCompare && N2C->isOne()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Get a SetCC of the condition | 
|  | // NOTE: Don't create a SETCC if it's not legal on this target. | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { | 
|  | SDValue Temp, SCC; | 
|  | // cast from setcc result type to select result type | 
|  | if (LegalTypes) { | 
|  | SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), | 
|  | N0, N1, CC); | 
|  | if (N2.getValueType().bitsLT(SCC.getValueType())) | 
|  | Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), | 
|  | N2.getValueType()); | 
|  | else | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), | 
|  | N2.getValueType(), SCC); | 
|  | } else { | 
|  | SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), | 
|  | N2.getValueType(), SCC); | 
|  | } | 
|  |  | 
|  | AddToWorklist(SCC.getNode()); | 
|  | AddToWorklist(Temp.getNode()); | 
|  |  | 
|  | if (N2C->isOne()) | 
|  | return Temp; | 
|  |  | 
|  | // shl setcc result by log2 n2c | 
|  | return DAG.getNode( | 
|  | ISD::SHL, DL, N2.getValueType(), Temp, | 
|  | DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), | 
|  | getShiftAmountTy(Temp.getValueType()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if this is an integer abs. | 
|  | // select_cc setg[te] X,  0,  X, -X -> | 
|  | // select_cc setgt    X, -1,  X, -X -> | 
|  | // select_cc setl[te] X,  0, -X,  X -> | 
|  | // select_cc setlt    X,  1, -X,  X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N1C) { | 
|  | ConstantSDNode *SubC = nullptr; | 
|  | if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || | 
|  | (N1C->isAllOnesValue() && CC == ISD::SETGT)) && | 
|  | N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) | 
|  | SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); | 
|  | else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || | 
|  | (N1C->isOne() && CC == ISD::SETLT)) && | 
|  | N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) | 
|  | SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); | 
|  |  | 
|  | EVT XType = N0.getValueType(); | 
|  | if (SubC && SubC->isNullValue() && XType.isInteger()) { | 
|  | SDLoc DL(N0); | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, | 
|  | N0, | 
|  | DAG.getConstant(XType.getSizeInBits() - 1, DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, | 
|  | XType, N0, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// This is a stub for TargetLowering::SimplifySetCC. | 
|  | SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, | 
|  | SDValue N1, ISD::CondCode Cond, | 
|  | SDLoc DL, bool foldBooleans) { | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, Level, false, this); | 
|  | return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SDIV node expressing a divide by constant, return | 
|  | /// a DAG expression to select that will generate the same value by multiplying | 
|  | /// by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue DAGCombiner::BuildSDIV(SDNode *N) { | 
|  | ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid division by zero. | 
|  | if (C->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = | 
|  | TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); | 
|  |  | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a | 
|  | /// DAG expression that will generate the same value by right shifting. | 
|  | SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { | 
|  | ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid division by zero. | 
|  | if (C->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | std::vector<SDNode *> Built; | 
|  | SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); | 
|  |  | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// Given an ISD::UDIV node expressing a divide by constant, return a DAG | 
|  | /// expression that will generate the same value by multiplying by a magic | 
|  | /// number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue DAGCombiner::BuildUDIV(SDNode *N) { | 
|  | ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid division by zero. | 
|  | if (C->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | std::vector<SDNode*> Built; | 
|  | SDValue S = | 
|  | TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); | 
|  |  | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { | 
|  | if (Level >= AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner implementations. | 
|  | TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); | 
|  |  | 
|  | unsigned Iterations = 0; | 
|  | if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { | 
|  | if (Iterations) { | 
|  | // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | // For the reciprocal, we need to find the zero of the function: | 
|  | //   F(X) = A X - 1 [which has a zero at X = 1/A] | 
|  | //     => | 
|  | //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form | 
|  | //     does not require additional intermediate precision] | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
|  |  | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | // Newton iterations: Est = Est + Est (1 - Arg * Est) | 
|  | for (unsigned i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | /// For the reciprocal sqrt, we need to find the zero of the function: | 
|  | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
|  | ///     => | 
|  | ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2) | 
|  | /// As a result, we precompute A/2 prior to the iteration loop. | 
|  | SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est, | 
|  | unsigned Iterations, | 
|  | SDNodeFlags *Flags) { | 
|  | EVT VT = Arg.getValueType(); | 
|  | SDLoc DL(Arg); | 
|  | SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); | 
|  |  | 
|  | // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that | 
|  | // this entire sequence requires only one FP constant. | 
|  | SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); | 
|  | AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); | 
|  | AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) | 
|  | for (unsigned i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | /// For the reciprocal sqrt, we need to find the zero of the function: | 
|  | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
|  | ///     => | 
|  | ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) | 
|  | SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est, | 
|  | unsigned Iterations, | 
|  | SDNodeFlags *Flags) { | 
|  | EVT VT = Arg.getValueType(); | 
|  | SDLoc DL(Arg); | 
|  | SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); | 
|  | SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); | 
|  |  | 
|  | // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est) | 
|  | for (unsigned i = 0; i < Iterations; ++i) { | 
|  | SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); | 
|  | AddToWorklist(HalfEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { | 
|  | if (Level >= AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner implementations. | 
|  | TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); | 
|  | unsigned Iterations = 0; | 
|  | bool UseOneConstNR = false; | 
|  | if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { | 
|  | AddToWorklist(Est.getNode()); | 
|  | if (Iterations) { | 
|  | Est = UseOneConstNR ? | 
|  | BuildRsqrtNROneConst(Op, Est, Iterations, Flags) : | 
|  | BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags); | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return true if base is a frame index, which is known not to alias with | 
|  | /// anything but itself.  Provides base object and offset as results. | 
|  | static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, | 
|  | const GlobalValue *&GV, const void *&CV) { | 
|  | // Assume it is a primitive operation. | 
|  | Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; | 
|  |  | 
|  | // If it's an adding a simple constant then integrate the offset. | 
|  | if (Base.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { | 
|  | Base = Base.getOperand(0); | 
|  | Offset += C->getZExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the underlying GlobalValue, and update the Offset.  Return false | 
|  | // for GlobalAddressSDNode since the same GlobalAddress may be represented | 
|  | // by multiple nodes with different offsets. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { | 
|  | GV = G->getGlobal(); | 
|  | Offset += G->getOffset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the underlying Constant value, and update the Offset.  Return false | 
|  | // for ConstantSDNodes since the same constant pool entry may be represented | 
|  | // by multiple nodes with different offsets. | 
|  | if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { | 
|  | CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() | 
|  | : (const void *)C->getConstVal(); | 
|  | Offset += C->getOffset(); | 
|  | return false; | 
|  | } | 
|  | // If it's any of the following then it can't alias with anything but itself. | 
|  | return isa<FrameIndexSDNode>(Base); | 
|  | } | 
|  |  | 
|  | /// Return true if there is any possibility that the two addresses overlap. | 
|  | bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { | 
|  | // If they are the same then they must be aliases. | 
|  | if (Op0->getBasePtr() == Op1->getBasePtr()) return true; | 
|  |  | 
|  | // If they are both volatile then they cannot be reordered. | 
|  | if (Op0->isVolatile() && Op1->isVolatile()) return true; | 
|  |  | 
|  | // If one operation reads from invariant memory, and the other may store, they | 
|  | // cannot alias. These should really be checking the equivalent of mayWrite, | 
|  | // but it only matters for memory nodes other than load /store. | 
|  | if (Op0->isInvariant() && Op1->writeMem()) | 
|  | return false; | 
|  |  | 
|  | if (Op1->isInvariant() && Op0->writeMem()) | 
|  | return false; | 
|  |  | 
|  | // Gather base node and offset information. | 
|  | SDValue Base1, Base2; | 
|  | int64_t Offset1, Offset2; | 
|  | const GlobalValue *GV1, *GV2; | 
|  | const void *CV1, *CV2; | 
|  | bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), | 
|  | Base1, Offset1, GV1, CV1); | 
|  | bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), | 
|  | Base2, Offset2, GV2, CV2); | 
|  |  | 
|  | // If they have a same base address then check to see if they overlap. | 
|  | if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) | 
|  | return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || | 
|  | (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); | 
|  |  | 
|  | // It is possible for different frame indices to alias each other, mostly | 
|  | // when tail call optimization reuses return address slots for arguments. | 
|  | // To catch this case, look up the actual index of frame indices to compute | 
|  | // the real alias relationship. | 
|  | if (isFrameIndex1 && isFrameIndex2) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); | 
|  | Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); | 
|  | return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || | 
|  | (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); | 
|  | } | 
|  |  | 
|  | // Otherwise, if we know what the bases are, and they aren't identical, then | 
|  | // we know they cannot alias. | 
|  | if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) | 
|  | return false; | 
|  |  | 
|  | // If we know required SrcValue1 and SrcValue2 have relatively large alignment | 
|  | // compared to the size and offset of the access, we may be able to prove they | 
|  | // do not alias.  This check is conservative for now to catch cases created by | 
|  | // splitting vector types. | 
|  | if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && | 
|  | (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && | 
|  | (Op0->getMemoryVT().getSizeInBits() >> 3 == | 
|  | Op1->getMemoryVT().getSizeInBits() >> 3) && | 
|  | (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { | 
|  | int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); | 
|  | int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); | 
|  |  | 
|  | // There is no overlap between these relatively aligned accesses of similar | 
|  | // size, return no alias. | 
|  | if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || | 
|  | (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 | 
|  | ? CombinerGlobalAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  | #ifndef NDEBUG | 
|  | if (CombinerAAOnlyFunc.getNumOccurrences() && | 
|  | CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | 
|  | UseAA = false; | 
|  | #endif | 
|  | if (UseAA && | 
|  | Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { | 
|  | // Use alias analysis information. | 
|  | int64_t MinOffset = std::min(Op0->getSrcValueOffset(), | 
|  | Op1->getSrcValueOffset()); | 
|  | int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + | 
|  | Op0->getSrcValueOffset() - MinOffset; | 
|  | int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + | 
|  | Op1->getSrcValueOffset() - MinOffset; | 
|  | AliasResult AAResult = | 
|  | AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, | 
|  | UseTBAA ? Op0->getAAInfo() : AAMDNodes()), | 
|  | MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, | 
|  | UseTBAA ? Op1->getAAInfo() : AAMDNodes())); | 
|  | if (AAResult == NoAlias) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to assume they alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVectorImpl<SDValue> &Aliases) { | 
|  | SmallVector<SDValue, 8> Chains;     // List of chains to visit. | 
|  | SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. | 
|  |  | 
|  | // Get alias information for node. | 
|  | bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); | 
|  |  | 
|  | // Starting off. | 
|  | Chains.push_back(OriginalChain); | 
|  | unsigned Depth = 0; | 
|  |  | 
|  | // Look at each chain and determine if it is an alias.  If so, add it to the | 
|  | // aliases list.  If not, then continue up the chain looking for the next | 
|  | // candidate. | 
|  | while (!Chains.empty()) { | 
|  | SDValue Chain = Chains.pop_back_val(); | 
|  |  | 
|  | // For TokenFactor nodes, look at each operand and only continue up the | 
|  | // chain until we reach the depth limit. | 
|  | // | 
|  | // FIXME: The depth check could be made to return the last non-aliasing | 
|  | // chain we found before we hit a tokenfactor rather than the original | 
|  | // chain. | 
|  | if (Depth > TLI.getGatherAllAliasesMaxDepth()) { | 
|  | Aliases.clear(); | 
|  | Aliases.push_back(OriginalChain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't bother if we've been before. | 
|  | if (!Visited.insert(Chain.getNode()).second) | 
|  | continue; | 
|  |  | 
|  | switch (Chain.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry token is ideal chain operand, but handled in FindBetterChain. | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: { | 
|  | // Get alias information for Chain. | 
|  | bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && | 
|  | !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); | 
|  |  | 
|  | // If chain is alias then stop here. | 
|  | if (!(IsLoad && IsOpLoad) && | 
|  | isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { | 
|  | Aliases.push_back(Chain); | 
|  | } else { | 
|  | // Look further up the chain. | 
|  | Chains.push_back(Chain.getOperand(0)); | 
|  | ++Depth; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | // We have to check each of the operands of the token factor for "small" | 
|  | // token factors, so we queue them up.  Adding the operands to the queue | 
|  | // (stack) in reverse order maintains the original order and increases the | 
|  | // likelihood that getNode will find a matching token factor (CSE.) | 
|  | if (Chain.getNumOperands() > 16) { | 
|  | Aliases.push_back(Chain); | 
|  | break; | 
|  | } | 
|  | for (unsigned n = Chain.getNumOperands(); n;) | 
|  | Chains.push_back(Chain.getOperand(--n)); | 
|  | ++Depth; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | // For all other instructions we will just have to take what we can get. | 
|  | Aliases.push_back(Chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to be careful here to also search for aliases through the | 
|  | // value operand of a store, etc. Consider the following situation: | 
|  | //   Token1 = ... | 
|  | //   L1 = load Token1, %52 | 
|  | //   S1 = store Token1, L1, %51 | 
|  | //   L2 = load Token1, %52+8 | 
|  | //   S2 = store Token1, L2, %51+8 | 
|  | //   Token2 = Token(S1, S2) | 
|  | //   L3 = load Token2, %53 | 
|  | //   S3 = store Token2, L3, %52 | 
|  | //   L4 = load Token2, %53+8 | 
|  | //   S4 = store Token2, L4, %52+8 | 
|  | // If we search for aliases of S3 (which loads address %52), and we look | 
|  | // only through the chain, then we'll miss the trivial dependence on L1 | 
|  | // (which also loads from %52). We then might change all loads and | 
|  | // stores to use Token1 as their chain operand, which could result in | 
|  | // copying %53 into %52 before copying %52 into %51 (which should | 
|  | // happen first). | 
|  | // | 
|  | // The problem is, however, that searching for such data dependencies | 
|  | // can become expensive, and the cost is not directly related to the | 
|  | // chain depth. Instead, we'll rule out such configurations here by | 
|  | // insisting that we've visited all chain users (except for users | 
|  | // of the original chain, which is not necessary). When doing this, | 
|  | // we need to look through nodes we don't care about (otherwise, things | 
|  | // like register copies will interfere with trivial cases). | 
|  |  | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  | for (const SDNode *N : Visited) | 
|  | if (N != OriginalChain.getNode()) | 
|  | Worklist.push_back(N); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const SDNode *M = Worklist.pop_back_val(); | 
|  |  | 
|  | // We have already visited M, and want to make sure we've visited any uses | 
|  | // of M that we care about. For uses that we've not visisted, and don't | 
|  | // care about, queue them to the worklist. | 
|  |  | 
|  | for (SDNode::use_iterator UI = M->use_begin(), | 
|  | UIE = M->use_end(); UI != UIE; ++UI) | 
|  | if (UI.getUse().getValueType() == MVT::Other && | 
|  | Visited.insert(*UI).second) { | 
|  | if (isa<MemSDNode>(*UI)) { | 
|  | // We've not visited this use, and we care about it (it could have an | 
|  | // ordering dependency with the original node). | 
|  | Aliases.clear(); | 
|  | Aliases.push_back(OriginalChain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We've not visited this use, but we don't care about it. Mark it as | 
|  | // visited and enqueue it to the worklist. | 
|  | Worklist.push_back(*UI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain | 
|  | /// (aliasing node.) | 
|  | SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | 
|  | SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor. | 
|  |  | 
|  | // Accumulate all the aliases to this node. | 
|  | GatherAllAliases(N, OldChain, Aliases); | 
|  |  | 
|  | // If no operands then chain to entry token. | 
|  | if (Aliases.size() == 0) | 
|  | return DAG.getEntryNode(); | 
|  |  | 
|  | // If a single operand then chain to it.  We don't need to revisit it. | 
|  | if (Aliases.size() == 1) | 
|  | return Aliases[0]; | 
|  |  | 
|  | // Construct a custom tailored token factor. | 
|  | return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) { | 
|  | // This holds the base pointer, index, and the offset in bytes from the base | 
|  | // pointer. | 
|  | BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); | 
|  |  | 
|  | // We must have a base and an offset. | 
|  | if (!BasePtr.Base.getNode()) | 
|  | return false; | 
|  |  | 
|  | // Do not handle stores to undef base pointers. | 
|  | if (BasePtr.Base.getOpcode() == ISD::UNDEF) | 
|  | return false; | 
|  |  | 
|  | SmallVector<StoreSDNode *, 8> ChainedStores; | 
|  | ChainedStores.push_back(St); | 
|  |  | 
|  | // Walk up the chain and look for nodes with offsets from the same | 
|  | // base pointer. Stop when reaching an instruction with a different kind | 
|  | // or instruction which has a different base pointer. | 
|  | StoreSDNode *Index = St; | 
|  | while (Index) { | 
|  | // If the chain has more than one use, then we can't reorder the mem ops. | 
|  | if (Index != St && !SDValue(Index, 0)->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | if (Index->isVolatile() || Index->isIndexed()) | 
|  | break; | 
|  |  | 
|  | // Find the base pointer and offset for this memory node. | 
|  | BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); | 
|  |  | 
|  | // Check that the base pointer is the same as the original one. | 
|  | if (!Ptr.equalBaseIndex(BasePtr)) | 
|  | break; | 
|  |  | 
|  | // Find the next memory operand in the chain. If the next operand in the | 
|  | // chain is a store then move up and continue the scan with the next | 
|  | // memory operand. If the next operand is a load save it and use alias | 
|  | // information to check if it interferes with anything. | 
|  | SDNode *NextInChain = Index->getChain().getNode(); | 
|  | while (true) { | 
|  | if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { | 
|  | // We found a store node. Use it for the next iteration. | 
|  | if (STn->isVolatile() || STn->isIndexed()) { | 
|  | Index = nullptr; | 
|  | break; | 
|  | } | 
|  | ChainedStores.push_back(STn); | 
|  | Index = STn; | 
|  | break; | 
|  | } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { | 
|  | NextInChain = Ldn->getChain().getNode(); | 
|  | continue; | 
|  | } else { | 
|  | Index = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MadeChange = false; | 
|  | SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; | 
|  |  | 
|  | for (StoreSDNode *ChainedStore : ChainedStores) { | 
|  | SDValue Chain = ChainedStore->getChain(); | 
|  | SDValue BetterChain = FindBetterChain(ChainedStore, Chain); | 
|  |  | 
|  | if (Chain != BetterChain) { | 
|  | MadeChange = true; | 
|  | BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do all replacements after finding the replacements to make to avoid making | 
|  | // the chains more complicated by introducing new TokenFactors. | 
|  | for (auto Replacement : BetterChains) | 
|  | replaceStoreChain(Replacement.first, Replacement.second); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// This is the entry point for the file. | 
|  | void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | /// This is the main entry point to this class. | 
|  | DAGCombiner(*this, AA, OptLevel).Run(Level); | 
|  | } |