Rename ExecutionDepsFix files to ExecutionDomainFix

This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.

Additional relevant reviews:
https://reviews.llvm.org/D40330
https://reviews.llvm.org/D40331
https://reviews.llvm.org/D40333
https://reviews.llvm.org/D40334

Differential Revision: https://reviews.llvm.org/D40332

Change-Id: I6a048cca7fdafbfc42fb1bac94343e483befded8
llvm-svn: 323094
diff --git a/llvm/lib/CodeGen/ExecutionDomainFix.cpp b/llvm/lib/CodeGen/ExecutionDomainFix.cpp
new file mode 100644
index 0000000..47ff393
--- /dev/null
+++ b/llvm/lib/CodeGen/ExecutionDomainFix.cpp
@@ -0,0 +1,889 @@
+//===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/ExecutionDomainFix.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "execution-deps-fix"
+
+char ReachingDefAnalysis::ID = 0;
+INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis",
+                "ReachingDefAnalysis", false, true)
+
+char BreakFalseDeps::ID = 0;
+INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps",
+                      false, false)
+INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
+INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false,
+                    false)
+
+iterator_range<SmallVectorImpl<int>::const_iterator>
+ExecutionDomainFix::regIndices(unsigned Reg) const {
+  assert(Reg < AliasMap.size() && "Invalid register");
+  const auto &Entry = AliasMap[Reg];
+  return make_range(Entry.begin(), Entry.end());
+}
+
+DomainValue *ExecutionDomainFix::alloc(int domain) {
+  DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
+                                  : Avail.pop_back_val();
+  if (domain >= 0)
+    dv->addDomain(domain);
+  assert(dv->Refs == 0 && "Reference count wasn't cleared");
+  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
+  return dv;
+}
+
+void ExecutionDomainFix::release(DomainValue *DV) {
+  while (DV) {
+    assert(DV->Refs && "Bad DomainValue");
+    if (--DV->Refs)
+      return;
+
+    // There are no more DV references. Collapse any contained instructions.
+    if (DV->AvailableDomains && !DV->isCollapsed())
+      collapse(DV, DV->getFirstDomain());
+
+    DomainValue *Next = DV->Next;
+    DV->clear();
+    Avail.push_back(DV);
+    // Also release the next DomainValue in the chain.
+    DV = Next;
+  }
+}
+
+DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
+  DomainValue *DV = DVRef;
+  if (!DV || !DV->Next)
+    return DV;
+
+  // DV has a chain. Find the end.
+  do
+    DV = DV->Next;
+  while (DV->Next);
+
+  // Update DVRef to point to DV.
+  retain(DV);
+  release(DVRef);
+  DVRef = DV;
+  return DV;
+}
+
+void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
+  assert(unsigned(rx) < NumRegs && "Invalid index");
+  assert(!LiveRegs.empty() && "Must enter basic block first.");
+
+  if (LiveRegs[rx] == dv)
+    return;
+  if (LiveRegs[rx])
+    release(LiveRegs[rx]);
+  LiveRegs[rx] = retain(dv);
+}
+
+void ExecutionDomainFix::kill(int rx) {
+  assert(unsigned(rx) < NumRegs && "Invalid index");
+  assert(!LiveRegs.empty() && "Must enter basic block first.");
+  if (!LiveRegs[rx])
+    return;
+
+  release(LiveRegs[rx]);
+  LiveRegs[rx] = nullptr;
+}
+
+void ExecutionDomainFix::force(int rx, unsigned domain) {
+  assert(unsigned(rx) < NumRegs && "Invalid index");
+  assert(!LiveRegs.empty() && "Must enter basic block first.");
+  if (DomainValue *dv = LiveRegs[rx]) {
+    if (dv->isCollapsed())
+      dv->addDomain(domain);
+    else if (dv->hasDomain(domain))
+      collapse(dv, domain);
+    else {
+      // This is an incompatible open DomainValue. Collapse it to whatever and
+      // force the new value into domain. This costs a domain crossing.
+      collapse(dv, dv->getFirstDomain());
+      assert(LiveRegs[rx] && "Not live after collapse?");
+      LiveRegs[rx]->addDomain(domain);
+    }
+  } else {
+    // Set up basic collapsed DomainValue.
+    setLiveReg(rx, alloc(domain));
+  }
+}
+
+void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
+  assert(dv->hasDomain(domain) && "Cannot collapse");
+
+  // Collapse all the instructions.
+  while (!dv->Instrs.empty())
+    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
+  dv->setSingleDomain(domain);
+
+  // If there are multiple users, give them new, unique DomainValues.
+  if (!LiveRegs.empty() && dv->Refs > 1)
+    for (unsigned rx = 0; rx != NumRegs; ++rx)
+      if (LiveRegs[rx] == dv)
+        setLiveReg(rx, alloc(domain));
+}
+
+bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
+  assert(!A->isCollapsed() && "Cannot merge into collapsed");
+  assert(!B->isCollapsed() && "Cannot merge from collapsed");
+  if (A == B)
+    return true;
+  // Restrict to the domains that A and B have in common.
+  unsigned common = A->getCommonDomains(B->AvailableDomains);
+  if (!common)
+    return false;
+  A->AvailableDomains = common;
+  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
+
+  // Clear the old DomainValue so we won't try to swizzle instructions twice.
+  B->clear();
+  // All uses of B are referred to A.
+  B->Next = retain(A);
+
+  for (unsigned rx = 0; rx != NumRegs; ++rx) {
+    assert(!LiveRegs.empty() && "no space allocated for live registers");
+    if (LiveRegs[rx] == B)
+      setLiveReg(rx, A);
+  }
+  return true;
+}
+
+void ReachingDefAnalysis::enterBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+
+  MachineBasicBlock *MBB = TraversedMBB.MBB;
+  int MBBNumber = MBB->getNumber();
+  assert(MBBNumber < MBBReachingDefs.size() &&
+         "Unexpected basic block number.");
+  MBBReachingDefs[MBBNumber].resize(NumRegUnits);
+
+  // Reset instruction counter in each basic block.
+  CurInstr = 0;
+
+  // Set up LiveRegs to represent registers entering MBB.
+  // Default values are 'nothing happened a long time ago'.
+  if (LiveRegs.empty())
+    LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal);
+
+  // This is the entry block.
+  if (MBB->pred_empty()) {
+    for (const auto &LI : MBB->liveins()) {
+      for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
+        // Treat function live-ins as if they were defined just before the first
+        // instruction.  Usually, function arguments are set up immediately
+        // before the call.
+        LiveRegs[*Unit] = -1;
+        MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]);
+      }
+    }
+    DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
+    return;
+  }
+
+  // Try to coalesce live-out registers from predecessors.
+  for (MachineBasicBlock *pred : MBB->predecessors()) {
+    assert(pred->getNumber() < MBBOutRegsInfos.size() &&
+           "Should have pre-allocated MBBInfos for all MBBs");
+    const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
+    // Incoming is null if this is a backedge from a BB
+    // we haven't processed yet
+    if (Incoming.empty())
+      continue;
+
+    for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
+      // Use the most recent predecessor def for each register.
+      LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
+      if ((LiveRegs[Unit] != ReachingDedDefaultVal))
+        MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
+    }
+  }
+
+  DEBUG(dbgs() << printMBBReference(*MBB)
+               << (!TraversedMBB.IsDone ? ": incomplete\n"
+                                        : ": all preds known\n"));
+}
+
+void ExecutionDomainFix::enterBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+
+  MachineBasicBlock *MBB = TraversedMBB.MBB;
+
+  // Set up LiveRegs to represent registers entering MBB.
+  // Set default domain values to 'no domain' (nullptr)
+  if (LiveRegs.empty())
+    LiveRegs.assign(NumRegs, nullptr);
+
+  // This is the entry block.
+  if (MBB->pred_empty()) {
+    DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
+    return;
+  }
+
+  // Try to coalesce live-out registers from predecessors.
+  for (MachineBasicBlock *pred : MBB->predecessors()) {
+    assert(pred->getNumber() < MBBOutRegsInfos.size() &&
+           "Should have pre-allocated MBBInfos for all MBBs");
+    LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
+    // Incoming is null if this is a backedge from a BB
+    // we haven't processed yet
+    if (Incoming.empty())
+      continue;
+
+    for (unsigned rx = 0; rx != NumRegs; ++rx) {
+      DomainValue *pdv = resolve(Incoming[rx]);
+      if (!pdv)
+        continue;
+      if (!LiveRegs[rx]) {
+        setLiveReg(rx, pdv);
+        continue;
+      }
+
+      // We have a live DomainValue from more than one predecessor.
+      if (LiveRegs[rx]->isCollapsed()) {
+        // We are already collapsed, but predecessor is not. Force it.
+        unsigned Domain = LiveRegs[rx]->getFirstDomain();
+        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
+          collapse(pdv, Domain);
+        continue;
+      }
+
+      // Currently open, merge in predecessor.
+      if (!pdv->isCollapsed())
+        merge(LiveRegs[rx], pdv);
+      else
+        force(rx, pdv->getFirstDomain());
+    }
+  }
+  DEBUG(dbgs() << printMBBReference(*MBB)
+               << (!TraversedMBB.IsDone ? ": incomplete\n"
+                                        : ": all preds known\n"));
+}
+
+void ReachingDefAnalysis::leaveBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+  assert(!LiveRegs.empty() && "Must enter basic block first.");
+  int MBBNumber = TraversedMBB.MBB->getNumber();
+  assert(MBBNumber < MBBOutRegsInfos.size() &&
+         "Unexpected basic block number.");
+  // Save register clearances at end of MBB - used by enterBasicBlock().
+  MBBOutRegsInfos[MBBNumber] = LiveRegs;
+
+  // While processing the basic block, we kept `Def` relative to the start
+  // of the basic block for convenience. However, future use of this information
+  // only cares about the clearance from the end of the block, so adjust
+  // everything to be relative to the end of the basic block.
+  for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
+    OutLiveReg -= CurInstr;
+  LiveRegs.clear();
+}
+
+void ExecutionDomainFix::leaveBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+  assert(!LiveRegs.empty() && "Must enter basic block first.");
+  int MBBNumber = TraversedMBB.MBB->getNumber();
+  assert(MBBNumber < MBBOutRegsInfos.size() &&
+         "Unexpected basic block number.");
+  // Save register clearances at end of MBB - used by enterBasicBlock().
+  for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
+    release(OldLiveReg);
+  }
+  MBBOutRegsInfos[MBBNumber] = LiveRegs;
+  LiveRegs.clear();
+}
+
+bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
+  // Update instructions with explicit execution domains.
+  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
+  if (DomP.first) {
+    if (DomP.second)
+      visitSoftInstr(MI, DomP.second);
+    else
+      visitHardInstr(MI, DomP.first);
+  }
+
+  return !DomP.first;
+}
+
+bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx,
+                                              unsigned Pref) {
+  MachineOperand &MO = MI->getOperand(OpIdx);
+  assert(MO.isUndef() && "Expected undef machine operand");
+
+  unsigned OriginalReg = MO.getReg();
+
+  // Update only undef operands that have reg units that are mapped to one root.
+  for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) {
+    unsigned NumRoots = 0;
+    for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) {
+      NumRoots++;
+      if (NumRoots > 1)
+        return false;
+    }
+  }
+
+  // Get the undef operand's register class
+  const TargetRegisterClass *OpRC =
+      TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);
+
+  // If the instruction has a true dependency, we can hide the false depdency
+  // behind it.
+  for (MachineOperand &CurrMO : MI->operands()) {
+    if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
+        !OpRC->contains(CurrMO.getReg()))
+      continue;
+    // We found a true dependency - replace the undef register with the true
+    // dependency.
+    MO.setReg(CurrMO.getReg());
+    return true;
+  }
+
+  // Go over all registers in the register class and find the register with
+  // max clearance or clearance higher than Pref.
+  unsigned MaxClearance = 0;
+  unsigned MaxClearanceReg = OriginalReg;
+  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
+  for (MCPhysReg Reg : Order) {
+    unsigned Clearance = RDA->getClearance(MI, Reg);
+    if (Clearance <= MaxClearance)
+      continue;
+    MaxClearance = Clearance;
+    MaxClearanceReg = Reg;
+
+    if (MaxClearance > Pref)
+      break;
+  }
+
+  // Update the operand if we found a register with better clearance.
+  if (MaxClearanceReg != OriginalReg)
+    MO.setReg(MaxClearanceReg);
+
+  return false;
+}
+
+bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
+                                           unsigned Pref) {
+  unsigned reg = MI->getOperand(OpIdx).getReg();
+  unsigned Clearance = RDA->getClearance(MI, reg);
+  DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
+
+  if (Pref > Clearance) {
+    DEBUG(dbgs() << ": Break dependency.\n");
+    return true;
+  }
+  DEBUG(dbgs() << ": OK .\n");
+  return false;
+}
+
+void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
+  assert(!MI->isDebugValue() && "Won't process debug values");
+  const MCInstrDesc &MCID = MI->getDesc();
+  for (unsigned i = 0,
+                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+       i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    if (MO.isUse())
+      continue;
+    for (int rx : regIndices(MO.getReg())) {
+      // This instruction explicitly defines rx.
+      DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);
+
+      // Kill off domains redefined by generic instructions.
+      if (Kill)
+        kill(rx);
+    }
+  }
+}
+
+void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
+  assert(!MI->isDebugValue() && "Won't process debug values");
+
+  int MBBNumber = MI->getParent()->getNumber();
+  assert(MBBNumber < MBBReachingDefs.size() &&
+         "Unexpected basic block number.");
+  const MCInstrDesc &MCID = MI->getDesc();
+  for (unsigned i = 0,
+                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+       i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg() || !MO.getReg())
+      continue;
+    if (MO.isUse())
+      continue;
+    for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
+      // This instruction explicitly defines the current reg unit.
+      DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t'
+                   << *MI);
+
+      // How many instructions since this reg unit was last written?
+      LiveRegs[*Unit] = CurInstr;
+      MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
+    }
+  }
+  InstIds[MI] = CurInstr;
+  ++CurInstr;
+}
+
+void BreakFalseDeps::processDefs(MachineInstr *MI) {
+  assert(!MI->isDebugValue() && "Won't process debug values");
+
+  // Break dependence on undef uses. Do this before updating LiveRegs below.
+  unsigned OpNum;
+  unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
+  if (Pref) {
+    bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref);
+    // We don't need to bother trying to break a dependency if this
+    // instruction has a true dependency on that register through another
+    // operand - we'll have to wait for it to be available regardless.
+    if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref))
+      UndefReads.push_back(std::make_pair(MI, OpNum));
+  }
+
+  const MCInstrDesc &MCID = MI->getDesc();
+  for (unsigned i = 0,
+                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+       i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg() || !MO.getReg())
+      continue;
+    if (MO.isUse())
+      continue;
+    // Check clearance before partial register updates.
+    unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
+    if (Pref && shouldBreakDependence(MI, i, Pref))
+      TII->breakPartialRegDependency(*MI, i, TRI);
+  }
+}
+
+void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) {
+  if (UndefReads.empty())
+    return;
+
+  // Collect this block's live out register units.
+  LiveRegSet.init(*TRI);
+  // We do not need to care about pristine registers as they are just preserved
+  // but not actually used in the function.
+  LiveRegSet.addLiveOutsNoPristines(*MBB);
+
+  MachineInstr *UndefMI = UndefReads.back().first;
+  unsigned OpIdx = UndefReads.back().second;
+
+  for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
+    // Update liveness, including the current instruction's defs.
+    LiveRegSet.stepBackward(I);
+
+    if (UndefMI == &I) {
+      if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
+        TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);
+
+      UndefReads.pop_back();
+      if (UndefReads.empty())
+        return;
+
+      UndefMI = UndefReads.back().first;
+      OpIdx = UndefReads.back().second;
+    }
+  }
+}
+
+void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
+  // Collapse all uses.
+  for (unsigned i = mi->getDesc().getNumDefs(),
+                e = mi->getDesc().getNumOperands();
+       i != e; ++i) {
+    MachineOperand &mo = mi->getOperand(i);
+    if (!mo.isReg())
+      continue;
+    for (int rx : regIndices(mo.getReg())) {
+      force(rx, domain);
+    }
+  }
+
+  // Kill all defs and force them.
+  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
+    MachineOperand &mo = mi->getOperand(i);
+    if (!mo.isReg())
+      continue;
+    for (int rx : regIndices(mo.getReg())) {
+      kill(rx);
+      force(rx, domain);
+    }
+  }
+}
+
+void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
+  // Bitmask of available domains for this instruction after taking collapsed
+  // operands into account.
+  unsigned available = mask;
+
+  // Scan the explicit use operands for incoming domains.
+  SmallVector<int, 4> used;
+  if (!LiveRegs.empty())
+    for (unsigned i = mi->getDesc().getNumDefs(),
+                  e = mi->getDesc().getNumOperands();
+         i != e; ++i) {
+      MachineOperand &mo = mi->getOperand(i);
+      if (!mo.isReg())
+        continue;
+      for (int rx : regIndices(mo.getReg())) {
+        DomainValue *dv = LiveRegs[rx];
+        if (dv == nullptr)
+          continue;
+        // Bitmask of domains that dv and available have in common.
+        unsigned common = dv->getCommonDomains(available);
+        // Is it possible to use this collapsed register for free?
+        if (dv->isCollapsed()) {
+          // Restrict available domains to the ones in common with the operand.
+          // If there are no common domains, we must pay the cross-domain
+          // penalty for this operand.
+          if (common)
+            available = common;
+        } else if (common)
+          // Open DomainValue is compatible, save it for merging.
+          used.push_back(rx);
+        else
+          // Open DomainValue is not compatible with instruction. It is useless
+          // now.
+          kill(rx);
+      }
+    }
+
+  // If the collapsed operands force a single domain, propagate the collapse.
+  if (isPowerOf2_32(available)) {
+    unsigned domain = countTrailingZeros(available);
+    TII->setExecutionDomain(*mi, domain);
+    visitHardInstr(mi, domain);
+    return;
+  }
+
+  // Kill off any remaining uses that don't match available, and build a list of
+  // incoming DomainValues that we want to merge.
+  SmallVector<int, 4> Regs;
+  for (int rx : used) {
+    assert(!LiveRegs.empty() && "no space allocated for live registers");
+    DomainValue *&LR = LiveRegs[rx];
+    // This useless DomainValue could have been missed above.
+    if (!LR->getCommonDomains(available)) {
+      kill(rx);
+      continue;
+    }
+    // Sorted insertion.
+    // Enables giving priority to the latest domains during merging.
+    auto I = std::upper_bound(
+        Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
+          return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
+                 RDA->getReachingDef(mi, RC->getRegister(RHS));
+        });
+    Regs.insert(I, rx);
+  }
+
+  // doms are now sorted in order of appearance. Try to merge them all, giving
+  // priority to the latest ones.
+  DomainValue *dv = nullptr;
+  while (!Regs.empty()) {
+    if (!dv) {
+      dv = LiveRegs[Regs.pop_back_val()];
+      // Force the first dv to match the current instruction.
+      dv->AvailableDomains = dv->getCommonDomains(available);
+      assert(dv->AvailableDomains && "Domain should have been filtered");
+      continue;
+    }
+
+    DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
+    // Skip already merged values.
+    if (Latest == dv || Latest->Next)
+      continue;
+    if (merge(dv, Latest))
+      continue;
+
+    // If latest didn't merge, it is useless now. Kill all registers using it.
+    for (int i : used) {
+      assert(!LiveRegs.empty() && "no space allocated for live registers");
+      if (LiveRegs[i] == Latest)
+        kill(i);
+    }
+  }
+
+  // dv is the DomainValue we are going to use for this instruction.
+  if (!dv) {
+    dv = alloc();
+    dv->AvailableDomains = available;
+  }
+  dv->Instrs.push_back(mi);
+
+  // Finally set all defs and non-collapsed uses to dv. We must iterate through
+  // all the operators, including imp-def ones.
+  for (MachineOperand &mo : mi->operands()) {
+    if (!mo.isReg())
+      continue;
+    for (int rx : regIndices(mo.getReg())) {
+      if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
+        kill(rx);
+        setLiveReg(rx, dv);
+      }
+    }
+  }
+}
+
+void ExecutionDomainFix::processBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+  enterBasicBlock(TraversedMBB);
+  // If this block is not done, it makes little sense to make any decisions
+  // based on clearance information. We need to make a second pass anyway,
+  // and by then we'll have better information, so we can avoid doing the work
+  // to try and break dependencies now.
+  for (MachineInstr &MI : *TraversedMBB.MBB) {
+    if (!MI.isDebugValue()) {
+      bool Kill = false;
+      if (TraversedMBB.PrimaryPass)
+        Kill = visitInstr(&MI);
+      processDefs(&MI, Kill);
+    }
+  }
+  leaveBasicBlock(TraversedMBB);
+}
+
+void ReachingDefAnalysis::processBasicBlock(
+    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+  enterBasicBlock(TraversedMBB);
+  for (MachineInstr &MI : *TraversedMBB.MBB) {
+    if (!MI.isDebugValue())
+      processDefs(&MI);
+  }
+  leaveBasicBlock(TraversedMBB);
+}
+
+void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) {
+  UndefReads.clear();
+  // If this block is not done, it makes little sense to make any decisions
+  // based on clearance information. We need to make a second pass anyway,
+  // and by then we'll have better information, so we can avoid doing the work
+  // to try and break dependencies now.
+  for (MachineInstr &MI : *MBB) {
+    if (!MI.isDebugValue())
+      processDefs(&MI);
+  }
+  processUndefReads(MBB);
+}
+
+bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) {
+  int MBBNumber = MBB->getNumber();
+  assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
+  return MBBInfos[MBBNumber].PrimaryCompleted &&
+         MBBInfos[MBBNumber].IncomingCompleted ==
+             MBBInfos[MBBNumber].PrimaryIncoming &&
+         MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size();
+}
+
+LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) {
+  // Initialize the MMBInfos
+  MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo());
+
+  MachineBasicBlock *Entry = &*MF.begin();
+  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(Entry);
+  SmallVector<MachineBasicBlock *, 4> Workqueue;
+  SmallVector<TraversedMBBInfo, 4> MBBTraversalOrder;
+  for (MachineBasicBlock *MBB : RPOT) {
+    // N.B: IncomingProcessed and IncomingCompleted were already updated while
+    // processing this block's predecessors.
+    int MBBNumber = MBB->getNumber();
+    assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
+    MBBInfos[MBBNumber].PrimaryCompleted = true;
+    MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed;
+    bool Primary = true;
+    Workqueue.push_back(MBB);
+    while (!Workqueue.empty()) {
+      MachineBasicBlock *ActiveMBB = &*Workqueue.back();
+      Workqueue.pop_back();
+      bool Done = isBlockDone(ActiveMBB);
+      MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done));
+      for (MachineBasicBlock *Succ : ActiveMBB->successors()) {
+        int SuccNumber = Succ->getNumber();
+        assert(SuccNumber < MBBInfos.size() &&
+               "Unexpected basic block number.");
+        if (!isBlockDone(Succ)) {
+          if (Primary)
+            MBBInfos[SuccNumber].IncomingProcessed++;
+          if (Done)
+            MBBInfos[SuccNumber].IncomingCompleted++;
+          if (isBlockDone(Succ))
+            Workqueue.push_back(Succ);
+        }
+      }
+      Primary = false;
+    }
+  }
+
+  // We need to go through again and finalize any blocks that are not done yet.
+  // This is possible if blocks have dead predecessors, so we didn't visit them
+  // above.
+  for (MachineBasicBlock *MBB : RPOT) {
+    if (!isBlockDone(MBB))
+      MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true));
+    // Don't update successors here. We'll get to them anyway through this
+    // loop.
+  }
+
+  MBBInfos.clear();
+
+  return MBBTraversalOrder;
+}
+
+bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
+  if (skipFunction(mf.getFunction()))
+    return false;
+  MF = &mf;
+  TII = MF->getSubtarget().getInstrInfo();
+  TRI = MF->getSubtarget().getRegisterInfo();
+  LiveRegs.clear();
+  assert(NumRegs == RC->getNumRegs() && "Bad regclass");
+
+  DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
+               << TRI->getRegClassName(RC) << " **********\n");
+
+  // If no relevant registers are used in the function, we can skip it
+  // completely.
+  bool anyregs = false;
+  const MachineRegisterInfo &MRI = mf.getRegInfo();
+  for (unsigned Reg : *RC) {
+    if (MRI.isPhysRegUsed(Reg)) {
+      anyregs = true;
+      break;
+    }
+  }
+  if (!anyregs)
+    return false;
+
+  RDA = &getAnalysis<ReachingDefAnalysis>();
+
+  // Initialize the AliasMap on the first use.
+  if (AliasMap.empty()) {
+    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
+    // therefore the LiveRegs array.
+    AliasMap.resize(TRI->getNumRegs());
+    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
+      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
+           ++AI)
+        AliasMap[*AI].push_back(i);
+  }
+
+  // Initialize the MBBOutRegsInfos
+  MBBOutRegsInfos.resize(mf.getNumBlockIDs());
+
+  // Traverse the basic blocks.
+  LoopTraversal Traversal;
+  LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
+  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
+    processBasicBlock(TraversedMBB);
+  }
+
+  for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
+    for (DomainValue *OutLiveReg : OutLiveRegs) {
+      if (OutLiveReg)
+        release(OutLiveReg);
+    }
+  }
+  MBBOutRegsInfos.clear();
+  Avail.clear();
+  Allocator.DestroyAll();
+
+  return false;
+}
+
+bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
+  if (skipFunction(mf.getFunction()))
+    return false;
+  MF = &mf;
+  TII = MF->getSubtarget().getInstrInfo();
+  TRI = MF->getSubtarget().getRegisterInfo();
+
+  LiveRegs.clear();
+  NumRegUnits = TRI->getNumRegUnits();
+
+  MBBReachingDefs.resize(mf.getNumBlockIDs());
+
+  DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
+
+  // Initialize the MBBOutRegsInfos
+  MBBOutRegsInfos.resize(mf.getNumBlockIDs());
+
+  // Traverse the basic blocks.
+  LoopTraversal Traversal;
+  LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
+  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
+    processBasicBlock(TraversedMBB);
+  }
+
+  // Sorting all reaching defs found for a ceartin reg unit in a given BB.
+  for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
+    for (MBBRegUnitDefs &RegUnitDefs : MBBDefs)
+      std::sort(RegUnitDefs.begin(), RegUnitDefs.end());
+  }
+
+  return false;
+}
+
+void ReachingDefAnalysis::releaseMemory() {
+  // Clear the internal vectors.
+  MBBOutRegsInfos.clear();
+  MBBReachingDefs.clear();
+  InstIds.clear();
+}
+
+bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) {
+  if (skipFunction(mf.getFunction()))
+    return false;
+  MF = &mf;
+  TII = MF->getSubtarget().getInstrInfo();
+  TRI = MF->getSubtarget().getRegisterInfo();
+  RDA = &getAnalysis<ReachingDefAnalysis>();
+
+  RegClassInfo.runOnMachineFunction(mf);
+
+  DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n");
+
+  // Traverse the basic blocks.
+  for (MachineBasicBlock &MBB : mf) {
+    processBasicBlock(&MBB);
+  }
+
+  return false;
+}
+
+int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) {
+  assert(InstIds.count(MI) && "Unexpected machine instuction.");
+  int InstId = InstIds[MI];
+  int DefRes = ReachingDedDefaultVal;
+  int MBBNumber = MI->getParent()->getNumber();
+  assert(MBBNumber < MBBReachingDefs.size() &&
+         "Unexpected basic block number.");
+  int LatestDef = ReachingDedDefaultVal;
+  for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
+    for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
+      if (Def >= InstId)
+        break;
+      DefRes = Def;
+    }
+    LatestDef = std::max(LatestDef, DefRes);
+  }
+  return LatestDef;
+}
+
+int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) {
+  assert(InstIds.count(MI) && "Unexpected machine instuction.");
+  return InstIds[MI] - getReachingDef(MI, PhysReg);
+}