| //===- CodeExtractor.cpp - Pull code region into a new function -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interface to tear out a code region, such as an |
| // individual loop or a parallel section, into a new function, replacing it with |
| // a call to the new function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/FunctionUtils.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "Support/CommandLine.h" |
| #include "Support/Debug.h" |
| #include "Support/StringExtras.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| // Provide a command-line option to aggregate function arguments into a struct |
| // for functions produced by the code extrator. This is useful when converting |
| // extracted functions to pthread-based code, as only one argument (void*) can |
| // be passed in to pthread_create(). |
| static cl::opt<bool> |
| AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, |
| cl::desc("Aggregate arguments to code-extracted functions")); |
| |
| namespace { |
| class CodeExtractor { |
| typedef std::vector<Value*> Values; |
| std::set<BasicBlock*> BlocksToExtract; |
| DominatorSet *DS; |
| bool AggregateArgs; |
| public: |
| CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) |
| : DS(ds), AggregateArgs(AggregateArgsOpt) {} |
| |
| Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); |
| |
| bool isEligible(const std::vector<BasicBlock*> &code); |
| |
| private: |
| void findInputsOutputs(Values &inputs, Values &outputs, |
| BasicBlock *newHeader, |
| BasicBlock *newRootNode); |
| |
| Function *constructFunction(const Values &inputs, |
| const Values &outputs, |
| BasicBlock *header, |
| BasicBlock *newRootNode, BasicBlock *newHeader, |
| Function *oldFunction, Module *M); |
| |
| void moveCodeToFunction(Function *newFunction); |
| |
| void emitCallAndSwitchStatement(Function *newFunction, |
| BasicBlock *newHeader, |
| Values &inputs, |
| Values &outputs); |
| |
| }; |
| } |
| |
| void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, |
| BasicBlock *newHeader, |
| BasicBlock *newRootNode) { |
| for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), |
| ce = BlocksToExtract.end(); ci != ce; ++ci) { |
| BasicBlock *BB = *ci; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| // If a used value is defined outside the region, it's an input. If an |
| // instruction is used outside the region, it's an output. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| if (!BlocksToExtract.count(PN->getIncomingBlock(i)) && |
| (isa<Instruction>(V) || isa<Argument>(V))) |
| inputs.push_back(V); |
| else if (Instruction *opI = dyn_cast<Instruction>(V)) { |
| if (!BlocksToExtract.count(opI->getParent())) |
| inputs.push_back(opI); |
| } else if (isa<Argument>(V)) |
| inputs.push_back(V); |
| } |
| } else { |
| // All other instructions go through the generic input finder |
| // Loop over the operands of each instruction (inputs) |
| for (User::op_iterator op = I->op_begin(), opE = I->op_end(); |
| op != opE; ++op) |
| if (Instruction *opI = dyn_cast<Instruction>(*op)) { |
| // Check if definition of this operand is within the loop |
| if (!BlocksToExtract.count(opI->getParent())) |
| inputs.push_back(opI); |
| } else if (isa<Argument>(*op)) { |
| inputs.push_back(*op); |
| } |
| } |
| |
| // Consider uses of this instruction (outputs) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) { |
| outputs.push_back(I); |
| break; |
| } |
| } // for: insts |
| } // for: basic blocks |
| } |
| |
| /// constructFunction - make a function based on inputs and outputs, as follows: |
| /// f(in0, ..., inN, out0, ..., outN) |
| /// |
| Function *CodeExtractor::constructFunction(const Values &inputs, |
| const Values &outputs, |
| BasicBlock *header, |
| BasicBlock *newRootNode, |
| BasicBlock *newHeader, |
| Function *oldFunction, |
| Module *M) { |
| DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); |
| DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); |
| |
| // This function returns unsigned, outputs will go back by reference. |
| Type *retTy = Type::UShortTy; |
| std::vector<const Type*> paramTy; |
| |
| // Add the types of the input values to the function's argument list |
| for (Values::const_iterator i = inputs.begin(), |
| e = inputs.end(); i != e; ++i) { |
| const Value *value = *i; |
| DEBUG(std::cerr << "value used in func: " << value << "\n"); |
| paramTy.push_back(value->getType()); |
| } |
| |
| // Add the types of the output values to the function's argument list. |
| for (Values::const_iterator I = outputs.begin(), E = outputs.end(); |
| I != E; ++I) { |
| DEBUG(std::cerr << "instr used in func: " << *I << "\n"); |
| if (AggregateArgs) |
| paramTy.push_back((*I)->getType()); |
| else |
| paramTy.push_back(PointerType::get((*I)->getType())); |
| } |
| |
| DEBUG(std::cerr << "Function type: " << retTy << " f("); |
| DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), |
| e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); |
| DEBUG(std::cerr << ")\n"); |
| |
| if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { |
| PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); |
| paramTy.clear(); |
| paramTy.push_back(StructPtr); |
| } |
| const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); |
| |
| // Create the new function |
| Function *newFunction = new Function(funcType, |
| GlobalValue::InternalLinkage, |
| oldFunction->getName() + "_code", M); |
| newFunction->getBasicBlockList().push_back(newRootNode); |
| |
| // Create an iterator to name all of the arguments we inserted. |
| Function::aiterator AI = newFunction->abegin(); |
| |
| // Rewrite all users of the inputs in the extracted region to use the |
| // arguments (or appropriate addressing into struct) instead. |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i) { |
| Value *RewriteVal; |
| if (AggregateArgs) { |
| std::vector<Value*> Indices; |
| Indices.push_back(Constant::getNullValue(Type::UIntTy)); |
| Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); |
| std::string GEPname = "gep_" + inputs[i]->getName(); |
| TerminatorInst *TI = newFunction->begin()->getTerminator(); |
| GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); |
| RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); |
| } else |
| RewriteVal = AI++; |
| |
| std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); |
| for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); |
| use != useE; ++use) |
| if (Instruction* inst = dyn_cast<Instruction>(*use)) |
| if (BlocksToExtract.count(inst->getParent())) |
| inst->replaceUsesOfWith(inputs[i], RewriteVal); |
| } |
| |
| // Set names for input and output arguments. |
| if (!AggregateArgs) { |
| AI = newFunction->abegin(); |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) |
| AI->setName(inputs[i]->getName()); |
| for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) |
| AI->setName(outputs[i]->getName()+".out"); |
| } |
| |
| // Rewrite branches to basic blocks outside of the loop to new dummy blocks |
| // within the new function. This must be done before we lose track of which |
| // blocks were originally in the code region. |
| std::vector<User*> Users(header->use_begin(), header->use_end()); |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) |
| // The BasicBlock which contains the branch is not in the region |
| // modify the branch target to a new block |
| if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) |
| if (!BlocksToExtract.count(TI->getParent()) && |
| TI->getParent()->getParent() == oldFunction) |
| TI->replaceUsesOfWith(header, newHeader); |
| |
| return newFunction; |
| } |
| |
| void CodeExtractor::moveCodeToFunction(Function *newFunction) { |
| Function *oldFunc = (*BlocksToExtract.begin())->getParent(); |
| Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); |
| Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); |
| |
| for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), |
| e = BlocksToExtract.end(); i != e; ++i) { |
| // Delete the basic block from the old function, and the list of blocks |
| oldBlocks.remove(*i); |
| |
| // Insert this basic block into the new function |
| newBlocks.push_back(*i); |
| } |
| } |
| |
| void |
| CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, |
| BasicBlock *codeReplacer, |
| Values &inputs, |
| Values &outputs) { |
| |
| // Emit a call to the new function, passing in: |
| // *pointer to struct (if aggregating parameters), or |
| // plan inputs and allocated memory for outputs |
| std::vector<Value*> params, StructValues, ReloadOutputs; |
| |
| // Add inputs as params, or to be filled into the struct |
| for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) |
| if (AggregateArgs) |
| StructValues.push_back(*i); |
| else |
| params.push_back(*i); |
| |
| // Create allocas for the outputs |
| for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { |
| if (AggregateArgs) { |
| StructValues.push_back(*i); |
| } else { |
| AllocaInst *alloca = |
| new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", |
| codeReplacer->getParent()->begin()->begin()); |
| ReloadOutputs.push_back(alloca); |
| params.push_back(alloca); |
| } |
| } |
| |
| AllocaInst *Struct = 0; |
| if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { |
| std::vector<const Type*> ArgTypes; |
| for (Values::iterator v = StructValues.begin(), |
| ve = StructValues.end(); v != ve; ++v) |
| ArgTypes.push_back((*v)->getType()); |
| |
| // Allocate a struct at the beginning of this function |
| Type *StructArgTy = StructType::get(ArgTypes); |
| Struct = |
| new AllocaInst(StructArgTy, 0, "structArg", |
| codeReplacer->getParent()->begin()->begin()); |
| params.push_back(Struct); |
| |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i) { |
| std::vector<Value*> Indices; |
| Indices.push_back(Constant::getNullValue(Type::UIntTy)); |
| Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); |
| GetElementPtrInst *GEP = |
| new GetElementPtrInst(Struct, Indices, |
| "gep_" + StructValues[i]->getName(), 0); |
| codeReplacer->getInstList().push_back(GEP); |
| StoreInst *SI = new StoreInst(StructValues[i], GEP); |
| codeReplacer->getInstList().push_back(SI); |
| } |
| } |
| |
| // Emit the call to the function |
| CallInst *call = new CallInst(newFunction, params, "targetBlock"); |
| codeReplacer->getInstList().push_back(call); |
| |
| Function::aiterator OutputArgBegin = newFunction->abegin(); |
| unsigned FirstOut = inputs.size(); |
| if (!AggregateArgs) |
| std::advance(OutputArgBegin, inputs.size()); |
| |
| // Reload the outputs passed in by reference |
| for (unsigned i = 0, e = outputs.size(); i != e; ++i) { |
| Value *Output = 0; |
| if (AggregateArgs) { |
| std::vector<Value*> Indices; |
| Indices.push_back(Constant::getNullValue(Type::UIntTy)); |
| Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); |
| GetElementPtrInst *GEP |
| = new GetElementPtrInst(Struct, Indices, |
| "gep_reload_" + outputs[i]->getName(), 0); |
| codeReplacer->getInstList().push_back(GEP); |
| Output = GEP; |
| } else { |
| Output = ReloadOutputs[i]; |
| } |
| LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); |
| codeReplacer->getInstList().push_back(load); |
| std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); |
| for (unsigned u = 0, e = Users.size(); u != e; ++u) { |
| Instruction *inst = cast<Instruction>(Users[u]); |
| if (!BlocksToExtract.count(inst->getParent())) |
| inst->replaceUsesOfWith(outputs[i], load); |
| } |
| } |
| |
| // Now we can emit a switch statement using the call as a value. |
| SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); |
| |
| // Since there may be multiple exits from the original region, make the new |
| // function return an unsigned, switch on that number. This loop iterates |
| // over all of the blocks in the extracted region, updating any terminator |
| // instructions in the to-be-extracted region that branch to blocks that are |
| // not in the region to be extracted. |
| std::map<BasicBlock*, BasicBlock*> ExitBlockMap; |
| |
| unsigned switchVal = 0; |
| for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), |
| e = BlocksToExtract.end(); i != e; ++i) { |
| TerminatorInst *TI = (*i)->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (!BlocksToExtract.count(TI->getSuccessor(i))) { |
| BasicBlock *OldTarget = TI->getSuccessor(i); |
| // add a new basic block which returns the appropriate value |
| BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; |
| if (!NewTarget) { |
| // If we don't already have an exit stub for this non-extracted |
| // destination, create one now! |
| NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", |
| newFunction); |
| |
| ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); |
| ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); |
| |
| // Update the switch instruction. |
| TheSwitch->addCase(brVal, OldTarget); |
| |
| // Restore values just before we exit |
| Function::aiterator OAI = OutputArgBegin; |
| for (unsigned out = 0, e = outputs.size(); out != e; ++out) { |
| // For an invoke, the normal destination is the only one that is |
| // dominated by the result of the invocation |
| BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) |
| DefBlock = Invoke->getNormalDest(); |
| if (!DS || DS->dominates(DefBlock, TI->getParent())) |
| if (AggregateArgs) { |
| std::vector<Value*> Indices; |
| Indices.push_back(Constant::getNullValue(Type::UIntTy)); |
| Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); |
| GetElementPtrInst *GEP = |
| new GetElementPtrInst(OAI, Indices, |
| "gep_" + outputs[out]->getName(), |
| NTRet); |
| new StoreInst(outputs[out], GEP, NTRet); |
| } else |
| new StoreInst(outputs[out], OAI, NTRet); |
| // Advance output iterator even if we don't emit a store |
| if (!AggregateArgs) ++OAI; |
| } |
| } |
| |
| // rewrite the original branch instruction with this new target |
| TI->setSuccessor(i, NewTarget); |
| } |
| } |
| |
| // Now that we've done the deed, simplify the switch instruction. |
| unsigned NumSuccs = TheSwitch->getNumSuccessors(); |
| if (NumSuccs > 1) { |
| if (NumSuccs-1 == 1) { |
| // Only a single destination, change the switch into an unconditional |
| // branch. |
| new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); |
| TheSwitch->getParent()->getInstList().erase(TheSwitch); |
| } else { |
| // Otherwise, make the default destination of the switch instruction be |
| // one of the other successors. |
| TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumSuccs-1)); |
| TheSwitch->removeCase(NumSuccs-1); // Remove redundant case |
| } |
| } else { |
| // There is only 1 successor (the block containing the switch itself), which |
| // means that previously this was the last part of the function, and hence |
| // this should be rewritten as a `ret' |
| |
| // Check if the function should return a value |
| if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && |
| TheSwitch->getParent()->getParent()->getReturnType() == |
| TheSwitch->getCondition()->getType()) |
| // return what we have |
| new ReturnInst(TheSwitch->getCondition(), TheSwitch); |
| else |
| // just return |
| new ReturnInst(0, TheSwitch); |
| |
| TheSwitch->getParent()->getInstList().erase(TheSwitch); |
| } |
| } |
| |
| |
| /// ExtractRegion - Removes a loop from a function, replaces it with a call to |
| /// new function. Returns pointer to the new function. |
| /// |
| /// algorithm: |
| /// |
| /// find inputs and outputs for the region |
| /// |
| /// for inputs: add to function as args, map input instr* to arg# |
| /// for outputs: add allocas for scalars, |
| /// add to func as args, map output instr* to arg# |
| /// |
| /// rewrite func to use argument #s instead of instr* |
| /// |
| /// for each scalar output in the function: at every exit, store intermediate |
| /// computed result back into memory. |
| /// |
| Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) |
| { |
| if (!isEligible(code)) |
| return 0; |
| |
| // 1) Find inputs, outputs |
| // 2) Construct new function |
| // * Add allocas for defs, pass as args by reference |
| // * Pass in uses as args |
| // 3) Move code region, add call instr to func |
| // |
| BlocksToExtract.insert(code.begin(), code.end()); |
| |
| Values inputs, outputs; |
| |
| // Assumption: this is a single-entry code region, and the header is the first |
| // block in the region. |
| BasicBlock *header = code[0]; |
| for (unsigned i = 1, e = code.size(); i != e; ++i) |
| for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); |
| PI != E; ++PI) |
| assert(BlocksToExtract.count(*PI) && |
| "No blocks in this region may have entries from outside the region" |
| " except for the first block!"); |
| |
| Function *oldFunction = header->getParent(); |
| |
| // This takes place of the original loop |
| BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); |
| |
| // The new function needs a root node because other nodes can branch to the |
| // head of the loop, and the root cannot have predecessors |
| BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); |
| newFuncRoot->getInstList().push_back(new BranchInst(header)); |
| |
| // Find inputs to, outputs from the code region |
| // |
| // If one of the inputs is coming from a different basic block and it's in a |
| // phi node, we need to rewrite the phi node: |
| // |
| // * All the inputs which involve basic blocks OUTSIDE of this region go into |
| // a NEW phi node that takes care of finding which value really came in. |
| // The result of this phi is passed to the function as an argument. |
| // |
| // * All the other phi values stay. |
| // |
| // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for |
| // blocks moving to a new function. |
| // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass |
| // the values as parameters to the function |
| findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); |
| |
| // Step 2: Construct new function based on inputs/outputs, |
| // Add allocas for all defs |
| Function *newFunction = constructFunction(inputs, outputs, code[0], |
| newFuncRoot, |
| codeReplacer, oldFunction, |
| oldFunction->getParent()); |
| |
| emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); |
| |
| moveCodeToFunction(newFunction); |
| |
| // Loop over all of the PHI nodes in the entry block (code[0]), and change any |
| // references to the old incoming edge to be the new incoming edge. |
| for (BasicBlock::iterator I = code[0]->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (!BlocksToExtract.count(PN->getIncomingBlock(i))) |
| PN->setIncomingBlock(i, newFuncRoot); |
| |
| // Look at all successors of the codeReplacer block. If any of these blocks |
| // had PHI nodes in them, we need to update the "from" block to be the code |
| // replacer, not the original block in the extracted region. |
| std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), |
| succ_end(codeReplacer)); |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) |
| for (BasicBlock::iterator I = Succs[i]->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (BlocksToExtract.count(PN->getIncomingBlock(i))) |
| PN->setIncomingBlock(i, codeReplacer); |
| |
| |
| DEBUG(if (verifyFunction(*newFunction)) abort()); |
| return newFunction; |
| } |
| |
| bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { |
| // Deny code region if it contains allocas |
| for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); |
| BB != e; ++BB) |
| for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); |
| I != Ie; ++I) |
| if (isa<AllocaInst>(*I)) |
| return false; |
| return true; |
| } |
| |
| |
| /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new |
| /// function |
| /// |
| Function* llvm::ExtractCodeRegion(DominatorSet &DS, |
| const std::vector<BasicBlock*> &code, |
| bool AggregateArgs) { |
| return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); |
| } |
| |
| /// ExtractBasicBlock - slurp a natural loop into a brand new function |
| /// |
| Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { |
| return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); |
| } |
| |
| /// ExtractBasicBlock - slurp a basic block into a brand new function |
| /// |
| Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { |
| std::vector<BasicBlock*> Blocks; |
| Blocks.push_back(BB); |
| return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); |
| } |