|  | //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  |  | 
|  | /// LimitFloatPrecision - Generate low-precision inline sequences for | 
|  | /// some float libcalls (6, 8 or 12 bits). | 
|  | static unsigned LimitFloatPrecision; | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | LimitFPPrecision("limit-float-precision", | 
|  | cl::desc("Generate low-precision inline sequences " | 
|  | "for some float libcalls"), | 
|  | cl::location(LimitFloatPrecision), | 
|  | cl::init(0)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable fast-math-flags for DAG nodes")); | 
|  |  | 
|  | // Limit the width of DAG chains. This is important in general to prevent | 
|  | // DAG-based analysis from blowing up. For example, alias analysis and | 
|  | // load clustering may not complete in reasonable time. It is difficult to | 
|  | // recognize and avoid this situation within each individual analysis, and | 
|  | // future analyses are likely to have the same behavior. Limiting DAG width is | 
|  | // the safe approach and will be especially important with global DAGs. | 
|  | // | 
|  | // MaxParallelChains default is arbitrarily high to avoid affecting | 
|  | // optimization, but could be lowered to improve compile time. Any ld-ld-st-st | 
|  | // sequence over this should have been converted to llvm.memcpy by the | 
|  | // frontend. It easy to induce this behavior with .ll code such as: | 
|  | // %buffer = alloca [4096 x i8] | 
|  | // %data = load [4096 x i8]* %argPtr | 
|  | // store [4096 x i8] %data, [4096 x i8]* %buffer | 
|  | static const unsigned MaxParallelChains = 64; | 
|  |  | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, const Value *V); | 
|  |  | 
|  | /// getCopyFromParts - Create a value that contains the specified legal parts | 
|  | /// combined into the value they represent.  If the parts combine to a type | 
|  | /// larger then ValueVT then AssertOp can be used to specify whether the extra | 
|  | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
|  | /// (ISD::AssertSext). | 
|  | static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, | 
|  | const SDValue *Parts, | 
|  | unsigned NumParts, MVT PartVT, EVT ValueVT, | 
|  | const Value *V, | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE) { | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyFromPartsVector(DAG, DL, Parts, NumParts, | 
|  | PartVT, ValueVT, V); | 
|  |  | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | if (NumParts > 1) { | 
|  | // Assemble the value from multiple parts. | 
|  | if (ValueVT.isInteger()) { | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned ValueBits = ValueVT.getSizeInBits(); | 
|  |  | 
|  | // Assemble the power of 2 part. | 
|  | unsigned RoundParts = NumParts & (NumParts - 1) ? | 
|  | 1 << Log2_32(NumParts) : NumParts; | 
|  | unsigned RoundBits = PartBits * RoundParts; | 
|  | EVT RoundVT = RoundBits == ValueBits ? | 
|  | ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); | 
|  |  | 
|  | if (RoundParts > 2) { | 
|  | Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, | 
|  | PartVT, HalfVT, V); | 
|  | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, | 
|  | RoundParts / 2, PartVT, HalfVT, V); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); | 
|  | } | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); | 
|  |  | 
|  | if (RoundParts < NumParts) { | 
|  | // Assemble the trailing non-power-of-2 part. | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); | 
|  | Hi = getCopyFromParts(DAG, DL, | 
|  | Parts + RoundParts, OddParts, PartVT, OddVT, V); | 
|  |  | 
|  | // Combine the round and odd parts. | 
|  | Lo = Val; | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); | 
|  | Hi = | 
|  | DAG.getNode(ISD::SHL, DL, TotalVT, Hi, | 
|  | DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); | 
|  | Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); | 
|  | } | 
|  | } else if (PartVT.isFloatingPoint()) { | 
|  | // FP split into multiple FP parts (for ppcf128) | 
|  | assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && | 
|  | "Unexpected split"); | 
|  | SDValue Lo, Hi; | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); | 
|  | if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) | 
|  | std::swap(Lo, Hi); | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); | 
|  | } else { | 
|  | // FP split into integer parts (soft fp) | 
|  | assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && | 
|  | !PartVT.isVector() && "Unexpected split"); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); | 
|  | Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | EVT PartEVT = Val.getValueType(); | 
|  |  | 
|  | if (PartEVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && | 
|  | ValueVT.bitsLT(PartEVT)) { | 
|  | // For an FP value in an integer part, we need to truncate to the right | 
|  | // width first. | 
|  | PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits()); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartEVT.isInteger() && ValueVT.isInteger()) { | 
|  | if (ValueVT.bitsLT(PartEVT)) { | 
|  | // For a truncate, see if we have any information to | 
|  | // indicate whether the truncated bits will always be | 
|  | // zero or sign-extension. | 
|  | if (AssertOp != ISD::DELETED_NODE) | 
|  | Val = DAG.getNode(AssertOp, DL, PartEVT, Val, | 
|  | DAG.getValueType(ValueVT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  | return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | // FP_ROUND's are always exact here. | 
|  | if (ValueVT.bitsLT(Val.getValueType())) | 
|  | return DAG.getNode( | 
|  | ISD::FP_ROUND, DL, ValueVT, Val, | 
|  | DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | llvm_unreachable("Unknown mismatch!"); | 
|  | } | 
|  |  | 
|  | static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, | 
|  | const Twine &ErrMsg) { | 
|  | const Instruction *I = dyn_cast_or_null<Instruction>(V); | 
|  | if (!V) | 
|  | return Ctx.emitError(ErrMsg); | 
|  |  | 
|  | const char *AsmError = ", possible invalid constraint for vector type"; | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (isa<InlineAsm>(CI->getCalledValue())) | 
|  | return Ctx.emitError(I, ErrMsg + AsmError); | 
|  |  | 
|  | return Ctx.emitError(I, ErrMsg); | 
|  | } | 
|  |  | 
|  | /// getCopyFromPartsVector - Create a value that contains the specified legal | 
|  | /// parts combined into the value they represent.  If the parts combine to a | 
|  | /// type larger then ValueVT then AssertOp can be used to specify whether the | 
|  | /// extra bits are known to be zero (ISD::AssertZext) or sign extended from | 
|  | /// ValueVT (ISD::AssertSext). | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, const Value *V) { | 
|  | assert(ValueVT.isVector() && "Not a vector value"); | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | if (NumParts > 1) { | 
|  | EVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = | 
|  | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  | assert(RegisterVT.getSizeInBits() == | 
|  | Parts[0].getSimpleValueType().getSizeInBits() && | 
|  | "Part type sizes don't match!"); | 
|  |  | 
|  | // Assemble the parts into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | if (NumIntermediates == NumParts) { | 
|  | // If the register was not expanded, truncate or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, | 
|  | PartVT, IntermediateVT, V); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, build the intermediate | 
|  | // operands from the parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, | 
|  | PartVT, IntermediateVT, V); | 
|  | } | 
|  |  | 
|  | // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the | 
|  | // intermediate operands. | 
|  | Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS | 
|  | : ISD::BUILD_VECTOR, | 
|  | DL, ValueVT, Ops); | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | EVT PartEVT = Val.getValueType(); | 
|  |  | 
|  | if (PartEVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartEVT.isVector()) { | 
|  | // If the element type of the source/dest vectors are the same, but the | 
|  | // parts vector has more elements than the value vector, then we have a | 
|  | // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the | 
|  | // elements we want. | 
|  | if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { | 
|  | assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && | 
|  | "Cannot narrow, it would be a lossy transformation"); | 
|  | return DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | // Vector/Vector bitcast. | 
|  | if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && | 
|  | "Cannot handle this kind of promotion"); | 
|  | // Promoted vector extract | 
|  | return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Trivial bitcast if the types are the same size and the destination | 
|  | // vector type is legal. | 
|  | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && | 
|  | TLI.isTypeLegal(ValueVT)) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | // Handle cases such as i8 -> <1 x i1> | 
|  | if (ValueVT.getVectorNumElements() != 1) { | 
|  | diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, | 
|  | "non-trivial scalar-to-vector conversion"); | 
|  | return DAG.getUNDEF(ValueVT); | 
|  | } | 
|  |  | 
|  | if (ValueVT.getVectorNumElements() == 1 && | 
|  | ValueVT.getVectorElementType() != PartEVT) | 
|  | Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, const Value *V); | 
|  |  | 
|  | /// getCopyToParts - Create a series of nodes that contain the specified value | 
|  | /// split into legal parts.  If the parts contain more bits than Val, then, for | 
|  | /// integers, ExtendKind can be used to specify how to generate the extra bits. | 
|  | static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, const Value *V, | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  |  | 
|  | // Handle the vector case separately. | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); | 
|  |  | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned OrigNumParts = NumParts; | 
|  | assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && | 
|  | "Copying to an illegal type!"); | 
|  |  | 
|  | if (NumParts == 0) | 
|  | return; | 
|  |  | 
|  | assert(!ValueVT.isVector() && "Vector case handled elsewhere"); | 
|  | EVT PartEVT = PartVT; | 
|  | if (PartEVT == ValueVT) { | 
|  | assert(NumParts == 1 && "No-op copy with multiple parts!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NumParts * PartBits > ValueVT.getSizeInBits()) { | 
|  | // If the parts cover more bits than the value has, promote the value. | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | assert(NumParts == 1 && "Do not know what to promote to!"); | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); | 
|  | } else { | 
|  | if (ValueVT.isFloatingPoint()) { | 
|  | // FP values need to be bitcast, then extended if they are being put | 
|  | // into a larger container. | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits()); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  | } | 
|  | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && | 
|  | ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); | 
|  | if (PartVT == MVT::x86mmx) | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } | 
|  | } else if (PartBits == ValueVT.getSizeInBits()) { | 
|  | // Different types of the same size. | 
|  | assert(NumParts == 1 && PartEVT != ValueVT); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { | 
|  | // If the parts cover less bits than value has, truncate the value. | 
|  | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && | 
|  | ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | if (PartVT == MVT::x86mmx) | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } | 
|  |  | 
|  | // The value may have changed - recompute ValueVT. | 
|  | ValueVT = Val.getValueType(); | 
|  | assert(NumParts * PartBits == ValueVT.getSizeInBits() && | 
|  | "Failed to tile the value with PartVT!"); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | if (PartEVT != ValueVT) | 
|  | diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, | 
|  | "scalar-to-vector conversion failed"); | 
|  |  | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Expand the value into multiple parts. | 
|  | if (NumParts & (NumParts - 1)) { | 
|  | // The number of parts is not a power of 2.  Split off and copy the tail. | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Do not know what to expand to!"); | 
|  | unsigned RoundParts = 1 << Log2_32(NumParts); | 
|  | unsigned RoundBits = RoundParts * PartBits; | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, | 
|  | DAG.getIntPtrConstant(RoundBits, DL)); | 
|  | getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | // The odd parts were reversed by getCopyToParts - unreverse them. | 
|  | std::reverse(Parts + RoundParts, Parts + NumParts); | 
|  |  | 
|  | NumParts = RoundParts; | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // The number of parts is a power of 2.  Repeatedly bisect the value using | 
|  | // EXTRACT_ELEMENT. | 
|  | Parts[0] = DAG.getNode(ISD::BITCAST, DL, | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | ValueVT.getSizeInBits()), | 
|  | Val); | 
|  |  | 
|  | for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { | 
|  | for (unsigned i = 0; i < NumParts; i += StepSize) { | 
|  | unsigned ThisBits = StepSize * PartBits / 2; | 
|  | EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); | 
|  | SDValue &Part0 = Parts[i]; | 
|  | SDValue &Part1 = Parts[i+StepSize/2]; | 
|  |  | 
|  | Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); | 
|  | Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); | 
|  |  | 
|  | if (ThisBits == PartBits && ThisVT != PartVT) { | 
|  | Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); | 
|  | Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::reverse(Parts, Parts + OrigNumParts); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getCopyToPartsVector - Create a series of nodes that contain the specified | 
|  | /// value split into legal parts. | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, const Value *V) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  | assert(ValueVT.isVector() && "Not a vector"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | EVT PartEVT = PartVT; | 
|  | if (PartEVT == ValueVT) { | 
|  | // Nothing to do. | 
|  | } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { | 
|  | // Bitconvert vector->vector case. | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (PartVT.isVector() && | 
|  | PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && | 
|  | PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { | 
|  | EVT ElementVT = PartVT.getVectorElementType(); | 
|  | // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in | 
|  | // undef elements. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) | 
|  | Ops.push_back(DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, | 
|  | DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); | 
|  |  | 
|  | for (unsigned i = ValueVT.getVectorNumElements(), | 
|  | e = PartVT.getVectorNumElements(); i != e; ++i) | 
|  | Ops.push_back(DAG.getUNDEF(ElementVT)); | 
|  |  | 
|  | Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); | 
|  |  | 
|  | // FIXME: Use CONCAT for 2x -> 4x. | 
|  |  | 
|  | //SDValue UndefElts = DAG.getUNDEF(VectorTy); | 
|  | //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); | 
|  | } else if (PartVT.isVector() && | 
|  | PartEVT.getVectorElementType().bitsGE( | 
|  | ValueVT.getVectorElementType()) && | 
|  | PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { | 
|  |  | 
|  | // Promoted vector extract | 
|  | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); | 
|  | } else{ | 
|  | // Vector -> scalar conversion. | 
|  | assert(ValueVT.getVectorNumElements() == 1 && | 
|  | "Only trivial vector-to-scalar conversions should get here!"); | 
|  | Val = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  |  | 
|  | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); | 
|  | } | 
|  |  | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | EVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, | 
|  | IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | unsigned NumElements = ValueVT.getVectorNumElements(); | 
|  |  | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  |  | 
|  | // Split the vector into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) { | 
|  | if (IntermediateVT.isVector()) | 
|  | Ops[i] = | 
|  | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, | 
|  | DAG.getConstant(i * (NumElements / NumIntermediates), DL, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | else | 
|  | Ops[i] = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, | 
|  | DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | // Split the intermediate operands into legal parts. | 
|  | if (NumParts == NumIntermediates) { | 
|  | // If the register was not expanded, promote or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, split each the value into | 
|  | // legal parts. | 
|  | assert(NumIntermediates != 0 && "division by zero"); | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | RegsForValue::RegsForValue() {} | 
|  |  | 
|  | RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, | 
|  | EVT valuevt) | 
|  | : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} | 
|  |  | 
|  | RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL, unsigned Reg, Type *Ty) { | 
|  | ComputeValueVTs(TLI, DL, Ty, ValueVTs); | 
|  |  | 
|  | for (EVT ValueVT : ValueVTs) { | 
|  | unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); | 
|  | MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | Regs.push_back(Reg + i); | 
|  | RegVTs.push_back(RegisterVT); | 
|  | Reg += NumRegs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVT value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, | 
|  | FunctionLoweringInfo &FuncInfo, | 
|  | SDLoc dl, | 
|  | SDValue &Chain, SDValue *Flag, | 
|  | const Value *V) const { | 
|  | // A Value with type {} or [0 x %t] needs no registers. | 
|  | if (ValueVTs.empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // Assemble the legal parts into the final values. | 
|  | SmallVector<SDValue, 4> Values(ValueVTs.size()); | 
|  | SmallVector<SDValue, 8> Parts; | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | // Copy the legal parts from the registers. | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | Parts.resize(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue P; | 
|  | if (!Flag) { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); | 
|  | } else { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); | 
|  | *Flag = P.getValue(2); | 
|  | } | 
|  |  | 
|  | Chain = P.getValue(1); | 
|  | Parts[i] = P; | 
|  |  | 
|  | // If the source register was virtual and if we know something about it, | 
|  | // add an assert node. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || | 
|  | !RegisterVT.isInteger() || RegisterVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | const FunctionLoweringInfo::LiveOutInfo *LOI = | 
|  | FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); | 
|  | if (!LOI) | 
|  | continue; | 
|  |  | 
|  | unsigned RegSize = RegisterVT.getSizeInBits(); | 
|  | unsigned NumSignBits = LOI->NumSignBits; | 
|  | unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); | 
|  |  | 
|  | if (NumZeroBits == RegSize) { | 
|  | // The current value is a zero. | 
|  | // Explicitly express that as it would be easier for | 
|  | // optimizations to kick in. | 
|  | Parts[i] = DAG.getConstant(0, dl, RegisterVT); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: We capture more information than the dag can represent.  For | 
|  | // now, just use the tightest assertzext/assertsext possible. | 
|  | bool isSExt = true; | 
|  | EVT FromVT(MVT::Other); | 
|  | if (NumSignBits == RegSize) { | 
|  | isSExt = true;   // ASSERT SEXT 1 | 
|  | FromVT = MVT::i1; | 
|  | } else if (NumZeroBits >= RegSize - 1) { | 
|  | isSExt = false;  // ASSERT ZEXT 1 | 
|  | FromVT = MVT::i1; | 
|  | } else if (NumSignBits > RegSize - 8) { | 
|  | isSExt = true;   // ASSERT SEXT 8 | 
|  | FromVT = MVT::i8; | 
|  | } else if (NumZeroBits >= RegSize - 8) { | 
|  | isSExt = false;  // ASSERT ZEXT 8 | 
|  | FromVT = MVT::i8; | 
|  | } else if (NumSignBits > RegSize - 16) { | 
|  | isSExt = true;   // ASSERT SEXT 16 | 
|  | FromVT = MVT::i16; | 
|  | } else if (NumZeroBits >= RegSize - 16) { | 
|  | isSExt = false;  // ASSERT ZEXT 16 | 
|  | FromVT = MVT::i16; | 
|  | } else if (NumSignBits > RegSize - 32) { | 
|  | isSExt = true;   // ASSERT SEXT 32 | 
|  | FromVT = MVT::i32; | 
|  | } else if (NumZeroBits >= RegSize - 32) { | 
|  | isSExt = false;  // ASSERT ZEXT 32 | 
|  | FromVT = MVT::i32; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | // Add an assertion node. | 
|  | assert(FromVT != MVT::Other); | 
|  | Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, | 
|  | RegisterVT, P, DAG.getValueType(FromVT)); | 
|  | } | 
|  |  | 
|  | Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), | 
|  | NumRegs, RegisterVT, ValueVT, V); | 
|  | Part += NumRegs; | 
|  | Parts.clear(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); | 
|  | } | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
|  | /// specified value into the registers specified by this object.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, | 
|  | SDValue &Chain, SDValue *Flag, const Value *V, | 
|  | ISD::NodeType PreferredExtendType) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | ISD::NodeType ExtendKind = PreferredExtendType; | 
|  |  | 
|  | // Get the list of the values's legal parts. | 
|  | unsigned NumRegs = Regs.size(); | 
|  | SmallVector<SDValue, 8> Parts(NumRegs); | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), | 
|  | &Parts[Part], NumParts, RegisterVT, V, ExtendKind); | 
|  | Part += NumParts; | 
|  | } | 
|  |  | 
|  | // Copy the parts into the registers. | 
|  | SmallVector<SDValue, 8> Chains(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue Part; | 
|  | if (!Flag) { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); | 
|  | } else { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); | 
|  | *Flag = Part.getValue(1); | 
|  | } | 
|  |  | 
|  | Chains[i] = Part.getValue(0); | 
|  | } | 
|  |  | 
|  | if (NumRegs == 1 || Flag) | 
|  | // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is | 
|  | // flagged to it. That is the CopyToReg nodes and the user are considered | 
|  | // a single scheduling unit. If we create a TokenFactor and return it as | 
|  | // chain, then the TokenFactor is both a predecessor (operand) of the | 
|  | // user as well as a successor (the TF operands are flagged to the user). | 
|  | // c1, f1 = CopyToReg | 
|  | // c2, f2 = CopyToReg | 
|  | // c3     = TokenFactor c1, c2 | 
|  | // ... | 
|  | //        = op c3, ..., f2 | 
|  | Chain = Chains[NumRegs-1]; | 
|  | else | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker and includes the number of | 
|  | /// values added into it. | 
|  | void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, | 
|  | unsigned MatchingIdx, SDLoc dl, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); | 
|  | if (HasMatching) | 
|  | Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); | 
|  | else if (!Regs.empty() && | 
|  | TargetRegisterInfo::isVirtualRegister(Regs.front())) { | 
|  | // Put the register class of the virtual registers in the flag word.  That | 
|  | // way, later passes can recompute register class constraints for inline | 
|  | // assembly as well as normal instructions. | 
|  | // Don't do this for tied operands that can use the regclass information | 
|  | // from the def. | 
|  | const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); | 
|  | Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); | 
|  | Ops.push_back(Res); | 
|  |  | 
|  | unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | assert(Reg < Regs.size() && "Mismatch in # registers expected"); | 
|  | unsigned TheReg = Regs[Reg++]; | 
|  | Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); | 
|  |  | 
|  | if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { | 
|  | // If we clobbered the stack pointer, MFI should know about it. | 
|  | assert(DAG.getMachineFunction().getFrameInfo()-> | 
|  | hasOpaqueSPAdjustment()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, | 
|  | const TargetLibraryInfo *li) { | 
|  | AA = &aa; | 
|  | GFI = gfi; | 
|  | LibInfo = li; | 
|  | DL = &DAG.getDataLayout(); | 
|  | Context = DAG.getContext(); | 
|  | LPadToCallSiteMap.clear(); | 
|  | } | 
|  |  | 
|  | /// clear - Clear out the current SelectionDAG and the associated | 
|  | /// state and prepare this SelectionDAGBuilder object to be used | 
|  | /// for a new block. This doesn't clear out information about | 
|  | /// additional blocks that are needed to complete switch lowering | 
|  | /// or PHI node updating; that information is cleared out as it is | 
|  | /// consumed. | 
|  | void SelectionDAGBuilder::clear() { | 
|  | NodeMap.clear(); | 
|  | UnusedArgNodeMap.clear(); | 
|  | PendingLoads.clear(); | 
|  | PendingExports.clear(); | 
|  | CurInst = nullptr; | 
|  | HasTailCall = false; | 
|  | SDNodeOrder = LowestSDNodeOrder; | 
|  | StatepointLowering.clear(); | 
|  | } | 
|  |  | 
|  | /// clearDanglingDebugInfo - Clear the dangling debug information | 
|  | /// map. This function is separated from the clear so that debug | 
|  | /// information that is dangling in a basic block can be properly | 
|  | /// resolved in a different basic block. This allows the | 
|  | /// SelectionDAG to resolve dangling debug information attached | 
|  | /// to PHI nodes. | 
|  | void SelectionDAGBuilder::clearDanglingDebugInfo() { | 
|  | DanglingDebugInfoMap.clear(); | 
|  | } | 
|  |  | 
|  | /// getRoot - Return the current virtual root of the Selection DAG, | 
|  | /// flushing any PendingLoad items. This must be done before emitting | 
|  | /// a store or any other node that may need to be ordered after any | 
|  | /// prior load instructions. | 
|  | /// | 
|  | SDValue SelectionDAGBuilder::getRoot() { | 
|  | if (PendingLoads.empty()) | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | if (PendingLoads.size() == 1) { | 
|  | SDValue Root = PendingLoads[0]; | 
|  | DAG.setRoot(Root); | 
|  | PendingLoads.clear(); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to make a token factor node. | 
|  | SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, | 
|  | PendingLoads); | 
|  | PendingLoads.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | /// getControlRoot - Similar to getRoot, but instead of flushing all the | 
|  | /// PendingLoad items, flush all the PendingExports items. It is necessary | 
|  | /// to do this before emitting a terminator instruction. | 
|  | /// | 
|  | SDValue SelectionDAGBuilder::getControlRoot() { | 
|  | SDValue Root = DAG.getRoot(); | 
|  |  | 
|  | if (PendingExports.empty()) | 
|  | return Root; | 
|  |  | 
|  | // Turn all of the CopyToReg chains into one factored node. | 
|  | if (Root.getOpcode() != ISD::EntryToken) { | 
|  | unsigned i = 0, e = PendingExports.size(); | 
|  | for (; i != e; ++i) { | 
|  | assert(PendingExports[i].getNode()->getNumOperands() > 1); | 
|  | if (PendingExports[i].getNode()->getOperand(0) == Root) | 
|  | break;  // Don't add the root if we already indirectly depend on it. | 
|  | } | 
|  |  | 
|  | if (i == e) | 
|  | PendingExports.push_back(Root); | 
|  | } | 
|  |  | 
|  | Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, | 
|  | PendingExports); | 
|  | PendingExports.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(const Instruction &I) { | 
|  | // Set up outgoing PHI node register values before emitting the terminator. | 
|  | if (isa<TerminatorInst>(&I)) | 
|  | HandlePHINodesInSuccessorBlocks(I.getParent()); | 
|  |  | 
|  | ++SDNodeOrder; | 
|  |  | 
|  | CurInst = &I; | 
|  |  | 
|  | visit(I.getOpcode(), I); | 
|  |  | 
|  | if (!isa<TerminatorInst>(&I) && !HasTailCall && | 
|  | !isStatepoint(&I)) // statepoints handle their exports internally | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  |  | 
|  | CurInst = nullptr; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPHI(const PHINode &) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { | 
|  | // Note: this doesn't use InstVisitor, because it has to work with | 
|  | // ConstantExpr's in addition to instructions. | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown instruction type encountered!"); | 
|  | // Build the switch statement using the Instruction.def file. | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
|  | case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; | 
|  | #include "llvm/IR/Instruction.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, | 
|  | // generate the debug data structures now that we've seen its definition. | 
|  | void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, | 
|  | SDValue Val) { | 
|  | DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; | 
|  | if (DDI.getDI()) { | 
|  | const DbgValueInst *DI = DDI.getDI(); | 
|  | DebugLoc dl = DDI.getdl(); | 
|  | unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); | 
|  | DILocalVariable *Variable = DI->getVariable(); | 
|  | DIExpression *Expr = DI->getExpression(); | 
|  | assert(Variable->isValidLocationForIntrinsic(dl) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | uint64_t Offset = DI->getOffset(); | 
|  | SDDbgValue *SDV; | 
|  | if (Val.getNode()) { | 
|  | if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, | 
|  | Val)) { | 
|  | SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), | 
|  | false, Offset, dl, DbgSDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, Val.getNode(), false); | 
|  | } | 
|  | } else | 
|  | DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | DanglingDebugInfoMap[V] = DanglingDebugInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - If there was virtual register allocated for the value V | 
|  | /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. | 
|  | SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { | 
|  | DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); | 
|  | SDValue Result; | 
|  |  | 
|  | if (It != FuncInfo.ValueMap.end()) { | 
|  | unsigned InReg = It->second; | 
|  | RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), | 
|  | DAG.getDataLayout(), InReg, Ty); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); | 
|  | resolveDanglingDebugInfo(V, Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getValue - Return an SDValue for the given Value. | 
|  | SDValue SelectionDAGBuilder::getValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. It's important | 
|  | // to do this first, so that we don't create a CopyFromReg if we already | 
|  | // have a regular SDValue. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) return N; | 
|  |  | 
|  | // If there's a virtual register allocated and initialized for this | 
|  | // value, use it. | 
|  | if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) | 
|  | return copyFromReg; | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Return true if SDValue exists for the given Value | 
|  | bool SelectionDAGBuilder::findValue(const Value *V) const { | 
|  | return (NodeMap.find(V) != NodeMap.end()) || | 
|  | (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); | 
|  | } | 
|  |  | 
|  | /// getNonRegisterValue - Return an SDValue for the given Value, but | 
|  | /// don't look in FuncInfo.ValueMap for a virtual register. | 
|  | SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) { | 
|  | if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { | 
|  | // Remove the debug location from the node as the node is about to be used | 
|  | // in a location which may differ from the original debug location.  This | 
|  | // is relevant to Constant and ConstantFP nodes because they can appear | 
|  | // as constant expressions inside PHI nodes. | 
|  | N->setDebugLoc(DebugLoc()); | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// getValueImpl - Helper function for getValue and getNonRegisterValue. | 
|  | /// Create an SDValue for the given value. | 
|  | SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (const Constant *C = dyn_cast<Constant>(V)) { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); | 
|  |  | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
|  | return DAG.getConstant(*CI, getCurSDLoc(), VT); | 
|  |  | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) { | 
|  | unsigned AS = V->getType()->getPointerAddressSpace(); | 
|  | return DAG.getConstant(0, getCurSDLoc(), | 
|  | TLI.getPointerTy(DAG.getDataLayout(), AS)); | 
|  | } | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); | 
|  |  | 
|  | if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | visit(CE->getOpcode(), *CE); | 
|  | SDValue N1 = NodeMap[V]; | 
|  | assert(N1.getNode() && "visit didn't populate the NodeMap!"); | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { | 
|  | SmallVector<SDValue, 4> Constants; | 
|  | for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); | 
|  | OI != OE; ++OI) { | 
|  | SDNode *Val = getValue(*OI).getNode(); | 
|  | // If the operand is an empty aggregate, there are no values. | 
|  | if (!Val) continue; | 
|  | // Add each leaf value from the operand to the Constants list | 
|  | // to form a flattened list of all the values. | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Constants.push_back(SDValue(Val, i)); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(Constants, getCurSDLoc()); | 
|  | } | 
|  |  | 
|  | if (const ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(C)) { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); | 
|  | // Add each leaf value from the operand to the Constants list | 
|  | // to form a flattened list of all the values. | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Ops.push_back(SDValue(Val, i)); | 
|  | } | 
|  |  | 
|  | if (isa<ArrayType>(CDS->getType())) | 
|  | return DAG.getMergeValues(Ops, getCurSDLoc()); | 
|  | return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), | 
|  | VT, Ops); | 
|  | } | 
|  |  | 
|  | if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { | 
|  | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
|  | "Unknown struct or array constant!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); | 
|  | unsigned NumElts = ValueVTs.size(); | 
|  | if (NumElts == 0) | 
|  | return SDValue(); // empty struct | 
|  | SmallVector<SDValue, 4> Constants(NumElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | EVT EltVT = ValueVTs[i]; | 
|  | if (isa<UndefValue>(C)) | 
|  | Constants[i] = DAG.getUNDEF(EltVT); | 
|  | else if (EltVT.isFloatingPoint()) | 
|  | Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); | 
|  | else | 
|  | Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(Constants, getCurSDLoc()); | 
|  | } | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) | 
|  | return DAG.getBlockAddress(BA, VT); | 
|  |  | 
|  | VectorType *VecTy = cast<VectorType>(V->getType()); | 
|  | unsigned NumElements = VecTy->getNumElements(); | 
|  |  | 
|  | // Now that we know the number and type of the elements, get that number of | 
|  | // elements into the Ops array based on what kind of constant it is. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { | 
|  | for (unsigned i = 0; i != NumElements; ++i) | 
|  | Ops.push_back(getValue(CV->getOperand(i))); | 
|  | } else { | 
|  | assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); | 
|  | EVT EltVT = | 
|  | TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); | 
|  |  | 
|  | SDValue Op; | 
|  | if (EltVT.isFloatingPoint()) | 
|  | Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); | 
|  | else | 
|  | Op = DAG.getConstant(0, getCurSDLoc(), EltVT); | 
|  | Ops.assign(NumElements, Op); | 
|  | } | 
|  |  | 
|  | // Create a BUILD_VECTOR node. | 
|  | return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); | 
|  | } | 
|  |  | 
|  | // If this is a static alloca, generate it as the frameindex instead of | 
|  | // computation. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | return DAG.getFrameIndex(SI->second, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  |  | 
|  | // If this is an instruction which fast-isel has deferred, select it now. | 
|  | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | unsigned InReg = FuncInfo.InitializeRegForValue(Inst); | 
|  | RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, | 
|  | Inst->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Can't get register for value!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; | 
|  | bool IsCoreCLR = Pers == EHPersonality::CoreCLR; | 
|  | MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; | 
|  | // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. | 
|  | if (IsMSVCCXX || IsCoreCLR) | 
|  | CatchPadMBB->setIsEHFuncletEntry(); | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { | 
|  | // Update machine-CFG edge. | 
|  | MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; | 
|  | FuncInfo.MBB->addSuccessor(TargetMBB); | 
|  |  | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsSEH = isAsynchronousEHPersonality(Pers); | 
|  | if (IsSEH) { | 
|  | // If this is not a fall-through branch or optimizations are switched off, | 
|  | // emit the branch. | 
|  | if (TargetMBB != NextBlock(FuncInfo.MBB) || | 
|  | TM.getOptLevel() == CodeGenOpt::None) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(TargetMBB))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Figure out the funclet membership for the catchret's successor. | 
|  | // This will be used by the FuncletLayout pass to determine how to order the | 
|  | // BB's. | 
|  | // A 'catchret' returns to the outer scope's color. | 
|  | Value *ParentPad = I.getCatchSwitchParentPad(); | 
|  | const BasicBlock *SuccessorColor; | 
|  | if (isa<ConstantTokenNone>(ParentPad)) | 
|  | SuccessorColor = &FuncInfo.Fn->getEntryBlock(); | 
|  | else | 
|  | SuccessorColor = cast<Instruction>(ParentPad)->getParent(); | 
|  | assert(SuccessorColor && "No parent funclet for catchret!"); | 
|  | MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; | 
|  | assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); | 
|  |  | 
|  | // Create the terminator node. | 
|  | SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(TargetMBB), | 
|  | DAG.getBasicBlock(SuccessorColorMBB)); | 
|  | DAG.setRoot(Ret); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { | 
|  | // Don't emit any special code for the cleanuppad instruction. It just marks | 
|  | // the start of a funclet. | 
|  | FuncInfo.MBB->setIsEHFuncletEntry(); | 
|  | FuncInfo.MBB->setIsCleanupFuncletEntry(); | 
|  | } | 
|  |  | 
|  | /// When an invoke or a cleanupret unwinds to the next EH pad, there are | 
|  | /// many places it could ultimately go. In the IR, we have a single unwind | 
|  | /// destination, but in the machine CFG, we enumerate all the possible blocks. | 
|  | /// This function skips over imaginary basic blocks that hold catchswitch | 
|  | /// instructions, and finds all the "real" machine | 
|  | /// basic block destinations. As those destinations may not be successors of | 
|  | /// EHPadBB, here we also calculate the edge probability to those destinations. | 
|  | /// The passed-in Prob is the edge probability to EHPadBB. | 
|  | static void findUnwindDestinations( | 
|  | FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, | 
|  | BranchProbability Prob, | 
|  | SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> | 
|  | &UnwindDests) { | 
|  | EHPersonality Personality = | 
|  | classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; | 
|  | bool IsCoreCLR = Personality == EHPersonality::CoreCLR; | 
|  |  | 
|  | while (EHPadBB) { | 
|  | const Instruction *Pad = EHPadBB->getFirstNonPHI(); | 
|  | BasicBlock *NewEHPadBB = nullptr; | 
|  | if (isa<LandingPadInst>(Pad)) { | 
|  | // Stop on landingpads. They are not funclets. | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); | 
|  | break; | 
|  | } else if (isa<CleanupPadInst>(Pad)) { | 
|  | // Stop on cleanup pads. Cleanups are always funclet entries for all known | 
|  | // personalities. | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); | 
|  | UnwindDests.back().first->setIsEHFuncletEntry(); | 
|  | break; | 
|  | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { | 
|  | // Add the catchpad handlers to the possible destinations. | 
|  | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); | 
|  | // For MSVC++ and the CLR, catchblocks are funclets and need prologues. | 
|  | if (IsMSVCCXX || IsCoreCLR) | 
|  | UnwindDests.back().first->setIsEHFuncletEntry(); | 
|  | } | 
|  | NewEHPadBB = CatchSwitch->getUnwindDest(); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | if (BPI && NewEHPadBB) | 
|  | Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); | 
|  | EHPadBB = NewEHPadBB; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { | 
|  | // Update successor info. | 
|  | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; | 
|  | auto UnwindDest = I.getUnwindDest(); | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | BranchProbability UnwindDestProb = | 
|  | (BPI && UnwindDest) | 
|  | ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) | 
|  | : BranchProbability::getZero(); | 
|  | findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); | 
|  | for (auto &UnwindDest : UnwindDests) { | 
|  | UnwindDest.first->setIsEHPad(); | 
|  | addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); | 
|  | } | 
|  | FuncInfo.MBB->normalizeSuccProbs(); | 
|  |  | 
|  | // Create the terminator node. | 
|  | SDValue Ret = | 
|  | DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); | 
|  | DAG.setRoot(Ret); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { | 
|  | report_fatal_error("visitCatchSwitch not yet implemented!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitRet(const ReturnInst &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | SDValue Chain = getControlRoot(); | 
|  | SmallVector<ISD::OutputArg, 8> Outs; | 
|  | SmallVector<SDValue, 8> OutVals; | 
|  |  | 
|  | if (!FuncInfo.CanLowerReturn) { | 
|  | unsigned DemoteReg = FuncInfo.DemoteRegister; | 
|  | const Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | // Emit a store of the return value through the virtual register. | 
|  | // Leave Outs empty so that LowerReturn won't try to load return | 
|  | // registers the usual way. | 
|  | SmallVector<EVT, 1> PtrValueVTs; | 
|  | ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), | 
|  | PtrValueVTs); | 
|  |  | 
|  | SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), | 
|  | DemoteReg, PtrValueVTs[0]); | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  |  | 
|  | // An aggregate return value cannot wrap around the address space, so | 
|  | // offsets to its parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), | 
|  | RetPtr.getValueType(), RetPtr, | 
|  | DAG.getIntPtrConstant(Offsets[i], | 
|  | getCurSDLoc()), | 
|  | &Flags); | 
|  | Chains[i] = | 
|  | DAG.getStore(Chain, getCurSDLoc(), | 
|  | SDValue(RetOp.getNode(), RetOp.getResNo() + i), | 
|  | // FIXME: better loc info would be nice. | 
|  | Add, MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), | 
|  | MVT::Other, Chains); | 
|  | } else if (I.getNumOperands() != 0) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues) { | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  |  | 
|  | const Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  | if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, | 
|  | Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, | 
|  | Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | LLVMContext &Context = F->getContext(); | 
|  | bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, | 
|  | Attribute::InReg); | 
|  |  | 
|  | for (unsigned j = 0; j != NumValues; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  |  | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) | 
|  | VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegisters(Context, VT); | 
|  | MVT PartVT = TLI.getRegisterType(Context, VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | getCopyToParts(DAG, getCurSDLoc(), | 
|  | SDValue(RetOp.getNode(), RetOp.getResNo() + j), | 
|  | &Parts[0], NumParts, PartVT, &I, ExtendKind); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (RetInReg) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (ExtendKind == ISD::SIGN_EXTEND) | 
|  | Flags.setSExt(); | 
|  | else if (ExtendKind == ISD::ZERO_EXTEND) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), | 
|  | VT, /*isfixed=*/true, 0, 0)); | 
|  | OutVals.push_back(Parts[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); | 
|  | CallingConv::ID CallConv = | 
|  | DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | Chain = DAG.getTargetLoweringInfo().LowerReturn( | 
|  | Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); | 
|  |  | 
|  | // Verify that the target's LowerReturn behaved as expected. | 
|  | assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
|  | "LowerReturn didn't return a valid chain!"); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from return lowering. | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// CopyToExportRegsIfNeeded - If the given value has virtual registers | 
|  | /// created for it, emit nodes to copy the value into the virtual | 
|  | /// registers. | 
|  | void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | return; | 
|  |  | 
|  | DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) { | 
|  | assert(!V->use_empty() && "Unused value assigned virtual registers!"); | 
|  | CopyValueToVirtualRegister(V, VMI->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
|  | /// the current basic block, add it to ValueMap now so that we'll get a | 
|  | /// CopyTo/FromReg. | 
|  | void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { | 
|  | // No need to export constants. | 
|  | if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
|  |  | 
|  | // Already exported? | 
|  | if (FuncInfo.isExportedInst(V)) return; | 
|  |  | 
|  | unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
|  | CopyValueToVirtualRegister(V, Reg); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, | 
|  | const BasicBlock *FromBB) { | 
|  | // The operands of the setcc have to be in this block.  We don't know | 
|  | // how to export them from some other block. | 
|  | if (const Instruction *VI = dyn_cast<Instruction>(V)) { | 
|  | // Can export from current BB. | 
|  | if (VI->getParent() == FromBB) | 
|  | return true; | 
|  |  | 
|  | // Is already exported, noop. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // If this is an argument, we can export it if the BB is the entry block or | 
|  | // if it is already exported. | 
|  | if (isa<Argument>(V)) { | 
|  | if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, can only export this if it is already exported. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // Otherwise, constants can always be exported. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. | 
|  | BranchProbability | 
|  | SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, | 
|  | const MachineBasicBlock *Dst) const { | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | const BasicBlock *SrcBB = Src->getBasicBlock(); | 
|  | const BasicBlock *DstBB = Dst->getBasicBlock(); | 
|  | if (!BPI) { | 
|  | // If BPI is not available, set the default probability as 1 / N, where N is | 
|  | // the number of successors. | 
|  | auto SuccSize = std::max<uint32_t>( | 
|  | std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); | 
|  | return BranchProbability(1, SuccSize); | 
|  | } | 
|  | return BPI->getEdgeProbability(SrcBB, DstBB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, | 
|  | MachineBasicBlock *Dst, | 
|  | BranchProbability Prob) { | 
|  | if (!FuncInfo.BPI) | 
|  | Src->addSuccessorWithoutProb(Dst); | 
|  | else { | 
|  | if (Prob.isUnknown()) | 
|  | Prob = getEdgeProbability(Src, Dst); | 
|  | Src->addSuccessor(Dst, Prob); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() == BB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. | 
|  | /// This function emits a branch and is used at the leaves of an OR or an | 
|  | /// AND operator tree. | 
|  | /// | 
|  | void | 
|  | SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | BranchProbability TProb, | 
|  | BranchProbability FProb) { | 
|  | const BasicBlock *BB = CurBB->getBasicBlock(); | 
|  |  | 
|  | // If the leaf of the tree is a comparison, merge the condition into | 
|  | // the caseblock. | 
|  | if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { | 
|  | // The operands of the cmp have to be in this block.  We don't know | 
|  | // how to export them from some other block.  If this is the first block | 
|  | // of the sequence, no exporting is needed. | 
|  | if (CurBB == SwitchBB || | 
|  | (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
|  | isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { | 
|  | ISD::CondCode Condition; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
|  | Condition = getICmpCondCode(IC->getPredicate()); | 
|  | } else { | 
|  | const FCmpInst *FC = cast<FCmpInst>(Cond); | 
|  | Condition = getFCmpCondCode(FC->getPredicate()); | 
|  | if (TM.Options.NoNaNsFPMath) | 
|  | Condition = getFCmpCodeWithoutNaN(Condition); | 
|  | } | 
|  |  | 
|  | CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, | 
|  | TBB, FBB, CurBB, TProb, FProb); | 
|  | SwitchCases.push_back(CB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), | 
|  | nullptr, TBB, FBB, CurBB, TProb, FProb); | 
|  | SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | /// FindMergedConditions - If Cond is an expression like | 
|  | void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | Instruction::BinaryOps Opc, | 
|  | BranchProbability TProb, | 
|  | BranchProbability FProb) { | 
|  | // If this node is not part of the or/and tree, emit it as a branch. | 
|  | const Instruction *BOp = dyn_cast<Instruction>(Cond); | 
|  | if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || | 
|  | (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || | 
|  | BOp->getParent() != CurBB->getBasicBlock() || | 
|  | !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
|  | !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
|  | EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, | 
|  | TProb, FProb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | //  Create TmpBB after CurBB. | 
|  | MachineFunction::iterator BBI(CurBB); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); | 
|  | CurBB->getParent()->insert(++BBI, TmpBB); | 
|  |  | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) | 
|  | //     = TrueProb for original BB. | 
|  | // Assuming the original probabilities are A and B, one choice is to set | 
|  | // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to | 
|  | // A/(1+B) and 2B/(1+B). This choice assumes that | 
|  | //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. | 
|  | // Another choice is to assume TrueProb for BB1 equals to TrueProb for | 
|  | // TmpBB, but the math is more complicated. | 
|  |  | 
|  | auto NewTrueProb = TProb / 2; | 
|  | auto NewFalseProb = TProb / 2 + FProb; | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, | 
|  | NewTrueProb, NewFalseProb); | 
|  |  | 
|  | // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). | 
|  | SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; | 
|  | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, | 
|  | Probs[0], Probs[1]); | 
|  | } else { | 
|  | assert(Opc == Instruction::And && "Unknown merge op!"); | 
|  | // Codegen X & Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) | 
|  | //     = FalseProb for original BB. | 
|  | // Assuming the original probabilities are A and B, one choice is to set | 
|  | // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to | 
|  | // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == | 
|  | // TrueProb for BB1 * FalseProb for TmpBB. | 
|  |  | 
|  | auto NewTrueProb = TProb + FProb / 2; | 
|  | auto NewFalseProb = FProb / 2; | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, | 
|  | NewTrueProb, NewFalseProb); | 
|  |  | 
|  | // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). | 
|  | SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; | 
|  | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, | 
|  | Probs[0], Probs[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the set of cases should be emitted as a series of branches, return true. | 
|  | /// If we should emit this as a bunch of and/or'd together conditions, return | 
|  | /// false. | 
|  | bool | 
|  | SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { | 
|  | if (Cases.size() != 2) return true; | 
|  |  | 
|  | // If this is two comparisons of the same values or'd or and'd together, they | 
|  | // will get folded into a single comparison, so don't emit two blocks. | 
|  | if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
|  | (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle: (X != null) | (Y != null) --> (X|Y) != 0 | 
|  | // Handle: (X == null) & (Y == null) --> (X|Y) == 0 | 
|  | if (Cases[0].CmpRHS == Cases[1].CmpRHS && | 
|  | Cases[0].CC == Cases[1].CC && | 
|  | isa<Constant>(Cases[0].CmpRHS) && | 
|  | cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { | 
|  | if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBr(const BranchInst &I) { | 
|  | MachineBasicBlock *BrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges. | 
|  | MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  |  | 
|  | if (I.isUnconditional()) { | 
|  | // Update machine-CFG edges. | 
|  | BrMBB->addSuccessor(Succ0MBB); | 
|  |  | 
|  | // If this is not a fall-through branch or optimizations are switched off, | 
|  | // emit the branch. | 
|  | if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Succ0MBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this condition is one of the special cases we handle, do special stuff | 
|  | // now. | 
|  | const Value *CondVal = I.getCondition(); | 
|  | MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | // If this is a series of conditions that are or'd or and'd together, emit | 
|  | // this as a sequence of branches instead of setcc's with and/or operations. | 
|  | // As long as jumps are not expensive, this should improve performance. | 
|  | // For example, instead of something like: | 
|  | //     cmp A, B | 
|  | //     C = seteq | 
|  | //     cmp D, E | 
|  | //     F = setle | 
|  | //     or C, F | 
|  | //     jnz foo | 
|  | // Emit: | 
|  | //     cmp A, B | 
|  | //     je foo | 
|  | //     cmp D, E | 
|  | //     jle foo | 
|  | // | 
|  | if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
|  | Instruction::BinaryOps Opcode = BOp->getOpcode(); | 
|  | if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && | 
|  | !I.getMetadata(LLVMContext::MD_unpredictable) && | 
|  | (Opcode == Instruction::And || Opcode == Instruction::Or)) { | 
|  | FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, | 
|  | Opcode, | 
|  | getEdgeProbability(BrMBB, Succ0MBB), | 
|  | getEdgeProbability(BrMBB, Succ1MBB)); | 
|  | // If the compares in later blocks need to use values not currently | 
|  | // exported from this block, export them now.  This block should always | 
|  | // be the first entry. | 
|  | assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); | 
|  |  | 
|  | // Allow some cases to be rejected. | 
|  | if (ShouldEmitAsBranches(SwitchCases)) { | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpLHS); | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpRHS); | 
|  | } | 
|  |  | 
|  | // Emit the branch for this block. | 
|  | visitSwitchCase(SwitchCases[0], BrMBB); | 
|  | SwitchCases.erase(SwitchCases.begin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we decided not to do this, remove any inserted MBB's and clear | 
|  | // SwitchCases. | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) | 
|  | FuncInfo.MF->erase(SwitchCases[i].ThisBB); | 
|  |  | 
|  | SwitchCases.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), | 
|  | nullptr, Succ0MBB, Succ1MBB, BrMBB); | 
|  |  | 
|  | // Use visitSwitchCase to actually insert the fast branch sequence for this | 
|  | // cond branch. | 
|  | visitSwitchCase(CB, BrMBB); | 
|  | } | 
|  |  | 
|  | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
|  | /// the binary search tree resulting from lowering a switch instruction. | 
|  | void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDValue Cond; | 
|  | SDValue CondLHS = getValue(CB.CmpLHS); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Build the setcc now. | 
|  | if (!CB.CmpMHS) { | 
|  | // Fold "(X == true)" to X and "(X == false)" to !X to | 
|  | // handle common cases produced by branch lowering. | 
|  | if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) | 
|  | Cond = CondLHS; | 
|  | else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) { | 
|  | SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); | 
|  | } else | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); | 
|  | } else { | 
|  | assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
|  |  | 
|  | const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); | 
|  | const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); | 
|  |  | 
|  | SDValue CmpOp = getValue(CB.CmpMHS); | 
|  | EVT VT = CmpOp.getValueType(); | 
|  |  | 
|  | if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), | 
|  | ISD::SETLE); | 
|  | } else { | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, dl, | 
|  | VT, CmpOp, DAG.getConstant(Low, dl, VT)); | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, SUB, | 
|  | DAG.getConstant(High-Low, dl, VT), ISD::SETULE); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info | 
|  | addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); | 
|  | // TrueBB and FalseBB are always different unless the incoming IR is | 
|  | // degenerate. This only happens when running llc on weird IR. | 
|  | if (CB.TrueBB != CB.FalseBB) | 
|  | addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | // If the lhs block is the next block, invert the condition so that we can | 
|  | // fall through to the lhs instead of the rhs block. | 
|  | if (CB.TrueBB == NextBlock(SwitchBB)) { | 
|  | std::swap(CB.TrueBB, CB.FalseBB); | 
|  | SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); | 
|  | } | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(CB.TrueBB)); | 
|  |  | 
|  | // Insert the false branch. Do this even if it's a fall through branch, | 
|  | // this makes it easier to do DAG optimizations which require inverting | 
|  | // the branch condition. | 
|  | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(CB.FalseBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } | 
|  |  | 
|  | /// visitJumpTable - Emit JumpTable node in the current MBB | 
|  | void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { | 
|  | // Emit the code for the jump table | 
|  | assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
|  | EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), | 
|  | JT.Reg, PTy); | 
|  | SDValue Table = DAG.getJumpTable(JT.JTI, PTy); | 
|  | SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), | 
|  | MVT::Other, Index.getValue(1), | 
|  | Table, Index); | 
|  | DAG.setRoot(BrJumpTable); | 
|  | } | 
|  |  | 
|  | /// visitJumpTableHeader - This function emits necessary code to produce index | 
|  | /// in the JumpTable from switch case. | 
|  | void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, | 
|  | JumpTableHeader &JTH, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Subtract the lowest switch case value from the value being switched on and | 
|  | // conditional branch to default mbb if the result is greater than the | 
|  | // difference between smallest and largest cases. | 
|  | SDValue SwitchOp = getValue(JTH.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, | 
|  | DAG.getConstant(JTH.First, dl, VT)); | 
|  |  | 
|  | // The SDNode we just created, which holds the value being switched on minus | 
|  | // the smallest case value, needs to be copied to a virtual register so it | 
|  | // can be used as an index into the jump table in a subsequent basic block. | 
|  | // This value may be smaller or larger than the target's pointer type, and | 
|  | // therefore require extension or truncating. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | unsigned JumpTableReg = | 
|  | FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, | 
|  | JumpTableReg, SwitchOp); | 
|  | JT.Reg = JumpTableReg; | 
|  |  | 
|  | // Emit the range check for the jump table, and branch to the default block | 
|  | // for the switch statement if the value being switched on exceeds the largest | 
|  | // case in the switch. | 
|  | SDValue CMP = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | Sub.getValueType()), | 
|  | Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, CopyTo, CMP, | 
|  | DAG.getBasicBlock(JT.Default)); | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (JT.MBB != NextBlock(SwitchBB)) | 
|  | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(JT.MBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } | 
|  |  | 
|  | /// Codegen a new tail for a stack protector check ParentMBB which has had its | 
|  | /// tail spliced into a stack protector check success bb. | 
|  | /// | 
|  | /// For a high level explanation of how this fits into the stack protector | 
|  | /// generation see the comment on the declaration of class | 
|  | /// StackProtectorDescriptor. | 
|  | void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, | 
|  | MachineBasicBlock *ParentBB) { | 
|  |  | 
|  | // First create the loads to the guard/stack slot for the comparison. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); | 
|  | int FI = MFI->getStackProtectorIndex(); | 
|  |  | 
|  | const Value *IRGuard = SPD.getGuard(); | 
|  | SDValue GuardPtr = getValue(IRGuard); | 
|  | SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); | 
|  |  | 
|  | unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); | 
|  |  | 
|  | SDValue Guard; | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the | 
|  | // guard value from the virtual register holding the value. Otherwise, emit a | 
|  | // volatile load to retrieve the stack guard value. | 
|  | unsigned GuardReg = SPD.getGuardReg(); | 
|  |  | 
|  | if (GuardReg && TLI.useLoadStackGuardNode()) | 
|  | Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, | 
|  | PtrTy); | 
|  | else | 
|  | Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), | 
|  | GuardPtr, MachinePointerInfo(IRGuard, 0), | 
|  | true, false, false, Align); | 
|  |  | 
|  | SDValue StackSlot = DAG.getLoad( | 
|  | PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, | 
|  | false, false, Align); | 
|  |  | 
|  | // Perform the comparison via a subtract/getsetcc. | 
|  | EVT VT = Guard.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); | 
|  |  | 
|  | SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), | 
|  | Sub.getValueType()), | 
|  | Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  |  | 
|  | // If the sub is not 0, then we know the guard/stackslot do not equal, so | 
|  | // branch to failure MBB. | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, StackSlot.getOperand(0), | 
|  | Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); | 
|  | // Otherwise branch to success MBB. | 
|  | SDValue Br = DAG.getNode(ISD::BR, dl, | 
|  | MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(SPD.getSuccessMBB())); | 
|  |  | 
|  | DAG.setRoot(Br); | 
|  | } | 
|  |  | 
|  | /// Codegen the failure basic block for a stack protector check. | 
|  | /// | 
|  | /// A failure stack protector machine basic block consists simply of a call to | 
|  | /// __stack_chk_fail(). | 
|  | /// | 
|  | /// For a high level explanation of how this fits into the stack protector | 
|  | /// generation see the comment on the declaration of class | 
|  | /// StackProtectorDescriptor. | 
|  | void | 
|  | SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Chain = | 
|  | TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, | 
|  | None, false, getCurSDLoc(), false, false).second; | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// visitBitTestHeader - This function emits necessary code to produce value | 
|  | /// suitable for "bit tests" | 
|  | void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Subtract the minimum value | 
|  | SDValue SwitchOp = getValue(B.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, | 
|  | DAG.getConstant(B.First, dl, VT)); | 
|  |  | 
|  | // Check range | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue RangeCmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | Sub.getValueType()), | 
|  | Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); | 
|  |  | 
|  | // Determine the type of the test operands. | 
|  | bool UsePtrType = false; | 
|  | if (!TLI.isTypeLegal(VT)) | 
|  | UsePtrType = true; | 
|  | else { | 
|  | for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) | 
|  | if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { | 
|  | // Switch table case range are encoded into series of masks. | 
|  | // Just use pointer type, it's guaranteed to fit. | 
|  | UsePtrType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (UsePtrType) { | 
|  | VT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | Sub = DAG.getZExtOrTrunc(Sub, dl, VT); | 
|  | } | 
|  |  | 
|  | B.RegVT = VT.getSimpleVT(); | 
|  | B.Reg = FuncInfo.CreateReg(B.RegVT); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); | 
|  |  | 
|  | MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
|  |  | 
|  | addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); | 
|  | addSuccessorWithProb(SwitchBB, MBB, B.Prob); | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, CopyTo, RangeCmp, | 
|  | DAG.getBasicBlock(B.Default)); | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (MBB != NextBlock(SwitchBB)) | 
|  | BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, | 
|  | DAG.getBasicBlock(MBB)); | 
|  |  | 
|  | DAG.setRoot(BrRange); | 
|  | } | 
|  |  | 
|  | /// visitBitTestCase - this function produces one "bit test" | 
|  | void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, | 
|  | MachineBasicBlock* NextMBB, | 
|  | BranchProbability BranchProbToNext, | 
|  | unsigned Reg, | 
|  | BitTestCase &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | MVT VT = BB.RegVT; | 
|  | SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); | 
|  | SDValue Cmp; | 
|  | unsigned PopCount = countPopulation(B.Mask); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (PopCount == 1) { | 
|  | // Testing for a single bit; just compare the shift count with what it | 
|  | // would need to be to shift a 1 bit in that position. | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), | 
|  | ISD::SETEQ); | 
|  | } else if (PopCount == BB.Range) { | 
|  | // There is only one zero bit in the range, test for it directly. | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | // Make desired shift | 
|  | SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, | 
|  | DAG.getConstant(1, dl, VT), ShiftOp); | 
|  |  | 
|  | // Emit bit tests and jumps | 
|  | SDValue AndOp = DAG.getNode(ISD::AND, dl, | 
|  | VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  | } | 
|  |  | 
|  | // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. | 
|  | addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); | 
|  | // The branch probability from SwitchBB to NextMBB is BranchProbToNext. | 
|  | addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); | 
|  | // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is | 
|  | // one as they are relative probabilities (and thus work more like weights), | 
|  | // and hence we need to normalize them to let the sum of them become one. | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, getControlRoot(), | 
|  | Cmp, DAG.getBasicBlock(B.TargetBB)); | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (NextMBB != NextBlock(SwitchBB)) | 
|  | BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, | 
|  | DAG.getBasicBlock(NextMBB)); | 
|  |  | 
|  | DAG.setRoot(BrAnd); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { | 
|  | MachineBasicBlock *InvokeMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Retrieve successors. Look through artificial IR level blocks like | 
|  | // catchswitch for successors. | 
|  | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  | const BasicBlock *EHPadBB = I.getSuccessor(1); | 
|  |  | 
|  | const Value *Callee(I.getCalledValue()); | 
|  | const Function *Fn = dyn_cast<Function>(Callee); | 
|  | if (isa<InlineAsm>(Callee)) | 
|  | visitInlineAsm(&I); | 
|  | else if (Fn && Fn->isIntrinsic()) { | 
|  | switch (Fn->getIntrinsicID()) { | 
|  | default: | 
|  | llvm_unreachable("Cannot invoke this intrinsic"); | 
|  | case Intrinsic::donothing: | 
|  | // Ignore invokes to @llvm.donothing: jump directly to the next BB. | 
|  | break; | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | visitPatchpoint(&I, EHPadBB); | 
|  | break; | 
|  | case Intrinsic::experimental_gc_statepoint: | 
|  | LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | LowerCallTo(&I, getValue(Callee), false, EHPadBB); | 
|  |  | 
|  | // If the value of the invoke is used outside of its defining block, make it | 
|  | // available as a virtual register. | 
|  | // We already took care of the exported value for the statepoint instruction | 
|  | // during call to the LowerStatepoint. | 
|  | if (!isStatepoint(I)) { | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | BranchProbability EHPadBBProb = | 
|  | BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) | 
|  | : BranchProbability::getZero(); | 
|  | findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); | 
|  |  | 
|  | // Update successor info. | 
|  | addSuccessorWithProb(InvokeMBB, Return); | 
|  | for (auto &UnwindDest : UnwindDests) { | 
|  | UnwindDest.first->setIsEHPad(); | 
|  | addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); | 
|  | } | 
|  | InvokeMBB->normalizeSuccProbs(); | 
|  |  | 
|  | // Drop into normal successor. | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Return))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { | 
|  | assert(FuncInfo.MBB->isEHPad() && | 
|  | "Call to landingpad not in landing pad!"); | 
|  |  | 
|  | MachineBasicBlock *MBB = FuncInfo.MBB; | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | AddLandingPadInfo(LP, MMI, MBB); | 
|  |  | 
|  | // If there aren't registers to copy the values into (e.g., during SjLj | 
|  | // exceptions), then don't bother to create these DAG nodes. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); | 
|  | if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && | 
|  | TLI.getExceptionSelectorRegister(PersonalityFn) == 0) | 
|  | return; | 
|  |  | 
|  | // If landingpad's return type is token type, we don't create DAG nodes | 
|  | // for its exception pointer and selector value. The extraction of exception | 
|  | // pointer or selector value from token type landingpads is not currently | 
|  | // supported. | 
|  | if (LP.getType()->isTokenTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<EVT, 2> ValueVTs; | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); | 
|  | assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); | 
|  |  | 
|  | // Get the two live-in registers as SDValues. The physregs have already been | 
|  | // copied into virtual registers. | 
|  | SDValue Ops[2]; | 
|  | if (FuncInfo.ExceptionPointerVirtReg) { | 
|  | Ops[0] = DAG.getZExtOrTrunc( | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | FuncInfo.ExceptionPointerVirtReg, | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | dl, ValueVTs[0]); | 
|  | } else { | 
|  | Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  | Ops[1] = DAG.getZExtOrTrunc( | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | FuncInfo.ExceptionSelectorVirtReg, | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | dl, ValueVTs[1]); | 
|  |  | 
|  | // Merge into one. | 
|  | SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(ValueVTs), Ops); | 
|  | setValue(&LP, Res); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { | 
|  | #ifndef NDEBUG | 
|  | for (const CaseCluster &CC : Clusters) | 
|  | assert(CC.Low == CC.High && "Input clusters must be single-case"); | 
|  | #endif | 
|  |  | 
|  | std::sort(Clusters.begin(), Clusters.end(), | 
|  | [](const CaseCluster &a, const CaseCluster &b) { | 
|  | return a.Low->getValue().slt(b.Low->getValue()); | 
|  | }); | 
|  |  | 
|  | // Merge adjacent clusters with the same destination. | 
|  | const unsigned N = Clusters.size(); | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { | 
|  | CaseCluster &CC = Clusters[SrcIndex]; | 
|  | const ConstantInt *CaseVal = CC.Low; | 
|  | MachineBasicBlock *Succ = CC.MBB; | 
|  |  | 
|  | if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && | 
|  | (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { | 
|  | // If this case has the same successor and is a neighbour, merge it into | 
|  | // the previous cluster. | 
|  | Clusters[DstIndex - 1].High = CaseVal; | 
|  | Clusters[DstIndex - 1].Prob += CC.Prob; | 
|  | } else { | 
|  | std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], | 
|  | sizeof(Clusters[SrcIndex])); | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, | 
|  | MachineBasicBlock *Last) { | 
|  | // Update JTCases. | 
|  | for (unsigned i = 0, e = JTCases.size(); i != e; ++i) | 
|  | if (JTCases[i].first.HeaderBB == First) | 
|  | JTCases[i].first.HeaderBB = Last; | 
|  |  | 
|  | // Update BitTestCases. | 
|  | for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) | 
|  | if (BitTestCases[i].Parent == First) | 
|  | BitTestCases[i].Parent = Last; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { | 
|  | MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges with unique successors. | 
|  | SmallSet<BasicBlock*, 32> Done; | 
|  | for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { | 
|  | BasicBlock *BB = I.getSuccessor(i); | 
|  | bool Inserted = Done.insert(BB).second; | 
|  | if (!Inserted) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; | 
|  | addSuccessorWithProb(IndirectBrMBB, Succ); | 
|  | } | 
|  | IndirectBrMBB->normalizeSuccProbs(); | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | getValue(I.getAddress()))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { | 
|  | if (DAG.getTarget().Options.TrapUnreachable) | 
|  | DAG.setRoot( | 
|  | DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFSub(const User &I) { | 
|  | // -0.0 - X --> fneg | 
|  | Type *Ty = I.getType(); | 
|  | if (isa<Constant>(I.getOperand(0)) && | 
|  | I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), | 
|  | Op2.getValueType(), Op2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | visitBinary(I, ISD::FSUB); | 
|  | } | 
|  |  | 
|  | /// Checks if the given instruction performs a vector reduction, in which case | 
|  | /// we have the freedom to alter the elements in the result as long as the | 
|  | /// reduction of them stays unchanged. | 
|  | static bool isVectorReductionOp(const User *I) { | 
|  | const Instruction *Inst = dyn_cast<Instruction>(I); | 
|  | if (!Inst || !Inst->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | auto OpCode = Inst->getOpcode(); | 
|  | switch (OpCode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FMul: | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) | 
|  | if (FPOp->getFastMathFlags().unsafeAlgebra()) | 
|  | break; | 
|  | // Fall through. | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ElemNum = Inst->getType()->getVectorNumElements(); | 
|  | unsigned ElemNumToReduce = ElemNum; | 
|  |  | 
|  | // Do DFS search on the def-use chain from the given instruction. We only | 
|  | // allow four kinds of operations during the search until we reach the | 
|  | // instruction that extracts the first element from the vector: | 
|  | // | 
|  | //   1. The reduction operation of the same opcode as the given instruction. | 
|  | // | 
|  | //   2. PHI node. | 
|  | // | 
|  | //   3. ShuffleVector instruction together with a reduction operation that | 
|  | //      does a partial reduction. | 
|  | // | 
|  | //   4. ExtractElement that extracts the first element from the vector, and we | 
|  | //      stop searching the def-use chain here. | 
|  | // | 
|  | // 3 & 4 above perform a reduction on all elements of the vector. We push defs | 
|  | // from 1-3 to the stack to continue the DFS. The given instruction is not | 
|  | // a reduction operation if we meet any other instructions other than those | 
|  | // listed above. | 
|  |  | 
|  | SmallVector<const User *, 16> UsersToVisit{Inst}; | 
|  | SmallPtrSet<const User *, 16> Visited; | 
|  | bool ReduxExtracted = false; | 
|  |  | 
|  | while (!UsersToVisit.empty()) { | 
|  | auto User = UsersToVisit.back(); | 
|  | UsersToVisit.pop_back(); | 
|  | if (!Visited.insert(User).second) | 
|  | continue; | 
|  |  | 
|  | for (const auto &U : User->users()) { | 
|  | auto Inst = dyn_cast<Instruction>(U); | 
|  | if (!Inst) | 
|  | return false; | 
|  |  | 
|  | if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) | 
|  | if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) | 
|  | return false; | 
|  | UsersToVisit.push_back(U); | 
|  | } else if (const ShuffleVectorInst *ShufInst = | 
|  | dyn_cast<ShuffleVectorInst>(U)) { | 
|  | // Detect the following pattern: A ShuffleVector instruction together | 
|  | // with a reduction that do partial reduction on the first and second | 
|  | // ElemNumToReduce / 2 elements, and store the result in | 
|  | // ElemNumToReduce / 2 elements in another vector. | 
|  |  | 
|  | unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); | 
|  | if (ResultElements < ElemNum) | 
|  | return false; | 
|  |  | 
|  | if (ElemNumToReduce == 1) | 
|  | return false; | 
|  | if (!isa<UndefValue>(U->getOperand(1))) | 
|  | return false; | 
|  | for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) | 
|  | if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) | 
|  | return false; | 
|  | for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) | 
|  | if (ShufInst->getMaskValue(i) != -1) | 
|  | return false; | 
|  |  | 
|  | // There is only one user of this ShuffleVector instruction, which | 
|  | // must be a reduction operation. | 
|  | if (!U->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | auto U2 = dyn_cast<Instruction>(*U->user_begin()); | 
|  | if (!U2 || U2->getOpcode() != OpCode) | 
|  | return false; | 
|  |  | 
|  | // Check operands of the reduction operation. | 
|  | if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || | 
|  | (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { | 
|  | UsersToVisit.push_back(U2); | 
|  | ElemNumToReduce /= 2; | 
|  | } else | 
|  | return false; | 
|  | } else if (isa<ExtractElementInst>(U)) { | 
|  | // At this moment we should have reduced all elements in the vector. | 
|  | if (ElemNumToReduce != 1) | 
|  | return false; | 
|  |  | 
|  | const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); | 
|  | if (!Val || Val->getZExtValue() != 0) | 
|  | return false; | 
|  |  | 
|  | ReduxExtracted = true; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return ReduxExtracted; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | bool nuw = false; | 
|  | bool nsw = false; | 
|  | bool exact = false; | 
|  | bool vec_redux = false; | 
|  | FastMathFlags FMF; | 
|  |  | 
|  | if (const OverflowingBinaryOperator *OFBinOp = | 
|  | dyn_cast<const OverflowingBinaryOperator>(&I)) { | 
|  | nuw = OFBinOp->hasNoUnsignedWrap(); | 
|  | nsw = OFBinOp->hasNoSignedWrap(); | 
|  | } | 
|  | if (const PossiblyExactOperator *ExactOp = | 
|  | dyn_cast<const PossiblyExactOperator>(&I)) | 
|  | exact = ExactOp->isExact(); | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) | 
|  | FMF = FPOp->getFastMathFlags(); | 
|  |  | 
|  | if (isVectorReductionOp(&I)) { | 
|  | vec_redux = true; | 
|  | DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); | 
|  | } | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(exact); | 
|  | Flags.setNoSignedWrap(nsw); | 
|  | Flags.setNoUnsignedWrap(nuw); | 
|  | Flags.setVectorReduction(vec_redux); | 
|  | if (EnableFMFInDAG) { | 
|  | Flags.setAllowReciprocal(FMF.allowReciprocal()); | 
|  | Flags.setNoInfs(FMF.noInfs()); | 
|  | Flags.setNoNaNs(FMF.noNaNs()); | 
|  | Flags.setNoSignedZeros(FMF.noSignedZeros()); | 
|  | Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); | 
|  | } | 
|  | SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), | 
|  | Op1, Op2, &Flags); | 
|  | setValue(&I, BinNodeValue); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( | 
|  | Op2.getValueType(), DAG.getDataLayout()); | 
|  |  | 
|  | // Coerce the shift amount to the right type if we can. | 
|  | if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { | 
|  | unsigned ShiftSize = ShiftTy.getSizeInBits(); | 
|  | unsigned Op2Size = Op2.getValueType().getSizeInBits(); | 
|  | SDLoc DL = getCurSDLoc(); | 
|  |  | 
|  | // If the operand is smaller than the shift count type, promote it. | 
|  | if (ShiftSize > Op2Size) | 
|  | Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); | 
|  |  | 
|  | // If the operand is larger than the shift count type but the shift | 
|  | // count type has enough bits to represent any shift value, truncate | 
|  | // it now. This is a common case and it exposes the truncate to | 
|  | // optimization early. | 
|  | else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) | 
|  | Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); | 
|  | // Otherwise we'll need to temporarily settle for some other convenient | 
|  | // type.  Type legalization will make adjustments once the shiftee is split. | 
|  | else | 
|  | Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | bool nuw = false; | 
|  | bool nsw = false; | 
|  | bool exact = false; | 
|  |  | 
|  | if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { | 
|  |  | 
|  | if (const OverflowingBinaryOperator *OFBinOp = | 
|  | dyn_cast<const OverflowingBinaryOperator>(&I)) { | 
|  | nuw = OFBinOp->hasNoUnsignedWrap(); | 
|  | nsw = OFBinOp->hasNoSignedWrap(); | 
|  | } | 
|  | if (const PossiblyExactOperator *ExactOp = | 
|  | dyn_cast<const PossiblyExactOperator>(&I)) | 
|  | exact = ExactOp->isExact(); | 
|  | } | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(exact); | 
|  | Flags.setNoSignedWrap(nsw); | 
|  | Flags.setNoUnsignedWrap(nuw); | 
|  | SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, | 
|  | &Flags); | 
|  | setValue(&I, Res); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSDiv(const User &I) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(isa<PossiblyExactOperator>(&I) && | 
|  | cast<PossiblyExactOperator>(&I)->isExact()); | 
|  | setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, | 
|  | Op2, &Flags)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitICmp(const User &I) { | 
|  | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
|  | predicate = IC->getPredicate(); | 
|  | else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = ICmpInst::Predicate(IC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Opcode = getICmpCondCode(predicate); | 
|  |  | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFCmp(const User &I) { | 
|  | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
|  | if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
|  | predicate = FC->getPredicate(); | 
|  | else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = FCmpInst::Predicate(FC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Condition = getFCmpCondCode(predicate); | 
|  |  | 
|  | // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. | 
|  | // FIXME: We should propagate the fast-math-flags to the DAG node itself for | 
|  | // further optimization, but currently FMF is only applicable to binary nodes. | 
|  | if (TM.Options.NoNaNsFPMath) | 
|  | Condition = getFCmpCodeWithoutNaN(Condition); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSelect(const User &I) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), | 
|  | ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SDValue Cond     = getValue(I.getOperand(0)); | 
|  | SDValue LHSVal   = getValue(I.getOperand(1)); | 
|  | SDValue RHSVal   = getValue(I.getOperand(2)); | 
|  | auto BaseOps = {Cond}; | 
|  | ISD::NodeType OpCode = Cond.getValueType().isVector() ? | 
|  | ISD::VSELECT : ISD::SELECT; | 
|  |  | 
|  | // Min/max matching is only viable if all output VTs are the same. | 
|  | if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { | 
|  | EVT VT = ValueVTs[0]; | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // We care about the legality of the operation after it has been type | 
|  | // legalized. | 
|  | while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && | 
|  | VT != TLI.getTypeToTransformTo(Ctx, VT)) | 
|  | VT = TLI.getTypeToTransformTo(Ctx, VT); | 
|  |  | 
|  | // If the vselect is legal, assume we want to leave this as a vector setcc + | 
|  | // vselect. Otherwise, if this is going to be scalarized, we want to see if | 
|  | // min/max is legal on the scalar type. | 
|  | bool UseScalarMinMax = VT.isVector() && | 
|  | !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); | 
|  |  | 
|  | Value *LHS, *RHS; | 
|  | auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); | 
|  | ISD::NodeType Opc = ISD::DELETED_NODE; | 
|  | switch (SPR.Flavor) { | 
|  | case SPF_UMAX:    Opc = ISD::UMAX; break; | 
|  | case SPF_UMIN:    Opc = ISD::UMIN; break; | 
|  | case SPF_SMAX:    Opc = ISD::SMAX; break; | 
|  | case SPF_SMIN:    Opc = ISD::SMIN; break; | 
|  | case SPF_FMINNUM: | 
|  | switch (SPR.NaNBehavior) { | 
|  | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); | 
|  | case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break; | 
|  | case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; | 
|  | case SPNB_RETURNS_ANY: { | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) | 
|  | Opc = ISD::FMINNUM; | 
|  | else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) | 
|  | Opc = ISD::FMINNAN; | 
|  | else if (UseScalarMinMax) | 
|  | Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? | 
|  | ISD::FMINNUM : ISD::FMINNAN; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case SPF_FMAXNUM: | 
|  | switch (SPR.NaNBehavior) { | 
|  | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); | 
|  | case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break; | 
|  | case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; | 
|  | case SPNB_RETURNS_ANY: | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) | 
|  | Opc = ISD::FMAXNUM; | 
|  | else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) | 
|  | Opc = ISD::FMAXNAN; | 
|  | else if (UseScalarMinMax) | 
|  | Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? | 
|  | ISD::FMAXNUM : ISD::FMAXNAN; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | if (Opc != ISD::DELETED_NODE && | 
|  | (TLI.isOperationLegalOrCustom(Opc, VT) || | 
|  | (UseScalarMinMax && | 
|  | TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && | 
|  | // If the underlying comparison instruction is used by any other | 
|  | // instruction, the consumed instructions won't be destroyed, so it is | 
|  | // not profitable to convert to a min/max. | 
|  | cast<SelectInst>(&I)->getCondition()->hasOneUse()) { | 
|  | OpCode = Opc; | 
|  | LHSVal = getValue(LHS); | 
|  | RHSVal = getValue(RHS); | 
|  | BaseOps = {}; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); | 
|  | Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); | 
|  | Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); | 
|  | Values[i] = DAG.getNode(OpCode, getCurSDLoc(), | 
|  | LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), | 
|  | Ops); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(ValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitTrunc(const User &I) { | 
|  | // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitZExt(const User &I) { | 
|  | // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSExt(const User &I) { | 
|  | // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPTrunc(const User &I) { | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, | 
|  | DAG.getTargetConstant( | 
|  | 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPExt(const User &I) { | 
|  | // FPExt is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToUI(const User &I) { | 
|  | // FPToUI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToSI(const User &I) { | 
|  | // FPToSI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUIToFP(const User &I) { | 
|  | // UIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSIToFP(const User &I) { | 
|  | // SIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPtrToInt(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIntToPtr(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBitCast(const User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  |  | 
|  | // BitCast assures us that source and destination are the same size so this is | 
|  | // either a BITCAST or a no-op. | 
|  | if (DestVT != N.getValueType()) | 
|  | setValue(&I, DAG.getNode(ISD::BITCAST, dl, | 
|  | DestVT, N)); // convert types. | 
|  | // Check if the original LLVM IR Operand was a ConstantInt, because getValue() | 
|  | // might fold any kind of constant expression to an integer constant and that | 
|  | // is not what we are looking for. Only regcognize a bitcast of a genuine | 
|  | // constant integer as an opaque constant. | 
|  | else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) | 
|  | setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, | 
|  | /*isOpaque*/true)); | 
|  | else | 
|  | setValue(&I, N);            // noop cast. | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const Value *SV = I.getOperand(0); | 
|  | SDValue N = getValue(SV); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  |  | 
|  | unsigned SrcAS = SV->getType()->getPointerAddressSpace(); | 
|  | unsigned DestAS = I.getType()->getPointerAddressSpace(); | 
|  |  | 
|  | if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) | 
|  | N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); | 
|  |  | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertElement(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InVal = getValue(I.getOperand(1)); | 
|  | SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  | setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | InVec, InVal, InIdx)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractElement(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  | setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | InVec, InIdx)); | 
|  | } | 
|  |  | 
|  | // Utility for visitShuffleVector - Return true if every element in Mask, | 
|  | // beginning from position Pos and ending in Pos+Size, falls within the | 
|  | // specified sequential range [L, L+Pos). or is undef. | 
|  | static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, | 
|  | unsigned Pos, unsigned Size, int Low) { | 
|  | for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) | 
|  | if (Mask[i] >= 0 && Mask[i] != Low) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShuffleVector(const User &I) { | 
|  | SDValue Src1 = getValue(I.getOperand(0)); | 
|  | SDValue Src2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | SmallVector<int, 8> Mask; | 
|  | ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); | 
|  | unsigned MaskNumElts = Mask.size(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | EVT SrcVT = Src1.getValueType(); | 
|  | unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | if (SrcNumElts == MaskNumElts) { | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, | 
|  | &Mask[0])); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Normalize the shuffle vector since mask and vector length don't match. | 
|  | if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { | 
|  | // Mask is longer than the source vectors and is a multiple of the source | 
|  | // vectors.  We can use concatenate vector to make the mask and vectors | 
|  | // lengths match. | 
|  | if (SrcNumElts*2 == MaskNumElts) { | 
|  | // First check for Src1 in low and Src2 in high | 
|  | if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && | 
|  | isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { | 
|  | // The shuffle is concatenating two vectors together. | 
|  | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), | 
|  | VT, Src1, Src2)); | 
|  | return; | 
|  | } | 
|  | // Then check for Src2 in low and Src1 in high | 
|  | if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && | 
|  | isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { | 
|  | // The shuffle is concatenating two vectors together. | 
|  | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), | 
|  | VT, Src2, Src1)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pad both vectors with undefs to make them the same length as the mask. | 
|  | unsigned NumConcat = MaskNumElts / SrcNumElts; | 
|  | bool Src1U = Src1.getOpcode() == ISD::UNDEF; | 
|  | bool Src2U = Src2.getOpcode() == ISD::UNDEF; | 
|  | SDValue UndefVal = DAG.getUNDEF(SrcVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); | 
|  | SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); | 
|  | MOps1[0] = Src1; | 
|  | MOps2[0] = Src2; | 
|  |  | 
|  | Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, | 
|  | getCurSDLoc(), VT, MOps1); | 
|  | Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, | 
|  | getCurSDLoc(), VT, MOps2); | 
|  |  | 
|  | // Readjust mask for new input vector length. | 
|  | SmallVector<int, 8> MappedOps; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx >= (int)SrcNumElts) | 
|  | Idx -= SrcNumElts - MaskNumElts; | 
|  | MappedOps.push_back(Idx); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, | 
|  | &MappedOps[0])); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcNumElts > MaskNumElts) { | 
|  | // Analyze the access pattern of the vector to see if we can extract | 
|  | // two subvectors and do the shuffle. The analysis is done by calculating | 
|  | // the range of elements the mask access on both vectors. | 
|  | int MinRange[2] = { static_cast<int>(SrcNumElts), | 
|  | static_cast<int>(SrcNumElts)}; | 
|  | int MaxRange[2] = {-1, -1}; | 
|  |  | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | unsigned Input = 0; | 
|  | if (Idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (Idx >= (int)SrcNumElts) { | 
|  | Input = 1; | 
|  | Idx -= SrcNumElts; | 
|  | } | 
|  | if (Idx > MaxRange[Input]) | 
|  | MaxRange[Input] = Idx; | 
|  | if (Idx < MinRange[Input]) | 
|  | MinRange[Input] = Idx; | 
|  | } | 
|  |  | 
|  | // Check if the access is smaller than the vector size and can we find | 
|  | // a reasonable extract index. | 
|  | int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not | 
|  | // Extract. | 
|  | int StartIdx[2];  // StartIdx to extract from | 
|  | for (unsigned Input = 0; Input < 2; ++Input) { | 
|  | if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { | 
|  | RangeUse[Input] = 0; // Unused | 
|  | StartIdx[Input] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Find a good start index that is a multiple of the mask length. Then | 
|  | // see if the rest of the elements are in range. | 
|  | StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; | 
|  | if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && | 
|  | StartIdx[Input] + MaskNumElts <= SrcNumElts) | 
|  | RangeUse[Input] = 1; // Extract from a multiple of the mask length. | 
|  | } | 
|  |  | 
|  | if (RangeUse[0] == 0 && RangeUse[1] == 0) { | 
|  | setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. | 
|  | return; | 
|  | } | 
|  | if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { | 
|  | // Extract appropriate subvector and generate a vector shuffle | 
|  | for (unsigned Input = 0; Input < 2; ++Input) { | 
|  | SDValue &Src = Input == 0 ? Src1 : Src2; | 
|  | if (RangeUse[Input] == 0) | 
|  | Src = DAG.getUNDEF(VT); | 
|  | else { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | Src = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, dl, VT, Src, | 
|  | DAG.getConstant(StartIdx[Input], dl, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate new mask. | 
|  | SmallVector<int, 8> MappedOps; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx >= 0) { | 
|  | if (Idx < (int)SrcNumElts) | 
|  | Idx -= StartIdx[0]; | 
|  | else | 
|  | Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; | 
|  | } | 
|  | MappedOps.push_back(Idx); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, | 
|  | &MappedOps[0])); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't use either concat vectors or extract subvectors so fall back to | 
|  | // replacing the shuffle with extract and build vector. | 
|  | // to insert and build vector. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | SmallVector<SDValue,8> Ops; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | SDValue Res; | 
|  |  | 
|  | if (Idx < 0) { | 
|  | Res = DAG.getUNDEF(EltVT); | 
|  | } else { | 
|  | SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; | 
|  | if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; | 
|  |  | 
|  | Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Res); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | const Value *Op1 = I.getOperand(1); | 
|  | Type *AggTy = I.getType(); | 
|  | Type *ValTy = Op1->getType(); | 
|  | bool IntoUndef = isa<UndefValue>(Op0); | 
|  | bool FromUndef = isa<UndefValue>(Op1); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumAggValues = AggValueVTs.size(); | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumAggValues); | 
|  |  | 
|  | // Ignore an insertvalue that produces an empty object | 
|  | if (!NumAggValues) { | 
|  | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | unsigned i = 0; | 
|  | // Copy the beginning value(s) from the original aggregate. | 
|  | for (; i != LinearIndex; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  | // Copy values from the inserted value(s). | 
|  | if (NumValValues) { | 
|  | SDValue Val = getValue(Op1); | 
|  | for (; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); | 
|  | } | 
|  | // Copy remaining value(s) from the original aggregate. | 
|  | for (; i != NumAggValues; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(AggValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | Type *AggTy = Op0->getType(); | 
|  | Type *ValTy = I.getType(); | 
|  | bool OutOfUndef = isa<UndefValue>(Op0); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  |  | 
|  | // Ignore a extractvalue that produces an empty object | 
|  | if (!NumValValues) { | 
|  | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | // Copy out the selected value(s). | 
|  | for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i - LinearIndex] = | 
|  | OutOfUndef ? | 
|  | DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(ValValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGetElementPtr(const User &I) { | 
|  | Value *Op0 = I.getOperand(0); | 
|  | // Note that the pointer operand may be a vector of pointers. Take the scalar | 
|  | // element which holds a pointer. | 
|  | unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); | 
|  | SDValue N = getValue(Op0); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Normalize Vector GEP - all scalar operands should be converted to the | 
|  | // splat vector. | 
|  | unsigned VectorWidth = I.getType()->isVectorTy() ? | 
|  | cast<VectorType>(I.getType())->getVectorNumElements() : 0; | 
|  |  | 
|  | if (VectorWidth && !N.getValueType().isVector()) { | 
|  | MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); | 
|  | SmallVector<SDValue, 16> Ops(VectorWidth, N); | 
|  | N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  | for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); | 
|  | GTI != E; ++GTI) { | 
|  | const Value *Idx = GTI.getOperand(); | 
|  | if (StructType *StTy = dyn_cast<StructType>(*GTI)) { | 
|  | unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); | 
|  |  | 
|  | // In an inbouds GEP with an offset that is nonnegative even when | 
|  | // interpreted as signed, assume there is no unsigned overflow. | 
|  | SDNodeFlags Flags; | 
|  | if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, | 
|  | DAG.getConstant(Offset, dl, N.getValueType()), &Flags); | 
|  | } | 
|  | } else { | 
|  | MVT PtrTy = | 
|  | DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); | 
|  | unsigned PtrSize = PtrTy.getSizeInBits(); | 
|  | APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); | 
|  |  | 
|  | // If this is a scalar constant or a splat vector of constants, | 
|  | // handle it quickly. | 
|  | const auto *CI = dyn_cast<ConstantInt>(Idx); | 
|  | if (!CI && isa<ConstantDataVector>(Idx) && | 
|  | cast<ConstantDataVector>(Idx)->getSplatValue()) | 
|  | CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); | 
|  |  | 
|  | if (CI) { | 
|  | if (CI->isZero()) | 
|  | continue; | 
|  | APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); | 
|  | SDValue OffsVal = VectorWidth ? | 
|  | DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : | 
|  | DAG.getConstant(Offs, dl, PtrTy); | 
|  |  | 
|  | // In an inbouds GEP with an offset that is nonnegative even when | 
|  | // interpreted as signed, assume there is no unsigned overflow. | 
|  | SDNodeFlags Flags; | 
|  | if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | SDValue IdxN = getValue(Idx); | 
|  |  | 
|  | if (!IdxN.getValueType().isVector() && VectorWidth) { | 
|  | MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); | 
|  | SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); | 
|  | IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend | 
|  | // it. | 
|  | IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); | 
|  |  | 
|  | // If this is a multiply by a power of two, turn it into a shl | 
|  | // immediately.  This is a very common case. | 
|  | if (ElementSize != 1) { | 
|  | if (ElementSize.isPowerOf2()) { | 
|  | unsigned Amt = ElementSize.logBase2(); | 
|  | IdxN = DAG.getNode(ISD::SHL, dl, | 
|  | N.getValueType(), IdxN, | 
|  | DAG.getConstant(Amt, dl, IdxN.getValueType())); | 
|  | } else { | 
|  | SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); | 
|  | IdxN = DAG.getNode(ISD::MUL, dl, | 
|  | N.getValueType(), IdxN, Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, | 
|  | N.getValueType(), N, IdxN); | 
|  | } | 
|  | } | 
|  |  | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { | 
|  | // If this is a fixed sized alloca in the entry block of the function, | 
|  | // allocate it statically on the stack. | 
|  | if (FuncInfo.StaticAllocaMap.count(&I)) | 
|  | return;   // getValue will auto-populate this. | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | uint64_t TySize = DL.getTypeAllocSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); | 
|  |  | 
|  | SDValue AllocSize = getValue(I.getArraySize()); | 
|  |  | 
|  | EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | if (AllocSize.getValueType() != IntPtr) | 
|  | AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); | 
|  |  | 
|  | AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, | 
|  | AllocSize, | 
|  | DAG.getConstant(TySize, dl, IntPtr)); | 
|  |  | 
|  | // Handle alignment.  If the requested alignment is less than or equal to | 
|  | // the stack alignment, ignore it.  If the size is greater than or equal to | 
|  | // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
|  | unsigned StackAlign = | 
|  | DAG.getSubtarget().getFrameLowering()->getStackAlignment(); | 
|  | if (Align <= StackAlign) | 
|  | Align = 0; | 
|  |  | 
|  | // Round the size of the allocation up to the stack alignment size | 
|  | // by add SA-1 to the size. This doesn't overflow because we're computing | 
|  | // an address inside an alloca. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  | AllocSize = DAG.getNode(ISD::ADD, dl, | 
|  | AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); | 
|  |  | 
|  | // Mask out the low bits for alignment purposes. | 
|  | AllocSize = DAG.getNode(ISD::AND, dl, | 
|  | AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), | 
|  | dl)); | 
|  |  | 
|  | SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; | 
|  | SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); | 
|  | SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); | 
|  | setValue(&I, DSA); | 
|  | DAG.setRoot(DSA.getValue(1)); | 
|  |  | 
|  | assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLoad(const LoadInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicLoad(I); | 
|  |  | 
|  | const Value *SV = I.getOperand(0); | 
|  | SDValue Ptr = getValue(SV); | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  |  | 
|  | bool isVolatile = I.isVolatile(); | 
|  | bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; | 
|  |  | 
|  | // The IR notion of invariant_load only guarantees that all *non-faulting* | 
|  | // invariant loads result in the same value.  The MI notion of invariant load | 
|  | // guarantees that the load can be legally moved to any location within its | 
|  | // containing function.  The MI notion of invariant_load is stronger than the | 
|  | // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load | 
|  | // with a guarantee that the location being loaded from is dereferenceable | 
|  | // throughout the function's lifetime. | 
|  |  | 
|  | bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && | 
|  | isDereferenceablePointer(SV, DAG.getDataLayout()); | 
|  | unsigned Alignment = I.getAlignment(); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  | if (isVolatile || NumValues > MaxParallelChains) | 
|  | // Serialize volatile loads with other side effects. | 
|  | Root = getRoot(); | 
|  | else if (AA->pointsToConstantMemory(MemoryLocation( | 
|  | SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | if (isVolatile) | 
|  | Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); | 
|  |  | 
|  | // An aggregate load cannot wrap around the address space, so offsets to its | 
|  | // parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // Serializing loads here may result in excessive register pressure, and | 
|  | // TokenFactor places arbitrary choke points on the scheduler. SD scheduling | 
|  | // could recover a bit by hoisting nodes upward in the chain by recognizing | 
|  | // they are side-effect free or do not alias. The optimizer should really | 
|  | // avoid this case by converting large object/array copies to llvm.memcpy | 
|  | // (MaxParallelChains should always remain as failsafe). | 
|  | if (ChainI == MaxParallelChains) { | 
|  | assert(PendingLoads.empty() && "PendingLoads must be serialized first"); | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue A = DAG.getNode(ISD::ADD, dl, | 
|  | PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], dl, PtrVT), | 
|  | &Flags); | 
|  | SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, | 
|  | A, MachinePointerInfo(SV, Offsets[i]), isVolatile, | 
|  | isNonTemporal, isInvariant, Alignment, AAInfo, | 
|  | Ranges); | 
|  |  | 
|  | Values[i] = L; | 
|  | Chains[ChainI] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | if (!ConstantMemory) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | if (isVolatile) | 
|  | DAG.setRoot(Chain); | 
|  | else | 
|  | PendingLoads.push_back(Chain); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(ValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitStore(const StoreInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicStore(I); | 
|  |  | 
|  | const Value *SrcV = I.getOperand(0); | 
|  | const Value *PtrV = I.getOperand(1); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), | 
|  | SrcV->getType(), ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | // Get the lowered operands. Note that we do this after | 
|  | // checking if NumResults is zero, because with zero results | 
|  | // the operands won't have values in the map. | 
|  | SDValue Src = getValue(SrcV); | 
|  | SDValue Ptr = getValue(PtrV); | 
|  |  | 
|  | SDValue Root = getRoot(); | 
|  | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | bool isVolatile = I.isVolatile(); | 
|  | bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | // An aggregate load cannot wrap around the address space, so offsets to its | 
|  | // parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // See visitLoad comments. | 
|  | if (ChainI == MaxParallelChains) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); | 
|  | SDValue St = DAG.getStore(Root, dl, | 
|  | SDValue(Src.getNode(), Src.getResNo() + i), | 
|  | Add, MachinePointerInfo(PtrV, Offsets[i]), | 
|  | isVolatile, isNonTemporal, Alignment, AAInfo); | 
|  | Chains[ChainI] = St; | 
|  | } | 
|  |  | 
|  | SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | DAG.setRoot(StoreNode); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // llvm.masked.store.*(Src0, Ptr, alignment, Mask) | 
|  | Value  *PtrOperand = I.getArgOperand(1); | 
|  | SDValue Ptr = getValue(PtrOperand); | 
|  | SDValue Src0 = getValue(I.getArgOperand(0)); | 
|  | SDValue Mask = getValue(I.getArgOperand(3)); | 
|  | EVT VT = Src0.getValueType(); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(PtrOperand), | 
|  | MachineMemOperand::MOStore,  VT.getStoreSize(), | 
|  | Alignment, AAInfo); | 
|  | SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, | 
|  | MMO, false); | 
|  | DAG.setRoot(StoreNode); | 
|  | setValue(&I, StoreNode); | 
|  | } | 
|  |  | 
|  | // Get a uniform base for the Gather/Scatter intrinsic. | 
|  | // The first argument of the Gather/Scatter intrinsic is a vector of pointers. | 
|  | // We try to represent it as a base pointer + vector of indices. | 
|  | // Usually, the vector of pointers comes from a 'getelementptr' instruction. | 
|  | // The first operand of the GEP may be a single pointer or a vector of pointers | 
|  | // Example: | 
|  | //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind | 
|  | //  or | 
|  | //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind | 
|  | // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. | 
|  | // | 
|  | // When the first GEP operand is a single pointer - it is the uniform base we | 
|  | // are looking for. If first operand of the GEP is a splat vector - we | 
|  | // extract the spalt value and use it as a uniform base. | 
|  | // In all other cases the function returns 'false'. | 
|  | // | 
|  | static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, | 
|  | SelectionDAGBuilder* SDB) { | 
|  |  | 
|  | SelectionDAG& DAG = SDB->DAG; | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  |  | 
|  | assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); | 
|  | const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); | 
|  | if (!GEP || GEP->getNumOperands() > 2) | 
|  | return false; | 
|  |  | 
|  | const Value *GEPPtr = GEP->getPointerOperand(); | 
|  | if (!GEPPtr->getType()->isVectorTy()) | 
|  | Ptr = GEPPtr; | 
|  | else if (!(Ptr = getSplatValue(GEPPtr))) | 
|  | return false; | 
|  |  | 
|  | Value *IndexVal = GEP->getOperand(1); | 
|  |  | 
|  | // The operands of the GEP may be defined in another basic block. | 
|  | // In this case we'll not find nodes for the operands. | 
|  | if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) | 
|  | return false; | 
|  |  | 
|  | Base = SDB->getValue(Ptr); | 
|  | Index = SDB->getValue(IndexVal); | 
|  |  | 
|  | // Suppress sign extension. | 
|  | if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { | 
|  | if (SDB->findValue(Sext->getOperand(0))) { | 
|  | IndexVal = Sext->getOperand(0); | 
|  | Index = SDB->getValue(IndexVal); | 
|  | } | 
|  | } | 
|  | if (!Index.getValueType().isVector()) { | 
|  | unsigned GEPWidth = GEP->getType()->getVectorNumElements(); | 
|  | EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); | 
|  | SmallVector<SDValue, 16> Ops(GEPWidth, Index); | 
|  | Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) | 
|  | const Value *Ptr = I.getArgOperand(1); | 
|  | SDValue Src0 = getValue(I.getArgOperand(0)); | 
|  | SDValue Mask = getValue(I.getArgOperand(3)); | 
|  | EVT VT = Src0.getValueType(); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | SDValue Base; | 
|  | SDValue Index; | 
|  | const Value *BasePtr = Ptr; | 
|  | bool UniformBase = getUniformBase(BasePtr, Base, Index, this); | 
|  |  | 
|  | const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), | 
|  | MachineMemOperand::MOStore,  VT.getStoreSize(), | 
|  | Alignment, AAInfo); | 
|  | if (!UniformBase) { | 
|  | Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Index = getValue(Ptr); | 
|  | } | 
|  | SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; | 
|  | SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, | 
|  | Ops, MMO); | 
|  | DAG.setRoot(Scatter); | 
|  | setValue(&I, Scatter); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) | 
|  | Value  *PtrOperand = I.getArgOperand(0); | 
|  | SDValue Ptr = getValue(PtrOperand); | 
|  | SDValue Src0 = getValue(I.getArgOperand(3)); | 
|  | SDValue Mask = getValue(I.getArgOperand(2)); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | SDValue InChain = DAG.getRoot(); | 
|  | if (AA->pointsToConstantMemory(MemoryLocation( | 
|  | PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), | 
|  | AAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | InChain = DAG.getEntryNode(); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(PtrOperand), | 
|  | MachineMemOperand::MOLoad,  VT.getStoreSize(), | 
|  | Alignment, AAInfo, Ranges); | 
|  |  | 
|  | SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, | 
|  | ISD::NON_EXTLOAD); | 
|  | SDValue OutChain = Load.getValue(1); | 
|  | DAG.setRoot(OutChain); | 
|  | setValue(&I, Load); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) | 
|  | const Value *Ptr = I.getArgOperand(0); | 
|  | SDValue Src0 = getValue(I.getArgOperand(3)); | 
|  | SDValue Mask = getValue(I.getArgOperand(2)); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | SDValue Root = DAG.getRoot(); | 
|  | SDValue Base; | 
|  | SDValue Index; | 
|  | const Value *BasePtr = Ptr; | 
|  | bool UniformBase = getUniformBase(BasePtr, Base, Index, this); | 
|  | bool ConstantMemory = false; | 
|  | if (UniformBase && | 
|  | AA->pointsToConstantMemory(MemoryLocation( | 
|  | BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), | 
|  | AAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), | 
|  | MachineMemOperand::MOLoad,  VT.getStoreSize(), | 
|  | Alignment, AAInfo, Ranges); | 
|  |  | 
|  | if (!UniformBase) { | 
|  | Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Index = getValue(Ptr); | 
|  | } | 
|  | SDValue Ops[] = { Root, Src0, Mask, Base, Index }; | 
|  | SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, | 
|  | Ops, MMO); | 
|  |  | 
|  | SDValue OutChain = Gather.getValue(1); | 
|  | if (!ConstantMemory) | 
|  | PendingLoads.push_back(OutChain); | 
|  | setValue(&I, Gather); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | AtomicOrdering SuccessOrder = I.getSuccessOrdering(); | 
|  | AtomicOrdering FailureOrder = I.getFailureOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); | 
|  | SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); | 
|  | SDValue L = DAG.getAtomicCmpSwap( | 
|  | ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, | 
|  | getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), | 
|  | getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), | 
|  | /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(2); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | ISD::NodeType NT; | 
|  | switch (I.getOperation()) { | 
|  | default: llvm_unreachable("Unknown atomicrmw operation"); | 
|  | case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; | 
|  | case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break; | 
|  | case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break; | 
|  | case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break; | 
|  | case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; | 
|  | case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break; | 
|  | case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break; | 
|  | case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break; | 
|  | case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break; | 
|  | case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; | 
|  | case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; | 
|  | } | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | SDValue L = | 
|  | DAG.getAtomic(NT, dl, | 
|  | getValue(I.getValOperand()).getSimpleValueType(), | 
|  | InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getValOperand()), | 
|  | I.getPointerOperand(), | 
|  | /* Alignment=*/ 0, Order, Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFence(const FenceInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Ops[3]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = DAG.getConstant(I.getOrdering(), dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Ops[2] = DAG.getConstant(I.getSynchScope(), dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  |  | 
|  | if (I.getAlignment() < VT.getSizeInBits() / 8) | 
|  | report_fatal_error("Cannot generate unaligned atomic load"); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), | 
|  | MachineMemOperand::MOVolatile | | 
|  | MachineMemOperand::MOLoad, | 
|  | VT.getStoreSize(), | 
|  | I.getAlignment() ? I.getAlignment() : | 
|  | DAG.getEVTAlignment(VT)); | 
|  |  | 
|  | InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); | 
|  | SDValue L = | 
|  | DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, | 
|  | getValue(I.getPointerOperand()), MMO, | 
|  | Order, Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); | 
|  |  | 
|  | if (I.getAlignment() < VT.getSizeInBits() / 8) | 
|  | report_fatal_error("Cannot generate unaligned atomic store"); | 
|  |  | 
|  | SDValue OutChain = | 
|  | DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, | 
|  | InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getValueOperand()), | 
|  | I.getPointerOperand(), I.getAlignment(), | 
|  | Order, Scope); | 
|  |  | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
|  | /// node. | 
|  | void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | bool HasChain = !I.doesNotAccessMemory(); | 
|  | bool OnlyLoad = HasChain && I.onlyReadsMemory(); | 
|  |  | 
|  | // Build the operand list. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
|  | if (OnlyLoad) { | 
|  | // We don't need to serialize loads against other loads. | 
|  | Ops.push_back(DAG.getRoot()); | 
|  | } else { | 
|  | Ops.push_back(getRoot()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Info is set by getTgtMemInstrinsic | 
|  | TargetLowering::IntrinsicInfo Info; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); | 
|  |  | 
|  | // Add the intrinsic ID as an integer operand if it's not a target intrinsic. | 
|  | if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || | 
|  | Info.opc == ISD::INTRINSIC_W_CHAIN) | 
|  | Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // Add all operands of the call to the operand list. | 
|  | for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { | 
|  | SDValue Op = getValue(I.getArgOperand(i)); | 
|  | Ops.push_back(Op); | 
|  | } | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); | 
|  |  | 
|  | if (HasChain) | 
|  | ValueVTs.push_back(MVT::Other); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(ValueVTs); | 
|  |  | 
|  | // Create the node. | 
|  | SDValue Result; | 
|  | if (IsTgtIntrinsic) { | 
|  | // This is target intrinsic that touches memory | 
|  | Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), | 
|  | VTs, Ops, Info.memVT, | 
|  | MachinePointerInfo(Info.ptrVal, Info.offset), | 
|  | Info.align, Info.vol, | 
|  | Info.readMem, Info.writeMem, Info.size); | 
|  | } else if (!HasChain) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); | 
|  | } else if (!I.getType()->isVoidTy()) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); | 
|  | } else { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); | 
|  | } | 
|  |  | 
|  | if (HasChain) { | 
|  | SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); | 
|  | if (OnlyLoad) | 
|  | PendingLoads.push_back(Chain); | 
|  | else | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | if (!I.getType()->isVoidTy()) { | 
|  | if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); | 
|  | Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); | 
|  | } else | 
|  | Result = lowerRangeToAssertZExt(DAG, I, Result); | 
|  |  | 
|  | setValue(&I, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSignificand - Get the significand and build it into a floating-point | 
|  | /// number with exponent of 1: | 
|  | /// | 
|  | ///   Op = (Op & 0x007fffff) | 0x3f800000; | 
|  | /// | 
|  | /// where Op is the hexadecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { | 
|  | SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x007fffff, dl, MVT::i32)); | 
|  | SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, | 
|  | DAG.getConstant(0x3f800000, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// GetExponent - Get the exponent: | 
|  | /// | 
|  | ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127); | 
|  | /// | 
|  | /// where Op is the hexadecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, | 
|  | SDLoc dl) { | 
|  | SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x7f800000, dl, MVT::i32)); | 
|  | SDValue t1 = DAG.getNode( | 
|  | ISD::SRL, dl, MVT::i32, t0, | 
|  | DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, | 
|  | DAG.getConstant(127, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// getF32Constant - Get 32-bit floating point constant. | 
|  | static SDValue | 
|  | getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { | 
|  | return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, | 
|  | MVT::f32); | 
|  | } | 
|  |  | 
|  | static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, | 
|  | SelectionDAG &DAG) { | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | //   IntegerPartOfX = ((int32_t)(t0); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = t0 - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode( | 
|  | ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( | 
|  | DAG.getDataLayout()))); | 
|  |  | 
|  | SDValue TwoToFractionalPartOfX; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234, dl)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000, dl)); | 
|  | } | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); | 
|  | } | 
|  |  | 
|  | /// expandExp - Lower an exp intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OFe 1.4426950f | 
|  | //   t0 = Op * LOG2OFe | 
|  |  | 
|  | // TODO: What fast-math-flags should be set here? | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
|  | getF32Constant(DAG, 0x3fb8aa3b, dl)); | 
|  | return getLimitedPrecisionExp2(t0, dl, DAG); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog - Lower a log intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  |  | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log(2) [0.69314718f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3f317218, dl)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | SDValue LogOfMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   LogofMantissa = | 
|  | //     -1.1609546f + | 
|  | //       (1.4034025f - 0.23903021f * x) * x; | 
|  | // | 
|  | // error 0.0034276066, which is better than 8 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbe74c456, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3fb3a2b1, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f949a29, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -1.7417939f + | 
|  | //       (2.8212026f + | 
|  | //         (-1.4699568f + | 
|  | //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.000061011436, which is 14 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbd67b6d6, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ee4f4b8, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fbc278b, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40348e95, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fdef31a, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -2.1072184f + | 
|  | //       (4.2372794f + | 
|  | //         (-3.7029485f + | 
|  | //           (2.2781945f + | 
|  | //             (-0.87823314f + | 
|  | //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; | 
|  | // | 
|  | // error 0.0000023660568, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbc91e5ac, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e4350aa, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f60d3e3, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x4011cdf0, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x406cfd1c, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x408797cb, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4006dcab, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  |  | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Get the exponent. | 
|  | SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | // Different possible minimax approximations of significand in | 
|  | // floating-point for various degrees of accuracy over [1,2]. | 
|  | SDValue Log2ofMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; | 
|  | // | 
|  | // error 0.0049451742, which is more than 7 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbeb08fe0, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x40019463, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fd6633d, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -2.51285454f + | 
|  | //       (4.07009056f + | 
|  | //         (-2.12067489f + | 
|  | //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000876136000, which is better than 13 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbda7262e, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f25280b, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x4007b923, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40823e2f, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x4020d29c, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -3.0400495f + | 
|  | //       (6.1129976f + | 
|  | //         (-5.3420409f + | 
|  | //           (3.2865683f + | 
|  | //             (-1.2669343f + | 
|  | //               (0.27515199f - | 
|  | //                 0.25691327e-1f * x) * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000018516, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbcd2769e, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e8ce0b9, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fa22ae7, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40525723, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x40aaf200, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x40c39dad, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4042902c, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  |  | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log10(2) [0.30102999f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3e9a209a, dl)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | SDValue Log10ofMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.50419619f + | 
|  | //       (0.60948995f - 0.10380950f * x) * x; | 
|  | // | 
|  | // error 0.0014886165, which is 6 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbdd49a13, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f1c0789, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f011300, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.64831180f + | 
|  | //       (0.91751397f + | 
|  | //         (-0.31664806f + 0.47637168e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.00019228036, which is better than 12 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3d431f31, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ea21fb2, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f6ae232, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f25f7c3, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.84299375f + | 
|  | //       (1.5327582f + | 
|  | //         (-1.0688956f + | 
|  | //           (0.49102474f + | 
|  | //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000037995730, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3c5d51ce, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e00685a, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3efb6798, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f88d192, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fc4316c, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3f57ce70, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) | 
|  | return getLimitedPrecisionExp2(Op, dl, DAG); | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// visitPow - Lower a pow intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode with x == 10.0f. | 
|  | static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG, const TargetLowering &TLI) { | 
|  | bool IsExp10 = false; | 
|  | if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { | 
|  | APFloat Ten(10.0f); | 
|  | IsExp10 = LHSC->isExactlyValue(Ten); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: What fast-math-flags should be set on the FMUL node? | 
|  | if (IsExp10) { | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OF10 3.3219281f | 
|  | //   t0 = Op * LOG2OF10; | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, | 
|  | getF32Constant(DAG, 0x40549a78, dl)); | 
|  | return getLimitedPrecisionExp2(t0, dl, DAG); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandPowI - Expand a llvm.powi intrinsic. | 
|  | static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG) { | 
|  | // If RHS is a constant, we can expand this out to a multiplication tree, | 
|  | // otherwise we end up lowering to a call to __powidf2 (for example).  When | 
|  | // optimizing for size, we only want to do this if the expansion would produce | 
|  | // a small number of multiplies, otherwise we do the full expansion. | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | // Get the exponent as a positive value. | 
|  | unsigned Val = RHSC->getSExtValue(); | 
|  | if ((int)Val < 0) Val = -Val; | 
|  |  | 
|  | // powi(x, 0) -> 1.0 | 
|  | if (Val == 0) | 
|  | return DAG.getConstantFP(1.0, DL, LHS.getValueType()); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | if (!F->optForSize() || | 
|  | // If optimizing for size, don't insert too many multiplies. | 
|  | // This inserts up to 5 multiplies. | 
|  | countPopulation(Val) + Log2_32(Val) < 7) { | 
|  | // We use the simple binary decomposition method to generate the multiply | 
|  | // sequence.  There are more optimal ways to do this (for example, | 
|  | // powi(x,15) generates one more multiply than it should), but this has | 
|  | // the benefit of being both really simple and much better than a libcall. | 
|  | SDValue Res;  // Logically starts equal to 1.0 | 
|  | SDValue CurSquare = LHS; | 
|  | // TODO: Intrinsics should have fast-math-flags that propagate to these | 
|  | // nodes. | 
|  | while (Val) { | 
|  | if (Val & 1) { | 
|  | if (Res.getNode()) | 
|  | Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); | 
|  | else | 
|  | Res = CurSquare;  // 1.0*CurSquare. | 
|  | } | 
|  |  | 
|  | CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), | 
|  | CurSquare, CurSquare); | 
|  | Val >>= 1; | 
|  | } | 
|  |  | 
|  | // If the original was negative, invert the result, producing 1/(x*x*x). | 
|  | if (RHSC->getSExtValue() < 0) | 
|  | Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), | 
|  | DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, expand to a libcall. | 
|  | return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); | 
|  | } | 
|  |  | 
|  | // getUnderlyingArgReg - Find underlying register used for a truncated or | 
|  | // bitcasted argument. | 
|  | static unsigned getUnderlyingArgReg(const SDValue &N) { | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::CopyFromReg: | 
|  | return cast<RegisterSDNode>(N.getOperand(1))->getReg(); | 
|  | case ISD::BITCAST: | 
|  | case ISD::AssertZext: | 
|  | case ISD::AssertSext: | 
|  | case ISD::TRUNCATE: | 
|  | return getUnderlyingArgReg(N.getOperand(0)); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function | 
|  | /// argument, create the corresponding DBG_VALUE machine instruction for it now. | 
|  | /// At the end of instruction selection, they will be inserted to the entry BB. | 
|  | bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( | 
|  | const Value *V, DILocalVariable *Variable, DIExpression *Expr, | 
|  | DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { | 
|  | const Argument *Arg = dyn_cast<Argument>(V); | 
|  | if (!Arg) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Ignore inlined function arguments here. | 
|  | // | 
|  | // FIXME: Should we be checking DL->inlinedAt() to determine this? | 
|  | if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | Optional<MachineOperand> Op; | 
|  | // Some arguments' frame index is recorded during argument lowering. | 
|  | if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) | 
|  | Op = MachineOperand::CreateFI(FI); | 
|  |  | 
|  | if (!Op && N.getNode()) { | 
|  | unsigned Reg = getUnderlyingArgReg(N); | 
|  | if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | unsigned PR = RegInfo.getLiveInPhysReg(Reg); | 
|  | if (PR) | 
|  | Reg = PR; | 
|  | } | 
|  | if (Reg) | 
|  | Op = MachineOperand::CreateReg(Reg, false); | 
|  | } | 
|  |  | 
|  | if (!Op) { | 
|  | // Check if ValueMap has reg number. | 
|  | DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) | 
|  | Op = MachineOperand::CreateReg(VMI->second, false); | 
|  | } | 
|  |  | 
|  | if (!Op && N.getNode()) | 
|  | // Check if frame index is available. | 
|  | if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) | 
|  | if (FrameIndexSDNode *FINode = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) | 
|  | Op = MachineOperand::CreateFI(FINode->getIndex()); | 
|  |  | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | assert(Variable->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (Op->isReg()) | 
|  | FuncInfo.ArgDbgValues.push_back( | 
|  | BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, | 
|  | Op->getReg(), Offset, Variable, Expr)); | 
|  | else | 
|  | FuncInfo.ArgDbgValues.push_back( | 
|  | BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) | 
|  | .addOperand(*Op) | 
|  | .addImm(Offset) | 
|  | .addMetadata(Variable) | 
|  | .addMetadata(Expr)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VisualStudio defines setjmp as _setjmp | 
|  | #if defined(_MSC_VER) && defined(setjmp) && \ | 
|  | !defined(setjmp_undefined_for_msvc) | 
|  | #  pragma push_macro("setjmp") | 
|  | #  undef setjmp | 
|  | #  define setjmp_undefined_for_msvc | 
|  | #endif | 
|  |  | 
|  | /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If | 
|  | /// we want to emit this as a call to a named external function, return the name | 
|  | /// otherwise lower it and return null. | 
|  | const char * | 
|  | SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | SDValue Res; | 
|  |  | 
|  | switch (Intrinsic) { | 
|  | default: | 
|  | // By default, turn this into a target intrinsic node. | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return nullptr; | 
|  | case Intrinsic::vastart:  visitVAStart(I); return nullptr; | 
|  | case Intrinsic::vaend:    visitVAEnd(I); return nullptr; | 
|  | case Intrinsic::vacopy:   visitVACopy(I); return nullptr; | 
|  | case Intrinsic::returnaddress: | 
|  | setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | case Intrinsic::frameaddress: | 
|  | setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | case Intrinsic::read_register: { | 
|  | Value *Reg = I.getArgOperand(0); | 
|  | SDValue Chain = getRoot(); | 
|  | SDValue RegName = | 
|  | DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | Res = DAG.getNode(ISD::READ_REGISTER, sdl, | 
|  | DAG.getVTList(VT, MVT::Other), Chain, RegName); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::write_register: { | 
|  | Value *Reg = I.getArgOperand(0); | 
|  | Value *RegValue = I.getArgOperand(1); | 
|  | SDValue Chain = getRoot(); | 
|  | SDValue RegName = | 
|  | DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); | 
|  | DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, | 
|  | RegName, getValue(RegValue))); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::setjmp: | 
|  | return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; | 
|  | case Intrinsic::longjmp: | 
|  | return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; | 
|  | case Intrinsic::memcpy: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | if (!Align) | 
|  | Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | false, isTC, | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1))); | 
|  | updateDAGForMaybeTailCall(MC); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | if (!Align) | 
|  | Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | isTC, MachinePointerInfo(I.getArgOperand(0))); | 
|  | updateDAGForMaybeTailCall(MS); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | if (!Align) | 
|  | Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | isTC, MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1))); | 
|  | updateDAGForMaybeTailCall(MM); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::dbg_declare: { | 
|  | const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); | 
|  | DILocalVariable *Variable = DI.getVariable(); | 
|  | DIExpression *Expression = DI.getExpression(); | 
|  | const Value *Address = DI.getAddress(); | 
|  | assert(Variable && "Missing variable"); | 
|  | if (!Address) { | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check if address has undef value. | 
|  | if (isa<UndefValue>(Address) || | 
|  | (Address->use_empty() && !isa<Argument>(Address))) { | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue &N = NodeMap[Address]; | 
|  | if (!N.getNode() && isa<Argument>(Address)) | 
|  | // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[Address]; | 
|  | SDDbgValue *SDV; | 
|  | if (N.getNode()) { | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | // Parameters are handled specially. | 
|  | bool isParameter = Variable->isParameter() || isa<Argument>(Address); | 
|  | auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); | 
|  | if (isParameter && FINode) { | 
|  | // Byval parameter. We have a frame index at this point. | 
|  | SDV = DAG.getFrameIndexDbgValue(Variable, Expression, | 
|  | FINode->getIndex(), 0, dl, SDNodeOrder); | 
|  | } else if (isa<Argument>(Address)) { | 
|  | // Address is an argument, so try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, | 
|  | N); | 
|  | return nullptr; | 
|  | } else { | 
|  | SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), | 
|  | true, 0, dl, SDNodeOrder); | 
|  | } | 
|  | DAG.AddDbgValue(SDV, N.getNode(), isParameter); | 
|  | } else { | 
|  | // If Address is an argument then try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, | 
|  | N)) { | 
|  | // If variable is pinned by a alloca in dominating bb then | 
|  | // use StaticAllocaMap. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { | 
|  | if (AI->getParent() != DI.getParent()) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, | 
|  | 0, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::dbg_value: { | 
|  | const DbgValueInst &DI = cast<DbgValueInst>(I); | 
|  | assert(DI.getVariable() && "Missing variable"); | 
|  |  | 
|  | DILocalVariable *Variable = DI.getVariable(); | 
|  | DIExpression *Expression = DI.getExpression(); | 
|  | uint64_t Offset = DI.getOffset(); | 
|  | const Value *V = DI.getValue(); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | SDDbgValue *SDV; | 
|  | if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { | 
|  | SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, | 
|  | SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | } else { | 
|  | // Do not use getValue() in here; we don't want to generate code at | 
|  | // this point if it hasn't been done yet. | 
|  | SDValue N = NodeMap[V]; | 
|  | if (!N.getNode() && isa<Argument>(V)) | 
|  | // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[V]; | 
|  | if (N.getNode()) { | 
|  | if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, | 
|  | false, N)) { | 
|  | SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), | 
|  | false, Offset, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, N.getNode(), false); | 
|  | } | 
|  | } else if (!V->use_empty() ) { | 
|  | // Do not call getValue(V) yet, as we don't want to generate code. | 
|  | // Remember it for later. | 
|  | DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); | 
|  | DanglingDebugInfoMap[V] = DDI; | 
|  | } else { | 
|  | // We may expand this to cover more cases.  One case where we have no | 
|  | // data available is an unreferenced parameter. | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a debug info table entry. | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) | 
|  | V = BCI->getOperand(0); | 
|  | const AllocaInst *AI = dyn_cast<AllocaInst>(V); | 
|  | // Don't handle byval struct arguments or VLAs, for example. | 
|  | if (!AI) { | 
|  | DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n"); | 
|  | DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n"); | 
|  | return nullptr; | 
|  | } | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI == FuncInfo.StaticAllocaMap.end()) | 
|  | return nullptr; // VLAs. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_typeid_for: { | 
|  | // Find the type id for the given typeinfo. | 
|  | GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); | 
|  | unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); | 
|  | Res = DAG.getConstant(TypeID, sdl, MVT::i32); | 
|  | setValue(&I, Res); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_return_i32: | 
|  | case Intrinsic::eh_return_i64: | 
|  | DAG.getMachineFunction().getMMI().setCallsEHReturn(true); | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, | 
|  | MVT::Other, | 
|  | getControlRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return nullptr; | 
|  | case Intrinsic::eh_unwind_init: | 
|  | DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); | 
|  | return nullptr; | 
|  | case Intrinsic::eh_dwarf_cfa: { | 
|  | SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Offset = DAG.getNode(ISD::ADD, sdl, | 
|  | CfaArg.getValueType(), | 
|  | DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, | 
|  | CfaArg.getValueType()), | 
|  | CfaArg); | 
|  | SDValue FA = DAG.getNode( | 
|  | ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), | 
|  | DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), | 
|  | FA, Offset)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_callsite: { | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); | 
|  | assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); | 
|  | assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); | 
|  |  | 
|  | MMI.setCurrentCallSite(CI->getZExtValue()); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_functioncontext: { | 
|  | // Get and store the index of the function context. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | AllocaInst *FnCtx = | 
|  | cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); | 
|  | int FI = FuncInfo.StaticAllocaMap[FnCtx]; | 
|  | MFI->setFunctionContextIndex(FI); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_setjmp: { | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), Ops); | 
|  | setValue(&I, Op.getValue(0)); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_longjmp: { | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, | 
|  | getRoot(), getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_setup_dispatch: { | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, | 
|  | getRoot())); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::masked_gather: | 
|  | visitMaskedGather(I); | 
|  | return nullptr; | 
|  | case Intrinsic::masked_load: | 
|  | visitMaskedLoad(I); | 
|  | return nullptr; | 
|  | case Intrinsic::masked_scatter: | 
|  | visitMaskedScatter(I); | 
|  | return nullptr; | 
|  | case Intrinsic::masked_store: | 
|  | visitMaskedStore(I); | 
|  | return nullptr; | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | case Intrinsic::x86_mmx_psrai_d: { | 
|  | SDValue ShAmt = getValue(I.getArgOperand(1)); | 
|  | if (isa<ConstantSDNode>(ShAmt)) { | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return nullptr; | 
|  | } | 
|  | unsigned NewIntrinsic = 0; | 
|  | EVT ShAmtVT = MVT::v2i32; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psra_d; | 
|  | break; | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | } | 
|  |  | 
|  | // The vector shift intrinsics with scalars uses 32b shift amounts but | 
|  | // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits | 
|  | // to be zero. | 
|  | // We must do this early because v2i32 is not a legal type. | 
|  | SDValue ShOps[2]; | 
|  | ShOps[0] = ShAmt; | 
|  | ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); | 
|  | ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); | 
|  | Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, | 
|  | DAG.getConstant(NewIntrinsic, sdl, MVT::i32), | 
|  | getValue(I.getArgOperand(0)), ShAmt); | 
|  | setValue(&I, Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::convertff: | 
|  | case Intrinsic::convertfsi: | 
|  | case Intrinsic::convertfui: | 
|  | case Intrinsic::convertsif: | 
|  | case Intrinsic::convertuif: | 
|  | case Intrinsic::convertss: | 
|  | case Intrinsic::convertsu: | 
|  | case Intrinsic::convertus: | 
|  | case Intrinsic::convertuu: { | 
|  | ISD::CvtCode Code = ISD::CVT_INVALID; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::convertff:  Code = ISD::CVT_FF; break; | 
|  | case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; | 
|  | case Intrinsic::convertfui: Code = ISD::CVT_FU; break; | 
|  | case Intrinsic::convertsif: Code = ISD::CVT_SF; break; | 
|  | case Intrinsic::convertuif: Code = ISD::CVT_UF; break; | 
|  | case Intrinsic::convertss:  Code = ISD::CVT_SS; break; | 
|  | case Intrinsic::convertsu:  Code = ISD::CVT_SU; break; | 
|  | case Intrinsic::convertus:  Code = ISD::CVT_US; break; | 
|  | case Intrinsic::convertuu:  Code = ISD::CVT_UU; break; | 
|  | } | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | const Value *Op1 = I.getArgOperand(0); | 
|  | Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), | 
|  | DAG.getValueType(DestVT), | 
|  | DAG.getValueType(getValue(Op1).getValueType()), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)), | 
|  | Code); | 
|  | setValue(&I, Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::powi: | 
|  | setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), DAG)); | 
|  | return nullptr; | 
|  | case Intrinsic::log: | 
|  | setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::log2: | 
|  | setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::log10: | 
|  | setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::exp: | 
|  | setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::exp2: | 
|  | setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::pow: | 
|  | setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), DAG, TLI)); | 
|  | return nullptr; | 
|  | case Intrinsic::sqrt: | 
|  | case Intrinsic::fabs: | 
|  | case Intrinsic::sin: | 
|  | case Intrinsic::cos: | 
|  | case Intrinsic::floor: | 
|  | case Intrinsic::ceil: | 
|  | case Intrinsic::trunc: | 
|  | case Intrinsic::rint: | 
|  | case Intrinsic::nearbyint: | 
|  | case Intrinsic::round: { | 
|  | unsigned Opcode; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break; | 
|  | case Intrinsic::fabs:      Opcode = ISD::FABS;       break; | 
|  | case Intrinsic::sin:       Opcode = ISD::FSIN;       break; | 
|  | case Intrinsic::cos:       Opcode = ISD::FCOS;       break; | 
|  | case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break; | 
|  | case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break; | 
|  | case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break; | 
|  | case Intrinsic::rint:      Opcode = ISD::FRINT;      break; | 
|  | case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; | 
|  | case Intrinsic::round:     Opcode = ISD::FROUND;     break; | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(Opcode, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::minnum: | 
|  | setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return nullptr; | 
|  | case Intrinsic::maxnum: | 
|  | setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return nullptr; | 
|  | case Intrinsic::copysign: | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return nullptr; | 
|  | case Intrinsic::fma: | 
|  | setValue(&I, DAG.getNode(ISD::FMA, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)))); | 
|  | return nullptr; | 
|  | case Intrinsic::fmuladd: { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && | 
|  | TLI.isFMAFasterThanFMulAndFAdd(VT)) { | 
|  | setValue(&I, DAG.getNode(ISD::FMA, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)))); | 
|  | } else { | 
|  | // TODO: Intrinsic calls should have fast-math-flags. | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1))); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | Mul, | 
|  | getValue(I.getArgOperand(2))); | 
|  | setValue(&I, Add); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::convert_to_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, | 
|  | DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getTargetConstant(0, sdl, | 
|  | MVT::i32)))); | 
|  | return nullptr; | 
|  | case Intrinsic::convert_from_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | DAG.getNode(ISD::BITCAST, sdl, MVT::f16, | 
|  | getValue(I.getArgOperand(0))))); | 
|  | return nullptr; | 
|  | case Intrinsic::pcmarker: { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::readcyclecounter: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, | 
|  | DAG.getVTList(MVT::i64, MVT::Other), Op); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::bitreverse: | 
|  | setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | case Intrinsic::bswap: | 
|  | setValue(&I, DAG.getNode(ISD::BSWAP, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | case Intrinsic::cttz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, | 
|  | sdl, Ty, Arg)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::ctlz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, | 
|  | sdl, Ty, Arg)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::ctpop: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::stacksave: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode( | 
|  | ISD::STACKSAVE, sdl, | 
|  | DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::stackrestore: { | 
|  | Res = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::get_dynamic_area_offset: { | 
|  | SDValue Op = getRoot(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | // Result type for @llvm.get.dynamic.area.offset should match PtrTy for | 
|  | // target. | 
|  | if (PtrTy != ResTy) | 
|  | report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" | 
|  | " intrinsic!"); | 
|  | Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), | 
|  | Op); | 
|  | DAG.setRoot(Op); | 
|  | setValue(&I, Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::stackprotector: { | 
|  | // Emit code into the DAG to store the stack guard onto the stack. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Src, Chain = getRoot(); | 
|  | const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); | 
|  | const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); | 
|  |  | 
|  | // See if Ptr is a bitcast. If it is, look through it and see if we can get | 
|  | // global variable __stack_chk_guard. | 
|  | if (!GV) | 
|  | if (const Operator *BC = dyn_cast<Operator>(Ptr)) | 
|  | if (BC->getOpcode() == Instruction::BitCast) | 
|  | GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); | 
|  |  | 
|  | if (GV && TLI.useLoadStackGuardNode()) { | 
|  | // Emit a LOAD_STACK_GUARD node. | 
|  | MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, | 
|  | sdl, PtrTy, Chain); | 
|  | MachinePointerInfo MPInfo(GV); | 
|  | MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); | 
|  | unsigned Flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOInvariant; | 
|  | *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, | 
|  | PtrTy.getSizeInBits() / 8, | 
|  | DAG.getEVTAlignment(PtrTy)); | 
|  | Node->setMemRefs(MemRefs, MemRefs + 1); | 
|  |  | 
|  | // Copy the guard value to a virtual register so that it can be | 
|  | // retrieved in the epilogue. | 
|  | Src = SDValue(Node, 0); | 
|  | const TargetRegisterClass *RC = | 
|  | TLI.getRegClassFor(Src.getSimpleValueType()); | 
|  | unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); | 
|  |  | 
|  | SPDescriptor.setGuardReg(Reg); | 
|  | Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); | 
|  | } else { | 
|  | Src = getValue(I.getArgOperand(0));   // The guard's value. | 
|  | } | 
|  |  | 
|  | AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); | 
|  |  | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MFI->setStackProtectorIndex(FI); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
|  |  | 
|  | // Store the stack protector onto the stack. | 
|  | Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), FI), | 
|  | true, false, 0); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::objectsize: { | 
|  | // If we don't know by now, we're never going to know. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); | 
|  |  | 
|  | assert(CI && "Non-constant type in __builtin_object_size?"); | 
|  |  | 
|  | SDValue Arg = getValue(I.getCalledValue()); | 
|  | EVT Ty = Arg.getValueType(); | 
|  |  | 
|  | if (CI->isZero()) | 
|  | Res = DAG.getConstant(-1ULL, sdl, Ty); | 
|  | else | 
|  | Res = DAG.getConstant(0, sdl, Ty); | 
|  |  | 
|  | setValue(&I, Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::annotation: | 
|  | case Intrinsic::ptr_annotation: | 
|  | // Drop the intrinsic, but forward the value | 
|  | setValue(&I, getValue(I.getOperand(0))); | 
|  | return nullptr; | 
|  | case Intrinsic::assume: | 
|  | case Intrinsic::var_annotation: | 
|  | // Discard annotate attributes and assumptions | 
|  | return nullptr; | 
|  |  | 
|  | case Intrinsic::init_trampoline: { | 
|  | const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); | 
|  |  | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); | 
|  | Ops[5] = DAG.getSrcValue(F); | 
|  |  | 
|  | Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); | 
|  |  | 
|  | DAG.setRoot(Res); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::adjust_trampoline: { | 
|  | setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::gcroot: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *F = MF.getFunction(); | 
|  | (void)F; | 
|  | assert(F->hasGC() && | 
|  | "only valid in functions with gc specified, enforced by Verifier"); | 
|  | assert(GFI && "implied by previous"); | 
|  | const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); | 
|  | const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); | 
|  |  | 
|  | FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); | 
|  | GFI->addStackRoot(FI->getIndex(), TypeMap); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::gcread: | 
|  | case Intrinsic::gcwrite: | 
|  | llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); | 
|  | case Intrinsic::flt_rounds: | 
|  | setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); | 
|  | return nullptr; | 
|  |  | 
|  | case Intrinsic::expect: { | 
|  | // Just replace __builtin_expect(exp, c) with EXP. | 
|  | setValue(&I, getValue(I.getArgOperand(0))); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::debugtrap: | 
|  | case Intrinsic::trap: { | 
|  | StringRef TrapFuncName = | 
|  | I.getAttributes() | 
|  | .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") | 
|  | .getValueAsString(); | 
|  | if (TrapFuncName.empty()) { | 
|  | ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? | 
|  | ISD::TRAP : ISD::DEBUGTRAP; | 
|  | DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); | 
|  | return nullptr; | 
|  | } | 
|  | TargetLowering::ArgListTy Args; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( | 
|  | CallingConv::C, I.getType(), | 
|  | DAG.getExternalSymbol(TrapFuncName.data(), | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | std::move(Args), 0); | 
|  |  | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  | DAG.setRoot(Result.second); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: { | 
|  | ISD::NodeType Op; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; | 
|  | case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; | 
|  | case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; | 
|  | case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; | 
|  | case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; | 
|  | case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; | 
|  | } | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); | 
|  | setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::prefetch: { | 
|  | SDValue Ops[5]; | 
|  | unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = getValue(I.getArgOperand(3)); | 
|  | DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, | 
|  | DAG.getVTList(MVT::Other), Ops, | 
|  | EVT::getIntegerVT(*Context, 8), | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | 0, /* align */ | 
|  | false, /* volatile */ | 
|  | rw==0, /* read */ | 
|  | rw==1)); /* write */ | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: { | 
|  | bool IsStart = (Intrinsic == Intrinsic::lifetime_start); | 
|  | // Stack coloring is not enabled in O0, discard region information. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Value *, 4> Allocas; | 
|  | GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); | 
|  |  | 
|  | for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), | 
|  | E = Allocas.end(); Object != E; ++Object) { | 
|  | AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); | 
|  |  | 
|  | // Could not find an Alloca. | 
|  | if (!LifetimeObject) | 
|  | continue; | 
|  |  | 
|  | // First check that the Alloca is static, otherwise it won't have a | 
|  | // valid frame index. | 
|  | auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); | 
|  | if (SI == FuncInfo.StaticAllocaMap.end()) | 
|  | return nullptr; | 
|  |  | 
|  | int FI = SI->second; | 
|  |  | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = | 
|  | DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); | 
|  | unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); | 
|  |  | 
|  | Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); | 
|  | DAG.setRoot(Res); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::invariant_start: | 
|  | // Discard region information. | 
|  | setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | return nullptr; | 
|  | case Intrinsic::invariant_end: | 
|  | // Discard region information. | 
|  | return nullptr; | 
|  | case Intrinsic::stackprotectorcheck: { | 
|  | // Do not actually emit anything for this basic block. Instead we initialize | 
|  | // the stack protector descriptor and export the guard variable so we can | 
|  | // access it in FinishBasicBlock. | 
|  | const BasicBlock *BB = I.getParent(); | 
|  | SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); | 
|  | ExportFromCurrentBlock(SPDescriptor.getGuard()); | 
|  |  | 
|  | // Flush our exports since we are going to process a terminator. | 
|  | (void)getControlRoot(); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::clear_cache: | 
|  | return TLI.getClearCacheBuiltinName(); | 
|  | case Intrinsic::donothing: | 
|  | // ignore | 
|  | return nullptr; | 
|  | case Intrinsic::experimental_stackmap: { | 
|  | visitStackmap(I); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: { | 
|  | visitPatchpoint(&I); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::experimental_gc_statepoint: { | 
|  | visitStatepoint(I); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::experimental_gc_result: { | 
|  | visitGCResult(I); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::experimental_gc_relocate: { | 
|  | visitGCRelocate(cast<GCRelocateInst>(I)); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::instrprof_increment: | 
|  | llvm_unreachable("instrprof failed to lower an increment"); | 
|  | case Intrinsic::instrprof_value_profile: | 
|  | llvm_unreachable("instrprof failed to lower a value profiling call"); | 
|  | case Intrinsic::localescape: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission | 
|  | // is the same on all targets. | 
|  | for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { | 
|  | Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); | 
|  | if (isa<ConstantPointerNull>(Arg)) | 
|  | continue; // Skip null pointers. They represent a hole in index space. | 
|  | AllocaInst *Slot = cast<AllocaInst>(Arg); | 
|  | assert(FuncInfo.StaticAllocaMap.count(Slot) && | 
|  | "can only escape static allocas"); | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MCSymbol *FrameAllocSym = | 
|  | MF.getMMI().getContext().getOrCreateFrameAllocSymbol( | 
|  | GlobalValue::getRealLinkageName(MF.getName()), Idx); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, | 
|  | TII->get(TargetOpcode::LOCAL_ESCAPE)) | 
|  | .addSym(FrameAllocSym) | 
|  | .addFrameIndex(FI); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::localrecover: { | 
|  | // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); | 
|  |  | 
|  | // Get the symbol that defines the frame offset. | 
|  | auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); | 
|  | auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); | 
|  | unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); | 
|  | MCSymbol *FrameAllocSym = | 
|  | MF.getMMI().getContext().getOrCreateFrameAllocSymbol( | 
|  | GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); | 
|  |  | 
|  | // Create a MCSymbol for the label to avoid any target lowering | 
|  | // that would make this PC relative. | 
|  | SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); | 
|  | SDValue OffsetVal = | 
|  | DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); | 
|  |  | 
|  | // Add the offset to the FP. | 
|  | Value *FP = I.getArgOperand(1); | 
|  | SDValue FPVal = getValue(FP); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); | 
|  | setValue(&I, Add); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_exceptionpointer: | 
|  | case Intrinsic::eh_exceptioncode: { | 
|  | // Get the exception pointer vreg, copy from it, and resize it to fit. | 
|  | const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); | 
|  | unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); | 
|  | SDValue N = | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); | 
|  | if (Intrinsic == Intrinsic::eh_exceptioncode) | 
|  | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); | 
|  | setValue(&I, N); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, | 
|  | const BasicBlock *EHPadBB) { | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | MCSymbol *BeginLabel = nullptr; | 
|  |  | 
|  | if (EHPadBB) { | 
|  | // Insert a label before the invoke call to mark the try range.  This can be | 
|  | // used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | BeginLabel = MMI.getContext().createTempSymbol(); | 
|  |  | 
|  | // For SjLj, keep track of which landing pads go with which invokes | 
|  | // so as to maintain the ordering of pads in the LSDA. | 
|  | unsigned CallSiteIndex = MMI.getCurrentCallSite(); | 
|  | if (CallSiteIndex) { | 
|  | MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); | 
|  | LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); | 
|  |  | 
|  | // Now that the call site is handled, stop tracking it. | 
|  | MMI.setCurrentCallSite(0); | 
|  | } | 
|  |  | 
|  | // Both PendingLoads and PendingExports must be flushed here; | 
|  | // this call might not return. | 
|  | (void)getRoot(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); | 
|  |  | 
|  | CLI.setChain(getRoot()); | 
|  | } | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | assert((CLI.IsTailCall || Result.second.getNode()) && | 
|  | "Non-null chain expected with non-tail call!"); | 
|  | assert((Result.second.getNode() || !Result.first.getNode()) && | 
|  | "Null value expected with tail call!"); | 
|  |  | 
|  | if (!Result.second.getNode()) { | 
|  | // As a special case, a null chain means that a tail call has been emitted | 
|  | // and the DAG root is already updated. | 
|  | HasTailCall = true; | 
|  |  | 
|  | // Since there's no actual continuation from this block, nothing can be | 
|  | // relying on us setting vregs for them. | 
|  | PendingExports.clear(); | 
|  | } else { | 
|  | DAG.setRoot(Result.second); | 
|  | } | 
|  |  | 
|  | if (EHPadBB) { | 
|  | // Insert a label at the end of the invoke call to mark the try range.  This | 
|  | // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); | 
|  |  | 
|  | // Inform MachineModuleInfo of range. | 
|  | if (MMI.hasEHFunclets()) { | 
|  | assert(CLI.CS); | 
|  | WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); | 
|  | EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), | 
|  | BeginLabel, EndLabel); | 
|  | } else { | 
|  | MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, | 
|  | bool isTailCall, | 
|  | const BasicBlock *EHPadBB) { | 
|  | FunctionType *FTy = CS.getFunctionType(); | 
|  | Type *RetTy = CS.getType(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Args.reserve(CS.arg_size()); | 
|  |  | 
|  | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | const Value *V = *i; | 
|  |  | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | SDValue ArgNode = getValue(V); | 
|  | Entry.Node = ArgNode; Entry.Ty = V->getType(); | 
|  |  | 
|  | // Skip the first return-type Attribute to get to params. | 
|  | Entry.setAttributes(&CS, i - CS.arg_begin() + 1); | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // If we have an explicit sret argument that is an Instruction, (i.e., it | 
|  | // might point to function-local memory), we can't meaningfully tail-call. | 
|  | if (Entry.isSRet && isa<Instruction>(V)) | 
|  | isTailCall = false; | 
|  | } | 
|  |  | 
|  | // Check if target-independent constraints permit a tail call here. | 
|  | // Target-dependent constraints are checked within TLI->LowerCallTo. | 
|  | if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) | 
|  | isTailCall = false; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(getCurSDLoc()) | 
|  | .setChain(getRoot()) | 
|  | .setCallee(RetTy, FTy, Callee, std::move(Args), CS) | 
|  | .setTailCall(isTailCall) | 
|  | .setConvergent(CS.isConvergent()); | 
|  | std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); | 
|  |  | 
|  | if (Result.first.getNode()) { | 
|  | const Instruction *Inst = CS.getInstruction(); | 
|  | Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); | 
|  | setValue(Inst, Result.first); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the | 
|  | /// value is equal or not-equal to zero. | 
|  | static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { | 
|  | for (const User *U : V->users()) { | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) | 
|  | if (IC->isEquality()) | 
|  | if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) | 
|  | if (C->isNullValue()) | 
|  | continue; | 
|  | // Unknown instruction. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, | 
|  | Type *LoadTy, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | // Check to see if this load can be trivially constant folded, e.g. if the | 
|  | // input is from a string literal. | 
|  | if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { | 
|  | // Cast pointer to the type we really want to load. | 
|  | LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), | 
|  | PointerType::getUnqual(LoadTy)); | 
|  |  | 
|  | if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( | 
|  | const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) | 
|  | return Builder.getValue(LoadCst); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to emit the load.  If the pointer is to unfoldable but | 
|  | // still constant memory, the input chain can be the entry node. | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  |  | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | if (Builder.AA->pointsToConstantMemory(PtrVal)) { | 
|  | Root = Builder.DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = Builder.DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SDValue Ptr = Builder.getValue(PtrVal); | 
|  | SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, | 
|  | Ptr, MachinePointerInfo(PtrVal), | 
|  | false /*volatile*/, | 
|  | false /*nontemporal*/, | 
|  | false /*isinvariant*/, 1 /* align=1 */); | 
|  |  | 
|  | if (!ConstantMemory) | 
|  | Builder.PendingLoads.push_back(LoadVal.getValue(1)); | 
|  | return LoadVal; | 
|  | } | 
|  |  | 
|  | /// processIntegerCallValue - Record the value for an instruction that | 
|  | /// produces an integer result, converting the type where necessary. | 
|  | void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, | 
|  | SDValue Value, | 
|  | bool IsSigned) { | 
|  | EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType(), true); | 
|  | if (IsSigned) | 
|  | Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); | 
|  | else | 
|  | Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); | 
|  | setValue(&I, Value); | 
|  | } | 
|  |  | 
|  | /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. | 
|  | /// If so, return true and lower it, otherwise return false and it will be | 
|  | /// lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t) | 
|  | if (I.getNumArgOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); | 
|  | if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || | 
|  | !I.getArgOperand(2)->getType()->isIntegerTy() || | 
|  | !I.getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const Value *Size = I.getArgOperand(2); | 
|  | const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); | 
|  | if (CSize && CSize->getZExtValue() == 0) { | 
|  | EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType(), true); | 
|  | setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(LHS), getValue(RHS), getValue(Size), | 
|  | MachinePointerInfo(LHS), | 
|  | MachinePointerInfo(RHS)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, true); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0 | 
|  | // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0 | 
|  | if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { | 
|  | bool ActuallyDoIt = true; | 
|  | MVT LoadVT; | 
|  | Type *LoadTy; | 
|  | switch (CSize->getZExtValue()) { | 
|  | default: | 
|  | LoadVT = MVT::Other; | 
|  | LoadTy = nullptr; | 
|  | ActuallyDoIt = false; | 
|  | break; | 
|  | case 2: | 
|  | LoadVT = MVT::i16; | 
|  | LoadTy = Type::getInt16Ty(CSize->getContext()); | 
|  | break; | 
|  | case 4: | 
|  | LoadVT = MVT::i32; | 
|  | LoadTy = Type::getInt32Ty(CSize->getContext()); | 
|  | break; | 
|  | case 8: | 
|  | LoadVT = MVT::i64; | 
|  | LoadTy = Type::getInt64Ty(CSize->getContext()); | 
|  | break; | 
|  | /* | 
|  | case 16: | 
|  | LoadVT = MVT::v4i32; | 
|  | LoadTy = Type::getInt32Ty(CSize->getContext()); | 
|  | LoadTy = VectorType::get(LoadTy, 4); | 
|  | break; | 
|  | */ | 
|  | } | 
|  |  | 
|  | // This turns into unaligned loads.  We only do this if the target natively | 
|  | // supports the MVT we'll be loading or if it is small enough (<= 4) that | 
|  | // we'll only produce a small number of byte loads. | 
|  |  | 
|  | // Require that we can find a legal MVT, and only do this if the target | 
|  | // supports unaligned loads of that type.  Expanding into byte loads would | 
|  | // bloat the code. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (ActuallyDoIt && CSize->getZExtValue() > 4) { | 
|  | unsigned DstAS = LHS->getType()->getPointerAddressSpace(); | 
|  | unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); | 
|  | // TODO: Handle 5 byte compare as 4-byte + 1 byte. | 
|  | // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. | 
|  | // TODO: Check alignment of src and dest ptrs. | 
|  | if (!TLI.isTypeLegal(LoadVT) || | 
|  | !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || | 
|  | !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) | 
|  | ActuallyDoIt = false; | 
|  | } | 
|  |  | 
|  | if (ActuallyDoIt) { | 
|  | SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); | 
|  | SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); | 
|  |  | 
|  | SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, | 
|  | ISD::SETNE); | 
|  | processIntegerCallValue(I, Res, false); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitMemChrCall -- See if we can lower a memchr call into an optimized | 
|  | /// form.  If so, return true and lower it, otherwise return false and it | 
|  | /// will be lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  void *memchr(void *, int, size_t) | 
|  | if (I.getNumArgOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | const Value *Src = I.getArgOperand(0); | 
|  | const Value *Char = I.getArgOperand(1); | 
|  | const Value *Length = I.getArgOperand(2); | 
|  | if (!Src->getType()->isPointerTy() || | 
|  | !Char->getType()->isIntegerTy() || | 
|  | !Length->getType()->isIntegerTy() || | 
|  | !I.getType()->isPointerTy()) | 
|  | return false; | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Src), getValue(Char), getValue(Length), | 
|  | MachinePointerInfo(Src)); | 
|  | if (Res.first.getNode()) { | 
|  | setValue(&I, Res.first); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an | 
|  | /// optimized form.  If so, return true and lower it, otherwise return false | 
|  | /// and it will be lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { | 
|  | // Verify that the prototype makes sense.  char *strcpy(char *, char *) | 
|  | if (I.getNumArgOperands() != 2) | 
|  | return false; | 
|  |  | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  | if (!Arg0->getType()->isPointerTy() || | 
|  | !Arg1->getType()->isPointerTy() || | 
|  | !I.getType()->isPointerTy()) | 
|  | return false; | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0), | 
|  | MachinePointerInfo(Arg1), isStpcpy); | 
|  | if (Res.first.getNode()) { | 
|  | setValue(&I, Res.first); | 
|  | DAG.setRoot(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. | 
|  | /// If so, return true and lower it, otherwise return false and it will be | 
|  | /// lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  int strcmp(void*,void*) | 
|  | if (I.getNumArgOperands() != 2) | 
|  | return false; | 
|  |  | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  | if (!Arg0->getType()->isPointerTy() || | 
|  | !Arg1->getType()->isPointerTy() || | 
|  | !I.getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0), | 
|  | MachinePointerInfo(Arg1)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, true); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitStrLenCall -- See if we can lower a strlen call into an optimized | 
|  | /// form.  If so, return true and lower it, otherwise return false and it | 
|  | /// will be lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  size_t strlen(char *) | 
|  | if (I.getNumArgOperands() != 1) | 
|  | return false; | 
|  |  | 
|  | const Value *Arg0 = I.getArgOperand(0); | 
|  | if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), MachinePointerInfo(Arg0)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, false); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized | 
|  | /// form.  If so, return true and lower it, otherwise return false and it | 
|  | /// will be lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  size_t strnlen(char *, size_t) | 
|  | if (I.getNumArgOperands() != 2) | 
|  | return false; | 
|  |  | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  | if (!Arg0->getType()->isPointerTy() || | 
|  | !Arg1->getType()->isIntegerTy() || | 
|  | !I.getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, false); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitUnaryFloatCall - If a call instruction is a unary floating-point | 
|  | /// operation (as expected), translate it to an SDNode with the specified opcode | 
|  | /// and return true. | 
|  | bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, | 
|  | unsigned Opcode) { | 
|  | // Sanity check that it really is a unary floating-point call. | 
|  | if (I.getNumArgOperands() != 1 || | 
|  | !I.getArgOperand(0)->getType()->isFloatingPointTy() || | 
|  | I.getType() != I.getArgOperand(0)->getType() || | 
|  | !I.onlyReadsMemory()) | 
|  | return false; | 
|  |  | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// visitBinaryFloatCall - If a call instruction is a binary floating-point | 
|  | /// operation (as expected), translate it to an SDNode with the specified opcode | 
|  | /// and return true. | 
|  | bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, | 
|  | unsigned Opcode) { | 
|  | // Sanity check that it really is a binary floating-point call. | 
|  | if (I.getNumArgOperands() != 2 || | 
|  | !I.getArgOperand(0)->getType()->isFloatingPointTy() || | 
|  | I.getType() != I.getArgOperand(0)->getType() || | 
|  | I.getType() != I.getArgOperand(1)->getType() || | 
|  | !I.onlyReadsMemory()) | 
|  | return false; | 
|  |  | 
|  | SDValue Tmp0 = getValue(I.getArgOperand(0)); | 
|  | SDValue Tmp1 = getValue(I.getArgOperand(1)); | 
|  | EVT VT = Tmp0.getValueType(); | 
|  | setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCall(const CallInst &I) { | 
|  | // Handle inline assembly differently. | 
|  | if (isa<InlineAsm>(I.getCalledValue())) { | 
|  | visitInlineAsm(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | ComputeUsesVAFloatArgument(I, &MMI); | 
|  |  | 
|  | const char *RenameFn = nullptr; | 
|  | if (Function *F = I.getCalledFunction()) { | 
|  | if (F->isDeclaration()) { | 
|  | if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { | 
|  | if (unsigned IID = II->getIntrinsicID(F)) { | 
|  | RenameFn = visitIntrinsicCall(I, IID); | 
|  | if (!RenameFn) | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (Intrinsic::ID IID = F->getIntrinsicID()) { | 
|  | RenameFn = visitIntrinsicCall(I, IID); | 
|  | if (!RenameFn) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for well-known libc/libm calls.  If the function is internal, it | 
|  | // can't be a library call. | 
|  | LibFunc::Func Func; | 
|  | if (!F->hasLocalLinkage() && F->hasName() && | 
|  | LibInfo->getLibFunc(F->getName(), Func) && | 
|  | LibInfo->hasOptimizedCodeGen(Func)) { | 
|  | switch (Func) { | 
|  | default: break; | 
|  | case LibFunc::copysign: | 
|  | case LibFunc::copysignf: | 
|  | case LibFunc::copysignl: | 
|  | if (I.getNumArgOperands() == 2 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType() && | 
|  | I.getType() == I.getArgOperand(1)->getType() && | 
|  | I.onlyReadsMemory()) { | 
|  | SDValue LHS = getValue(I.getArgOperand(0)); | 
|  | SDValue RHS = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), | 
|  | LHS.getValueType(), LHS, RHS)); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case LibFunc::fabs: | 
|  | case LibFunc::fabsf: | 
|  | case LibFunc::fabsl: | 
|  | if (visitUnaryFloatCall(I, ISD::FABS)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::fmin: | 
|  | case LibFunc::fminf: | 
|  | case LibFunc::fminl: | 
|  | if (visitBinaryFloatCall(I, ISD::FMINNUM)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::fmax: | 
|  | case LibFunc::fmaxf: | 
|  | case LibFunc::fmaxl: | 
|  | if (visitBinaryFloatCall(I, ISD::FMAXNUM)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::sin: | 
|  | case LibFunc::sinf: | 
|  | case LibFunc::sinl: | 
|  | if (visitUnaryFloatCall(I, ISD::FSIN)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::cos: | 
|  | case LibFunc::cosf: | 
|  | case LibFunc::cosl: | 
|  | if (visitUnaryFloatCall(I, ISD::FCOS)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::sqrt: | 
|  | case LibFunc::sqrtf: | 
|  | case LibFunc::sqrtl: | 
|  | case LibFunc::sqrt_finite: | 
|  | case LibFunc::sqrtf_finite: | 
|  | case LibFunc::sqrtl_finite: | 
|  | if (visitUnaryFloatCall(I, ISD::FSQRT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::floor: | 
|  | case LibFunc::floorf: | 
|  | case LibFunc::floorl: | 
|  | if (visitUnaryFloatCall(I, ISD::FFLOOR)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::nearbyint: | 
|  | case LibFunc::nearbyintf: | 
|  | case LibFunc::nearbyintl: | 
|  | if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::ceil: | 
|  | case LibFunc::ceilf: | 
|  | case LibFunc::ceill: | 
|  | if (visitUnaryFloatCall(I, ISD::FCEIL)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::rint: | 
|  | case LibFunc::rintf: | 
|  | case LibFunc::rintl: | 
|  | if (visitUnaryFloatCall(I, ISD::FRINT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::round: | 
|  | case LibFunc::roundf: | 
|  | case LibFunc::roundl: | 
|  | if (visitUnaryFloatCall(I, ISD::FROUND)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::trunc: | 
|  | case LibFunc::truncf: | 
|  | case LibFunc::truncl: | 
|  | if (visitUnaryFloatCall(I, ISD::FTRUNC)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::log2: | 
|  | case LibFunc::log2f: | 
|  | case LibFunc::log2l: | 
|  | if (visitUnaryFloatCall(I, ISD::FLOG2)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::exp2: | 
|  | case LibFunc::exp2f: | 
|  | case LibFunc::exp2l: | 
|  | if (visitUnaryFloatCall(I, ISD::FEXP2)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::memcmp: | 
|  | if (visitMemCmpCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::memchr: | 
|  | if (visitMemChrCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::strcpy: | 
|  | if (visitStrCpyCall(I, false)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::stpcpy: | 
|  | if (visitStrCpyCall(I, true)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::strcmp: | 
|  | if (visitStrCmpCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::strlen: | 
|  | if (visitStrLenCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc::strnlen: | 
|  | if (visitStrNLenCall(I)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Callee; | 
|  | if (!RenameFn) | 
|  | Callee = getValue(I.getCalledValue()); | 
|  | else | 
|  | Callee = DAG.getExternalSymbol( | 
|  | RenameFn, | 
|  | DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | // Check if we can potentially perform a tail call. More detailed checking is | 
|  | // be done within LowerCallTo, after more information about the call is known. | 
|  | LowerCallTo(&I, Callee, I.isTailCall()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// AsmOperandInfo - This contains information for each constraint that we are | 
|  | /// lowering. | 
|  | class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { | 
|  | public: | 
|  | /// CallOperand - If this is the result output operand or a clobber | 
|  | /// this is null, otherwise it is the incoming operand to the CallInst. | 
|  | /// This gets modified as the asm is processed. | 
|  | SDValue CallOperand; | 
|  |  | 
|  | /// AssignedRegs - If this is a register or register class operand, this | 
|  | /// contains the set of register corresponding to the operand. | 
|  | RegsForValue AssignedRegs; | 
|  |  | 
|  | explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) | 
|  | : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { | 
|  | } | 
|  |  | 
|  | /// getCallOperandValEVT - Return the EVT of the Value* that this operand | 
|  | /// corresponds to.  If there is no Value* for this operand, it returns | 
|  | /// MVT::Other. | 
|  | EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL) const { | 
|  | if (!CallOperandVal) return MVT::Other; | 
|  |  | 
|  | if (isa<BasicBlock>(CallOperandVal)) | 
|  | return TLI.getPointerTy(DL); | 
|  |  | 
|  | llvm::Type *OpTy = CallOperandVal->getType(); | 
|  |  | 
|  | // FIXME: code duplicated from TargetLowering::ParseConstraints(). | 
|  | // If this is an indirect operand, the operand is a pointer to the | 
|  | // accessed type. | 
|  | if (isIndirect) { | 
|  | llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = DL.getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpTy = IntegerType::get(Context, BitSize); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TLI.getValueType(DL, OpTy, true); | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// GetRegistersForValue - Assign registers (virtual or physical) for the | 
|  | /// specified operand.  We prefer to assign virtual registers, to allow the | 
|  | /// register allocator to handle the assignment process.  However, if the asm | 
|  | /// uses features that we can't model on machineinstrs, we have SDISel do the | 
|  | /// allocation.  This produces generally horrible, but correct, code. | 
|  | /// | 
|  | ///   OpInfo describes the operand. | 
|  | /// | 
|  | static void GetRegistersForValue(SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | SDLoc DL, | 
|  | SDISelAsmOperandInfo &OpInfo) { | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | // If this is a constraint for a single physreg, or a constraint for a | 
|  | // register class, find it. | 
|  | std::pair<unsigned, const TargetRegisterClass *> PhysReg = | 
|  | TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), | 
|  | OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  |  | 
|  | unsigned NumRegs = 1; | 
|  | if (OpInfo.ConstraintVT != MVT::Other) { | 
|  | // If this is a FP input in an integer register (or visa versa) insert a bit | 
|  | // cast of the input value.  More generally, handle any case where the input | 
|  | // value disagrees with the register class we plan to stick this in. | 
|  | if (OpInfo.Type == InlineAsm::isInput && | 
|  | PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { | 
|  | // Try to convert to the first EVT that the reg class contains.  If the | 
|  | // types are identical size, use a bitcast to convert (e.g. two differing | 
|  | // vector types). | 
|  | MVT RegVT = *PhysReg.second->vt_begin(); | 
|  | if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, | 
|  | RegVT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { | 
|  | // If the input is a FP value and we want it in FP registers, do a | 
|  | // bitcast to the corresponding integer type.  This turns an f64 value | 
|  | // into i64, which can be passed with two i32 values on a 32-bit | 
|  | // machine. | 
|  | RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, | 
|  | RegVT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); | 
|  | } | 
|  |  | 
|  | MVT RegVT; | 
|  | EVT ValueVT = OpInfo.ConstraintVT; | 
|  |  | 
|  | // If this is a constraint for a specific physical register, like {r17}, | 
|  | // assign it now. | 
|  | if (unsigned AssignedReg = PhysReg.first) { | 
|  | const TargetRegisterClass *RC = PhysReg.second; | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = *RC->vt_begin(); | 
|  |  | 
|  | // Get the actual register value type.  This is important, because the user | 
|  | // may have asked for (e.g.) the AX register in i32 type.  We need to | 
|  | // remember that AX is actually i16 to get the right extension. | 
|  | RegVT = *RC->vt_begin(); | 
|  |  | 
|  | // This is a explicit reference to a physical register. | 
|  | Regs.push_back(AssignedReg); | 
|  |  | 
|  | // If this is an expanded reference, add the rest of the regs to Regs. | 
|  | if (NumRegs != 1) { | 
|  | TargetRegisterClass::iterator I = RC->begin(); | 
|  | for (; *I != AssignedReg; ++I) | 
|  | assert(I != RC->end() && "Didn't find reg!"); | 
|  |  | 
|  | // Already added the first reg. | 
|  | --NumRegs; ++I; | 
|  | for (; NumRegs; --NumRegs, ++I) { | 
|  | assert(I != RC->end() && "Ran out of registers to allocate!"); | 
|  | Regs.push_back(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this was a reference to an LLVM register class, create vregs | 
|  | // for this reference. | 
|  | if (const TargetRegisterClass *RC = PhysReg.second) { | 
|  | RegVT = *RC->vt_begin(); | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = RegVT; | 
|  |  | 
|  | // Create the appropriate number of virtual registers. | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | for (; NumRegs; --NumRegs) | 
|  | Regs.push_back(RegInfo.createVirtualRegister(RC)); | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we couldn't allocate enough registers for this. | 
|  | } | 
|  |  | 
|  | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
|  | /// | 
|  | void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  |  | 
|  | /// ConstraintOperands - Information about all of the constraints. | 
|  | SDISelAsmOperandInfoVector ConstraintOperands; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( | 
|  | DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); | 
|  |  | 
|  | bool hasMemory = false; | 
|  |  | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | MVT OpVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | if (StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), | 
|  | STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is an input or an indirect output, process the call argument. | 
|  | // BasicBlocks are labels, currently appearing only in asm's. | 
|  | if (OpInfo.CallOperandVal) { | 
|  | if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { | 
|  | OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); | 
|  | } else { | 
|  | OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
|  | } | 
|  |  | 
|  | OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, | 
|  | DAG.getDataLayout()).getSimpleVT(); | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintVT = OpVT; | 
|  |  | 
|  | // Indirect operand accesses access memory. | 
|  | if (OpInfo.isIndirect) | 
|  | hasMemory = true; | 
|  | else { | 
|  | for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType | 
|  | CType = TLI.getConstraintType(OpInfo.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) { | 
|  | hasMemory = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain, Flag; | 
|  |  | 
|  | // We won't need to flush pending loads if this asm doesn't touch | 
|  | // memory and is nonvolatile. | 
|  | if (hasMemory || IA->hasSideEffects()) | 
|  | Chain = getRoot(); | 
|  | else | 
|  | Chain = DAG.getRoot(); | 
|  |  | 
|  | // Second pass over the constraints: compute which constraint option to use | 
|  | // and assign registers to constraints that want a specific physreg. | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  |  | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); | 
|  | std::pair<unsigned, const TargetRegisterClass *> MatchRC = | 
|  | TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | std::pair<unsigned, const TargetRegisterClass *> InputRC = | 
|  | TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, | 
|  | Input.ConstraintVT); | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (MatchRC.second != InputRC.second)) { | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | Input.ConstraintVT = OpInfo.ConstraintVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | OpInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  |  | 
|  | // If this is a memory input, and if the operand is not indirect, do what we | 
|  | // need to to provide an address for the memory input. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | !OpInfo.isIndirect) { | 
|  | assert((OpInfo.isMultipleAlternative || | 
|  | (OpInfo.Type == InlineAsm::isInput)) && | 
|  | "Can only indirectify direct input operands!"); | 
|  |  | 
|  | // Memory operands really want the address of the value.  If we don't have | 
|  | // an indirect input, put it in the constpool if we can, otherwise spill | 
|  | // it to a stack slot. | 
|  | // TODO: This isn't quite right. We need to handle these according to | 
|  | // the addressing mode that the constraint wants. Also, this may take | 
|  | // an additional register for the computation and we don't want that | 
|  | // either. | 
|  |  | 
|  | // If the operand is a float, integer, or vector constant, spill to a | 
|  | // constant pool entry to get its address. | 
|  | const Value *OpVal = OpInfo.CallOperandVal; | 
|  | if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
|  | isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { | 
|  | OpInfo.CallOperand = DAG.getConstantPool( | 
|  | cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } else { | 
|  | // Otherwise, create a stack slot and emit a store to it before the | 
|  | // asm. | 
|  | Type *Ty = OpVal->getType(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | uint64_t TySize = DL.getTypeAllocSize(Ty); | 
|  | unsigned Align = DL.getPrefTypeAlignment(Ty); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); | 
|  | SDValue StackSlot = | 
|  | DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Chain = DAG.getStore( | 
|  | Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), | 
|  | false, false, 0); | 
|  | OpInfo.CallOperand = StackSlot; | 
|  | } | 
|  |  | 
|  | // There is no longer a Value* corresponding to this operand. | 
|  | OpInfo.CallOperandVal = nullptr; | 
|  |  | 
|  | // It is now an indirect operand. | 
|  | OpInfo.isIndirect = true; | 
|  | } | 
|  |  | 
|  | // If this constraint is for a specific register, allocate it before | 
|  | // anything else. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Register) | 
|  | GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); | 
|  | } | 
|  |  | 
|  | // Second pass - Loop over all of the operands, assigning virtual or physregs | 
|  | // to register class operands. | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // C_Register operands have already been allocated, Other/Memory don't need | 
|  | // to be. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) | 
|  | GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); | 
|  | } | 
|  |  | 
|  | // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
|  | std::vector<SDValue> AsmNodeOperands; | 
|  | AsmNodeOperands.push_back(SDValue());  // reserve space for input chain | 
|  | AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( | 
|  | IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // If we have a !srcloc metadata node associated with it, we want to attach | 
|  | // this to the ultimately generated inline asm machineinstr.  To do this, we | 
|  | // pass in the third operand as this (potentially null) inline asm MDNode. | 
|  | const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); | 
|  | AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); | 
|  |  | 
|  | // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore | 
|  | // bits as operand 3. | 
|  | unsigned ExtraInfo = 0; | 
|  | if (IA->hasSideEffects()) | 
|  | ExtraInfo |= InlineAsm::Extra_HasSideEffects; | 
|  | if (IA->isAlignStack()) | 
|  | ExtraInfo |= InlineAsm::Extra_IsAlignStack; | 
|  | // Set the asm dialect. | 
|  | ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; | 
|  |  | 
|  | // Determine if this InlineAsm MayLoad or MayStore based on the constraints. | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, SDValue()); | 
|  |  | 
|  | // Ideally, we would only check against memory constraints.  However, the | 
|  | // meaning of an other constraint can be target-specific and we can't easily | 
|  | // reason about it.  Therefore, be conservative and set MayLoad/MayStore | 
|  | // for other constriants as well. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | if (OpInfo.Type == InlineAsm::isInput) | 
|  | ExtraInfo |= InlineAsm::Extra_MayLoad; | 
|  | else if (OpInfo.Type == InlineAsm::isOutput) | 
|  | ExtraInfo |= InlineAsm::Extra_MayStore; | 
|  | else if (OpInfo.Type == InlineAsm::isClobber) | 
|  | ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); | 
|  | } | 
|  | } | 
|  |  | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // Loop over all of the inputs, copying the operand values into the | 
|  | // appropriate registers and processing the output regs. | 
|  | RegsForValue RetValRegs; | 
|  |  | 
|  | // IndirectStoresToEmit - The set of stores to emit after the inline asm node. | 
|  | std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; | 
|  |  | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: { | 
|  | if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && | 
|  | OpInfo.ConstraintType != TargetLowering::C_Register) { | 
|  | // Memory output, or 'other' output (e.g. 'X' constraint). | 
|  | assert(OpInfo.isIndirect && "Memory output must be indirect operand"); | 
|  |  | 
|  | unsigned ConstraintID = | 
|  | TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); | 
|  | assert(ConstraintID != InlineAsm::Constraint_Unknown && | 
|  | "Failed to convert memory constraint code to constraint id."); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this output. | 
|  | unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), | 
|  | MVT::i32)); | 
|  | AsmNodeOperands.push_back(OpInfo.CallOperand); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a register or register class output. | 
|  |  | 
|  | // Copy the output from the appropriate register.  Find a register that | 
|  | // we can use. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), | 
|  | "couldn't allocate output register for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is an indirect operand, store through the pointer after the | 
|  | // asm. | 
|  | if (OpInfo.isIndirect) { | 
|  | IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, | 
|  | OpInfo.CallOperandVal)); | 
|  | } else { | 
|  | // This is the result value of the call. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | // Concatenate this output onto the outputs list. | 
|  | RetValRegs.append(OpInfo.AssignedRegs); | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know that this register is | 
|  | // set. | 
|  | OpInfo.AssignedRegs | 
|  | .AddInlineAsmOperands(OpInfo.isEarlyClobber | 
|  | ? InlineAsm::Kind_RegDefEarlyClobber | 
|  | : InlineAsm::Kind_RegDef, | 
|  | false, 0, getCurSDLoc(), DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isInput: { | 
|  | SDValue InOperandVal = OpInfo.CallOperand; | 
|  |  | 
|  | if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint? | 
|  | // If this is required to match an output register we have already set, | 
|  | // just use its register. | 
|  | unsigned OperandNo = OpInfo.getMatchedOperand(); | 
|  |  | 
|  | // Scan until we find the definition we already emitted of this operand. | 
|  | // When we find it, create a RegsForValue operand. | 
|  | unsigned CurOp = InlineAsm::Op_FirstOperand; | 
|  | for (; OperandNo; --OperandNo) { | 
|  | // Advance to the next operand. | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | assert((InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag) || | 
|  | InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); | 
|  | CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; | 
|  | } | 
|  |  | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | if (InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { | 
|  | // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. | 
|  | if (OpInfo.isIndirect) { | 
|  | // This happens on gcc/testsuite/gcc.dg/pr8788-1.c | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" | 
|  | " don't know how to handle tied " | 
|  | "indirect register inputs"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | RegsForValue MatchedRegs; | 
|  | MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); | 
|  | MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); | 
|  | MatchedRegs.RegVTs.push_back(RegVT); | 
|  | MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); | 
|  | for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); | 
|  | i != e; ++i) { | 
|  | if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) | 
|  | MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); | 
|  | else { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), | 
|  | "inline asm error: This value" | 
|  | " type register class is not natively supported!"); | 
|  | return; | 
|  | } | 
|  | } | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | // Use the produced MatchedRegs object to | 
|  | MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, | 
|  | Chain, &Flag, CS.getInstruction()); | 
|  | MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, | 
|  | true, OpInfo.getMatchedOperand(), dl, | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); | 
|  | assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && | 
|  | "Unexpected number of operands"); | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | // See InlineAsm.h isUseOperandTiedToDef. | 
|  | OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); | 
|  | OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, | 
|  | OpInfo.getMatchedOperand()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Treat indirect 'X' constraint as memory. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Other && | 
|  | OpInfo.isIndirect) | 
|  | OpInfo.ConstraintType = TargetLowering::C_Memory; | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | std::vector<SDValue> Ops; | 
|  | TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, | 
|  | Ops, DAG); | 
|  | if (Ops.empty()) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), | 
|  | "invalid operand for inline asm constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = | 
|  | InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
|  | assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
|  | assert(InOperandVal.getValueType() == | 
|  | TLI.getPointerTy(DAG.getDataLayout()) && | 
|  | "Memory operands expect pointer values"); | 
|  |  | 
|  | unsigned ConstraintID = | 
|  | TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); | 
|  | assert(ConstraintID != InlineAsm::Constraint_Unknown && | 
|  | "Failed to convert memory constraint code to constraint id."); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | getCurSDLoc(), | 
|  | MVT::i32)); | 
|  | AsmNodeOperands.push_back(InOperandVal); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Register) && | 
|  | "Unknown constraint type!"); | 
|  |  | 
|  | // TODO: Support this. | 
|  | if (OpInfo.isIndirect) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), | 
|  | "Don't know how to handle indirect register inputs yet " | 
|  | "for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Copy the input into the appropriate registers. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), | 
|  | "couldn't allocate input reg for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, | 
|  | Chain, &Flag, CS.getInstruction()); | 
|  |  | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, | 
|  | dl, DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isClobber: { | 
|  | // Add the clobbered value to the operand list, so that the register | 
|  | // allocator is aware that the physreg got clobbered. | 
|  | if (!OpInfo.AssignedRegs.Regs.empty()) | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, | 
|  | false, 0, getCurSDLoc(), DAG, | 
|  | AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finish up input operands.  Set the input chain and add the flag last. | 
|  | AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; | 
|  | if (Flag.getNode()) AsmNodeOperands.push_back(Flag); | 
|  |  | 
|  | Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), | 
|  | DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // If this asm returns a register value, copy the result from that register | 
|  | // and set it as the value of the call. | 
|  | if (!RetValRegs.Regs.empty()) { | 
|  | SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), | 
|  | Chain, &Flag, CS.getInstruction()); | 
|  |  | 
|  | // FIXME: Why don't we do this for inline asms with MRVs? | 
|  | if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { | 
|  | EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); | 
|  |  | 
|  | // If any of the results of the inline asm is a vector, it may have the | 
|  | // wrong width/num elts.  This can happen for register classes that can | 
|  | // contain multiple different value types.  The preg or vreg allocated may | 
|  | // not have the same VT as was expected.  Convert it to the right type | 
|  | // with bit_convert. | 
|  | if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { | 
|  | Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), | 
|  | ResultType, Val); | 
|  |  | 
|  | } else if (ResultType != Val.getValueType() && | 
|  | ResultType.isInteger() && Val.getValueType().isInteger()) { | 
|  | // If a result value was tied to an input value, the computed result may | 
|  | // have a wider width than the expected result.  Extract the relevant | 
|  | // portion. | 
|  | Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); | 
|  | } | 
|  |  | 
|  | assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); | 
|  | } | 
|  |  | 
|  | setValue(CS.getInstruction(), Val); | 
|  | // Don't need to use this as a chain in this case. | 
|  | if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<SDValue, const Value *> > StoresToEmit; | 
|  |  | 
|  | // Process indirect outputs, first output all of the flagged copies out of | 
|  | // physregs. | 
|  | for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { | 
|  | RegsForValue &OutRegs = IndirectStoresToEmit[i].first; | 
|  | const Value *Ptr = IndirectStoresToEmit[i].second; | 
|  | SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), | 
|  | Chain, &Flag, IA); | 
|  | StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); | 
|  | } | 
|  |  | 
|  | // Emit the non-flagged stores from the physregs. | 
|  | SmallVector<SDValue, 8> OutChains; | 
|  | for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { | 
|  | SDValue Val = DAG.getStore(Chain, getCurSDLoc(), | 
|  | StoresToEmit[i].first, | 
|  | getValue(StoresToEmit[i].second), | 
|  | MachinePointerInfo(StoresToEmit[i].second), | 
|  | false, false, 0); | 
|  | OutChains.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (!OutChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); | 
|  |  | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAStart(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), | 
|  | DAG.getSrcValue(I.getOperand(0)), | 
|  | DL.getABITypeAlignment(I.getType())); | 
|  | setValue(&I, V); | 
|  | DAG.setRoot(V.getValue(1)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVACopy(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(1)))); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, | 
|  | const Instruction &I, | 
|  | SDValue Op) { | 
|  | const MDNode *Range = I.getMetadata(LLVMContext::MD_range); | 
|  | if (!Range) | 
|  | return Op; | 
|  |  | 
|  | Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); | 
|  | if (!Lo->isNullValue()) | 
|  | return Op; | 
|  |  | 
|  | Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); | 
|  | unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); | 
|  |  | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); | 
|  |  | 
|  | SDLoc SL = getCurSDLoc(); | 
|  |  | 
|  | SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), | 
|  | Op, DAG.getValueType(SmallVT)); | 
|  | unsigned NumVals = Op.getNode()->getNumValues(); | 
|  | if (NumVals == 1) | 
|  | return ZExt; | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | Ops.push_back(ZExt); | 
|  | for (unsigned I = 1; I != NumVals; ++I) | 
|  | Ops.push_back(Op.getValue(I)); | 
|  |  | 
|  | return DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | /// \brief Lower an argument list according to the target calling convention. | 
|  | /// | 
|  | /// \return A tuple of <return-value, token-chain> | 
|  | /// | 
|  | /// This is a helper for lowering intrinsics that follow a target calling | 
|  | /// convention or require stack pointer adjustment. Only a subset of the | 
|  | /// intrinsic's operands need to participate in the calling convention. | 
|  | std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( | 
|  | ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, | 
|  | Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | // Attributes for args start at offset 1, after the return attribute. | 
|  | for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; | 
|  | ArgI != ArgE; ++ArgI) { | 
|  | const Value *V = CS->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = getValue(V); | 
|  | Entry.Ty = V->getType(); | 
|  | Entry.setAttributes(&CS, AttrI); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) | 
|  | .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) | 
|  | .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); | 
|  |  | 
|  | return lowerInvokable(CLI, EHPadBB); | 
|  | } | 
|  |  | 
|  | /// \brief Add a stack map intrinsic call's live variable operands to a stackmap | 
|  | /// or patchpoint target node's operand list. | 
|  | /// | 
|  | /// Constants are converted to TargetConstants purely as an optimization to | 
|  | /// avoid constant materialization and register allocation. | 
|  | /// | 
|  | /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not | 
|  | /// generate addess computation nodes, and so ExpandISelPseudo can convert the | 
|  | /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids | 
|  | /// address materialization and register allocation, but may also be required | 
|  | /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an | 
|  | /// alloca in the entry block, then the runtime may assume that the alloca's | 
|  | /// StackMap location can be read immediately after compilation and that the | 
|  | /// location is valid at any point during execution (this is similar to the | 
|  | /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were | 
|  | /// only available in a register, then the runtime would need to trap when | 
|  | /// execution reaches the StackMap in order to read the alloca's location. | 
|  | static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, | 
|  | SDLoc DL, SmallVectorImpl<SDValue> &Ops, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { | 
|  | SDValue OpVal = Builder.getValue(CS.getArgument(i)); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Ops.push_back( | 
|  | Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); | 
|  | Ops.push_back( | 
|  | Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { | 
|  | const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex( | 
|  | FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); | 
|  | } else | 
|  | Ops.push_back(OpVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Lower llvm.experimental.stackmap directly to its target opcode. | 
|  | void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { | 
|  | // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, | 
|  | //                                  [live variables...]) | 
|  |  | 
|  | assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); | 
|  |  | 
|  | SDValue Chain, InFlag, Callee, NullPtr; | 
|  | SmallVector<SDValue, 32> Ops; | 
|  |  | 
|  | SDLoc DL = getCurSDLoc(); | 
|  | Callee = getValue(CI.getCalledValue()); | 
|  | NullPtr = DAG.getIntPtrConstant(0, DL, true); | 
|  |  | 
|  | // The stackmap intrinsic only records the live variables (the arguemnts | 
|  | // passed to it) and emits NOPS (if requested). Unlike the patchpoint | 
|  | // intrinsic, this won't be lowered to a function call. This means we don't | 
|  | // have to worry about calling conventions and target specific lowering code. | 
|  | // Instead we perform the call lowering right here. | 
|  | // | 
|  | // chain, flag = CALLSEQ_START(chain, 0) | 
|  | // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) | 
|  | // chain, flag = CALLSEQ_END(chain, 0, 0, flag) | 
|  | // | 
|  | Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); | 
|  | SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, | 
|  | MVT::i32)); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | addStackMapLiveVars(&CI, 2, DL, Ops, *this); | 
|  |  | 
|  | // We are not pushing any register mask info here on the operands list, | 
|  | // because the stackmap doesn't clobber anything. | 
|  |  | 
|  | // Push the chain and the glue flag. | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // Create the STACKMAP node. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); | 
|  | Chain = SDValue(SM, 0); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); | 
|  |  | 
|  | // Stackmaps don't generate values, so nothing goes into the NodeMap. | 
|  |  | 
|  | // Set the root to the target-lowered call chain. | 
|  | DAG.setRoot(Chain); | 
|  |  | 
|  | // Inform the Frame Information that we have a stackmap in this function. | 
|  | FuncInfo.MF->getFrameInfo()->setHasStackMap(); | 
|  | } | 
|  |  | 
|  | /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. | 
|  | void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, | 
|  | const BasicBlock *EHPadBB) { | 
|  | // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, | 
|  | //                                                 i32 <numBytes>, | 
|  | //                                                 i8* <target>, | 
|  | //                                                 i32 <numArgs>, | 
|  | //                                                 [Args...], | 
|  | //                                                 [live variables...]) | 
|  |  | 
|  | CallingConv::ID CC = CS.getCallingConv(); | 
|  | bool IsAnyRegCC = CC == CallingConv::AnyReg; | 
|  | bool HasDef = !CS->getType()->isVoidTy(); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); | 
|  |  | 
|  | // Handle immediate and symbolic callees. | 
|  | if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) | 
|  | Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, | 
|  | /*isTarget=*/true); | 
|  | else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), | 
|  | SDLoc(SymbolicCallee), | 
|  | SymbolicCallee->getValueType(0)); | 
|  |  | 
|  | // Get the real number of arguments participating in the call <numArgs> | 
|  | SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); | 
|  | unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); | 
|  |  | 
|  | // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> | 
|  | // Intrinsics include all meta-operands up to but not including CC. | 
|  | unsigned NumMetaOpers = PatchPointOpers::CCPos; | 
|  | assert(CS.arg_size() >= NumMetaOpers + NumArgs && | 
|  | "Not enough arguments provided to the patchpoint intrinsic"); | 
|  |  | 
|  | // For AnyRegCC the arguments are lowered later on manually. | 
|  | unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; | 
|  | Type *ReturnTy = | 
|  | IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); | 
|  | std::pair<SDValue, SDValue> Result = lowerCallOperands( | 
|  | CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); | 
|  |  | 
|  | SDNode *CallEnd = Result.second.getNode(); | 
|  | if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) | 
|  | CallEnd = CallEnd->getOperand(0).getNode(); | 
|  |  | 
|  | /// Get a call instruction from the call sequence chain. | 
|  | /// Tail calls are not allowed. | 
|  | assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && | 
|  | "Expected a callseq node."); | 
|  | SDNode *Call = CallEnd->getOperand(0).getNode(); | 
|  | bool HasGlue = Call->getGluedNode(); | 
|  |  | 
|  | // Replace the target specific call node with the patchable intrinsic. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); | 
|  | SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, | 
|  | MVT::i32)); | 
|  |  | 
|  | // Add the callee. | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Adjust <numArgs> to account for any arguments that have been passed on the | 
|  | // stack instead. | 
|  | // Call Node: Chain, Target, {Args}, RegMask, [Glue] | 
|  | unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); | 
|  | NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; | 
|  | Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); | 
|  |  | 
|  | // Add the calling convention | 
|  | Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); | 
|  |  | 
|  | // Add the arguments we omitted previously. The register allocator should | 
|  | // place these in any free register. | 
|  | if (IsAnyRegCC) | 
|  | for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) | 
|  | Ops.push_back(getValue(CS.getArgument(i))); | 
|  |  | 
|  | // Push the arguments from the call instruction up to the register mask. | 
|  | SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; | 
|  | Ops.append(Call->op_begin() + 2, e); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); | 
|  |  | 
|  | // Push the register mask info. | 
|  | if (HasGlue) | 
|  | Ops.push_back(*(Call->op_end()-2)); | 
|  | else | 
|  | Ops.push_back(*(Call->op_end()-1)); | 
|  |  | 
|  | // Push the chain (this is originally the first operand of the call, but | 
|  | // becomes now the last or second to last operand). | 
|  | Ops.push_back(*(Call->op_begin())); | 
|  |  | 
|  | // Push the glue flag (last operand). | 
|  | if (HasGlue) | 
|  | Ops.push_back(*(Call->op_end()-1)); | 
|  |  | 
|  | SDVTList NodeTys; | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | // Create the return types based on the intrinsic definition | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 3> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); | 
|  | assert(ValueVTs.size() == 1 && "Expected only one return value type."); | 
|  |  | 
|  | // There is always a chain and a glue type at the end | 
|  | ValueVTs.push_back(MVT::Other); | 
|  | ValueVTs.push_back(MVT::Glue); | 
|  | NodeTys = DAG.getVTList(ValueVTs); | 
|  | } else | 
|  | NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | // Replace the target specific call node with a PATCHPOINT node. | 
|  | MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, | 
|  | dl, NodeTys, Ops); | 
|  |  | 
|  | // Update the NodeMap. | 
|  | if (HasDef) { | 
|  | if (IsAnyRegCC) | 
|  | setValue(CS.getInstruction(), SDValue(MN, 0)); | 
|  | else | 
|  | setValue(CS.getInstruction(), Result.first); | 
|  | } | 
|  |  | 
|  | // Fixup the consumers of the intrinsic. The chain and glue may be used in the | 
|  | // call sequence. Furthermore the location of the chain and glue can change | 
|  | // when the AnyReg calling convention is used and the intrinsic returns a | 
|  | // value. | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; | 
|  | SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; | 
|  | DAG.ReplaceAllUsesOfValuesWith(From, To, 2); | 
|  | } else | 
|  | DAG.ReplaceAllUsesWith(Call, MN); | 
|  | DAG.DeleteNode(Call); | 
|  |  | 
|  | // Inform the Frame Information that we have a patchpoint in this function. | 
|  | FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); | 
|  | } | 
|  |  | 
|  | /// Returns an AttributeSet representing the attributes applied to the return | 
|  | /// value of the given call. | 
|  | static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { | 
|  | SmallVector<Attribute::AttrKind, 2> Attrs; | 
|  | if (CLI.RetSExt) | 
|  | Attrs.push_back(Attribute::SExt); | 
|  | if (CLI.RetZExt) | 
|  | Attrs.push_back(Attribute::ZExt); | 
|  | if (CLI.IsInReg) | 
|  | Attrs.push_back(Attribute::InReg); | 
|  |  | 
|  | return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, | 
|  | Attrs); | 
|  | } | 
|  |  | 
|  | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
|  | /// implementation, which just calls LowerCall. | 
|  | /// FIXME: When all targets are | 
|  | /// migrated to using LowerCall, this hook should be integrated into SDISel. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { | 
|  | // Handle the incoming return values from the call. | 
|  | CLI.Ins.clear(); | 
|  | Type *OrigRetTy = CLI.RetTy; | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | auto &DL = CLI.DAG.getDataLayout(); | 
|  | ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); | 
|  |  | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); | 
|  |  | 
|  | bool CanLowerReturn = | 
|  | this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), | 
|  | CLI.IsVarArg, Outs, CLI.RetTy->getContext()); | 
|  |  | 
|  | SDValue DemoteStackSlot; | 
|  | int DemoteStackIdx = -100; | 
|  | if (!CanLowerReturn) { | 
|  | // FIXME: equivalent assert? | 
|  | // assert(!CS.hasInAllocaArgument() && | 
|  | //        "sret demotion is incompatible with inalloca"); | 
|  | uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); | 
|  | unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); | 
|  | MachineFunction &MF = CLI.DAG.getMachineFunction(); | 
|  | DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); | 
|  | Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); | 
|  |  | 
|  | DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); | 
|  | ArgListEntry Entry; | 
|  | Entry.Node = DemoteStackSlot; | 
|  | Entry.Ty = StackSlotPtrType; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Entry.isInReg = false; | 
|  | Entry.isSRet = true; | 
|  | Entry.isNest = false; | 
|  | Entry.isByVal = false; | 
|  | Entry.isReturned = false; | 
|  | Entry.Alignment = Align; | 
|  | CLI.getArgs().insert(CLI.getArgs().begin(), Entry); | 
|  | CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); | 
|  |  | 
|  | // sret demotion isn't compatible with tail-calls, since the sret argument | 
|  | // points into the callers stack frame. | 
|  | CLI.IsTailCall = false; | 
|  | } else { | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); | 
|  | unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags; | 
|  | MyFlags.VT = RegisterVT; | 
|  | MyFlags.ArgVT = VT; | 
|  | MyFlags.Used = CLI.IsReturnValueUsed; | 
|  | if (CLI.RetSExt) | 
|  | MyFlags.Flags.setSExt(); | 
|  | if (CLI.RetZExt) | 
|  | MyFlags.Flags.setZExt(); | 
|  | if (CLI.IsInReg) | 
|  | MyFlags.Flags.setInReg(); | 
|  | CLI.Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle all of the outgoing arguments. | 
|  | CLI.Outs.clear(); | 
|  | CLI.OutVals.clear(); | 
|  | ArgListTy &Args = CLI.getArgs(); | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); | 
|  | Type *FinalType = Args[i].Ty; | 
|  | if (Args[i].isByVal) | 
|  | FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); | 
|  | bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, CLI.CallConv, CLI.IsVarArg); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; | 
|  | ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); | 
|  | SDValue Op = SDValue(Args[i].Node.getNode(), | 
|  | Args[i].Node.getResNo() + Value); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (Args[i].isZExt) | 
|  | Flags.setZExt(); | 
|  | if (Args[i].isSExt) | 
|  | Flags.setSExt(); | 
|  | if (Args[i].isInReg) | 
|  | Flags.setInReg(); | 
|  | if (Args[i].isSRet) | 
|  | Flags.setSRet(); | 
|  | if (Args[i].isByVal) | 
|  | Flags.setByVal(); | 
|  | if (Args[i].isInAlloca) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca.  This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling | 
|  | // in the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Args[i].isByVal || Args[i].isInAlloca) { | 
|  | PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  | Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); | 
|  | // For ByVal, alignment should come from FE.  BE will guess if this | 
|  | // info is not there but there are cases it cannot get right. | 
|  | unsigned FrameAlign; | 
|  | if (Args[i].Alignment) | 
|  | FrameAlign = Args[i].Alignment; | 
|  | else | 
|  | FrameAlign = getByValTypeAlignment(ElementTy, DL); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | } | 
|  | if (Args[i].isNest) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); | 
|  | unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (Args[i].isSExt) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (Args[i].isZExt) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | // Conservatively only handle 'returned' on non-vectors for now | 
|  | if (Args[i].isReturned && !Op.getValueType().isVector()) { | 
|  | assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && | 
|  | "unexpected use of 'returned'"); | 
|  | // Before passing 'returned' to the target lowering code, ensure that | 
|  | // either the register MVT and the actual EVT are the same size or that | 
|  | // the return value and argument are extended in the same way; in these | 
|  | // cases it's safe to pass the argument register value unchanged as the | 
|  | // return register value (although it's at the target's option whether | 
|  | // to do so) | 
|  | // TODO: allow code generation to take advantage of partially preserved | 
|  | // registers rather than clobbering the entire register when the | 
|  | // parameter extension method is not compatible with the return | 
|  | // extension method | 
|  | if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || | 
|  | (ExtendKind != ISD::ANY_EXTEND && | 
|  | CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) | 
|  | Flags.setReturned(); | 
|  | } | 
|  |  | 
|  | getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, | 
|  | CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); | 
|  |  | 
|  | for (unsigned j = 0; j != NumParts; ++j) { | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, | 
|  | i < CLI.NumFixedArgs, | 
|  | i, j*Parts[j].getValueType().getStoreSize()); | 
|  | if (NumParts > 1 && j == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | else if (j != 0) { | 
|  | MyFlags.Flags.setOrigAlign(1); | 
|  | if (j == NumParts - 1) | 
|  | MyFlags.Flags.setSplitEnd(); | 
|  | } | 
|  |  | 
|  | CLI.Outs.push_back(MyFlags); | 
|  | CLI.OutVals.push_back(Parts[j]); | 
|  | } | 
|  |  | 
|  | if (NeedsRegBlock && Value == NumValues - 1) | 
|  | CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> InVals; | 
|  | CLI.Chain = LowerCall(CLI, InVals); | 
|  |  | 
|  | // Verify that the target's LowerCall behaved as expected. | 
|  | assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && | 
|  | "LowerCall didn't return a valid chain!"); | 
|  | assert((!CLI.IsTailCall || InVals.empty()) && | 
|  | "LowerCall emitted a return value for a tail call!"); | 
|  | assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && | 
|  | "LowerCall didn't emit the correct number of values!"); | 
|  |  | 
|  | // For a tail call, the return value is merely live-out and there aren't | 
|  | // any nodes in the DAG representing it. Return a special value to | 
|  | // indicate that a tail call has been emitted and no more Instructions | 
|  | // should be processed in the current block. | 
|  | if (CLI.IsTailCall) { | 
|  | CLI.DAG.setRoot(CLI.Chain); | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | } | 
|  |  | 
|  | DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && | 
|  | "LowerCall emitted a null value!"); | 
|  | assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerCall emitted a value with the wrong type!"); | 
|  | }); | 
|  |  | 
|  | SmallVector<SDValue, 4> ReturnValues; | 
|  | if (!CanLowerReturn) { | 
|  | // The instruction result is the result of loading from the | 
|  | // hidden sret parameter. | 
|  | SmallVector<EVT, 1> PVTs; | 
|  | Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); | 
|  |  | 
|  | ComputeValueVTs(*this, DL, PtrRetTy, PVTs); | 
|  | assert(PVTs.size() == 1 && "Pointers should fit in one register"); | 
|  | EVT PtrVT = PVTs[0]; | 
|  |  | 
|  | unsigned NumValues = RetTys.size(); | 
|  | ReturnValues.resize(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  |  | 
|  | // An aggregate return value cannot wrap around the address space, so | 
|  | // offsets to its parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | for (unsigned i = 0; i < NumValues; ++i) { | 
|  | SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, | 
|  | CLI.DAG.getConstant(Offsets[i], CLI.DL, | 
|  | PtrVT), &Flags); | 
|  | SDValue L = CLI.DAG.getLoad( | 
|  | RetTys[i], CLI.DL, CLI.Chain, Add, | 
|  | MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), | 
|  | DemoteStackIdx, Offsets[i]), | 
|  | false, false, false, 1); | 
|  | ReturnValues[i] = L; | 
|  | Chains[i] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); | 
|  | } else { | 
|  | // Collect the legal value parts into potentially illegal values | 
|  | // that correspond to the original function's return values. | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | if (CLI.RetSExt) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (CLI.RetZExt) | 
|  | AssertOp = ISD::AssertZext; | 
|  | unsigned CurReg = 0; | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); | 
|  | unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); | 
|  |  | 
|  | ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], | 
|  | NumRegs, RegisterVT, VT, nullptr, | 
|  | AssertOp)); | 
|  | CurReg += NumRegs; | 
|  | } | 
|  |  | 
|  | // For a function returning void, there is no return value. We can't create | 
|  | // such a node, so we just return a null return value in that case. In | 
|  | // that case, nothing will actually look at the value. | 
|  | if (ReturnValues.empty()) | 
|  | return std::make_pair(SDValue(), CLI.Chain); | 
|  | } | 
|  |  | 
|  | SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, | 
|  | CLI.DAG.getVTList(RetTys), ReturnValues); | 
|  | return std::make_pair(Res, CLI.Chain); | 
|  | } | 
|  |  | 
|  | void TargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | llvm_unreachable("LowerOperation not implemented for this target!"); | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { | 
|  | SDValue Op = getNonRegisterValue(V); | 
|  | assert((Op.getOpcode() != ISD::CopyFromReg || | 
|  | cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
|  | "Copy from a reg to the same reg!"); | 
|  | assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, | 
|  | V->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  |  | 
|  | ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == | 
|  | FuncInfo.PreferredExtendType.end()) | 
|  | ? ISD::ANY_EXTEND | 
|  | : FuncInfo.PreferredExtendType[V]; | 
|  | RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); | 
|  | PendingExports.push_back(Chain); | 
|  | } | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  |  | 
|  | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
|  | /// entry block, return true.  This includes arguments used by switches, since | 
|  | /// the switch may expand into multiple basic blocks. | 
|  | static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { | 
|  | // With FastISel active, we may be splitting blocks, so force creation | 
|  | // of virtual registers for all non-dead arguments. | 
|  | if (FastISel) | 
|  | return A->use_empty(); | 
|  |  | 
|  | const BasicBlock &Entry = A->getParent()->front(); | 
|  | for (const User *U : A->users()) | 
|  | if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) | 
|  | return false;  // Use not in entry block. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::LowerArguments(const Function &F) { | 
|  | SelectionDAG &DAG = SDB->DAG; | 
|  | SDLoc dl = SDB->getCurSDLoc(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | SmallVector<ISD::InputArg, 16> Ins; | 
|  |  | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Put in an sret pointer parameter before all the other parameters. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), | 
|  | PointerType::getUnqual(F.getReturnType()), ValueVTs); | 
|  |  | 
|  | // NOTE: Assuming that a pointer will never break down to more than one VT | 
|  | // or one register. | 
|  | ISD::ArgFlagsTy Flags; | 
|  | Flags.setSRet(); | 
|  | MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); | 
|  | ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, | 
|  | ISD::InputArg::NoArgIndex, 0); | 
|  | Ins.push_back(RetArg); | 
|  | } | 
|  |  | 
|  | // Set up the incoming argument description vector. | 
|  | unsigned Idx = 1; | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
|  | I != E; ++I, ++Idx) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); | 
|  | bool isArgValueUsed = !I->use_empty(); | 
|  | unsigned PartBase = 0; | 
|  | Type *FinalType = I->getType(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) | 
|  | FinalType = cast<PointerType>(FinalType)->getElementType(); | 
|  | bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, F.getCallingConv(), F.isVarArg()); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) | 
|  | Flags.setSRet(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) | 
|  | Flags.setByVal(); | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca.  This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling | 
|  | // in the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (F.getCallingConv() == CallingConv::X86_INTR) { | 
|  | // IA Interrupt passes frame (1st parameter) by value in the stack. | 
|  | if (Idx == 1) | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Flags.isByVal() || Flags.isInAlloca()) { | 
|  | PointerType *Ty = cast<PointerType>(I->getType()); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  | Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); | 
|  | // For ByVal, alignment should be passed from FE.  BE will guess if | 
|  | // this info is not there but there are cases it cannot get right. | 
|  | unsigned FrameAlign; | 
|  | if (F.getParamAlignment(Idx)) | 
|  | FrameAlign = F.getParamAlignment(Idx); | 
|  | else | 
|  | FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | } | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); | 
|  | unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, | 
|  | Idx-1, PartBase+i*RegisterVT.getStoreSize()); | 
|  | if (NumRegs > 1 && i == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | else if (i > 0) { | 
|  | MyFlags.Flags.setOrigAlign(1); | 
|  | if (i == NumRegs - 1) | 
|  | MyFlags.Flags.setSplitEnd(); | 
|  | } | 
|  | Ins.push_back(MyFlags); | 
|  | } | 
|  | if (NeedsRegBlock && Value == NumValues - 1) | 
|  | Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); | 
|  | PartBase += VT.getStoreSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Call the target to set up the argument values. | 
|  | SmallVector<SDValue, 8> InVals; | 
|  | SDValue NewRoot = TLI->LowerFormalArguments( | 
|  | DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); | 
|  |  | 
|  | // Verify that the target's LowerFormalArguments behaved as expected. | 
|  | assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && | 
|  | "LowerFormalArguments didn't return a valid chain!"); | 
|  | assert(InVals.size() == Ins.size() && | 
|  | "LowerFormalArguments didn't emit the correct number of values!"); | 
|  | DEBUG({ | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && | 
|  | "LowerFormalArguments emitted a null value!"); | 
|  | assert(EVT(Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerFormalArguments emitted a value with the wrong type!"); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from argument lowering. | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // Set up the argument values. | 
|  | unsigned i = 0; | 
|  | Idx = 1; | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Create a virtual register for the sret pointer, and put in a copy | 
|  | // from the sret argument into it. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), | 
|  | PointerType::getUnqual(F.getReturnType()), ValueVTs); | 
|  | MVT VT = ValueVTs[0].getSimpleVT(); | 
|  | MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, | 
|  | RegVT, VT, nullptr, AssertOp); | 
|  |  | 
|  | MachineFunction& MF = SDB->DAG.getMachineFunction(); | 
|  | MachineRegisterInfo& RegInfo = MF.getRegInfo(); | 
|  | unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); | 
|  | FuncInfo->DemoteRegister = SRetReg; | 
|  | NewRoot = | 
|  | SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // i indexes lowered arguments.  Bump it past the hidden sret argument. | 
|  | // Idx indexes LLVM arguments.  Don't touch it. | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; | 
|  | ++I, ++Idx) { | 
|  | SmallVector<SDValue, 4> ArgValues; | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  |  | 
|  | // If this argument is unused then remember its value. It is used to generate | 
|  | // debugging information. | 
|  | if (I->use_empty() && NumValues) { | 
|  | SDB->setUnusedArgValue(&*I, InVals[i]); | 
|  |  | 
|  | // Also remember any frame index for use in FastISel. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); | 
|  | } | 
|  |  | 
|  | for (unsigned Val = 0; Val != NumValues; ++Val) { | 
|  | EVT VT = ValueVTs[Val]; | 
|  | MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); | 
|  | unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); | 
|  |  | 
|  | if (!I->use_empty()) { | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) | 
|  | AssertOp = ISD::AssertZext; | 
|  |  | 
|  | ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], | 
|  | NumParts, PartVT, VT, | 
|  | nullptr, AssertOp)); | 
|  | } | 
|  |  | 
|  | i += NumParts; | 
|  | } | 
|  |  | 
|  | // We don't need to do anything else for unused arguments. | 
|  | if (ArgValues.empty()) | 
|  | continue; | 
|  |  | 
|  | // Note down frame index. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); | 
|  |  | 
|  | SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), | 
|  | SDB->getCurSDLoc()); | 
|  |  | 
|  | SDB->setValue(&*I, Res); | 
|  | if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { | 
|  | if (LoadSDNode *LNode = | 
|  | dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); | 
|  | } | 
|  |  | 
|  | // If this argument is live outside of the entry block, insert a copy from | 
|  | // wherever we got it to the vreg that other BB's will reference it as. | 
|  | if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { | 
|  | // If we can, though, try to skip creating an unnecessary vreg. | 
|  | // FIXME: This isn't very clean... it would be nice to make this more | 
|  | // general.  It's also subtly incompatible with the hacks FastISel | 
|  | // uses with vregs. | 
|  | unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | FuncInfo->ValueMap[&*I] = Reg; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { | 
|  | FuncInfo->InitializeRegForValue(&*I); | 
|  | SDB->CopyToExportRegsIfNeeded(&*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(i == InVals.size() && "Argument register count mismatch!"); | 
|  |  | 
|  | // Finally, if the target has anything special to do, allow it to do so. | 
|  | EmitFunctionEntryCode(); | 
|  | } | 
|  |  | 
|  | /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
|  | /// ensure constants are generated when needed.  Remember the virtual registers | 
|  | /// that need to be added to the Machine PHI nodes as input.  We cannot just | 
|  | /// directly add them, because expansion might result in multiple MBB's for one | 
|  | /// BB.  As such, the start of the BB might correspond to a different MBB than | 
|  | /// the end. | 
|  | /// | 
|  | void | 
|  | SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { | 
|  | const TerminatorInst *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  |  | 
|  | // Check PHI nodes in successors that expect a value to be available from this | 
|  | // block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | const BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB).second) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (BasicBlock::const_iterator I = SuccBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | // Ignore dead phi's. | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | // Skip empty types | 
|  | if (PN->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg; | 
|  | const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | if (const Constant *C = dyn_cast<Constant>(PHIOp)) { | 
|  | unsigned &RegOut = ConstantsOut[C]; | 
|  | if (RegOut == 0) { | 
|  | RegOut = FuncInfo.CreateRegs(C->getType()); | 
|  | CopyValueToVirtualRegister(C, RegOut); | 
|  | } | 
|  | Reg = RegOut; | 
|  | } else { | 
|  | DenseMap<const Value *, unsigned>::iterator I = | 
|  | FuncInfo.ValueMap.find(PHIOp); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | Reg = I->second; | 
|  | else { | 
|  | assert(isa<AllocaInst>(PHIOp) && | 
|  | FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
|  | "Didn't codegen value into a register!??"); | 
|  | Reg = FuncInfo.CreateRegs(PHIOp->getType()); | 
|  | CopyValueToVirtualRegister(PHIOp, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember that this register needs to added to the machine PHI node as | 
|  | // the input for this MBB. | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | EVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); | 
|  | for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
|  | FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); | 
|  | Reg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantsOut.clear(); | 
|  | } | 
|  |  | 
|  | /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB | 
|  | /// is 0. | 
|  | MachineBasicBlock * | 
|  | SelectionDAGBuilder::StackProtectorDescriptor:: | 
|  | AddSuccessorMBB(const BasicBlock *BB, | 
|  | MachineBasicBlock *ParentMBB, | 
|  | bool IsLikely, | 
|  | MachineBasicBlock *SuccMBB) { | 
|  | // If SuccBB has not been created yet, create it. | 
|  | if (!SuccMBB) { | 
|  | MachineFunction *MF = ParentMBB->getParent(); | 
|  | MachineFunction::iterator BBI(ParentMBB); | 
|  | SuccMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(++BBI, SuccMBB); | 
|  | } | 
|  | // Add it as a successor of ParentMBB. | 
|  | ParentMBB->addSuccessor( | 
|  | SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); | 
|  | return SuccMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { | 
|  | MachineFunction::iterator I(MBB); | 
|  | if (++I == FuncInfo.MF->end()) | 
|  | return nullptr; | 
|  | return &*I; | 
|  | } | 
|  |  | 
|  | /// During lowering new call nodes can be created (such as memset, etc.). | 
|  | /// Those will become new roots of the current DAG, but complications arise | 
|  | /// when they are tail calls. In such cases, the call lowering will update | 
|  | /// the root, but the builder still needs to know that a tail call has been | 
|  | /// lowered in order to avoid generating an additional return. | 
|  | void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { | 
|  | // If the node is null, we do have a tail call. | 
|  | if (MaybeTC.getNode() != nullptr) | 
|  | DAG.setRoot(MaybeTC); | 
|  | else | 
|  | HasTailCall = true; | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, | 
|  | unsigned *TotalCases, unsigned First, | 
|  | unsigned Last) { | 
|  | assert(Last >= First); | 
|  | assert(TotalCases[Last] >= TotalCases[First]); | 
|  |  | 
|  | APInt LowCase = Clusters[First].Low->getValue(); | 
|  | APInt HighCase = Clusters[Last].High->getValue(); | 
|  | assert(LowCase.getBitWidth() == HighCase.getBitWidth()); | 
|  |  | 
|  | // FIXME: A range of consecutive cases has 100% density, but only requires one | 
|  | // comparison to lower. We should discriminate against such consecutive ranges | 
|  | // in jump tables. | 
|  |  | 
|  | uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); | 
|  | uint64_t Range = Diff + 1; | 
|  |  | 
|  | uint64_t NumCases = | 
|  | TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); | 
|  |  | 
|  | assert(NumCases < UINT64_MAX / 100); | 
|  | assert(Range >= NumCases); | 
|  |  | 
|  | return NumCases * 100 >= Range * MinJumpTableDensity; | 
|  | } | 
|  |  | 
|  | static inline bool areJTsAllowed(const TargetLowering &TLI) { | 
|  | return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || | 
|  | TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, | 
|  | unsigned First, unsigned Last, | 
|  | const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB, | 
|  | CaseCluster &JTCluster) { | 
|  | assert(First <= Last); | 
|  |  | 
|  | auto Prob = BranchProbability::getZero(); | 
|  | unsigned NumCmps = 0; | 
|  | std::vector<MachineBasicBlock*> Table; | 
|  | DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; | 
|  |  | 
|  | // Initialize probabilities in JTProbs. | 
|  | for (unsigned I = First; I <= Last; ++I) | 
|  | JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); | 
|  |  | 
|  | for (unsigned I = First; I <= Last; ++I) { | 
|  | assert(Clusters[I].Kind == CC_Range); | 
|  | Prob += Clusters[I].Prob; | 
|  | APInt Low = Clusters[I].Low->getValue(); | 
|  | APInt High = Clusters[I].High->getValue(); | 
|  | NumCmps += (Low == High) ? 1 : 2; | 
|  | if (I != First) { | 
|  | // Fill the gap between this and the previous cluster. | 
|  | APInt PreviousHigh = Clusters[I - 1].High->getValue(); | 
|  | assert(PreviousHigh.slt(Low)); | 
|  | uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; | 
|  | for (uint64_t J = 0; J < Gap; J++) | 
|  | Table.push_back(DefaultMBB); | 
|  | } | 
|  | uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; | 
|  | for (uint64_t J = 0; J < ClusterSize; ++J) | 
|  | Table.push_back(Clusters[I].MBB); | 
|  | JTProbs[Clusters[I].MBB] += Clusters[I].Prob; | 
|  | } | 
|  |  | 
|  | unsigned NumDests = JTProbs.size(); | 
|  | if (isSuitableForBitTests(NumDests, NumCmps, | 
|  | Clusters[First].Low->getValue(), | 
|  | Clusters[Last].High->getValue())) { | 
|  | // Clusters[First..Last] should be lowered as bit tests instead. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create the MBB that will load from and jump through the table. | 
|  | // Note: We create it here, but it's not inserted into the function yet. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  | MachineBasicBlock *JumpTableMBB = | 
|  | CurMF->CreateMachineBasicBlock(SI->getParent()); | 
|  |  | 
|  | // Add successors. Note: use table order for determinism. | 
|  | SmallPtrSet<MachineBasicBlock *, 8> Done; | 
|  | for (MachineBasicBlock *Succ : Table) { | 
|  | if (Done.count(Succ)) | 
|  | continue; | 
|  | addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); | 
|  | Done.insert(Succ); | 
|  | } | 
|  | JumpTableMBB->normalizeSuccProbs(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) | 
|  | ->createJumpTableIndex(Table); | 
|  |  | 
|  | // Set up the jump table info. | 
|  | JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); | 
|  | JumpTableHeader JTH(Clusters[First].Low->getValue(), | 
|  | Clusters[Last].High->getValue(), SI->getCondition(), | 
|  | nullptr, false); | 
|  | JTCases.emplace_back(std::move(JTH), std::move(JT)); | 
|  |  | 
|  | JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, | 
|  | JTCases.size() - 1, Prob); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, | 
|  | const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB) { | 
|  | #ifndef NDEBUG | 
|  | // Clusters must be non-empty, sorted, and only contain Range clusters. | 
|  | assert(!Clusters.empty()); | 
|  | for (CaseCluster &C : Clusters) | 
|  | assert(C.Kind == CC_Range); | 
|  | for (unsigned i = 1, e = Clusters.size(); i < e; ++i) | 
|  | assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); | 
|  | #endif | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!areJTsAllowed(TLI)) | 
|  | return; | 
|  |  | 
|  | const int64_t N = Clusters.size(); | 
|  | const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); | 
|  |  | 
|  | // TotalCases[i]: Total nbr of cases in Clusters[0..i]. | 
|  | SmallVector<unsigned, 8> TotalCases(N); | 
|  |  | 
|  | for (unsigned i = 0; i < N; ++i) { | 
|  | APInt Hi = Clusters[i].High->getValue(); | 
|  | APInt Lo = Clusters[i].Low->getValue(); | 
|  | TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; | 
|  | if (i != 0) | 
|  | TotalCases[i] += TotalCases[i - 1]; | 
|  | } | 
|  |  | 
|  | if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { | 
|  | // Cheap case: the whole range might be suitable for jump table. | 
|  | CaseCluster JTCluster; | 
|  | if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { | 
|  | Clusters[0] = JTCluster; | 
|  | Clusters.resize(1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The algorithm below is not suitable for -O0. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | // Split Clusters into minimum number of dense partitions. The algorithm uses | 
|  | // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code | 
|  | // for the Case Statement'" (1994), but builds the MinPartitions array in | 
|  | // reverse order to make it easier to reconstruct the partitions in ascending | 
|  | // order. In the choice between two optimal partitionings, it picks the one | 
|  | // which yields more jump tables. | 
|  |  | 
|  | // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. | 
|  | SmallVector<unsigned, 8> MinPartitions(N); | 
|  | // LastElement[i] is the last element of the partition starting at i. | 
|  | SmallVector<unsigned, 8> LastElement(N); | 
|  | // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. | 
|  | SmallVector<unsigned, 8> NumTables(N); | 
|  |  | 
|  | // Base case: There is only one way to partition Clusters[N-1]. | 
|  | MinPartitions[N - 1] = 1; | 
|  | LastElement[N - 1] = N - 1; | 
|  | assert(MinJumpTableSize > 1); | 
|  | NumTables[N - 1] = 0; | 
|  |  | 
|  | // Note: loop indexes are signed to avoid underflow. | 
|  | for (int64_t i = N - 2; i >= 0; i--) { | 
|  | // Find optimal partitioning of Clusters[i..N-1]. | 
|  | // Baseline: Put Clusters[i] into a partition on its own. | 
|  | MinPartitions[i] = MinPartitions[i + 1] + 1; | 
|  | LastElement[i] = i; | 
|  | NumTables[i] = NumTables[i + 1]; | 
|  |  | 
|  | // Search for a solution that results in fewer partitions. | 
|  | for (int64_t j = N - 1; j > i; j--) { | 
|  | // Try building a partition from Clusters[i..j]. | 
|  | if (isDense(Clusters, &TotalCases[0], i, j)) { | 
|  | unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); | 
|  | bool IsTable = j - i + 1 >= MinJumpTableSize; | 
|  | unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); | 
|  |  | 
|  | // If this j leads to fewer partitions, or same number of partitions | 
|  | // with more lookup tables, it is a better partitioning. | 
|  | if (NumPartitions < MinPartitions[i] || | 
|  | (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { | 
|  | MinPartitions[i] = NumPartitions; | 
|  | LastElement[i] = j; | 
|  | NumTables[i] = Tables; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over the partitions, replacing some with jump tables in-place. | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned First = 0, Last; First < N; First = Last + 1) { | 
|  | Last = LastElement[First]; | 
|  | assert(Last >= First); | 
|  | assert(DstIndex <= First); | 
|  | unsigned NumClusters = Last - First + 1; | 
|  |  | 
|  | CaseCluster JTCluster; | 
|  | if (NumClusters >= MinJumpTableSize && | 
|  | buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { | 
|  | Clusters[DstIndex++] = JTCluster; | 
|  | } else { | 
|  | for (unsigned I = First; I <= Last; ++I) | 
|  | std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { | 
|  | // FIXME: Using the pointer type doesn't seem ideal. | 
|  | uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); | 
|  | uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; | 
|  | return Range <= BW; | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, | 
|  | unsigned NumCmps, | 
|  | const APInt &Low, | 
|  | const APInt &High) { | 
|  | // FIXME: I don't think NumCmps is the correct metric: a single case and a | 
|  | // range of cases both require only one branch to lower. Just looking at the | 
|  | // number of clusters and destinations should be enough to decide whether to | 
|  | // build bit tests. | 
|  |  | 
|  | // To lower a range with bit tests, the range must fit the bitwidth of a | 
|  | // machine word. | 
|  | if (!rangeFitsInWord(Low, High)) | 
|  | return false; | 
|  |  | 
|  | // Decide whether it's profitable to lower this range with bit tests. Each | 
|  | // destination requires a bit test and branch, and there is an overall range | 
|  | // check branch. For a small number of clusters, separate comparisons might be | 
|  | // cheaper, and for many destinations, splitting the range might be better. | 
|  | return (NumDests == 1 && NumCmps >= 3) || | 
|  | (NumDests == 2 && NumCmps >= 5) || | 
|  | (NumDests == 3 && NumCmps >= 6); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, | 
|  | unsigned First, unsigned Last, | 
|  | const SwitchInst *SI, | 
|  | CaseCluster &BTCluster) { | 
|  | assert(First <= Last); | 
|  | if (First == Last) | 
|  | return false; | 
|  |  | 
|  | BitVector Dests(FuncInfo.MF->getNumBlockIDs()); | 
|  | unsigned NumCmps = 0; | 
|  | for (int64_t I = First; I <= Last; ++I) { | 
|  | assert(Clusters[I].Kind == CC_Range); | 
|  | Dests.set(Clusters[I].MBB->getNumber()); | 
|  | NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; | 
|  | } | 
|  | unsigned NumDests = Dests.count(); | 
|  |  | 
|  | APInt Low = Clusters[First].Low->getValue(); | 
|  | APInt High = Clusters[Last].High->getValue(); | 
|  | assert(Low.slt(High)); | 
|  |  | 
|  | if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) | 
|  | return false; | 
|  |  | 
|  | APInt LowBound; | 
|  | APInt CmpRange; | 
|  |  | 
|  | const int BitWidth = DAG.getTargetLoweringInfo() | 
|  | .getPointerTy(DAG.getDataLayout()) | 
|  | .getSizeInBits(); | 
|  | assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); | 
|  |  | 
|  | // Check if the clusters cover a contiguous range such that no value in the | 
|  | // range will jump to the default statement. | 
|  | bool ContiguousRange = true; | 
|  | for (int64_t I = First + 1; I <= Last; ++I) { | 
|  | if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { | 
|  | ContiguousRange = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Low.isStrictlyPositive() && High.slt(BitWidth)) { | 
|  | // Optimize the case where all the case values fit in a word without having | 
|  | // to subtract minValue. In this case, we can optimize away the subtraction. | 
|  | LowBound = APInt::getNullValue(Low.getBitWidth()); | 
|  | CmpRange = High; | 
|  | ContiguousRange = false; | 
|  | } else { | 
|  | LowBound = Low; | 
|  | CmpRange = High - Low; | 
|  | } | 
|  |  | 
|  | CaseBitsVector CBV; | 
|  | auto TotalProb = BranchProbability::getZero(); | 
|  | for (unsigned i = First; i <= Last; ++i) { | 
|  | // Find the CaseBits for this destination. | 
|  | unsigned j; | 
|  | for (j = 0; j < CBV.size(); ++j) | 
|  | if (CBV[j].BB == Clusters[i].MBB) | 
|  | break; | 
|  | if (j == CBV.size()) | 
|  | CBV.push_back( | 
|  | CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); | 
|  | CaseBits *CB = &CBV[j]; | 
|  |  | 
|  | // Update Mask, Bits and ExtraProb. | 
|  | uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); | 
|  | uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); | 
|  | assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); | 
|  | CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; | 
|  | CB->Bits += Hi - Lo + 1; | 
|  | CB->ExtraProb += Clusters[i].Prob; | 
|  | TotalProb += Clusters[i].Prob; | 
|  | } | 
|  |  | 
|  | BitTestInfo BTI; | 
|  | std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { | 
|  | // Sort by probability first, number of bits second. | 
|  | if (a.ExtraProb != b.ExtraProb) | 
|  | return a.ExtraProb > b.ExtraProb; | 
|  | return a.Bits > b.Bits; | 
|  | }); | 
|  |  | 
|  | for (auto &CB : CBV) { | 
|  | MachineBasicBlock *BitTestBB = | 
|  | FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); | 
|  | BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); | 
|  | } | 
|  | BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), | 
|  | SI->getCondition(), -1U, MVT::Other, false, | 
|  | ContiguousRange, nullptr, nullptr, std::move(BTI), | 
|  | TotalProb); | 
|  |  | 
|  | BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, | 
|  | BitTestCases.size() - 1, TotalProb); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, | 
|  | const SwitchInst *SI) { | 
|  | // Partition Clusters into as few subsets as possible, where each subset has a | 
|  | // range that fits in a machine word and has <= 3 unique destinations. | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Clusters must be sorted and contain Range or JumpTable clusters. | 
|  | assert(!Clusters.empty()); | 
|  | assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); | 
|  | for (const CaseCluster &C : Clusters) | 
|  | assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); | 
|  | for (unsigned i = 1; i < Clusters.size(); ++i) | 
|  | assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); | 
|  | #endif | 
|  |  | 
|  | // The algorithm below is not suitable for -O0. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | // If target does not have legal shift left, do not emit bit tests at all. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | if (!TLI.isOperationLegal(ISD::SHL, PTy)) | 
|  | return; | 
|  |  | 
|  | int BitWidth = PTy.getSizeInBits(); | 
|  | const int64_t N = Clusters.size(); | 
|  |  | 
|  | // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. | 
|  | SmallVector<unsigned, 8> MinPartitions(N); | 
|  | // LastElement[i] is the last element of the partition starting at i. | 
|  | SmallVector<unsigned, 8> LastElement(N); | 
|  |  | 
|  | // FIXME: This might not be the best algorithm for finding bit test clusters. | 
|  |  | 
|  | // Base case: There is only one way to partition Clusters[N-1]. | 
|  | MinPartitions[N - 1] = 1; | 
|  | LastElement[N - 1] = N - 1; | 
|  |  | 
|  | // Note: loop indexes are signed to avoid underflow. | 
|  | for (int64_t i = N - 2; i >= 0; --i) { | 
|  | // Find optimal partitioning of Clusters[i..N-1]. | 
|  | // Baseline: Put Clusters[i] into a partition on its own. | 
|  | MinPartitions[i] = MinPartitions[i + 1] + 1; | 
|  | LastElement[i] = i; | 
|  |  | 
|  | // Search for a solution that results in fewer partitions. | 
|  | // Note: the search is limited by BitWidth, reducing time complexity. | 
|  | for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { | 
|  | // Try building a partition from Clusters[i..j]. | 
|  |  | 
|  | // Check the range. | 
|  | if (!rangeFitsInWord(Clusters[i].Low->getValue(), | 
|  | Clusters[j].High->getValue())) | 
|  | continue; | 
|  |  | 
|  | // Check nbr of destinations and cluster types. | 
|  | // FIXME: This works, but doesn't seem very efficient. | 
|  | bool RangesOnly = true; | 
|  | BitVector Dests(FuncInfo.MF->getNumBlockIDs()); | 
|  | for (int64_t k = i; k <= j; k++) { | 
|  | if (Clusters[k].Kind != CC_Range) { | 
|  | RangesOnly = false; | 
|  | break; | 
|  | } | 
|  | Dests.set(Clusters[k].MBB->getNumber()); | 
|  | } | 
|  | if (!RangesOnly || Dests.count() > 3) | 
|  | break; | 
|  |  | 
|  | // Check if it's a better partition. | 
|  | unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); | 
|  | if (NumPartitions < MinPartitions[i]) { | 
|  | // Found a better partition. | 
|  | MinPartitions[i] = NumPartitions; | 
|  | LastElement[i] = j; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over the partitions, replacing with bit-test clusters in-place. | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned First = 0, Last; First < N; First = Last + 1) { | 
|  | Last = LastElement[First]; | 
|  | assert(First <= Last); | 
|  | assert(DstIndex <= First); | 
|  |  | 
|  | CaseCluster BitTestCluster; | 
|  | if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { | 
|  | Clusters[DstIndex++] = BitTestCluster; | 
|  | } else { | 
|  | size_t NumClusters = Last - First + 1; | 
|  | std::memmove(&Clusters[DstIndex], &Clusters[First], | 
|  | sizeof(Clusters[0]) * NumClusters); | 
|  | DstIndex += NumClusters; | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB, | 
|  | MachineBasicBlock *DefaultMBB) { | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  | MachineBasicBlock *NextMBB = nullptr; | 
|  | MachineFunction::iterator BBI(W.MBB); | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextMBB = &*BBI; | 
|  |  | 
|  | unsigned Size = W.LastCluster - W.FirstCluster + 1; | 
|  |  | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  |  | 
|  | if (Size == 2 && W.MBB == SwitchMBB) { | 
|  | // If any two of the cases has the same destination, and if one value | 
|  | // is the same as the other, but has one bit unset that the other has set, | 
|  | // use bit manipulation to do two compares at once.  For example: | 
|  | // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
|  | // TODO: This could be extended to merge any 2 cases in switches with 3 | 
|  | // cases. | 
|  | // TODO: Handle cases where W.CaseBB != SwitchBB. | 
|  | CaseCluster &Small = *W.FirstCluster; | 
|  | CaseCluster &Big = *W.LastCluster; | 
|  |  | 
|  | if (Small.Low == Small.High && Big.Low == Big.High && | 
|  | Small.MBB == Big.MBB) { | 
|  | const APInt &SmallValue = Small.Low->getValue(); | 
|  | const APInt &BigValue = Big.Low->getValue(); | 
|  |  | 
|  | // Check that there is only one bit different. | 
|  | APInt CommonBit = BigValue ^ SmallValue; | 
|  | if (CommonBit.isPowerOf2()) { | 
|  | SDValue CondLHS = getValue(Cond); | 
|  | EVT VT = CondLHS.getValueType(); | 
|  | SDLoc DL = getCurSDLoc(); | 
|  |  | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, | 
|  | DAG.getConstant(CommonBit, DL, VT)); | 
|  | SDValue Cond = DAG.getSetCC( | 
|  | DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // Update successor info. | 
|  | // Both Small and Big will jump to Small.BB, so we sum up the | 
|  | // probabilities. | 
|  | addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); | 
|  | if (BPI) | 
|  | addSuccessorWithProb( | 
|  | SwitchMBB, DefaultMBB, | 
|  | // The default destination is the first successor in IR. | 
|  | BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); | 
|  | else | 
|  | addSuccessorWithProb(SwitchMBB, DefaultMBB); | 
|  |  | 
|  | // Insert the true branch. | 
|  | SDValue BrCond = | 
|  | DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(Small.MBB)); | 
|  | // Insert the false branch. | 
|  | BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(DefaultMBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TM.getOptLevel() != CodeGenOpt::None) { | 
|  | // Order cases by probability so the most likely case will be checked first. | 
|  | std::sort(W.FirstCluster, W.LastCluster + 1, | 
|  | [](const CaseCluster &a, const CaseCluster &b) { | 
|  | return a.Prob > b.Prob; | 
|  | }); | 
|  |  | 
|  | // Rearrange the case blocks so that the last one falls through if possible | 
|  | // without without changing the order of probabilities. | 
|  | for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { | 
|  | --I; | 
|  | if (I->Prob > W.LastCluster->Prob) | 
|  | break; | 
|  | if (I->Kind == CC_Range && I->MBB == NextMBB) { | 
|  | std::swap(*I, *W.LastCluster); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute total probability. | 
|  | BranchProbability DefaultProb = W.DefaultProb; | 
|  | BranchProbability UnhandledProbs = DefaultProb; | 
|  | for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) | 
|  | UnhandledProbs += I->Prob; | 
|  |  | 
|  | MachineBasicBlock *CurMBB = W.MBB; | 
|  | for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { | 
|  | MachineBasicBlock *Fallthrough; | 
|  | if (I == W.LastCluster) { | 
|  | // For the last cluster, fall through to the default destination. | 
|  | Fallthrough = DefaultMBB; | 
|  | } else { | 
|  | Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); | 
|  | CurMF->insert(BBI, Fallthrough); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  | UnhandledProbs -= I->Prob; | 
|  |  | 
|  | switch (I->Kind) { | 
|  | case CC_JumpTable: { | 
|  | // FIXME: Optimize away range check based on pivot comparisons. | 
|  | JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; | 
|  | JumpTable *JT = &JTCases[I->JTCasesIndex].second; | 
|  |  | 
|  | // The jump block hasn't been inserted yet; insert it here. | 
|  | MachineBasicBlock *JumpMBB = JT->MBB; | 
|  | CurMF->insert(BBI, JumpMBB); | 
|  |  | 
|  | auto JumpProb = I->Prob; | 
|  | auto FallthroughProb = UnhandledProbs; | 
|  |  | 
|  | // If the default statement is a target of the jump table, we evenly | 
|  | // distribute the default probability to successors of CurMBB. Also | 
|  | // update the probability on the edge from JumpMBB to Fallthrough. | 
|  | for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), | 
|  | SE = JumpMBB->succ_end(); | 
|  | SI != SE; ++SI) { | 
|  | if (*SI == DefaultMBB) { | 
|  | JumpProb += DefaultProb / 2; | 
|  | FallthroughProb -= DefaultProb / 2; | 
|  | JumpMBB->setSuccProbability(SI, DefaultProb / 2); | 
|  | JumpMBB->normalizeSuccProbs(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); | 
|  | addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); | 
|  | CurMBB->normalizeSuccProbs(); | 
|  |  | 
|  | // The jump table header will be inserted in our current block, do the | 
|  | // range check, and fall through to our fallthrough block. | 
|  | JTH->HeaderBB = CurMBB; | 
|  | JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. | 
|  |  | 
|  | // If we're in the right place, emit the jump table header right now. | 
|  | if (CurMBB == SwitchMBB) { | 
|  | visitJumpTableHeader(*JT, *JTH, SwitchMBB); | 
|  | JTH->Emitted = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CC_BitTests: { | 
|  | // FIXME: Optimize away range check based on pivot comparisons. | 
|  | BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; | 
|  |  | 
|  | // The bit test blocks haven't been inserted yet; insert them here. | 
|  | for (BitTestCase &BTC : BTB->Cases) | 
|  | CurMF->insert(BBI, BTC.ThisBB); | 
|  |  | 
|  | // Fill in fields of the BitTestBlock. | 
|  | BTB->Parent = CurMBB; | 
|  | BTB->Default = Fallthrough; | 
|  |  | 
|  | BTB->DefaultProb = UnhandledProbs; | 
|  | // If the cases in bit test don't form a contiguous range, we evenly | 
|  | // distribute the probability on the edge to Fallthrough to two | 
|  | // successors of CurMBB. | 
|  | if (!BTB->ContiguousRange) { | 
|  | BTB->Prob += DefaultProb / 2; | 
|  | BTB->DefaultProb -= DefaultProb / 2; | 
|  | } | 
|  |  | 
|  | // If we're in the right place, emit the bit test header right now. | 
|  | if (CurMBB == SwitchMBB) { | 
|  | visitBitTestHeader(*BTB, SwitchMBB); | 
|  | BTB->Emitted = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CC_Range: { | 
|  | const Value *RHS, *LHS, *MHS; | 
|  | ISD::CondCode CC; | 
|  | if (I->Low == I->High) { | 
|  | // Check Cond == I->Low. | 
|  | CC = ISD::SETEQ; | 
|  | LHS = Cond; | 
|  | RHS=I->Low; | 
|  | MHS = nullptr; | 
|  | } else { | 
|  | // Check I->Low <= Cond <= I->High. | 
|  | CC = ISD::SETLE; | 
|  | LHS = I->Low; | 
|  | MHS = Cond; | 
|  | RHS = I->High; | 
|  | } | 
|  |  | 
|  | // The false probability is the sum of all unhandled cases. | 
|  | CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, | 
|  | UnhandledProbs); | 
|  |  | 
|  | if (CurMBB == SwitchMBB) | 
|  | visitSwitchCase(CB, SwitchMBB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurMBB = Fallthrough; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, | 
|  | CaseClusterIt First, | 
|  | CaseClusterIt Last) { | 
|  | return std::count_if(First, Last + 1, [&](const CaseCluster &X) { | 
|  | if (X.Prob != CC.Prob) | 
|  | return X.Prob > CC.Prob; | 
|  |  | 
|  | // Ties are broken by comparing the case value. | 
|  | return X.Low->getValue().slt(CC.Low->getValue()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, | 
|  | const SwitchWorkListItem &W, | 
|  | Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB) { | 
|  | assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && | 
|  | "Clusters not sorted?"); | 
|  |  | 
|  | assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); | 
|  |  | 
|  | // Balance the tree based on branch probabilities to create a near-optimal (in | 
|  | // terms of search time given key frequency) binary search tree. See e.g. Kurt | 
|  | // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). | 
|  | CaseClusterIt LastLeft = W.FirstCluster; | 
|  | CaseClusterIt FirstRight = W.LastCluster; | 
|  | auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; | 
|  | auto RightProb = FirstRight->Prob + W.DefaultProb / 2; | 
|  |  | 
|  | // Move LastLeft and FirstRight towards each other from opposite directions to | 
|  | // find a partitioning of the clusters which balances the probability on both | 
|  | // sides. If LeftProb and RightProb are equal, alternate which side is | 
|  | // taken to ensure 0-probability nodes are distributed evenly. | 
|  | unsigned I = 0; | 
|  | while (LastLeft + 1 < FirstRight) { | 
|  | if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) | 
|  | LeftProb += (++LastLeft)->Prob; | 
|  | else | 
|  | RightProb += (--FirstRight)->Prob; | 
|  | I++; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | // Our binary search tree differs from a typical BST in that ours can have up | 
|  | // to three values in each leaf. The pivot selection above doesn't take that | 
|  | // into account, which means the tree might require more nodes and be less | 
|  | // efficient. We compensate for this here. | 
|  |  | 
|  | unsigned NumLeft = LastLeft - W.FirstCluster + 1; | 
|  | unsigned NumRight = W.LastCluster - FirstRight + 1; | 
|  |  | 
|  | if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { | 
|  | // If one side has less than 3 clusters, and the other has more than 3, | 
|  | // consider taking a cluster from the other side. | 
|  |  | 
|  | if (NumLeft < NumRight) { | 
|  | // Consider moving the first cluster on the right to the left side. | 
|  | CaseCluster &CC = *FirstRight; | 
|  | unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); | 
|  | unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); | 
|  | if (LeftSideRank <= RightSideRank) { | 
|  | // Moving the cluster to the left does not demote it. | 
|  | ++LastLeft; | 
|  | ++FirstRight; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | assert(NumRight < NumLeft); | 
|  | // Consider moving the last element on the left to the right side. | 
|  | CaseCluster &CC = *LastLeft; | 
|  | unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); | 
|  | unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); | 
|  | if (RightSideRank <= LeftSideRank) { | 
|  | // Moving the cluster to the right does not demot it. | 
|  | --LastLeft; | 
|  | --FirstRight; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(LastLeft + 1 == FirstRight); | 
|  | assert(LastLeft >= W.FirstCluster); | 
|  | assert(FirstRight <= W.LastCluster); | 
|  |  | 
|  | // Use the first element on the right as pivot since we will make less-than | 
|  | // comparisons against it. | 
|  | CaseClusterIt PivotCluster = FirstRight; | 
|  | assert(PivotCluster > W.FirstCluster); | 
|  | assert(PivotCluster <= W.LastCluster); | 
|  |  | 
|  | CaseClusterIt FirstLeft = W.FirstCluster; | 
|  | CaseClusterIt LastRight = W.LastCluster; | 
|  |  | 
|  | const ConstantInt *Pivot = PivotCluster->Low; | 
|  |  | 
|  | // New blocks will be inserted immediately after the current one. | 
|  | MachineFunction::iterator BBI(W.MBB); | 
|  | ++BBI; | 
|  |  | 
|  | // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, | 
|  | // we can branch to its destination directly if it's squeezed exactly in | 
|  | // between the known lower bound and Pivot - 1. | 
|  | MachineBasicBlock *LeftMBB; | 
|  | if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && | 
|  | FirstLeft->Low == W.GE && | 
|  | (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { | 
|  | LeftMBB = FirstLeft->MBB; | 
|  | } else { | 
|  | LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); | 
|  | FuncInfo.MF->insert(BBI, LeftMBB); | 
|  | WorkList.push_back( | 
|  | {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  |  | 
|  | // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a | 
|  | // single cluster, RHS.Low == Pivot, and we can branch to its destination | 
|  | // directly if RHS.High equals the current upper bound. | 
|  | MachineBasicBlock *RightMBB; | 
|  | if (FirstRight == LastRight && FirstRight->Kind == CC_Range && | 
|  | W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { | 
|  | RightMBB = FirstRight->MBB; | 
|  | } else { | 
|  | RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); | 
|  | FuncInfo.MF->insert(BBI, RightMBB); | 
|  | WorkList.push_back( | 
|  | {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  |  | 
|  | // Create the CaseBlock record that will be used to lower the branch. | 
|  | CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, | 
|  | LeftProb, RightProb); | 
|  |  | 
|  | if (W.MBB == SwitchMBB) | 
|  | visitSwitchCase(CB, SwitchMBB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { | 
|  | // Extract cases from the switch. | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | CaseClusterVector Clusters; | 
|  | Clusters.reserve(SI.getNumCases()); | 
|  | for (auto I : SI.cases()) { | 
|  | MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; | 
|  | const ConstantInt *CaseVal = I.getCaseValue(); | 
|  | BranchProbability Prob = | 
|  | BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) | 
|  | : BranchProbability(1, SI.getNumCases() + 1); | 
|  | Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
|  |  | 
|  | // Cluster adjacent cases with the same destination. We do this at all | 
|  | // optimization levels because it's cheap to do and will make codegen faster | 
|  | // if there are many clusters. | 
|  | sortAndRangeify(Clusters); | 
|  |  | 
|  | if (TM.getOptLevel() != CodeGenOpt::None) { | 
|  | // Replace an unreachable default with the most popular destination. | 
|  | // FIXME: Exploit unreachable default more aggressively. | 
|  | bool UnreachableDefault = | 
|  | isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); | 
|  | if (UnreachableDefault && !Clusters.empty()) { | 
|  | DenseMap<const BasicBlock *, unsigned> Popularity; | 
|  | unsigned MaxPop = 0; | 
|  | const BasicBlock *MaxBB = nullptr; | 
|  | for (auto I : SI.cases()) { | 
|  | const BasicBlock *BB = I.getCaseSuccessor(); | 
|  | if (++Popularity[BB] > MaxPop) { | 
|  | MaxPop = Popularity[BB]; | 
|  | MaxBB = BB; | 
|  | } | 
|  | } | 
|  | // Set new default. | 
|  | assert(MaxPop > 0 && MaxBB); | 
|  | DefaultMBB = FuncInfo.MBBMap[MaxBB]; | 
|  |  | 
|  | // Remove cases that were pointing to the destination that is now the | 
|  | // default. | 
|  | CaseClusterVector New; | 
|  | New.reserve(Clusters.size()); | 
|  | for (CaseCluster &CC : Clusters) { | 
|  | if (CC.MBB != DefaultMBB) | 
|  | New.push_back(CC); | 
|  | } | 
|  | Clusters = std::move(New); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is only the default destination, jump there directly. | 
|  | MachineBasicBlock *SwitchMBB = FuncInfo.MBB; | 
|  | if (Clusters.empty()) { | 
|  | SwitchMBB->addSuccessor(DefaultMBB); | 
|  | if (DefaultMBB != NextBlock(SwitchMBB)) { | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(DefaultMBB))); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | findJumpTables(Clusters, &SI, DefaultMBB); | 
|  | findBitTestClusters(Clusters, &SI); | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "Case clusters: "; | 
|  | for (const CaseCluster &C : Clusters) { | 
|  | if (C.Kind == CC_JumpTable) dbgs() << "JT:"; | 
|  | if (C.Kind == CC_BitTests) dbgs() << "BT:"; | 
|  |  | 
|  | C.Low->getValue().print(dbgs(), true); | 
|  | if (C.Low != C.High) { | 
|  | dbgs() << '-'; | 
|  | C.High->getValue().print(dbgs(), true); | 
|  | } | 
|  | dbgs() << ' '; | 
|  | } | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | assert(!Clusters.empty()); | 
|  | SwitchWorkList WorkList; | 
|  | CaseClusterIt First = Clusters.begin(); | 
|  | CaseClusterIt Last = Clusters.end() - 1; | 
|  | auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); | 
|  | WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | SwitchWorkListItem W = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; | 
|  |  | 
|  | if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { | 
|  | // For optimized builds, lower large range as a balanced binary tree. | 
|  | splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); | 
|  | } | 
|  | } |