| //===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/ExecutionDomainFix.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "execution-deps-fix" |
| |
| char ReachingDefAnalysis::ID = 0; |
| INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis", |
| "ReachingDefAnalysis", false, true) |
| |
| char BreakFalseDeps::ID = 0; |
| INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) |
| INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false, |
| false) |
| |
| iterator_range<SmallVectorImpl<int>::const_iterator> |
| ExecutionDomainFix::regIndices(unsigned Reg) const { |
| assert(Reg < AliasMap.size() && "Invalid register"); |
| const auto &Entry = AliasMap[Reg]; |
| return make_range(Entry.begin(), Entry.end()); |
| } |
| |
| DomainValue *ExecutionDomainFix::alloc(int domain) { |
| DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue |
| : Avail.pop_back_val(); |
| if (domain >= 0) |
| dv->addDomain(domain); |
| assert(dv->Refs == 0 && "Reference count wasn't cleared"); |
| assert(!dv->Next && "Chained DomainValue shouldn't have been recycled"); |
| return dv; |
| } |
| |
| void ExecutionDomainFix::release(DomainValue *DV) { |
| while (DV) { |
| assert(DV->Refs && "Bad DomainValue"); |
| if (--DV->Refs) |
| return; |
| |
| // There are no more DV references. Collapse any contained instructions. |
| if (DV->AvailableDomains && !DV->isCollapsed()) |
| collapse(DV, DV->getFirstDomain()); |
| |
| DomainValue *Next = DV->Next; |
| DV->clear(); |
| Avail.push_back(DV); |
| // Also release the next DomainValue in the chain. |
| DV = Next; |
| } |
| } |
| |
| DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) { |
| DomainValue *DV = DVRef; |
| if (!DV || !DV->Next) |
| return DV; |
| |
| // DV has a chain. Find the end. |
| do |
| DV = DV->Next; |
| while (DV->Next); |
| |
| // Update DVRef to point to DV. |
| retain(DV); |
| release(DVRef); |
| DVRef = DV; |
| return DV; |
| } |
| |
| void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) { |
| assert(unsigned(rx) < NumRegs && "Invalid index"); |
| assert(!LiveRegs.empty() && "Must enter basic block first."); |
| |
| if (LiveRegs[rx] == dv) |
| return; |
| if (LiveRegs[rx]) |
| release(LiveRegs[rx]); |
| LiveRegs[rx] = retain(dv); |
| } |
| |
| void ExecutionDomainFix::kill(int rx) { |
| assert(unsigned(rx) < NumRegs && "Invalid index"); |
| assert(!LiveRegs.empty() && "Must enter basic block first."); |
| if (!LiveRegs[rx]) |
| return; |
| |
| release(LiveRegs[rx]); |
| LiveRegs[rx] = nullptr; |
| } |
| |
| void ExecutionDomainFix::force(int rx, unsigned domain) { |
| assert(unsigned(rx) < NumRegs && "Invalid index"); |
| assert(!LiveRegs.empty() && "Must enter basic block first."); |
| if (DomainValue *dv = LiveRegs[rx]) { |
| if (dv->isCollapsed()) |
| dv->addDomain(domain); |
| else if (dv->hasDomain(domain)) |
| collapse(dv, domain); |
| else { |
| // This is an incompatible open DomainValue. Collapse it to whatever and |
| // force the new value into domain. This costs a domain crossing. |
| collapse(dv, dv->getFirstDomain()); |
| assert(LiveRegs[rx] && "Not live after collapse?"); |
| LiveRegs[rx]->addDomain(domain); |
| } |
| } else { |
| // Set up basic collapsed DomainValue. |
| setLiveReg(rx, alloc(domain)); |
| } |
| } |
| |
| void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) { |
| assert(dv->hasDomain(domain) && "Cannot collapse"); |
| |
| // Collapse all the instructions. |
| while (!dv->Instrs.empty()) |
| TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain); |
| dv->setSingleDomain(domain); |
| |
| // If there are multiple users, give them new, unique DomainValues. |
| if (!LiveRegs.empty() && dv->Refs > 1) |
| for (unsigned rx = 0; rx != NumRegs; ++rx) |
| if (LiveRegs[rx] == dv) |
| setLiveReg(rx, alloc(domain)); |
| } |
| |
| bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) { |
| assert(!A->isCollapsed() && "Cannot merge into collapsed"); |
| assert(!B->isCollapsed() && "Cannot merge from collapsed"); |
| if (A == B) |
| return true; |
| // Restrict to the domains that A and B have in common. |
| unsigned common = A->getCommonDomains(B->AvailableDomains); |
| if (!common) |
| return false; |
| A->AvailableDomains = common; |
| A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); |
| |
| // Clear the old DomainValue so we won't try to swizzle instructions twice. |
| B->clear(); |
| // All uses of B are referred to A. |
| B->Next = retain(A); |
| |
| for (unsigned rx = 0; rx != NumRegs; ++rx) { |
| assert(!LiveRegs.empty() && "no space allocated for live registers"); |
| if (LiveRegs[rx] == B) |
| setLiveReg(rx, A); |
| } |
| return true; |
| } |
| |
| void ReachingDefAnalysis::enterBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| |
| MachineBasicBlock *MBB = TraversedMBB.MBB; |
| int MBBNumber = MBB->getNumber(); |
| assert(MBBNumber < MBBReachingDefs.size() && |
| "Unexpected basic block number."); |
| MBBReachingDefs[MBBNumber].resize(NumRegUnits); |
| |
| // Reset instruction counter in each basic block. |
| CurInstr = 0; |
| |
| // Set up LiveRegs to represent registers entering MBB. |
| // Default values are 'nothing happened a long time ago'. |
| if (LiveRegs.empty()) |
| LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal); |
| |
| // This is the entry block. |
| if (MBB->pred_empty()) { |
| for (const auto &LI : MBB->liveins()) { |
| for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) { |
| // Treat function live-ins as if they were defined just before the first |
| // instruction. Usually, function arguments are set up immediately |
| // before the call. |
| LiveRegs[*Unit] = -1; |
| MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]); |
| } |
| } |
| DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); |
| return; |
| } |
| |
| // Try to coalesce live-out registers from predecessors. |
| for (MachineBasicBlock *pred : MBB->predecessors()) { |
| assert(pred->getNumber() < MBBOutRegsInfos.size() && |
| "Should have pre-allocated MBBInfos for all MBBs"); |
| const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; |
| // Incoming is null if this is a backedge from a BB |
| // we haven't processed yet |
| if (Incoming.empty()) |
| continue; |
| |
| for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) { |
| // Use the most recent predecessor def for each register. |
| LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]); |
| if ((LiveRegs[Unit] != ReachingDedDefaultVal)) |
| MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]); |
| } |
| } |
| |
| DEBUG(dbgs() << printMBBReference(*MBB) |
| << (!TraversedMBB.IsDone ? ": incomplete\n" |
| : ": all preds known\n")); |
| } |
| |
| void ExecutionDomainFix::enterBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| |
| MachineBasicBlock *MBB = TraversedMBB.MBB; |
| |
| // Set up LiveRegs to represent registers entering MBB. |
| // Set default domain values to 'no domain' (nullptr) |
| if (LiveRegs.empty()) |
| LiveRegs.assign(NumRegs, nullptr); |
| |
| // This is the entry block. |
| if (MBB->pred_empty()) { |
| DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); |
| return; |
| } |
| |
| // Try to coalesce live-out registers from predecessors. |
| for (MachineBasicBlock *pred : MBB->predecessors()) { |
| assert(pred->getNumber() < MBBOutRegsInfos.size() && |
| "Should have pre-allocated MBBInfos for all MBBs"); |
| LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; |
| // Incoming is null if this is a backedge from a BB |
| // we haven't processed yet |
| if (Incoming.empty()) |
| continue; |
| |
| for (unsigned rx = 0; rx != NumRegs; ++rx) { |
| DomainValue *pdv = resolve(Incoming[rx]); |
| if (!pdv) |
| continue; |
| if (!LiveRegs[rx]) { |
| setLiveReg(rx, pdv); |
| continue; |
| } |
| |
| // We have a live DomainValue from more than one predecessor. |
| if (LiveRegs[rx]->isCollapsed()) { |
| // We are already collapsed, but predecessor is not. Force it. |
| unsigned Domain = LiveRegs[rx]->getFirstDomain(); |
| if (!pdv->isCollapsed() && pdv->hasDomain(Domain)) |
| collapse(pdv, Domain); |
| continue; |
| } |
| |
| // Currently open, merge in predecessor. |
| if (!pdv->isCollapsed()) |
| merge(LiveRegs[rx], pdv); |
| else |
| force(rx, pdv->getFirstDomain()); |
| } |
| } |
| DEBUG(dbgs() << printMBBReference(*MBB) |
| << (!TraversedMBB.IsDone ? ": incomplete\n" |
| : ": all preds known\n")); |
| } |
| |
| void ReachingDefAnalysis::leaveBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| assert(!LiveRegs.empty() && "Must enter basic block first."); |
| int MBBNumber = TraversedMBB.MBB->getNumber(); |
| assert(MBBNumber < MBBOutRegsInfos.size() && |
| "Unexpected basic block number."); |
| // Save register clearances at end of MBB - used by enterBasicBlock(). |
| MBBOutRegsInfos[MBBNumber] = LiveRegs; |
| |
| // While processing the basic block, we kept `Def` relative to the start |
| // of the basic block for convenience. However, future use of this information |
| // only cares about the clearance from the end of the block, so adjust |
| // everything to be relative to the end of the basic block. |
| for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber]) |
| OutLiveReg -= CurInstr; |
| LiveRegs.clear(); |
| } |
| |
| void ExecutionDomainFix::leaveBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| assert(!LiveRegs.empty() && "Must enter basic block first."); |
| int MBBNumber = TraversedMBB.MBB->getNumber(); |
| assert(MBBNumber < MBBOutRegsInfos.size() && |
| "Unexpected basic block number."); |
| // Save register clearances at end of MBB - used by enterBasicBlock(). |
| for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) { |
| release(OldLiveReg); |
| } |
| MBBOutRegsInfos[MBBNumber] = LiveRegs; |
| LiveRegs.clear(); |
| } |
| |
| bool ExecutionDomainFix::visitInstr(MachineInstr *MI) { |
| // Update instructions with explicit execution domains. |
| std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI); |
| if (DomP.first) { |
| if (DomP.second) |
| visitSoftInstr(MI, DomP.second); |
| else |
| visitHardInstr(MI, DomP.first); |
| } |
| |
| return !DomP.first; |
| } |
| |
| bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx, |
| unsigned Pref) { |
| MachineOperand &MO = MI->getOperand(OpIdx); |
| assert(MO.isUndef() && "Expected undef machine operand"); |
| |
| unsigned OriginalReg = MO.getReg(); |
| |
| // Update only undef operands that have reg units that are mapped to one root. |
| for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) { |
| unsigned NumRoots = 0; |
| for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) { |
| NumRoots++; |
| if (NumRoots > 1) |
| return false; |
| } |
| } |
| |
| // Get the undef operand's register class |
| const TargetRegisterClass *OpRC = |
| TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF); |
| |
| // If the instruction has a true dependency, we can hide the false depdency |
| // behind it. |
| for (MachineOperand &CurrMO : MI->operands()) { |
| if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() || |
| !OpRC->contains(CurrMO.getReg())) |
| continue; |
| // We found a true dependency - replace the undef register with the true |
| // dependency. |
| MO.setReg(CurrMO.getReg()); |
| return true; |
| } |
| |
| // Go over all registers in the register class and find the register with |
| // max clearance or clearance higher than Pref. |
| unsigned MaxClearance = 0; |
| unsigned MaxClearanceReg = OriginalReg; |
| ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC); |
| for (MCPhysReg Reg : Order) { |
| unsigned Clearance = RDA->getClearance(MI, Reg); |
| if (Clearance <= MaxClearance) |
| continue; |
| MaxClearance = Clearance; |
| MaxClearanceReg = Reg; |
| |
| if (MaxClearance > Pref) |
| break; |
| } |
| |
| // Update the operand if we found a register with better clearance. |
| if (MaxClearanceReg != OriginalReg) |
| MO.setReg(MaxClearanceReg); |
| |
| return false; |
| } |
| |
| bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx, |
| unsigned Pref) { |
| unsigned reg = MI->getOperand(OpIdx).getReg(); |
| unsigned Clearance = RDA->getClearance(MI, reg); |
| DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref); |
| |
| if (Pref > Clearance) { |
| DEBUG(dbgs() << ": Break dependency.\n"); |
| return true; |
| } |
| DEBUG(dbgs() << ": OK .\n"); |
| return false; |
| } |
| |
| void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) { |
| assert(!MI->isDebugValue() && "Won't process debug values"); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| for (unsigned i = 0, |
| e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); |
| i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| if (MO.isUse()) |
| continue; |
| for (int rx : regIndices(MO.getReg())) { |
| // This instruction explicitly defines rx. |
| DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI); |
| |
| // Kill off domains redefined by generic instructions. |
| if (Kill) |
| kill(rx); |
| } |
| } |
| } |
| |
| void ReachingDefAnalysis::processDefs(MachineInstr *MI) { |
| assert(!MI->isDebugValue() && "Won't process debug values"); |
| |
| int MBBNumber = MI->getParent()->getNumber(); |
| assert(MBBNumber < MBBReachingDefs.size() && |
| "Unexpected basic block number."); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| for (unsigned i = 0, |
| e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); |
| i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (MO.isUse()) |
| continue; |
| for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) { |
| // This instruction explicitly defines the current reg unit. |
| DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t' |
| << *MI); |
| |
| // How many instructions since this reg unit was last written? |
| LiveRegs[*Unit] = CurInstr; |
| MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr); |
| } |
| } |
| InstIds[MI] = CurInstr; |
| ++CurInstr; |
| } |
| |
| void BreakFalseDeps::processDefs(MachineInstr *MI) { |
| assert(!MI->isDebugValue() && "Won't process debug values"); |
| |
| // Break dependence on undef uses. Do this before updating LiveRegs below. |
| unsigned OpNum; |
| unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI); |
| if (Pref) { |
| bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref); |
| // We don't need to bother trying to break a dependency if this |
| // instruction has a true dependency on that register through another |
| // operand - we'll have to wait for it to be available regardless. |
| if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref)) |
| UndefReads.push_back(std::make_pair(MI, OpNum)); |
| } |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| for (unsigned i = 0, |
| e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); |
| i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (MO.isUse()) |
| continue; |
| // Check clearance before partial register updates. |
| unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI); |
| if (Pref && shouldBreakDependence(MI, i, Pref)) |
| TII->breakPartialRegDependency(*MI, i, TRI); |
| } |
| } |
| |
| void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) { |
| if (UndefReads.empty()) |
| return; |
| |
| // Collect this block's live out register units. |
| LiveRegSet.init(*TRI); |
| // We do not need to care about pristine registers as they are just preserved |
| // but not actually used in the function. |
| LiveRegSet.addLiveOutsNoPristines(*MBB); |
| |
| MachineInstr *UndefMI = UndefReads.back().first; |
| unsigned OpIdx = UndefReads.back().second; |
| |
| for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) { |
| // Update liveness, including the current instruction's defs. |
| LiveRegSet.stepBackward(I); |
| |
| if (UndefMI == &I) { |
| if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg())) |
| TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI); |
| |
| UndefReads.pop_back(); |
| if (UndefReads.empty()) |
| return; |
| |
| UndefMI = UndefReads.back().first; |
| OpIdx = UndefReads.back().second; |
| } |
| } |
| } |
| |
| void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) { |
| // Collapse all uses. |
| for (unsigned i = mi->getDesc().getNumDefs(), |
| e = mi->getDesc().getNumOperands(); |
| i != e; ++i) { |
| MachineOperand &mo = mi->getOperand(i); |
| if (!mo.isReg()) |
| continue; |
| for (int rx : regIndices(mo.getReg())) { |
| force(rx, domain); |
| } |
| } |
| |
| // Kill all defs and force them. |
| for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { |
| MachineOperand &mo = mi->getOperand(i); |
| if (!mo.isReg()) |
| continue; |
| for (int rx : regIndices(mo.getReg())) { |
| kill(rx); |
| force(rx, domain); |
| } |
| } |
| } |
| |
| void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { |
| // Bitmask of available domains for this instruction after taking collapsed |
| // operands into account. |
| unsigned available = mask; |
| |
| // Scan the explicit use operands for incoming domains. |
| SmallVector<int, 4> used; |
| if (!LiveRegs.empty()) |
| for (unsigned i = mi->getDesc().getNumDefs(), |
| e = mi->getDesc().getNumOperands(); |
| i != e; ++i) { |
| MachineOperand &mo = mi->getOperand(i); |
| if (!mo.isReg()) |
| continue; |
| for (int rx : regIndices(mo.getReg())) { |
| DomainValue *dv = LiveRegs[rx]; |
| if (dv == nullptr) |
| continue; |
| // Bitmask of domains that dv and available have in common. |
| unsigned common = dv->getCommonDomains(available); |
| // Is it possible to use this collapsed register for free? |
| if (dv->isCollapsed()) { |
| // Restrict available domains to the ones in common with the operand. |
| // If there are no common domains, we must pay the cross-domain |
| // penalty for this operand. |
| if (common) |
| available = common; |
| } else if (common) |
| // Open DomainValue is compatible, save it for merging. |
| used.push_back(rx); |
| else |
| // Open DomainValue is not compatible with instruction. It is useless |
| // now. |
| kill(rx); |
| } |
| } |
| |
| // If the collapsed operands force a single domain, propagate the collapse. |
| if (isPowerOf2_32(available)) { |
| unsigned domain = countTrailingZeros(available); |
| TII->setExecutionDomain(*mi, domain); |
| visitHardInstr(mi, domain); |
| return; |
| } |
| |
| // Kill off any remaining uses that don't match available, and build a list of |
| // incoming DomainValues that we want to merge. |
| SmallVector<int, 4> Regs; |
| for (int rx : used) { |
| assert(!LiveRegs.empty() && "no space allocated for live registers"); |
| DomainValue *&LR = LiveRegs[rx]; |
| // This useless DomainValue could have been missed above. |
| if (!LR->getCommonDomains(available)) { |
| kill(rx); |
| continue; |
| } |
| // Sorted insertion. |
| // Enables giving priority to the latest domains during merging. |
| auto I = std::upper_bound( |
| Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) { |
| return RDA->getReachingDef(mi, RC->getRegister(LHS)) < |
| RDA->getReachingDef(mi, RC->getRegister(RHS)); |
| }); |
| Regs.insert(I, rx); |
| } |
| |
| // doms are now sorted in order of appearance. Try to merge them all, giving |
| // priority to the latest ones. |
| DomainValue *dv = nullptr; |
| while (!Regs.empty()) { |
| if (!dv) { |
| dv = LiveRegs[Regs.pop_back_val()]; |
| // Force the first dv to match the current instruction. |
| dv->AvailableDomains = dv->getCommonDomains(available); |
| assert(dv->AvailableDomains && "Domain should have been filtered"); |
| continue; |
| } |
| |
| DomainValue *Latest = LiveRegs[Regs.pop_back_val()]; |
| // Skip already merged values. |
| if (Latest == dv || Latest->Next) |
| continue; |
| if (merge(dv, Latest)) |
| continue; |
| |
| // If latest didn't merge, it is useless now. Kill all registers using it. |
| for (int i : used) { |
| assert(!LiveRegs.empty() && "no space allocated for live registers"); |
| if (LiveRegs[i] == Latest) |
| kill(i); |
| } |
| } |
| |
| // dv is the DomainValue we are going to use for this instruction. |
| if (!dv) { |
| dv = alloc(); |
| dv->AvailableDomains = available; |
| } |
| dv->Instrs.push_back(mi); |
| |
| // Finally set all defs and non-collapsed uses to dv. We must iterate through |
| // all the operators, including imp-def ones. |
| for (MachineOperand &mo : mi->operands()) { |
| if (!mo.isReg()) |
| continue; |
| for (int rx : regIndices(mo.getReg())) { |
| if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) { |
| kill(rx); |
| setLiveReg(rx, dv); |
| } |
| } |
| } |
| } |
| |
| void ExecutionDomainFix::processBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| enterBasicBlock(TraversedMBB); |
| // If this block is not done, it makes little sense to make any decisions |
| // based on clearance information. We need to make a second pass anyway, |
| // and by then we'll have better information, so we can avoid doing the work |
| // to try and break dependencies now. |
| for (MachineInstr &MI : *TraversedMBB.MBB) { |
| if (!MI.isDebugValue()) { |
| bool Kill = false; |
| if (TraversedMBB.PrimaryPass) |
| Kill = visitInstr(&MI); |
| processDefs(&MI, Kill); |
| } |
| } |
| leaveBasicBlock(TraversedMBB); |
| } |
| |
| void ReachingDefAnalysis::processBasicBlock( |
| const LoopTraversal::TraversedMBBInfo &TraversedMBB) { |
| enterBasicBlock(TraversedMBB); |
| for (MachineInstr &MI : *TraversedMBB.MBB) { |
| if (!MI.isDebugValue()) |
| processDefs(&MI); |
| } |
| leaveBasicBlock(TraversedMBB); |
| } |
| |
| void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) { |
| UndefReads.clear(); |
| // If this block is not done, it makes little sense to make any decisions |
| // based on clearance information. We need to make a second pass anyway, |
| // and by then we'll have better information, so we can avoid doing the work |
| // to try and break dependencies now. |
| for (MachineInstr &MI : *MBB) { |
| if (!MI.isDebugValue()) |
| processDefs(&MI); |
| } |
| processUndefReads(MBB); |
| } |
| |
| bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) { |
| int MBBNumber = MBB->getNumber(); |
| assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); |
| return MBBInfos[MBBNumber].PrimaryCompleted && |
| MBBInfos[MBBNumber].IncomingCompleted == |
| MBBInfos[MBBNumber].PrimaryIncoming && |
| MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size(); |
| } |
| |
| LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) { |
| // Initialize the MMBInfos |
| MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo()); |
| |
| MachineBasicBlock *Entry = &*MF.begin(); |
| ReversePostOrderTraversal<MachineBasicBlock *> RPOT(Entry); |
| SmallVector<MachineBasicBlock *, 4> Workqueue; |
| SmallVector<TraversedMBBInfo, 4> MBBTraversalOrder; |
| for (MachineBasicBlock *MBB : RPOT) { |
| // N.B: IncomingProcessed and IncomingCompleted were already updated while |
| // processing this block's predecessors. |
| int MBBNumber = MBB->getNumber(); |
| assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); |
| MBBInfos[MBBNumber].PrimaryCompleted = true; |
| MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed; |
| bool Primary = true; |
| Workqueue.push_back(MBB); |
| while (!Workqueue.empty()) { |
| MachineBasicBlock *ActiveMBB = &*Workqueue.back(); |
| Workqueue.pop_back(); |
| bool Done = isBlockDone(ActiveMBB); |
| MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done)); |
| for (MachineBasicBlock *Succ : ActiveMBB->successors()) { |
| int SuccNumber = Succ->getNumber(); |
| assert(SuccNumber < MBBInfos.size() && |
| "Unexpected basic block number."); |
| if (!isBlockDone(Succ)) { |
| if (Primary) |
| MBBInfos[SuccNumber].IncomingProcessed++; |
| if (Done) |
| MBBInfos[SuccNumber].IncomingCompleted++; |
| if (isBlockDone(Succ)) |
| Workqueue.push_back(Succ); |
| } |
| } |
| Primary = false; |
| } |
| } |
| |
| // We need to go through again and finalize any blocks that are not done yet. |
| // This is possible if blocks have dead predecessors, so we didn't visit them |
| // above. |
| for (MachineBasicBlock *MBB : RPOT) { |
| if (!isBlockDone(MBB)) |
| MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true)); |
| // Don't update successors here. We'll get to them anyway through this |
| // loop. |
| } |
| |
| MBBInfos.clear(); |
| |
| return MBBTraversalOrder; |
| } |
| |
| bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| MF = &mf; |
| TII = MF->getSubtarget().getInstrInfo(); |
| TRI = MF->getSubtarget().getRegisterInfo(); |
| LiveRegs.clear(); |
| assert(NumRegs == RC->getNumRegs() && "Bad regclass"); |
| |
| DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: " |
| << TRI->getRegClassName(RC) << " **********\n"); |
| |
| // If no relevant registers are used in the function, we can skip it |
| // completely. |
| bool anyregs = false; |
| const MachineRegisterInfo &MRI = mf.getRegInfo(); |
| for (unsigned Reg : *RC) { |
| if (MRI.isPhysRegUsed(Reg)) { |
| anyregs = true; |
| break; |
| } |
| } |
| if (!anyregs) |
| return false; |
| |
| RDA = &getAnalysis<ReachingDefAnalysis>(); |
| |
| // Initialize the AliasMap on the first use. |
| if (AliasMap.empty()) { |
| // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and |
| // therefore the LiveRegs array. |
| AliasMap.resize(TRI->getNumRegs()); |
| for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) |
| for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid(); |
| ++AI) |
| AliasMap[*AI].push_back(i); |
| } |
| |
| // Initialize the MBBOutRegsInfos |
| MBBOutRegsInfos.resize(mf.getNumBlockIDs()); |
| |
| // Traverse the basic blocks. |
| LoopTraversal Traversal; |
| LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); |
| for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { |
| processBasicBlock(TraversedMBB); |
| } |
| |
| for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) { |
| for (DomainValue *OutLiveReg : OutLiveRegs) { |
| if (OutLiveReg) |
| release(OutLiveReg); |
| } |
| } |
| MBBOutRegsInfos.clear(); |
| Avail.clear(); |
| Allocator.DestroyAll(); |
| |
| return false; |
| } |
| |
| bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| MF = &mf; |
| TII = MF->getSubtarget().getInstrInfo(); |
| TRI = MF->getSubtarget().getRegisterInfo(); |
| |
| LiveRegs.clear(); |
| NumRegUnits = TRI->getNumRegUnits(); |
| |
| MBBReachingDefs.resize(mf.getNumBlockIDs()); |
| |
| DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n"); |
| |
| // Initialize the MBBOutRegsInfos |
| MBBOutRegsInfos.resize(mf.getNumBlockIDs()); |
| |
| // Traverse the basic blocks. |
| LoopTraversal Traversal; |
| LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); |
| for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { |
| processBasicBlock(TraversedMBB); |
| } |
| |
| // Sorting all reaching defs found for a ceartin reg unit in a given BB. |
| for (MBBDefsInfo &MBBDefs : MBBReachingDefs) { |
| for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) |
| std::sort(RegUnitDefs.begin(), RegUnitDefs.end()); |
| } |
| |
| return false; |
| } |
| |
| void ReachingDefAnalysis::releaseMemory() { |
| // Clear the internal vectors. |
| MBBOutRegsInfos.clear(); |
| MBBReachingDefs.clear(); |
| InstIds.clear(); |
| } |
| |
| bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| MF = &mf; |
| TII = MF->getSubtarget().getInstrInfo(); |
| TRI = MF->getSubtarget().getRegisterInfo(); |
| RDA = &getAnalysis<ReachingDefAnalysis>(); |
| |
| RegClassInfo.runOnMachineFunction(mf); |
| |
| DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n"); |
| |
| // Traverse the basic blocks. |
| for (MachineBasicBlock &MBB : mf) { |
| processBasicBlock(&MBB); |
| } |
| |
| return false; |
| } |
| |
| int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) { |
| assert(InstIds.count(MI) && "Unexpected machine instuction."); |
| int InstId = InstIds[MI]; |
| int DefRes = ReachingDedDefaultVal; |
| int MBBNumber = MI->getParent()->getNumber(); |
| assert(MBBNumber < MBBReachingDefs.size() && |
| "Unexpected basic block number."); |
| int LatestDef = ReachingDedDefaultVal; |
| for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) { |
| for (int Def : MBBReachingDefs[MBBNumber][*Unit]) { |
| if (Def >= InstId) |
| break; |
| DefRes = Def; |
| } |
| LatestDef = std::max(LatestDef, DefRes); |
| } |
| return LatestDef; |
| } |
| |
| int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) { |
| assert(InstIds.count(MI) && "Unexpected machine instuction."); |
| return InstIds[MI] - getReachingDef(MI, PhysReg); |
| } |