|  | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The implementation for the loop memory dependence that was originally | 
|  | // developed for the loop vectorizer. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LoopAccessAnalysis.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/EquivalenceClasses.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-accesses" | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | VectorizationFactor("force-vector-width", cl::Hidden, | 
|  | cl::desc("Sets the SIMD width. Zero is autoselect."), | 
|  | cl::location(VectorizerParams::VectorizationFactor)); | 
|  | unsigned VectorizerParams::VectorizationFactor; | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | VectorizationInterleave("force-vector-interleave", cl::Hidden, | 
|  | cl::desc("Sets the vectorization interleave count. " | 
|  | "Zero is autoselect."), | 
|  | cl::location( | 
|  | VectorizerParams::VectorizationInterleave)); | 
|  | unsigned VectorizerParams::VectorizationInterleave; | 
|  |  | 
|  | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( | 
|  | "runtime-memory-check-threshold", cl::Hidden, | 
|  | cl::desc("When performing memory disambiguation checks at runtime do not " | 
|  | "generate more than this number of comparisons (default = 8)."), | 
|  | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); | 
|  | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; | 
|  |  | 
|  | /// The maximum iterations used to merge memory checks | 
|  | static cl::opt<unsigned> MemoryCheckMergeThreshold( | 
|  | "memory-check-merge-threshold", cl::Hidden, | 
|  | cl::desc("Maximum number of comparisons done when trying to merge " | 
|  | "runtime memory checks. (default = 100)"), | 
|  | cl::init(100)); | 
|  |  | 
|  | /// Maximum SIMD width. | 
|  | const unsigned VectorizerParams::MaxVectorWidth = 64; | 
|  |  | 
|  | /// We collect dependences up to this threshold. | 
|  | static cl::opt<unsigned> | 
|  | MaxDependences("max-dependences", cl::Hidden, | 
|  | cl::desc("Maximum number of dependences collected by " | 
|  | "loop-access analysis (default = 100)"), | 
|  | cl::init(100)); | 
|  |  | 
|  | /// This enables versioning on the strides of symbolically striding memory | 
|  | /// accesses in code like the following. | 
|  | ///   for (i = 0; i < N; ++i) | 
|  | ///     A[i * Stride1] += B[i * Stride2] ... | 
|  | /// | 
|  | /// Will be roughly translated to | 
|  | ///    if (Stride1 == 1 && Stride2 == 1) { | 
|  | ///      for (i = 0; i < N; i+=4) | 
|  | ///       A[i:i+3] += ... | 
|  | ///    } else | 
|  | ///      ... | 
|  | static cl::opt<bool> EnableMemAccessVersioning( | 
|  | "enable-mem-access-versioning", cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable symbolic stride memory access versioning")); | 
|  |  | 
|  | /// Enable store-to-load forwarding conflict detection. This option can | 
|  | /// be disabled for correctness testing. | 
|  | static cl::opt<bool> EnableForwardingConflictDetection( | 
|  | "store-to-load-forwarding-conflict-detection", cl::Hidden, | 
|  | cl::desc("Enable conflict detection in loop-access analysis"), | 
|  | cl::init(true)); | 
|  |  | 
|  | bool VectorizerParams::isInterleaveForced() { | 
|  | return ::VectorizationInterleave.getNumOccurrences() > 0; | 
|  | } | 
|  |  | 
|  | Value *llvm::stripIntegerCast(Value *V) { | 
|  | if (auto *CI = dyn_cast<CastInst>(V)) | 
|  | if (CI->getOperand(0)->getType()->isIntegerTy()) | 
|  | return CI->getOperand(0); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, | 
|  | const ValueToValueMap &PtrToStride, | 
|  | Value *Ptr, Value *OrigPtr) { | 
|  | const SCEV *OrigSCEV = PSE.getSCEV(Ptr); | 
|  |  | 
|  | // If there is an entry in the map return the SCEV of the pointer with the | 
|  | // symbolic stride replaced by one. | 
|  | ValueToValueMap::const_iterator SI = | 
|  | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); | 
|  | if (SI != PtrToStride.end()) { | 
|  | Value *StrideVal = SI->second; | 
|  |  | 
|  | // Strip casts. | 
|  | StrideVal = stripIntegerCast(StrideVal); | 
|  |  | 
|  | ScalarEvolution *SE = PSE.getSE(); | 
|  | const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); | 
|  | const auto *CT = | 
|  | static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); | 
|  |  | 
|  | PSE.addPredicate(*SE->getEqualPredicate(U, CT)); | 
|  | auto *Expr = PSE.getSCEV(Ptr); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV | 
|  | << " by: " << *Expr << "\n"); | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | // Otherwise, just return the SCEV of the original pointer. | 
|  | return OrigSCEV; | 
|  | } | 
|  |  | 
|  | /// Calculate Start and End points of memory access. | 
|  | /// Let's assume A is the first access and B is a memory access on N-th loop | 
|  | /// iteration. Then B is calculated as: | 
|  | ///   B = A + Step*N . | 
|  | /// Step value may be positive or negative. | 
|  | /// N is a calculated back-edge taken count: | 
|  | ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 | 
|  | /// Start and End points are calculated in the following way: | 
|  | /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, | 
|  | /// where SizeOfElt is the size of single memory access in bytes. | 
|  | /// | 
|  | /// There is no conflict when the intervals are disjoint: | 
|  | /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) | 
|  | void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, | 
|  | unsigned DepSetId, unsigned ASId, | 
|  | const ValueToValueMap &Strides, | 
|  | PredicatedScalarEvolution &PSE) { | 
|  | // Get the stride replaced scev. | 
|  | const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); | 
|  | ScalarEvolution *SE = PSE.getSE(); | 
|  |  | 
|  | const SCEV *ScStart; | 
|  | const SCEV *ScEnd; | 
|  |  | 
|  | if (SE->isLoopInvariant(Sc, Lp)) | 
|  | ScStart = ScEnd = Sc; | 
|  | else { | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); | 
|  | assert(AR && "Invalid addrec expression"); | 
|  | const SCEV *Ex = PSE.getBackedgeTakenCount(); | 
|  |  | 
|  | ScStart = AR->getStart(); | 
|  | ScEnd = AR->evaluateAtIteration(Ex, *SE); | 
|  | const SCEV *Step = AR->getStepRecurrence(*SE); | 
|  |  | 
|  | // For expressions with negative step, the upper bound is ScStart and the | 
|  | // lower bound is ScEnd. | 
|  | if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { | 
|  | if (CStep->getValue()->isNegative()) | 
|  | std::swap(ScStart, ScEnd); | 
|  | } else { | 
|  | // Fallback case: the step is not constant, but we can still | 
|  | // get the upper and lower bounds of the interval by using min/max | 
|  | // expressions. | 
|  | ScStart = SE->getUMinExpr(ScStart, ScEnd); | 
|  | ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); | 
|  | } | 
|  | // Add the size of the pointed element to ScEnd. | 
|  | unsigned EltSize = | 
|  | Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; | 
|  | const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); | 
|  | ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); | 
|  | } | 
|  |  | 
|  | Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); | 
|  | } | 
|  |  | 
|  | SmallVector<RuntimePointerChecking::PointerCheck, 4> | 
|  | RuntimePointerChecking::generateChecks() const { | 
|  | SmallVector<PointerCheck, 4> Checks; | 
|  |  | 
|  | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { | 
|  | for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { | 
|  | const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; | 
|  | const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; | 
|  |  | 
|  | if (needsChecking(CGI, CGJ)) | 
|  | Checks.push_back(std::make_pair(&CGI, &CGJ)); | 
|  | } | 
|  | } | 
|  | return Checks; | 
|  | } | 
|  |  | 
|  | void RuntimePointerChecking::generateChecks( | 
|  | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { | 
|  | assert(Checks.empty() && "Checks is not empty"); | 
|  | groupChecks(DepCands, UseDependencies); | 
|  | Checks = generateChecks(); | 
|  | } | 
|  |  | 
|  | bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, | 
|  | const CheckingPtrGroup &N) const { | 
|  | for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) | 
|  | for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) | 
|  | if (needsChecking(M.Members[I], N.Members[J])) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Compare \p I and \p J and return the minimum. | 
|  | /// Return nullptr in case we couldn't find an answer. | 
|  | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, | 
|  | ScalarEvolution *SE) { | 
|  | const SCEV *Diff = SE->getMinusSCEV(J, I); | 
|  | const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); | 
|  |  | 
|  | if (!C) | 
|  | return nullptr; | 
|  | if (C->getValue()->isNegative()) | 
|  | return J; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { | 
|  | const SCEV *Start = RtCheck.Pointers[Index].Start; | 
|  | const SCEV *End = RtCheck.Pointers[Index].End; | 
|  |  | 
|  | // Compare the starts and ends with the known minimum and maximum | 
|  | // of this set. We need to know how we compare against the min/max | 
|  | // of the set in order to be able to emit memchecks. | 
|  | const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); | 
|  | if (!Min0) | 
|  | return false; | 
|  |  | 
|  | const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); | 
|  | if (!Min1) | 
|  | return false; | 
|  |  | 
|  | // Update the low bound  expression if we've found a new min value. | 
|  | if (Min0 == Start) | 
|  | Low = Start; | 
|  |  | 
|  | // Update the high bound expression if we've found a new max value. | 
|  | if (Min1 != End) | 
|  | High = End; | 
|  |  | 
|  | Members.push_back(Index); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void RuntimePointerChecking::groupChecks( | 
|  | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { | 
|  | // We build the groups from dependency candidates equivalence classes | 
|  | // because: | 
|  | //    - We know that pointers in the same equivalence class share | 
|  | //      the same underlying object and therefore there is a chance | 
|  | //      that we can compare pointers | 
|  | //    - We wouldn't be able to merge two pointers for which we need | 
|  | //      to emit a memcheck. The classes in DepCands are already | 
|  | //      conveniently built such that no two pointers in the same | 
|  | //      class need checking against each other. | 
|  |  | 
|  | // We use the following (greedy) algorithm to construct the groups | 
|  | // For every pointer in the equivalence class: | 
|  | //   For each existing group: | 
|  | //   - if the difference between this pointer and the min/max bounds | 
|  | //     of the group is a constant, then make the pointer part of the | 
|  | //     group and update the min/max bounds of that group as required. | 
|  |  | 
|  | CheckingGroups.clear(); | 
|  |  | 
|  | // If we need to check two pointers to the same underlying object | 
|  | // with a non-constant difference, we shouldn't perform any pointer | 
|  | // grouping with those pointers. This is because we can easily get | 
|  | // into cases where the resulting check would return false, even when | 
|  | // the accesses are safe. | 
|  | // | 
|  | // The following example shows this: | 
|  | // for (i = 0; i < 1000; ++i) | 
|  | //   a[5000 + i * m] = a[i] + a[i + 9000] | 
|  | // | 
|  | // Here grouping gives a check of (5000, 5000 + 1000 * m) against | 
|  | // (0, 10000) which is always false. However, if m is 1, there is no | 
|  | // dependence. Not grouping the checks for a[i] and a[i + 9000] allows | 
|  | // us to perform an accurate check in this case. | 
|  | // | 
|  | // The above case requires that we have an UnknownDependence between | 
|  | // accesses to the same underlying object. This cannot happen unless | 
|  | // FoundNonConstantDistanceDependence is set, and therefore UseDependencies | 
|  | // is also false. In this case we will use the fallback path and create | 
|  | // separate checking groups for all pointers. | 
|  |  | 
|  | // If we don't have the dependency partitions, construct a new | 
|  | // checking pointer group for each pointer. This is also required | 
|  | // for correctness, because in this case we can have checking between | 
|  | // pointers to the same underlying object. | 
|  | if (!UseDependencies) { | 
|  | for (unsigned I = 0; I < Pointers.size(); ++I) | 
|  | CheckingGroups.push_back(CheckingPtrGroup(I, *this)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned TotalComparisons = 0; | 
|  |  | 
|  | DenseMap<Value *, unsigned> PositionMap; | 
|  | for (unsigned Index = 0; Index < Pointers.size(); ++Index) | 
|  | PositionMap[Pointers[Index].PointerValue] = Index; | 
|  |  | 
|  | // We need to keep track of what pointers we've already seen so we | 
|  | // don't process them twice. | 
|  | SmallSet<unsigned, 2> Seen; | 
|  |  | 
|  | // Go through all equivalence classes, get the "pointer check groups" | 
|  | // and add them to the overall solution. We use the order in which accesses | 
|  | // appear in 'Pointers' to enforce determinism. | 
|  | for (unsigned I = 0; I < Pointers.size(); ++I) { | 
|  | // We've seen this pointer before, and therefore already processed | 
|  | // its equivalence class. | 
|  | if (Seen.count(I)) | 
|  | continue; | 
|  |  | 
|  | MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, | 
|  | Pointers[I].IsWritePtr); | 
|  |  | 
|  | SmallVector<CheckingPtrGroup, 2> Groups; | 
|  | auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); | 
|  |  | 
|  | // Because DepCands is constructed by visiting accesses in the order in | 
|  | // which they appear in alias sets (which is deterministic) and the | 
|  | // iteration order within an equivalence class member is only dependent on | 
|  | // the order in which unions and insertions are performed on the | 
|  | // equivalence class, the iteration order is deterministic. | 
|  | for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); | 
|  | MI != ME; ++MI) { | 
|  | unsigned Pointer = PositionMap[MI->getPointer()]; | 
|  | bool Merged = false; | 
|  | // Mark this pointer as seen. | 
|  | Seen.insert(Pointer); | 
|  |  | 
|  | // Go through all the existing sets and see if we can find one | 
|  | // which can include this pointer. | 
|  | for (CheckingPtrGroup &Group : Groups) { | 
|  | // Don't perform more than a certain amount of comparisons. | 
|  | // This should limit the cost of grouping the pointers to something | 
|  | // reasonable.  If we do end up hitting this threshold, the algorithm | 
|  | // will create separate groups for all remaining pointers. | 
|  | if (TotalComparisons > MemoryCheckMergeThreshold) | 
|  | break; | 
|  |  | 
|  | TotalComparisons++; | 
|  |  | 
|  | if (Group.addPointer(Pointer)) { | 
|  | Merged = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Merged) | 
|  | // We couldn't add this pointer to any existing set or the threshold | 
|  | // for the number of comparisons has been reached. Create a new group | 
|  | // to hold the current pointer. | 
|  | Groups.push_back(CheckingPtrGroup(Pointer, *this)); | 
|  | } | 
|  |  | 
|  | // We've computed the grouped checks for this partition. | 
|  | // Save the results and continue with the next one. | 
|  | llvm::copy(Groups, std::back_inserter(CheckingGroups)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RuntimePointerChecking::arePointersInSamePartition( | 
|  | const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, | 
|  | unsigned PtrIdx2) { | 
|  | return (PtrToPartition[PtrIdx1] != -1 && | 
|  | PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); | 
|  | } | 
|  |  | 
|  | bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { | 
|  | const PointerInfo &PointerI = Pointers[I]; | 
|  | const PointerInfo &PointerJ = Pointers[J]; | 
|  |  | 
|  | // No need to check if two readonly pointers intersect. | 
|  | if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) | 
|  | return false; | 
|  |  | 
|  | // Only need to check pointers between two different dependency sets. | 
|  | if (PointerI.DependencySetId == PointerJ.DependencySetId) | 
|  | return false; | 
|  |  | 
|  | // Only need to check pointers in the same alias set. | 
|  | if (PointerI.AliasSetId != PointerJ.AliasSetId) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void RuntimePointerChecking::printChecks( | 
|  | raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, | 
|  | unsigned Depth) const { | 
|  | unsigned N = 0; | 
|  | for (const auto &Check : Checks) { | 
|  | const auto &First = Check.first->Members, &Second = Check.second->Members; | 
|  |  | 
|  | OS.indent(Depth) << "Check " << N++ << ":\n"; | 
|  |  | 
|  | OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; | 
|  | for (unsigned K = 0; K < First.size(); ++K) | 
|  | OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; | 
|  |  | 
|  | OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; | 
|  | for (unsigned K = 0; K < Second.size(); ++K) | 
|  | OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { | 
|  |  | 
|  | OS.indent(Depth) << "Run-time memory checks:\n"; | 
|  | printChecks(OS, Checks, Depth); | 
|  |  | 
|  | OS.indent(Depth) << "Grouped accesses:\n"; | 
|  | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { | 
|  | const auto &CG = CheckingGroups[I]; | 
|  |  | 
|  | OS.indent(Depth + 2) << "Group " << &CG << ":\n"; | 
|  | OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High | 
|  | << ")\n"; | 
|  | for (unsigned J = 0; J < CG.Members.size(); ++J) { | 
|  | OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr | 
|  | << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Analyses memory accesses in a loop. | 
|  | /// | 
|  | /// Checks whether run time pointer checks are needed and builds sets for data | 
|  | /// dependence checking. | 
|  | class AccessAnalysis { | 
|  | public: | 
|  | /// Read or write access location. | 
|  | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; | 
|  | typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; | 
|  |  | 
|  | AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, | 
|  | LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, | 
|  | PredicatedScalarEvolution &PSE) | 
|  | : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), | 
|  | IsRTCheckAnalysisNeeded(false), PSE(PSE) {} | 
|  |  | 
|  | /// Register a load  and whether it is only read from. | 
|  | void addLoad(MemoryLocation &Loc, bool IsReadOnly) { | 
|  | Value *Ptr = const_cast<Value*>(Loc.Ptr); | 
|  | AST.add(Ptr, LocationSize::unknown(), Loc.AATags); | 
|  | Accesses.insert(MemAccessInfo(Ptr, false)); | 
|  | if (IsReadOnly) | 
|  | ReadOnlyPtr.insert(Ptr); | 
|  | } | 
|  |  | 
|  | /// Register a store. | 
|  | void addStore(MemoryLocation &Loc) { | 
|  | Value *Ptr = const_cast<Value*>(Loc.Ptr); | 
|  | AST.add(Ptr, LocationSize::unknown(), Loc.AATags); | 
|  | Accesses.insert(MemAccessInfo(Ptr, true)); | 
|  | } | 
|  |  | 
|  | /// Check if we can emit a run-time no-alias check for \p Access. | 
|  | /// | 
|  | /// Returns true if we can emit a run-time no alias check for \p Access. | 
|  | /// If we can check this access, this also adds it to a dependence set and | 
|  | /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, | 
|  | /// we will attempt to use additional run-time checks in order to get | 
|  | /// the bounds of the pointer. | 
|  | bool createCheckForAccess(RuntimePointerChecking &RtCheck, | 
|  | MemAccessInfo Access, | 
|  | const ValueToValueMap &Strides, | 
|  | DenseMap<Value *, unsigned> &DepSetId, | 
|  | Loop *TheLoop, unsigned &RunningDepId, | 
|  | unsigned ASId, bool ShouldCheckStride, | 
|  | bool Assume); | 
|  |  | 
|  | /// Check whether we can check the pointers at runtime for | 
|  | /// non-intersection. | 
|  | /// | 
|  | /// Returns true if we need no check or if we do and we can generate them | 
|  | /// (i.e. the pointers have computable bounds). | 
|  | bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, | 
|  | Loop *TheLoop, const ValueToValueMap &Strides, | 
|  | bool ShouldCheckWrap = false); | 
|  |  | 
|  | /// Goes over all memory accesses, checks whether a RT check is needed | 
|  | /// and builds sets of dependent accesses. | 
|  | void buildDependenceSets() { | 
|  | processMemAccesses(); | 
|  | } | 
|  |  | 
|  | /// Initial processing of memory accesses determined that we need to | 
|  | /// perform dependency checking. | 
|  | /// | 
|  | /// Note that this can later be cleared if we retry memcheck analysis without | 
|  | /// dependency checking (i.e. FoundNonConstantDistanceDependence). | 
|  | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } | 
|  |  | 
|  | /// We decided that no dependence analysis would be used.  Reset the state. | 
|  | void resetDepChecks(MemoryDepChecker &DepChecker) { | 
|  | CheckDeps.clear(); | 
|  | DepChecker.clearDependences(); | 
|  | } | 
|  |  | 
|  | MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } | 
|  |  | 
|  | private: | 
|  | typedef SetVector<MemAccessInfo> PtrAccessSet; | 
|  |  | 
|  | /// Go over all memory access and check whether runtime pointer checks | 
|  | /// are needed and build sets of dependency check candidates. | 
|  | void processMemAccesses(); | 
|  |  | 
|  | /// Set of all accesses. | 
|  | PtrAccessSet Accesses; | 
|  |  | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// The loop being checked. | 
|  | const Loop *TheLoop; | 
|  |  | 
|  | /// List of accesses that need a further dependence check. | 
|  | MemAccessInfoList CheckDeps; | 
|  |  | 
|  | /// Set of pointers that are read only. | 
|  | SmallPtrSet<Value*, 16> ReadOnlyPtr; | 
|  |  | 
|  | /// An alias set tracker to partition the access set by underlying object and | 
|  | //intrinsic property (such as TBAA metadata). | 
|  | AliasSetTracker AST; | 
|  |  | 
|  | LoopInfo *LI; | 
|  |  | 
|  | /// Sets of potentially dependent accesses - members of one set share an | 
|  | /// underlying pointer. The set "CheckDeps" identfies which sets really need a | 
|  | /// dependence check. | 
|  | MemoryDepChecker::DepCandidates &DepCands; | 
|  |  | 
|  | /// Initial processing of memory accesses determined that we may need | 
|  | /// to add memchecks.  Perform the analysis to determine the necessary checks. | 
|  | /// | 
|  | /// Note that, this is different from isDependencyCheckNeeded.  When we retry | 
|  | /// memcheck analysis without dependency checking | 
|  | /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is | 
|  | /// cleared while this remains set if we have potentially dependent accesses. | 
|  | bool IsRTCheckAnalysisNeeded; | 
|  |  | 
|  | /// The SCEV predicate containing all the SCEV-related assumptions. | 
|  | PredicatedScalarEvolution &PSE; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Check whether a pointer can participate in a runtime bounds check. | 
|  | /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr | 
|  | /// by adding run-time checks (overflow checks) if necessary. | 
|  | static bool hasComputableBounds(PredicatedScalarEvolution &PSE, | 
|  | const ValueToValueMap &Strides, Value *Ptr, | 
|  | Loop *L, bool Assume) { | 
|  | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); | 
|  |  | 
|  | // The bounds for loop-invariant pointer is trivial. | 
|  | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) | 
|  | return true; | 
|  |  | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); | 
|  |  | 
|  | if (!AR && Assume) | 
|  | AR = PSE.getAsAddRec(Ptr); | 
|  |  | 
|  | if (!AR) | 
|  | return false; | 
|  |  | 
|  | return AR->isAffine(); | 
|  | } | 
|  |  | 
|  | /// Check whether a pointer address cannot wrap. | 
|  | static bool isNoWrap(PredicatedScalarEvolution &PSE, | 
|  | const ValueToValueMap &Strides, Value *Ptr, Loop *L) { | 
|  | const SCEV *PtrScev = PSE.getSCEV(Ptr); | 
|  | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) | 
|  | return true; | 
|  |  | 
|  | int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); | 
|  | if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, | 
|  | MemAccessInfo Access, | 
|  | const ValueToValueMap &StridesMap, | 
|  | DenseMap<Value *, unsigned> &DepSetId, | 
|  | Loop *TheLoop, unsigned &RunningDepId, | 
|  | unsigned ASId, bool ShouldCheckWrap, | 
|  | bool Assume) { | 
|  | Value *Ptr = Access.getPointer(); | 
|  |  | 
|  | if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) | 
|  | return false; | 
|  |  | 
|  | // When we run after a failing dependency check we have to make sure | 
|  | // we don't have wrapping pointers. | 
|  | if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { | 
|  | auto *Expr = PSE.getSCEV(Ptr); | 
|  | if (!Assume || !isa<SCEVAddRecExpr>(Expr)) | 
|  | return false; | 
|  | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
|  | } | 
|  |  | 
|  | // The id of the dependence set. | 
|  | unsigned DepId; | 
|  |  | 
|  | if (isDependencyCheckNeeded()) { | 
|  | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); | 
|  | unsigned &LeaderId = DepSetId[Leader]; | 
|  | if (!LeaderId) | 
|  | LeaderId = RunningDepId++; | 
|  | DepId = LeaderId; | 
|  | } else | 
|  | // Each access has its own dependence set. | 
|  | DepId = RunningDepId++; | 
|  |  | 
|  | bool IsWrite = Access.getInt(); | 
|  | RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, | 
|  | ScalarEvolution *SE, Loop *TheLoop, | 
|  | const ValueToValueMap &StridesMap, | 
|  | bool ShouldCheckWrap) { | 
|  | // Find pointers with computable bounds. We are going to use this information | 
|  | // to place a runtime bound check. | 
|  | bool CanDoRT = true; | 
|  |  | 
|  | bool NeedRTCheck = false; | 
|  | if (!IsRTCheckAnalysisNeeded) return true; | 
|  |  | 
|  | bool IsDepCheckNeeded = isDependencyCheckNeeded(); | 
|  |  | 
|  | // We assign a consecutive id to access from different alias sets. | 
|  | // Accesses between different groups doesn't need to be checked. | 
|  | unsigned ASId = 1; | 
|  | for (auto &AS : AST) { | 
|  | int NumReadPtrChecks = 0; | 
|  | int NumWritePtrChecks = 0; | 
|  | bool CanDoAliasSetRT = true; | 
|  |  | 
|  | // We assign consecutive id to access from different dependence sets. | 
|  | // Accesses within the same set don't need a runtime check. | 
|  | unsigned RunningDepId = 1; | 
|  | DenseMap<Value *, unsigned> DepSetId; | 
|  |  | 
|  | SmallVector<MemAccessInfo, 4> Retries; | 
|  |  | 
|  | for (auto A : AS) { | 
|  | Value *Ptr = A.getValue(); | 
|  | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); | 
|  | MemAccessInfo Access(Ptr, IsWrite); | 
|  |  | 
|  | if (IsWrite) | 
|  | ++NumWritePtrChecks; | 
|  | else | 
|  | ++NumReadPtrChecks; | 
|  |  | 
|  | if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, | 
|  | RunningDepId, ASId, ShouldCheckWrap, false)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); | 
|  | Retries.push_back(Access); | 
|  | CanDoAliasSetRT = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have at least two writes or one write and a read then we need to | 
|  | // check them.  But there is no need to checks if there is only one | 
|  | // dependence set for this alias set. | 
|  | // | 
|  | // Note that this function computes CanDoRT and NeedRTCheck independently. | 
|  | // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer | 
|  | // for which we couldn't find the bounds but we don't actually need to emit | 
|  | // any checks so it does not matter. | 
|  | bool NeedsAliasSetRTCheck = false; | 
|  | if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) | 
|  | NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || | 
|  | (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); | 
|  |  | 
|  | // We need to perform run-time alias checks, but some pointers had bounds | 
|  | // that couldn't be checked. | 
|  | if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { | 
|  | // Reset the CanDoSetRt flag and retry all accesses that have failed. | 
|  | // We know that we need these checks, so we can now be more aggressive | 
|  | // and add further checks if required (overflow checks). | 
|  | CanDoAliasSetRT = true; | 
|  | for (auto Access : Retries) | 
|  | if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, | 
|  | TheLoop, RunningDepId, ASId, | 
|  | ShouldCheckWrap, /*Assume=*/true)) { | 
|  | CanDoAliasSetRT = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | CanDoRT &= CanDoAliasSetRT; | 
|  | NeedRTCheck |= NeedsAliasSetRTCheck; | 
|  | ++ASId; | 
|  | } | 
|  |  | 
|  | // If the pointers that we would use for the bounds comparison have different | 
|  | // address spaces, assume the values aren't directly comparable, so we can't | 
|  | // use them for the runtime check. We also have to assume they could | 
|  | // overlap. In the future there should be metadata for whether address spaces | 
|  | // are disjoint. | 
|  | unsigned NumPointers = RtCheck.Pointers.size(); | 
|  | for (unsigned i = 0; i < NumPointers; ++i) { | 
|  | for (unsigned j = i + 1; j < NumPointers; ++j) { | 
|  | // Only need to check pointers between two different dependency sets. | 
|  | if (RtCheck.Pointers[i].DependencySetId == | 
|  | RtCheck.Pointers[j].DependencySetId) | 
|  | continue; | 
|  | // Only need to check pointers in the same alias set. | 
|  | if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) | 
|  | continue; | 
|  |  | 
|  | Value *PtrI = RtCheck.Pointers[i].PointerValue; | 
|  | Value *PtrJ = RtCheck.Pointers[j].PointerValue; | 
|  |  | 
|  | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); | 
|  | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); | 
|  | if (ASi != ASj) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: Runtime check would require comparison between" | 
|  | " different address spaces\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NeedRTCheck && CanDoRT) | 
|  | RtCheck.generateChecks(DepCands, IsDepCheckNeeded); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() | 
|  | << " pointer comparisons.\n"); | 
|  |  | 
|  | RtCheck.Need = NeedRTCheck; | 
|  |  | 
|  | bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; | 
|  | if (!CanDoRTIfNeeded) | 
|  | RtCheck.reset(); | 
|  | return CanDoRTIfNeeded; | 
|  | } | 
|  |  | 
|  | void AccessAnalysis::processMemAccesses() { | 
|  | // We process the set twice: first we process read-write pointers, last we | 
|  | // process read-only pointers. This allows us to skip dependence tests for | 
|  | // read-only pointers. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); | 
|  | LLVM_DEBUG(dbgs() << "  AST: "; AST.dump()); | 
|  | LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n"); | 
|  | LLVM_DEBUG({ | 
|  | for (auto A : Accesses) | 
|  | dbgs() << "\t" << *A.getPointer() << " (" << | 
|  | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? | 
|  | "read-only" : "read")) << ")\n"; | 
|  | }); | 
|  |  | 
|  | // The AliasSetTracker has nicely partitioned our pointers by metadata | 
|  | // compatibility and potential for underlying-object overlap. As a result, we | 
|  | // only need to check for potential pointer dependencies within each alias | 
|  | // set. | 
|  | for (auto &AS : AST) { | 
|  | // Note that both the alias-set tracker and the alias sets themselves used | 
|  | // linked lists internally and so the iteration order here is deterministic | 
|  | // (matching the original instruction order within each set). | 
|  |  | 
|  | bool SetHasWrite = false; | 
|  |  | 
|  | // Map of pointers to last access encountered. | 
|  | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; | 
|  | UnderlyingObjToAccessMap ObjToLastAccess; | 
|  |  | 
|  | // Set of access to check after all writes have been processed. | 
|  | PtrAccessSet DeferredAccesses; | 
|  |  | 
|  | // Iterate over each alias set twice, once to process read/write pointers, | 
|  | // and then to process read-only pointers. | 
|  | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { | 
|  | bool UseDeferred = SetIteration > 0; | 
|  | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; | 
|  |  | 
|  | for (auto AV : AS) { | 
|  | Value *Ptr = AV.getValue(); | 
|  |  | 
|  | // For a single memory access in AliasSetTracker, Accesses may contain | 
|  | // both read and write, and they both need to be handled for CheckDeps. | 
|  | for (auto AC : S) { | 
|  | if (AC.getPointer() != Ptr) | 
|  | continue; | 
|  |  | 
|  | bool IsWrite = AC.getInt(); | 
|  |  | 
|  | // If we're using the deferred access set, then it contains only | 
|  | // reads. | 
|  | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; | 
|  | if (UseDeferred && !IsReadOnlyPtr) | 
|  | continue; | 
|  | // Otherwise, the pointer must be in the PtrAccessSet, either as a | 
|  | // read or a write. | 
|  | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || | 
|  | S.count(MemAccessInfo(Ptr, false))) && | 
|  | "Alias-set pointer not in the access set?"); | 
|  |  | 
|  | MemAccessInfo Access(Ptr, IsWrite); | 
|  | DepCands.insert(Access); | 
|  |  | 
|  | // Memorize read-only pointers for later processing and skip them in | 
|  | // the first round (they need to be checked after we have seen all | 
|  | // write pointers). Note: we also mark pointer that are not | 
|  | // consecutive as "read-only" pointers (so that we check | 
|  | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". | 
|  | if (!UseDeferred && IsReadOnlyPtr) { | 
|  | DeferredAccesses.insert(Access); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a write - check other reads and writes for conflicts. If | 
|  | // this is a read only check other writes for conflicts (but only if | 
|  | // there is no other write to the ptr - this is an optimization to | 
|  | // catch "a[i] = a[i] + " without having to do a dependence check). | 
|  | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { | 
|  | CheckDeps.push_back(Access); | 
|  | IsRTCheckAnalysisNeeded = true; | 
|  | } | 
|  |  | 
|  | if (IsWrite) | 
|  | SetHasWrite = true; | 
|  |  | 
|  | // Create sets of pointers connected by a shared alias set and | 
|  | // underlying object. | 
|  | typedef SmallVector<Value *, 16> ValueVector; | 
|  | ValueVector TempObjects; | 
|  |  | 
|  | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Underlying objects for pointer " << *Ptr << "\n"); | 
|  | for (Value *UnderlyingObj : TempObjects) { | 
|  | // nullptr never alias, don't join sets for pointer that have "null" | 
|  | // in their UnderlyingObjects list. | 
|  | if (isa<ConstantPointerNull>(UnderlyingObj) && | 
|  | !NullPointerIsDefined( | 
|  | TheLoop->getHeader()->getParent(), | 
|  | UnderlyingObj->getType()->getPointerAddressSpace())) | 
|  | continue; | 
|  |  | 
|  | UnderlyingObjToAccessMap::iterator Prev = | 
|  | ObjToLastAccess.find(UnderlyingObj); | 
|  | if (Prev != ObjToLastAccess.end()) | 
|  | DepCands.unionSets(Access, Prev->second); | 
|  |  | 
|  | ObjToLastAccess[UnderlyingObj] = Access; | 
|  | LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isInBoundsGep(Value *Ptr) { | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) | 
|  | return GEP->isInBounds(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, | 
|  | /// i.e. monotonically increasing/decreasing. | 
|  | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, | 
|  | PredicatedScalarEvolution &PSE, const Loop *L) { | 
|  | // FIXME: This should probably only return true for NUW. | 
|  | if (AR->getNoWrapFlags(SCEV::NoWrapMask)) | 
|  | return true; | 
|  |  | 
|  | // Scalar evolution does not propagate the non-wrapping flags to values that | 
|  | // are derived from a non-wrapping induction variable because non-wrapping | 
|  | // could be flow-sensitive. | 
|  | // | 
|  | // Look through the potentially overflowing instruction to try to prove | 
|  | // non-wrapping for the *specific* value of Ptr. | 
|  |  | 
|  | // The arithmetic implied by an inbounds GEP can't overflow. | 
|  | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); | 
|  | if (!GEP || !GEP->isInBounds()) | 
|  | return false; | 
|  |  | 
|  | // Make sure there is only one non-const index and analyze that. | 
|  | Value *NonConstIndex = nullptr; | 
|  | for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) | 
|  | if (!isa<ConstantInt>(Index)) { | 
|  | if (NonConstIndex) | 
|  | return false; | 
|  | NonConstIndex = Index; | 
|  | } | 
|  | if (!NonConstIndex) | 
|  | // The recurrence is on the pointer, ignore for now. | 
|  | return false; | 
|  |  | 
|  | // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW | 
|  | // AddRec using a NSW operation. | 
|  | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) | 
|  | if (OBO->hasNoSignedWrap() && | 
|  | // Assume constant for other the operand so that the AddRec can be | 
|  | // easily found. | 
|  | isa<ConstantInt>(OBO->getOperand(1))) { | 
|  | auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); | 
|  |  | 
|  | if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) | 
|  | return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the access through \p Ptr has a constant stride. | 
|  | int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, | 
|  | const Loop *Lp, const ValueToValueMap &StridesMap, | 
|  | bool Assume, bool ShouldCheckWrap) { | 
|  | Type *Ty = Ptr->getType(); | 
|  | assert(Ty->isPointerTy() && "Unexpected non-ptr"); | 
|  |  | 
|  | // Make sure that the pointer does not point to aggregate types. | 
|  | auto *PtrTy = cast<PointerType>(Ty); | 
|  | if (PtrTy->getElementType()->isAggregateType()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" | 
|  | << *Ptr << "\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); | 
|  |  | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); | 
|  | if (Assume && !AR) | 
|  | AR = PSE.getAsAddRec(Ptr); | 
|  |  | 
|  | if (!AR) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr | 
|  | << " SCEV: " << *PtrScev << "\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The access function must stride over the innermost loop. | 
|  | if (Lp != AR->getLoop()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " | 
|  | << *Ptr << " SCEV: " << *AR << "\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The address calculation must not wrap. Otherwise, a dependence could be | 
|  | // inverted. | 
|  | // An inbounds getelementptr that is a AddRec with a unit stride | 
|  | // cannot wrap per definition. The unit stride requirement is checked later. | 
|  | // An getelementptr without an inbounds attribute and unit stride would have | 
|  | // to access the pointer value "0" which is undefined behavior in address | 
|  | // space 0, therefore we can also vectorize this case. | 
|  | bool IsInBoundsGEP = isInBoundsGep(Ptr); | 
|  | bool IsNoWrapAddRec = !ShouldCheckWrap || | 
|  | PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || | 
|  | isNoWrapAddRec(Ptr, AR, PSE, Lp); | 
|  | if (!IsNoWrapAddRec && !IsInBoundsGEP && | 
|  | NullPointerIsDefined(Lp->getHeader()->getParent(), | 
|  | PtrTy->getAddressSpace())) { | 
|  | if (Assume) { | 
|  | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
|  | IsNoWrapAddRec = true; | 
|  | LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" | 
|  | << "LAA:   Pointer: " << *Ptr << "\n" | 
|  | << "LAA:   SCEV: " << *AR << "\n" | 
|  | << "LAA:   Added an overflow assumption\n"); | 
|  | } else { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " | 
|  | << *Ptr << " SCEV: " << *AR << "\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the step is constant. | 
|  | const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); | 
|  |  | 
|  | // Calculate the pointer stride and check if it is constant. | 
|  | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); | 
|  | if (!C) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr | 
|  | << " SCEV: " << *AR << "\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); | 
|  | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); | 
|  | const APInt &APStepVal = C->getAPInt(); | 
|  |  | 
|  | // Huge step value - give up. | 
|  | if (APStepVal.getBitWidth() > 64) | 
|  | return 0; | 
|  |  | 
|  | int64_t StepVal = APStepVal.getSExtValue(); | 
|  |  | 
|  | // Strided access. | 
|  | int64_t Stride = StepVal / Size; | 
|  | int64_t Rem = StepVal % Size; | 
|  | if (Rem) | 
|  | return 0; | 
|  |  | 
|  | // If the SCEV could wrap but we have an inbounds gep with a unit stride we | 
|  | // know we can't "wrap around the address space". In case of address space | 
|  | // zero we know that this won't happen without triggering undefined behavior. | 
|  | if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && | 
|  | (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), | 
|  | PtrTy->getAddressSpace()))) { | 
|  | if (Assume) { | 
|  | // We can avoid this case by adding a run-time check. | 
|  | LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " | 
|  | << "inbounds or in address space 0 may wrap:\n" | 
|  | << "LAA:   Pointer: " << *Ptr << "\n" | 
|  | << "LAA:   SCEV: " << *AR << "\n" | 
|  | << "LAA:   Added an overflow assumption\n"); | 
|  | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return Stride; | 
|  | } | 
|  |  | 
|  | bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, | 
|  | ScalarEvolution &SE, | 
|  | SmallVectorImpl<unsigned> &SortedIndices) { | 
|  | assert(llvm::all_of( | 
|  | VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && | 
|  | "Expected list of pointer operands."); | 
|  | SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; | 
|  | OffValPairs.reserve(VL.size()); | 
|  |  | 
|  | // Walk over the pointers, and map each of them to an offset relative to | 
|  | // first pointer in the array. | 
|  | Value *Ptr0 = VL[0]; | 
|  | const SCEV *Scev0 = SE.getSCEV(Ptr0); | 
|  | Value *Obj0 = GetUnderlyingObject(Ptr0, DL); | 
|  |  | 
|  | llvm::SmallSet<int64_t, 4> Offsets; | 
|  | for (auto *Ptr : VL) { | 
|  | // TODO: Outline this code as a special, more time consuming, version of | 
|  | // computeConstantDifference() function. | 
|  | if (Ptr->getType()->getPointerAddressSpace() != | 
|  | Ptr0->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  | // If a pointer refers to a different underlying object, bail - the | 
|  | // pointers are by definition incomparable. | 
|  | Value *CurrObj = GetUnderlyingObject(Ptr, DL); | 
|  | if (CurrObj != Obj0) | 
|  | return false; | 
|  |  | 
|  | const SCEV *Scev = SE.getSCEV(Ptr); | 
|  | const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); | 
|  | // The pointers may not have a constant offset from each other, or SCEV | 
|  | // may just not be smart enough to figure out they do. Regardless, | 
|  | // there's nothing we can do. | 
|  | if (!Diff) | 
|  | return false; | 
|  |  | 
|  | // Check if the pointer with the same offset is found. | 
|  | int64_t Offset = Diff->getAPInt().getSExtValue(); | 
|  | if (!Offsets.insert(Offset).second) | 
|  | return false; | 
|  | OffValPairs.emplace_back(Offset, Ptr); | 
|  | } | 
|  | SortedIndices.clear(); | 
|  | SortedIndices.resize(VL.size()); | 
|  | std::iota(SortedIndices.begin(), SortedIndices.end(), 0); | 
|  |  | 
|  | // Sort the memory accesses and keep the order of their uses in UseOrder. | 
|  | std::stable_sort(SortedIndices.begin(), SortedIndices.end(), | 
|  | [&OffValPairs](unsigned Left, unsigned Right) { | 
|  | return OffValPairs[Left].first < OffValPairs[Right].first; | 
|  | }); | 
|  |  | 
|  | // Check if the order is consecutive already. | 
|  | if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { | 
|  | return I == SortedIndices[I]; | 
|  | })) | 
|  | SortedIndices.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Take the address space operand from the Load/Store instruction. | 
|  | /// Returns -1 if this is not a valid Load/Store instruction. | 
|  | static unsigned getAddressSpaceOperand(Value *I) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) | 
|  | return L->getPointerAddressSpace(); | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(I)) | 
|  | return S->getPointerAddressSpace(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// Returns true if the memory operations \p A and \p B are consecutive. | 
|  | bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, | 
|  | ScalarEvolution &SE, bool CheckType) { | 
|  | Value *PtrA = getLoadStorePointerOperand(A); | 
|  | Value *PtrB = getLoadStorePointerOperand(B); | 
|  | unsigned ASA = getAddressSpaceOperand(A); | 
|  | unsigned ASB = getAddressSpaceOperand(B); | 
|  |  | 
|  | // Check that the address spaces match and that the pointers are valid. | 
|  | if (!PtrA || !PtrB || (ASA != ASB)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that A and B are different pointers. | 
|  | if (PtrA == PtrB) | 
|  | return false; | 
|  |  | 
|  | // Make sure that A and B have the same type if required. | 
|  | if (CheckType && PtrA->getType() != PtrB->getType()) | 
|  | return false; | 
|  |  | 
|  | unsigned IdxWidth = DL.getIndexSizeInBits(ASA); | 
|  | Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); | 
|  | APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); | 
|  |  | 
|  | APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); | 
|  | PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); | 
|  | PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); | 
|  |  | 
|  | //  OffsetDelta = OffsetB - OffsetA; | 
|  | const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); | 
|  | const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); | 
|  | const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); | 
|  | const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); | 
|  | const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); | 
|  | // Check if they are based on the same pointer. That makes the offsets | 
|  | // sufficient. | 
|  | if (PtrA == PtrB) | 
|  | return OffsetDelta == Size; | 
|  |  | 
|  | // Compute the necessary base pointer delta to have the necessary final delta | 
|  | // equal to the size. | 
|  | // BaseDelta = Size - OffsetDelta; | 
|  | const SCEV *SizeSCEV = SE.getConstant(Size); | 
|  | const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); | 
|  |  | 
|  | // Otherwise compute the distance with SCEV between the base pointers. | 
|  | const SCEV *PtrSCEVA = SE.getSCEV(PtrA); | 
|  | const SCEV *PtrSCEVB = SE.getSCEV(PtrB); | 
|  | const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); | 
|  | return X == PtrSCEVB; | 
|  | } | 
|  |  | 
|  | MemoryDepChecker::VectorizationSafetyStatus | 
|  | MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { | 
|  | switch (Type) { | 
|  | case NoDep: | 
|  | case Forward: | 
|  | case BackwardVectorizable: | 
|  | return VectorizationSafetyStatus::Safe; | 
|  |  | 
|  | case Unknown: | 
|  | return VectorizationSafetyStatus::PossiblySafeWithRtChecks; | 
|  | case ForwardButPreventsForwarding: | 
|  | case Backward: | 
|  | case BackwardVectorizableButPreventsForwarding: | 
|  | return VectorizationSafetyStatus::Unsafe; | 
|  | } | 
|  | llvm_unreachable("unexpected DepType!"); | 
|  | } | 
|  |  | 
|  | bool MemoryDepChecker::Dependence::isBackward() const { | 
|  | switch (Type) { | 
|  | case NoDep: | 
|  | case Forward: | 
|  | case ForwardButPreventsForwarding: | 
|  | case Unknown: | 
|  | return false; | 
|  |  | 
|  | case BackwardVectorizable: | 
|  | case Backward: | 
|  | case BackwardVectorizableButPreventsForwarding: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("unexpected DepType!"); | 
|  | } | 
|  |  | 
|  | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { | 
|  | return isBackward() || Type == Unknown; | 
|  | } | 
|  |  | 
|  | bool MemoryDepChecker::Dependence::isForward() const { | 
|  | switch (Type) { | 
|  | case Forward: | 
|  | case ForwardButPreventsForwarding: | 
|  | return true; | 
|  |  | 
|  | case NoDep: | 
|  | case Unknown: | 
|  | case BackwardVectorizable: | 
|  | case Backward: | 
|  | case BackwardVectorizableButPreventsForwarding: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("unexpected DepType!"); | 
|  | } | 
|  |  | 
|  | bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, | 
|  | uint64_t TypeByteSize) { | 
|  | // If loads occur at a distance that is not a multiple of a feasible vector | 
|  | // factor store-load forwarding does not take place. | 
|  | // Positive dependences might cause troubles because vectorizing them might | 
|  | // prevent store-load forwarding making vectorized code run a lot slower. | 
|  | //   a[i] = a[i-3] ^ a[i-8]; | 
|  | //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and | 
|  | //   hence on your typical architecture store-load forwarding does not take | 
|  | //   place. Vectorizing in such cases does not make sense. | 
|  | // Store-load forwarding distance. | 
|  |  | 
|  | // After this many iterations store-to-load forwarding conflicts should not | 
|  | // cause any slowdowns. | 
|  | const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; | 
|  | // Maximum vector factor. | 
|  | uint64_t MaxVFWithoutSLForwardIssues = std::min( | 
|  | VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); | 
|  |  | 
|  | // Compute the smallest VF at which the store and load would be misaligned. | 
|  | for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; | 
|  | VF *= 2) { | 
|  | // If the number of vector iteration between the store and the load are | 
|  | // small we could incur conflicts. | 
|  | if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { | 
|  | MaxVFWithoutSLForwardIssues = (VF >>= 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: Distance " << Distance | 
|  | << " that could cause a store-load forwarding conflict\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && | 
|  | MaxVFWithoutSLForwardIssues != | 
|  | VectorizerParams::MaxVectorWidth * TypeByteSize) | 
|  | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { | 
|  | if (Status < S) | 
|  | Status = S; | 
|  | } | 
|  |  | 
|  | /// Given a non-constant (unknown) dependence-distance \p Dist between two | 
|  | /// memory accesses, that have the same stride whose absolute value is given | 
|  | /// in \p Stride, and that have the same type size \p TypeByteSize, | 
|  | /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is | 
|  | /// possible to prove statically that the dependence distance is larger | 
|  | /// than the range that the accesses will travel through the execution of | 
|  | /// the loop. If so, return true; false otherwise. This is useful for | 
|  | /// example in loops such as the following (PR31098): | 
|  | ///     for (i = 0; i < D; ++i) { | 
|  | ///                = out[i]; | 
|  | ///       out[i+D] = | 
|  | ///     } | 
|  | static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, | 
|  | const SCEV &BackedgeTakenCount, | 
|  | const SCEV &Dist, uint64_t Stride, | 
|  | uint64_t TypeByteSize) { | 
|  |  | 
|  | // If we can prove that | 
|  | //      (**) |Dist| > BackedgeTakenCount * Step | 
|  | // where Step is the absolute stride of the memory accesses in bytes, | 
|  | // then there is no dependence. | 
|  | // | 
|  | // Rationale: | 
|  | // We basically want to check if the absolute distance (|Dist/Step|) | 
|  | // is >= the loop iteration count (or > BackedgeTakenCount). | 
|  | // This is equivalent to the Strong SIV Test (Practical Dependence Testing, | 
|  | // Section 4.2.1); Note, that for vectorization it is sufficient to prove | 
|  | // that the dependence distance is >= VF; This is checked elsewhere. | 
|  | // But in some cases we can prune unknown dependence distances early, and | 
|  | // even before selecting the VF, and without a runtime test, by comparing | 
|  | // the distance against the loop iteration count. Since the vectorized code | 
|  | // will be executed only if LoopCount >= VF, proving distance >= LoopCount | 
|  | // also guarantees that distance >= VF. | 
|  | // | 
|  | const uint64_t ByteStride = Stride * TypeByteSize; | 
|  | const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); | 
|  | const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); | 
|  |  | 
|  | const SCEV *CastedDist = &Dist; | 
|  | const SCEV *CastedProduct = Product; | 
|  | uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); | 
|  | uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); | 
|  |  | 
|  | // The dependence distance can be positive/negative, so we sign extend Dist; | 
|  | // The multiplication of the absolute stride in bytes and the | 
|  | // backedgeTakenCount is non-negative, so we zero extend Product. | 
|  | if (DistTypeSize > ProductTypeSize) | 
|  | CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); | 
|  | else | 
|  | CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); | 
|  |  | 
|  | // Is  Dist - (BackedgeTakenCount * Step) > 0 ? | 
|  | // (If so, then we have proven (**) because |Dist| >= Dist) | 
|  | const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); | 
|  | if (SE.isKnownPositive(Minus)) | 
|  | return true; | 
|  |  | 
|  | // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ? | 
|  | // (If so, then we have proven (**) because |Dist| >= -1*Dist) | 
|  | const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); | 
|  | Minus = SE.getMinusSCEV(NegDist, CastedProduct); | 
|  | if (SE.isKnownPositive(Minus)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the dependence for two accesses with the same stride \p Stride. | 
|  | /// \p Distance is the positive distance and \p TypeByteSize is type size in | 
|  | /// bytes. | 
|  | /// | 
|  | /// \returns true if they are independent. | 
|  | static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, | 
|  | uint64_t TypeByteSize) { | 
|  | assert(Stride > 1 && "The stride must be greater than 1"); | 
|  | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); | 
|  | assert(Distance > 0 && "The distance must be non-zero"); | 
|  |  | 
|  | // Skip if the distance is not multiple of type byte size. | 
|  | if (Distance % TypeByteSize) | 
|  | return false; | 
|  |  | 
|  | uint64_t ScaledDist = Distance / TypeByteSize; | 
|  |  | 
|  | // No dependence if the scaled distance is not multiple of the stride. | 
|  | // E.g. | 
|  | //      for (i = 0; i < 1024 ; i += 4) | 
|  | //        A[i+2] = A[i] + 1; | 
|  | // | 
|  | // Two accesses in memory (scaled distance is 2, stride is 4): | 
|  | //     | A[0] |      |      |      | A[4] |      |      |      | | 
|  | //     |      |      | A[2] |      |      |      | A[6] |      | | 
|  | // | 
|  | // E.g. | 
|  | //      for (i = 0; i < 1024 ; i += 3) | 
|  | //        A[i+4] = A[i] + 1; | 
|  | // | 
|  | // Two accesses in memory (scaled distance is 4, stride is 3): | 
|  | //     | A[0] |      |      | A[3] |      |      | A[6] |      |      | | 
|  | //     |      |      |      |      | A[4] |      |      | A[7] |      | | 
|  | return ScaledDist % Stride; | 
|  | } | 
|  |  | 
|  | MemoryDepChecker::Dependence::DepType | 
|  | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, | 
|  | const MemAccessInfo &B, unsigned BIdx, | 
|  | const ValueToValueMap &Strides) { | 
|  | assert (AIdx < BIdx && "Must pass arguments in program order"); | 
|  |  | 
|  | Value *APtr = A.getPointer(); | 
|  | Value *BPtr = B.getPointer(); | 
|  | bool AIsWrite = A.getInt(); | 
|  | bool BIsWrite = B.getInt(); | 
|  |  | 
|  | // Two reads are independent. | 
|  | if (!AIsWrite && !BIsWrite) | 
|  | return Dependence::NoDep; | 
|  |  | 
|  | // We cannot check pointers in different address spaces. | 
|  | if (APtr->getType()->getPointerAddressSpace() != | 
|  | BPtr->getType()->getPointerAddressSpace()) | 
|  | return Dependence::Unknown; | 
|  |  | 
|  | int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); | 
|  | int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); | 
|  |  | 
|  | const SCEV *Src = PSE.getSCEV(APtr); | 
|  | const SCEV *Sink = PSE.getSCEV(BPtr); | 
|  |  | 
|  | // If the induction step is negative we have to invert source and sink of the | 
|  | // dependence. | 
|  | if (StrideAPtr < 0) { | 
|  | std::swap(APtr, BPtr); | 
|  | std::swap(Src, Sink); | 
|  | std::swap(AIsWrite, BIsWrite); | 
|  | std::swap(AIdx, BIdx); | 
|  | std::swap(StrideAPtr, StrideBPtr); | 
|  | } | 
|  |  | 
|  | const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink | 
|  | << "(Induction step: " << StrideAPtr << ")\n"); | 
|  | LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " | 
|  | << *InstMap[BIdx] << ": " << *Dist << "\n"); | 
|  |  | 
|  | // Need accesses with constant stride. We don't want to vectorize | 
|  | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in | 
|  | // the address space. | 
|  | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ | 
|  | LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); | 
|  | return Dependence::Unknown; | 
|  | } | 
|  |  | 
|  | Type *ATy = APtr->getType()->getPointerElementType(); | 
|  | Type *BTy = BPtr->getType()->getPointerElementType(); | 
|  | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); | 
|  | uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); | 
|  | uint64_t Stride = std::abs(StrideAPtr); | 
|  | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); | 
|  | if (!C) { | 
|  | if (TypeByteSize == DL.getTypeAllocSize(BTy) && | 
|  | isSafeDependenceDistance(DL, *(PSE.getSE()), | 
|  | *(PSE.getBackedgeTakenCount()), *Dist, Stride, | 
|  | TypeByteSize)) | 
|  | return Dependence::NoDep; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); | 
|  | FoundNonConstantDistanceDependence = true; | 
|  | return Dependence::Unknown; | 
|  | } | 
|  |  | 
|  | const APInt &Val = C->getAPInt(); | 
|  | int64_t Distance = Val.getSExtValue(); | 
|  |  | 
|  | // Attempt to prove strided accesses independent. | 
|  | if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && | 
|  | areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); | 
|  | return Dependence::NoDep; | 
|  | } | 
|  |  | 
|  | // Negative distances are not plausible dependencies. | 
|  | if (Val.isNegative()) { | 
|  | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); | 
|  | if (IsTrueDataDependence && EnableForwardingConflictDetection && | 
|  | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || | 
|  | ATy != BTy)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); | 
|  | return Dependence::ForwardButPreventsForwarding; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); | 
|  | return Dependence::Forward; | 
|  | } | 
|  |  | 
|  | // Write to the same location with the same size. | 
|  | // Could be improved to assert type sizes are the same (i32 == float, etc). | 
|  | if (Val == 0) { | 
|  | if (ATy == BTy) | 
|  | return Dependence::Forward; | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: Zero dependence difference but different types\n"); | 
|  | return Dependence::Unknown; | 
|  | } | 
|  |  | 
|  | assert(Val.isStrictlyPositive() && "Expect a positive value"); | 
|  |  | 
|  | if (ATy != BTy) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "LAA: ReadWrite-Write positive dependency with different types\n"); | 
|  | return Dependence::Unknown; | 
|  | } | 
|  |  | 
|  | // Bail out early if passed-in parameters make vectorization not feasible. | 
|  | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? | 
|  | VectorizerParams::VectorizationFactor : 1); | 
|  | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? | 
|  | VectorizerParams::VectorizationInterleave : 1); | 
|  | // The minimum number of iterations for a vectorized/unrolled version. | 
|  | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); | 
|  |  | 
|  | // It's not vectorizable if the distance is smaller than the minimum distance | 
|  | // needed for a vectroized/unrolled version. Vectorizing one iteration in | 
|  | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs | 
|  | // TypeByteSize (No need to plus the last gap distance). | 
|  | // | 
|  | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. | 
|  | //      foo(int *A) { | 
|  | //        int *B = (int *)((char *)A + 14); | 
|  | //        for (i = 0 ; i < 1024 ; i += 2) | 
|  | //          B[i] = A[i] + 1; | 
|  | //      } | 
|  | // | 
|  | // Two accesses in memory (stride is 2): | 
|  | //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      | | 
|  | //                              | B[0] |      | B[2] |      | B[4] | | 
|  | // | 
|  | // Distance needs for vectorizing iterations except the last iteration: | 
|  | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. | 
|  | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. | 
|  | // | 
|  | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is | 
|  | // 12, which is less than distance. | 
|  | // | 
|  | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), | 
|  | // the minimum distance needed is 28, which is greater than distance. It is | 
|  | // not safe to do vectorization. | 
|  | uint64_t MinDistanceNeeded = | 
|  | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; | 
|  | if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " | 
|  | << Distance << '\n'); | 
|  | return Dependence::Backward; | 
|  | } | 
|  |  | 
|  | // Unsafe if the minimum distance needed is greater than max safe distance. | 
|  | if (MinDistanceNeeded > MaxSafeDepDistBytes) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " | 
|  | << MinDistanceNeeded << " size in bytes"); | 
|  | return Dependence::Backward; | 
|  | } | 
|  |  | 
|  | // Positive distance bigger than max vectorization factor. | 
|  | // FIXME: Should use max factor instead of max distance in bytes, which could | 
|  | // not handle different types. | 
|  | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. | 
|  | //      void foo (int *A, char *B) { | 
|  | //        for (unsigned i = 0; i < 1024; i++) { | 
|  | //          A[i+2] = A[i] + 1; | 
|  | //          B[i+2] = B[i] + 1; | 
|  | //        } | 
|  | //      } | 
|  | // | 
|  | // This case is currently unsafe according to the max safe distance. If we | 
|  | // analyze the two accesses on array B, the max safe dependence distance | 
|  | // is 2. Then we analyze the accesses on array A, the minimum distance needed | 
|  | // is 8, which is less than 2 and forbidden vectorization, But actually | 
|  | // both A and B could be vectorized by 2 iterations. | 
|  | MaxSafeDepDistBytes = | 
|  | std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); | 
|  |  | 
|  | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); | 
|  | if (IsTrueDataDependence && EnableForwardingConflictDetection && | 
|  | couldPreventStoreLoadForward(Distance, TypeByteSize)) | 
|  | return Dependence::BackwardVectorizableButPreventsForwarding; | 
|  |  | 
|  | uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); | 
|  | LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() | 
|  | << " with max VF = " << MaxVF << '\n'); | 
|  | uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; | 
|  | MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); | 
|  | return Dependence::BackwardVectorizable; | 
|  | } | 
|  |  | 
|  | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, | 
|  | MemAccessInfoList &CheckDeps, | 
|  | const ValueToValueMap &Strides) { | 
|  |  | 
|  | MaxSafeDepDistBytes = -1; | 
|  | SmallPtrSet<MemAccessInfo, 8> Visited; | 
|  | for (MemAccessInfo CurAccess : CheckDeps) { | 
|  | if (Visited.count(CurAccess)) | 
|  | continue; | 
|  |  | 
|  | // Get the relevant memory access set. | 
|  | EquivalenceClasses<MemAccessInfo>::iterator I = | 
|  | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); | 
|  |  | 
|  | // Check accesses within this set. | 
|  | EquivalenceClasses<MemAccessInfo>::member_iterator AI = | 
|  | AccessSets.member_begin(I); | 
|  | EquivalenceClasses<MemAccessInfo>::member_iterator AE = | 
|  | AccessSets.member_end(); | 
|  |  | 
|  | // Check every access pair. | 
|  | while (AI != AE) { | 
|  | Visited.insert(*AI); | 
|  | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); | 
|  | while (OI != AE) { | 
|  | // Check every accessing instruction pair in program order. | 
|  | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), | 
|  | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) | 
|  | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), | 
|  | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { | 
|  | auto A = std::make_pair(&*AI, *I1); | 
|  | auto B = std::make_pair(&*OI, *I2); | 
|  |  | 
|  | assert(*I1 != *I2); | 
|  | if (*I1 > *I2) | 
|  | std::swap(A, B); | 
|  |  | 
|  | Dependence::DepType Type = | 
|  | isDependent(*A.first, A.second, *B.first, B.second, Strides); | 
|  | mergeInStatus(Dependence::isSafeForVectorization(Type)); | 
|  |  | 
|  | // Gather dependences unless we accumulated MaxDependences | 
|  | // dependences.  In that case return as soon as we find the first | 
|  | // unsafe dependence.  This puts a limit on this quadratic | 
|  | // algorithm. | 
|  | if (RecordDependences) { | 
|  | if (Type != Dependence::NoDep) | 
|  | Dependences.push_back(Dependence(A.second, B.second, Type)); | 
|  |  | 
|  | if (Dependences.size() >= MaxDependences) { | 
|  | RecordDependences = false; | 
|  | Dependences.clear(); | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Too many dependences, stopped recording\n"); | 
|  | } | 
|  | } | 
|  | if (!RecordDependences && !isSafeForVectorization()) | 
|  | return false; | 
|  | } | 
|  | ++OI; | 
|  | } | 
|  | AI++; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); | 
|  | return isSafeForVectorization(); | 
|  | } | 
|  |  | 
|  | SmallVector<Instruction *, 4> | 
|  | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { | 
|  | MemAccessInfo Access(Ptr, isWrite); | 
|  | auto &IndexVector = Accesses.find(Access)->second; | 
|  |  | 
|  | SmallVector<Instruction *, 4> Insts; | 
|  | transform(IndexVector, | 
|  | std::back_inserter(Insts), | 
|  | [&](unsigned Idx) { return this->InstMap[Idx]; }); | 
|  | return Insts; | 
|  | } | 
|  |  | 
|  | const char *MemoryDepChecker::Dependence::DepName[] = { | 
|  | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", | 
|  | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; | 
|  |  | 
|  | void MemoryDepChecker::Dependence::print( | 
|  | raw_ostream &OS, unsigned Depth, | 
|  | const SmallVectorImpl<Instruction *> &Instrs) const { | 
|  | OS.indent(Depth) << DepName[Type] << ":\n"; | 
|  | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; | 
|  | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; | 
|  | } | 
|  |  | 
|  | bool LoopAccessInfo::canAnalyzeLoop() { | 
|  | // We need to have a loop header. | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a loop in " | 
|  | << TheLoop->getHeader()->getParent()->getName() << ": " | 
|  | << TheLoop->getHeader()->getName() << '\n'); | 
|  |  | 
|  | // We can only analyze innermost loops. | 
|  | if (!TheLoop->empty()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); | 
|  | recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We must have a single backedge. | 
|  | if (TheLoop->getNumBackEdges() != 1) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
|  | recordAnalysis("CFGNotUnderstood") | 
|  | << "loop control flow is not understood by analyzer"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We must have a single exiting block. | 
|  | if (!TheLoop->getExitingBlock()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
|  | recordAnalysis("CFGNotUnderstood") | 
|  | << "loop control flow is not understood by analyzer"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We only handle bottom-tested loops, i.e. loop in which the condition is | 
|  | // checked at the end of each iteration. With that we can assume that all | 
|  | // instructions in the loop are executed the same number of times. | 
|  | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
|  | recordAnalysis("CFGNotUnderstood") | 
|  | << "loop control flow is not understood by analyzer"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ScalarEvolution needs to be able to find the exit count. | 
|  | const SCEV *ExitCount = PSE->getBackedgeTakenCount(); | 
|  | if (ExitCount == PSE->getSE()->getCouldNotCompute()) { | 
|  | recordAnalysis("CantComputeNumberOfIterations") | 
|  | << "could not determine number of loop iterations"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, | 
|  | const TargetLibraryInfo *TLI, | 
|  | DominatorTree *DT) { | 
|  | typedef SmallPtrSet<Value*, 16> ValueSet; | 
|  |  | 
|  | // Holds the Load and Store instructions. | 
|  | SmallVector<LoadInst *, 16> Loads; | 
|  | SmallVector<StoreInst *, 16> Stores; | 
|  |  | 
|  | // Holds all the different accesses in the loop. | 
|  | unsigned NumReads = 0; | 
|  | unsigned NumReadWrites = 0; | 
|  |  | 
|  | PtrRtChecking->Pointers.clear(); | 
|  | PtrRtChecking->Need = false; | 
|  |  | 
|  | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); | 
|  |  | 
|  | // For each block. | 
|  | for (BasicBlock *BB : TheLoop->blocks()) { | 
|  | // Scan the BB and collect legal loads and stores. | 
|  | for (Instruction &I : *BB) { | 
|  | // If this is a load, save it. If this instruction can read from memory | 
|  | // but is not a load, then we quit. Notice that we don't handle function | 
|  | // calls that read or write. | 
|  | if (I.mayReadFromMemory()) { | 
|  | // Many math library functions read the rounding mode. We will only | 
|  | // vectorize a loop if it contains known function calls that don't set | 
|  | // the flag. Therefore, it is safe to ignore this read from memory. | 
|  | auto *Call = dyn_cast<CallInst>(&I); | 
|  | if (Call && getVectorIntrinsicIDForCall(Call, TLI)) | 
|  | continue; | 
|  |  | 
|  | // If the function has an explicit vectorized counterpart, we can safely | 
|  | // assume that it can be vectorized. | 
|  | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && | 
|  | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) | 
|  | continue; | 
|  |  | 
|  | auto *Ld = dyn_cast<LoadInst>(&I); | 
|  | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { | 
|  | recordAnalysis("NonSimpleLoad", Ld) | 
|  | << "read with atomic ordering or volatile read"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); | 
|  | CanVecMem = false; | 
|  | return; | 
|  | } | 
|  | NumLoads++; | 
|  | Loads.push_back(Ld); | 
|  | DepChecker->addAccess(Ld); | 
|  | if (EnableMemAccessVersioning) | 
|  | collectStridedAccess(Ld); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Save 'store' instructions. Abort if other instructions write to memory. | 
|  | if (I.mayWriteToMemory()) { | 
|  | auto *St = dyn_cast<StoreInst>(&I); | 
|  | if (!St) { | 
|  | recordAnalysis("CantVectorizeInstruction", St) | 
|  | << "instruction cannot be vectorized"; | 
|  | CanVecMem = false; | 
|  | return; | 
|  | } | 
|  | if (!St->isSimple() && !IsAnnotatedParallel) { | 
|  | recordAnalysis("NonSimpleStore", St) | 
|  | << "write with atomic ordering or volatile write"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); | 
|  | CanVecMem = false; | 
|  | return; | 
|  | } | 
|  | NumStores++; | 
|  | Stores.push_back(St); | 
|  | DepChecker->addAccess(St); | 
|  | if (EnableMemAccessVersioning) | 
|  | collectStridedAccess(St); | 
|  | } | 
|  | } // Next instr. | 
|  | } // Next block. | 
|  |  | 
|  | // Now we have two lists that hold the loads and the stores. | 
|  | // Next, we find the pointers that they use. | 
|  |  | 
|  | // Check if we see any stores. If there are no stores, then we don't | 
|  | // care if the pointers are *restrict*. | 
|  | if (!Stores.size()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); | 
|  | CanVecMem = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | MemoryDepChecker::DepCandidates DependentAccesses; | 
|  | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), | 
|  | TheLoop, AA, LI, DependentAccesses, *PSE); | 
|  |  | 
|  | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects | 
|  | // multiple times on the same object. If the ptr is accessed twice, once | 
|  | // for read and once for write, it will only appear once (on the write | 
|  | // list). This is okay, since we are going to check for conflicts between | 
|  | // writes and between reads and writes, but not between reads and reads. | 
|  | ValueSet Seen; | 
|  |  | 
|  | // Record uniform store addresses to identify if we have multiple stores | 
|  | // to the same address. | 
|  | ValueSet UniformStores; | 
|  |  | 
|  | for (StoreInst *ST : Stores) { | 
|  | Value *Ptr = ST->getPointerOperand(); | 
|  |  | 
|  | if (isUniform(Ptr)) | 
|  | HasDependenceInvolvingLoopInvariantAddress |= | 
|  | !UniformStores.insert(Ptr).second; | 
|  |  | 
|  | // If we did *not* see this pointer before, insert it to  the read-write | 
|  | // list. At this phase it is only a 'write' list. | 
|  | if (Seen.insert(Ptr).second) { | 
|  | ++NumReadWrites; | 
|  |  | 
|  | MemoryLocation Loc = MemoryLocation::get(ST); | 
|  | // The TBAA metadata could have a control dependency on the predication | 
|  | // condition, so we cannot rely on it when determining whether or not we | 
|  | // need runtime pointer checks. | 
|  | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) | 
|  | Loc.AATags.TBAA = nullptr; | 
|  |  | 
|  | Accesses.addStore(Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsAnnotatedParallel) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " | 
|  | << "checks.\n"); | 
|  | CanVecMem = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (LoadInst *LD : Loads) { | 
|  | Value *Ptr = LD->getPointerOperand(); | 
|  | // If we did *not* see this pointer before, insert it to the | 
|  | // read list. If we *did* see it before, then it is already in | 
|  | // the read-write list. This allows us to vectorize expressions | 
|  | // such as A[i] += x;  Because the address of A[i] is a read-write | 
|  | // pointer. This only works if the index of A[i] is consecutive. | 
|  | // If the address of i is unknown (for example A[B[i]]) then we may | 
|  | // read a few words, modify, and write a few words, and some of the | 
|  | // words may be written to the same address. | 
|  | bool IsReadOnlyPtr = false; | 
|  | if (Seen.insert(Ptr).second || | 
|  | !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { | 
|  | ++NumReads; | 
|  | IsReadOnlyPtr = true; | 
|  | } | 
|  |  | 
|  | // See if there is an unsafe dependency between a load to a uniform address and | 
|  | // store to the same uniform address. | 
|  | if (UniformStores.count(Ptr)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " | 
|  | "load and uniform store to the same address!\n"); | 
|  | HasDependenceInvolvingLoopInvariantAddress = true; | 
|  | } | 
|  |  | 
|  | MemoryLocation Loc = MemoryLocation::get(LD); | 
|  | // The TBAA metadata could have a control dependency on the predication | 
|  | // condition, so we cannot rely on it when determining whether or not we | 
|  | // need runtime pointer checks. | 
|  | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) | 
|  | Loc.AATags.TBAA = nullptr; | 
|  |  | 
|  | Accesses.addLoad(Loc, IsReadOnlyPtr); | 
|  | } | 
|  |  | 
|  | // If we write (or read-write) to a single destination and there are no | 
|  | // other reads in this loop then is it safe to vectorize. | 
|  | if (NumReadWrites == 1 && NumReads == 0) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); | 
|  | CanVecMem = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Build dependence sets and check whether we need a runtime pointer bounds | 
|  | // check. | 
|  | Accesses.buildDependenceSets(); | 
|  |  | 
|  | // Find pointers with computable bounds. We are going to use this information | 
|  | // to place a runtime bound check. | 
|  | bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), | 
|  | TheLoop, SymbolicStrides); | 
|  | if (!CanDoRTIfNeeded) { | 
|  | recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " | 
|  | << "the array bounds.\n"); | 
|  | CanVecMem = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); | 
|  |  | 
|  | CanVecMem = true; | 
|  | if (Accesses.isDependencyCheckNeeded()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); | 
|  | CanVecMem = DepChecker->areDepsSafe( | 
|  | DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); | 
|  | MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); | 
|  |  | 
|  | if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); | 
|  |  | 
|  | // Clear the dependency checks. We assume they are not needed. | 
|  | Accesses.resetDepChecks(*DepChecker); | 
|  |  | 
|  | PtrRtChecking->reset(); | 
|  | PtrRtChecking->Need = true; | 
|  |  | 
|  | auto *SE = PSE->getSE(); | 
|  | CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, | 
|  | SymbolicStrides, true); | 
|  |  | 
|  | // Check that we found the bounds for the pointer. | 
|  | if (!CanDoRTIfNeeded) { | 
|  | recordAnalysis("CantCheckMemDepsAtRunTime") | 
|  | << "cannot check memory dependencies at runtime"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); | 
|  | CanVecMem = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | CanVecMem = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CanVecMem) | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: No unsafe dependent memory operations in loop.  We" | 
|  | << (PtrRtChecking->Need ? "" : " don't") | 
|  | << " need runtime memory checks.\n"); | 
|  | else { | 
|  | recordAnalysis("UnsafeMemDep") | 
|  | << "unsafe dependent memory operations in loop. Use " | 
|  | "#pragma loop distribute(enable) to allow loop distribution " | 
|  | "to attempt to isolate the offending operations into a separate " | 
|  | "loop"; | 
|  | LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, | 
|  | DominatorTree *DT)  { | 
|  | assert(TheLoop->contains(BB) && "Unknown block used"); | 
|  |  | 
|  | // Blocks that do not dominate the latch need predication. | 
|  | BasicBlock* Latch = TheLoop->getLoopLatch(); | 
|  | return !DT->dominates(BB, Latch); | 
|  | } | 
|  |  | 
|  | OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, | 
|  | Instruction *I) { | 
|  | assert(!Report && "Multiple reports generated"); | 
|  |  | 
|  | Value *CodeRegion = TheLoop->getHeader(); | 
|  | DebugLoc DL = TheLoop->getStartLoc(); | 
|  |  | 
|  | if (I) { | 
|  | CodeRegion = I->getParent(); | 
|  | // If there is no debug location attached to the instruction, revert back to | 
|  | // using the loop's. | 
|  | if (I->getDebugLoc()) | 
|  | DL = I->getDebugLoc(); | 
|  | } | 
|  |  | 
|  | Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, | 
|  | CodeRegion); | 
|  | return *Report; | 
|  | } | 
|  |  | 
|  | bool LoopAccessInfo::isUniform(Value *V) const { | 
|  | auto *SE = PSE->getSE(); | 
|  | // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is | 
|  | // never considered uniform. | 
|  | // TODO: Is this really what we want? Even without FP SCEV, we may want some | 
|  | // trivially loop-invariant FP values to be considered uniform. | 
|  | if (!SE->isSCEVable(V->getType())) | 
|  | return false; | 
|  | return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); | 
|  | } | 
|  |  | 
|  | // FIXME: this function is currently a duplicate of the one in | 
|  | // LoopVectorize.cpp. | 
|  | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, | 
|  | Instruction *Loc) { | 
|  | if (FirstInst) | 
|  | return FirstInst; | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() == Loc->getParent() ? I : nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// IR Values for the lower and upper bounds of a pointer evolution.  We | 
|  | /// need to use value-handles because SCEV expansion can invalidate previously | 
|  | /// expanded values.  Thus expansion of a pointer can invalidate the bounds for | 
|  | /// a previous one. | 
|  | struct PointerBounds { | 
|  | TrackingVH<Value> Start; | 
|  | TrackingVH<Value> End; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Expand code for the lower and upper bound of the pointer group \p CG | 
|  | /// in \p TheLoop.  \return the values for the bounds. | 
|  | static PointerBounds | 
|  | expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, | 
|  | Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, | 
|  | const RuntimePointerChecking &PtrRtChecking) { | 
|  | Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; | 
|  | const SCEV *Sc = SE->getSCEV(Ptr); | 
|  |  | 
|  | unsigned AS = Ptr->getType()->getPointerAddressSpace(); | 
|  | LLVMContext &Ctx = Loc->getContext(); | 
|  |  | 
|  | // Use this type for pointer arithmetic. | 
|  | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); | 
|  |  | 
|  | if (SE->isLoopInvariant(Sc, TheLoop)) { | 
|  | LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" | 
|  | << *Ptr << "\n"); | 
|  | // Ptr could be in the loop body. If so, expand a new one at the correct | 
|  | // location. | 
|  | Instruction *Inst = dyn_cast<Instruction>(Ptr); | 
|  | Value *NewPtr = (Inst && TheLoop->contains(Inst)) | 
|  | ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) | 
|  | : Ptr; | 
|  | // We must return a half-open range, which means incrementing Sc. | 
|  | const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); | 
|  | Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); | 
|  | return {NewPtr, NewPtrPlusOne}; | 
|  | } else { | 
|  | Value *Start = nullptr, *End = nullptr; | 
|  | LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); | 
|  | Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); | 
|  | End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); | 
|  | LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High | 
|  | << "\n"); | 
|  | return {Start, End}; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Turns a collection of checks into a collection of expanded upper and | 
|  | /// lower bounds for both pointers in the check. | 
|  | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( | 
|  | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, | 
|  | Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, | 
|  | const RuntimePointerChecking &PtrRtChecking) { | 
|  | SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; | 
|  |  | 
|  | // Here we're relying on the SCEV Expander's cache to only emit code for the | 
|  | // same bounds once. | 
|  | transform( | 
|  | PointerChecks, std::back_inserter(ChecksWithBounds), | 
|  | [&](const RuntimePointerChecking::PointerCheck &Check) { | 
|  | PointerBounds | 
|  | First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), | 
|  | Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); | 
|  | return std::make_pair(First, Second); | 
|  | }); | 
|  |  | 
|  | return ChecksWithBounds; | 
|  | } | 
|  |  | 
|  | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( | 
|  | Instruction *Loc, | 
|  | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) | 
|  | const { | 
|  | const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); | 
|  | auto *SE = PSE->getSE(); | 
|  | SCEVExpander Exp(*SE, DL, "induction"); | 
|  | auto ExpandedChecks = | 
|  | expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); | 
|  |  | 
|  | LLVMContext &Ctx = Loc->getContext(); | 
|  | Instruction *FirstInst = nullptr; | 
|  | IRBuilder<> ChkBuilder(Loc); | 
|  | // Our instructions might fold to a constant. | 
|  | Value *MemoryRuntimeCheck = nullptr; | 
|  |  | 
|  | for (const auto &Check : ExpandedChecks) { | 
|  | const PointerBounds &A = Check.first, &B = Check.second; | 
|  | // Check if two pointers (A and B) conflict where conflict is computed as: | 
|  | // start(A) <= end(B) && start(B) <= end(A) | 
|  | unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); | 
|  | unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | assert((AS0 == B.End->getType()->getPointerAddressSpace()) && | 
|  | (AS1 == A.End->getType()->getPointerAddressSpace()) && | 
|  | "Trying to bounds check pointers with different address spaces"); | 
|  |  | 
|  | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); | 
|  | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); | 
|  |  | 
|  | Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); | 
|  | Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); | 
|  | Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc"); | 
|  | Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc"); | 
|  |  | 
|  | // [A|B].Start points to the first accessed byte under base [A|B]. | 
|  | // [A|B].End points to the last accessed byte, plus one. | 
|  | // There is no conflict when the intervals are disjoint: | 
|  | // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) | 
|  | // | 
|  | // bound0 = (B.Start < A.End) | 
|  | // bound1 = (A.Start < B.End) | 
|  | //  IsConflict = bound0 & bound1 | 
|  | Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); | 
|  | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); | 
|  | Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); | 
|  | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); | 
|  | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); | 
|  | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); | 
|  | if (MemoryRuntimeCheck) { | 
|  | IsConflict = | 
|  | ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); | 
|  | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); | 
|  | } | 
|  | MemoryRuntimeCheck = IsConflict; | 
|  | } | 
|  |  | 
|  | if (!MemoryRuntimeCheck) | 
|  | return std::make_pair(nullptr, nullptr); | 
|  |  | 
|  | // We have to do this trickery because the IRBuilder might fold the check to a | 
|  | // constant expression in which case there is no Instruction anchored in a | 
|  | // the block. | 
|  | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, | 
|  | ConstantInt::getTrue(Ctx)); | 
|  | ChkBuilder.Insert(Check, "memcheck.conflict"); | 
|  | FirstInst = getFirstInst(FirstInst, Check, Loc); | 
|  | return std::make_pair(FirstInst, Check); | 
|  | } | 
|  |  | 
|  | std::pair<Instruction *, Instruction *> | 
|  | LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { | 
|  | if (!PtrRtChecking->Need) | 
|  | return std::make_pair(nullptr, nullptr); | 
|  |  | 
|  | return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); | 
|  | } | 
|  |  | 
|  | void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { | 
|  | Value *Ptr = nullptr; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) | 
|  | Ptr = LI->getPointerOperand(); | 
|  | else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) | 
|  | Ptr = SI->getPointerOperand(); | 
|  | else | 
|  | return; | 
|  |  | 
|  | Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); | 
|  | if (!Stride) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " | 
|  | "versioning:"); | 
|  | LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); | 
|  |  | 
|  | // Avoid adding the "Stride == 1" predicate when we know that | 
|  | // Stride >= Trip-Count. Such a predicate will effectively optimize a single | 
|  | // or zero iteration loop, as Trip-Count <= Stride == 1. | 
|  | // | 
|  | // TODO: We are currently not making a very informed decision on when it is | 
|  | // beneficial to apply stride versioning. It might make more sense that the | 
|  | // users of this analysis (such as the vectorizer) will trigger it, based on | 
|  | // their specific cost considerations; For example, in cases where stride | 
|  | // versioning does  not help resolving memory accesses/dependences, the | 
|  | // vectorizer should evaluate the cost of the runtime test, and the benefit | 
|  | // of various possible stride specializations, considering the alternatives | 
|  | // of using gather/scatters (if available). | 
|  |  | 
|  | const SCEV *StrideExpr = PSE->getSCEV(Stride); | 
|  | const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); | 
|  |  | 
|  | // Match the types so we can compare the stride and the BETakenCount. | 
|  | // The Stride can be positive/negative, so we sign extend Stride; | 
|  | // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. | 
|  | const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); | 
|  | uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); | 
|  | uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); | 
|  | const SCEV *CastedStride = StrideExpr; | 
|  | const SCEV *CastedBECount = BETakenCount; | 
|  | ScalarEvolution *SE = PSE->getSE(); | 
|  | if (BETypeSize >= StrideTypeSize) | 
|  | CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); | 
|  | else | 
|  | CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); | 
|  | const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); | 
|  | // Since TripCount == BackEdgeTakenCount + 1, checking: | 
|  | // "Stride >= TripCount" is equivalent to checking: | 
|  | // Stride - BETakenCount > 0 | 
|  | if (SE->isKnownPositive(StrideMinusBETaken)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " | 
|  | "Stride==1 predicate will imply that the loop executes " | 
|  | "at most once.\n"); | 
|  | return; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); | 
|  |  | 
|  | SymbolicStrides[Ptr] = Stride; | 
|  | StrideSet.insert(Stride); | 
|  | } | 
|  |  | 
|  | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, | 
|  | const TargetLibraryInfo *TLI, AliasAnalysis *AA, | 
|  | DominatorTree *DT, LoopInfo *LI) | 
|  | : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), | 
|  | PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), | 
|  | DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), | 
|  | NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), | 
|  | HasDependenceInvolvingLoopInvariantAddress(false) { | 
|  | if (canAnalyzeLoop()) | 
|  | analyzeLoop(AA, LI, TLI, DT); | 
|  | } | 
|  |  | 
|  | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { | 
|  | if (CanVecMem) { | 
|  | OS.indent(Depth) << "Memory dependences are safe"; | 
|  | if (MaxSafeDepDistBytes != -1ULL) | 
|  | OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes | 
|  | << " bytes"; | 
|  | if (PtrRtChecking->Need) | 
|  | OS << " with run-time checks"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | if (Report) | 
|  | OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; | 
|  |  | 
|  | if (auto *Dependences = DepChecker->getDependences()) { | 
|  | OS.indent(Depth) << "Dependences:\n"; | 
|  | for (auto &Dep : *Dependences) { | 
|  | Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); | 
|  | OS << "\n"; | 
|  | } | 
|  | } else | 
|  | OS.indent(Depth) << "Too many dependences, not recorded\n"; | 
|  |  | 
|  | // List the pair of accesses need run-time checks to prove independence. | 
|  | PtrRtChecking->print(OS, Depth); | 
|  | OS << "\n"; | 
|  |  | 
|  | OS.indent(Depth) << "Non vectorizable stores to invariant address were " | 
|  | << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") | 
|  | << "found in loop.\n"; | 
|  |  | 
|  | OS.indent(Depth) << "SCEV assumptions:\n"; | 
|  | PSE->getUnionPredicate().print(OS, Depth); | 
|  |  | 
|  | OS << "\n"; | 
|  |  | 
|  | OS.indent(Depth) << "Expressions re-written:\n"; | 
|  | PSE->print(OS, Depth); | 
|  | } | 
|  |  | 
|  | const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { | 
|  | auto &LAI = LoopAccessInfoMap[L]; | 
|  |  | 
|  | if (!LAI) | 
|  | LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); | 
|  |  | 
|  | return *LAI.get(); | 
|  | } | 
|  |  | 
|  | void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { | 
|  | LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); | 
|  |  | 
|  | for (Loop *TopLevelLoop : *LI) | 
|  | for (Loop *L : depth_first(TopLevelLoop)) { | 
|  | OS.indent(2) << L->getHeader()->getName() << ":\n"; | 
|  | auto &LAI = LAA.getInfo(L); | 
|  | LAI.print(OS, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { | 
|  | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); | 
|  | TLI = TLIP ? &TLIP->getTLI() : nullptr; | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  |  | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | char LoopAccessLegacyAnalysis::ID = 0; | 
|  | static const char laa_name[] = "Loop Access Analysis"; | 
|  | #define LAA_NAME "loop-accesses" | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) | 
|  |  | 
|  | AnalysisKey LoopAccessAnalysis::Key; | 
|  |  | 
|  | LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR) { | 
|  | return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | Pass *createLAAPass() { | 
|  | return new LoopAccessLegacyAnalysis(); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |