| //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===// | |
| // | |
| // The LLVM Compiler Infrastructure | |
| // | |
| // This file is distributed under the University of Illinois Open Source | |
| // License. See LICENSE.TXT for details. | |
| // | |
| //===----------------------------------------------------------------------===// | |
| // | |
| // This file contains the implementation of custom routines for the X86 | |
| // Calling Convention that aren't done by tablegen. | |
| // | |
| //===----------------------------------------------------------------------===// | |
| #include "MCTargetDesc/X86MCTargetDesc.h" | |
| #include "X86Subtarget.h" | |
| #include "llvm/CodeGen/CallingConvLower.h" | |
| #include "llvm/IR/CallingConv.h" | |
| namespace llvm { | |
| bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | |
| CCValAssign::LocInfo &LocInfo, | |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { | |
| // List of GPR registers that are available to store values in regcall | |
| // calling convention. | |
| static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, | |
| X86::ESI}; | |
| // The vector will save all the available registers for allocation. | |
| SmallVector<unsigned, 5> AvailableRegs; | |
| // searching for the available registers. | |
| for (auto Reg : RegList) { | |
| if (!State.isAllocated(Reg)) | |
| AvailableRegs.push_back(Reg); | |
| } | |
| const size_t RequiredGprsUponSplit = 2; | |
| if (AvailableRegs.size() < RequiredGprsUponSplit) | |
| return false; // Not enough free registers - continue the search. | |
| // Allocating the available registers. | |
| for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { | |
| // Marking the register as located. | |
| unsigned Reg = State.AllocateReg(AvailableRegs[I]); | |
| // Since we previously made sure that 2 registers are available | |
| // we expect that a real register number will be returned. | |
| assert(Reg && "Expecting a register will be available"); | |
| // Assign the value to the allocated register | |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | |
| } | |
| // Successful in allocating regsiters - stop scanning next rules. | |
| return true; | |
| } | |
| static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { | |
| if (ValVT.is512BitVector()) { | |
| static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, | |
| X86::ZMM3, X86::ZMM4, X86::ZMM5}; | |
| return RegListZMM; | |
| } | |
| if (ValVT.is256BitVector()) { | |
| static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, | |
| X86::YMM3, X86::YMM4, X86::YMM5}; | |
| return RegListYMM; | |
| } | |
| static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, | |
| X86::XMM3, X86::XMM4, X86::XMM5}; | |
| return RegListXMM; | |
| } | |
| static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { | |
| static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; | |
| return RegListGPR; | |
| } | |
| static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, | |
| MVT &LocVT, | |
| CCValAssign::LocInfo &LocInfo, | |
| ISD::ArgFlagsTy &ArgFlags, | |
| CCState &State) { | |
| ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); | |
| bool Is64bit = static_cast<const X86Subtarget &>( | |
| State.getMachineFunction().getSubtarget()) | |
| .is64Bit(); | |
| for (auto Reg : RegList) { | |
| // If the register is not marked as allocated - assign to it. | |
| if (!State.isAllocated(Reg)) { | |
| unsigned AssigedReg = State.AllocateReg(Reg); | |
| assert(AssigedReg == Reg && "Expecting a valid register allocation"); | |
| State.addLoc( | |
| CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); | |
| return true; | |
| } | |
| // If the register is marked as shadow allocated - assign to it. | |
| if (Is64bit && State.IsShadowAllocatedReg(Reg)) { | |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | |
| return true; | |
| } | |
| } | |
| llvm_unreachable("Clang should ensure that hva marked vectors will have " | |
| "an available register."); | |
| return false; | |
| } | |
| bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | |
| CCValAssign::LocInfo &LocInfo, | |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { | |
| // On the second pass, go through the HVAs only. | |
| if (ArgFlags.isSecArgPass()) { | |
| if (ArgFlags.isHva()) | |
| return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, | |
| ArgFlags, State); | |
| return true; | |
| } | |
| // Process only vector types as defined by vectorcall spec: | |
| // "A vector type is either a floating-point type, for example, | |
| // a float or double, or an SIMD vector type, for example, __m128 or __m256". | |
| if (!(ValVT.isFloatingPoint() || | |
| (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { | |
| // If R9 was already assigned it means that we are after the fourth element | |
| // and because this is not an HVA / Vector type, we need to allocate | |
| // shadow XMM register. | |
| if (State.isAllocated(X86::R9)) { | |
| // Assign shadow XMM register. | |
| (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); | |
| } | |
| return false; | |
| } | |
| if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { | |
| // Assign shadow GPR register. | |
| (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); | |
| // Assign XMM register - (shadow for HVA and non-shadow for non HVA). | |
| if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { | |
| // In Vectorcall Calling convention, additional shadow stack can be | |
| // created on top of the basic 32 bytes of win64. | |
| // It can happen if the fifth or sixth argument is vector type or HVA. | |
| // At that case for each argument a shadow stack of 8 bytes is allocated. | |
| if (Reg == X86::XMM4 || Reg == X86::XMM5) | |
| State.AllocateStack(8, 8); | |
| if (!ArgFlags.isHva()) { | |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | |
| return true; // Allocated a register - Stop the search. | |
| } | |
| } | |
| } | |
| // If this is an HVA - Stop the search, | |
| // otherwise continue the search. | |
| return ArgFlags.isHva(); | |
| } | |
| bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | |
| CCValAssign::LocInfo &LocInfo, | |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { | |
| // On the second pass, go through the HVAs only. | |
| if (ArgFlags.isSecArgPass()) { | |
| if (ArgFlags.isHva()) | |
| return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, | |
| ArgFlags, State); | |
| return true; | |
| } | |
| // Process only vector types as defined by vectorcall spec: | |
| // "A vector type is either a floating point type, for example, | |
| // a float or double, or an SIMD vector type, for example, __m128 or __m256". | |
| if (!(ValVT.isFloatingPoint() || | |
| (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { | |
| return false; | |
| } | |
| if (ArgFlags.isHva()) | |
| return true; // If this is an HVA - Stop the search. | |
| // Assign XMM register. | |
| if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { | |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | |
| return true; | |
| } | |
| // In case we did not find an available XMM register for a vector - | |
| // pass it indirectly. | |
| // It is similar to CCPassIndirect, with the addition of inreg. | |
| if (!ValVT.isFloatingPoint()) { | |
| LocVT = MVT::i32; | |
| LocInfo = CCValAssign::Indirect; | |
| ArgFlags.setInReg(); | |
| } | |
| return false; // No register was assigned - Continue the search. | |
| } | |
| } // End llvm namespace |