|  | //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PPCISelLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCPerfectShuffle.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | PPCTargetLowering::PPCTargetLowering(TargetMachine &TM) | 
|  | : TargetLowering(TM) { | 
|  |  | 
|  | // Fold away setcc operations if possible. | 
|  | setSetCCIsExpensive(); | 
|  | setPow2DivIsCheap(); | 
|  |  | 
|  | // Use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmpLongJmp(true); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); | 
|  | addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); | 
|  | addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC has no intrinsics for these particular operations | 
|  | setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMSET, MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMCPY, MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC has an i16 but no i8 (or i1) SEXTLOAD | 
|  | setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand); | 
|  | setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand); | 
|  |  | 
|  | // PowerPC has no SREM/UREM instructions | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  |  | 
|  | // If we're enabling GP optimizations, use hardware square root | 
|  | if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { | 
|  | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | // PowerPC does not have BSWAP, CTPOP or CTTZ | 
|  | setOperationAction(ISD::BSWAP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTPOP, MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ , MVT::i32  , Expand); | 
|  |  | 
|  | // PowerPC does not have ROTR | 
|  | setOperationAction(ISD::ROTR, MVT::i32   , Expand); | 
|  |  | 
|  | // PowerPC does not have Select | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Expand); | 
|  |  | 
|  | // PowerPC wants to turn select_cc of FP into fsel when possible. | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
|  |  | 
|  | // PowerPC wants to optimize integer setcc a bit | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have BRCOND which requires SetCC | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
|  |  | 
|  | // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
|  |  | 
|  | // PowerPC does not have [U|S]INT_TO_FP | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); | 
|  |  | 
|  | // PowerPC does not have truncstore for i1. | 
|  | setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote); | 
|  |  | 
|  | // Support label based line numbers. | 
|  | setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) | 
|  | setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); | 
|  |  | 
|  | // We want to legalize GlobalAddress and ConstantPool nodes into the | 
|  | // appropriate instructions to materialize the address. | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ConstantPool,  MVT::i32, Custom); | 
|  |  | 
|  | // RET must be custom lowered, to meet ABI requirements | 
|  | setOperationAction(ISD::RET               , MVT::Other, Custom); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  |  | 
|  | // Use the default implementation. | 
|  | setOperationAction(ISD::VAARG             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand); | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().is64Bit()) { | 
|  | // They also have instructions for converting between i64 and fp. | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  |  | 
|  | // FIXME: disable this lowered code.  This generates 64-bit register values, | 
|  | // and we don't model the fact that the top part is clobbered by calls.  We | 
|  | // need to flag these together so that the value isn't live across a call. | 
|  | //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  |  | 
|  | // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); | 
|  | } else { | 
|  | // PowerPC does not have FP_TO_UINT on 32-bit implementations. | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) { | 
|  | // 64 bit PowerPC implementations can support i64 types directly | 
|  | addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); | 
|  | // BUILD_PAIR can't be handled natively, and should be expanded to shl/or | 
|  | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | 
|  | } else { | 
|  | // 32 bit PowerPC wants to expand i64 shifts itself. | 
|  | setOperationAction(ISD::SHL, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRL, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SRA, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { | 
|  | // First set operation action for all vector types to expand. Then we | 
|  | // will selectively turn on ones that can be effectively codegen'd. | 
|  | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { | 
|  | // add/sub are legal for all supported vector VT's. | 
|  | setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); | 
|  | setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); | 
|  |  | 
|  | // We promote all shuffles to v16i8. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); | 
|  |  | 
|  | // We promote all non-typed operations to v4i32. | 
|  | setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); | 
|  | setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); | 
|  |  | 
|  | // No other operations are legal. | 
|  | setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle | 
|  | // with merges, splats, etc. | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::OR    , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::XOR   , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::LOAD  , MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::STORE , MVT::v4i32, Legal); | 
|  |  | 
|  | addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); | 
|  | addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | setSetCCResultContents(ZeroOrOneSetCCResult); | 
|  | setStackPointerRegisterToSaveRestore(PPC::R1); | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  | } | 
|  |  | 
|  | const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return 0; | 
|  | case PPCISD::FSEL:          return "PPCISD::FSEL"; | 
|  | case PPCISD::FCFID:         return "PPCISD::FCFID"; | 
|  | case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ"; | 
|  | case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ"; | 
|  | case PPCISD::STFIWX:        return "PPCISD::STFIWX"; | 
|  | case PPCISD::VMADDFP:       return "PPCISD::VMADDFP"; | 
|  | case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP"; | 
|  | case PPCISD::VPERM:         return "PPCISD::VPERM"; | 
|  | case PPCISD::Hi:            return "PPCISD::Hi"; | 
|  | case PPCISD::Lo:            return "PPCISD::Lo"; | 
|  | case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; | 
|  | case PPCISD::SRL:           return "PPCISD::SRL"; | 
|  | case PPCISD::SRA:           return "PPCISD::SRA"; | 
|  | case PPCISD::SHL:           return "PPCISD::SHL"; | 
|  | case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32"; | 
|  | case PPCISD::STD_32:        return "PPCISD::STD_32"; | 
|  | case PPCISD::CALL:          return "PPCISD::CALL"; | 
|  | case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG"; | 
|  | case PPCISD::MFCR:          return "PPCISD::MFCR"; | 
|  | case PPCISD::VCMP:          return "PPCISD::VCMP"; | 
|  | case PPCISD::VCMPo:         return "PPCISD::VCMPo"; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node matching predicates, for use by the tblgen matching code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isFloatingPointZero - Return true if this is 0.0 or -0.0. | 
|  | static bool isFloatingPointZero(SDOperand Op) { | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); | 
|  | else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) { | 
|  | // Maybe this has already been legalized into the constant pool? | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get())) | 
|  | return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if it matches the specified value. | 
|  | static bool isConstantOrUndef(SDOperand Op, unsigned Val) { | 
|  | return Op.getOpcode() == ISD::UNDEF || | 
|  | cast<ConstantSDNode>(Op)->getValue() == Val; | 
|  | } | 
|  |  | 
|  | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUHUM instruction. | 
|  | bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i),  i*2+1)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i),  i*2+1) || | 
|  | !isConstantOrUndef(N->getOperand(i+8),  i*2+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUWUM instruction. | 
|  | bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { | 
|  | if (!isUnary) { | 
|  | for (unsigned i = 0; i != 16; i += 2) | 
|  | if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+1),  i*2+3)) | 
|  | return false; | 
|  | } else { | 
|  | for (unsigned i = 0; i != 8; i += 2) | 
|  | if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+1),  i*2+3) || | 
|  | !isConstantOrUndef(N->getOperand(i+8),  i*2+2) || | 
|  | !isConstantOrUndef(N->getOperand(i+9),  i*2+3)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMerge - Common function, used to match vmrg* shuffles. | 
|  | /// | 
|  | static bool isVMerge(SDNode *N, unsigned UnitSize, | 
|  | unsigned LHSStart, unsigned RHSStart) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); | 
|  | assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && | 
|  | "Unsupported merge size!"); | 
|  |  | 
|  | for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units | 
|  | for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit | 
|  | if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), | 
|  | LHSStart+j+i*UnitSize) || | 
|  | !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), | 
|  | RHSStart+j+i*UnitSize)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 8, 24); | 
|  | return isVMerge(N, UnitSize, 8, 8); | 
|  | } | 
|  |  | 
|  | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { | 
|  | if (!isUnary) | 
|  | return isVMerge(N, UnitSize, 0, 16); | 
|  | return isVMerge(N, UnitSize, 0, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift | 
|  | /// amount, otherwise return -1. | 
|  | int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); | 
|  | // Find the first non-undef value in the shuffle mask. | 
|  | unsigned i; | 
|  | for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) | 
|  | /*search*/; | 
|  |  | 
|  | if (i == 16) return -1;  // all undef. | 
|  |  | 
|  | // Otherwise, check to see if the rest of the elements are consequtively | 
|  | // numbered from this value. | 
|  | unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); | 
|  | if (ShiftAmt < i) return -1; | 
|  | ShiftAmt -= i; | 
|  |  | 
|  | if (!isUnary) { | 
|  | // Check the rest of the elements to see if they are consequtive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) | 
|  | return -1; | 
|  | } else { | 
|  | // Check the rest of the elements to see if they are consequtive. | 
|  | for (++i; i != 16; ++i) | 
|  | if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ShiftAmt; | 
|  | } | 
|  |  | 
|  | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a splat of a single element that is suitable for input to | 
|  | /// VSPLTB/VSPLTH/VSPLTW. | 
|  | bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR && | 
|  | N->getNumOperands() == 16 && | 
|  | (EltSize == 1 || EltSize == 2 || EltSize == 4)); | 
|  |  | 
|  | // This is a splat operation if each element of the permute is the same, and | 
|  | // if the value doesn't reference the second vector. | 
|  | unsigned ElementBase = 0; | 
|  | SDOperand Elt = N->getOperand(0); | 
|  | if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) | 
|  | ElementBase = EltV->getValue(); | 
|  | else | 
|  | return false;   // FIXME: Handle UNDEF elements too! | 
|  |  | 
|  | if (cast<ConstantSDNode>(Elt)->getValue() >= 16) | 
|  | return false; | 
|  |  | 
|  | // Check that they are consequtive. | 
|  | for (unsigned i = 1; i != EltSize; ++i) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i)) || | 
|  | cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(N->getOperand(i)) && | 
|  | "Invalid VECTOR_SHUFFLE mask!"); | 
|  | for (unsigned j = 0; j != EltSize; ++j) | 
|  | if (N->getOperand(i+j) != N->getOperand(j)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the | 
|  | /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. | 
|  | unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { | 
|  | assert(isSplatShuffleMask(N, EltSize)); | 
|  | return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; | 
|  | } | 
|  |  | 
|  | /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed | 
|  | /// by using a vspltis[bhw] instruction of the specified element size, return | 
|  | /// the constant being splatted.  The ByteSize field indicates the number of | 
|  | /// bytes of each element [124] -> [bhw]. | 
|  | SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | 
|  | SDOperand OpVal(0, 0); | 
|  |  | 
|  | // If ByteSize of the splat is bigger than the element size of the | 
|  | // build_vector, then we have a case where we are checking for a splat where | 
|  | // multiple elements of the buildvector are folded together into a single | 
|  | // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). | 
|  | unsigned EltSize = 16/N->getNumOperands(); | 
|  | if (EltSize < ByteSize) { | 
|  | unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval. | 
|  | SDOperand UniquedVals[4]; | 
|  | assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); | 
|  |  | 
|  | // See if all of the elements in the buildvector agree across. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | // If the element isn't a constant, bail fully out. | 
|  | if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand(); | 
|  |  | 
|  |  | 
|  | if (UniquedVals[i&(Multiple-1)].Val == 0) | 
|  | UniquedVals[i&(Multiple-1)] = N->getOperand(i); | 
|  | else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) | 
|  | return SDOperand();  // no match. | 
|  | } | 
|  |  | 
|  | // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains | 
|  | // either constant or undef values that are identical for each chunk.  See | 
|  | // if these chunks can form into a larger vspltis*. | 
|  |  | 
|  | // Check to see if all of the leading entries are either 0 or -1.  If | 
|  | // neither, then this won't fit into the immediate field. | 
|  | bool LeadingZero = true; | 
|  | bool LeadingOnes = true; | 
|  | for (unsigned i = 0; i != Multiple-1; ++i) { | 
|  | if (UniquedVals[i].Val == 0) continue;  // Must have been undefs. | 
|  |  | 
|  | LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); | 
|  | LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); | 
|  | } | 
|  | // Finally, check the least significant entry. | 
|  | if (LeadingZero) { | 
|  | if (UniquedVals[Multiple-1].Val == 0) | 
|  | return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef | 
|  | int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue(); | 
|  | if (Val < 16) | 
|  | return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4) | 
|  | } | 
|  | if (LeadingOnes) { | 
|  | if (UniquedVals[Multiple-1].Val == 0) | 
|  | return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef | 
|  | int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended(); | 
|  | if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2) | 
|  | return DAG.getTargetConstant(Val, MVT::i32); | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // Check to see if this buildvec has a single non-undef value in its elements. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | if (OpVal.Val == 0) | 
|  | OpVal = N->getOperand(i); | 
|  | else if (OpVal != N->getOperand(i)) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def. | 
|  |  | 
|  | unsigned ValSizeInBytes = 0; | 
|  | uint64_t Value = 0; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Value = CN->getValue(); | 
|  | ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); | 
|  | Value = FloatToBits(CN->getValue()); | 
|  | ValSizeInBytes = 4; | 
|  | } | 
|  |  | 
|  | // If the splat value is larger than the element value, then we can never do | 
|  | // this splat.  The only case that we could fit the replicated bits into our | 
|  | // immediate field for would be zero, and we prefer to use vxor for it. | 
|  | if (ValSizeInBytes < ByteSize) return SDOperand(); | 
|  |  | 
|  | // If the element value is larger than the splat value, cut it in half and | 
|  | // check to see if the two halves are equal.  Continue doing this until we | 
|  | // get to ByteSize.  This allows us to handle 0x01010101 as 0x01. | 
|  | while (ValSizeInBytes > ByteSize) { | 
|  | ValSizeInBytes >>= 1; | 
|  |  | 
|  | // If the top half equals the bottom half, we're still ok. | 
|  | if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != | 
|  | (Value                        & ((1 << (8*ValSizeInBytes))-1))) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // Properly sign extend the value. | 
|  | int ShAmt = (4-ByteSize)*8; | 
|  | int MaskVal = ((int)Value << ShAmt) >> ShAmt; | 
|  |  | 
|  | // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. | 
|  | if (MaskVal == 0) return SDOperand(); | 
|  |  | 
|  | // Finally, if this value fits in a 5 bit sext field, return it | 
|  | if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) | 
|  | return DAG.getTargetConstant(MaskVal, MVT::i32); | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  LowerOperation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | Constant *C = CP->get(); | 
|  | SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment()); | 
|  | SDOperand Zero = DAG.getConstant(0, MVT::i32); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to the constant pool. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero); | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero); | 
|  | return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); | 
|  | } | 
|  |  | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero); | 
|  | if (TM.getRelocationModel() == Reloc::PIC) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, MVT::i32, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi); | 
|  | } | 
|  |  | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero); | 
|  | Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); | 
|  | return Lo; | 
|  | } | 
|  |  | 
|  | static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { | 
|  | GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); | 
|  | GlobalValue *GV = GSDN->getGlobal(); | 
|  | SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset()); | 
|  | SDOperand Zero = DAG.getConstant(0, MVT::i32); | 
|  |  | 
|  | const TargetMachine &TM = DAG.getTarget(); | 
|  |  | 
|  | // If this is a non-darwin platform, we don't support non-static relo models | 
|  | // yet. | 
|  | if (TM.getRelocationModel() == Reloc::Static || | 
|  | !TM.getSubtarget<PPCSubtarget>().isDarwin()) { | 
|  | // Generate non-pic code that has direct accesses to globals. | 
|  | // The address of the global is just (hi(&g)+lo(&g)). | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero); | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero); | 
|  | return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); | 
|  | } | 
|  |  | 
|  | SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero); | 
|  | if (TM.getRelocationModel() == Reloc::PIC) { | 
|  | // With PIC, the first instruction is actually "GR+hi(&G)". | 
|  | Hi = DAG.getNode(ISD::ADD, MVT::i32, | 
|  | DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi); | 
|  | } | 
|  |  | 
|  | SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero); | 
|  | Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); | 
|  |  | 
|  | if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() && | 
|  | (!GV->isExternal() || GV->hasNotBeenReadFromBytecode())) | 
|  | return Lo; | 
|  |  | 
|  | // If the global is weak or external, we have to go through the lazy | 
|  | // resolution stub. | 
|  | return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0)); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // If we're comparing for equality to zero, expose the fact that this is | 
|  | // implented as a ctlz/srl pair on ppc, so that the dag combiner can | 
|  | // fold the new nodes. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | MVT::ValueType VT = Op.getOperand(0).getValueType(); | 
|  | SDOperand Zext = Op.getOperand(0); | 
|  | if (VT < MVT::i32) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); | 
|  | SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); | 
|  | SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, | 
|  | DAG.getConstant(Log2b, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); | 
|  | } | 
|  | // Leave comparisons against 0 and -1 alone for now, since they're usually | 
|  | // optimized.  FIXME: revisit this when we can custom lower all setcc | 
|  | // optimizations. | 
|  | if (C->isAllOnesValue() || C->isNullValue()) | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | // If we have an integer seteq/setne, turn it into a compare against zero | 
|  | // by subtracting the rhs from the lhs, which is faster than setting a | 
|  | // condition register, reading it back out, and masking the correct bit. | 
|  | MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); | 
|  | if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, | 
|  | unsigned VarArgsFrameIndex) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand Copy; | 
|  | switch(Op.getNumOperands()) { | 
|  | default: | 
|  | assert(0 && "Do not know how to return this many arguments!"); | 
|  | abort(); | 
|  | case 1: | 
|  | return SDOperand(); // ret void is legal | 
|  | case 2: { | 
|  | MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); | 
|  | unsigned ArgReg; | 
|  | if (MVT::isVector(ArgVT)) | 
|  | ArgReg = PPC::V2; | 
|  | else if (MVT::isInteger(ArgVT)) | 
|  | ArgReg = PPC::R3; | 
|  | else { | 
|  | assert(MVT::isFloatingPoint(ArgVT)); | 
|  | ArgReg = PPC::F1; | 
|  | } | 
|  |  | 
|  | Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1), | 
|  | SDOperand()); | 
|  |  | 
|  | // If we haven't noted the R3/F1 are live out, do so now. | 
|  | if (DAG.getMachineFunction().liveout_empty()) | 
|  | DAG.getMachineFunction().addLiveOut(ArgReg); | 
|  | break; | 
|  | } | 
|  | case 3: | 
|  | Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2), | 
|  | SDOperand()); | 
|  | Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1)); | 
|  | // If we haven't noted the R3+R4 are live out, do so now. | 
|  | if (DAG.getMachineFunction().liveout_empty()) { | 
|  | DAG.getMachineFunction().addLiveOut(PPC::R3); | 
|  | DAG.getMachineFunction().addLiveOut(PPC::R4); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); | 
|  | } | 
|  |  | 
|  | /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when | 
|  | /// possible. | 
|  | static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Not FP? Not a fsel. | 
|  | if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || | 
|  | !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) | 
|  | return SDOperand(); | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
|  |  | 
|  | // Cannot handle SETEQ/SETNE. | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); | 
|  |  | 
|  | MVT::ValueType ResVT = Op.getValueType(); | 
|  | MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); | 
|  | SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); | 
|  | SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3); | 
|  |  | 
|  | // If the RHS of the comparison is a 0.0, we don't need to do the | 
|  | // subtraction at all. | 
|  | if (isFloatingPointZero(RHS)) | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, | 
|  | DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); | 
|  | } | 
|  |  | 
|  | SDOperand Cmp; | 
|  | switch (CC) { | 
|  | default: break;       // SETUO etc aren't handled by fsel. | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); | 
|  | if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits | 
|  | Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); | 
|  | return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); | 
|  | SDOperand Src = Op.getOperand(0); | 
|  | if (Src.getValueType() == MVT::f32) | 
|  | Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); | 
|  |  | 
|  | SDOperand Tmp; | 
|  | switch (Op.getValueType()) { | 
|  | default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); | 
|  | case MVT::i32: | 
|  | Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); | 
|  | break; | 
|  | case MVT::i64: | 
|  | Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Convert the FP value to an int value through memory. | 
|  | SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp); | 
|  | if (Op.getValueType() == MVT::i32) | 
|  | Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits); | 
|  | return Bits; | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { | 
|  | if (Op.getOperand(0).getValueType() == MVT::i64) { | 
|  | SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); | 
|  | SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i32 && | 
|  | "Unhandled SINT_TO_FP type in custom expander!"); | 
|  | // Since we only generate this in 64-bit mode, we can take advantage of | 
|  | // 64-bit registers.  In particular, sign extend the input value into the | 
|  | // 64-bit register with extsw, store the WHOLE 64-bit value into the stack | 
|  | // then lfd it and fcfid it. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(8, 8); | 
|  | SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); | 
|  |  | 
|  | SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // STD the extended value into the stack slot. | 
|  | SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, | 
|  | DAG.getEntryNode(), Ext64, FIdx, | 
|  | DAG.getSrcValue(NULL)); | 
|  | // Load the value as a double. | 
|  | SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL)); | 
|  |  | 
|  | // FCFID it and return it. | 
|  | SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); | 
|  | return FP; | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::i64 && | 
|  | Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); | 
|  | // The generic code does a fine job expanding shift by a constant. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); | 
|  |  | 
|  | // Otherwise, expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Amt = Op.getOperand(1); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, | 
|  | DAG.getConstant(32, MVT::i32), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, | 
|  | DAG.getConstant(-32U, MVT::i32)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5); | 
|  | SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); | 
|  | SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::i64 && | 
|  | Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); | 
|  | // The generic code does a fine job expanding shift by a constant. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); | 
|  |  | 
|  | // Otherwise, expand into a bunch of logical ops.  Note that these ops | 
|  | // depend on the PPC behavior for oversized shift amounts. | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Amt = Op.getOperand(1); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, | 
|  | DAG.getConstant(32, MVT::i32), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, | 
|  | DAG.getConstant(-32U, MVT::i32)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5); | 
|  | SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); | 
|  | SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::i64 && | 
|  | Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!"); | 
|  | // The generic code does a fine job expanding shift by a constant. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand(); | 
|  |  | 
|  | // Otherwise, expand into a bunch of logical ops, followed by a select_cc. | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Amt = Op.getOperand(1); | 
|  |  | 
|  | SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, | 
|  | DAG.getConstant(32, MVT::i32), Amt); | 
|  | SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); | 
|  | SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); | 
|  | SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); | 
|  | SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, | 
|  | DAG.getConstant(-32U, MVT::i32)); | 
|  | SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5); | 
|  | SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt); | 
|  | SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32), | 
|  | Tmp4, Tmp6, ISD::SETLE); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector related lowering. | 
|  | // | 
|  |  | 
|  | // If this is a vector of constants or undefs, get the bits.  A bit in | 
|  | // UndefBits is set if the corresponding element of the vector is an | 
|  | // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are | 
|  | // zero.   Return true if this is not an array of constants, false if it is. | 
|  | // | 
|  | static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], | 
|  | uint64_t UndefBits[2]) { | 
|  | // Start with zero'd results. | 
|  | VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; | 
|  |  | 
|  | unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { | 
|  | SDOperand OpVal = BV->getOperand(i); | 
|  |  | 
|  | unsigned PartNo = i >= e/2;     // In the upper 128 bits? | 
|  | unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t. | 
|  |  | 
|  | uint64_t EltBits = 0; | 
|  | if (OpVal.getOpcode() == ISD::UNDEF) { | 
|  | uint64_t EltUndefBits = ~0U >> (32-EltBitSize); | 
|  | UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); | 
|  | continue; | 
|  | } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { | 
|  | assert(CN->getValueType(0) == MVT::f32 && | 
|  | "Only one legal FP vector type!"); | 
|  | EltBits = FloatToBits(CN->getValue()); | 
|  | } else { | 
|  | // Nonconstant element. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); | 
|  | } | 
|  |  | 
|  | //printf("%llx %llx  %llx %llx\n", | 
|  | //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a splat (repetition) of a value across the whole vector, return | 
|  | // the smallest size that splats it.  For example, "0x01010101010101..." is a | 
|  | // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and | 
|  | // SplatSize = 1 byte. | 
|  | static bool isConstantSplat(const uint64_t Bits128[2], | 
|  | const uint64_t Undef128[2], | 
|  | unsigned &SplatBits, unsigned &SplatUndef, | 
|  | unsigned &SplatSize) { | 
|  |  | 
|  | // Don't let undefs prevent splats from matching.  See if the top 64-bits are | 
|  | // the same as the lower 64-bits, ignoring undefs. | 
|  | if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) | 
|  | return false;  // Can't be a splat if two pieces don't match. | 
|  |  | 
|  | uint64_t Bits64  = Bits128[0] | Bits128[1]; | 
|  | uint64_t Undef64 = Undef128[0] & Undef128[1]; | 
|  |  | 
|  | // Check that the top 32-bits are the same as the lower 32-bits, ignoring | 
|  | // undefs. | 
|  | if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) | 
|  | return false;  // Can't be a splat if two pieces don't match. | 
|  |  | 
|  | uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32); | 
|  | uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); | 
|  |  | 
|  | // If the top 16-bits are different than the lower 16-bits, ignoring | 
|  | // undefs, we have an i32 splat. | 
|  | if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { | 
|  | SplatBits = Bits32; | 
|  | SplatUndef = Undef32; | 
|  | SplatSize = 4; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16); | 
|  | uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); | 
|  |  | 
|  | // If the top 8-bits are different than the lower 8-bits, ignoring | 
|  | // undefs, we have an i16 splat. | 
|  | if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { | 
|  | SplatBits = Bits16; | 
|  | SplatUndef = Undef16; | 
|  | SplatSize = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have an 8-bit splat. | 
|  | SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8); | 
|  | SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); | 
|  | SplatSize = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// BuildSplatI - Build a canonical splati of Val with an element size of | 
|  | /// SplatSize.  Cast the result to VT. | 
|  | static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); | 
|  |  | 
|  | // Force vspltis[hw] -1 to vspltisb -1. | 
|  | if (Val == -1) SplatSize = 1; | 
|  |  | 
|  | static const MVT::ValueType VTys[] = { // canonical VT to use for each size. | 
|  | MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 | 
|  | }; | 
|  | MVT::ValueType CanonicalVT = VTys[SplatSize-1]; | 
|  |  | 
|  | // Build a canonical splat for this value. | 
|  | SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT)); | 
|  | std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt); | 
|  | SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, Res); | 
|  | } | 
|  |  | 
|  | /// BuildIntrinsicBinOp - Return a binary operator intrinsic node with the | 
|  | /// specified intrinsic ID. | 
|  | static SDOperand BuildIntrinsicBinOp(unsigned IID, SDOperand LHS, SDOperand RHS, | 
|  | SelectionDAG &DAG) { | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, LHS.getValueType(), | 
|  | DAG.getConstant(IID, MVT::i32), LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified | 
|  | /// amount.  The result has the specified value type. | 
|  | static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, | 
|  | MVT::ValueType VT, SelectionDAG &DAG) { | 
|  | // Force LHS/RHS to be the right type. | 
|  | LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); | 
|  | RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops.push_back(DAG.getConstant(i+Amt, MVT::i32)); | 
|  | SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, T); | 
|  | } | 
|  |  | 
|  | // If this is a case we can't handle, return null and let the default | 
|  | // expansion code take care of it.  If we CAN select this case, and if it | 
|  | // selects to a single instruction, return Op.  Otherwise, if we can codegen | 
|  | // this case more efficiently than a constant pool load, lower it to the | 
|  | // sequence of ops that should be used. | 
|  | static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { | 
|  | // If this is a vector of constants or undefs, get the bits.  A bit in | 
|  | // UndefBits is set if the corresponding element of the vector is an | 
|  | // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are | 
|  | // zero. | 
|  | uint64_t VectorBits[2]; | 
|  | uint64_t UndefBits[2]; | 
|  | if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) | 
|  | return SDOperand();   // Not a constant vector. | 
|  |  | 
|  | // If this is a splat (repetition) of a value across the whole vector, return | 
|  | // the smallest size that splats it.  For example, "0x01010101010101..." is a | 
|  | // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and | 
|  | // SplatSize = 1 byte. | 
|  | unsigned SplatBits, SplatUndef, SplatSize; | 
|  | if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ | 
|  | bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; | 
|  |  | 
|  | // First, handle single instruction cases. | 
|  |  | 
|  | // All zeros? | 
|  | if (SplatBits == 0) { | 
|  | // Canonicalize all zero vectors to be v4i32. | 
|  | if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { | 
|  | SDOperand Z = DAG.getConstant(0, MVT::i32); | 
|  | Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); | 
|  | Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. | 
|  | int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); | 
|  | if (SextVal >= -16 && SextVal <= 15) | 
|  | return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); | 
|  |  | 
|  |  | 
|  | // Two instruction sequences. | 
|  |  | 
|  | // If this value is in the range [-32,30] and is even, use: | 
|  | //    tmp = VSPLTI[bhw], result = add tmp, tmp | 
|  | if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { | 
|  | Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); | 
|  | return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); | 
|  | } | 
|  |  | 
|  | // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is | 
|  | // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important | 
|  | // for fneg/fabs. | 
|  | if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { | 
|  | // Make -1 and vspltisw -1: | 
|  | SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); | 
|  |  | 
|  | // Make the VSLW intrinsic, computing 0x8000_0000. | 
|  | SDOperand Res = BuildIntrinsicBinOp(Intrinsic::ppc_altivec_vslw, OnesV, | 
|  | OnesV, DAG); | 
|  |  | 
|  | // xor by OnesV to invert it. | 
|  | Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a wide variety of vsplti*, binop self cases. | 
|  | unsigned SplatBitSize = SplatSize*8; | 
|  | static const char SplatCsts[] = { | 
|  | -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, | 
|  | -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 | 
|  | }; | 
|  | for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){ | 
|  | // Indirect through the SplatCsts array so that we favor 'vsplti -1' for | 
|  | // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1' | 
|  | int i = SplatCsts[idx]; | 
|  |  | 
|  | // Figure out what shift amount will be used by altivec if shifted by i in | 
|  | // this splat size. | 
|  | unsigned TypeShiftAmt = i & (SplatBitSize-1); | 
|  |  | 
|  | // vsplti + shl self. | 
|  | if (SextVal == (i << (int)TypeShiftAmt)) { | 
|  | Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, | 
|  | Intrinsic::ppc_altivec_vslw | 
|  | }; | 
|  | return BuildIntrinsicBinOp(IIDs[SplatSize-1], Op, Op, DAG); | 
|  | } | 
|  |  | 
|  | // vsplti + srl self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, | 
|  | Intrinsic::ppc_altivec_vsrw | 
|  | }; | 
|  | return BuildIntrinsicBinOp(IIDs[SplatSize-1], Op, Op, DAG); | 
|  | } | 
|  |  | 
|  | // vsplti + sra self. | 
|  | if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { | 
|  | Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, | 
|  | Intrinsic::ppc_altivec_vsraw | 
|  | }; | 
|  | return BuildIntrinsicBinOp(IIDs[SplatSize-1], Op, Op, DAG); | 
|  | } | 
|  |  | 
|  | // vsplti + rol self. | 
|  | if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | | 
|  | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { | 
|  | Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG); | 
|  | static const unsigned IIDs[] = { // Intrinsic to use for each size. | 
|  | Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, | 
|  | Intrinsic::ppc_altivec_vrlw | 
|  | }; | 
|  | return BuildIntrinsicBinOp(IIDs[SplatSize-1], Op, Op, DAG); | 
|  | } | 
|  |  | 
|  | // t = vsplti c, result = vsldoi t, t, 1 | 
|  | if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 2 | 
|  | if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); | 
|  | } | 
|  | // t = vsplti c, result = vsldoi t, t, 3 | 
|  | if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { | 
|  | SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); | 
|  | return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Three instruction sequences. | 
|  |  | 
|  | // Odd, in range [17,31]:  (vsplti C)-(vsplti -16). | 
|  | if (SextVal >= 0 && SextVal <= 31) { | 
|  | SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG); | 
|  | SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG); | 
|  | return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS); | 
|  | } | 
|  | // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16). | 
|  | if (SextVal >= -31 && SextVal <= 0) { | 
|  | SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG); | 
|  | SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG); | 
|  | return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
|  | /// the specified operations to build the shuffle. | 
|  | static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, | 
|  | SDOperand RHS, SelectionDAG &DAG) { | 
|  | unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
|  | unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1); | 
|  | unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1); | 
|  |  | 
|  | enum { | 
|  | OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VMRGHW, | 
|  | OP_VMRGLW, | 
|  | OP_VSPLTISW0, | 
|  | OP_VSPLTISW1, | 
|  | OP_VSPLTISW2, | 
|  | OP_VSPLTISW3, | 
|  | OP_VSLDOI4, | 
|  | OP_VSLDOI8, | 
|  | OP_VSLDOI12, | 
|  | }; | 
|  |  | 
|  | if (OpNum == OP_COPY) { | 
|  | if (LHSID == (1*9+2)*9+3) return LHS; | 
|  | assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | SDOperand OpLHS, OpRHS; | 
|  | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); | 
|  | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); | 
|  |  | 
|  | unsigned ShufIdxs[16]; | 
|  | switch (OpNum) { | 
|  | default: assert(0 && "Unknown i32 permute!"); | 
|  | case OP_VMRGHW: | 
|  | ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3; | 
|  | ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; | 
|  | ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7; | 
|  | ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; | 
|  | break; | 
|  | case OP_VMRGLW: | 
|  | ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; | 
|  | ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; | 
|  | ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; | 
|  | ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; | 
|  | break; | 
|  | case OP_VSPLTISW0: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+0; | 
|  | break; | 
|  | case OP_VSPLTISW1: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+4; | 
|  | break; | 
|  | case OP_VSPLTISW2: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+8; | 
|  | break; | 
|  | case OP_VSPLTISW3: | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | ShufIdxs[i] = (i&3)+12; | 
|  | break; | 
|  | case OP_VSLDOI4: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); | 
|  | case OP_VSLDOI8: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); | 
|  | case OP_VSLDOI12: | 
|  | return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); | 
|  | } | 
|  | std::vector<SDOperand> Ops; | 
|  | for (unsigned i = 0; i != 16; ++i) | 
|  | Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32)); | 
|  |  | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops)); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this | 
|  | /// is a shuffle we can handle in a single instruction, return it.  Otherwise, | 
|  | /// return the code it can be lowered into.  Worst case, it can always be | 
|  | /// lowered into a vperm. | 
|  | static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand V1 = Op.getOperand(0); | 
|  | SDOperand V2 = Op.getOperand(1); | 
|  | SDOperand PermMask = Op.getOperand(2); | 
|  |  | 
|  | // Cases that are handled by instructions that take permute immediates | 
|  | // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be | 
|  | // selected by the instruction selector. | 
|  | if (V2.getOpcode() == ISD::UNDEF) { | 
|  | if (PPC::isSplatShuffleMask(PermMask.Val, 1) || | 
|  | PPC::isSplatShuffleMask(PermMask.Val, 2) || | 
|  | PPC::isSplatShuffleMask(PermMask.Val, 4) || | 
|  | PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || | 
|  | PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || | 
|  | PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Altivec has a variety of "shuffle immediates" that take two vector inputs | 
|  | // and produce a fixed permutation.  If any of these match, do not lower to | 
|  | // VPERM. | 
|  | if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || | 
|  | PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || | 
|  | PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || | 
|  | PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || | 
|  | PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) | 
|  | return Op; | 
|  |  | 
|  | // Check to see if this is a shuffle of 4-byte values.  If so, we can use our | 
|  | // perfect shuffle table to emit an optimal matching sequence. | 
|  | unsigned PFIndexes[4]; | 
|  | bool isFourElementShuffle = true; | 
|  | for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number | 
|  | unsigned EltNo = 8;   // Start out undef. | 
|  | for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte. | 
|  | if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) | 
|  | continue;   // Undef, ignore it. | 
|  |  | 
|  | unsigned ByteSource = | 
|  | cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue(); | 
|  | if ((ByteSource & 3) != j) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EltNo == 8) { | 
|  | EltNo = ByteSource/4; | 
|  | } else if (EltNo != ByteSource/4) { | 
|  | isFourElementShuffle = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | PFIndexes[i] = EltNo; | 
|  | } | 
|  |  | 
|  | // If this shuffle can be expressed as a shuffle of 4-byte elements, use the | 
|  | // perfect shuffle vector to determine if it is cost effective to do this as | 
|  | // discrete instructions, or whether we should use a vperm. | 
|  | if (isFourElementShuffle) { | 
|  | // Compute the index in the perfect shuffle table. | 
|  | unsigned PFTableIndex = | 
|  | PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
|  |  | 
|  | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
|  | unsigned Cost  = (PFEntry >> 30); | 
|  |  | 
|  | // Determining when to avoid vperm is tricky.  Many things affect the cost | 
|  | // of vperm, particularly how many times the perm mask needs to be computed. | 
|  | // For example, if the perm mask can be hoisted out of a loop or is already | 
|  | // used (perhaps because there are multiple permutes with the same shuffle | 
|  | // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of | 
|  | // the loop requires an extra register. | 
|  | // | 
|  | // As a compromise, we only emit discrete instructions if the shuffle can be | 
|  | // generated in 3 or fewer operations.  When we have loop information | 
|  | // available, if this block is within a loop, we should avoid using vperm | 
|  | // for 3-operation perms and use a constant pool load instead. | 
|  | if (Cost < 3) | 
|  | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant | 
|  | // vector that will get spilled to the constant pool. | 
|  | if (V2.getOpcode() == ISD::UNDEF) V2 = V1; | 
|  |  | 
|  | // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except | 
|  | // that it is in input element units, not in bytes.  Convert now. | 
|  | MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType()); | 
|  | unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; | 
|  |  | 
|  | std::vector<SDOperand> ResultMask; | 
|  | for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { | 
|  | unsigned SrcElt; | 
|  | if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) | 
|  | SrcElt = 0; | 
|  | else | 
|  | SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); | 
|  |  | 
|  | for (unsigned j = 0; j != BytesPerElement; ++j) | 
|  | ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, | 
|  | MVT::i8)); | 
|  | } | 
|  |  | 
|  | SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask); | 
|  | return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); | 
|  | } | 
|  |  | 
|  | /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom | 
|  | /// lower, do it, otherwise return null. | 
|  | static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); | 
|  |  | 
|  | // If this is a lowered altivec predicate compare, CompareOpc is set to the | 
|  | // opcode number of the comparison. | 
|  | int CompareOpc = -1; | 
|  | bool isDot = false; | 
|  | switch (IntNo) { | 
|  | default: return SDOperand();    // Don't custom lower most intrinsics. | 
|  | // Comparison predicates. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; | 
|  |  | 
|  | // Normal Comparisons. | 
|  | case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break; | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break; | 
|  | } | 
|  |  | 
|  | assert(CompareOpc>0 && "We only lower altivec predicate compares so far!"); | 
|  |  | 
|  | // If this is a non-dot comparison, make the VCMP node. | 
|  | if (!isDot) { | 
|  | SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), | 
|  | DAG.getConstant(CompareOpc, MVT::i32)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); | 
|  | } | 
|  |  | 
|  | // Create the PPCISD altivec 'dot' comparison node. | 
|  | std::vector<SDOperand> Ops; | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | Ops.push_back(Op.getOperand(2));  // LHS | 
|  | Ops.push_back(Op.getOperand(3));  // RHS | 
|  | Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32)); | 
|  | VTs.push_back(Op.getOperand(2).getValueType()); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops); | 
|  |  | 
|  | // Now that we have the comparison, emit a copy from the CR to a GPR. | 
|  | // This is flagged to the above dot comparison. | 
|  | SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, | 
|  | DAG.getRegister(PPC::CR6, MVT::i32), | 
|  | CompNode.getValue(1)); | 
|  |  | 
|  | // Unpack the result based on how the target uses it. | 
|  | unsigned BitNo;   // Bit # of CR6. | 
|  | bool InvertBit;   // Invert result? | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { | 
|  | default:  // Can't happen, don't crash on invalid number though. | 
|  | case 0:   // Return the value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = false; | 
|  | break; | 
|  | case 1:   // Return the inverted value of the EQ bit of CR6. | 
|  | BitNo = 0; InvertBit = true; | 
|  | break; | 
|  | case 2:   // Return the value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = false; | 
|  | break; | 
|  | case 3:   // Return the inverted value of the LT bit of CR6. | 
|  | BitNo = 2; InvertBit = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Shift the bit into the low position. | 
|  | Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, | 
|  | DAG.getConstant(8-(3-BitNo), MVT::i32)); | 
|  | // Isolate the bit. | 
|  | Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  |  | 
|  | // If we are supposed to, toggle the bit. | 
|  | if (InvertBit) | 
|  | Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Create a stack slot that is 16-byte aligned. | 
|  | MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FrameIdx = FrameInfo->CreateStackObject(16, 16); | 
|  | SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); | 
|  |  | 
|  | // Store the input value into Value#0 of the stack slot. | 
|  | SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), | 
|  | Op.getOperand(0), FIdx,DAG.getSrcValue(NULL)); | 
|  | // Load it out. | 
|  | return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL)); | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Wasn't expecting to be able to lower this!"); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex); | 
|  | case ISD::RET:                return LowerRET(Op, DAG); | 
|  |  | 
|  | case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  |  | 
|  | // Lower 64-bit shifts. | 
|  | case ISD::SHL:                return LowerSHL(Op, DAG); | 
|  | case ISD::SRL:                return LowerSRL(Op, DAG); | 
|  | case ISD::SRA:                return LowerSRA(Op, DAG); | 
|  |  | 
|  | // Vector-related lowering. | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | } | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Other Lowering Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
|  | // | 
|  | // add beautiful description of PPC stack frame format, or at least some docs | 
|  | // | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | MachineBasicBlock& BB = MF.front(); | 
|  | SSARegMap *RegMap = MF.getSSARegMap(); | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | unsigned ArgOffset = 24; | 
|  | unsigned GPR_remaining = 8; | 
|  | unsigned FPR_remaining = 13; | 
|  | unsigned GPR_idx = 0, FPR_idx = 0; | 
|  | static const unsigned GPR[] = { | 
|  | PPC::R3, PPC::R4, PPC::R5, PPC::R6, | 
|  | PPC::R7, PPC::R8, PPC::R9, PPC::R10, | 
|  | }; | 
|  | static const unsigned FPR[] = { | 
|  | PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, | 
|  | PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 | 
|  | }; | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function on PPC, | 
|  | // the arguments start at offset 24, although they are likely to be passed | 
|  | // in registers. | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
|  | SDOperand newroot, argt; | 
|  | unsigned ObjSize; | 
|  | bool needsLoad = false; | 
|  | bool ArgLive = !I->use_empty(); | 
|  | MVT::ValueType ObjectVT = getValueType(I->getType()); | 
|  |  | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | ObjSize = 4; | 
|  | if (!ArgLive) break; | 
|  | if (GPR_remaining > 0) { | 
|  | unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | MF.addLiveIn(GPR[GPR_idx], VReg); | 
|  | argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); | 
|  | if (ObjectVT != MVT::i32) { | 
|  | unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext | 
|  | : ISD::AssertZext; | 
|  | argt = DAG.getNode(AssertOp, MVT::i32, argt, | 
|  | DAG.getValueType(ObjectVT)); | 
|  | argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt); | 
|  | } | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | case MVT::i64: | 
|  | ObjSize = 8; | 
|  | if (!ArgLive) break; | 
|  | if (GPR_remaining > 0) { | 
|  | SDOperand argHi, argLo; | 
|  | unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | MF.addLiveIn(GPR[GPR_idx], VReg); | 
|  | argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); | 
|  | // If we have two or more remaining argument registers, then both halves | 
|  | // of the i64 can be sourced from there.  Otherwise, the lower half will | 
|  | // have to come off the stack.  This can happen when an i64 is preceded | 
|  | // by 28 bytes of arguments. | 
|  | if (GPR_remaining > 1) { | 
|  | unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | MF.addLiveIn(GPR[GPR_idx+1], VReg); | 
|  | argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32); | 
|  | } else { | 
|  | int FI = MFI->CreateFixedObject(4, ArgOffset+4); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  | // Build the outgoing arg thingy | 
|  | argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi); | 
|  | newroot = argLo; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | ObjSize = (ObjectVT == MVT::f64) ? 8 : 4; | 
|  | if (!ArgLive) { | 
|  | if (FPR_remaining > 0) { | 
|  | --FPR_remaining; | 
|  | ++FPR_idx; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (FPR_remaining > 0) { | 
|  | unsigned VReg; | 
|  | if (ObjectVT == MVT::f32) | 
|  | VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass); | 
|  | else | 
|  | VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass); | 
|  | MF.addLiveIn(FPR[FPR_idx], VReg); | 
|  | argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT); | 
|  | --FPR_remaining; | 
|  | ++FPR_idx; | 
|  | } else { | 
|  | needsLoad = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We need to load the argument to a virtual register if we determined above | 
|  | // that we ran out of physical registers of the appropriate type | 
|  | if (needsLoad) { | 
|  | unsigned SubregOffset = 0; | 
|  | if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3; | 
|  | if (ObjectVT == MVT::i16) SubregOffset = 2; | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, | 
|  | DAG.getConstant(SubregOffset, MVT::i32)); | 
|  | argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  |  | 
|  | // Every 4 bytes of argument space consumes one of the GPRs available for | 
|  | // argument passing. | 
|  | if (GPR_remaining > 0) { | 
|  | unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; | 
|  | GPR_remaining -= delta; | 
|  | GPR_idx += delta; | 
|  | } | 
|  | ArgOffset += ObjSize; | 
|  | if (newroot.Val) | 
|  | DAG.setRoot(newroot.getValue(1)); | 
|  |  | 
|  | ArgValues.push_back(argt); | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (F.isVarArg()) { | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
|  | // If this function is vararg, store any remaining integer argument regs | 
|  | // to their spots on the stack so that they may be loaded by deferencing the | 
|  | // result of va_next. | 
|  | std::vector<SDOperand> MemOps; | 
|  | for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) { | 
|  | unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | MF.addLiveIn(GPR[GPR_idx], VReg); | 
|  | SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); | 
|  | SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), | 
|  | Val, FIN, DAG.getSrcValue(NULL)); | 
|  | MemOps.push_back(Store); | 
|  | // Increment the address by four for the next argument to store | 
|  | SDOperand PtrOff = DAG.getConstant(4, getPointerTy()); | 
|  | FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff); | 
|  | } | 
|  | if (!MemOps.empty()) { | 
|  | MemOps.push_back(DAG.getRoot()); | 
|  | DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | PPCTargetLowering::LowerCallTo(SDOperand Chain, | 
|  | const Type *RetTy, bool isVarArg, | 
|  | unsigned CallingConv, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | // args_to_use will accumulate outgoing args for the PPCISD::CALL case in | 
|  | // SelectExpr to use to put the arguments in the appropriate registers. | 
|  | std::vector<SDOperand> args_to_use; | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack, including the linkage | 
|  | // area, and parameter passing area. | 
|  | unsigned NumBytes = 24; | 
|  |  | 
|  | if (Args.empty()) { | 
|  | Chain = DAG.getCALLSEQ_START(Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  | } else { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Just to be safe, we'll always reserve the full 24 bytes of linkage area | 
|  | // plus 32 bytes of argument space in case any called code gets funky on us. | 
|  | // (Required by ABI to support var arg) | 
|  | if (NumBytes < 56) NumBytes = 56; | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | Chain = DAG.getCALLSEQ_START(Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Set up a copy of the stack pointer for use loading and storing any | 
|  | // arguments that may not fit in the registers available for argument | 
|  | // passing. | 
|  | SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32); | 
|  |  | 
|  | // Figure out which arguments are going to go in registers, and which in | 
|  | // memory.  Also, if this is a vararg function, floating point operations | 
|  | // must be stored to our stack, and loaded into integer regs as well, if | 
|  | // any integer regs are available for argument passing. | 
|  | unsigned ArgOffset = 24; | 
|  | unsigned GPR_remaining = 8; | 
|  | unsigned FPR_remaining = 13; | 
|  |  | 
|  | std::vector<SDOperand> MemOps; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | // PtrOff will be used to store the current argument to the stack if a | 
|  | // register cannot be found for it. | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | MVT::ValueType ArgVT = getValueType(Args[i].second); | 
|  |  | 
|  | switch (ArgVT) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | // Promote the integer to 32 bits.  If the input type is signed use a | 
|  | // sign extend, otherwise use a zero extend. | 
|  | if (Args[i].second->isSigned()) | 
|  | Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); | 
|  | else | 
|  | Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); | 
|  | // FALL THROUGH | 
|  | case MVT::i32: | 
|  | if (GPR_remaining > 0) { | 
|  | args_to_use.push_back(Args[i].first); | 
|  | --GPR_remaining; | 
|  | } else { | 
|  | MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | } | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | // If we have one free GPR left, we can place the upper half of the i64 | 
|  | // in it, and store the other half to the stack.  If we have two or more | 
|  | // free GPRs, then we can pass both halves of the i64 in registers. | 
|  | if (GPR_remaining > 0) { | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(0, MVT::i32)); | 
|  | args_to_use.push_back(Hi); | 
|  | --GPR_remaining; | 
|  | if (GPR_remaining > 0) { | 
|  | args_to_use.push_back(Lo); | 
|  | --GPR_remaining; | 
|  | } else { | 
|  | SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); | 
|  | MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Lo, PtrOff, DAG.getSrcValue(NULL))); | 
|  | } | 
|  | } else { | 
|  | MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | } | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (FPR_remaining > 0) { | 
|  | args_to_use.push_back(Args[i].first); | 
|  | --FPR_remaining; | 
|  | if (isVarArg) { | 
|  | SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL)); | 
|  | MemOps.push_back(Store); | 
|  | // Float varargs are always shadowed in available integer registers | 
|  | if (GPR_remaining > 0) { | 
|  | SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, | 
|  | DAG.getSrcValue(NULL)); | 
|  | MemOps.push_back(Load.getValue(1)); | 
|  | args_to_use.push_back(Load); | 
|  | --GPR_remaining; | 
|  | } | 
|  | if (GPR_remaining > 0 && MVT::f64 == ArgVT) { | 
|  | SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); | 
|  | SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, | 
|  | DAG.getSrcValue(NULL)); | 
|  | MemOps.push_back(Load.getValue(1)); | 
|  | args_to_use.push_back(Load); | 
|  | --GPR_remaining; | 
|  | } | 
|  | } else { | 
|  | // If we have any FPRs remaining, we may also have GPRs remaining. | 
|  | // Args passed in FPRs consume either 1 (f32) or 2 (f64) available | 
|  | // GPRs. | 
|  | if (GPR_remaining > 0) { | 
|  | args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); | 
|  | --GPR_remaining; | 
|  | } | 
|  | if (GPR_remaining > 0 && MVT::f64 == ArgVT) { | 
|  | args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); | 
|  | --GPR_remaining; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | } | 
|  | ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  | MVT::ValueType ActualRetTyVT = RetTyVT; | 
|  | if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16) | 
|  | ActualRetTyVT = MVT::i32;   // Promote result to i32. | 
|  |  | 
|  | if (RetTyVT == MVT::i64) { | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | } else if (RetTyVT != MVT::isVoid) { | 
|  | RetVals.push_back(ActualRetTyVT); | 
|  | } | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call is) | 
|  | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32); | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end()); | 
|  | SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops); | 
|  | Chain = TheCall.getValue(TheCall.Val->getNumValues()-1); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  | SDOperand RetVal = TheCall; | 
|  |  | 
|  | // If the result is a small value, add a note so that we keep track of the | 
|  | // information about whether it is sign or zero extended. | 
|  | if (RetTyVT != ActualRetTyVT) { | 
|  | RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext, | 
|  | MVT::i32, RetVal, DAG.getValueType(RetTyVT)); | 
|  | RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal); | 
|  | } else if (RetTyVT == MVT::i64) { | 
|  | RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1)); | 
|  | } | 
|  |  | 
|  | return std::make_pair(RetVal, Chain); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) { | 
|  | assert((MI->getOpcode() == PPC::SELECT_CC_Int || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F4 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_F8 || | 
|  | MI->getOpcode() == PPC::SELECT_CC_VRRC) && | 
|  | "Unexpected instr type to insert"); | 
|  |  | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the diamond | 
|  | // control-flow pattern.  The incoming instruction knows the destination vreg | 
|  | // to set, the condition code register to branch on, the true/false values to | 
|  | // select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | BuildMI(BB, MI->getOperand(4).getImmedValue(), 2) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | F->getBasicBlockList().insert(It, copy0MBB); | 
|  | F->getBasicBlockList().insert(It, sinkMBB); | 
|  | // Update machine-CFG edges by first adding all successors of the current | 
|  | // block to the new block which will contain the Phi node for the select. | 
|  | for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), | 
|  | e = BB->succ_end(); i != e; ++i) | 
|  | sinkMBB->addSuccessor(*i); | 
|  | // Next, remove all successors of the current block, and add the true | 
|  | // and fallthrough blocks as its successors. | 
|  | while(!BB->succ_empty()) | 
|  | BB->removeSuccessor(BB->succ_begin()); | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | TargetMachine &TM = getTargetMachine(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SINT_TO_FP: | 
|  | if (TM.getSubtarget<PPCSubtarget>().is64Bit()) { | 
|  | if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { | 
|  | // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. | 
|  | // We allow the src/dst to be either f32/f64, but the intermediate | 
|  | // type must be i64. | 
|  | if (N->getOperand(0).getValueType() == MVT::i64) { | 
|  | SDOperand Val = N->getOperand(0).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | if (N->getValueType(0) == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  | return Val; | 
|  | } else if (N->getOperand(0).getValueType() == MVT::i32) { | 
|  | // If the intermediate type is i32, we can avoid the load/store here | 
|  | // too. | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: | 
|  | // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). | 
|  | if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && | 
|  | N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && | 
|  | N->getOperand(1).getValueType() == MVT::i32) { | 
|  | SDOperand Val = N->getOperand(1).getOperand(0); | 
|  | if (Val.getValueType() == MVT::f32) { | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | } | 
|  | Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  |  | 
|  | Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, | 
|  | N->getOperand(2), N->getOperand(3)); | 
|  | DCI.AddToWorklist(Val.Val); | 
|  | return Val; | 
|  | } | 
|  | break; | 
|  | case PPCISD::VCMP: { | 
|  | // If a VCMPo node already exists with exactly the same operands as this | 
|  | // node, use its result instead of this node (VCMPo computes both a CR6 and | 
|  | // a normal output). | 
|  | // | 
|  | if (!N->getOperand(0).hasOneUse() && | 
|  | !N->getOperand(1).hasOneUse() && | 
|  | !N->getOperand(2).hasOneUse()) { | 
|  |  | 
|  | // Scan all of the users of the LHS, looking for VCMPo's that match. | 
|  | SDNode *VCMPoNode = 0; | 
|  |  | 
|  | SDNode *LHSN = N->getOperand(0).Val; | 
|  | for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); | 
|  | UI != E; ++UI) | 
|  | if ((*UI)->getOpcode() == PPCISD::VCMPo && | 
|  | (*UI)->getOperand(1) == N->getOperand(1) && | 
|  | (*UI)->getOperand(2) == N->getOperand(2) && | 
|  | (*UI)->getOperand(0) == N->getOperand(0)) { | 
|  | VCMPoNode = *UI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are non-zero uses of the flag value, use the VCMPo node! | 
|  | if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1)) | 
|  | return SDOperand(VCMPoNode, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, | 
|  | uint64_t Mask, | 
|  | uint64_t &KnownZero, | 
|  | uint64_t &KnownOne, | 
|  | unsigned Depth) const { | 
|  | KnownZero = 0; | 
|  | KnownOne = 0; | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { | 
|  | default: break; | 
|  | case Intrinsic::ppc_altivec_vcmpbfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpeqfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpequw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgefp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtfp_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsb_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtsw_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtub_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuh_p: | 
|  | case Intrinsic::ppc_altivec_vcmpgtuw_p: | 
|  | KnownZero = ~1U;  // All bits but the low one are known to be zero. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | PPCTargetLowering::ConstraintType | 
|  | PPCTargetLowering::getConstraintType(char ConstraintLetter) const { | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'b': | 
|  | case 'r': | 
|  | case 'f': | 
|  | case 'v': | 
|  | case 'y': | 
|  | return C_RegisterClass; | 
|  | } | 
|  | return TargetLowering::getConstraintType(ConstraintLetter); | 
|  | } | 
|  |  | 
|  |  | 
|  | std::vector<unsigned> PPCTargetLowering:: | 
|  | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT::ValueType VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) {      // GCC RS6000 Constraint Letters | 
|  | default: break;  // Unknown constriant letter | 
|  | case 'b': | 
|  | return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 , | 
|  | PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , | 
|  | PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, | 
|  | PPC::R12, PPC::R13, PPC::R14, PPC::R15, | 
|  | PPC::R16, PPC::R17, PPC::R18, PPC::R19, | 
|  | PPC::R20, PPC::R21, PPC::R22, PPC::R23, | 
|  | PPC::R24, PPC::R25, PPC::R26, PPC::R27, | 
|  | PPC::R28, PPC::R29, PPC::R30, PPC::R31, | 
|  | 0); | 
|  | case 'r': | 
|  | return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 , | 
|  | PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , | 
|  | PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, | 
|  | PPC::R12, PPC::R13, PPC::R14, PPC::R15, | 
|  | PPC::R16, PPC::R17, PPC::R18, PPC::R19, | 
|  | PPC::R20, PPC::R21, PPC::R22, PPC::R23, | 
|  | PPC::R24, PPC::R25, PPC::R26, PPC::R27, | 
|  | PPC::R28, PPC::R29, PPC::R30, PPC::R31, | 
|  | 0); | 
|  | case 'f': | 
|  | return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 , | 
|  | PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 , | 
|  | PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, | 
|  | PPC::F12, PPC::F13, PPC::F14, PPC::F15, | 
|  | PPC::F16, PPC::F17, PPC::F18, PPC::F19, | 
|  | PPC::F20, PPC::F21, PPC::F22, PPC::F23, | 
|  | PPC::F24, PPC::F25, PPC::F26, PPC::F27, | 
|  | PPC::F28, PPC::F29, PPC::F30, PPC::F31, | 
|  | 0); | 
|  | case 'v': | 
|  | return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , | 
|  | PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , | 
|  | PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, | 
|  | PPC::V12, PPC::V13, PPC::V14, PPC::V15, | 
|  | PPC::V16, PPC::V17, PPC::V18, PPC::V19, | 
|  | PPC::V20, PPC::V21, PPC::V22, PPC::V23, | 
|  | PPC::V24, PPC::V25, PPC::V26, PPC::V27, | 
|  | PPC::V28, PPC::V29, PPC::V30, PPC::V31, | 
|  | 0); | 
|  | case 'y': | 
|  | return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, | 
|  | PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7, | 
|  | 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  |  | 
|  | // isOperandValidForConstraint | 
|  | bool PPCTargetLowering:: | 
|  | isOperandValidForConstraint(SDOperand Op, char Letter) { | 
|  | switch (Letter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': { | 
|  | if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate. | 
|  | unsigned Value = cast<ConstantSDNode>(Op)->getValue(); | 
|  | switch (Letter) { | 
|  | default: assert(0 && "Unknown constraint letter!"); | 
|  | case 'I':  // "I" is a signed 16-bit constant. | 
|  | return (short)Value == (int)Value; | 
|  | case 'J':  // "J" is a constant with only the high-order 16 bits nonzero. | 
|  | case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits. | 
|  | return (short)Value == 0; | 
|  | case 'K':  // "K" is a constant with only the low-order 16 bits nonzero. | 
|  | return (Value >> 16) == 0; | 
|  | case 'M':  // "M" is a constant that is greater than 31. | 
|  | return Value > 31; | 
|  | case 'N':  // "N" is a positive constant that is an exact power of two. | 
|  | return (int)Value > 0 && isPowerOf2_32(Value); | 
|  | case 'O':  // "O" is the constant zero. | 
|  | return Value == 0; | 
|  | case 'P':  // "P" is a constant whose negation is a signed 16-bit constant. | 
|  | return (short)-Value == (int)-Value; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle standard constraint letters. | 
|  | return TargetLowering::isOperandValidForConstraint(Op, Letter); | 
|  | } | 
|  |  | 
|  | /// isLegalAddressImmediate - Return true if the integer value can be used | 
|  | /// as the offset of the target addressing mode. | 
|  | bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const { | 
|  | // PPC allows a sign-extended 16-bit immediate field. | 
|  | return (V > -(1 << 16) && V < (1 << 16)-1); | 
|  | } |