|  | //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Decl nodes as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGBlocks.h" | 
|  | #include "CGCXXABI.h" | 
|  | #include "CGCleanup.h" | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CGOpenCLRuntime.h" | 
|  | #include "CGOpenMPRuntime.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "ConstantEmitter.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclOpenMP.h" | 
|  | #include "clang/Basic/CodeGenOptions.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/CodeGen/CGFunctionInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Type.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | void CodeGenFunction::EmitDecl(const Decl &D) { | 
|  | switch (D.getKind()) { | 
|  | case Decl::BuiltinTemplate: | 
|  | case Decl::TranslationUnit: | 
|  | case Decl::ExternCContext: | 
|  | case Decl::Namespace: | 
|  | case Decl::UnresolvedUsingTypename: | 
|  | case Decl::ClassTemplateSpecialization: | 
|  | case Decl::ClassTemplatePartialSpecialization: | 
|  | case Decl::VarTemplateSpecialization: | 
|  | case Decl::VarTemplatePartialSpecialization: | 
|  | case Decl::TemplateTypeParm: | 
|  | case Decl::UnresolvedUsingValue: | 
|  | case Decl::NonTypeTemplateParm: | 
|  | case Decl::CXXDeductionGuide: | 
|  | case Decl::CXXMethod: | 
|  | case Decl::CXXConstructor: | 
|  | case Decl::CXXDestructor: | 
|  | case Decl::CXXConversion: | 
|  | case Decl::Field: | 
|  | case Decl::MSProperty: | 
|  | case Decl::IndirectField: | 
|  | case Decl::ObjCIvar: | 
|  | case Decl::ObjCAtDefsField: | 
|  | case Decl::ParmVar: | 
|  | case Decl::ImplicitParam: | 
|  | case Decl::ClassTemplate: | 
|  | case Decl::VarTemplate: | 
|  | case Decl::FunctionTemplate: | 
|  | case Decl::TypeAliasTemplate: | 
|  | case Decl::TemplateTemplateParm: | 
|  | case Decl::ObjCMethod: | 
|  | case Decl::ObjCCategory: | 
|  | case Decl::ObjCProtocol: | 
|  | case Decl::ObjCInterface: | 
|  | case Decl::ObjCCategoryImpl: | 
|  | case Decl::ObjCImplementation: | 
|  | case Decl::ObjCProperty: | 
|  | case Decl::ObjCCompatibleAlias: | 
|  | case Decl::PragmaComment: | 
|  | case Decl::PragmaDetectMismatch: | 
|  | case Decl::AccessSpec: | 
|  | case Decl::LinkageSpec: | 
|  | case Decl::Export: | 
|  | case Decl::ObjCPropertyImpl: | 
|  | case Decl::FileScopeAsm: | 
|  | case Decl::Friend: | 
|  | case Decl::FriendTemplate: | 
|  | case Decl::Block: | 
|  | case Decl::Captured: | 
|  | case Decl::ClassScopeFunctionSpecialization: | 
|  | case Decl::UsingShadow: | 
|  | case Decl::ConstructorUsingShadow: | 
|  | case Decl::ObjCTypeParam: | 
|  | case Decl::Binding: | 
|  | llvm_unreachable("Declaration should not be in declstmts!"); | 
|  | case Decl::Function:  // void X(); | 
|  | case Decl::Record:    // struct/union/class X; | 
|  | case Decl::Enum:      // enum X; | 
|  | case Decl::EnumConstant: // enum ? { X = ? } | 
|  | case Decl::CXXRecord: // struct/union/class X; [C++] | 
|  | case Decl::StaticAssert: // static_assert(X, ""); [C++0x] | 
|  | case Decl::Label:        // __label__ x; | 
|  | case Decl::Import: | 
|  | case Decl::OMPThreadPrivate: | 
|  | case Decl::OMPAllocate: | 
|  | case Decl::OMPCapturedExpr: | 
|  | case Decl::OMPRequires: | 
|  | case Decl::Empty: | 
|  | // None of these decls require codegen support. | 
|  | return; | 
|  |  | 
|  | case Decl::NamespaceAlias: | 
|  | if (CGDebugInfo *DI = getDebugInfo()) | 
|  | DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); | 
|  | return; | 
|  | case Decl::Using:          // using X; [C++] | 
|  | if (CGDebugInfo *DI = getDebugInfo()) | 
|  | DI->EmitUsingDecl(cast<UsingDecl>(D)); | 
|  | return; | 
|  | case Decl::UsingPack: | 
|  | for (auto *Using : cast<UsingPackDecl>(D).expansions()) | 
|  | EmitDecl(*Using); | 
|  | return; | 
|  | case Decl::UsingDirective: // using namespace X; [C++] | 
|  | if (CGDebugInfo *DI = getDebugInfo()) | 
|  | DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); | 
|  | return; | 
|  | case Decl::Var: | 
|  | case Decl::Decomposition: { | 
|  | const VarDecl &VD = cast<VarDecl>(D); | 
|  | assert(VD.isLocalVarDecl() && | 
|  | "Should not see file-scope variables inside a function!"); | 
|  | EmitVarDecl(VD); | 
|  | if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) | 
|  | for (auto *B : DD->bindings()) | 
|  | if (auto *HD = B->getHoldingVar()) | 
|  | EmitVarDecl(*HD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Decl::OMPDeclareReduction: | 
|  | return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); | 
|  |  | 
|  | case Decl::OMPDeclareMapper: | 
|  | return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); | 
|  |  | 
|  | case Decl::Typedef:      // typedef int X; | 
|  | case Decl::TypeAlias: {  // using X = int; [C++0x] | 
|  | const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); | 
|  | QualType Ty = TD.getUnderlyingType(); | 
|  |  | 
|  | if (Ty->isVariablyModifiedType()) | 
|  | EmitVariablyModifiedType(Ty); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitVarDecl - This method handles emission of any variable declaration | 
|  | /// inside a function, including static vars etc. | 
|  | void CodeGenFunction::EmitVarDecl(const VarDecl &D) { | 
|  | if (D.hasExternalStorage()) | 
|  | // Don't emit it now, allow it to be emitted lazily on its first use. | 
|  | return; | 
|  |  | 
|  | // Some function-scope variable does not have static storage but still | 
|  | // needs to be emitted like a static variable, e.g. a function-scope | 
|  | // variable in constant address space in OpenCL. | 
|  | if (D.getStorageDuration() != SD_Automatic) { | 
|  | // Static sampler variables translated to function calls. | 
|  | if (D.getType()->isSamplerT()) | 
|  | return; | 
|  |  | 
|  | llvm::GlobalValue::LinkageTypes Linkage = | 
|  | CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); | 
|  |  | 
|  | // FIXME: We need to force the emission/use of a guard variable for | 
|  | // some variables even if we can constant-evaluate them because | 
|  | // we can't guarantee every translation unit will constant-evaluate them. | 
|  |  | 
|  | return EmitStaticVarDecl(D, Linkage); | 
|  | } | 
|  |  | 
|  | if (D.getType().getAddressSpace() == LangAS::opencl_local) | 
|  | return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); | 
|  |  | 
|  | assert(D.hasLocalStorage()); | 
|  | return EmitAutoVarDecl(D); | 
|  | } | 
|  |  | 
|  | static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { | 
|  | if (CGM.getLangOpts().CPlusPlus) | 
|  | return CGM.getMangledName(&D).str(); | 
|  |  | 
|  | // If this isn't C++, we don't need a mangled name, just a pretty one. | 
|  | assert(!D.isExternallyVisible() && "name shouldn't matter"); | 
|  | std::string ContextName; | 
|  | const DeclContext *DC = D.getDeclContext(); | 
|  | if (auto *CD = dyn_cast<CapturedDecl>(DC)) | 
|  | DC = cast<DeclContext>(CD->getNonClosureContext()); | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(DC)) | 
|  | ContextName = CGM.getMangledName(FD); | 
|  | else if (const auto *BD = dyn_cast<BlockDecl>(DC)) | 
|  | ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); | 
|  | else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) | 
|  | ContextName = OMD->getSelector().getAsString(); | 
|  | else | 
|  | llvm_unreachable("Unknown context for static var decl"); | 
|  |  | 
|  | ContextName += "." + D.getNameAsString(); | 
|  | return ContextName; | 
|  | } | 
|  |  | 
|  | llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( | 
|  | const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { | 
|  | // In general, we don't always emit static var decls once before we reference | 
|  | // them. It is possible to reference them before emitting the function that | 
|  | // contains them, and it is possible to emit the containing function multiple | 
|  | // times. | 
|  | if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) | 
|  | return ExistingGV; | 
|  |  | 
|  | QualType Ty = D.getType(); | 
|  | assert(Ty->isConstantSizeType() && "VLAs can't be static"); | 
|  |  | 
|  | // Use the label if the variable is renamed with the asm-label extension. | 
|  | std::string Name; | 
|  | if (D.hasAttr<AsmLabelAttr>()) | 
|  | Name = getMangledName(&D); | 
|  | else | 
|  | Name = getStaticDeclName(*this, D); | 
|  |  | 
|  | llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); | 
|  | LangAS AS = GetGlobalVarAddressSpace(&D); | 
|  | unsigned TargetAS = getContext().getTargetAddressSpace(AS); | 
|  |  | 
|  | // OpenCL variables in local address space and CUDA shared | 
|  | // variables cannot have an initializer. | 
|  | llvm::Constant *Init = nullptr; | 
|  | if (Ty.getAddressSpace() == LangAS::opencl_local || | 
|  | D.hasAttr<CUDASharedAttr>()) | 
|  | Init = llvm::UndefValue::get(LTy); | 
|  | else | 
|  | Init = EmitNullConstant(Ty); | 
|  |  | 
|  | llvm::GlobalVariable *GV = new llvm::GlobalVariable( | 
|  | getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, | 
|  | nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); | 
|  | GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); | 
|  |  | 
|  | if (supportsCOMDAT() && GV->isWeakForLinker()) | 
|  | GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); | 
|  |  | 
|  | if (D.getTLSKind()) | 
|  | setTLSMode(GV, D); | 
|  |  | 
|  | setGVProperties(GV, &D); | 
|  |  | 
|  | // Make sure the result is of the correct type. | 
|  | LangAS ExpectedAS = Ty.getAddressSpace(); | 
|  | llvm::Constant *Addr = GV; | 
|  | if (AS != ExpectedAS) { | 
|  | Addr = getTargetCodeGenInfo().performAddrSpaceCast( | 
|  | *this, GV, AS, ExpectedAS, | 
|  | LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); | 
|  | } | 
|  |  | 
|  | setStaticLocalDeclAddress(&D, Addr); | 
|  |  | 
|  | // Ensure that the static local gets initialized by making sure the parent | 
|  | // function gets emitted eventually. | 
|  | const Decl *DC = cast<Decl>(D.getDeclContext()); | 
|  |  | 
|  | // We can't name blocks or captured statements directly, so try to emit their | 
|  | // parents. | 
|  | if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { | 
|  | DC = DC->getNonClosureContext(); | 
|  | // FIXME: Ensure that global blocks get emitted. | 
|  | if (!DC) | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | GlobalDecl GD; | 
|  | if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) | 
|  | GD = GlobalDecl(CD, Ctor_Base); | 
|  | else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) | 
|  | GD = GlobalDecl(DD, Dtor_Base); | 
|  | else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) | 
|  | GD = GlobalDecl(FD); | 
|  | else { | 
|  | // Don't do anything for Obj-C method decls or global closures. We should | 
|  | // never defer them. | 
|  | assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); | 
|  | } | 
|  | if (GD.getDecl()) { | 
|  | // Disable emission of the parent function for the OpenMP device codegen. | 
|  | CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); | 
|  | (void)GetAddrOfGlobal(GD); | 
|  | } | 
|  |  | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | /// hasNontrivialDestruction - Determine whether a type's destruction is | 
|  | /// non-trivial. If so, and the variable uses static initialization, we must | 
|  | /// register its destructor to run on exit. | 
|  | static bool hasNontrivialDestruction(QualType T) { | 
|  | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | 
|  | return RD && !RD->hasTrivialDestructor(); | 
|  | } | 
|  |  | 
|  | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the | 
|  | /// global variable that has already been created for it.  If the initializer | 
|  | /// has a different type than GV does, this may free GV and return a different | 
|  | /// one.  Otherwise it just returns GV. | 
|  | llvm::GlobalVariable * | 
|  | CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, | 
|  | llvm::GlobalVariable *GV) { | 
|  | ConstantEmitter emitter(*this); | 
|  | llvm::Constant *Init = emitter.tryEmitForInitializer(D); | 
|  |  | 
|  | // If constant emission failed, then this should be a C++ static | 
|  | // initializer. | 
|  | if (!Init) { | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); | 
|  | else if (HaveInsertPoint()) { | 
|  | // Since we have a static initializer, this global variable can't | 
|  | // be constant. | 
|  | GV->setConstant(false); | 
|  |  | 
|  | EmitCXXGuardedInit(D, GV, /*PerformInit*/true); | 
|  | } | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | // The initializer may differ in type from the global. Rewrite | 
|  | // the global to match the initializer.  (We have to do this | 
|  | // because some types, like unions, can't be completely represented | 
|  | // in the LLVM type system.) | 
|  | if (GV->getType()->getElementType() != Init->getType()) { | 
|  | llvm::GlobalVariable *OldGV = GV; | 
|  |  | 
|  | GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), | 
|  | OldGV->isConstant(), | 
|  | OldGV->getLinkage(), Init, "", | 
|  | /*InsertBefore*/ OldGV, | 
|  | OldGV->getThreadLocalMode(), | 
|  | CGM.getContext().getTargetAddressSpace(D.getType())); | 
|  | GV->setVisibility(OldGV->getVisibility()); | 
|  | GV->setDSOLocal(OldGV->isDSOLocal()); | 
|  | GV->setComdat(OldGV->getComdat()); | 
|  |  | 
|  | // Steal the name of the old global | 
|  | GV->takeName(OldGV); | 
|  |  | 
|  | // Replace all uses of the old global with the new global | 
|  | llvm::Constant *NewPtrForOldDecl = | 
|  | llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); | 
|  | OldGV->replaceAllUsesWith(NewPtrForOldDecl); | 
|  |  | 
|  | // Erase the old global, since it is no longer used. | 
|  | OldGV->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | GV->setConstant(CGM.isTypeConstant(D.getType(), true)); | 
|  | GV->setInitializer(Init); | 
|  |  | 
|  | emitter.finalize(GV); | 
|  |  | 
|  | if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { | 
|  | // We have a constant initializer, but a nontrivial destructor. We still | 
|  | // need to perform a guarded "initialization" in order to register the | 
|  | // destructor. | 
|  | EmitCXXGuardedInit(D, GV, /*PerformInit*/false); | 
|  | } | 
|  |  | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, | 
|  | llvm::GlobalValue::LinkageTypes Linkage) { | 
|  | // Check to see if we already have a global variable for this | 
|  | // declaration.  This can happen when double-emitting function | 
|  | // bodies, e.g. with complete and base constructors. | 
|  | llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); | 
|  | CharUnits alignment = getContext().getDeclAlign(&D); | 
|  |  | 
|  | // Store into LocalDeclMap before generating initializer to handle | 
|  | // circular references. | 
|  | setAddrOfLocalVar(&D, Address(addr, alignment)); | 
|  |  | 
|  | // We can't have a VLA here, but we can have a pointer to a VLA, | 
|  | // even though that doesn't really make any sense. | 
|  | // Make sure to evaluate VLA bounds now so that we have them for later. | 
|  | if (D.getType()->isVariablyModifiedType()) | 
|  | EmitVariablyModifiedType(D.getType()); | 
|  |  | 
|  | // Save the type in case adding the initializer forces a type change. | 
|  | llvm::Type *expectedType = addr->getType(); | 
|  |  | 
|  | llvm::GlobalVariable *var = | 
|  | cast<llvm::GlobalVariable>(addr->stripPointerCasts()); | 
|  |  | 
|  | // CUDA's local and local static __shared__ variables should not | 
|  | // have any non-empty initializers. This is ensured by Sema. | 
|  | // Whatever initializer such variable may have when it gets here is | 
|  | // a no-op and should not be emitted. | 
|  | bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && | 
|  | D.hasAttr<CUDASharedAttr>(); | 
|  | // If this value has an initializer, emit it. | 
|  | if (D.getInit() && !isCudaSharedVar) | 
|  | var = AddInitializerToStaticVarDecl(D, var); | 
|  |  | 
|  | var->setAlignment(alignment.getQuantity()); | 
|  |  | 
|  | if (D.hasAttr<AnnotateAttr>()) | 
|  | CGM.AddGlobalAnnotations(&D, var); | 
|  |  | 
|  | if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) | 
|  | var->addAttribute("bss-section", SA->getName()); | 
|  | if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) | 
|  | var->addAttribute("data-section", SA->getName()); | 
|  | if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) | 
|  | var->addAttribute("rodata-section", SA->getName()); | 
|  |  | 
|  | if (const SectionAttr *SA = D.getAttr<SectionAttr>()) | 
|  | var->setSection(SA->getName()); | 
|  |  | 
|  | if (D.hasAttr<UsedAttr>()) | 
|  | CGM.addUsedGlobal(var); | 
|  |  | 
|  | // We may have to cast the constant because of the initializer | 
|  | // mismatch above. | 
|  | // | 
|  | // FIXME: It is really dangerous to store this in the map; if anyone | 
|  | // RAUW's the GV uses of this constant will be invalid. | 
|  | llvm::Constant *castedAddr = | 
|  | llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); | 
|  | if (var != castedAddr) | 
|  | LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); | 
|  | CGM.setStaticLocalDeclAddress(&D, castedAddr); | 
|  |  | 
|  | CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); | 
|  |  | 
|  | // Emit global variable debug descriptor for static vars. | 
|  | CGDebugInfo *DI = getDebugInfo(); | 
|  | if (DI && | 
|  | CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { | 
|  | DI->setLocation(D.getLocation()); | 
|  | DI->EmitGlobalVariable(var, &D); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct DestroyObject final : EHScopeStack::Cleanup { | 
|  | DestroyObject(Address addr, QualType type, | 
|  | CodeGenFunction::Destroyer *destroyer, | 
|  | bool useEHCleanupForArray) | 
|  | : addr(addr), type(type), destroyer(destroyer), | 
|  | useEHCleanupForArray(useEHCleanupForArray) {} | 
|  |  | 
|  | Address addr; | 
|  | QualType type; | 
|  | CodeGenFunction::Destroyer *destroyer; | 
|  | bool useEHCleanupForArray; | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | // Don't use an EH cleanup recursively from an EH cleanup. | 
|  | bool useEHCleanupForArray = | 
|  | flags.isForNormalCleanup() && this->useEHCleanupForArray; | 
|  |  | 
|  | CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <class Derived> | 
|  | struct DestroyNRVOVariable : EHScopeStack::Cleanup { | 
|  | DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) | 
|  | : NRVOFlag(NRVOFlag), Loc(addr) {} | 
|  |  | 
|  | llvm::Value *NRVOFlag; | 
|  | Address Loc; | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | // Along the exceptions path we always execute the dtor. | 
|  | bool NRVO = flags.isForNormalCleanup() && NRVOFlag; | 
|  |  | 
|  | llvm::BasicBlock *SkipDtorBB = nullptr; | 
|  | if (NRVO) { | 
|  | // If we exited via NRVO, we skip the destructor call. | 
|  | llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); | 
|  | SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); | 
|  | llvm::Value *DidNRVO = | 
|  | CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); | 
|  | CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); | 
|  | CGF.EmitBlock(RunDtorBB); | 
|  | } | 
|  |  | 
|  | static_cast<Derived *>(this)->emitDestructorCall(CGF); | 
|  |  | 
|  | if (NRVO) CGF.EmitBlock(SkipDtorBB); | 
|  | } | 
|  |  | 
|  | virtual ~DestroyNRVOVariable() = default; | 
|  | }; | 
|  |  | 
|  | struct DestroyNRVOVariableCXX final | 
|  | : DestroyNRVOVariable<DestroyNRVOVariableCXX> { | 
|  | DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, | 
|  | llvm::Value *NRVOFlag) | 
|  | : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), | 
|  | Dtor(Dtor) {} | 
|  |  | 
|  | const CXXDestructorDecl *Dtor; | 
|  |  | 
|  | void emitDestructorCall(CodeGenFunction &CGF) { | 
|  | CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, | 
|  | /*ForVirtualBase=*/false, | 
|  | /*Delegating=*/false, Loc); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct DestroyNRVOVariableC final | 
|  | : DestroyNRVOVariable<DestroyNRVOVariableC> { | 
|  | DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) | 
|  | : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} | 
|  |  | 
|  | QualType Ty; | 
|  |  | 
|  | void emitDestructorCall(CodeGenFunction &CGF) { | 
|  | CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallStackRestore final : EHScopeStack::Cleanup { | 
|  | Address Stack; | 
|  | CallStackRestore(Address Stack) : Stack(Stack) {} | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | llvm::Value *V = CGF.Builder.CreateLoad(Stack); | 
|  | llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); | 
|  | CGF.Builder.CreateCall(F, V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ExtendGCLifetime final : EHScopeStack::Cleanup { | 
|  | const VarDecl &Var; | 
|  | ExtendGCLifetime(const VarDecl *var) : Var(*var) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | // Compute the address of the local variable, in case it's a | 
|  | // byref or something. | 
|  | DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, | 
|  | Var.getType(), VK_LValue, SourceLocation()); | 
|  | llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), | 
|  | SourceLocation()); | 
|  | CGF.EmitExtendGCLifetime(value); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallCleanupFunction final : EHScopeStack::Cleanup { | 
|  | llvm::Constant *CleanupFn; | 
|  | const CGFunctionInfo &FnInfo; | 
|  | const VarDecl &Var; | 
|  |  | 
|  | CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, | 
|  | const VarDecl *Var) | 
|  | : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, | 
|  | Var.getType(), VK_LValue, SourceLocation()); | 
|  | // Compute the address of the local variable, in case it's a byref | 
|  | // or something. | 
|  | llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); | 
|  |  | 
|  | // In some cases, the type of the function argument will be different from | 
|  | // the type of the pointer. An example of this is | 
|  | // void f(void* arg); | 
|  | // __attribute__((cleanup(f))) void *g; | 
|  | // | 
|  | // To fix this we insert a bitcast here. | 
|  | QualType ArgTy = FnInfo.arg_begin()->type; | 
|  | llvm::Value *Arg = | 
|  | CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); | 
|  |  | 
|  | CallArgList Args; | 
|  | Args.add(RValue::get(Arg), | 
|  | CGF.getContext().getPointerType(Var.getType())); | 
|  | auto Callee = CGCallee::forDirect(CleanupFn); | 
|  | CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// EmitAutoVarWithLifetime - Does the setup required for an automatic | 
|  | /// variable with lifetime. | 
|  | static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, | 
|  | Address addr, | 
|  | Qualifiers::ObjCLifetime lifetime) { | 
|  | switch (lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | llvm_unreachable("present but none"); | 
|  |  | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // nothing to do | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: { | 
|  | CodeGenFunction::Destroyer *destroyer = | 
|  | (var.hasAttr<ObjCPreciseLifetimeAttr>() | 
|  | ? CodeGenFunction::destroyARCStrongPrecise | 
|  | : CodeGenFunction::destroyARCStrongImprecise); | 
|  |  | 
|  | CleanupKind cleanupKind = CGF.getARCCleanupKind(); | 
|  | CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, | 
|  | cleanupKind & EHCleanup); | 
|  | break; | 
|  | } | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | // nothing to do | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | // __weak objects always get EH cleanups; otherwise, exceptions | 
|  | // could cause really nasty crashes instead of mere leaks. | 
|  | CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), | 
|  | CodeGenFunction::destroyARCWeak, | 
|  | /*useEHCleanup*/ true); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isAccessedBy(const VarDecl &var, const Stmt *s) { | 
|  | if (const Expr *e = dyn_cast<Expr>(s)) { | 
|  | // Skip the most common kinds of expressions that make | 
|  | // hierarchy-walking expensive. | 
|  | s = e = e->IgnoreParenCasts(); | 
|  |  | 
|  | if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) | 
|  | return (ref->getDecl() == &var); | 
|  | if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { | 
|  | const BlockDecl *block = be->getBlockDecl(); | 
|  | for (const auto &I : block->captures()) { | 
|  | if (I.getVariable() == &var) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const Stmt *SubStmt : s->children()) | 
|  | // SubStmt might be null; as in missing decl or conditional of an if-stmt. | 
|  | if (SubStmt && isAccessedBy(var, SubStmt)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { | 
|  | if (!decl) return false; | 
|  | if (!isa<VarDecl>(decl)) return false; | 
|  | const VarDecl *var = cast<VarDecl>(decl); | 
|  | return isAccessedBy(*var, e); | 
|  | } | 
|  |  | 
|  | static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, | 
|  | const LValue &destLV, const Expr *init) { | 
|  | bool needsCast = false; | 
|  |  | 
|  | while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { | 
|  | switch (castExpr->getCastKind()) { | 
|  | // Look through casts that don't require representation changes. | 
|  | case CK_NoOp: | 
|  | case CK_BitCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | needsCast = true; | 
|  | break; | 
|  |  | 
|  | // If we find an l-value to r-value cast from a __weak variable, | 
|  | // emit this operation as a copy or move. | 
|  | case CK_LValueToRValue: { | 
|  | const Expr *srcExpr = castExpr->getSubExpr(); | 
|  | if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) | 
|  | return false; | 
|  |  | 
|  | // Emit the source l-value. | 
|  | LValue srcLV = CGF.EmitLValue(srcExpr); | 
|  |  | 
|  | // Handle a formal type change to avoid asserting. | 
|  | auto srcAddr = srcLV.getAddress(); | 
|  | if (needsCast) { | 
|  | srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, | 
|  | destLV.getAddress().getElementType()); | 
|  | } | 
|  |  | 
|  | // If it was an l-value, use objc_copyWeak. | 
|  | if (srcExpr->getValueKind() == VK_LValue) { | 
|  | CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); | 
|  | } else { | 
|  | assert(srcExpr->getValueKind() == VK_XValue); | 
|  | CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Stop at anything else. | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | init = castExpr->getSubExpr(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void drillIntoBlockVariable(CodeGenFunction &CGF, | 
|  | LValue &lvalue, | 
|  | const VarDecl *var) { | 
|  | lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, | 
|  | SourceLocation Loc) { | 
|  | if (!SanOpts.has(SanitizerKind::NullabilityAssign)) | 
|  | return; | 
|  |  | 
|  | auto Nullability = LHS.getType()->getNullability(getContext()); | 
|  | if (!Nullability || *Nullability != NullabilityKind::NonNull) | 
|  | return; | 
|  |  | 
|  | // Check if the right hand side of the assignment is nonnull, if the left | 
|  | // hand side must be nonnull. | 
|  | SanitizerScope SanScope(this); | 
|  | llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); | 
|  | llvm::Constant *StaticData[] = { | 
|  | EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), | 
|  | llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. | 
|  | llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; | 
|  | EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, | 
|  | SanitizerHandler::TypeMismatch, StaticData, RHS); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, | 
|  | LValue lvalue, bool capturedByInit) { | 
|  | Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); | 
|  | if (!lifetime) { | 
|  | llvm::Value *value = EmitScalarExpr(init); | 
|  | if (capturedByInit) | 
|  | drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); | 
|  | EmitNullabilityCheck(lvalue, value, init->getExprLoc()); | 
|  | EmitStoreThroughLValue(RValue::get(value), lvalue, true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) | 
|  | init = DIE->getExpr(); | 
|  |  | 
|  | // If we're emitting a value with lifetime, we have to do the | 
|  | // initialization *before* we leave the cleanup scopes. | 
|  | if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { | 
|  | enterFullExpression(fe); | 
|  | init = fe->getSubExpr(); | 
|  | } | 
|  | CodeGenFunction::RunCleanupsScope Scope(*this); | 
|  |  | 
|  | // We have to maintain the illusion that the variable is | 
|  | // zero-initialized.  If the variable might be accessed in its | 
|  | // initializer, zero-initialize before running the initializer, then | 
|  | // actually perform the initialization with an assign. | 
|  | bool accessedByInit = false; | 
|  | if (lifetime != Qualifiers::OCL_ExplicitNone) | 
|  | accessedByInit = (capturedByInit || isAccessedBy(D, init)); | 
|  | if (accessedByInit) { | 
|  | LValue tempLV = lvalue; | 
|  | // Drill down to the __block object if necessary. | 
|  | if (capturedByInit) { | 
|  | // We can use a simple GEP for this because it can't have been | 
|  | // moved yet. | 
|  | tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), | 
|  | cast<VarDecl>(D), | 
|  | /*follow*/ false)); | 
|  | } | 
|  |  | 
|  | auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); | 
|  | llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); | 
|  |  | 
|  | // If __weak, we want to use a barrier under certain conditions. | 
|  | if (lifetime == Qualifiers::OCL_Weak) | 
|  | EmitARCInitWeak(tempLV.getAddress(), zero); | 
|  |  | 
|  | // Otherwise just do a simple store. | 
|  | else | 
|  | EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); | 
|  | } | 
|  |  | 
|  | // Emit the initializer. | 
|  | llvm::Value *value = nullptr; | 
|  |  | 
|  | switch (lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | llvm_unreachable("present but none"); | 
|  |  | 
|  | case Qualifiers::OCL_Strong: { | 
|  | if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { | 
|  | value = EmitARCRetainScalarExpr(init); | 
|  | break; | 
|  | } | 
|  | // If D is pseudo-strong, treat it like __unsafe_unretained here. This means | 
|  | // that we omit the retain, and causes non-autoreleased return values to be | 
|  | // immediately released. | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  |  | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | value = EmitARCUnsafeUnretainedScalarExpr(init); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: { | 
|  | // If it's not accessed by the initializer, try to emit the | 
|  | // initialization with a copy or move. | 
|  | if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // No way to optimize a producing initializer into this.  It's not | 
|  | // worth optimizing for, because the value will immediately | 
|  | // disappear in the common case. | 
|  | value = EmitScalarExpr(init); | 
|  |  | 
|  | if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); | 
|  | if (accessedByInit) | 
|  | EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); | 
|  | else | 
|  | EmitARCInitWeak(lvalue.getAddress(), value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | value = EmitARCRetainAutoreleaseScalarExpr(init); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); | 
|  |  | 
|  | EmitNullabilityCheck(lvalue, value, init->getExprLoc()); | 
|  |  | 
|  | // If the variable might have been accessed by its initializer, we | 
|  | // might have to initialize with a barrier.  We have to do this for | 
|  | // both __weak and __strong, but __weak got filtered out above. | 
|  | if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { | 
|  | llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); | 
|  | EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); | 
|  | EmitARCRelease(oldValue, ARCImpreciseLifetime); | 
|  | return; | 
|  | } | 
|  |  | 
|  | EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); | 
|  | } | 
|  |  | 
|  | /// Decide whether we can emit the non-zero parts of the specified initializer | 
|  | /// with equal or fewer than NumStores scalar stores. | 
|  | static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, | 
|  | unsigned &NumStores) { | 
|  | // Zero and Undef never requires any extra stores. | 
|  | if (isa<llvm::ConstantAggregateZero>(Init) || | 
|  | isa<llvm::ConstantPointerNull>(Init) || | 
|  | isa<llvm::UndefValue>(Init)) | 
|  | return true; | 
|  | if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || | 
|  | isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || | 
|  | isa<llvm::ConstantExpr>(Init)) | 
|  | return Init->isNullValue() || NumStores--; | 
|  |  | 
|  | // See if we can emit each element. | 
|  | if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { | 
|  | for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { | 
|  | llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); | 
|  | if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (llvm::ConstantDataSequential *CDS = | 
|  | dyn_cast<llvm::ConstantDataSequential>(Init)) { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | llvm::Constant *Elt = CDS->getElementAsConstant(i); | 
|  | if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Anything else is hard and scary. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit | 
|  | /// the scalar stores that would be required. | 
|  | static void emitStoresForInitAfterBZero(CodeGenModule &CGM, | 
|  | llvm::Constant *Init, Address Loc, | 
|  | bool isVolatile, CGBuilderTy &Builder) { | 
|  | assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && | 
|  | "called emitStoresForInitAfterBZero for zero or undef value."); | 
|  |  | 
|  | if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || | 
|  | isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || | 
|  | isa<llvm::ConstantExpr>(Init)) { | 
|  | Builder.CreateStore(Init, Loc, isVolatile); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (llvm::ConstantDataSequential *CDS = | 
|  | dyn_cast<llvm::ConstantDataSequential>(Init)) { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | llvm::Constant *Elt = CDS->getElementAsConstant(i); | 
|  |  | 
|  | // If necessary, get a pointer to the element and emit it. | 
|  | if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) | 
|  | emitStoresForInitAfterBZero( | 
|  | CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, | 
|  | Builder); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && | 
|  | "Unknown value type!"); | 
|  |  | 
|  | for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { | 
|  | llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); | 
|  |  | 
|  | // If necessary, get a pointer to the element and emit it. | 
|  | if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) | 
|  | emitStoresForInitAfterBZero(CGM, Elt, | 
|  | Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), | 
|  | isVolatile, Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Decide whether we should use bzero plus some stores to initialize a local | 
|  | /// variable instead of using a memcpy from a constant global.  It is beneficial | 
|  | /// to use bzero if the global is all zeros, or mostly zeros and large. | 
|  | static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, | 
|  | uint64_t GlobalSize) { | 
|  | // If a global is all zeros, always use a bzero. | 
|  | if (isa<llvm::ConstantAggregateZero>(Init)) return true; | 
|  |  | 
|  | // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large, | 
|  | // do it if it will require 6 or fewer scalar stores. | 
|  | // TODO: Should budget depends on the size?  Avoiding a large global warrants | 
|  | // plopping in more stores. | 
|  | unsigned StoreBudget = 6; | 
|  | uint64_t SizeLimit = 32; | 
|  |  | 
|  | return GlobalSize > SizeLimit && | 
|  | canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); | 
|  | } | 
|  |  | 
|  | /// Decide whether we should use memset to initialize a local variable instead | 
|  | /// of using a memcpy from a constant global. Assumes we've already decided to | 
|  | /// not user bzero. | 
|  | /// FIXME We could be more clever, as we are for bzero above, and generate | 
|  | ///       memset followed by stores. It's unclear that's worth the effort. | 
|  | static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, | 
|  | uint64_t GlobalSize) { | 
|  | uint64_t SizeLimit = 32; | 
|  | if (GlobalSize <= SizeLimit) | 
|  | return nullptr; | 
|  | return llvm::isBytewiseValue(Init); | 
|  | } | 
|  |  | 
|  | /// Decide whether we want to split a constant structure or array store into a | 
|  | /// sequence of its fields' stores. This may cost us code size and compilation | 
|  | /// speed, but plays better with store optimizations. | 
|  | static bool shouldSplitConstantStore(CodeGenModule &CGM, | 
|  | uint64_t GlobalByteSize) { | 
|  | // Don't break things that occupy more than one cacheline. | 
|  | uint64_t ByteSizeLimit = 64; | 
|  | if (CGM.getCodeGenOpts().OptimizationLevel == 0) | 
|  | return false; | 
|  | if (GlobalByteSize <= ByteSizeLimit) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) { | 
|  | // The following value is a guaranteed unmappable pointer value and has a | 
|  | // repeated byte-pattern which makes it easier to synthesize. We use it for | 
|  | // pointers as well as integers so that aggregates are likely to be | 
|  | // initialized with this repeated value. | 
|  | constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull; | 
|  | // For 32-bit platforms it's a bit trickier because, across systems, only the | 
|  | // zero page can reasonably be expected to be unmapped, and even then we need | 
|  | // a very low address. We use a smaller value, and that value sadly doesn't | 
|  | // have a repeated byte-pattern. We don't use it for integers. | 
|  | constexpr uint32_t SmallValue = 0x000000AA; | 
|  | // Floating-point values are initialized as NaNs because they propagate. Using | 
|  | // a repeated byte pattern means that it will be easier to initialize | 
|  | // all-floating-point aggregates and arrays with memset. Further, aggregates | 
|  | // which mix integral and a few floats might also initialize with memset | 
|  | // followed by a handful of stores for the floats. Using fairly unique NaNs | 
|  | // also means they'll be easier to distinguish in a crash. | 
|  | constexpr bool NegativeNaN = true; | 
|  | constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; | 
|  | if (Ty->isIntOrIntVectorTy()) { | 
|  | unsigned BitWidth = cast<llvm::IntegerType>( | 
|  | Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) | 
|  | ->getBitWidth(); | 
|  | if (BitWidth <= 64) | 
|  | return llvm::ConstantInt::get(Ty, LargeValue); | 
|  | return llvm::ConstantInt::get( | 
|  | Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue))); | 
|  | } | 
|  | if (Ty->isPtrOrPtrVectorTy()) { | 
|  | auto *PtrTy = cast<llvm::PointerType>( | 
|  | Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); | 
|  | unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( | 
|  | PtrTy->getAddressSpace()); | 
|  | llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); | 
|  | uint64_t IntValue; | 
|  | switch (PtrWidth) { | 
|  | default: | 
|  | llvm_unreachable("pattern initialization of unsupported pointer width"); | 
|  | case 64: | 
|  | IntValue = LargeValue; | 
|  | break; | 
|  | case 32: | 
|  | IntValue = SmallValue; | 
|  | break; | 
|  | } | 
|  | auto *Int = llvm::ConstantInt::get(IntTy, IntValue); | 
|  | return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); | 
|  | } | 
|  | if (Ty->isFPOrFPVectorTy()) { | 
|  | unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( | 
|  | (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) | 
|  | ->getFltSemantics()); | 
|  | llvm::APInt Payload(64, NaNPayload); | 
|  | if (BitWidth >= 64) | 
|  | Payload = llvm::APInt::getSplat(BitWidth, Payload); | 
|  | return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); | 
|  | } | 
|  | if (Ty->isArrayTy()) { | 
|  | // Note: this doesn't touch tail padding (at the end of an object, before | 
|  | // the next array object). It is instead handled by replaceUndef. | 
|  | auto *ArrTy = cast<llvm::ArrayType>(Ty); | 
|  | llvm::SmallVector<llvm::Constant *, 8> Element( | 
|  | ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType())); | 
|  | return llvm::ConstantArray::get(ArrTy, Element); | 
|  | } | 
|  |  | 
|  | // Note: this doesn't touch struct padding. It will initialize as much union | 
|  | // padding as is required for the largest type in the union. Padding is | 
|  | // instead handled by replaceUndef. Stores to structs with volatile members | 
|  | // don't have a volatile qualifier when initialized according to C++. This is | 
|  | // fine because stack-based volatiles don't really have volatile semantics | 
|  | // anyways, and the initialization shouldn't be observable. | 
|  | auto *StructTy = cast<llvm::StructType>(Ty); | 
|  | llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); | 
|  | for (unsigned El = 0; El != Struct.size(); ++El) | 
|  | Struct[El] = patternFor(CGM, StructTy->getElementType(El)); | 
|  | return llvm::ConstantStruct::get(StructTy, Struct); | 
|  | } | 
|  |  | 
|  | enum class IsPattern { No, Yes }; | 
|  |  | 
|  | /// Generate a constant filled with either a pattern or zeroes. | 
|  | static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, | 
|  | llvm::Type *Ty) { | 
|  | if (isPattern == IsPattern::Yes) | 
|  | return patternFor(CGM, Ty); | 
|  | else | 
|  | return llvm::Constant::getNullValue(Ty); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, | 
|  | llvm::Constant *constant); | 
|  |  | 
|  | /// Helper function for constWithPadding() to deal with padding in structures. | 
|  | static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, | 
|  | IsPattern isPattern, | 
|  | llvm::StructType *STy, | 
|  | llvm::Constant *constant) { | 
|  | const llvm::DataLayout &DL = CGM.getDataLayout(); | 
|  | const llvm::StructLayout *Layout = DL.getStructLayout(STy); | 
|  | llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); | 
|  | unsigned SizeSoFar = 0; | 
|  | SmallVector<llvm::Constant *, 8> Values; | 
|  | bool NestedIntact = true; | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { | 
|  | unsigned CurOff = Layout->getElementOffset(i); | 
|  | if (SizeSoFar < CurOff) { | 
|  | assert(!STy->isPacked()); | 
|  | auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); | 
|  | Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); | 
|  | } | 
|  | llvm::Constant *CurOp; | 
|  | if (constant->isZeroValue()) | 
|  | CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); | 
|  | else | 
|  | CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); | 
|  | auto *NewOp = constWithPadding(CGM, isPattern, CurOp); | 
|  | if (CurOp != NewOp) | 
|  | NestedIntact = false; | 
|  | Values.push_back(NewOp); | 
|  | SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); | 
|  | } | 
|  | unsigned TotalSize = Layout->getSizeInBytes(); | 
|  | if (SizeSoFar < TotalSize) { | 
|  | auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); | 
|  | Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); | 
|  | } | 
|  | if (NestedIntact && Values.size() == STy->getNumElements()) | 
|  | return constant; | 
|  | return llvm::ConstantStruct::getAnon(Values); | 
|  | } | 
|  |  | 
|  | /// Replace all padding bytes in a given constant with either a pattern byte or | 
|  | /// 0x00. | 
|  | static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, | 
|  | llvm::Constant *constant) { | 
|  | llvm::Type *OrigTy = constant->getType(); | 
|  | if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) | 
|  | return constStructWithPadding(CGM, isPattern, STy, constant); | 
|  | if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { | 
|  | llvm::SmallVector<llvm::Constant *, 8> Values; | 
|  | unsigned Size = STy->getNumElements(); | 
|  | if (!Size) | 
|  | return constant; | 
|  | llvm::Type *ElemTy = STy->getElementType(); | 
|  | bool ZeroInitializer = constant->isZeroValue(); | 
|  | llvm::Constant *OpValue, *PaddedOp; | 
|  | if (ZeroInitializer) { | 
|  | OpValue = llvm::Constant::getNullValue(ElemTy); | 
|  | PaddedOp = constWithPadding(CGM, isPattern, OpValue); | 
|  | } | 
|  | for (unsigned Op = 0; Op != Size; ++Op) { | 
|  | if (!ZeroInitializer) { | 
|  | OpValue = constant->getAggregateElement(Op); | 
|  | PaddedOp = constWithPadding(CGM, isPattern, OpValue); | 
|  | } | 
|  | Values.push_back(PaddedOp); | 
|  | } | 
|  | auto *NewElemTy = Values[0]->getType(); | 
|  | if (NewElemTy == ElemTy) | 
|  | return constant; | 
|  | if (OrigTy->isArrayTy()) { | 
|  | auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); | 
|  | return llvm::ConstantArray::get(ArrayTy, Values); | 
|  | } else { | 
|  | return llvm::ConstantVector::get(Values); | 
|  | } | 
|  | } | 
|  | return constant; | 
|  | } | 
|  |  | 
|  | static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D, | 
|  | CGBuilderTy &Builder, | 
|  | llvm::Constant *Constant, | 
|  | CharUnits Align) { | 
|  | auto FunctionName = [&](const DeclContext *DC) -> std::string { | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { | 
|  | if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) | 
|  | return CC->getNameAsString(); | 
|  | if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) | 
|  | return CD->getNameAsString(); | 
|  | return CGM.getMangledName(FD); | 
|  | } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { | 
|  | return OM->getNameAsString(); | 
|  | } else if (isa<BlockDecl>(DC)) { | 
|  | return "<block>"; | 
|  | } else if (isa<CapturedDecl>(DC)) { | 
|  | return "<captured>"; | 
|  | } else { | 
|  | llvm::llvm_unreachable_internal("expected a function or method"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto *Ty = Constant->getType(); | 
|  | bool isConstant = true; | 
|  | llvm::GlobalVariable *InsertBefore = nullptr; | 
|  | unsigned AS = CGM.getContext().getTargetAddressSpace( | 
|  | CGM.getStringLiteralAddressSpace()); | 
|  | llvm::GlobalVariable *GV = new llvm::GlobalVariable( | 
|  | CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, | 
|  | Constant, | 
|  | "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + | 
|  | D.getName(), | 
|  | InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); | 
|  | GV->setAlignment(Align.getQuantity()); | 
|  | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
|  |  | 
|  | Address SrcPtr = Address(GV, Align); | 
|  | llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); | 
|  | if (SrcPtr.getType() != BP) | 
|  | SrcPtr = Builder.CreateBitCast(SrcPtr, BP); | 
|  | return SrcPtr; | 
|  | } | 
|  |  | 
|  | static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, | 
|  | Address Loc, bool isVolatile, | 
|  | CGBuilderTy &Builder, | 
|  | llvm::Constant *constant) { | 
|  | auto *Ty = constant->getType(); | 
|  | bool canDoSingleStore = Ty->isIntOrIntVectorTy() || | 
|  | Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); | 
|  | if (canDoSingleStore) { | 
|  | Builder.CreateStore(constant, Loc, isVolatile); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); | 
|  | auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); | 
|  |  | 
|  | uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); | 
|  | if (!ConstantSize) | 
|  | return; | 
|  | auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); | 
|  |  | 
|  | // If the initializer is all or mostly the same, codegen with bzero / memset | 
|  | // then do a few stores afterward. | 
|  | if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { | 
|  | Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, | 
|  | isVolatile); | 
|  |  | 
|  | bool valueAlreadyCorrect = | 
|  | constant->isNullValue() || isa<llvm::UndefValue>(constant); | 
|  | if (!valueAlreadyCorrect) { | 
|  | Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); | 
|  | emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the initializer is a repeated byte pattern, use memset. | 
|  | llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); | 
|  | if (Pattern) { | 
|  | uint64_t Value = 0x00; | 
|  | if (!isa<llvm::UndefValue>(Pattern)) { | 
|  | const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); | 
|  | assert(AP.getBitWidth() <= 8); | 
|  | Value = AP.getLimitedValue(); | 
|  | } | 
|  | Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, | 
|  | isVolatile); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the initializer is small, use a handful of stores. | 
|  | if (shouldSplitConstantStore(CGM, ConstantSize)) { | 
|  | if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { | 
|  | // FIXME: handle the case when STy != Loc.getElementType(). | 
|  | if (STy == Loc.getElementType()) { | 
|  | for (unsigned i = 0; i != constant->getNumOperands(); i++) { | 
|  | Address EltPtr = Builder.CreateStructGEP(Loc, i); | 
|  | emitStoresForConstant( | 
|  | CGM, D, EltPtr, isVolatile, Builder, | 
|  | cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { | 
|  | // FIXME: handle the case when ATy != Loc.getElementType(). | 
|  | if (ATy == Loc.getElementType()) { | 
|  | for (unsigned i = 0; i != ATy->getNumElements(); i++) { | 
|  | Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); | 
|  | emitStoresForConstant( | 
|  | CGM, D, EltPtr, isVolatile, Builder, | 
|  | cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy from a global. | 
|  | Builder.CreateMemCpy( | 
|  | Loc, | 
|  | createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()), | 
|  | SizeVal, isVolatile); | 
|  | } | 
|  |  | 
|  | static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, | 
|  | Address Loc, bool isVolatile, | 
|  | CGBuilderTy &Builder) { | 
|  | llvm::Type *ElTy = Loc.getElementType(); | 
|  | llvm::Constant *constant = | 
|  | constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); | 
|  | emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); | 
|  | } | 
|  |  | 
|  | static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, | 
|  | Address Loc, bool isVolatile, | 
|  | CGBuilderTy &Builder) { | 
|  | llvm::Type *ElTy = Loc.getElementType(); | 
|  | llvm::Constant *constant = | 
|  | constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy)); | 
|  | assert(!isa<llvm::UndefValue>(constant)); | 
|  | emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); | 
|  | } | 
|  |  | 
|  | static bool containsUndef(llvm::Constant *constant) { | 
|  | auto *Ty = constant->getType(); | 
|  | if (isa<llvm::UndefValue>(constant)) | 
|  | return true; | 
|  | if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) | 
|  | for (llvm::Use &Op : constant->operands()) | 
|  | if (containsUndef(cast<llvm::Constant>(Op))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, | 
|  | llvm::Constant *constant) { | 
|  | auto *Ty = constant->getType(); | 
|  | if (isa<llvm::UndefValue>(constant)) | 
|  | return patternOrZeroFor(CGM, isPattern, Ty); | 
|  | if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) | 
|  | return constant; | 
|  | if (!containsUndef(constant)) | 
|  | return constant; | 
|  | llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); | 
|  | for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { | 
|  | auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); | 
|  | Values[Op] = replaceUndef(CGM, isPattern, OpValue); | 
|  | } | 
|  | if (Ty->isStructTy()) | 
|  | return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); | 
|  | if (Ty->isArrayTy()) | 
|  | return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); | 
|  | assert(Ty->isVectorTy()); | 
|  | return llvm::ConstantVector::get(Values); | 
|  | } | 
|  |  | 
|  | /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a | 
|  | /// variable declaration with auto, register, or no storage class specifier. | 
|  | /// These turn into simple stack objects, or GlobalValues depending on target. | 
|  | void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { | 
|  | AutoVarEmission emission = EmitAutoVarAlloca(D); | 
|  | EmitAutoVarInit(emission); | 
|  | EmitAutoVarCleanups(emission); | 
|  | } | 
|  |  | 
|  | /// Emit a lifetime.begin marker if some criteria are satisfied. | 
|  | /// \return a pointer to the temporary size Value if a marker was emitted, null | 
|  | /// otherwise | 
|  | llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, | 
|  | llvm::Value *Addr) { | 
|  | if (!ShouldEmitLifetimeMarkers) | 
|  | return nullptr; | 
|  |  | 
|  | assert(Addr->getType()->getPointerAddressSpace() == | 
|  | CGM.getDataLayout().getAllocaAddrSpace() && | 
|  | "Pointer should be in alloca address space"); | 
|  | llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); | 
|  | Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); | 
|  | llvm::CallInst *C = | 
|  | Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); | 
|  | C->setDoesNotThrow(); | 
|  | return SizeV; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { | 
|  | assert(Addr->getType()->getPointerAddressSpace() == | 
|  | CGM.getDataLayout().getAllocaAddrSpace() && | 
|  | "Pointer should be in alloca address space"); | 
|  | Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); | 
|  | llvm::CallInst *C = | 
|  | Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); | 
|  | C->setDoesNotThrow(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( | 
|  | CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { | 
|  | // For each dimension stores its QualType and corresponding | 
|  | // size-expression Value. | 
|  | SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; | 
|  | SmallVector<IdentifierInfo *, 4> VLAExprNames; | 
|  |  | 
|  | // Break down the array into individual dimensions. | 
|  | QualType Type1D = D.getType(); | 
|  | while (getContext().getAsVariableArrayType(Type1D)) { | 
|  | auto VlaSize = getVLAElements1D(Type1D); | 
|  | if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) | 
|  | Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); | 
|  | else { | 
|  | // Generate a locally unique name for the size expression. | 
|  | Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); | 
|  | SmallString<12> Buffer; | 
|  | StringRef NameRef = Name.toStringRef(Buffer); | 
|  | auto &Ident = getContext().Idents.getOwn(NameRef); | 
|  | VLAExprNames.push_back(&Ident); | 
|  | auto SizeExprAddr = | 
|  | CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); | 
|  | Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); | 
|  | Dimensions.emplace_back(SizeExprAddr.getPointer(), | 
|  | Type1D.getUnqualifiedType()); | 
|  | } | 
|  | Type1D = VlaSize.Type; | 
|  | } | 
|  |  | 
|  | if (!EmitDebugInfo) | 
|  | return; | 
|  |  | 
|  | // Register each dimension's size-expression with a DILocalVariable, | 
|  | // so that it can be used by CGDebugInfo when instantiating a DISubrange | 
|  | // to describe this array. | 
|  | unsigned NameIdx = 0; | 
|  | for (auto &VlaSize : Dimensions) { | 
|  | llvm::Metadata *MD; | 
|  | if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) | 
|  | MD = llvm::ConstantAsMetadata::get(C); | 
|  | else { | 
|  | // Create an artificial VarDecl to generate debug info for. | 
|  | IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; | 
|  | auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); | 
|  | auto QT = getContext().getIntTypeForBitwidth( | 
|  | VlaExprTy->getScalarSizeInBits(), false); | 
|  | auto *ArtificialDecl = VarDecl::Create( | 
|  | getContext(), const_cast<DeclContext *>(D.getDeclContext()), | 
|  | D.getLocation(), D.getLocation(), NameIdent, QT, | 
|  | getContext().CreateTypeSourceInfo(QT), SC_Auto); | 
|  | ArtificialDecl->setImplicit(); | 
|  |  | 
|  | MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, | 
|  | Builder); | 
|  | } | 
|  | assert(MD && "No Size expression debug node created"); | 
|  | DI->registerVLASizeExpression(VlaSize.Type, MD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitAutoVarAlloca - Emit the alloca and debug information for a | 
|  | /// local variable.  Does not emit initialization or destruction. | 
|  | CodeGenFunction::AutoVarEmission | 
|  | CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { | 
|  | QualType Ty = D.getType(); | 
|  | assert( | 
|  | Ty.getAddressSpace() == LangAS::Default || | 
|  | (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); | 
|  |  | 
|  | AutoVarEmission emission(D); | 
|  |  | 
|  | bool isEscapingByRef = D.isEscapingByref(); | 
|  | emission.IsEscapingByRef = isEscapingByRef; | 
|  |  | 
|  | CharUnits alignment = getContext().getDeclAlign(&D); | 
|  |  | 
|  | // If the type is variably-modified, emit all the VLA sizes for it. | 
|  | if (Ty->isVariablyModifiedType()) | 
|  | EmitVariablyModifiedType(Ty); | 
|  |  | 
|  | auto *DI = getDebugInfo(); | 
|  | bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= | 
|  | codegenoptions::LimitedDebugInfo; | 
|  |  | 
|  | Address address = Address::invalid(); | 
|  | Address AllocaAddr = Address::invalid(); | 
|  | if (Ty->isConstantSizeType()) { | 
|  | bool NRVO = getLangOpts().ElideConstructors && | 
|  | D.isNRVOVariable(); | 
|  |  | 
|  | // If this value is an array or struct with a statically determinable | 
|  | // constant initializer, there are optimizations we can do. | 
|  | // | 
|  | // TODO: We should constant-evaluate the initializer of any variable, | 
|  | // as long as it is initialized by a constant expression. Currently, | 
|  | // isConstantInitializer produces wrong answers for structs with | 
|  | // reference or bitfield members, and a few other cases, and checking | 
|  | // for POD-ness protects us from some of these. | 
|  | if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && | 
|  | (D.isConstexpr() || | 
|  | ((Ty.isPODType(getContext()) || | 
|  | getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && | 
|  | D.getInit()->isConstantInitializer(getContext(), false)))) { | 
|  |  | 
|  | // If the variable's a const type, and it's neither an NRVO | 
|  | // candidate nor a __block variable and has no mutable members, | 
|  | // emit it as a global instead. | 
|  | // Exception is if a variable is located in non-constant address space | 
|  | // in OpenCL. | 
|  | if ((!getLangOpts().OpenCL || | 
|  | Ty.getAddressSpace() == LangAS::opencl_constant) && | 
|  | (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && | 
|  | !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { | 
|  | EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); | 
|  |  | 
|  | // Signal this condition to later callbacks. | 
|  | emission.Addr = Address::invalid(); | 
|  | assert(emission.wasEmittedAsGlobal()); | 
|  | return emission; | 
|  | } | 
|  |  | 
|  | // Otherwise, tell the initialization code that we're in this case. | 
|  | emission.IsConstantAggregate = true; | 
|  | } | 
|  |  | 
|  | // A normal fixed sized variable becomes an alloca in the entry block, | 
|  | // unless: | 
|  | // - it's an NRVO variable. | 
|  | // - we are compiling OpenMP and it's an OpenMP local variable. | 
|  |  | 
|  | Address OpenMPLocalAddr = | 
|  | getLangOpts().OpenMP | 
|  | ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) | 
|  | : Address::invalid(); | 
|  | if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { | 
|  | address = OpenMPLocalAddr; | 
|  | } else if (NRVO) { | 
|  | // The named return value optimization: allocate this variable in the | 
|  | // return slot, so that we can elide the copy when returning this | 
|  | // variable (C++0x [class.copy]p34). | 
|  | address = ReturnValue; | 
|  |  | 
|  | if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { | 
|  | const auto *RD = RecordTy->getDecl(); | 
|  | const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); | 
|  | if ((CXXRD && !CXXRD->hasTrivialDestructor()) || | 
|  | RD->isNonTrivialToPrimitiveDestroy()) { | 
|  | // Create a flag that is used to indicate when the NRVO was applied | 
|  | // to this variable. Set it to zero to indicate that NRVO was not | 
|  | // applied. | 
|  | llvm::Value *Zero = Builder.getFalse(); | 
|  | Address NRVOFlag = | 
|  | CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); | 
|  | EnsureInsertPoint(); | 
|  | Builder.CreateStore(Zero, NRVOFlag); | 
|  |  | 
|  | // Record the NRVO flag for this variable. | 
|  | NRVOFlags[&D] = NRVOFlag.getPointer(); | 
|  | emission.NRVOFlag = NRVOFlag.getPointer(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | CharUnits allocaAlignment; | 
|  | llvm::Type *allocaTy; | 
|  | if (isEscapingByRef) { | 
|  | auto &byrefInfo = getBlockByrefInfo(&D); | 
|  | allocaTy = byrefInfo.Type; | 
|  | allocaAlignment = byrefInfo.ByrefAlignment; | 
|  | } else { | 
|  | allocaTy = ConvertTypeForMem(Ty); | 
|  | allocaAlignment = alignment; | 
|  | } | 
|  |  | 
|  | // Create the alloca.  Note that we set the name separately from | 
|  | // building the instruction so that it's there even in no-asserts | 
|  | // builds. | 
|  | address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), | 
|  | /*ArraySize=*/nullptr, &AllocaAddr); | 
|  |  | 
|  | // Don't emit lifetime markers for MSVC catch parameters. The lifetime of | 
|  | // the catch parameter starts in the catchpad instruction, and we can't | 
|  | // insert code in those basic blocks. | 
|  | bool IsMSCatchParam = | 
|  | D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); | 
|  |  | 
|  | // Emit a lifetime intrinsic if meaningful. There's no point in doing this | 
|  | // if we don't have a valid insertion point (?). | 
|  | if (HaveInsertPoint() && !IsMSCatchParam) { | 
|  | // If there's a jump into the lifetime of this variable, its lifetime | 
|  | // gets broken up into several regions in IR, which requires more work | 
|  | // to handle correctly. For now, just omit the intrinsics; this is a | 
|  | // rare case, and it's better to just be conservatively correct. | 
|  | // PR28267. | 
|  | // | 
|  | // We have to do this in all language modes if there's a jump past the | 
|  | // declaration. We also have to do it in C if there's a jump to an | 
|  | // earlier point in the current block because non-VLA lifetimes begin as | 
|  | // soon as the containing block is entered, not when its variables | 
|  | // actually come into scope; suppressing the lifetime annotations | 
|  | // completely in this case is unnecessarily pessimistic, but again, this | 
|  | // is rare. | 
|  | if (!Bypasses.IsBypassed(&D) && | 
|  | !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { | 
|  | uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); | 
|  | emission.SizeForLifetimeMarkers = | 
|  | EmitLifetimeStart(size, AllocaAddr.getPointer()); | 
|  | } | 
|  | } else { | 
|  | assert(!emission.useLifetimeMarkers()); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | EnsureInsertPoint(); | 
|  |  | 
|  | if (!DidCallStackSave) { | 
|  | // Save the stack. | 
|  | Address Stack = | 
|  | CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); | 
|  |  | 
|  | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); | 
|  | llvm::Value *V = Builder.CreateCall(F); | 
|  | Builder.CreateStore(V, Stack); | 
|  |  | 
|  | DidCallStackSave = true; | 
|  |  | 
|  | // Push a cleanup block and restore the stack there. | 
|  | // FIXME: in general circumstances, this should be an EH cleanup. | 
|  | pushStackRestore(NormalCleanup, Stack); | 
|  | } | 
|  |  | 
|  | auto VlaSize = getVLASize(Ty); | 
|  | llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); | 
|  |  | 
|  | // Allocate memory for the array. | 
|  | address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, | 
|  | &AllocaAddr); | 
|  |  | 
|  | // If we have debug info enabled, properly describe the VLA dimensions for | 
|  | // this type by registering the vla size expression for each of the | 
|  | // dimensions. | 
|  | EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); | 
|  | } | 
|  |  | 
|  | setAddrOfLocalVar(&D, address); | 
|  | emission.Addr = address; | 
|  | emission.AllocaAddr = AllocaAddr; | 
|  |  | 
|  | // Emit debug info for local var declaration. | 
|  | if (EmitDebugInfo && HaveInsertPoint()) { | 
|  | DI->setLocation(D.getLocation()); | 
|  | (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); | 
|  | } | 
|  |  | 
|  | if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) | 
|  | EmitVarAnnotations(&D, address.getPointer()); | 
|  |  | 
|  | // Make sure we call @llvm.lifetime.end. | 
|  | if (emission.useLifetimeMarkers()) | 
|  | EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, | 
|  | emission.getOriginalAllocatedAddress(), | 
|  | emission.getSizeForLifetimeMarkers()); | 
|  |  | 
|  | return emission; | 
|  | } | 
|  |  | 
|  | static bool isCapturedBy(const VarDecl &, const Expr *); | 
|  |  | 
|  | /// Determines whether the given __block variable is potentially | 
|  | /// captured by the given statement. | 
|  | static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { | 
|  | if (const Expr *E = dyn_cast<Expr>(S)) | 
|  | return isCapturedBy(Var, E); | 
|  | for (const Stmt *SubStmt : S->children()) | 
|  | if (isCapturedBy(Var, SubStmt)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determines whether the given __block variable is potentially | 
|  | /// captured by the given expression. | 
|  | static bool isCapturedBy(const VarDecl &Var, const Expr *E) { | 
|  | // Skip the most common kinds of expressions that make | 
|  | // hierarchy-walking expensive. | 
|  | E = E->IgnoreParenCasts(); | 
|  |  | 
|  | if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { | 
|  | const BlockDecl *Block = BE->getBlockDecl(); | 
|  | for (const auto &I : Block->captures()) { | 
|  | if (I.getVariable() == &Var) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No need to walk into the subexpressions. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { | 
|  | const CompoundStmt *CS = SE->getSubStmt(); | 
|  | for (const auto *BI : CS->body()) | 
|  | if (const auto *BIE = dyn_cast<Expr>(BI)) { | 
|  | if (isCapturedBy(Var, BIE)) | 
|  | return true; | 
|  | } | 
|  | else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { | 
|  | // special case declarations | 
|  | for (const auto *I : DS->decls()) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>((I))) { | 
|  | const Expr *Init = VD->getInit(); | 
|  | if (Init && isCapturedBy(Var, Init)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | // FIXME. Make safe assumption assuming arbitrary statements cause capturing. | 
|  | // Later, provide code to poke into statements for capture analysis. | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const Stmt *SubStmt : E->children()) | 
|  | if (isCapturedBy(Var, SubStmt)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given initializer is trivial in the sense | 
|  | /// that it requires no code to be generated. | 
|  | bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { | 
|  | if (!Init) | 
|  | return true; | 
|  |  | 
|  | if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) | 
|  | if (CXXConstructorDecl *Constructor = Construct->getConstructor()) | 
|  | if (Constructor->isTrivial() && | 
|  | Constructor->isDefaultConstructor() && | 
|  | !Construct->requiresZeroInitialization()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { | 
|  | assert(emission.Variable && "emission was not valid!"); | 
|  |  | 
|  | // If this was emitted as a global constant, we're done. | 
|  | if (emission.wasEmittedAsGlobal()) return; | 
|  |  | 
|  | const VarDecl &D = *emission.Variable; | 
|  | auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); | 
|  | QualType type = D.getType(); | 
|  |  | 
|  | bool isVolatile = type.isVolatileQualified(); | 
|  |  | 
|  | // If this local has an initializer, emit it now. | 
|  | const Expr *Init = D.getInit(); | 
|  |  | 
|  | // If we are at an unreachable point, we don't need to emit the initializer | 
|  | // unless it contains a label. | 
|  | if (!HaveInsertPoint()) { | 
|  | if (!Init || !ContainsLabel(Init)) return; | 
|  | EnsureInsertPoint(); | 
|  | } | 
|  |  | 
|  | // Initialize the structure of a __block variable. | 
|  | if (emission.IsEscapingByRef) | 
|  | emitByrefStructureInit(emission); | 
|  |  | 
|  | // Initialize the variable here if it doesn't have a initializer and it is a | 
|  | // C struct that is non-trivial to initialize or an array containing such a | 
|  | // struct. | 
|  | if (!Init && | 
|  | type.isNonTrivialToPrimitiveDefaultInitialize() == | 
|  | QualType::PDIK_Struct) { | 
|  | LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); | 
|  | if (emission.IsEscapingByRef) | 
|  | drillIntoBlockVariable(*this, Dst, &D); | 
|  | defaultInitNonTrivialCStructVar(Dst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check whether this is a byref variable that's potentially | 
|  | // captured and moved by its own initializer.  If so, we'll need to | 
|  | // emit the initializer first, then copy into the variable. | 
|  | bool capturedByInit = | 
|  | Init && emission.IsEscapingByRef && isCapturedBy(D, Init); | 
|  |  | 
|  | bool locIsByrefHeader = !capturedByInit; | 
|  | const Address Loc = | 
|  | locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; | 
|  |  | 
|  | // Note: constexpr already initializes everything correctly. | 
|  | LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = | 
|  | (D.isConstexpr() | 
|  | ? LangOptions::TrivialAutoVarInitKind::Uninitialized | 
|  | : (D.getAttr<UninitializedAttr>() | 
|  | ? LangOptions::TrivialAutoVarInitKind::Uninitialized | 
|  | : getContext().getLangOpts().getTrivialAutoVarInit())); | 
|  |  | 
|  | auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { | 
|  | if (trivialAutoVarInit == | 
|  | LangOptions::TrivialAutoVarInitKind::Uninitialized) | 
|  | return; | 
|  |  | 
|  | // Only initialize a __block's storage: we always initialize the header. | 
|  | if (emission.IsEscapingByRef && !locIsByrefHeader) | 
|  | Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); | 
|  |  | 
|  | CharUnits Size = getContext().getTypeSizeInChars(type); | 
|  | if (!Size.isZero()) { | 
|  | switch (trivialAutoVarInit) { | 
|  | case LangOptions::TrivialAutoVarInitKind::Uninitialized: | 
|  | llvm_unreachable("Uninitialized handled above"); | 
|  | case LangOptions::TrivialAutoVarInitKind::Zero: | 
|  | emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); | 
|  | break; | 
|  | case LangOptions::TrivialAutoVarInitKind::Pattern: | 
|  | emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); | 
|  | break; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to | 
|  | // them, so emit a memcpy with the VLA size to initialize each element. | 
|  | // Technically zero-sized or negative-sized VLAs are undefined, and UBSan | 
|  | // will catch that code, but there exists code which generates zero-sized | 
|  | // VLAs. Be nice and initialize whatever they requested. | 
|  | const auto *VlaType = getContext().getAsVariableArrayType(type); | 
|  | if (!VlaType) | 
|  | return; | 
|  | auto VlaSize = getVLASize(VlaType); | 
|  | auto SizeVal = VlaSize.NumElts; | 
|  | CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); | 
|  | switch (trivialAutoVarInit) { | 
|  | case LangOptions::TrivialAutoVarInitKind::Uninitialized: | 
|  | llvm_unreachable("Uninitialized handled above"); | 
|  |  | 
|  | case LangOptions::TrivialAutoVarInitKind::Zero: | 
|  | if (!EltSize.isOne()) | 
|  | SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); | 
|  | Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, | 
|  | isVolatile); | 
|  | break; | 
|  |  | 
|  | case LangOptions::TrivialAutoVarInitKind::Pattern: { | 
|  | llvm::Type *ElTy = Loc.getElementType(); | 
|  | llvm::Constant *Constant = | 
|  | constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy)); | 
|  | CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); | 
|  | llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); | 
|  | llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); | 
|  | llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); | 
|  | llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( | 
|  | SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), | 
|  | "vla.iszerosized"); | 
|  | Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); | 
|  | EmitBlock(SetupBB); | 
|  | if (!EltSize.isOne()) | 
|  | SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); | 
|  | llvm::Value *BaseSizeInChars = | 
|  | llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); | 
|  | Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); | 
|  | llvm::Value *End = | 
|  | Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); | 
|  | llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); | 
|  | EmitBlock(LoopBB); | 
|  | llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); | 
|  | Cur->addIncoming(Begin.getPointer(), OriginBB); | 
|  | CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); | 
|  | Builder.CreateMemCpy( | 
|  | Address(Cur, CurAlign), | 
|  | createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign), | 
|  | BaseSizeInChars, isVolatile); | 
|  | llvm::Value *Next = | 
|  | Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); | 
|  | llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); | 
|  | Builder.CreateCondBr(Done, ContBB, LoopBB); | 
|  | Cur->addIncoming(Next, LoopBB); | 
|  | EmitBlock(ContBB); | 
|  | } break; | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (isTrivialInitializer(Init)) { | 
|  | initializeWhatIsTechnicallyUninitialized(Loc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::Constant *constant = nullptr; | 
|  | if (emission.IsConstantAggregate || D.isConstexpr()) { | 
|  | assert(!capturedByInit && "constant init contains a capturing block?"); | 
|  | constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); | 
|  | if (constant && trivialAutoVarInit != | 
|  | LangOptions::TrivialAutoVarInitKind::Uninitialized) { | 
|  | IsPattern isPattern = | 
|  | (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) | 
|  | ? IsPattern::Yes | 
|  | : IsPattern::No; | 
|  | constant = constWithPadding(CGM, isPattern, | 
|  | replaceUndef(CGM, isPattern, constant)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!constant) { | 
|  | initializeWhatIsTechnicallyUninitialized(Loc); | 
|  | LValue lv = MakeAddrLValue(Loc, type); | 
|  | lv.setNonGC(true); | 
|  | return EmitExprAsInit(Init, &D, lv, capturedByInit); | 
|  | } | 
|  |  | 
|  | if (!emission.IsConstantAggregate) { | 
|  | // For simple scalar/complex initialization, store the value directly. | 
|  | LValue lv = MakeAddrLValue(Loc, type); | 
|  | lv.setNonGC(true); | 
|  | return EmitStoreThroughLValue(RValue::get(constant), lv, true); | 
|  | } | 
|  |  | 
|  | llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); | 
|  | emitStoresForConstant( | 
|  | CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), | 
|  | isVolatile, Builder, constant); | 
|  | } | 
|  |  | 
|  | /// Emit an expression as an initializer for an object (variable, field, etc.) | 
|  | /// at the given location.  The expression is not necessarily the normal | 
|  | /// initializer for the object, and the address is not necessarily | 
|  | /// its normal location. | 
|  | /// | 
|  | /// \param init the initializing expression | 
|  | /// \param D the object to act as if we're initializing | 
|  | /// \param loc the address to initialize; its type is a pointer | 
|  | ///   to the LLVM mapping of the object's type | 
|  | /// \param alignment the alignment of the address | 
|  | /// \param capturedByInit true if \p D is a __block variable | 
|  | ///   whose address is potentially changed by the initializer | 
|  | void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, | 
|  | LValue lvalue, bool capturedByInit) { | 
|  | QualType type = D->getType(); | 
|  |  | 
|  | if (type->isReferenceType()) { | 
|  | RValue rvalue = EmitReferenceBindingToExpr(init); | 
|  | if (capturedByInit) | 
|  | drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); | 
|  | EmitStoreThroughLValue(rvalue, lvalue, true); | 
|  | return; | 
|  | } | 
|  | switch (getEvaluationKind(type)) { | 
|  | case TEK_Scalar: | 
|  | EmitScalarInit(init, D, lvalue, capturedByInit); | 
|  | return; | 
|  | case TEK_Complex: { | 
|  | ComplexPairTy complex = EmitComplexExpr(init); | 
|  | if (capturedByInit) | 
|  | drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); | 
|  | EmitStoreOfComplex(complex, lvalue, /*init*/ true); | 
|  | return; | 
|  | } | 
|  | case TEK_Aggregate: | 
|  | if (type->isAtomicType()) { | 
|  | EmitAtomicInit(const_cast<Expr*>(init), lvalue); | 
|  | } else { | 
|  | AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; | 
|  | if (isa<VarDecl>(D)) | 
|  | Overlap = AggValueSlot::DoesNotOverlap; | 
|  | else if (auto *FD = dyn_cast<FieldDecl>(D)) | 
|  | Overlap = overlapForFieldInit(FD); | 
|  | // TODO: how can we delay here if D is captured by its initializer? | 
|  | EmitAggExpr(init, AggValueSlot::forLValue(lvalue, | 
|  | AggValueSlot::IsDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased, | 
|  | Overlap)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | /// Enter a destroy cleanup for the given local variable. | 
|  | void CodeGenFunction::emitAutoVarTypeCleanup( | 
|  | const CodeGenFunction::AutoVarEmission &emission, | 
|  | QualType::DestructionKind dtorKind) { | 
|  | assert(dtorKind != QualType::DK_none); | 
|  |  | 
|  | // Note that for __block variables, we want to destroy the | 
|  | // original stack object, not the possibly forwarded object. | 
|  | Address addr = emission.getObjectAddress(*this); | 
|  |  | 
|  | const VarDecl *var = emission.Variable; | 
|  | QualType type = var->getType(); | 
|  |  | 
|  | CleanupKind cleanupKind = NormalAndEHCleanup; | 
|  | CodeGenFunction::Destroyer *destroyer = nullptr; | 
|  |  | 
|  | switch (dtorKind) { | 
|  | case QualType::DK_none: | 
|  | llvm_unreachable("no cleanup for trivially-destructible variable"); | 
|  |  | 
|  | case QualType::DK_cxx_destructor: | 
|  | // If there's an NRVO flag on the emission, we need a different | 
|  | // cleanup. | 
|  | if (emission.NRVOFlag) { | 
|  | assert(!type->isArrayType()); | 
|  | CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); | 
|  | EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, | 
|  | emission.NRVOFlag); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case QualType::DK_objc_strong_lifetime: | 
|  | // Suppress cleanups for pseudo-strong variables. | 
|  | if (var->isARCPseudoStrong()) return; | 
|  |  | 
|  | // Otherwise, consider whether to use an EH cleanup or not. | 
|  | cleanupKind = getARCCleanupKind(); | 
|  |  | 
|  | // Use the imprecise destroyer by default. | 
|  | if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) | 
|  | destroyer = CodeGenFunction::destroyARCStrongImprecise; | 
|  | break; | 
|  |  | 
|  | case QualType::DK_objc_weak_lifetime: | 
|  | break; | 
|  |  | 
|  | case QualType::DK_nontrivial_c_struct: | 
|  | destroyer = CodeGenFunction::destroyNonTrivialCStruct; | 
|  | if (emission.NRVOFlag) { | 
|  | assert(!type->isArrayType()); | 
|  | EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, | 
|  | emission.NRVOFlag, type); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we haven't chosen a more specific destroyer, use the default. | 
|  | if (!destroyer) destroyer = getDestroyer(dtorKind); | 
|  |  | 
|  | // Use an EH cleanup in array destructors iff the destructor itself | 
|  | // is being pushed as an EH cleanup. | 
|  | bool useEHCleanup = (cleanupKind & EHCleanup); | 
|  | EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, | 
|  | useEHCleanup); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { | 
|  | assert(emission.Variable && "emission was not valid!"); | 
|  |  | 
|  | // If this was emitted as a global constant, we're done. | 
|  | if (emission.wasEmittedAsGlobal()) return; | 
|  |  | 
|  | // If we don't have an insertion point, we're done.  Sema prevents | 
|  | // us from jumping into any of these scopes anyway. | 
|  | if (!HaveInsertPoint()) return; | 
|  |  | 
|  | const VarDecl &D = *emission.Variable; | 
|  |  | 
|  | // Check the type for a cleanup. | 
|  | if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) | 
|  | emitAutoVarTypeCleanup(emission, dtorKind); | 
|  |  | 
|  | // In GC mode, honor objc_precise_lifetime. | 
|  | if (getLangOpts().getGC() != LangOptions::NonGC && | 
|  | D.hasAttr<ObjCPreciseLifetimeAttr>()) { | 
|  | EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); | 
|  | } | 
|  |  | 
|  | // Handle the cleanup attribute. | 
|  | if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { | 
|  | const FunctionDecl *FD = CA->getFunctionDecl(); | 
|  |  | 
|  | llvm::Constant *F = CGM.GetAddrOfFunction(FD); | 
|  | assert(F && "Could not find function!"); | 
|  |  | 
|  | const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); | 
|  | EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); | 
|  | } | 
|  |  | 
|  | // If this is a block variable, call _Block_object_destroy | 
|  | // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC | 
|  | // mode. | 
|  | if (emission.IsEscapingByRef && | 
|  | CGM.getLangOpts().getGC() != LangOptions::GCOnly) { | 
|  | BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; | 
|  | if (emission.Variable->getType().isObjCGCWeak()) | 
|  | Flags |= BLOCK_FIELD_IS_WEAK; | 
|  | enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, | 
|  | /*LoadBlockVarAddr*/ false, | 
|  | cxxDestructorCanThrow(emission.Variable->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | CodeGenFunction::Destroyer * | 
|  | CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { | 
|  | switch (kind) { | 
|  | case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); | 
|  | case QualType::DK_cxx_destructor: | 
|  | return destroyCXXObject; | 
|  | case QualType::DK_objc_strong_lifetime: | 
|  | return destroyARCStrongPrecise; | 
|  | case QualType::DK_objc_weak_lifetime: | 
|  | return destroyARCWeak; | 
|  | case QualType::DK_nontrivial_c_struct: | 
|  | return destroyNonTrivialCStruct; | 
|  | } | 
|  | llvm_unreachable("Unknown DestructionKind"); | 
|  | } | 
|  |  | 
|  | /// pushEHDestroy - Push the standard destructor for the given type as | 
|  | /// an EH-only cleanup. | 
|  | void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, | 
|  | Address addr, QualType type) { | 
|  | assert(dtorKind && "cannot push destructor for trivial type"); | 
|  | assert(needsEHCleanup(dtorKind)); | 
|  |  | 
|  | pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); | 
|  | } | 
|  |  | 
|  | /// pushDestroy - Push the standard destructor for the given type as | 
|  | /// at least a normal cleanup. | 
|  | void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, | 
|  | Address addr, QualType type) { | 
|  | assert(dtorKind && "cannot push destructor for trivial type"); | 
|  |  | 
|  | CleanupKind cleanupKind = getCleanupKind(dtorKind); | 
|  | pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), | 
|  | cleanupKind & EHCleanup); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, | 
|  | QualType type, Destroyer *destroyer, | 
|  | bool useEHCleanupForArray) { | 
|  | pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, | 
|  | destroyer, useEHCleanupForArray); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { | 
|  | EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::pushLifetimeExtendedDestroy( | 
|  | CleanupKind cleanupKind, Address addr, QualType type, | 
|  | Destroyer *destroyer, bool useEHCleanupForArray) { | 
|  | // Push an EH-only cleanup for the object now. | 
|  | // FIXME: When popping normal cleanups, we need to keep this EH cleanup | 
|  | // around in case a temporary's destructor throws an exception. | 
|  | if (cleanupKind & EHCleanup) | 
|  | EHStack.pushCleanup<DestroyObject>( | 
|  | static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, | 
|  | destroyer, useEHCleanupForArray); | 
|  |  | 
|  | // Remember that we need to push a full cleanup for the object at the | 
|  | // end of the full-expression. | 
|  | pushCleanupAfterFullExpr<DestroyObject>( | 
|  | cleanupKind, addr, type, destroyer, useEHCleanupForArray); | 
|  | } | 
|  |  | 
|  | /// emitDestroy - Immediately perform the destruction of the given | 
|  | /// object. | 
|  | /// | 
|  | /// \param addr - the address of the object; a type* | 
|  | /// \param type - the type of the object; if an array type, all | 
|  | ///   objects are destroyed in reverse order | 
|  | /// \param destroyer - the function to call to destroy individual | 
|  | ///   elements | 
|  | /// \param useEHCleanupForArray - whether an EH cleanup should be | 
|  | ///   used when destroying array elements, in case one of the | 
|  | ///   destructions throws an exception | 
|  | void CodeGenFunction::emitDestroy(Address addr, QualType type, | 
|  | Destroyer *destroyer, | 
|  | bool useEHCleanupForArray) { | 
|  | const ArrayType *arrayType = getContext().getAsArrayType(type); | 
|  | if (!arrayType) | 
|  | return destroyer(*this, addr, type); | 
|  |  | 
|  | llvm::Value *length = emitArrayLength(arrayType, type, addr); | 
|  |  | 
|  | CharUnits elementAlign = | 
|  | addr.getAlignment() | 
|  | .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); | 
|  |  | 
|  | // Normally we have to check whether the array is zero-length. | 
|  | bool checkZeroLength = true; | 
|  |  | 
|  | // But if the array length is constant, we can suppress that. | 
|  | if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { | 
|  | // ...and if it's constant zero, we can just skip the entire thing. | 
|  | if (constLength->isZero()) return; | 
|  | checkZeroLength = false; | 
|  | } | 
|  |  | 
|  | llvm::Value *begin = addr.getPointer(); | 
|  | llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); | 
|  | emitArrayDestroy(begin, end, type, elementAlign, destroyer, | 
|  | checkZeroLength, useEHCleanupForArray); | 
|  | } | 
|  |  | 
|  | /// emitArrayDestroy - Destroys all the elements of the given array, | 
|  | /// beginning from last to first.  The array cannot be zero-length. | 
|  | /// | 
|  | /// \param begin - a type* denoting the first element of the array | 
|  | /// \param end - a type* denoting one past the end of the array | 
|  | /// \param elementType - the element type of the array | 
|  | /// \param destroyer - the function to call to destroy elements | 
|  | /// \param useEHCleanup - whether to push an EH cleanup to destroy | 
|  | ///   the remaining elements in case the destruction of a single | 
|  | ///   element throws | 
|  | void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, | 
|  | llvm::Value *end, | 
|  | QualType elementType, | 
|  | CharUnits elementAlign, | 
|  | Destroyer *destroyer, | 
|  | bool checkZeroLength, | 
|  | bool useEHCleanup) { | 
|  | assert(!elementType->isArrayType()); | 
|  |  | 
|  | // The basic structure here is a do-while loop, because we don't | 
|  | // need to check for the zero-element case. | 
|  | llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); | 
|  | llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); | 
|  |  | 
|  | if (checkZeroLength) { | 
|  | llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, | 
|  | "arraydestroy.isempty"); | 
|  | Builder.CreateCondBr(isEmpty, doneBB, bodyBB); | 
|  | } | 
|  |  | 
|  | // Enter the loop body, making that address the current address. | 
|  | llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); | 
|  | EmitBlock(bodyBB); | 
|  | llvm::PHINode *elementPast = | 
|  | Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); | 
|  | elementPast->addIncoming(end, entryBB); | 
|  |  | 
|  | // Shift the address back by one element. | 
|  | llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); | 
|  | llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, | 
|  | "arraydestroy.element"); | 
|  |  | 
|  | if (useEHCleanup) | 
|  | pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, | 
|  | destroyer); | 
|  |  | 
|  | // Perform the actual destruction there. | 
|  | destroyer(*this, Address(element, elementAlign), elementType); | 
|  |  | 
|  | if (useEHCleanup) | 
|  | PopCleanupBlock(); | 
|  |  | 
|  | // Check whether we've reached the end. | 
|  | llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); | 
|  | Builder.CreateCondBr(done, doneBB, bodyBB); | 
|  | elementPast->addIncoming(element, Builder.GetInsertBlock()); | 
|  |  | 
|  | // Done. | 
|  | EmitBlock(doneBB); | 
|  | } | 
|  |  | 
|  | /// Perform partial array destruction as if in an EH cleanup.  Unlike | 
|  | /// emitArrayDestroy, the element type here may still be an array type. | 
|  | static void emitPartialArrayDestroy(CodeGenFunction &CGF, | 
|  | llvm::Value *begin, llvm::Value *end, | 
|  | QualType type, CharUnits elementAlign, | 
|  | CodeGenFunction::Destroyer *destroyer) { | 
|  | // If the element type is itself an array, drill down. | 
|  | unsigned arrayDepth = 0; | 
|  | while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { | 
|  | // VLAs don't require a GEP index to walk into. | 
|  | if (!isa<VariableArrayType>(arrayType)) | 
|  | arrayDepth++; | 
|  | type = arrayType->getElementType(); | 
|  | } | 
|  |  | 
|  | if (arrayDepth) { | 
|  | llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); | 
|  |  | 
|  | SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); | 
|  | begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); | 
|  | end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); | 
|  | } | 
|  |  | 
|  | // Destroy the array.  We don't ever need an EH cleanup because we | 
|  | // assume that we're in an EH cleanup ourselves, so a throwing | 
|  | // destructor causes an immediate terminate. | 
|  | CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, | 
|  | /*checkZeroLength*/ true, /*useEHCleanup*/ false); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// RegularPartialArrayDestroy - a cleanup which performs a partial | 
|  | /// array destroy where the end pointer is regularly determined and | 
|  | /// does not need to be loaded from a local. | 
|  | class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { | 
|  | llvm::Value *ArrayBegin; | 
|  | llvm::Value *ArrayEnd; | 
|  | QualType ElementType; | 
|  | CodeGenFunction::Destroyer *Destroyer; | 
|  | CharUnits ElementAlign; | 
|  | public: | 
|  | RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, | 
|  | QualType elementType, CharUnits elementAlign, | 
|  | CodeGenFunction::Destroyer *destroyer) | 
|  | : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), | 
|  | ElementType(elementType), Destroyer(destroyer), | 
|  | ElementAlign(elementAlign) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, | 
|  | ElementType, ElementAlign, Destroyer); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// IrregularPartialArrayDestroy - a cleanup which performs a | 
|  | /// partial array destroy where the end pointer is irregularly | 
|  | /// determined and must be loaded from a local. | 
|  | class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { | 
|  | llvm::Value *ArrayBegin; | 
|  | Address ArrayEndPointer; | 
|  | QualType ElementType; | 
|  | CodeGenFunction::Destroyer *Destroyer; | 
|  | CharUnits ElementAlign; | 
|  | public: | 
|  | IrregularPartialArrayDestroy(llvm::Value *arrayBegin, | 
|  | Address arrayEndPointer, | 
|  | QualType elementType, | 
|  | CharUnits elementAlign, | 
|  | CodeGenFunction::Destroyer *destroyer) | 
|  | : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), | 
|  | ElementType(elementType), Destroyer(destroyer), | 
|  | ElementAlign(elementAlign) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); | 
|  | emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, | 
|  | ElementType, ElementAlign, Destroyer); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy | 
|  | /// already-constructed elements of the given array.  The cleanup | 
|  | /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. | 
|  | /// | 
|  | /// \param elementType - the immediate element type of the array; | 
|  | ///   possibly still an array type | 
|  | void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, | 
|  | Address arrayEndPointer, | 
|  | QualType elementType, | 
|  | CharUnits elementAlign, | 
|  | Destroyer *destroyer) { | 
|  | pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, | 
|  | arrayBegin, arrayEndPointer, | 
|  | elementType, elementAlign, | 
|  | destroyer); | 
|  | } | 
|  |  | 
|  | /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy | 
|  | /// already-constructed elements of the given array.  The cleanup | 
|  | /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. | 
|  | /// | 
|  | /// \param elementType - the immediate element type of the array; | 
|  | ///   possibly still an array type | 
|  | void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, | 
|  | llvm::Value *arrayEnd, | 
|  | QualType elementType, | 
|  | CharUnits elementAlign, | 
|  | Destroyer *destroyer) { | 
|  | pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, | 
|  | arrayBegin, arrayEnd, | 
|  | elementType, elementAlign, | 
|  | destroyer); | 
|  | } | 
|  |  | 
|  | /// Lazily declare the @llvm.lifetime.start intrinsic. | 
|  | llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { | 
|  | if (LifetimeStartFn) | 
|  | return LifetimeStartFn; | 
|  | LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), | 
|  | llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); | 
|  | return LifetimeStartFn; | 
|  | } | 
|  |  | 
|  | /// Lazily declare the @llvm.lifetime.end intrinsic. | 
|  | llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { | 
|  | if (LifetimeEndFn) | 
|  | return LifetimeEndFn; | 
|  | LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), | 
|  | llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); | 
|  | return LifetimeEndFn; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A cleanup to perform a release of an object at the end of a | 
|  | /// function.  This is used to balance out the incoming +1 of a | 
|  | /// ns_consumed argument when we can't reasonably do that just by | 
|  | /// not doing the initial retain for a __block argument. | 
|  | struct ConsumeARCParameter final : EHScopeStack::Cleanup { | 
|  | ConsumeARCParameter(llvm::Value *param, | 
|  | ARCPreciseLifetime_t precise) | 
|  | : Param(param), Precise(precise) {} | 
|  |  | 
|  | llvm::Value *Param; | 
|  | ARCPreciseLifetime_t Precise; | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | CGF.EmitARCRelease(Param, Precise); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Emit an alloca (or GlobalValue depending on target) | 
|  | /// for the specified parameter and set up LocalDeclMap. | 
|  | void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, | 
|  | unsigned ArgNo) { | 
|  | // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? | 
|  | assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && | 
|  | "Invalid argument to EmitParmDecl"); | 
|  |  | 
|  | Arg.getAnyValue()->setName(D.getName()); | 
|  |  | 
|  | QualType Ty = D.getType(); | 
|  |  | 
|  | // Use better IR generation for certain implicit parameters. | 
|  | if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { | 
|  | // The only implicit argument a block has is its literal. | 
|  | // This may be passed as an inalloca'ed value on Windows x86. | 
|  | if (BlockInfo) { | 
|  | llvm::Value *V = Arg.isIndirect() | 
|  | ? Builder.CreateLoad(Arg.getIndirectAddress()) | 
|  | : Arg.getDirectValue(); | 
|  | setBlockContextParameter(IPD, ArgNo, V); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Address DeclPtr = Address::invalid(); | 
|  | bool DoStore = false; | 
|  | bool IsScalar = hasScalarEvaluationKind(Ty); | 
|  | // If we already have a pointer to the argument, reuse the input pointer. | 
|  | if (Arg.isIndirect()) { | 
|  | DeclPtr = Arg.getIndirectAddress(); | 
|  | // If we have a prettier pointer type at this point, bitcast to that. | 
|  | unsigned AS = DeclPtr.getType()->getAddressSpace(); | 
|  | llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); | 
|  | if (DeclPtr.getType() != IRTy) | 
|  | DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); | 
|  | // Indirect argument is in alloca address space, which may be different | 
|  | // from the default address space. | 
|  | auto AllocaAS = CGM.getASTAllocaAddressSpace(); | 
|  | auto *V = DeclPtr.getPointer(); | 
|  | auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; | 
|  | auto DestLangAS = | 
|  | getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; | 
|  | if (SrcLangAS != DestLangAS) { | 
|  | assert(getContext().getTargetAddressSpace(SrcLangAS) == | 
|  | CGM.getDataLayout().getAllocaAddrSpace()); | 
|  | auto DestAS = getContext().getTargetAddressSpace(DestLangAS); | 
|  | auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); | 
|  | DeclPtr = Address(getTargetHooks().performAddrSpaceCast( | 
|  | *this, V, SrcLangAS, DestLangAS, T, true), | 
|  | DeclPtr.getAlignment()); | 
|  | } | 
|  |  | 
|  | // Push a destructor cleanup for this parameter if the ABI requires it. | 
|  | // Don't push a cleanup in a thunk for a method that will also emit a | 
|  | // cleanup. | 
|  | if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && | 
|  | Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { | 
|  | if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { | 
|  | assert((DtorKind == QualType::DK_cxx_destructor || | 
|  | DtorKind == QualType::DK_nontrivial_c_struct) && | 
|  | "unexpected destructor type"); | 
|  | pushDestroy(DtorKind, DeclPtr, Ty); | 
|  | CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = | 
|  | EHStack.stable_begin(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Check if the parameter address is controlled by OpenMP runtime. | 
|  | Address OpenMPLocalAddr = | 
|  | getLangOpts().OpenMP | 
|  | ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) | 
|  | : Address::invalid(); | 
|  | if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { | 
|  | DeclPtr = OpenMPLocalAddr; | 
|  | } else { | 
|  | // Otherwise, create a temporary to hold the value. | 
|  | DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), | 
|  | D.getName() + ".addr"); | 
|  | } | 
|  | DoStore = true; | 
|  | } | 
|  |  | 
|  | llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); | 
|  |  | 
|  | LValue lv = MakeAddrLValue(DeclPtr, Ty); | 
|  | if (IsScalar) { | 
|  | Qualifiers qs = Ty.getQualifiers(); | 
|  | if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { | 
|  | // We honor __attribute__((ns_consumed)) for types with lifetime. | 
|  | // For __strong, it's handled by just skipping the initial retain; | 
|  | // otherwise we have to balance out the initial +1 with an extra | 
|  | // cleanup to do the release at the end of the function. | 
|  | bool isConsumed = D.hasAttr<NSConsumedAttr>(); | 
|  |  | 
|  | // If a parameter is pseudo-strong then we can omit the implicit retain. | 
|  | if (D.isARCPseudoStrong()) { | 
|  | assert(lt == Qualifiers::OCL_Strong && | 
|  | "pseudo-strong variable isn't strong?"); | 
|  | assert(qs.hasConst() && "pseudo-strong variable should be const!"); | 
|  | lt = Qualifiers::OCL_ExplicitNone; | 
|  | } | 
|  |  | 
|  | // Load objects passed indirectly. | 
|  | if (Arg.isIndirect() && !ArgVal) | 
|  | ArgVal = Builder.CreateLoad(DeclPtr); | 
|  |  | 
|  | if (lt == Qualifiers::OCL_Strong) { | 
|  | if (!isConsumed) { | 
|  | if (CGM.getCodeGenOpts().OptimizationLevel == 0) { | 
|  | // use objc_storeStrong(&dest, value) for retaining the | 
|  | // object. But first, store a null into 'dest' because | 
|  | // objc_storeStrong attempts to release its old value. | 
|  | llvm::Value *Null = CGM.EmitNullConstant(D.getType()); | 
|  | EmitStoreOfScalar(Null, lv, /* isInitialization */ true); | 
|  | EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); | 
|  | DoStore = false; | 
|  | } | 
|  | else | 
|  | // Don't use objc_retainBlock for block pointers, because we | 
|  | // don't want to Block_copy something just because we got it | 
|  | // as a parameter. | 
|  | ArgVal = EmitARCRetainNonBlock(ArgVal); | 
|  | } | 
|  | } else { | 
|  | // Push the cleanup for a consumed parameter. | 
|  | if (isConsumed) { | 
|  | ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() | 
|  | ? ARCPreciseLifetime : ARCImpreciseLifetime); | 
|  | EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, | 
|  | precise); | 
|  | } | 
|  |  | 
|  | if (lt == Qualifiers::OCL_Weak) { | 
|  | EmitARCInitWeak(DeclPtr, ArgVal); | 
|  | DoStore = false; // The weak init is a store, no need to do two. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enter the cleanup scope. | 
|  | EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Store the initial value into the alloca. | 
|  | if (DoStore) | 
|  | EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); | 
|  |  | 
|  | setAddrOfLocalVar(&D, DeclPtr); | 
|  |  | 
|  | // Emit debug info for param declaration. | 
|  | if (CGDebugInfo *DI = getDebugInfo()) { | 
|  | if (CGM.getCodeGenOpts().getDebugInfo() >= | 
|  | codegenoptions::LimitedDebugInfo) { | 
|  | DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.hasAttr<AnnotateAttr>()) | 
|  | EmitVarAnnotations(&D, DeclPtr.getPointer()); | 
|  |  | 
|  | // We can only check return value nullability if all arguments to the | 
|  | // function satisfy their nullability preconditions. This makes it necessary | 
|  | // to emit null checks for args in the function body itself. | 
|  | if (requiresReturnValueNullabilityCheck()) { | 
|  | auto Nullability = Ty->getNullability(getContext()); | 
|  | if (Nullability && *Nullability == NullabilityKind::NonNull) { | 
|  | SanitizerScope SanScope(this); | 
|  | RetValNullabilityPrecondition = | 
|  | Builder.CreateAnd(RetValNullabilityPrecondition, | 
|  | Builder.CreateIsNotNull(Arg.getAnyValue())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, | 
|  | CodeGenFunction *CGF) { | 
|  | if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) | 
|  | return; | 
|  | getOpenMPRuntime().emitUserDefinedReduction(CGF, D); | 
|  | } | 
|  |  | 
|  | void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, | 
|  | CodeGenFunction *CGF) { | 
|  | if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) | 
|  | return; | 
|  | // FIXME: need to implement mapper code generation | 
|  | } | 
|  |  | 
|  | void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { | 
|  | getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D); | 
|  | } |