|  | //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Function evaluator for LLVM IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/Evaluator.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <iterator> | 
|  |  | 
|  | #define DEBUG_TYPE "evaluator" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static inline bool | 
|  | isSimpleEnoughValueToCommit(Constant *C, | 
|  | SmallPtrSetImpl<Constant *> &SimpleConstants, | 
|  | const DataLayout &DL); | 
|  |  | 
|  | /// Return true if the specified constant can be handled by the code generator. | 
|  | /// We don't want to generate something like: | 
|  | ///   void *X = &X/42; | 
|  | /// because the code generator doesn't have a relocation that can handle that. | 
|  | /// | 
|  | /// This function should be called if C was not found (but just got inserted) | 
|  | /// in SimpleConstants to avoid having to rescan the same constants all the | 
|  | /// time. | 
|  | static bool | 
|  | isSimpleEnoughValueToCommitHelper(Constant *C, | 
|  | SmallPtrSetImpl<Constant *> &SimpleConstants, | 
|  | const DataLayout &DL) { | 
|  | // Simple global addresses are supported, do not allow dllimport or | 
|  | // thread-local globals. | 
|  | if (auto *GV = dyn_cast<GlobalValue>(C)) | 
|  | return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); | 
|  |  | 
|  | // Simple integer, undef, constant aggregate zero, etc are all supported. | 
|  | if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) | 
|  | return true; | 
|  |  | 
|  | // Aggregate values are safe if all their elements are. | 
|  | if (isa<ConstantAggregate>(C)) { | 
|  | for (Value *Op : C->operands()) | 
|  | if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We don't know exactly what relocations are allowed in constant expressions, | 
|  | // so we allow &global+constantoffset, which is safe and uniformly supported | 
|  | // across targets. | 
|  | ConstantExpr *CE = cast<ConstantExpr>(C); | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | // Bitcast is fine if the casted value is fine. | 
|  | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); | 
|  |  | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::PtrToInt: | 
|  | // int <=> ptr is fine if the int type is the same size as the | 
|  | // pointer type. | 
|  | if (DL.getTypeSizeInBits(CE->getType()) != | 
|  | DL.getTypeSizeInBits(CE->getOperand(0)->getType())) | 
|  | return false; | 
|  | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); | 
|  |  | 
|  | // GEP is fine if it is simple + constant offset. | 
|  | case Instruction::GetElementPtr: | 
|  | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) | 
|  | if (!isa<ConstantInt>(CE->getOperand(i))) | 
|  | return false; | 
|  | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); | 
|  |  | 
|  | case Instruction::Add: | 
|  | // We allow simple+cst. | 
|  | if (!isa<ConstantInt>(CE->getOperand(1))) | 
|  | return false; | 
|  | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | isSimpleEnoughValueToCommit(Constant *C, | 
|  | SmallPtrSetImpl<Constant *> &SimpleConstants, | 
|  | const DataLayout &DL) { | 
|  | // If we already checked this constant, we win. | 
|  | if (!SimpleConstants.insert(C).second) | 
|  | return true; | 
|  | // Check the constant. | 
|  | return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); | 
|  | } | 
|  |  | 
|  | /// Return true if this constant is simple enough for us to understand.  In | 
|  | /// particular, if it is a cast to anything other than from one pointer type to | 
|  | /// another pointer type, we punt.  We basically just support direct accesses to | 
|  | /// globals and GEP's of globals.  This should be kept up to date with | 
|  | /// CommitValueTo. | 
|  | static bool isSimpleEnoughPointerToCommit(Constant *C) { | 
|  | // Conservatively, avoid aggregate types. This is because we don't | 
|  | // want to worry about them partially overlapping other stores. | 
|  | if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) | 
|  | return false; | 
|  |  | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) | 
|  | // Do not allow weak/*_odr/linkonce linkage or external globals. | 
|  | return GV->hasUniqueInitializer(); | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | // Handle a constantexpr gep. | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | isa<GlobalVariable>(CE->getOperand(0)) && | 
|  | cast<GEPOperator>(CE)->isInBounds()) { | 
|  | GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); | 
|  | // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or | 
|  | // external globals. | 
|  | if (!GV->hasUniqueInitializer()) | 
|  | return false; | 
|  |  | 
|  | // The first index must be zero. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); | 
|  | if (!CI || !CI->isZero()) return false; | 
|  |  | 
|  | // The remaining indices must be compile-time known integers within the | 
|  | // notional bounds of the corresponding static array types. | 
|  | if (!CE->isGEPWithNoNotionalOverIndexing()) | 
|  | return false; | 
|  |  | 
|  | return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); | 
|  |  | 
|  | // A constantexpr bitcast from a pointer to another pointer is a no-op, | 
|  | // and we know how to evaluate it by moving the bitcast from the pointer | 
|  | // operand to the value operand. | 
|  | } else if (CE->getOpcode() == Instruction::BitCast && | 
|  | isa<GlobalVariable>(CE->getOperand(0))) { | 
|  | // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or | 
|  | // external globals. | 
|  | return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's | 
|  | /// type and walk down through the initial elements to obtain additional | 
|  | /// pointers to try. Returns the first non-null return value from Func, or | 
|  | /// nullptr if the type can't be introspected further. | 
|  | static Constant * | 
|  | evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | std::function<Constant *(Constant *)> Func) { | 
|  | Constant *Val; | 
|  | while (!(Val = Func(Ptr))) { | 
|  | // If Ty is a struct, we can convert the pointer to the struct | 
|  | // into a pointer to its first member. | 
|  | // FIXME: This could be extended to support arrays as well. | 
|  | Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); | 
|  | if (!isa<StructType>(Ty)) | 
|  | break; | 
|  |  | 
|  | IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32); | 
|  | Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); | 
|  | Constant *const IdxList[] = {IdxZero, IdxZero}; | 
|  |  | 
|  | Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList); | 
|  | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) | 
|  | Ptr = FoldedPtr; | 
|  | } | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | static Constant *getInitializer(Constant *C) { | 
|  | auto *GV = dyn_cast<GlobalVariable>(C); | 
|  | return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Return the value that would be computed by a load from P after the stores | 
|  | /// reflected by 'memory' have been performed.  If we can't decide, return null. | 
|  | Constant *Evaluator::ComputeLoadResult(Constant *P) { | 
|  | // If this memory location has been recently stored, use the stored value: it | 
|  | // is the most up-to-date. | 
|  | auto findMemLoc = [this](Constant *Ptr) { | 
|  | DenseMap<Constant *, Constant *>::const_iterator I = | 
|  | MutatedMemory.find(Ptr); | 
|  | return I != MutatedMemory.end() ? I->second : nullptr; | 
|  | }; | 
|  |  | 
|  | if (Constant *Val = findMemLoc(P)) | 
|  | return Val; | 
|  |  | 
|  | // Access it. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { | 
|  | if (GV->hasDefinitiveInitializer()) | 
|  | return GV->getInitializer(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) { | 
|  | switch (CE->getOpcode()) { | 
|  | // Handle a constantexpr getelementptr. | 
|  | case Instruction::GetElementPtr: | 
|  | if (auto *I = getInitializer(CE->getOperand(0))) | 
|  | return ConstantFoldLoadThroughGEPConstantExpr(I, CE); | 
|  | break; | 
|  | // Handle a constantexpr bitcast. | 
|  | case Instruction::BitCast: | 
|  | // We're evaluating a load through a pointer that was bitcast to a | 
|  | // different type. See if the "from" pointer has recently been stored. | 
|  | // If it hasn't, we may still be able to find a stored pointer by | 
|  | // introspecting the type. | 
|  | Constant *Val = | 
|  | evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc); | 
|  | if (!Val) | 
|  | Val = getInitializer(CE->getOperand(0)); | 
|  | if (Val) | 
|  | return ConstantFoldLoadThroughBitcast( | 
|  | Val, P->getType()->getPointerElementType(), DL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr;  // don't know how to evaluate. | 
|  | } | 
|  |  | 
|  | static Function *getFunction(Constant *C) { | 
|  | if (auto *Fn = dyn_cast<Function>(C)) | 
|  | return Fn; | 
|  |  | 
|  | if (auto *Alias = dyn_cast<GlobalAlias>(C)) | 
|  | if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) | 
|  | return Fn; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Function * | 
|  | Evaluator::getCalleeWithFormalArgs(CallSite &CS, | 
|  | SmallVector<Constant *, 8> &Formals) { | 
|  | auto *V = CS.getCalledValue(); | 
|  | if (auto *Fn = getFunction(getVal(V))) | 
|  | return getFormalParams(CS, Fn, Formals) ? Fn : nullptr; | 
|  |  | 
|  | auto *CE = dyn_cast<ConstantExpr>(V); | 
|  | if (!CE || CE->getOpcode() != Instruction::BitCast || | 
|  | !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals)) | 
|  | return nullptr; | 
|  |  | 
|  | return dyn_cast<Function>( | 
|  | ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL)); | 
|  | } | 
|  |  | 
|  | bool Evaluator::getFormalParams(CallSite &CS, Function *F, | 
|  | SmallVector<Constant *, 8> &Formals) { | 
|  | if (!F) | 
|  | return false; | 
|  |  | 
|  | auto *FTy = F->getFunctionType(); | 
|  | if (FTy->getNumParams() > CS.getNumArgOperands()) { | 
|  | LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto ArgI = CS.arg_begin(); | 
|  | for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE; | 
|  | ++ParI) { | 
|  | auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL); | 
|  | if (!ArgC) { | 
|  | LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); | 
|  | return false; | 
|  | } | 
|  | Formals.push_back(ArgC); | 
|  | ++ArgI; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If call expression contains bitcast then we may need to cast | 
|  | /// evaluated return value to a type of the call expression. | 
|  | Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) { | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr); | 
|  | if (!RV || !CE || CE->getOpcode() != Instruction::BitCast) | 
|  | return RV; | 
|  |  | 
|  | if (auto *FT = | 
|  | dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) { | 
|  | RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL); | 
|  | if (!RV) | 
|  | LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); | 
|  | } | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | /// Evaluate all instructions in block BB, returning true if successful, false | 
|  | /// if we can't evaluate it.  NewBB returns the next BB that control flows into, | 
|  | /// or null upon return. | 
|  | bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, | 
|  | BasicBlock *&NextBB) { | 
|  | // This is the main evaluation loop. | 
|  | while (true) { | 
|  | Constant *InstResult = nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { | 
|  | if (!SI->isSimple()) { | 
|  | LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); | 
|  | return false;  // no volatile/atomic accesses. | 
|  | } | 
|  | Constant *Ptr = getVal(SI->getOperand(1)); | 
|  | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); | 
|  | Ptr = FoldedPtr; | 
|  | LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); | 
|  | } | 
|  | if (!isSimpleEnoughPointerToCommit(Ptr)) { | 
|  | // If this is too complex for us to commit, reject it. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Pointer is too complex for us to evaluate store."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *Val = getVal(SI->getOperand(0)); | 
|  |  | 
|  | // If this might be too difficult for the backend to handle (e.g. the addr | 
|  | // of one global variable divided by another) then we can't commit it. | 
|  | if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { | 
|  | LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " | 
|  | << *Val << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { | 
|  | if (CE->getOpcode() == Instruction::BitCast) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Attempting to resolve bitcast on constant ptr.\n"); | 
|  | // If we're evaluating a store through a bitcast, then we need | 
|  | // to pull the bitcast off the pointer type and push it onto the | 
|  | // stored value. In order to push the bitcast onto the stored value, | 
|  | // a bitcast from the pointer's element type to Val's type must be | 
|  | // legal. If it's not, we can try introspecting the type to find a | 
|  | // legal conversion. | 
|  |  | 
|  | auto castValTy = [&](Constant *P) -> Constant * { | 
|  | Type *Ty = cast<PointerType>(P->getType())->getElementType(); | 
|  | if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) { | 
|  | Ptr = P; | 
|  | return FV; | 
|  | } | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | Constant *NewVal = | 
|  | evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy); | 
|  | if (!NewVal) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " | 
|  | "evaluate.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Val = NewVal; | 
|  | LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | MutatedMemory[Ptr] = Val; | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { | 
|  | InstResult = ConstantExpr::get(BO->getOpcode(), | 
|  | getVal(BO->getOperand(0)), | 
|  | getVal(BO->getOperand(1))); | 
|  | LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " | 
|  | << *InstResult << "\n"); | 
|  | } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { | 
|  | InstResult = ConstantExpr::getCompare(CI->getPredicate(), | 
|  | getVal(CI->getOperand(0)), | 
|  | getVal(CI->getOperand(1))); | 
|  | LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult | 
|  | << "\n"); | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { | 
|  | InstResult = ConstantExpr::getCast(CI->getOpcode(), | 
|  | getVal(CI->getOperand(0)), | 
|  | CI->getType()); | 
|  | LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult | 
|  | << "\n"); | 
|  | } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { | 
|  | InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), | 
|  | getVal(SI->getOperand(1)), | 
|  | getVal(SI->getOperand(2))); | 
|  | LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult | 
|  | << "\n"); | 
|  | } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { | 
|  | InstResult = ConstantExpr::getExtractValue( | 
|  | getVal(EVI->getAggregateOperand()), EVI->getIndices()); | 
|  | LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " | 
|  | << *InstResult << "\n"); | 
|  | } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { | 
|  | InstResult = ConstantExpr::getInsertValue( | 
|  | getVal(IVI->getAggregateOperand()), | 
|  | getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); | 
|  | LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " | 
|  | << *InstResult << "\n"); | 
|  | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { | 
|  | Constant *P = getVal(GEP->getOperand(0)); | 
|  | SmallVector<Constant*, 8> GEPOps; | 
|  | for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); | 
|  | i != e; ++i) | 
|  | GEPOps.push_back(getVal(*i)); | 
|  | InstResult = | 
|  | ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, | 
|  | cast<GEPOperator>(GEP)->isInBounds()); | 
|  | LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { | 
|  | if (!LI->isSimple()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); | 
|  | return false;  // no volatile/atomic accesses. | 
|  | } | 
|  |  | 
|  | Constant *Ptr = getVal(LI->getOperand(0)); | 
|  | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { | 
|  | Ptr = FoldedPtr; | 
|  | LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " | 
|  | "folding: " | 
|  | << *Ptr << "\n"); | 
|  | } | 
|  | InstResult = ComputeLoadResult(Ptr); | 
|  | if (!InstResult) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Failed to compute load result. Can not evaluate load." | 
|  | "\n"); | 
|  | return false; // Could not evaluate load. | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); | 
|  | } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { | 
|  | if (AI->isArrayAllocation()) { | 
|  | LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); | 
|  | return false;  // Cannot handle array allocs. | 
|  | } | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | AllocaTmps.push_back(std::make_unique<GlobalVariable>( | 
|  | Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), | 
|  | AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, | 
|  | AI->getType()->getPointerAddressSpace())); | 
|  | InstResult = AllocaTmps.back().get(); | 
|  | LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); | 
|  | } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { | 
|  | CallSite CS(&*CurInst); | 
|  |  | 
|  | // Debug info can safely be ignored here. | 
|  | if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); | 
|  | ++CurInst; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Cannot handle inline asm. | 
|  | if (isa<InlineAsm>(CS.getCalledValue())) { | 
|  | LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { | 
|  | if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { | 
|  | if (MSI->isVolatile()) { | 
|  | LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " | 
|  | << "intrinsic.\n"); | 
|  | return false; | 
|  | } | 
|  | Constant *Ptr = getVal(MSI->getDest()); | 
|  | Constant *Val = getVal(MSI->getValue()); | 
|  | Constant *DestVal = ComputeLoadResult(getVal(Ptr)); | 
|  | if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { | 
|  | // This memset is a no-op. | 
|  | LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); | 
|  | ++CurInst; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (II->isLifetimeStartOrEnd()) { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); | 
|  | ++CurInst; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (II->getIntrinsicID() == Intrinsic::invariant_start) { | 
|  | // We don't insert an entry into Values, as it doesn't have a | 
|  | // meaningful return value. | 
|  | if (!II->use_empty()) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Found unused invariant_start. Can't evaluate.\n"); | 
|  | return false; | 
|  | } | 
|  | ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); | 
|  | Value *PtrArg = getVal(II->getArgOperand(1)); | 
|  | Value *Ptr = PtrArg->stripPointerCasts(); | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { | 
|  | Type *ElemTy = GV->getValueType(); | 
|  | if (!Size->isMinusOne() && | 
|  | Size->getValue().getLimitedValue() >= | 
|  | DL.getTypeStoreSize(ElemTy)) { | 
|  | Invariants.insert(GV); | 
|  | LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " | 
|  | << *GV << "\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Found a global var, but can not treat it as an " | 
|  | "invariant.\n"); | 
|  | } | 
|  | } | 
|  | // Continue even if we do nothing. | 
|  | ++CurInst; | 
|  | continue; | 
|  | } else if (II->getIntrinsicID() == Intrinsic::assume) { | 
|  | LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); | 
|  | ++CurInst; | 
|  | continue; | 
|  | } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { | 
|  | LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); | 
|  | ++CurInst; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Resolve function pointers. | 
|  | SmallVector<Constant *, 8> Formals; | 
|  | Function *Callee = getCalleeWithFormalArgs(CS, Formals); | 
|  | if (!Callee || Callee->isInterposable()) { | 
|  | LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); | 
|  | return false;  // Cannot resolve. | 
|  | } | 
|  |  | 
|  | if (Callee->isDeclaration()) { | 
|  | // If this is a function we can constant fold, do it. | 
|  | if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), | 
|  | Callee, Formals, TLI)) { | 
|  | InstResult = castCallResultIfNeeded(CS.getCalledValue(), C); | 
|  | if (!InstResult) | 
|  | return false; | 
|  | LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " | 
|  | << *InstResult << "\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (Callee->getFunctionType()->isVarArg()) { | 
|  | LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *RetVal = nullptr; | 
|  | // Execute the call, if successful, use the return value. | 
|  | ValueStack.emplace_back(); | 
|  | if (!EvaluateFunction(Callee, RetVal, Formals)) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); | 
|  | return false; | 
|  | } | 
|  | ValueStack.pop_back(); | 
|  | InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal); | 
|  | if (RetVal && !InstResult) | 
|  | return false; | 
|  |  | 
|  | if (InstResult) { | 
|  | LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " | 
|  | << *InstResult << "\n\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Successfully evaluated function. Result: 0\n\n"); | 
|  | } | 
|  | } | 
|  | } else if (CurInst->isTerminator()) { | 
|  | LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { | 
|  | if (BI->isUnconditional()) { | 
|  | NextBB = BI->getSuccessor(0); | 
|  | } else { | 
|  | ConstantInt *Cond = | 
|  | dyn_cast<ConstantInt>(getVal(BI->getCondition())); | 
|  | if (!Cond) return false;  // Cannot determine. | 
|  |  | 
|  | NextBB = BI->getSuccessor(!Cond->getZExtValue()); | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { | 
|  | ConstantInt *Val = | 
|  | dyn_cast<ConstantInt>(getVal(SI->getCondition())); | 
|  | if (!Val) return false;  // Cannot determine. | 
|  | NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); | 
|  | } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { | 
|  | Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); | 
|  | if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) | 
|  | NextBB = BA->getBasicBlock(); | 
|  | else | 
|  | return false;  // Cannot determine. | 
|  | } else if (isa<ReturnInst>(CurInst)) { | 
|  | NextBB = nullptr; | 
|  | } else { | 
|  | // invoke, unwind, resume, unreachable. | 
|  | LLVM_DEBUG(dbgs() << "Can not handle terminator."); | 
|  | return false;  // Cannot handle this terminator. | 
|  | } | 
|  |  | 
|  | // We succeeded at evaluating this block! | 
|  | LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); | 
|  | return true; | 
|  | } else { | 
|  | // Did not know how to evaluate this! | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Failed to evaluate block due to unhandled instruction." | 
|  | "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!CurInst->use_empty()) { | 
|  | if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI)) | 
|  | InstResult = FoldedInstResult; | 
|  |  | 
|  | setVal(&*CurInst, InstResult); | 
|  | } | 
|  |  | 
|  | // If we just processed an invoke, we finished evaluating the block. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { | 
|  | NextBB = II->getNormalDest(); | 
|  | LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Advance program counter. | 
|  | ++CurInst; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Evaluate a call to function F, returning true if successful, false if we | 
|  | /// can't evaluate it.  ActualArgs contains the formal arguments for the | 
|  | /// function. | 
|  | bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, | 
|  | const SmallVectorImpl<Constant*> &ActualArgs) { | 
|  | // Check to see if this function is already executing (recursion).  If so, | 
|  | // bail out.  TODO: we might want to accept limited recursion. | 
|  | if (is_contained(CallStack, F)) | 
|  | return false; | 
|  |  | 
|  | CallStack.push_back(F); | 
|  |  | 
|  | // Initialize arguments to the incoming values specified. | 
|  | unsigned ArgNo = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; | 
|  | ++AI, ++ArgNo) | 
|  | setVal(&*AI, ActualArgs[ArgNo]); | 
|  |  | 
|  | // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such, | 
|  | // we can only evaluate any one basic block at most once.  This set keeps | 
|  | // track of what we have executed so we can detect recursive cases etc. | 
|  | SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; | 
|  |  | 
|  | // CurBB - The current basic block we're evaluating. | 
|  | BasicBlock *CurBB = &F->front(); | 
|  |  | 
|  | BasicBlock::iterator CurInst = CurBB->begin(); | 
|  |  | 
|  | while (true) { | 
|  | BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. | 
|  | LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); | 
|  |  | 
|  | if (!EvaluateBlock(CurInst, NextBB)) | 
|  | return false; | 
|  |  | 
|  | if (!NextBB) { | 
|  | // Successfully running until there's no next block means that we found | 
|  | // the return.  Fill it the return value and pop the call stack. | 
|  | ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); | 
|  | if (RI->getNumOperands()) | 
|  | RetVal = getVal(RI->getOperand(0)); | 
|  | CallStack.pop_back(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Okay, we succeeded in evaluating this control flow.  See if we have | 
|  | // executed the new block before.  If so, we have a looping function, | 
|  | // which we cannot evaluate in reasonable time. | 
|  | if (!ExecutedBlocks.insert(NextBB).second) | 
|  | return false;  // looped! | 
|  |  | 
|  | // Okay, we have never been in this block before.  Check to see if there | 
|  | // are any PHI nodes.  If so, evaluate them with information about where | 
|  | // we came from. | 
|  | PHINode *PN = nullptr; | 
|  | for (CurInst = NextBB->begin(); | 
|  | (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) | 
|  | setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); | 
|  |  | 
|  | // Advance to the next block. | 
|  | CurBB = NextBB; | 
|  | } | 
|  | } |