|  | //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs global value numbering to eliminate fully redundant | 
|  | // instructions.  It also performs simple dead load elimination. | 
|  | // | 
|  | // Note that this pass does the value numbering itself; it does not use the | 
|  | // ValueNumbering analysis passes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "gvn" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/Value.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include <cstdio> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumGVNInstr,  "Number of instructions deleted"); | 
|  | STATISTIC(NumGVNLoad,   "Number of loads deleted"); | 
|  | STATISTIC(NumGVNPRE,    "Number of instructions PRE'd"); | 
|  | STATISTIC(NumGVNBlocks, "Number of blocks merged"); | 
|  | STATISTIC(NumPRELoad,   "Number of loads PRE'd"); | 
|  |  | 
|  | static cl::opt<bool> EnablePRE("enable-pre", | 
|  | cl::init(true), cl::Hidden); | 
|  | static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         ValueTable Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This class holds the mapping between values and value numbers.  It is used | 
|  | /// as an efficient mechanism to determine the expression-wise equivalence of | 
|  | /// two values. | 
|  | namespace { | 
|  | struct Expression { | 
|  | enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL, | 
|  | UDIV, SDIV, FDIV, UREM, SREM, | 
|  | FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, | 
|  | ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, | 
|  | ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, | 
|  | FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, | 
|  | FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, | 
|  | FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, | 
|  | SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, | 
|  | FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, | 
|  | PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT, | 
|  | INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE }; | 
|  |  | 
|  | ExpressionOpcode opcode; | 
|  | const Type* type; | 
|  | SmallVector<uint32_t, 4> varargs; | 
|  | Value *function; | 
|  |  | 
|  | Expression() { } | 
|  | Expression(ExpressionOpcode o) : opcode(o) { } | 
|  |  | 
|  | bool operator==(const Expression &other) const { | 
|  | if (opcode != other.opcode) | 
|  | return false; | 
|  | else if (opcode == EMPTY || opcode == TOMBSTONE) | 
|  | return true; | 
|  | else if (type != other.type) | 
|  | return false; | 
|  | else if (function != other.function) | 
|  | return false; | 
|  | else { | 
|  | if (varargs.size() != other.varargs.size()) | 
|  | return false; | 
|  |  | 
|  | for (size_t i = 0; i < varargs.size(); ++i) | 
|  | if (varargs[i] != other.varargs[i]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool operator!=(const Expression &other) const { | 
|  | return !(*this == other); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ValueTable { | 
|  | private: | 
|  | DenseMap<Value*, uint32_t> valueNumbering; | 
|  | DenseMap<Expression, uint32_t> expressionNumbering; | 
|  | AliasAnalysis* AA; | 
|  | MemoryDependenceAnalysis* MD; | 
|  | DominatorTree* DT; | 
|  |  | 
|  | uint32_t nextValueNumber; | 
|  |  | 
|  | Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); | 
|  | Expression::ExpressionOpcode getOpcode(CmpInst* C); | 
|  | Expression::ExpressionOpcode getOpcode(CastInst* C); | 
|  | Expression create_expression(BinaryOperator* BO); | 
|  | Expression create_expression(CmpInst* C); | 
|  | Expression create_expression(ShuffleVectorInst* V); | 
|  | Expression create_expression(ExtractElementInst* C); | 
|  | Expression create_expression(InsertElementInst* V); | 
|  | Expression create_expression(SelectInst* V); | 
|  | Expression create_expression(CastInst* C); | 
|  | Expression create_expression(GetElementPtrInst* G); | 
|  | Expression create_expression(CallInst* C); | 
|  | Expression create_expression(Constant* C); | 
|  | Expression create_expression(ExtractValueInst* C); | 
|  | Expression create_expression(InsertValueInst* C); | 
|  |  | 
|  | uint32_t lookup_or_add_call(CallInst* C); | 
|  | public: | 
|  | ValueTable() : nextValueNumber(1) { } | 
|  | uint32_t lookup_or_add(Value *V); | 
|  | uint32_t lookup(Value *V) const; | 
|  | void add(Value *V, uint32_t num); | 
|  | void clear(); | 
|  | void erase(Value *v); | 
|  | unsigned size(); | 
|  | void setAliasAnalysis(AliasAnalysis* A) { AA = A; } | 
|  | AliasAnalysis *getAliasAnalysis() const { return AA; } | 
|  | void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } | 
|  | void setDomTree(DominatorTree* D) { DT = D; } | 
|  | uint32_t getNextUnusedValueNumber() { return nextValueNumber; } | 
|  | void verifyRemoved(const Value *) const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | template <> struct DenseMapInfo<Expression> { | 
|  | static inline Expression getEmptyKey() { | 
|  | return Expression(Expression::EMPTY); | 
|  | } | 
|  |  | 
|  | static inline Expression getTombstoneKey() { | 
|  | return Expression(Expression::TOMBSTONE); | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const Expression e) { | 
|  | unsigned hash = e.opcode; | 
|  |  | 
|  | hash = ((unsigned)((uintptr_t)e.type >> 4) ^ | 
|  | (unsigned)((uintptr_t)e.type >> 9)); | 
|  |  | 
|  | for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(), | 
|  | E = e.varargs.end(); I != E; ++I) | 
|  | hash = *I + hash * 37; | 
|  |  | 
|  | hash = ((unsigned)((uintptr_t)e.function >> 4) ^ | 
|  | (unsigned)((uintptr_t)e.function >> 9)) + | 
|  | hash * 37; | 
|  |  | 
|  | return hash; | 
|  | } | 
|  | static bool isEqual(const Expression &LHS, const Expression &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | static bool isPod() { return true; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     ValueTable Internal Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  | Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) { | 
|  | switch(BO->getOpcode()) { | 
|  | default: // THIS SHOULD NEVER HAPPEN | 
|  | llvm_unreachable("Binary operator with unknown opcode?"); | 
|  | case Instruction::Add:  return Expression::ADD; | 
|  | case Instruction::FAdd: return Expression::FADD; | 
|  | case Instruction::Sub:  return Expression::SUB; | 
|  | case Instruction::FSub: return Expression::FSUB; | 
|  | case Instruction::Mul:  return Expression::MUL; | 
|  | case Instruction::FMul: return Expression::FMUL; | 
|  | case Instruction::UDiv: return Expression::UDIV; | 
|  | case Instruction::SDiv: return Expression::SDIV; | 
|  | case Instruction::FDiv: return Expression::FDIV; | 
|  | case Instruction::URem: return Expression::UREM; | 
|  | case Instruction::SRem: return Expression::SREM; | 
|  | case Instruction::FRem: return Expression::FREM; | 
|  | case Instruction::Shl:  return Expression::SHL; | 
|  | case Instruction::LShr: return Expression::LSHR; | 
|  | case Instruction::AShr: return Expression::ASHR; | 
|  | case Instruction::And:  return Expression::AND; | 
|  | case Instruction::Or:   return Expression::OR; | 
|  | case Instruction::Xor:  return Expression::XOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { | 
|  | if (isa<ICmpInst>(C)) { | 
|  | switch (C->getPredicate()) { | 
|  | default:  // THIS SHOULD NEVER HAPPEN | 
|  | llvm_unreachable("Comparison with unknown predicate?"); | 
|  | case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ; | 
|  | case ICmpInst::ICMP_NE:  return Expression::ICMPNE; | 
|  | case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; | 
|  | case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; | 
|  | case ICmpInst::ICMP_ULT: return Expression::ICMPULT; | 
|  | case ICmpInst::ICMP_ULE: return Expression::ICMPULE; | 
|  | case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; | 
|  | case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; | 
|  | case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; | 
|  | case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; | 
|  | } | 
|  | } else { | 
|  | switch (C->getPredicate()) { | 
|  | default: // THIS SHOULD NEVER HAPPEN | 
|  | llvm_unreachable("Comparison with unknown predicate?"); | 
|  | case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; | 
|  | case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; | 
|  | case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; | 
|  | case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; | 
|  | case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; | 
|  | case FCmpInst::FCMP_ONE: return Expression::FCMPONE; | 
|  | case FCmpInst::FCMP_ORD: return Expression::FCMPORD; | 
|  | case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; | 
|  | case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; | 
|  | case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; | 
|  | case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; | 
|  | case FCmpInst::FCMP_ULT: return Expression::FCMPULT; | 
|  | case FCmpInst::FCMP_ULE: return Expression::FCMPULE; | 
|  | case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) { | 
|  | switch(C->getOpcode()) { | 
|  | default: // THIS SHOULD NEVER HAPPEN | 
|  | llvm_unreachable("Cast operator with unknown opcode?"); | 
|  | case Instruction::Trunc:    return Expression::TRUNC; | 
|  | case Instruction::ZExt:     return Expression::ZEXT; | 
|  | case Instruction::SExt:     return Expression::SEXT; | 
|  | case Instruction::FPToUI:   return Expression::FPTOUI; | 
|  | case Instruction::FPToSI:   return Expression::FPTOSI; | 
|  | case Instruction::UIToFP:   return Expression::UITOFP; | 
|  | case Instruction::SIToFP:   return Expression::SITOFP; | 
|  | case Instruction::FPTrunc:  return Expression::FPTRUNC; | 
|  | case Instruction::FPExt:    return Expression::FPEXT; | 
|  | case Instruction::PtrToInt: return Expression::PTRTOINT; | 
|  | case Instruction::IntToPtr: return Expression::INTTOPTR; | 
|  | case Instruction::BitCast:  return Expression::BITCAST; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(CallInst* C) { | 
|  | Expression e; | 
|  |  | 
|  | e.type = C->getType(); | 
|  | e.function = C->getCalledFunction(); | 
|  | e.opcode = Expression::CALL; | 
|  |  | 
|  | for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end(); | 
|  | I != E; ++I) | 
|  | e.varargs.push_back(lookup_or_add(*I)); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(BinaryOperator* BO) { | 
|  | Expression e; | 
|  | e.varargs.push_back(lookup_or_add(BO->getOperand(0))); | 
|  | e.varargs.push_back(lookup_or_add(BO->getOperand(1))); | 
|  | e.function = 0; | 
|  | e.type = BO->getType(); | 
|  | e.opcode = getOpcode(BO); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(CmpInst* C) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(C->getOperand(0))); | 
|  | e.varargs.push_back(lookup_or_add(C->getOperand(1))); | 
|  | e.function = 0; | 
|  | e.type = C->getType(); | 
|  | e.opcode = getOpcode(C); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(CastInst* C) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(C->getOperand(0))); | 
|  | e.function = 0; | 
|  | e.type = C->getType(); | 
|  | e.opcode = getOpcode(C); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(ShuffleVectorInst* S) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(S->getOperand(0))); | 
|  | e.varargs.push_back(lookup_or_add(S->getOperand(1))); | 
|  | e.varargs.push_back(lookup_or_add(S->getOperand(2))); | 
|  | e.function = 0; | 
|  | e.type = S->getType(); | 
|  | e.opcode = Expression::SHUFFLE; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(ExtractElementInst* E) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(E->getOperand(0))); | 
|  | e.varargs.push_back(lookup_or_add(E->getOperand(1))); | 
|  | e.function = 0; | 
|  | e.type = E->getType(); | 
|  | e.opcode = Expression::EXTRACT; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(InsertElementInst* I) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(I->getOperand(0))); | 
|  | e.varargs.push_back(lookup_or_add(I->getOperand(1))); | 
|  | e.varargs.push_back(lookup_or_add(I->getOperand(2))); | 
|  | e.function = 0; | 
|  | e.type = I->getType(); | 
|  | e.opcode = Expression::INSERT; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(SelectInst* I) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(I->getCondition())); | 
|  | e.varargs.push_back(lookup_or_add(I->getTrueValue())); | 
|  | e.varargs.push_back(lookup_or_add(I->getFalseValue())); | 
|  | e.function = 0; | 
|  | e.type = I->getType(); | 
|  | e.opcode = Expression::SELECT; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(GetElementPtrInst* G) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(G->getPointerOperand())); | 
|  | e.function = 0; | 
|  | e.type = G->getType(); | 
|  | e.opcode = Expression::GEP; | 
|  |  | 
|  | for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); | 
|  | I != E; ++I) | 
|  | e.varargs.push_back(lookup_or_add(*I)); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(ExtractValueInst* E) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(E->getAggregateOperand())); | 
|  | for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); | 
|  | II != IE; ++II) | 
|  | e.varargs.push_back(*II); | 
|  | e.function = 0; | 
|  | e.type = E->getType(); | 
|  | e.opcode = Expression::EXTRACTVALUE; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | Expression ValueTable::create_expression(InsertValueInst* E) { | 
|  | Expression e; | 
|  |  | 
|  | e.varargs.push_back(lookup_or_add(E->getAggregateOperand())); | 
|  | e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand())); | 
|  | for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); | 
|  | II != IE; ++II) | 
|  | e.varargs.push_back(*II); | 
|  | e.function = 0; | 
|  | e.type = E->getType(); | 
|  | e.opcode = Expression::INSERTVALUE; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     ValueTable External Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// add - Insert a value into the table with a specified value number. | 
|  | void ValueTable::add(Value *V, uint32_t num) { | 
|  | valueNumbering.insert(std::make_pair(V, num)); | 
|  | } | 
|  |  | 
|  | uint32_t ValueTable::lookup_or_add_call(CallInst* C) { | 
|  | if (AA->doesNotAccessMemory(C)) { | 
|  | Expression exp = create_expression(C); | 
|  | uint32_t& e = expressionNumbering[exp]; | 
|  | if (!e) e = nextValueNumber++; | 
|  | valueNumbering[C] = e; | 
|  | return e; | 
|  | } else if (AA->onlyReadsMemory(C)) { | 
|  | Expression exp = create_expression(C); | 
|  | uint32_t& e = expressionNumbering[exp]; | 
|  | if (!e) { | 
|  | e = nextValueNumber++; | 
|  | valueNumbering[C] = e; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | MemDepResult local_dep = MD->getDependency(C); | 
|  |  | 
|  | if (!local_dep.isDef() && !local_dep.isNonLocal()) { | 
|  | valueNumbering[C] =  nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | if (local_dep.isDef()) { | 
|  | CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); | 
|  |  | 
|  | if (local_cdep->getNumOperands() != C->getNumOperands()) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1; i < C->getNumOperands(); ++i) { | 
|  | uint32_t c_vn = lookup_or_add(C->getOperand(i)); | 
|  | uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i)); | 
|  | if (c_vn != cd_vn) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t v = lookup_or_add(local_cdep); | 
|  | valueNumbering[C] = v; | 
|  | return v; | 
|  | } | 
|  |  | 
|  | // Non-local case. | 
|  | const MemoryDependenceAnalysis::NonLocalDepInfo &deps = | 
|  | MD->getNonLocalCallDependency(CallSite(C)); | 
|  | // FIXME: call/call dependencies for readonly calls should return def, not | 
|  | // clobber!  Move the checking logic to MemDep! | 
|  | CallInst* cdep = 0; | 
|  |  | 
|  | // Check to see if we have a single dominating call instruction that is | 
|  | // identical to C. | 
|  | for (unsigned i = 0, e = deps.size(); i != e; ++i) { | 
|  | const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i]; | 
|  | // Ignore non-local dependencies. | 
|  | if (I->second.isNonLocal()) | 
|  | continue; | 
|  |  | 
|  | // We don't handle non-depedencies.  If we already have a call, reject | 
|  | // instruction dependencies. | 
|  | if (I->second.isClobber() || cdep != 0) { | 
|  | cdep = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst()); | 
|  | // FIXME: All duplicated with non-local case. | 
|  | if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){ | 
|  | cdep = NonLocalDepCall; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cdep = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!cdep) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | if (cdep->getNumOperands() != C->getNumOperands()) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | for (unsigned i = 1; i < C->getNumOperands(); ++i) { | 
|  | uint32_t c_vn = lookup_or_add(C->getOperand(i)); | 
|  | uint32_t cd_vn = lookup_or_add(cdep->getOperand(i)); | 
|  | if (c_vn != cd_vn) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t v = lookup_or_add(cdep); | 
|  | valueNumbering[C] = v; | 
|  | return v; | 
|  |  | 
|  | } else { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// lookup_or_add - Returns the value number for the specified value, assigning | 
|  | /// it a new number if it did not have one before. | 
|  | uint32_t ValueTable::lookup_or_add(Value *V) { | 
|  | DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); | 
|  | if (VI != valueNumbering.end()) | 
|  | return VI->second; | 
|  |  | 
|  | if (!isa<Instruction>(V)) { | 
|  | valueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | Instruction* I = cast<Instruction>(V); | 
|  | Expression exp; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Call: | 
|  | return lookup_or_add_call(cast<CallInst>(I)); | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or : | 
|  | case Instruction::Xor: | 
|  | exp = create_expression(cast<BinaryOperator>(I)); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | exp = create_expression(cast<CmpInst>(I)); | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | exp = create_expression(cast<CastInst>(I)); | 
|  | break; | 
|  | case Instruction::Select: | 
|  | exp = create_expression(cast<SelectInst>(I)); | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | exp = create_expression(cast<ExtractElementInst>(I)); | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | exp = create_expression(cast<InsertElementInst>(I)); | 
|  | break; | 
|  | case Instruction::ShuffleVector: | 
|  | exp = create_expression(cast<ShuffleVectorInst>(I)); | 
|  | break; | 
|  | case Instruction::ExtractValue: | 
|  | exp = create_expression(cast<ExtractValueInst>(I)); | 
|  | break; | 
|  | case Instruction::InsertValue: | 
|  | exp = create_expression(cast<InsertValueInst>(I)); | 
|  | break; | 
|  | case Instruction::GetElementPtr: | 
|  | exp = create_expression(cast<GetElementPtrInst>(I)); | 
|  | break; | 
|  | default: | 
|  | valueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | uint32_t& e = expressionNumbering[exp]; | 
|  | if (!e) e = nextValueNumber++; | 
|  | valueNumbering[V] = e; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /// lookup - Returns the value number of the specified value. Fails if | 
|  | /// the value has not yet been numbered. | 
|  | uint32_t ValueTable::lookup(Value *V) const { | 
|  | DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); | 
|  | assert(VI != valueNumbering.end() && "Value not numbered?"); | 
|  | return VI->second; | 
|  | } | 
|  |  | 
|  | /// clear - Remove all entries from the ValueTable | 
|  | void ValueTable::clear() { | 
|  | valueNumbering.clear(); | 
|  | expressionNumbering.clear(); | 
|  | nextValueNumber = 1; | 
|  | } | 
|  |  | 
|  | /// erase - Remove a value from the value numbering | 
|  | void ValueTable::erase(Value *V) { | 
|  | valueNumbering.erase(V); | 
|  | } | 
|  |  | 
|  | /// verifyRemoved - Verify that the value is removed from all internal data | 
|  | /// structures. | 
|  | void ValueTable::verifyRemoved(const Value *V) const { | 
|  | for (DenseMap<Value*, uint32_t>::iterator | 
|  | I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { | 
|  | assert(I->first != V && "Inst still occurs in value numbering map!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                GVN Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | struct ValueNumberScope { | 
|  | ValueNumberScope* parent; | 
|  | DenseMap<uint32_t, Value*> table; | 
|  |  | 
|  | ValueNumberScope(ValueNumberScope* p) : parent(p) { } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class GVN : public FunctionPass { | 
|  | bool runOnFunction(Function &F); | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | GVN(bool nopre = false) : FunctionPass(&ID), NoPRE(nopre) { } | 
|  |  | 
|  | private: | 
|  | bool NoPRE; | 
|  | MemoryDependenceAnalysis *MD; | 
|  | DominatorTree *DT; | 
|  |  | 
|  | ValueTable VN; | 
|  | DenseMap<BasicBlock*, ValueNumberScope*> localAvail; | 
|  |  | 
|  | // This transformation requires dominator postdominator info | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<MemoryDependenceAnalysis>(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  |  | 
|  | AU.addPreserved<DominatorTree>(); | 
|  | AU.addPreserved<AliasAnalysis>(); | 
|  | } | 
|  |  | 
|  | // Helper fuctions | 
|  | // FIXME: eliminate or document these better | 
|  | bool processLoad(LoadInst* L, | 
|  | SmallVectorImpl<Instruction*> &toErase); | 
|  | bool processInstruction(Instruction *I, | 
|  | SmallVectorImpl<Instruction*> &toErase); | 
|  | bool processNonLocalLoad(LoadInst* L, | 
|  | SmallVectorImpl<Instruction*> &toErase); | 
|  | bool processBlock(BasicBlock *BB); | 
|  | void dump(DenseMap<uint32_t, Value*>& d); | 
|  | bool iterateOnFunction(Function &F); | 
|  | Value *CollapsePhi(PHINode* p); | 
|  | bool performPRE(Function& F); | 
|  | Value *lookupNumber(BasicBlock *BB, uint32_t num); | 
|  | void cleanupGlobalSets(); | 
|  | void verifyRemoved(const Instruction *I) const; | 
|  | }; | 
|  |  | 
|  | char GVN::ID = 0; | 
|  | } | 
|  |  | 
|  | // createGVNPass - The public interface to this file... | 
|  | FunctionPass *llvm::createGVNPass(bool NoPRE) { return new GVN(NoPRE); } | 
|  |  | 
|  | static RegisterPass<GVN> X("gvn", | 
|  | "Global Value Numbering"); | 
|  |  | 
|  | void GVN::dump(DenseMap<uint32_t, Value*>& d) { | 
|  | printf("{\n"); | 
|  | for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), | 
|  | E = d.end(); I != E; ++I) { | 
|  | printf("%d\n", I->first); | 
|  | I->second->dump(); | 
|  | } | 
|  | printf("}\n"); | 
|  | } | 
|  |  | 
|  | static bool isSafeReplacement(PHINode* p, Instruction *inst) { | 
|  | if (!isa<PHINode>(inst)) | 
|  | return true; | 
|  |  | 
|  | for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (PHINode* use_phi = dyn_cast<PHINode>(UI)) | 
|  | if (use_phi->getParent() == inst->getParent()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Value *GVN::CollapsePhi(PHINode *PN) { | 
|  | Value *ConstVal = PN->hasConstantValue(DT); | 
|  | if (!ConstVal) return 0; | 
|  |  | 
|  | Instruction *Inst = dyn_cast<Instruction>(ConstVal); | 
|  | if (!Inst) | 
|  | return ConstVal; | 
|  |  | 
|  | if (DT->dominates(Inst, PN)) | 
|  | if (isSafeReplacement(PN, Inst)) | 
|  | return Inst; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// IsValueFullyAvailableInBlock - Return true if we can prove that the value | 
|  | /// we're analyzing is fully available in the specified block.  As we go, keep | 
|  | /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This | 
|  | /// map is actually a tri-state map with the following values: | 
|  | ///   0) we know the block *is not* fully available. | 
|  | ///   1) we know the block *is* fully available. | 
|  | ///   2) we do not know whether the block is fully available or not, but we are | 
|  | ///      currently speculating that it will be. | 
|  | ///   3) we are speculating for this block and have used that to speculate for | 
|  | ///      other blocks. | 
|  | static bool IsValueFullyAvailableInBlock(BasicBlock *BB, | 
|  | DenseMap<BasicBlock*, char> &FullyAvailableBlocks) { | 
|  | // Optimistically assume that the block is fully available and check to see | 
|  | // if we already know about this block in one lookup. | 
|  | std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = | 
|  | FullyAvailableBlocks.insert(std::make_pair(BB, 2)); | 
|  |  | 
|  | // If the entry already existed for this block, return the precomputed value. | 
|  | if (!IV.second) { | 
|  | // If this is a speculative "available" value, mark it as being used for | 
|  | // speculation of other blocks. | 
|  | if (IV.first->second == 2) | 
|  | IV.first->second = 3; | 
|  | return IV.first->second != 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, see if it is fully available in all predecessors. | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  |  | 
|  | // If this block has no predecessors, it isn't live-in here. | 
|  | if (PI == PE) | 
|  | goto SpeculationFailure; | 
|  |  | 
|  | for (; PI != PE; ++PI) | 
|  | // If the value isn't fully available in one of our predecessors, then it | 
|  | // isn't fully available in this block either.  Undo our previous | 
|  | // optimistic assumption and bail out. | 
|  | if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) | 
|  | goto SpeculationFailure; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | // SpeculationFailure - If we get here, we found out that this is not, after | 
|  | // all, a fully-available block.  We have a problem if we speculated on this and | 
|  | // used the speculation to mark other blocks as available. | 
|  | SpeculationFailure: | 
|  | char &BBVal = FullyAvailableBlocks[BB]; | 
|  |  | 
|  | // If we didn't speculate on this, just return with it set to false. | 
|  | if (BBVal == 2) { | 
|  | BBVal = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we did speculate on this value, we could have blocks set to 1 that are | 
|  | // incorrect.  Walk the (transitive) successors of this block and mark them as | 
|  | // 0 if set to one. | 
|  | SmallVector<BasicBlock*, 32> BBWorklist; | 
|  | BBWorklist.push_back(BB); | 
|  |  | 
|  | while (!BBWorklist.empty()) { | 
|  | BasicBlock *Entry = BBWorklist.pop_back_val(); | 
|  | // Note that this sets blocks to 0 (unavailable) if they happen to not | 
|  | // already be in FullyAvailableBlocks.  This is safe. | 
|  | char &EntryVal = FullyAvailableBlocks[Entry]; | 
|  | if (EntryVal == 0) continue;  // Already unavailable. | 
|  |  | 
|  | // Mark as unavailable. | 
|  | EntryVal = 0; | 
|  |  | 
|  | for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) | 
|  | BBWorklist.push_back(*I); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CanCoerceMustAliasedValueToLoad - Return true if | 
|  | /// CoerceAvailableValueToLoadType will succeed. | 
|  | static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, | 
|  | const Type *LoadTy, | 
|  | const TargetData &TD) { | 
|  | // If the loaded or stored value is an first class array or struct, don't try | 
|  | // to transform them.  We need to be able to bitcast to integer. | 
|  | if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) || | 
|  | isa<StructType>(StoredVal->getType()) || | 
|  | isa<ArrayType>(StoredVal->getType())) | 
|  | return false; | 
|  |  | 
|  | // The store has to be at least as big as the load. | 
|  | if (TD.getTypeSizeInBits(StoredVal->getType()) < | 
|  | TD.getTypeSizeInBits(LoadTy)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and | 
|  | /// then a load from a must-aliased pointer of a different type, try to coerce | 
|  | /// the stored value.  LoadedTy is the type of the load we want to replace and | 
|  | /// InsertPt is the place to insert new instructions. | 
|  | /// | 
|  | /// If we can't do it, return null. | 
|  | static Value *CoerceAvailableValueToLoadType(Value *StoredVal, | 
|  | const Type *LoadedTy, | 
|  | Instruction *InsertPt, | 
|  | const TargetData &TD) { | 
|  | if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD)) | 
|  | return 0; | 
|  |  | 
|  | const Type *StoredValTy = StoredVal->getType(); | 
|  |  | 
|  | uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy); | 
|  | uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy); | 
|  |  | 
|  | // If the store and reload are the same size, we can always reuse it. | 
|  | if (StoreSize == LoadSize) { | 
|  | if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) { | 
|  | // Pointer to Pointer -> use bitcast. | 
|  | return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); | 
|  | } | 
|  |  | 
|  | // Convert source pointers to integers, which can be bitcast. | 
|  | if (isa<PointerType>(StoredValTy)) { | 
|  | StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); | 
|  | StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); | 
|  | } | 
|  |  | 
|  | const Type *TypeToCastTo = LoadedTy; | 
|  | if (isa<PointerType>(TypeToCastTo)) | 
|  | TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext()); | 
|  |  | 
|  | if (StoredValTy != TypeToCastTo) | 
|  | StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); | 
|  |  | 
|  | // Cast to pointer if the load needs a pointer type. | 
|  | if (isa<PointerType>(LoadedTy)) | 
|  | StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); | 
|  |  | 
|  | return StoredVal; | 
|  | } | 
|  |  | 
|  | // If the loaded value is smaller than the available value, then we can | 
|  | // extract out a piece from it.  If the available value is too small, then we | 
|  | // can't do anything. | 
|  | assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); | 
|  |  | 
|  | // Convert source pointers to integers, which can be manipulated. | 
|  | if (isa<PointerType>(StoredValTy)) { | 
|  | StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); | 
|  | StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); | 
|  | } | 
|  |  | 
|  | // Convert vectors and fp to integer, which can be manipulated. | 
|  | if (!isa<IntegerType>(StoredValTy)) { | 
|  | StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize); | 
|  | StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt); | 
|  | } | 
|  |  | 
|  | // If this is a big-endian system, we need to shift the value down to the low | 
|  | // bits so that a truncate will work. | 
|  | if (TD.isBigEndian()) { | 
|  | Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize); | 
|  | StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt); | 
|  | } | 
|  |  | 
|  | // Truncate the integer to the right size now. | 
|  | const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize); | 
|  | StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt); | 
|  |  | 
|  | if (LoadedTy == NewIntTy) | 
|  | return StoredVal; | 
|  |  | 
|  | // If the result is a pointer, inttoptr. | 
|  | if (isa<PointerType>(LoadedTy)) | 
|  | return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); | 
|  |  | 
|  | // Otherwise, bitcast. | 
|  | return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt); | 
|  | } | 
|  |  | 
|  | /// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can | 
|  | /// be expressed as a base pointer plus a constant offset.  Return the base and | 
|  | /// offset to the caller. | 
|  | static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset, | 
|  | const TargetData &TD) { | 
|  | Operator *PtrOp = dyn_cast<Operator>(Ptr); | 
|  | if (PtrOp == 0) return Ptr; | 
|  |  | 
|  | // Just look through bitcasts. | 
|  | if (PtrOp->getOpcode() == Instruction::BitCast) | 
|  | return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); | 
|  |  | 
|  | // If this is a GEP with constant indices, we can look through it. | 
|  | GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); | 
|  | if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; | 
|  | ++I, ++GTI) { | 
|  | ConstantInt *OpC = cast<ConstantInt>(*I); | 
|  | if (OpC->isZero()) continue; | 
|  |  | 
|  | // Handle a struct and array indices which add their offset to the pointer. | 
|  | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += OpC->getSExtValue()*Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-sign extend from the pointer size if needed to get overflow edge cases | 
|  | // right. | 
|  | unsigned PtrSize = TD.getPointerSizeInBits(); | 
|  | if (PtrSize < 64) | 
|  | Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); | 
|  |  | 
|  | return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AnalyzeLoadFromClobberingStore - This function is called when we have a | 
|  | /// memdep query of a load that ends up being a clobbering store.  This means | 
|  | /// that the store *may* provide bits used by the load but we can't be sure | 
|  | /// because the pointers don't mustalias.  Check this case to see if there is | 
|  | /// anything more we can do before we give up.  This returns -1 if we have to | 
|  | /// give up, or a byte number in the stored value of the piece that feeds the | 
|  | /// load. | 
|  | static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI, | 
|  | const TargetData &TD) { | 
|  | // If the loaded or stored value is an first class array or struct, don't try | 
|  | // to transform them.  We need to be able to bitcast to integer. | 
|  | if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) || | 
|  | isa<StructType>(DepSI->getOperand(0)->getType()) || | 
|  | isa<ArrayType>(DepSI->getOperand(0)->getType())) | 
|  | return -1; | 
|  |  | 
|  | int64_t StoreOffset = 0, LoadOffset = 0; | 
|  | Value *StoreBase = | 
|  | GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD); | 
|  | Value *LoadBase = | 
|  | GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD); | 
|  | if (StoreBase != LoadBase) | 
|  | return -1; | 
|  |  | 
|  | // If the load and store are to the exact same address, they should have been | 
|  | // a must alias.  AA must have gotten confused. | 
|  | // FIXME: Study to see if/when this happens. | 
|  | if (LoadOffset == StoreOffset) { | 
|  | #if 0 | 
|  | errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" | 
|  | << "Base       = " << *StoreBase << "\n" | 
|  | << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n" | 
|  | << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n" | 
|  | << "Load Ptr   = " << *L->getPointerOperand() << "\n" | 
|  | << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n"; | 
|  | errs() << "'" << L->getParent()->getParent()->getName() << "'" | 
|  | << *L->getParent(); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If the load and store don't overlap at all, the store doesn't provide | 
|  | // anything to the load.  In this case, they really don't alias at all, AA | 
|  | // must have gotten confused. | 
|  | // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then | 
|  | // remove this check, as it is duplicated with what we have below. | 
|  | uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType()); | 
|  | uint64_t LoadSize = TD.getTypeSizeInBits(L->getType()); | 
|  |  | 
|  | if ((StoreSize & 7) | (LoadSize & 7)) | 
|  | return -1; | 
|  | StoreSize >>= 3;  // Convert to bytes. | 
|  | LoadSize >>= 3; | 
|  |  | 
|  |  | 
|  | bool isAAFailure = false; | 
|  | if (StoreOffset < LoadOffset) { | 
|  | isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; | 
|  | } else { | 
|  | isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; | 
|  | } | 
|  | if (isAAFailure) { | 
|  | #if 0 | 
|  | errs() << "STORE LOAD DEP WITH COMMON BASE:\n" | 
|  | << "Base       = " << *StoreBase << "\n" | 
|  | << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n" | 
|  | << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n" | 
|  | << "Load Ptr   = " << *L->getPointerOperand() << "\n" | 
|  | << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n"; | 
|  | errs() << "'" << L->getParent()->getParent()->getName() << "'" | 
|  | << *L->getParent(); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If the Load isn't completely contained within the stored bits, we don't | 
|  | // have all the bits to feed it.  We could do something crazy in the future | 
|  | // (issue a smaller load then merge the bits in) but this seems unlikely to be | 
|  | // valuable. | 
|  | if (StoreOffset > LoadOffset || | 
|  | StoreOffset+StoreSize < LoadOffset+LoadSize) | 
|  | return -1; | 
|  |  | 
|  | // Okay, we can do this transformation.  Return the number of bytes into the | 
|  | // store that the load is. | 
|  | return LoadOffset-StoreOffset; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetStoreValueForLoad - This function is called when we have a | 
|  | /// memdep query of a load that ends up being a clobbering store.  This means | 
|  | /// that the store *may* provide bits used by the load but we can't be sure | 
|  | /// because the pointers don't mustalias.  Check this case to see if there is | 
|  | /// anything more we can do before we give up. | 
|  | static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, | 
|  | const Type *LoadTy, | 
|  | Instruction *InsertPt, const TargetData &TD){ | 
|  | LLVMContext &Ctx = SrcVal->getType()->getContext(); | 
|  |  | 
|  | uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8; | 
|  | uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; | 
|  |  | 
|  |  | 
|  | // Compute which bits of the stored value are being used by the load.  Convert | 
|  | // to an integer type to start with. | 
|  | if (isa<PointerType>(SrcVal->getType())) | 
|  | SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt); | 
|  | if (!isa<IntegerType>(SrcVal->getType())) | 
|  | SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8), | 
|  | "tmp", InsertPt); | 
|  |  | 
|  | // Shift the bits to the least significant depending on endianness. | 
|  | unsigned ShiftAmt; | 
|  | if (TD.isLittleEndian()) { | 
|  | ShiftAmt = Offset*8; | 
|  | } else { | 
|  | ShiftAmt = (StoreSize-LoadSize-Offset)*8; | 
|  | } | 
|  |  | 
|  | if (ShiftAmt) | 
|  | SrcVal = BinaryOperator::CreateLShr(SrcVal, | 
|  | ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt); | 
|  |  | 
|  | if (LoadSize != StoreSize) | 
|  | SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8), | 
|  | "tmp", InsertPt); | 
|  |  | 
|  | return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); | 
|  | } | 
|  |  | 
|  | struct AvailableValueInBlock { | 
|  | /// BB - The basic block in question. | 
|  | BasicBlock *BB; | 
|  | /// V - The value that is live out of the block. | 
|  | Value *V; | 
|  | /// Offset - The byte offset in V that is interesting for the load query. | 
|  | unsigned Offset; | 
|  |  | 
|  | static AvailableValueInBlock get(BasicBlock *BB, Value *V, | 
|  | unsigned Offset = 0) { | 
|  | AvailableValueInBlock Res; | 
|  | Res.BB = BB; | 
|  | Res.V = V; | 
|  | Res.Offset = Offset; | 
|  | return Res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock, | 
|  | /// construct SSA form, allowing us to eliminate LI.  This returns the value | 
|  | /// that should be used at LI's definition site. | 
|  | static Value *ConstructSSAForLoadSet(LoadInst *LI, | 
|  | SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, | 
|  | const TargetData *TD, | 
|  | AliasAnalysis *AA) { | 
|  | SmallVector<PHINode*, 8> NewPHIs; | 
|  | SSAUpdater SSAUpdate(&NewPHIs); | 
|  | SSAUpdate.Initialize(LI); | 
|  |  | 
|  | const Type *LoadTy = LI->getType(); | 
|  |  | 
|  | for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { | 
|  | BasicBlock *BB = ValuesPerBlock[i].BB; | 
|  | Value *AvailableVal = ValuesPerBlock[i].V; | 
|  | unsigned Offset = ValuesPerBlock[i].Offset; | 
|  |  | 
|  | if (SSAUpdate.HasValueForBlock(BB)) | 
|  | continue; | 
|  |  | 
|  | if (AvailableVal->getType() != LoadTy) { | 
|  | assert(TD && "Need target data to handle type mismatch case"); | 
|  | AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy, | 
|  | BB->getTerminator(), *TD); | 
|  |  | 
|  | if (Offset) { | 
|  | DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n" | 
|  | << *ValuesPerBlock[i].V << '\n' | 
|  | << *AvailableVal << '\n' << "\n\n\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n" | 
|  | << *ValuesPerBlock[i].V << '\n' | 
|  | << *AvailableVal << '\n' << "\n\n\n"); | 
|  | } | 
|  |  | 
|  | SSAUpdate.AddAvailableValue(BB, AvailableVal); | 
|  | } | 
|  |  | 
|  | // Perform PHI construction. | 
|  | Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); | 
|  |  | 
|  | // If new PHI nodes were created, notify alias analysis. | 
|  | if (isa<PointerType>(V->getType())) | 
|  | for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) | 
|  | AA->copyValue(LI, NewPHIs[i]); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are | 
|  | /// non-local by performing PHI construction. | 
|  | bool GVN::processNonLocalLoad(LoadInst *LI, | 
|  | SmallVectorImpl<Instruction*> &toErase) { | 
|  | // Find the non-local dependencies of the load. | 
|  | SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps; | 
|  | MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(), | 
|  | Deps); | 
|  | //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: " | 
|  | //             << Deps.size() << *LI << '\n'); | 
|  |  | 
|  | // If we had to process more than one hundred blocks to find the | 
|  | // dependencies, this load isn't worth worrying about.  Optimizing | 
|  | // it will be too expensive. | 
|  | if (Deps.size() > 100) | 
|  | return false; | 
|  |  | 
|  | // If we had a phi translation failure, we'll have a single entry which is a | 
|  | // clobber in the current block.  Reject this early. | 
|  | if (Deps.size() == 1 && Deps[0].second.isClobber()) { | 
|  | DEBUG( | 
|  | errs() << "GVN: non-local load "; | 
|  | WriteAsOperand(errs(), LI); | 
|  | errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n'; | 
|  | ); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Filter out useless results (non-locals, etc).  Keep track of the blocks | 
|  | // where we have a value available in repl, also keep track of whether we see | 
|  | // dependencies that produce an unknown value for the load (such as a call | 
|  | // that could potentially clobber the load). | 
|  | SmallVector<AvailableValueInBlock, 16> ValuesPerBlock; | 
|  | SmallVector<BasicBlock*, 16> UnavailableBlocks; | 
|  |  | 
|  | const TargetData *TD = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Deps.size(); i != e; ++i) { | 
|  | BasicBlock *DepBB = Deps[i].first; | 
|  | MemDepResult DepInfo = Deps[i].second; | 
|  |  | 
|  | if (DepInfo.isClobber()) { | 
|  | // If the dependence is to a store that writes to a superset of the bits | 
|  | // read by the load, we can extract the bits we need for the load from the | 
|  | // stored value. | 
|  | if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { | 
|  | if (TD == 0) | 
|  | TD = getAnalysisIfAvailable<TargetData>(); | 
|  | if (TD) { | 
|  | int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD); | 
|  | if (Offset != -1) { | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, | 
|  | DepSI->getOperand(0), | 
|  | Offset)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Handle memset/memcpy. | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *DepInst = DepInfo.getInst(); | 
|  |  | 
|  | // Loading the allocation -> undef. | 
|  | if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) { | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, | 
|  | UndefValue::get(LI->getType()))); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Loading immediately after lifetime begin or end -> undef. | 
|  | if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, | 
|  | UndefValue::get(LI->getType()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { | 
|  | // Reject loads and stores that are to the same address but are of | 
|  | // different types if we have to. | 
|  | if (S->getOperand(0)->getType() != LI->getType()) { | 
|  | if (TD == 0) | 
|  | TD = getAnalysisIfAvailable<TargetData>(); | 
|  |  | 
|  | // If the stored value is larger or equal to the loaded value, we can | 
|  | // reuse it. | 
|  | if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0), | 
|  | LI->getType(), *TD)) { | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, | 
|  | S->getOperand(0))); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { | 
|  | // If the types mismatch and we can't handle it, reject reuse of the load. | 
|  | if (LD->getType() != LI->getType()) { | 
|  | if (TD == 0) | 
|  | TD = getAnalysisIfAvailable<TargetData>(); | 
|  |  | 
|  | // If the stored value is larger or equal to the loaded value, we can | 
|  | // reuse it. | 
|  | if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){ | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have no predecessors that produce a known value for this load, exit | 
|  | // early. | 
|  | if (ValuesPerBlock.empty()) return false; | 
|  |  | 
|  | // If all of the instructions we depend on produce a known value for this | 
|  | // load, then it is fully redundant and we can use PHI insertion to compute | 
|  | // its value.  Insert PHIs and remove the fully redundant value now. | 
|  | if (UnavailableBlocks.empty()) { | 
|  | DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); | 
|  |  | 
|  | // Perform PHI construction. | 
|  | Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, | 
|  | VN.getAliasAnalysis()); | 
|  | LI->replaceAllUsesWith(V); | 
|  |  | 
|  | if (isa<PHINode>(V)) | 
|  | V->takeName(LI); | 
|  | if (isa<PointerType>(V->getType())) | 
|  | MD->invalidateCachedPointerInfo(V); | 
|  | toErase.push_back(LI); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!EnablePRE || !EnableLoadPRE) | 
|  | return false; | 
|  |  | 
|  | // Okay, we have *some* definitions of the value.  This means that the value | 
|  | // is available in some of our (transitive) predecessors.  Lets think about | 
|  | // doing PRE of this load.  This will involve inserting a new load into the | 
|  | // predecessor when it's not available.  We could do this in general, but | 
|  | // prefer to not increase code size.  As such, we only do this when we know | 
|  | // that we only have to insert *one* load (which means we're basically moving | 
|  | // the load, not inserting a new one). | 
|  |  | 
|  | SmallPtrSet<BasicBlock *, 4> Blockers; | 
|  | for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) | 
|  | Blockers.insert(UnavailableBlocks[i]); | 
|  |  | 
|  | // Lets find first basic block with more than one predecessor.  Walk backwards | 
|  | // through predecessors if needed. | 
|  | BasicBlock *LoadBB = LI->getParent(); | 
|  | BasicBlock *TmpBB = LoadBB; | 
|  |  | 
|  | bool isSinglePred = false; | 
|  | bool allSingleSucc = true; | 
|  | while (TmpBB->getSinglePredecessor()) { | 
|  | isSinglePred = true; | 
|  | TmpBB = TmpBB->getSinglePredecessor(); | 
|  | if (!TmpBB) // If haven't found any, bail now. | 
|  | return false; | 
|  | if (TmpBB == LoadBB) // Infinite (unreachable) loop. | 
|  | return false; | 
|  | if (Blockers.count(TmpBB)) | 
|  | return false; | 
|  | if (TmpBB->getTerminator()->getNumSuccessors() != 1) | 
|  | allSingleSucc = false; | 
|  | } | 
|  |  | 
|  | assert(TmpBB); | 
|  | LoadBB = TmpBB; | 
|  |  | 
|  | // If we have a repl set with LI itself in it, this means we have a loop where | 
|  | // at least one of the values is LI.  Since this means that we won't be able | 
|  | // to eliminate LI even if we insert uses in the other predecessors, we will | 
|  | // end up increasing code size.  Reject this by scanning for LI. | 
|  | for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) | 
|  | if (ValuesPerBlock[i].V == LI) | 
|  | return false; | 
|  |  | 
|  | if (isSinglePred) { | 
|  | bool isHot = false; | 
|  | for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) | 
|  | if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V)) | 
|  | // "Hot" Instruction is in some loop (because it dominates its dep. | 
|  | // instruction). | 
|  | if (DT->dominates(LI, I)) { | 
|  | isHot = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We are interested only in "hot" instructions. We don't want to do any | 
|  | // mis-optimizations here. | 
|  | if (!isHot) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, we have some hope :).  Check to see if the loaded value is fully | 
|  | // available in all but one predecessor. | 
|  | // FIXME: If we could restructure the CFG, we could make a common pred with | 
|  | // all the preds that don't have an available LI and insert a new load into | 
|  | // that one block. | 
|  | BasicBlock *UnavailablePred = 0; | 
|  |  | 
|  | DenseMap<BasicBlock*, char> FullyAvailableBlocks; | 
|  | for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) | 
|  | FullyAvailableBlocks[ValuesPerBlock[i].BB] = true; | 
|  | for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) | 
|  | FullyAvailableBlocks[UnavailableBlocks[i]] = false; | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); | 
|  | PI != E; ++PI) { | 
|  | if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) | 
|  | continue; | 
|  |  | 
|  | // If this load is not available in multiple predecessors, reject it. | 
|  | if (UnavailablePred && UnavailablePred != *PI) | 
|  | return false; | 
|  | UnavailablePred = *PI; | 
|  | } | 
|  |  | 
|  | assert(UnavailablePred != 0 && | 
|  | "Fully available value should be eliminated above!"); | 
|  |  | 
|  | // If the loaded pointer is PHI node defined in this block, do PHI translation | 
|  | // to get its value in the predecessor. | 
|  | Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred); | 
|  |  | 
|  | // Make sure the value is live in the predecessor.  If it was defined by a | 
|  | // non-PHI instruction in this block, we don't know how to recompute it above. | 
|  | if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr)) | 
|  | if (!DT->dominates(LPInst->getParent(), UnavailablePred)) { | 
|  | DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: " | 
|  | << *LPInst << '\n' << *LI << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We don't currently handle critical edges :( | 
|  | if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) { | 
|  | DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '" | 
|  | << UnavailablePred->getName() << "': " << *LI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure it is valid to move this load here.  We have to watch out for: | 
|  | //  @1 = getelementptr (i8* p, ... | 
|  | //  test p and branch if == 0 | 
|  | //  load @1 | 
|  | // It is valid to have the getelementptr before the test, even if p can be 0, | 
|  | // as getelementptr only does address arithmetic. | 
|  | // If we are not pushing the value through any multiple-successor blocks | 
|  | // we do not have this case.  Otherwise, check that the load is safe to | 
|  | // put anywhere; this can be improved, but should be conservatively safe. | 
|  | if (!allSingleSucc && | 
|  | !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // Okay, we can eliminate this load by inserting a reload in the predecessor | 
|  | // and using PHI construction to get the value in the other predecessors, do | 
|  | // it. | 
|  | DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); | 
|  |  | 
|  | Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, | 
|  | LI->getAlignment(), | 
|  | UnavailablePred->getTerminator()); | 
|  |  | 
|  | // Add the newly created load. | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad)); | 
|  |  | 
|  | // Perform PHI construction. | 
|  | Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, | 
|  | VN.getAliasAnalysis()); | 
|  | LI->replaceAllUsesWith(V); | 
|  | if (isa<PHINode>(V)) | 
|  | V->takeName(LI); | 
|  | if (isa<PointerType>(V->getType())) | 
|  | MD->invalidateCachedPointerInfo(V); | 
|  | toErase.push_back(LI); | 
|  | NumPRELoad++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// processLoad - Attempt to eliminate a load, first by eliminating it | 
|  | /// locally, and then attempting non-local elimination if that fails. | 
|  | bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) { | 
|  | if (L->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // ... to a pointer that has been loaded from before... | 
|  | MemDepResult Dep = MD->getDependency(L); | 
|  |  | 
|  | // If the value isn't available, don't do anything! | 
|  | if (Dep.isClobber()) { | 
|  | // FIXME: We should handle memset/memcpy/memmove as dependent instructions | 
|  | // to forward the value if available. | 
|  | //if (isa<MemIntrinsic>(Dep.getInst())) | 
|  | //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n"; | 
|  |  | 
|  | // Check to see if we have something like this: | 
|  | //   store i32 123, i32* %P | 
|  | //   %A = bitcast i32* %P to i8* | 
|  | //   %B = gep i8* %A, i32 1 | 
|  | //   %C = load i8* %B | 
|  | // | 
|  | // We could do that by recognizing if the clobber instructions are obviously | 
|  | // a common base + constant offset, and if the previous store (or memset) | 
|  | // completely covers this load.  This sort of thing can happen in bitfield | 
|  | // access code. | 
|  | if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) | 
|  | if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) { | 
|  | int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD); | 
|  | if (Offset != -1) { | 
|  | Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset, | 
|  | L->getType(), L, *TD); | 
|  | DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n' | 
|  | << *AvailVal << '\n' << *L << "\n\n\n"); | 
|  |  | 
|  | // Replace the load! | 
|  | L->replaceAllUsesWith(AvailVal); | 
|  | if (isa<PointerType>(AvailVal->getType())) | 
|  | MD->invalidateCachedPointerInfo(AvailVal); | 
|  | toErase.push_back(L); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG( | 
|  | // fast print dep, using operator<< on instruction would be too slow | 
|  | errs() << "GVN: load "; | 
|  | WriteAsOperand(errs(), L); | 
|  | Instruction *I = Dep.getInst(); | 
|  | errs() << " is clobbered by " << *I << '\n'; | 
|  | ); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If it is defined in another block, try harder. | 
|  | if (Dep.isNonLocal()) | 
|  | return processNonLocalLoad(L, toErase); | 
|  |  | 
|  | Instruction *DepInst = Dep.getInst(); | 
|  | if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { | 
|  | Value *StoredVal = DepSI->getOperand(0); | 
|  |  | 
|  | // The store and load are to a must-aliased pointer, but they may not | 
|  | // actually have the same type.  See if we know how to reuse the stored | 
|  | // value (depending on its type). | 
|  | const TargetData *TD = 0; | 
|  | if (StoredVal->getType() != L->getType()) { | 
|  | if ((TD = getAnalysisIfAvailable<TargetData>())) { | 
|  | StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), | 
|  | L, *TD); | 
|  | if (StoredVal == 0) | 
|  | return false; | 
|  |  | 
|  | DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal | 
|  | << '\n' << *L << "\n\n\n"); | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remove it! | 
|  | L->replaceAllUsesWith(StoredVal); | 
|  | if (isa<PointerType>(StoredVal->getType())) | 
|  | MD->invalidateCachedPointerInfo(StoredVal); | 
|  | toErase.push_back(L); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { | 
|  | Value *AvailableVal = DepLI; | 
|  |  | 
|  | // The loads are of a must-aliased pointer, but they may not actually have | 
|  | // the same type.  See if we know how to reuse the previously loaded value | 
|  | // (depending on its type). | 
|  | const TargetData *TD = 0; | 
|  | if (DepLI->getType() != L->getType()) { | 
|  | if ((TD = getAnalysisIfAvailable<TargetData>())) { | 
|  | AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD); | 
|  | if (AvailableVal == 0) | 
|  | return false; | 
|  |  | 
|  | DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal | 
|  | << "\n" << *L << "\n\n\n"); | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remove it! | 
|  | L->replaceAllUsesWith(AvailableVal); | 
|  | if (isa<PointerType>(DepLI->getType())) | 
|  | MD->invalidateCachedPointerInfo(DepLI); | 
|  | toErase.push_back(L); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this load really doesn't depend on anything, then we must be loading an | 
|  | // undef value.  This can happen when loading for a fresh allocation with no | 
|  | // intervening stores, for example. | 
|  | if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) { | 
|  | L->replaceAllUsesWith(UndefValue::get(L->getType())); | 
|  | toErase.push_back(L); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this load occurs either right after a lifetime begin or a lifetime end, | 
|  | // then the loaded value is undefined. | 
|  | if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | L->replaceAllUsesWith(UndefValue::get(L->getType())); | 
|  | toErase.push_back(L); | 
|  | NumGVNLoad++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) { | 
|  | DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB); | 
|  | if (I == localAvail.end()) | 
|  | return 0; | 
|  |  | 
|  | ValueNumberScope *Locals = I->second; | 
|  | while (Locals) { | 
|  | DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num); | 
|  | if (I != Locals->table.end()) | 
|  | return I->second; | 
|  | Locals = Locals->parent; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// processInstruction - When calculating availability, handle an instruction | 
|  | /// by inserting it into the appropriate sets | 
|  | bool GVN::processInstruction(Instruction *I, | 
|  | SmallVectorImpl<Instruction*> &toErase) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | bool Changed = processLoad(LI, toErase); | 
|  |  | 
|  | if (!Changed) { | 
|  | unsigned Num = VN.lookup_or_add(LI); | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI)); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | uint32_t NextNum = VN.getNextUnusedValueNumber(); | 
|  | unsigned Num = VN.lookup_or_add(I); | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(I)) { | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); | 
|  |  | 
|  | if (!BI->isConditional() || isa<Constant>(BI->getCondition())) | 
|  | return false; | 
|  |  | 
|  | Value *BranchCond = BI->getCondition(); | 
|  | uint32_t CondVN = VN.lookup_or_add(BranchCond); | 
|  |  | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  |  | 
|  | if (TrueSucc->getSinglePredecessor()) | 
|  | localAvail[TrueSucc]->table[CondVN] = | 
|  | ConstantInt::getTrue(TrueSucc->getContext()); | 
|  | if (FalseSucc->getSinglePredecessor()) | 
|  | localAvail[FalseSucc]->table[CondVN] = | 
|  | ConstantInt::getFalse(TrueSucc->getContext()); | 
|  |  | 
|  | return false; | 
|  |  | 
|  | // Allocations are always uniquely numbered, so we can save time and memory | 
|  | // by fast failing them. | 
|  | } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) { | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Collapse PHI nodes | 
|  | if (PHINode* p = dyn_cast<PHINode>(I)) { | 
|  | Value *constVal = CollapsePhi(p); | 
|  |  | 
|  | if (constVal) { | 
|  | p->replaceAllUsesWith(constVal); | 
|  | if (isa<PointerType>(constVal->getType())) | 
|  | MD->invalidateCachedPointerInfo(constVal); | 
|  | VN.erase(p); | 
|  |  | 
|  | toErase.push_back(p); | 
|  | } else { | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); | 
|  | } | 
|  |  | 
|  | // If the number we were assigned was a brand new VN, then we don't | 
|  | // need to do a lookup to see if the number already exists | 
|  | // somewhere in the domtree: it can't! | 
|  | } else if (Num == NextNum) { | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); | 
|  |  | 
|  | // Perform fast-path value-number based elimination of values inherited from | 
|  | // dominators. | 
|  | } else if (Value *repl = lookupNumber(I->getParent(), Num)) { | 
|  | // Remove it! | 
|  | VN.erase(I); | 
|  | I->replaceAllUsesWith(repl); | 
|  | if (isa<PointerType>(repl->getType())) | 
|  | MD->invalidateCachedPointerInfo(repl); | 
|  | toErase.push_back(I); | 
|  | return true; | 
|  |  | 
|  | } else { | 
|  | localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// runOnFunction - This is the main transformation entry point for a function. | 
|  | bool GVN::runOnFunction(Function& F) { | 
|  | MD = &getAnalysis<MemoryDependenceAnalysis>(); | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  | VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>()); | 
|  | VN.setMemDep(MD); | 
|  | VN.setDomTree(DT); | 
|  |  | 
|  | bool Changed = false; | 
|  | bool ShouldContinue = true; | 
|  |  | 
|  | // Merge unconditional branches, allowing PRE to catch more | 
|  | // optimization opportunities. | 
|  | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { | 
|  | BasicBlock *BB = FI; | 
|  | ++FI; | 
|  | bool removedBlock = MergeBlockIntoPredecessor(BB, this); | 
|  | if (removedBlock) NumGVNBlocks++; | 
|  |  | 
|  | Changed |= removedBlock; | 
|  | } | 
|  |  | 
|  | unsigned Iteration = 0; | 
|  |  | 
|  | while (ShouldContinue) { | 
|  | DEBUG(errs() << "GVN iteration: " << Iteration << "\n"); | 
|  | ShouldContinue = iterateOnFunction(F); | 
|  | Changed |= ShouldContinue; | 
|  | ++Iteration; | 
|  | } | 
|  |  | 
|  | if (EnablePRE) { | 
|  | bool PREChanged = true; | 
|  | while (PREChanged) { | 
|  | PREChanged = performPRE(F); | 
|  | Changed |= PREChanged; | 
|  | } | 
|  | } | 
|  | // FIXME: Should perform GVN again after PRE does something.  PRE can move | 
|  | // computations into blocks where they become fully redundant.  Note that | 
|  | // we can't do this until PRE's critical edge splitting updates memdep. | 
|  | // Actually, when this happens, we should just fully integrate PRE into GVN. | 
|  |  | 
|  | cleanupGlobalSets(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool GVN::processBlock(BasicBlock *BB) { | 
|  | // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and | 
|  | // incrementing BI before processing an instruction). | 
|  | SmallVector<Instruction*, 8> toErase; | 
|  | bool ChangedFunction = false; | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); | 
|  | BI != BE;) { | 
|  | ChangedFunction |= processInstruction(BI, toErase); | 
|  | if (toErase.empty()) { | 
|  | ++BI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we need some instructions deleted, do it now. | 
|  | NumGVNInstr += toErase.size(); | 
|  |  | 
|  | // Avoid iterator invalidation. | 
|  | bool AtStart = BI == BB->begin(); | 
|  | if (!AtStart) | 
|  | --BI; | 
|  |  | 
|  | for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(), | 
|  | E = toErase.end(); I != E; ++I) { | 
|  | DEBUG(errs() << "GVN removed: " << **I << '\n'); | 
|  | MD->removeInstruction(*I); | 
|  | (*I)->eraseFromParent(); | 
|  | DEBUG(verifyRemoved(*I)); | 
|  | } | 
|  | toErase.clear(); | 
|  |  | 
|  | if (AtStart) | 
|  | BI = BB->begin(); | 
|  | else | 
|  | ++BI; | 
|  | } | 
|  |  | 
|  | return ChangedFunction; | 
|  | } | 
|  |  | 
|  | /// performPRE - Perform a purely local form of PRE that looks for diamond | 
|  | /// control flow patterns and attempts to perform simple PRE at the join point. | 
|  | bool GVN::performPRE(Function& F) { | 
|  | bool Changed = false; | 
|  | SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit; | 
|  | DenseMap<BasicBlock*, Value*> predMap; | 
|  | for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), | 
|  | DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { | 
|  | BasicBlock *CurrentBlock = *DI; | 
|  |  | 
|  | // Nothing to PRE in the entry block. | 
|  | if (CurrentBlock == &F.getEntryBlock()) continue; | 
|  |  | 
|  | for (BasicBlock::iterator BI = CurrentBlock->begin(), | 
|  | BE = CurrentBlock->end(); BI != BE; ) { | 
|  | Instruction *CurInst = BI++; | 
|  |  | 
|  | if (isa<AllocaInst>(CurInst) || | 
|  | isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) || | 
|  | CurInst->getType()->isVoidTy() || | 
|  | CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || | 
|  | isa<DbgInfoIntrinsic>(CurInst)) | 
|  | continue; | 
|  |  | 
|  | uint32_t ValNo = VN.lookup(CurInst); | 
|  |  | 
|  | // Look for the predecessors for PRE opportunities.  We're | 
|  | // only trying to solve the basic diamond case, where | 
|  | // a value is computed in the successor and one predecessor, | 
|  | // but not the other.  We also explicitly disallow cases | 
|  | // where the successor is its own predecessor, because they're | 
|  | // more complicated to get right. | 
|  | unsigned NumWith = 0; | 
|  | unsigned NumWithout = 0; | 
|  | BasicBlock *PREPred = 0; | 
|  | predMap.clear(); | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(CurrentBlock), | 
|  | PE = pred_end(CurrentBlock); PI != PE; ++PI) { | 
|  | // We're not interested in PRE where the block is its | 
|  | // own predecessor, on in blocks with predecessors | 
|  | // that are not reachable. | 
|  | if (*PI == CurrentBlock) { | 
|  | NumWithout = 2; | 
|  | break; | 
|  | } else if (!localAvail.count(*PI))  { | 
|  | NumWithout = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | DenseMap<uint32_t, Value*>::iterator predV = | 
|  | localAvail[*PI]->table.find(ValNo); | 
|  | if (predV == localAvail[*PI]->table.end()) { | 
|  | PREPred = *PI; | 
|  | NumWithout++; | 
|  | } else if (predV->second == CurInst) { | 
|  | NumWithout = 2; | 
|  | } else { | 
|  | predMap[*PI] = predV->second; | 
|  | NumWith++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't do PRE when it might increase code size, i.e. when | 
|  | // we would need to insert instructions in more than one pred. | 
|  | if (NumWithout != 1 || NumWith == 0) | 
|  | continue; | 
|  |  | 
|  | // We can't do PRE safely on a critical edge, so instead we schedule | 
|  | // the edge to be split and perform the PRE the next time we iterate | 
|  | // on the function. | 
|  | unsigned SuccNum = 0; | 
|  | for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors(); | 
|  | i != e; ++i) | 
|  | if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) { | 
|  | SuccNum = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { | 
|  | toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instantiate the expression the in predecessor that lacked it. | 
|  | // Because we are going top-down through the block, all value numbers | 
|  | // will be available in the predecessor by the time we need them.  Any | 
|  | // that weren't original present will have been instantiated earlier | 
|  | // in this loop. | 
|  | Instruction *PREInstr = CurInst->clone(); | 
|  | bool success = true; | 
|  | for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { | 
|  | Value *Op = PREInstr->getOperand(i); | 
|  | if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) | 
|  | continue; | 
|  |  | 
|  | if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) { | 
|  | PREInstr->setOperand(i, V); | 
|  | } else { | 
|  | success = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fail out if we encounter an operand that is not available in | 
|  | // the PRE predecessor.  This is typically because of loads which | 
|  | // are not value numbered precisely. | 
|  | if (!success) { | 
|  | delete PREInstr; | 
|  | DEBUG(verifyRemoved(PREInstr)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | PREInstr->insertBefore(PREPred->getTerminator()); | 
|  | PREInstr->setName(CurInst->getName() + ".pre"); | 
|  | predMap[PREPred] = PREInstr; | 
|  | VN.add(PREInstr, ValNo); | 
|  | NumGVNPRE++; | 
|  |  | 
|  | // Update the availability map to include the new instruction. | 
|  | localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr)); | 
|  |  | 
|  | // Create a PHI to make the value available in this block. | 
|  | PHINode* Phi = PHINode::Create(CurInst->getType(), | 
|  | CurInst->getName() + ".pre-phi", | 
|  | CurrentBlock->begin()); | 
|  | for (pred_iterator PI = pred_begin(CurrentBlock), | 
|  | PE = pred_end(CurrentBlock); PI != PE; ++PI) | 
|  | Phi->addIncoming(predMap[*PI], *PI); | 
|  |  | 
|  | VN.add(Phi, ValNo); | 
|  | localAvail[CurrentBlock]->table[ValNo] = Phi; | 
|  |  | 
|  | CurInst->replaceAllUsesWith(Phi); | 
|  | if (isa<PointerType>(Phi->getType())) | 
|  | MD->invalidateCachedPointerInfo(Phi); | 
|  | VN.erase(CurInst); | 
|  |  | 
|  | DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n'); | 
|  | MD->removeInstruction(CurInst); | 
|  | CurInst->eraseFromParent(); | 
|  | DEBUG(verifyRemoved(CurInst)); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator | 
|  | I = toSplit.begin(), E = toSplit.end(); I != E; ++I) | 
|  | SplitCriticalEdge(I->first, I->second, this); | 
|  |  | 
|  | return Changed || toSplit.size(); | 
|  | } | 
|  |  | 
|  | /// iterateOnFunction - Executes one iteration of GVN | 
|  | bool GVN::iterateOnFunction(Function &F) { | 
|  | cleanupGlobalSets(); | 
|  |  | 
|  | for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()), | 
|  | DE = df_end(DT->getRootNode()); DI != DE; ++DI) { | 
|  | if (DI->getIDom()) | 
|  | localAvail[DI->getBlock()] = | 
|  | new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]); | 
|  | else | 
|  | localAvail[DI->getBlock()] = new ValueNumberScope(0); | 
|  | } | 
|  |  | 
|  | // Top-down walk of the dominator tree | 
|  | bool Changed = false; | 
|  | #if 0 | 
|  | // Needed for value numbering with phi construction to work. | 
|  | ReversePostOrderTraversal<Function*> RPOT(&F); | 
|  | for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(), | 
|  | RE = RPOT.end(); RI != RE; ++RI) | 
|  | Changed |= processBlock(*RI); | 
|  | #else | 
|  | for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()), | 
|  | DE = df_end(DT->getRootNode()); DI != DE; ++DI) | 
|  | Changed |= processBlock(DI->getBlock()); | 
|  | #endif | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void GVN::cleanupGlobalSets() { | 
|  | VN.clear(); | 
|  |  | 
|  | for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator | 
|  | I = localAvail.begin(), E = localAvail.end(); I != E; ++I) | 
|  | delete I->second; | 
|  | localAvail.clear(); | 
|  | } | 
|  |  | 
|  | /// verifyRemoved - Verify that the specified instruction does not occur in our | 
|  | /// internal data structures. | 
|  | void GVN::verifyRemoved(const Instruction *Inst) const { | 
|  | VN.verifyRemoved(Inst); | 
|  |  | 
|  | // Walk through the value number scope to make sure the instruction isn't | 
|  | // ferreted away in it. | 
|  | for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator | 
|  | I = localAvail.begin(), E = localAvail.end(); I != E; ++I) { | 
|  | const ValueNumberScope *VNS = I->second; | 
|  |  | 
|  | while (VNS) { | 
|  | for (DenseMap<uint32_t, Value*>::iterator | 
|  | II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) { | 
|  | assert(II->second != Inst && "Inst still in value numbering scope!"); | 
|  | } | 
|  |  | 
|  | VNS = VNS->parent; | 
|  | } | 
|  | } | 
|  | } |