|  | //===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LazyCallGraph.h" | 
|  | #include "llvm/AsmParser/Parser.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/SourceMgr.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include <memory> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | std::unique_ptr<Module> parseAssembly(LLVMContext &Context, | 
|  | const char *Assembly) { | 
|  | SMDiagnostic Error; | 
|  | std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context); | 
|  |  | 
|  | std::string ErrMsg; | 
|  | raw_string_ostream OS(ErrMsg); | 
|  | Error.print("", OS); | 
|  |  | 
|  | // A failure here means that the test itself is buggy. | 
|  | if (!M) | 
|  | report_fatal_error(OS.str().c_str()); | 
|  |  | 
|  | return M; | 
|  | } | 
|  |  | 
|  | /* | 
|  | IR forming a call graph with a diamond of triangle-shaped SCCs: | 
|  |  | 
|  | d1 | 
|  | /  \ | 
|  | d3--d2 | 
|  | /     \ | 
|  | b1     c1 | 
|  | /  \    /  \ | 
|  | b3--b2  c3--c2 | 
|  | \  / | 
|  | a1 | 
|  | /  \ | 
|  | a3--a2 | 
|  |  | 
|  | All call edges go up between SCCs, and clockwise around the SCC. | 
|  | */ | 
|  | static const char DiamondOfTriangles[] = | 
|  | "define void @a1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a2()\n" | 
|  | "  call void @b2()\n" | 
|  | "  call void @c3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @a2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @a3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a1()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b2()\n" | 
|  | "  call void @d3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b1()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c2()\n" | 
|  | "  call void @d2()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c1()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d2()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d1()\n" | 
|  | "  ret void\n" | 
|  | "}\n"; | 
|  |  | 
|  | /* | 
|  | IR forming a reference graph with a diamond of triangle-shaped RefSCCs | 
|  |  | 
|  | d1 | 
|  | /  \ | 
|  | d3--d2 | 
|  | /     \ | 
|  | b1     c1 | 
|  | /  \    /  \ | 
|  | b3--b2  c3--c2 | 
|  | \  / | 
|  | a1 | 
|  | /  \ | 
|  | a3--a2 | 
|  |  | 
|  | All call edges go up between RefSCCs, and clockwise around the RefSCC. | 
|  | */ | 
|  | static const char DiamondOfTrianglesRefGraph[] = | 
|  | "define void @a1() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @a2, void ()** %a\n" | 
|  | "  store void ()* @b2, void ()** %a\n" | 
|  | "  store void ()* @c3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @a2() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @a3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @a3() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @a1, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b1() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @b2, void ()** %a\n" | 
|  | "  store void ()* @d3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b2() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @b3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b3() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @b1, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c1() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @c2, void ()** %a\n" | 
|  | "  store void ()* @d2, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c2() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @c3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c3() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @c1, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d1() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @d2, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d2() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @d3, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d3() {\n" | 
|  | "entry:\n" | 
|  | "  %a = alloca void ()*\n" | 
|  | "  store void ()* @d1, void ()** %a\n" | 
|  | "  ret void\n" | 
|  | "}\n"; | 
|  |  | 
|  | static LazyCallGraph buildCG(Module &M) { | 
|  | TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple())); | 
|  | TargetLibraryInfo TLI(TLII); | 
|  | LazyCallGraph CG(M, TLI); | 
|  | return CG; | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, BasicGraphFormation) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // The order of the entry nodes should be stable w.r.t. the source order of | 
|  | // the IR, and everything in our module is an entry node, so just directly | 
|  | // build variables for each node. | 
|  | auto I = CG.begin(); | 
|  | LazyCallGraph::Node &A1 = (I++)->getNode(); | 
|  | EXPECT_EQ("a1", A1.getFunction().getName()); | 
|  | LazyCallGraph::Node &A2 = (I++)->getNode(); | 
|  | EXPECT_EQ("a2", A2.getFunction().getName()); | 
|  | LazyCallGraph::Node &A3 = (I++)->getNode(); | 
|  | EXPECT_EQ("a3", A3.getFunction().getName()); | 
|  | LazyCallGraph::Node &B1 = (I++)->getNode(); | 
|  | EXPECT_EQ("b1", B1.getFunction().getName()); | 
|  | LazyCallGraph::Node &B2 = (I++)->getNode(); | 
|  | EXPECT_EQ("b2", B2.getFunction().getName()); | 
|  | LazyCallGraph::Node &B3 = (I++)->getNode(); | 
|  | EXPECT_EQ("b3", B3.getFunction().getName()); | 
|  | LazyCallGraph::Node &C1 = (I++)->getNode(); | 
|  | EXPECT_EQ("c1", C1.getFunction().getName()); | 
|  | LazyCallGraph::Node &C2 = (I++)->getNode(); | 
|  | EXPECT_EQ("c2", C2.getFunction().getName()); | 
|  | LazyCallGraph::Node &C3 = (I++)->getNode(); | 
|  | EXPECT_EQ("c3", C3.getFunction().getName()); | 
|  | LazyCallGraph::Node &D1 = (I++)->getNode(); | 
|  | EXPECT_EQ("d1", D1.getFunction().getName()); | 
|  | LazyCallGraph::Node &D2 = (I++)->getNode(); | 
|  | EXPECT_EQ("d2", D2.getFunction().getName()); | 
|  | LazyCallGraph::Node &D3 = (I++)->getNode(); | 
|  | EXPECT_EQ("d3", D3.getFunction().getName()); | 
|  | EXPECT_EQ(CG.end(), I); | 
|  |  | 
|  | // Build vectors and sort them for the rest of the assertions to make them | 
|  | // independent of order. | 
|  | std::vector<std::string> Nodes; | 
|  |  | 
|  | for (LazyCallGraph::Edge &E : A1.populate()) | 
|  | Nodes.push_back(E.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ("a2", Nodes[0]); | 
|  | EXPECT_EQ("b2", Nodes[1]); | 
|  | EXPECT_EQ("c3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | A2.populate(); | 
|  | EXPECT_EQ(A2->end(), std::next(A2->begin())); | 
|  | EXPECT_EQ("a3", A2->begin()->getFunction().getName()); | 
|  | A3.populate(); | 
|  | EXPECT_EQ(A3->end(), std::next(A3->begin())); | 
|  | EXPECT_EQ("a1", A3->begin()->getFunction().getName()); | 
|  |  | 
|  | for (LazyCallGraph::Edge &E : B1.populate()) | 
|  | Nodes.push_back(E.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ("b2", Nodes[0]); | 
|  | EXPECT_EQ("d3", Nodes[1]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | B2.populate(); | 
|  | EXPECT_EQ(B2->end(), std::next(B2->begin())); | 
|  | EXPECT_EQ("b3", B2->begin()->getFunction().getName()); | 
|  | B3.populate(); | 
|  | EXPECT_EQ(B3->end(), std::next(B3->begin())); | 
|  | EXPECT_EQ("b1", B3->begin()->getFunction().getName()); | 
|  |  | 
|  | for (LazyCallGraph::Edge &E : C1.populate()) | 
|  | Nodes.push_back(E.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ("c2", Nodes[0]); | 
|  | EXPECT_EQ("d2", Nodes[1]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | C2.populate(); | 
|  | EXPECT_EQ(C2->end(), std::next(C2->begin())); | 
|  | EXPECT_EQ("c3", C2->begin()->getFunction().getName()); | 
|  | C3.populate(); | 
|  | EXPECT_EQ(C3->end(), std::next(C3->begin())); | 
|  | EXPECT_EQ("c1", C3->begin()->getFunction().getName()); | 
|  |  | 
|  | D1.populate(); | 
|  | EXPECT_EQ(D1->end(), std::next(D1->begin())); | 
|  | EXPECT_EQ("d2", D1->begin()->getFunction().getName()); | 
|  | D2.populate(); | 
|  | EXPECT_EQ(D2->end(), std::next(D2->begin())); | 
|  | EXPECT_EQ("d3", D2->begin()->getFunction().getName()); | 
|  | D3.populate(); | 
|  | EXPECT_EQ(D3->end(), std::next(D3->begin())); | 
|  | EXPECT_EQ("d1", D3->begin()->getFunction().getName()); | 
|  |  | 
|  | // Now lets look at the RefSCCs and SCCs. | 
|  | CG.buildRefSCCs(); | 
|  | auto J = CG.postorder_ref_scc_begin(); | 
|  |  | 
|  | LazyCallGraph::RefSCC &D = *J++; | 
|  | ASSERT_EQ(1, D.size()); | 
|  | for (LazyCallGraph::Node &N : *D.begin()) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("d1", Nodes[0]); | 
|  | EXPECT_EQ("d2", Nodes[1]); | 
|  | EXPECT_EQ("d3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  | EXPECT_FALSE(D.isParentOf(D)); | 
|  | EXPECT_FALSE(D.isChildOf(D)); | 
|  | EXPECT_FALSE(D.isAncestorOf(D)); | 
|  | EXPECT_FALSE(D.isDescendantOf(D)); | 
|  | EXPECT_EQ(&D, &*CG.postorder_ref_scc_begin()); | 
|  |  | 
|  | LazyCallGraph::RefSCC &C = *J++; | 
|  | ASSERT_EQ(1, C.size()); | 
|  | for (LazyCallGraph::Node &N : *C.begin()) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("c1", Nodes[0]); | 
|  | EXPECT_EQ("c2", Nodes[1]); | 
|  | EXPECT_EQ("c3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  | EXPECT_TRUE(C.isParentOf(D)); | 
|  | EXPECT_FALSE(C.isChildOf(D)); | 
|  | EXPECT_TRUE(C.isAncestorOf(D)); | 
|  | EXPECT_FALSE(C.isDescendantOf(D)); | 
|  | EXPECT_EQ(&C, &*std::next(CG.postorder_ref_scc_begin())); | 
|  |  | 
|  | LazyCallGraph::RefSCC &B = *J++; | 
|  | ASSERT_EQ(1, B.size()); | 
|  | for (LazyCallGraph::Node &N : *B.begin()) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("b1", Nodes[0]); | 
|  | EXPECT_EQ("b2", Nodes[1]); | 
|  | EXPECT_EQ("b3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  | EXPECT_TRUE(B.isParentOf(D)); | 
|  | EXPECT_FALSE(B.isChildOf(D)); | 
|  | EXPECT_TRUE(B.isAncestorOf(D)); | 
|  | EXPECT_FALSE(B.isDescendantOf(D)); | 
|  | EXPECT_FALSE(B.isAncestorOf(C)); | 
|  | EXPECT_FALSE(C.isAncestorOf(B)); | 
|  | EXPECT_EQ(&B, &*std::next(CG.postorder_ref_scc_begin(), 2)); | 
|  |  | 
|  | LazyCallGraph::RefSCC &A = *J++; | 
|  | ASSERT_EQ(1, A.size()); | 
|  | for (LazyCallGraph::Node &N : *A.begin()) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("a1", Nodes[0]); | 
|  | EXPECT_EQ("a2", Nodes[1]); | 
|  | EXPECT_EQ("a3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  | EXPECT_TRUE(A.isParentOf(B)); | 
|  | EXPECT_TRUE(A.isParentOf(C)); | 
|  | EXPECT_FALSE(A.isParentOf(D)); | 
|  | EXPECT_TRUE(A.isAncestorOf(B)); | 
|  | EXPECT_TRUE(A.isAncestorOf(C)); | 
|  | EXPECT_TRUE(A.isAncestorOf(D)); | 
|  | EXPECT_EQ(&A, &*std::next(CG.postorder_ref_scc_begin(), 3)); | 
|  |  | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), J); | 
|  | EXPECT_EQ(J, std::next(CG.postorder_ref_scc_begin(), 4)); | 
|  | } | 
|  |  | 
|  | static Function &lookupFunction(Module &M, StringRef Name) { | 
|  | for (Function &F : M) | 
|  | if (F.getName() == Name) | 
|  | return F; | 
|  | report_fatal_error("Couldn't find function!"); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, BasicGraphMutation) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b")); | 
|  | A.populate(); | 
|  | EXPECT_EQ(2, std::distance(A->begin(), A->end())); | 
|  | B.populate(); | 
|  | EXPECT_EQ(0, std::distance(B->begin(), B->end())); | 
|  |  | 
|  | LazyCallGraph::Node &C = CG.get(lookupFunction(*M, "c")); | 
|  | C.populate(); | 
|  | CG.insertEdge(B, C, LazyCallGraph::Edge::Call); | 
|  | EXPECT_EQ(1, std::distance(B->begin(), B->end())); | 
|  | EXPECT_EQ(0, std::distance(C->begin(), C->end())); | 
|  |  | 
|  | CG.insertEdge(C, B, LazyCallGraph::Edge::Call); | 
|  | EXPECT_EQ(1, std::distance(C->begin(), C->end())); | 
|  | EXPECT_EQ(&B, &C->begin()->getNode()); | 
|  |  | 
|  | CG.insertEdge(C, C, LazyCallGraph::Edge::Call); | 
|  | EXPECT_EQ(2, std::distance(C->begin(), C->end())); | 
|  | EXPECT_EQ(&B, &C->begin()->getNode()); | 
|  | EXPECT_EQ(&C, &std::next(C->begin())->getNode()); | 
|  |  | 
|  | CG.removeEdge(C, B); | 
|  | EXPECT_EQ(1, std::distance(C->begin(), C->end())); | 
|  | EXPECT_EQ(&C, &C->begin()->getNode()); | 
|  |  | 
|  | CG.removeEdge(C, C); | 
|  | EXPECT_EQ(0, std::distance(C->begin(), C->end())); | 
|  |  | 
|  | CG.removeEdge(B, C); | 
|  | EXPECT_EQ(0, std::distance(B->begin(), B->end())); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InnerSCCFormation) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Now mutate the graph to connect every node into a single RefSCC to ensure | 
|  | // that our inner SCC formation handles the rest. | 
|  | LazyCallGraph::Node &D1 = CG.get(lookupFunction(*M, "d1")); | 
|  | LazyCallGraph::Node &A1 = CG.get(lookupFunction(*M, "a1")); | 
|  | A1.populate(); | 
|  | D1.populate(); | 
|  | CG.insertEdge(D1, A1, LazyCallGraph::Edge::Ref); | 
|  |  | 
|  | // Build vectors and sort them for the rest of the assertions to make them | 
|  | // independent of order. | 
|  | std::vector<std::string> Nodes; | 
|  |  | 
|  | // We should build a single RefSCC for the entire graph. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | // Now walk the four SCCs which should be in post-order. | 
|  | auto J = RC.begin(); | 
|  | LazyCallGraph::SCC &D = *J++; | 
|  | for (LazyCallGraph::Node &N : D) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("d1", Nodes[0]); | 
|  | EXPECT_EQ("d2", Nodes[1]); | 
|  | EXPECT_EQ("d3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | LazyCallGraph::SCC &B = *J++; | 
|  | for (LazyCallGraph::Node &N : B) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("b1", Nodes[0]); | 
|  | EXPECT_EQ("b2", Nodes[1]); | 
|  | EXPECT_EQ("b3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | LazyCallGraph::SCC &C = *J++; | 
|  | for (LazyCallGraph::Node &N : C) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("c1", Nodes[0]); | 
|  | EXPECT_EQ("c2", Nodes[1]); | 
|  | EXPECT_EQ("c3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | LazyCallGraph::SCC &A = *J++; | 
|  | for (LazyCallGraph::Node &N : A) | 
|  | Nodes.push_back(N.getFunction().getName()); | 
|  | llvm::sort(Nodes); | 
|  | EXPECT_EQ(3u, Nodes.size()); | 
|  | EXPECT_EQ("a1", Nodes[0]); | 
|  | EXPECT_EQ("a2", Nodes[1]); | 
|  | EXPECT_EQ("a3", Nodes[2]); | 
|  | Nodes.clear(); | 
|  |  | 
|  | EXPECT_EQ(RC.end(), J); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, MultiArmSCC) { | 
|  | LLVMContext Context; | 
|  | // Two interlocking cycles. The really useful thing about this SCC is that it | 
|  | // will require Tarjan's DFS to backtrack and finish processing all of the | 
|  | // children of each node in the SCC. Since this involves call edges, both | 
|  | // Tarjan implementations will have to successfully navigate the structure. | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @f1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f2()\n" | 
|  | "  call void @f4()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @f2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @f3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f1()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @f4() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f5()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @f5() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f1()\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1")); | 
|  | LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2")); | 
|  | LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3")); | 
|  | LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4")); | 
|  | LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4")); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(N1)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(N2)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(N3)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(N4)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(N5)); | 
|  |  | 
|  | ASSERT_EQ(1, RC.size()); | 
|  |  | 
|  | LazyCallGraph::SCC &C = *RC.begin(); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(N1)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(N2)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(N3)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(N4)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(N5)); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, OutgoingEdgeMutation) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &BC = *CG.lookupSCC(B); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(C); | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); | 
|  | EXPECT_TRUE(ARC.isParentOf(BRC)); | 
|  | EXPECT_TRUE(AC.isParentOf(BC)); | 
|  | EXPECT_TRUE(ARC.isParentOf(CRC)); | 
|  | EXPECT_TRUE(AC.isParentOf(CC)); | 
|  | EXPECT_FALSE(ARC.isParentOf(DRC)); | 
|  | EXPECT_FALSE(AC.isParentOf(DC)); | 
|  | EXPECT_TRUE(ARC.isAncestorOf(DRC)); | 
|  | EXPECT_TRUE(AC.isAncestorOf(DC)); | 
|  | EXPECT_FALSE(DRC.isChildOf(ARC)); | 
|  | EXPECT_FALSE(DC.isChildOf(AC)); | 
|  | EXPECT_TRUE(DRC.isDescendantOf(ARC)); | 
|  | EXPECT_TRUE(DC.isDescendantOf(AC)); | 
|  | EXPECT_TRUE(DRC.isChildOf(BRC)); | 
|  | EXPECT_TRUE(DC.isChildOf(BC)); | 
|  | EXPECT_TRUE(DRC.isChildOf(CRC)); | 
|  | EXPECT_TRUE(DC.isChildOf(CC)); | 
|  |  | 
|  | EXPECT_EQ(2, std::distance(A->begin(), A->end())); | 
|  | ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call); | 
|  | EXPECT_EQ(3, std::distance(A->begin(), A->end())); | 
|  | const LazyCallGraph::Edge &NewE = (*A)[D]; | 
|  | EXPECT_TRUE(NewE); | 
|  | EXPECT_TRUE(NewE.isCall()); | 
|  | EXPECT_EQ(&D, &NewE.getNode()); | 
|  |  | 
|  | // Only the parent and child tests sholud have changed. The rest of the graph | 
|  | // remains the same. | 
|  | EXPECT_TRUE(ARC.isParentOf(DRC)); | 
|  | EXPECT_TRUE(AC.isParentOf(DC)); | 
|  | EXPECT_TRUE(ARC.isAncestorOf(DRC)); | 
|  | EXPECT_TRUE(AC.isAncestorOf(DC)); | 
|  | EXPECT_TRUE(DRC.isChildOf(ARC)); | 
|  | EXPECT_TRUE(DC.isChildOf(AC)); | 
|  | EXPECT_TRUE(DRC.isDescendantOf(ARC)); | 
|  | EXPECT_TRUE(DC.isDescendantOf(AC)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(&DC, CG.lookupSCC(D)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); | 
|  |  | 
|  | ARC.switchOutgoingEdgeToRef(A, D); | 
|  | EXPECT_FALSE(NewE.isCall()); | 
|  |  | 
|  | // Verify the reference graph remains the same but the SCC graph is updated. | 
|  | EXPECT_TRUE(ARC.isParentOf(DRC)); | 
|  | EXPECT_FALSE(AC.isParentOf(DC)); | 
|  | EXPECT_TRUE(ARC.isAncestorOf(DRC)); | 
|  | EXPECT_TRUE(AC.isAncestorOf(DC)); | 
|  | EXPECT_TRUE(DRC.isChildOf(ARC)); | 
|  | EXPECT_FALSE(DC.isChildOf(AC)); | 
|  | EXPECT_TRUE(DRC.isDescendantOf(ARC)); | 
|  | EXPECT_TRUE(DC.isDescendantOf(AC)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(&DC, CG.lookupSCC(D)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); | 
|  |  | 
|  | ARC.switchOutgoingEdgeToCall(A, D); | 
|  | EXPECT_TRUE(NewE.isCall()); | 
|  |  | 
|  | // Verify the reference graph remains the same but the SCC graph is updated. | 
|  | EXPECT_TRUE(ARC.isParentOf(DRC)); | 
|  | EXPECT_TRUE(AC.isParentOf(DC)); | 
|  | EXPECT_TRUE(ARC.isAncestorOf(DRC)); | 
|  | EXPECT_TRUE(AC.isAncestorOf(DC)); | 
|  | EXPECT_TRUE(DRC.isChildOf(ARC)); | 
|  | EXPECT_TRUE(DC.isChildOf(AC)); | 
|  | EXPECT_TRUE(DRC.isDescendantOf(ARC)); | 
|  | EXPECT_TRUE(DC.isDescendantOf(AC)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(&DC, CG.lookupSCC(D)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); | 
|  |  | 
|  | ARC.removeOutgoingEdge(A, D); | 
|  | EXPECT_EQ(2, std::distance(A->begin(), A->end())); | 
|  |  | 
|  | // Now the parent and child tests fail again but the rest remains the same. | 
|  | EXPECT_FALSE(ARC.isParentOf(DRC)); | 
|  | EXPECT_FALSE(AC.isParentOf(DC)); | 
|  | EXPECT_TRUE(ARC.isAncestorOf(DRC)); | 
|  | EXPECT_TRUE(AC.isAncestorOf(DC)); | 
|  | EXPECT_FALSE(DRC.isChildOf(ARC)); | 
|  | EXPECT_FALSE(DC.isChildOf(AC)); | 
|  | EXPECT_TRUE(DRC.isDescendantOf(ARC)); | 
|  | EXPECT_TRUE(DC.isDescendantOf(AC)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(&DC, CG.lookupSCC(D)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, IncomingEdgeInsertion) { | 
|  | LLVMContext Context; | 
|  | // We want to ensure we can add edges even across complex diamond graphs, so | 
|  | // we use the diamond of triangles graph defined above. The ascii diagram is | 
|  | // repeated here for easy reference. | 
|  | // | 
|  | //         d1       | | 
|  | //        /  \      | | 
|  | //       d3--d2     | | 
|  | //      /     \     | | 
|  | //     b1     c1    | | 
|  | //   /  \    /  \   | | 
|  | //  b3--b2  c3--c2  | | 
|  | //       \  /       | | 
|  | //        a1        | | 
|  | //       /  \       | | 
|  | //      a3--a2      | | 
|  | // | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); | 
|  | LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); | 
|  | LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); | 
|  | LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); | 
|  | LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); | 
|  | LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); | 
|  | LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); | 
|  | LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); | 
|  | LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); | 
|  | LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); | 
|  | LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); | 
|  | LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); | 
|  | ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); | 
|  |  | 
|  | // Add an edge to make the graph: | 
|  | // | 
|  | //         d1         | | 
|  | //        /  \        | | 
|  | //       d3--d2---.   | | 
|  | //      /     \    |  | | 
|  | //     b1     c1   |  | | 
|  | //   /  \    /  \ /   | | 
|  | //  b3--b2  c3--c2    | | 
|  | //       \  /         | | 
|  | //        a1          | | 
|  | //       /  \         | | 
|  | //      a3--a2        | | 
|  | auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); | 
|  | // Make sure we connected the nodes. | 
|  | for (LazyCallGraph::Edge E : *D2) { | 
|  | if (&E.getNode() == &D3) | 
|  | continue; | 
|  | EXPECT_EQ(&C2, &E.getNode()); | 
|  | } | 
|  | // And marked the D ref-SCC as no longer valid. | 
|  | EXPECT_EQ(1u, MergedRCs.size()); | 
|  | EXPECT_EQ(&DRC, MergedRCs[0]); | 
|  |  | 
|  | // Make sure we have the correct nodes in the SCC sets. | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); | 
|  |  | 
|  | // And that ancestry tests have been updated. | 
|  | EXPECT_TRUE(ARC.isParentOf(CRC)); | 
|  | EXPECT_TRUE(BRC.isParentOf(CRC)); | 
|  |  | 
|  | // And verify the post-order walk reflects the updated structure. | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | ASSERT_NE(I, E); | 
|  | EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; | 
|  | EXPECT_EQ(++I, E); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, IncomingEdgeInsertionRefGraph) { | 
|  | LLVMContext Context; | 
|  | // Another variation of the above test but with all the edges switched to | 
|  | // references rather than calls. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, DiamondOfTrianglesRefGraph); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); | 
|  | LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); | 
|  | LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); | 
|  | LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); | 
|  | LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); | 
|  | LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); | 
|  | LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); | 
|  | LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); | 
|  | LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); | 
|  | LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); | 
|  | LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); | 
|  | LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); | 
|  | ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); | 
|  |  | 
|  | // Add an edge to make the graph: | 
|  | // | 
|  | //         d1         | | 
|  | //        /  \        | | 
|  | //       d3--d2---.   | | 
|  | //      /     \    |  | | 
|  | //     b1     c1   |  | | 
|  | //   /  \    /  \ /   | | 
|  | //  b3--b2  c3--c2    | | 
|  | //       \  /         | | 
|  | //        a1          | | 
|  | //       /  \         | | 
|  | //      a3--a2        | | 
|  | auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); | 
|  | // Make sure we connected the nodes. | 
|  | for (LazyCallGraph::Edge E : *D2) { | 
|  | if (&E.getNode() == &D3) | 
|  | continue; | 
|  | EXPECT_EQ(&C2, &E.getNode()); | 
|  | } | 
|  | // And marked the D ref-SCC as no longer valid. | 
|  | EXPECT_EQ(1u, MergedRCs.size()); | 
|  | EXPECT_EQ(&DRC, MergedRCs[0]); | 
|  |  | 
|  | // Make sure we have the correct nodes in the SCC sets. | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); | 
|  |  | 
|  | // And that ancestry tests have been updated. | 
|  | EXPECT_TRUE(ARC.isParentOf(CRC)); | 
|  | EXPECT_TRUE(BRC.isParentOf(CRC)); | 
|  |  | 
|  | // And verify the post-order walk reflects the updated structure. | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | ASSERT_NE(I, E); | 
|  | EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; | 
|  | EXPECT_EQ(++I, E); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeCallCycle) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &BC = *CG.lookupSCC(B); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(C); | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); | 
|  |  | 
|  | // Connect the top to the bottom forming a large RefSCC made up mostly of calls. | 
|  | auto MergedRCs = ARC.insertIncomingRefEdge(D, A); | 
|  | // Make sure we connected the nodes. | 
|  | EXPECT_NE(D->begin(), D->end()); | 
|  | EXPECT_EQ(&A, &D->begin()->getNode()); | 
|  |  | 
|  | // Check that we have the dead RCs, but ignore the order. | 
|  | EXPECT_EQ(3u, MergedRCs.size()); | 
|  | EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); | 
|  | EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); | 
|  | EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); | 
|  |  | 
|  | // Make sure the nodes point to the right place now. | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); | 
|  |  | 
|  | // Check that the SCCs are in postorder. | 
|  | EXPECT_EQ(4, ARC.size()); | 
|  | EXPECT_EQ(&DC, &ARC[0]); | 
|  | EXPECT_EQ(&CC, &ARC[1]); | 
|  | EXPECT_EQ(&BC, &ARC[2]); | 
|  | EXPECT_EQ(&AC, &ARC[3]); | 
|  |  | 
|  | // And verify the post-order walk reflects the updated structure. | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | ASSERT_NE(I, E); | 
|  | EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; | 
|  | EXPECT_EQ(++I, E); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeRefCycle) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  %p = alloca void ()*\n" | 
|  | "  store void ()* @b, void ()** %p\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  %p = alloca void ()*\n" | 
|  | "  store void ()* @c, void ()** %p\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  %p = alloca void ()*\n" | 
|  | "  store void ()* @d, void ()** %p\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); | 
|  |  | 
|  | // Connect the top to the bottom forming a large RefSCC made up just of | 
|  | // references. | 
|  | auto MergedRCs = ARC.insertIncomingRefEdge(D, A); | 
|  | // Make sure we connected the nodes. | 
|  | EXPECT_NE(D->begin(), D->end()); | 
|  | EXPECT_EQ(&A, &D->begin()->getNode()); | 
|  |  | 
|  | // Check that we have the dead RCs, but ignore the order. | 
|  | EXPECT_EQ(3u, MergedRCs.size()); | 
|  | EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); | 
|  | EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); | 
|  | EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); | 
|  |  | 
|  | // Make sure the nodes point to the right place now. | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); | 
|  |  | 
|  | // And verify the post-order walk reflects the updated structure. | 
|  | auto I = CG.postorder_ref_scc_begin(), End = CG.postorder_ref_scc_end(); | 
|  | ASSERT_NE(I, End); | 
|  | EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; | 
|  | EXPECT_EQ(++I, End); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InlineAndDeleteFunction) { | 
|  | LLVMContext Context; | 
|  | // We want to ensure we can delete nodes from relatively complex graphs and | 
|  | // so use the diamond of triangles graph defined above. | 
|  | // | 
|  | // The ascii diagram is repeated here for easy reference. | 
|  | // | 
|  | //         d1       | | 
|  | //        /  \      | | 
|  | //       d3--d2     | | 
|  | //      /     \     | | 
|  | //     b1     c1    | | 
|  | //   /  \    /  \   | | 
|  | //  b3--b2  c3--c2  | | 
|  | //       \  /       | | 
|  | //        a1        | | 
|  | //       /  \       | | 
|  | //      a3--a2      | | 
|  | // | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) | 
|  | dbgs() << "Formed RefSCC: " << RC << "\n"; | 
|  |  | 
|  | LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); | 
|  | LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); | 
|  | LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); | 
|  | LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); | 
|  | LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); | 
|  | LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); | 
|  | LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); | 
|  | LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); | 
|  | LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); | 
|  | LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); | 
|  | LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); | 
|  | LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); | 
|  | LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); | 
|  | LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); | 
|  | LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); | 
|  | LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); | 
|  | ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); | 
|  | ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); | 
|  |  | 
|  | // Delete d2 from the graph, as if it had been inlined. | 
|  | // | 
|  | //         d1         | | 
|  | //        / /         | | 
|  | //       d3--.        | | 
|  | //      /     \       | | 
|  | //     b1     c1      | | 
|  | //   /  \    /  \     | | 
|  | //  b3--b2  c3--c2    | | 
|  | //       \  /         | | 
|  | //        a1          | | 
|  | //       /  \         | | 
|  | //      a3--a2        | | 
|  |  | 
|  | Function &D2F = D2.getFunction(); | 
|  | CallInst *C1Call = nullptr, *D1Call = nullptr; | 
|  | for (User *U : D2F.users()) { | 
|  | CallInst *CI = dyn_cast<CallInst>(U); | 
|  | ASSERT_TRUE(CI) << "Expected a call: " << *U; | 
|  | if (CI->getParent()->getParent() == &C1.getFunction()) { | 
|  | ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI; | 
|  | C1Call = CI; | 
|  | } else if (CI->getParent()->getParent() == &D1.getFunction()) { | 
|  | ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI; | 
|  | D1Call = CI; | 
|  | } else { | 
|  | FAIL() << "Found an unexpected call instruction: " << *CI; | 
|  | } | 
|  | } | 
|  | ASSERT_NE(C1Call, nullptr); | 
|  | ASSERT_NE(D1Call, nullptr); | 
|  | ASSERT_EQ(&D2F, C1Call->getCalledFunction()); | 
|  | ASSERT_EQ(&D2F, D1Call->getCalledFunction()); | 
|  | C1Call->setCalledFunction(&D3.getFunction()); | 
|  | D1Call->setCalledFunction(&D3.getFunction()); | 
|  | ASSERT_EQ(0u, D2F.getNumUses()); | 
|  |  | 
|  | // Insert new edges first. | 
|  | CRC.insertTrivialCallEdge(C1, D3); | 
|  | DRC.insertTrivialCallEdge(D1, D3); | 
|  |  | 
|  | // Then remove the old ones. | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D2); | 
|  | auto NewCs = DRC.switchInternalEdgeToRef(D1, D2); | 
|  | EXPECT_EQ(&DC, CG.lookupSCC(D2)); | 
|  | EXPECT_EQ(NewCs.end(), std::next(NewCs.begin())); | 
|  | LazyCallGraph::SCC &NewDC = *NewCs.begin(); | 
|  | EXPECT_EQ(&NewDC, CG.lookupSCC(D1)); | 
|  | EXPECT_EQ(&NewDC, CG.lookupSCC(D3)); | 
|  | auto NewRCs = DRC.removeInternalRefEdge(D1, {&D2}); | 
|  | ASSERT_EQ(2u, NewRCs.size()); | 
|  | LazyCallGraph::RefSCC &NewDRC = *NewRCs[0]; | 
|  | EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); | 
|  | EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); | 
|  | LazyCallGraph::RefSCC &D2RC = *NewRCs[1]; | 
|  | EXPECT_EQ(&D2RC, CG.lookupRefSCC(D2)); | 
|  | EXPECT_FALSE(NewDRC.isParentOf(D2RC)); | 
|  | EXPECT_TRUE(CRC.isParentOf(D2RC)); | 
|  | EXPECT_TRUE(CRC.isParentOf(NewDRC)); | 
|  | EXPECT_TRUE(D2RC.isParentOf(NewDRC)); | 
|  | CRC.removeOutgoingEdge(C1, D2); | 
|  | EXPECT_FALSE(CRC.isParentOf(D2RC)); | 
|  | EXPECT_TRUE(CRC.isParentOf(NewDRC)); | 
|  | EXPECT_TRUE(D2RC.isParentOf(NewDRC)); | 
|  |  | 
|  | // Now that we've updated the call graph, D2 is dead, so remove it. | 
|  | CG.removeDeadFunction(D2F); | 
|  |  | 
|  | // Check that the graph still looks the same. | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); | 
|  | EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); | 
|  | EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); | 
|  | EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); | 
|  | EXPECT_TRUE(CRC.isParentOf(NewDRC)); | 
|  |  | 
|  | // Verify the post-order walk hasn't changed. | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | ASSERT_NE(I, E); | 
|  | EXPECT_EQ(&NewDRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; | 
|  | ASSERT_NE(++I, E); | 
|  | EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; | 
|  | EXPECT_EQ(++I, E); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalEdgeMutation) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a()\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(1, RC.size()); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); | 
|  |  | 
|  | // Insert an edge from 'a' to 'c'. Nothing changes about the graph. | 
|  | RC.insertInternalRefEdge(A, C); | 
|  | EXPECT_EQ(2, std::distance(A->begin(), A->end())); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  | EXPECT_EQ(1, RC.size()); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); | 
|  |  | 
|  | // Switch the call edge from 'b' to 'c' to a ref edge. This will break the | 
|  | // call cycle and cause us to form more SCCs. The RefSCC will remain the same | 
|  | // though. | 
|  | auto NewCs = RC.switchInternalEdgeToRef(B, C); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  | auto J = RC.begin(); | 
|  | // The SCCs must be in *post-order* which means successors before | 
|  | // predecessors. At this point we have call edges from C to A and from A to | 
|  | // B. The only valid postorder is B, A, C. | 
|  | EXPECT_EQ(&*J++, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&*J++, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&*J++, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(RC.end(), J); | 
|  | // And the returned range must be the slice of this sequence containing new | 
|  | // SCCs. | 
|  | EXPECT_EQ(RC.begin(), NewCs.begin()); | 
|  | EXPECT_EQ(std::prev(RC.end()), NewCs.end()); | 
|  |  | 
|  | // Test turning the ref edge from A to C into a call edge. This will form an | 
|  | // SCC out of A and C. Since we previously had a call edge from C to A, the | 
|  | // C SCC should be preserved and have A merged into it while the A SCC should | 
|  | // be invalidated. | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(C); | 
|  | EXPECT_TRUE(RC.switchInternalEdgeToCall(A, C, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { | 
|  | ASSERT_EQ(1u, MergedCs.size()); | 
|  | EXPECT_EQ(&AC, MergedCs[0]); | 
|  | })); | 
|  | EXPECT_EQ(2, CC.size()); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(A)); | 
|  | EXPECT_EQ(&CC, CG.lookupSCC(C)); | 
|  | J = RC.begin(); | 
|  | EXPECT_EQ(&*J++, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&*J++, CG.lookupSCC(C)); | 
|  | EXPECT_EQ(RC.end(), J); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalEdgeRemoval) { | 
|  | LLVMContext Context; | 
|  | // A nice fully connected (including self-edges) RefSCC. | 
|  | std::unique_ptr<Module> M = parseAssembly( | 
|  | Context, "define void @a(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | LazyCallGraph::RefSCC &RC = *I; | 
|  | EXPECT_EQ(E, std::next(I)); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  |  | 
|  | // Remove the edge from b -> a, which should leave the 3 functions still in | 
|  | // a single connected component because of a -> b -> c -> a. | 
|  | SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = | 
|  | RC.removeInternalRefEdge(B, {&A}); | 
|  | EXPECT_EQ(0u, NewRCs.size()); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  | auto J = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_EQ(I, J); | 
|  | EXPECT_EQ(&RC, &*J); | 
|  | EXPECT_EQ(E, std::next(J)); | 
|  |  | 
|  | // Increment I before we actually mutate the structure so that it remains | 
|  | // a valid iterator. | 
|  | ++I; | 
|  |  | 
|  | // Remove the edge from c -> a, which should leave 'a' in the original RefSCC | 
|  | // and form a new RefSCC for 'b' and 'c'. | 
|  | NewRCs = RC.removeInternalRefEdge(C, {&A}); | 
|  | ASSERT_EQ(2u, NewRCs.size()); | 
|  | LazyCallGraph::RefSCC &BCRC = *NewRCs[0]; | 
|  | LazyCallGraph::RefSCC &ARC = *NewRCs[1]; | 
|  | EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(1, std::distance(ARC.begin(), ARC.end())); | 
|  | EXPECT_EQ(&BCRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&BCRC, CG.lookupRefSCC(C)); | 
|  | J = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_NE(I, J); | 
|  | EXPECT_EQ(&BCRC, &*J); | 
|  | ++J; | 
|  | EXPECT_NE(I, J); | 
|  | EXPECT_EQ(&ARC, &*J); | 
|  | ++J; | 
|  | EXPECT_EQ(I, J); | 
|  | EXPECT_EQ(E, J); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalMultiEdgeRemoval) { | 
|  | LLVMContext Context; | 
|  | // A nice fully connected (including self-edges) RefSCC. | 
|  | std::unique_ptr<Module> M = parseAssembly( | 
|  | Context, "define void @a(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | LazyCallGraph::RefSCC &RC = *I; | 
|  | EXPECT_EQ(E, std::next(I)); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(C)); | 
|  |  | 
|  | // Increment I before we actually mutate the structure so that it remains | 
|  | // a valid iterator. | 
|  | ++I; | 
|  |  | 
|  | // Remove the edges from b -> a and b -> c, leaving b in its own RefSCC. | 
|  | SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = | 
|  | RC.removeInternalRefEdge(B, {&A, &C}); | 
|  |  | 
|  | ASSERT_EQ(2u, NewRCs.size()); | 
|  | LazyCallGraph::RefSCC &BRC = *NewRCs[0]; | 
|  | LazyCallGraph::RefSCC &ACRC = *NewRCs[1]; | 
|  | EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); | 
|  | EXPECT_EQ(1, std::distance(BRC.begin(), BRC.end())); | 
|  | EXPECT_EQ(&ACRC, CG.lookupRefSCC(A)); | 
|  | EXPECT_EQ(&ACRC, CG.lookupRefSCC(C)); | 
|  | auto J = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_NE(I, J); | 
|  | EXPECT_EQ(&BRC, &*J); | 
|  | ++J; | 
|  | EXPECT_NE(I, J); | 
|  | EXPECT_EQ(&ACRC, &*J); | 
|  | ++J; | 
|  | EXPECT_EQ(I, J); | 
|  | EXPECT_EQ(E, J); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalNoOpEdgeRemoval) { | 
|  | LLVMContext Context; | 
|  | // A graph with a single cycle formed both from call and reference edges | 
|  | // which makes the reference edges trivial to delete. The graph looks like: | 
|  | // | 
|  | // Reference edges: a -> b -> c -> a | 
|  | //      Call edges: a -> c -> b -> a | 
|  | std::unique_ptr<Module> M = parseAssembly( | 
|  | Context, "define void @a(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  call void @b(i8** %ptr)\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" | 
|  | "  call void @c(i8** %ptr)\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  call void @a(i8** %ptr)\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); | 
|  | LazyCallGraph::RefSCC &RC = *I; | 
|  | EXPECT_EQ(E, std::next(I)); | 
|  |  | 
|  | LazyCallGraph::SCC &C = *RC.begin(); | 
|  | EXPECT_EQ(RC.end(), std::next(RC.begin())); | 
|  |  | 
|  | LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(CN)); | 
|  |  | 
|  | // Remove the edge from a -> c which doesn't change anything. | 
|  | SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = | 
|  | RC.removeInternalRefEdge(AN, {&CN}); | 
|  | EXPECT_EQ(0u, NewRCs.size()); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(CN)); | 
|  | auto J = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_EQ(I, J); | 
|  | EXPECT_EQ(&RC, &*J); | 
|  | EXPECT_EQ(E, std::next(J)); | 
|  |  | 
|  | // Remove the edge from b -> a and c -> b; again this doesn't change | 
|  | // anything. | 
|  | NewRCs = RC.removeInternalRefEdge(BN, {&AN}); | 
|  | NewRCs = RC.removeInternalRefEdge(CN, {&BN}); | 
|  | EXPECT_EQ(0u, NewRCs.size()); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); | 
|  | EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&C, CG.lookupSCC(CN)); | 
|  | J = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_EQ(I, J); | 
|  | EXPECT_EQ(&RC, &*J); | 
|  | EXPECT_EQ(E, std::next(J)); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalCallEdgeToRef) { | 
|  | LLVMContext Context; | 
|  | // A nice fully connected (including self-edges) SCC (and RefSCC) | 
|  | std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a()\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a()\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  call void @a()\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | EXPECT_EQ(1, RC.size()); | 
|  | LazyCallGraph::SCC &AC = *RC.begin(); | 
|  |  | 
|  | LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(CN)); | 
|  |  | 
|  | // Remove the call edge from b -> a to a ref edge, which should leave the | 
|  | // 3 functions still in a single connected component because of a -> b -> | 
|  | // c -> a. | 
|  | auto NewCs = RC.switchInternalEdgeToRef(BN, AN); | 
|  | EXPECT_EQ(NewCs.begin(), NewCs.end()); | 
|  | EXPECT_EQ(1, RC.size()); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(CN)); | 
|  |  | 
|  | // Remove the edge from c -> a, which should leave 'a' in the original SCC | 
|  | // and form a new SCC for 'b' and 'c'. | 
|  | NewCs = RC.switchInternalEdgeToRef(CN, AN); | 
|  | EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); | 
|  | EXPECT_EQ(2, RC.size()); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(AN)); | 
|  | LazyCallGraph::SCC &BC = *CG.lookupSCC(BN); | 
|  | EXPECT_NE(&BC, &AC); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(CN)); | 
|  | auto J = RC.find(AC); | 
|  | EXPECT_EQ(&AC, &*J); | 
|  | --J; | 
|  | EXPECT_EQ(&BC, &*J); | 
|  | EXPECT_EQ(RC.begin(), J); | 
|  | EXPECT_EQ(J, NewCs.begin()); | 
|  |  | 
|  | // Remove the edge from c -> b, which should leave 'b' in the original SCC | 
|  | // and form a new SCC for 'c'. It shouldn't change 'a's SCC. | 
|  | NewCs = RC.switchInternalEdgeToRef(CN, BN); | 
|  | EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); | 
|  | EXPECT_EQ(3, RC.size()); | 
|  | EXPECT_EQ(&AC, CG.lookupSCC(AN)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(BN)); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(CN); | 
|  | EXPECT_NE(&CC, &AC); | 
|  | EXPECT_NE(&CC, &BC); | 
|  | J = RC.find(AC); | 
|  | EXPECT_EQ(&AC, &*J); | 
|  | --J; | 
|  | EXPECT_EQ(&BC, &*J); | 
|  | --J; | 
|  | EXPECT_EQ(&CC, &*J); | 
|  | EXPECT_EQ(RC.begin(), J); | 
|  | EXPECT_EQ(J, NewCs.begin()); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalRefEdgeToCall) { | 
|  | LLVMContext Context; | 
|  | // Basic tests for making a ref edge a call. This hits the basics of the | 
|  | // process only. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @c()\n" | 
|  | "  store void()* @d, void()** undef\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @c, void()** undef\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @b, void()** undef\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @a, void()** undef\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &BC = *CG.lookupSCC(B); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(C); | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D); | 
|  |  | 
|  | // Check the initial post-order. Note that B and C could be flipped here (and | 
|  | // in our mutation) without changing the nature of this test. | 
|  | ASSERT_EQ(4, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&BC, &RC[1]); | 
|  | EXPECT_EQ(&CC, &RC[2]); | 
|  | EXPECT_EQ(&AC, &RC[3]); | 
|  |  | 
|  | // Switch the ref edge from A -> D to a call edge. This should have no | 
|  | // effect as it is already in postorder and no new cycles are formed. | 
|  | EXPECT_FALSE(RC.switchInternalEdgeToCall(A, D)); | 
|  | ASSERT_EQ(4, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&BC, &RC[1]); | 
|  | EXPECT_EQ(&CC, &RC[2]); | 
|  | EXPECT_EQ(&AC, &RC[3]); | 
|  |  | 
|  | // Switch B -> C to a call edge. This doesn't form any new cycles but does | 
|  | // require reordering the SCCs. | 
|  | EXPECT_FALSE(RC.switchInternalEdgeToCall(B, C)); | 
|  | ASSERT_EQ(4, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&CC, &RC[1]); | 
|  | EXPECT_EQ(&BC, &RC[2]); | 
|  | EXPECT_EQ(&AC, &RC[3]); | 
|  |  | 
|  | // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs. | 
|  | EXPECT_TRUE(RC.switchInternalEdgeToCall(C, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { | 
|  | ASSERT_EQ(1u, MergedCs.size()); | 
|  | EXPECT_EQ(&CC, MergedCs[0]); | 
|  | })); | 
|  | ASSERT_EQ(3, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&BC, &RC[1]); | 
|  | EXPECT_EQ(&AC, &RC[2]); | 
|  | EXPECT_EQ(2, BC.size()); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(B)); | 
|  | EXPECT_EQ(&BC, CG.lookupSCC(C)); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) { | 
|  | LLVMContext Context; | 
|  | // Test for having a post-order prior to changing a ref edge to a call edge | 
|  | // with SCCs connecting to the source and connecting to the target, but not | 
|  | // connecting to both, interleaved between the source and target. This | 
|  | // ensures we correctly partition the range rather than simply moving one or | 
|  | // the other. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b1()\n" | 
|  | "  call void @c1()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c1()\n" | 
|  | "  call void @b2()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c1() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b2()\n" | 
|  | "  call void @c2()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c2()\n" | 
|  | "  call void @b3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c2() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b3()\n" | 
|  | "  call void @c3()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b3() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c3()\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c3() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @b1, void()** undef\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @a, void()** undef\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); | 
|  | LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); | 
|  | LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); | 
|  | LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); | 
|  | LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); | 
|  | LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1); | 
|  | LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2); | 
|  | LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3); | 
|  | LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1); | 
|  | LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2); | 
|  | LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3); | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D); | 
|  |  | 
|  | // Several call edges are initially present to force a particual post-order. | 
|  | // Remove them now, leaving an interleaved post-order pattern. | 
|  | RC.switchTrivialInternalEdgeToRef(B3, C3); | 
|  | RC.switchTrivialInternalEdgeToRef(C2, B3); | 
|  | RC.switchTrivialInternalEdgeToRef(B2, C2); | 
|  | RC.switchTrivialInternalEdgeToRef(C1, B2); | 
|  | RC.switchTrivialInternalEdgeToRef(B1, C1); | 
|  |  | 
|  | // Check the initial post-order. We ensure this order with the extra edges | 
|  | // that are nuked above. | 
|  | ASSERT_EQ(8, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&C3C, &RC[1]); | 
|  | EXPECT_EQ(&B3C, &RC[2]); | 
|  | EXPECT_EQ(&C2C, &RC[3]); | 
|  | EXPECT_EQ(&B2C, &RC[4]); | 
|  | EXPECT_EQ(&C1C, &RC[5]); | 
|  | EXPECT_EQ(&B1C, &RC[6]); | 
|  | EXPECT_EQ(&AC, &RC[7]); | 
|  |  | 
|  | // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does | 
|  | // require reordering the SCCs in the face of tricky internal node | 
|  | // structures. | 
|  | EXPECT_FALSE(RC.switchInternalEdgeToCall(C3, B1)); | 
|  | ASSERT_EQ(8, RC.size()); | 
|  | EXPECT_EQ(&DC, &RC[0]); | 
|  | EXPECT_EQ(&B3C, &RC[1]); | 
|  | EXPECT_EQ(&B2C, &RC[2]); | 
|  | EXPECT_EQ(&B1C, &RC[3]); | 
|  | EXPECT_EQ(&C3C, &RC[4]); | 
|  | EXPECT_EQ(&C2C, &RC[5]); | 
|  | EXPECT_EQ(&C1C, &RC[6]); | 
|  | EXPECT_EQ(&AC, &RC[7]); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) { | 
|  | LLVMContext Context; | 
|  | // Test for having a postorder where between the source and target are all | 
|  | // three kinds of other SCCs: | 
|  | // 1) One connected to the target only that have to be shifted below the | 
|  | //    source. | 
|  | // 2) One connected to the source only that have to be shifted below the | 
|  | //    target. | 
|  | // 3) One connected to both source and target that has to remain and get | 
|  | //    merged away. | 
|  | // | 
|  | // To achieve this we construct a heavily connected graph to force | 
|  | // a particular post-order. Then we remove the forcing edges and connect | 
|  | // a cycle. | 
|  | // | 
|  | // Diagram for the graph we want on the left and the graph we use to force | 
|  | // the ordering on the right. Edges ponit down or right. | 
|  | // | 
|  | //   A    |    A    | | 
|  | //  / \   |   / \   | | 
|  | // B   E  |  B   \  | | 
|  | // |\  |  |  |\  |  | | 
|  | // | D |  |  C-D-E  | | 
|  | // |  \|  |  |  \|  | | 
|  | // C   F  |  \   F  | | 
|  | //  \ /   |   \ /   | | 
|  | //   G    |    G    | | 
|  | // | 
|  | // And we form a cycle by connecting F to B. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, "define void @a() {\n" | 
|  | "entry:\n" | 
|  | "  call void @b()\n" | 
|  | "  call void @e()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b() {\n" | 
|  | "entry:\n" | 
|  | "  call void @c()\n" | 
|  | "  call void @d()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c() {\n" | 
|  | "entry:\n" | 
|  | "  call void @d()\n" | 
|  | "  call void @g()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d() {\n" | 
|  | "entry:\n" | 
|  | "  call void @e()\n" | 
|  | "  call void @f()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @e() {\n" | 
|  | "entry:\n" | 
|  | "  call void @f()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @f() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @b, void()** undef\n" | 
|  | "  call void @g()\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @g() {\n" | 
|  | "entry:\n" | 
|  | "  store void()* @a, void()** undef\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e")); | 
|  | LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); | 
|  | LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); | 
|  | LazyCallGraph::SCC &AC = *CG.lookupSCC(A); | 
|  | LazyCallGraph::SCC &BC = *CG.lookupSCC(B); | 
|  | LazyCallGraph::SCC &CC = *CG.lookupSCC(C); | 
|  | LazyCallGraph::SCC &DC = *CG.lookupSCC(D); | 
|  | LazyCallGraph::SCC &EC = *CG.lookupSCC(E); | 
|  | LazyCallGraph::SCC &FC = *CG.lookupSCC(F); | 
|  | LazyCallGraph::SCC &GC = *CG.lookupSCC(G); | 
|  |  | 
|  | // Remove the extra edges that were used to force a particular post-order. | 
|  | RC.switchTrivialInternalEdgeToRef(C, D); | 
|  | RC.switchTrivialInternalEdgeToRef(D, E); | 
|  |  | 
|  | // Check the initial post-order. We ensure this order with the extra edges | 
|  | // that are nuked above. | 
|  | ASSERT_EQ(7, RC.size()); | 
|  | EXPECT_EQ(&GC, &RC[0]); | 
|  | EXPECT_EQ(&FC, &RC[1]); | 
|  | EXPECT_EQ(&EC, &RC[2]); | 
|  | EXPECT_EQ(&DC, &RC[3]); | 
|  | EXPECT_EQ(&CC, &RC[4]); | 
|  | EXPECT_EQ(&BC, &RC[5]); | 
|  | EXPECT_EQ(&AC, &RC[6]); | 
|  |  | 
|  | // Switch F -> B to a call edge. This merges B, D, and F into a single SCC, | 
|  | // and has to place the C and E SCCs on either side of it: | 
|  | //   A          A    | | 
|  | //  / \        / \   | | 
|  | // B   E      |   E  | | 
|  | // |\  |       \ /   | | 
|  | // | D |  ->    B    | | 
|  | // |  \|       / \   | | 
|  | // C   F      C   |  | | 
|  | //  \ /        \ /   | | 
|  | //   G          G    | | 
|  | EXPECT_TRUE(RC.switchInternalEdgeToCall( | 
|  | F, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { | 
|  | ASSERT_EQ(2u, MergedCs.size()); | 
|  | EXPECT_EQ(&FC, MergedCs[0]); | 
|  | EXPECT_EQ(&DC, MergedCs[1]); | 
|  | })); | 
|  | EXPECT_EQ(3, BC.size()); | 
|  |  | 
|  | // And make sure the postorder was updated. | 
|  | ASSERT_EQ(5, RC.size()); | 
|  | EXPECT_EQ(&GC, &RC[0]); | 
|  | EXPECT_EQ(&CC, &RC[1]); | 
|  | EXPECT_EQ(&BC, &RC[2]); | 
|  | EXPECT_EQ(&EC, &RC[3]); | 
|  | EXPECT_EQ(&AC, &RC[4]); | 
|  | } | 
|  |  | 
|  | // Test for IR containing constants using blockaddress constant expressions. | 
|  | // These are truly unique constructs: constant expressions with non-constant | 
|  | // operands. | 
|  | TEST(LazyCallGraphTest, HandleBlockAddress) { | 
|  | LLVMContext Context; | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, "define void @f() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "bb:\n" | 
|  | "  unreachable\n" | 
|  | "}\n" | 
|  | "define void @g(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* blockaddress(@f, %bb), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &FRC = *I++; | 
|  | LazyCallGraph::RefSCC &GRC = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); | 
|  | LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); | 
|  | EXPECT_EQ(&FRC, CG.lookupRefSCC(F)); | 
|  | EXPECT_EQ(&GRC, CG.lookupRefSCC(G)); | 
|  | EXPECT_TRUE(GRC.isParentOf(FRC)); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, ReplaceNodeFunction) { | 
|  | LLVMContext Context; | 
|  | // A graph with several different kinds of edges pointing at a particular | 
|  | // function. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, | 
|  | "define void @a(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  call void @d(i8** %ptr)" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  call void @d(i8** %ptr)" | 
|  | "  call void @d(i8** %ptr)" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  call void @c(i8** %ptr)" | 
|  | "  call void @d(i8** %ptr)" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &RC1 = *I++; | 
|  | LazyCallGraph::RefSCC &RC2 = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | ASSERT_EQ(2, RC1.size()); | 
|  | LazyCallGraph::SCC &C1 = RC1[0]; | 
|  | LazyCallGraph::SCC &C2 = RC1[1]; | 
|  |  | 
|  | LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &DN = *CG.lookup(lookupFunction(*M, "d")); | 
|  | EXPECT_EQ(&C1, CG.lookupSCC(DN)); | 
|  | EXPECT_EQ(&C1, CG.lookupSCC(CN)); | 
|  | EXPECT_EQ(&C2, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); | 
|  | EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); | 
|  |  | 
|  | // Now we need to build a new function 'e' with the same signature as 'd'. | 
|  | Function &D = DN.getFunction(); | 
|  | Function &E = *Function::Create(D.getFunctionType(), D.getLinkage(), "e"); | 
|  | D.getParent()->getFunctionList().insert(D.getIterator(), &E); | 
|  |  | 
|  | // Change each use of 'd' to use 'e'. This is particularly easy as they have | 
|  | // the same type. | 
|  | D.replaceAllUsesWith(&E); | 
|  |  | 
|  | // Splice the body of the old function into the new one. | 
|  | E.getBasicBlockList().splice(E.begin(), D.getBasicBlockList()); | 
|  | // And fix up the one argument. | 
|  | D.arg_begin()->replaceAllUsesWith(&*E.arg_begin()); | 
|  | E.arg_begin()->takeName(&*D.arg_begin()); | 
|  |  | 
|  | // Now replace the function in the graph. | 
|  | RC1.replaceNodeFunction(DN, E); | 
|  |  | 
|  | EXPECT_EQ(&E, &DN.getFunction()); | 
|  | EXPECT_EQ(&DN, &(*CN)[DN].getNode()); | 
|  | EXPECT_EQ(&DN, &(*BN)[DN].getNode()); | 
|  | } | 
|  |  | 
|  | TEST(LazyCallGraphTest, RemoveFunctionWithSpurriousRef) { | 
|  | LLVMContext Context; | 
|  | // A graph with a couple of RefSCCs. | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssembly(Context, | 
|  | "define void @a(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @b(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @c(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  call void @d(i8** %ptr)" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @d(i8** %ptr) {\n" | 
|  | "entry:\n" | 
|  | "  call void @c(i8** %ptr)" | 
|  | "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" | 
|  | "  ret void\n" | 
|  | "}\n" | 
|  | "define void @dead() {\n" | 
|  | "entry:\n" | 
|  | "  ret void\n" | 
|  | "}\n"); | 
|  | LazyCallGraph CG = buildCG(*M); | 
|  |  | 
|  | // Insert spurious ref edges. | 
|  | LazyCallGraph::Node &AN = CG.get(lookupFunction(*M, "a")); | 
|  | LazyCallGraph::Node &BN = CG.get(lookupFunction(*M, "b")); | 
|  | LazyCallGraph::Node &CN = CG.get(lookupFunction(*M, "c")); | 
|  | LazyCallGraph::Node &DN = CG.get(lookupFunction(*M, "d")); | 
|  | LazyCallGraph::Node &DeadN = CG.get(lookupFunction(*M, "dead")); | 
|  | AN.populate(); | 
|  | BN.populate(); | 
|  | CN.populate(); | 
|  | DN.populate(); | 
|  | DeadN.populate(); | 
|  | CG.insertEdge(AN, DeadN, LazyCallGraph::Edge::Ref); | 
|  | CG.insertEdge(BN, DeadN, LazyCallGraph::Edge::Ref); | 
|  | CG.insertEdge(CN, DeadN, LazyCallGraph::Edge::Ref); | 
|  | CG.insertEdge(DN, DeadN, LazyCallGraph::Edge::Ref); | 
|  |  | 
|  | // Force the graph to be fully expanded. | 
|  | CG.buildRefSCCs(); | 
|  | auto I = CG.postorder_ref_scc_begin(); | 
|  | LazyCallGraph::RefSCC &DeadRC = *I++; | 
|  | LazyCallGraph::RefSCC &RC1 = *I++; | 
|  | LazyCallGraph::RefSCC &RC2 = *I++; | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  |  | 
|  | ASSERT_EQ(2, RC1.size()); | 
|  | LazyCallGraph::SCC &C1 = RC1[0]; | 
|  | LazyCallGraph::SCC &C2 = RC1[1]; | 
|  |  | 
|  | EXPECT_EQ(&DeadRC, CG.lookupRefSCC(DeadN)); | 
|  | EXPECT_EQ(&C1, CG.lookupSCC(DN)); | 
|  | EXPECT_EQ(&C1, CG.lookupSCC(CN)); | 
|  | EXPECT_EQ(&C2, CG.lookupSCC(BN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); | 
|  | EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); | 
|  | EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); | 
|  |  | 
|  | // Now delete 'dead'. There are no uses of this function but there are | 
|  | // spurious references. | 
|  | CG.removeDeadFunction(DeadN.getFunction()); | 
|  |  | 
|  | // The only observable change should be that the RefSCC is gone from the | 
|  | // postorder sequence. | 
|  | I = CG.postorder_ref_scc_begin(); | 
|  | EXPECT_EQ(&RC1, &*I++); | 
|  | EXPECT_EQ(&RC2, &*I++); | 
|  | EXPECT_EQ(CG.postorder_ref_scc_end(), I); | 
|  | } | 
|  | } |