|  | //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains a pass that splits the constant pool up into 'islands' | 
|  | // which are scattered through-out the function.  This is required due to the | 
|  | // limited pc-relative displacements that ARM has. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "arm-cp-islands" | 
|  | #include "ARM.h" | 
|  | #include "ARMMachineFunctionInfo.h" | 
|  | #include "Thumb2InstrInfo.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/DataLayout.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumCPEs,       "Number of constpool entries"); | 
|  | STATISTIC(NumSplit,      "Number of uncond branches inserted"); | 
|  | STATISTIC(NumCBrFixed,   "Number of cond branches fixed"); | 
|  | STATISTIC(NumUBrFixed,   "Number of uncond branches fixed"); | 
|  | STATISTIC(NumTBs,        "Number of table branches generated"); | 
|  | STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); | 
|  | STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); | 
|  | STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed"); | 
|  | STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved"); | 
|  | STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); | 
|  |  | 
|  |  | 
|  | static cl::opt<bool> | 
|  | AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), | 
|  | cl::desc("Adjust basic block layout to better use TB[BH]")); | 
|  |  | 
|  | // FIXME: This option should be removed once it has received sufficient testing. | 
|  | static cl::opt<bool> | 
|  | AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), | 
|  | cl::desc("Align constant islands in code")); | 
|  |  | 
|  | /// UnknownPadding - Return the worst case padding that could result from | 
|  | /// unknown offset bits.  This does not include alignment padding caused by | 
|  | /// known offset bits. | 
|  | /// | 
|  | /// @param LogAlign log2(alignment) | 
|  | /// @param KnownBits Number of known low offset bits. | 
|  | static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { | 
|  | if (KnownBits < LogAlign) | 
|  | return (1u << LogAlign) - (1u << KnownBits); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// ARMConstantIslands - Due to limited PC-relative displacements, ARM | 
|  | /// requires constant pool entries to be scattered among the instructions | 
|  | /// inside a function.  To do this, it completely ignores the normal LLVM | 
|  | /// constant pool; instead, it places constants wherever it feels like with | 
|  | /// special instructions. | 
|  | /// | 
|  | /// The terminology used in this pass includes: | 
|  | ///   Islands - Clumps of constants placed in the function. | 
|  | ///   Water   - Potential places where an island could be formed. | 
|  | ///   CPE     - A constant pool entry that has been placed somewhere, which | 
|  | ///             tracks a list of users. | 
|  | class ARMConstantIslands : public MachineFunctionPass { | 
|  | /// BasicBlockInfo - Information about the offset and size of a single | 
|  | /// basic block. | 
|  | struct BasicBlockInfo { | 
|  | /// Offset - Distance from the beginning of the function to the beginning | 
|  | /// of this basic block. | 
|  | /// | 
|  | /// Offsets are computed assuming worst case padding before an aligned | 
|  | /// block. This means that subtracting basic block offsets always gives a | 
|  | /// conservative estimate of the real distance which may be smaller. | 
|  | /// | 
|  | /// Because worst case padding is used, the computed offset of an aligned | 
|  | /// block may not actually be aligned. | 
|  | unsigned Offset; | 
|  |  | 
|  | /// Size - Size of the basic block in bytes.  If the block contains | 
|  | /// inline assembly, this is a worst case estimate. | 
|  | /// | 
|  | /// The size does not include any alignment padding whether from the | 
|  | /// beginning of the block, or from an aligned jump table at the end. | 
|  | unsigned Size; | 
|  |  | 
|  | /// KnownBits - The number of low bits in Offset that are known to be | 
|  | /// exact.  The remaining bits of Offset are an upper bound. | 
|  | uint8_t KnownBits; | 
|  |  | 
|  | /// Unalign - When non-zero, the block contains instructions (inline asm) | 
|  | /// of unknown size.  The real size may be smaller than Size bytes by a | 
|  | /// multiple of 1 << Unalign. | 
|  | uint8_t Unalign; | 
|  |  | 
|  | /// PostAlign - When non-zero, the block terminator contains a .align | 
|  | /// directive, so the end of the block is aligned to 1 << PostAlign | 
|  | /// bytes. | 
|  | uint8_t PostAlign; | 
|  |  | 
|  | BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), | 
|  | PostAlign(0) {} | 
|  |  | 
|  | /// Compute the number of known offset bits internally to this block. | 
|  | /// This number should be used to predict worst case padding when | 
|  | /// splitting the block. | 
|  | unsigned internalKnownBits() const { | 
|  | unsigned Bits = Unalign ? Unalign : KnownBits; | 
|  | // If the block size isn't a multiple of the known bits, assume the | 
|  | // worst case padding. | 
|  | if (Size & ((1u << Bits) - 1)) | 
|  | Bits = CountTrailingZeros_32(Size); | 
|  | return Bits; | 
|  | } | 
|  |  | 
|  | /// Compute the offset immediately following this block.  If LogAlign is | 
|  | /// specified, return the offset the successor block will get if it has | 
|  | /// this alignment. | 
|  | unsigned postOffset(unsigned LogAlign = 0) const { | 
|  | unsigned PO = Offset + Size; | 
|  | unsigned LA = std::max(unsigned(PostAlign), LogAlign); | 
|  | if (!LA) | 
|  | return PO; | 
|  | // Add alignment padding from the terminator. | 
|  | return PO + UnknownPadding(LA, internalKnownBits()); | 
|  | } | 
|  |  | 
|  | /// Compute the number of known low bits of postOffset.  If this block | 
|  | /// contains inline asm, the number of known bits drops to the | 
|  | /// instruction alignment.  An aligned terminator may increase the number | 
|  | /// of know bits. | 
|  | /// If LogAlign is given, also consider the alignment of the next block. | 
|  | unsigned postKnownBits(unsigned LogAlign = 0) const { | 
|  | return std::max(std::max(unsigned(PostAlign), LogAlign), | 
|  | internalKnownBits()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | std::vector<BasicBlockInfo> BBInfo; | 
|  |  | 
|  | /// WaterList - A sorted list of basic blocks where islands could be placed | 
|  | /// (i.e. blocks that don't fall through to the following block, due | 
|  | /// to a return, unreachable, or unconditional branch). | 
|  | std::vector<MachineBasicBlock*> WaterList; | 
|  |  | 
|  | /// NewWaterList - The subset of WaterList that was created since the | 
|  | /// previous iteration by inserting unconditional branches. | 
|  | SmallSet<MachineBasicBlock*, 4> NewWaterList; | 
|  |  | 
|  | typedef std::vector<MachineBasicBlock*>::iterator water_iterator; | 
|  |  | 
|  | /// CPUser - One user of a constant pool, keeping the machine instruction | 
|  | /// pointer, the constant pool being referenced, and the max displacement | 
|  | /// allowed from the instruction to the CP.  The HighWaterMark records the | 
|  | /// highest basic block where a new CPEntry can be placed.  To ensure this | 
|  | /// pass terminates, the CP entries are initially placed at the end of the | 
|  | /// function and then move monotonically to lower addresses.  The | 
|  | /// exception to this rule is when the current CP entry for a particular | 
|  | /// CPUser is out of range, but there is another CP entry for the same | 
|  | /// constant value in range.  We want to use the existing in-range CP | 
|  | /// entry, but if it later moves out of range, the search for new water | 
|  | /// should resume where it left off.  The HighWaterMark is used to record | 
|  | /// that point. | 
|  | struct CPUser { | 
|  | MachineInstr *MI; | 
|  | MachineInstr *CPEMI; | 
|  | MachineBasicBlock *HighWaterMark; | 
|  | private: | 
|  | unsigned MaxDisp; | 
|  | public: | 
|  | bool NegOk; | 
|  | bool IsSoImm; | 
|  | bool KnownAlignment; | 
|  | CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, | 
|  | bool neg, bool soimm) | 
|  | : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), | 
|  | KnownAlignment(false) { | 
|  | HighWaterMark = CPEMI->getParent(); | 
|  | } | 
|  | /// getMaxDisp - Returns the maximum displacement supported by MI. | 
|  | /// Correct for unknown alignment. | 
|  | /// Conservatively subtract 2 bytes to handle weird alignment effects. | 
|  | unsigned getMaxDisp() const { | 
|  | return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// CPUsers - Keep track of all of the machine instructions that use various | 
|  | /// constant pools and their max displacement. | 
|  | std::vector<CPUser> CPUsers; | 
|  |  | 
|  | /// CPEntry - One per constant pool entry, keeping the machine instruction | 
|  | /// pointer, the constpool index, and the number of CPUser's which | 
|  | /// reference this entry. | 
|  | struct CPEntry { | 
|  | MachineInstr *CPEMI; | 
|  | unsigned CPI; | 
|  | unsigned RefCount; | 
|  | CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) | 
|  | : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} | 
|  | }; | 
|  |  | 
|  | /// CPEntries - Keep track of all of the constant pool entry machine | 
|  | /// instructions. For each original constpool index (i.e. those that | 
|  | /// existed upon entry to this pass), it keeps a vector of entries. | 
|  | /// Original elements are cloned as we go along; the clones are | 
|  | /// put in the vector of the original element, but have distinct CPIs. | 
|  | std::vector<std::vector<CPEntry> > CPEntries; | 
|  |  | 
|  | /// ImmBranch - One per immediate branch, keeping the machine instruction | 
|  | /// pointer, conditional or unconditional, the max displacement, | 
|  | /// and (if isCond is true) the corresponding unconditional branch | 
|  | /// opcode. | 
|  | struct ImmBranch { | 
|  | MachineInstr *MI; | 
|  | unsigned MaxDisp : 31; | 
|  | bool isCond : 1; | 
|  | int UncondBr; | 
|  | ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) | 
|  | : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} | 
|  | }; | 
|  |  | 
|  | /// ImmBranches - Keep track of all the immediate branch instructions. | 
|  | /// | 
|  | std::vector<ImmBranch> ImmBranches; | 
|  |  | 
|  | /// PushPopMIs - Keep track of all the Thumb push / pop instructions. | 
|  | /// | 
|  | SmallVector<MachineInstr*, 4> PushPopMIs; | 
|  |  | 
|  | /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. | 
|  | SmallVector<MachineInstr*, 4> T2JumpTables; | 
|  |  | 
|  | /// HasFarJump - True if any far jump instruction has been emitted during | 
|  | /// the branch fix up pass. | 
|  | bool HasFarJump; | 
|  |  | 
|  | MachineFunction *MF; | 
|  | MachineConstantPool *MCP; | 
|  | const ARMBaseInstrInfo *TII; | 
|  | const ARMSubtarget *STI; | 
|  | ARMFunctionInfo *AFI; | 
|  | bool isThumb; | 
|  | bool isThumb1; | 
|  | bool isThumb2; | 
|  | public: | 
|  | static char ID; | 
|  | ARMConstantIslands() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "ARM constant island placement and branch shortening pass"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); | 
|  | CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); | 
|  | unsigned getCPELogAlign(const MachineInstr *CPEMI); | 
|  | void scanFunctionJumpTables(); | 
|  | void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); | 
|  | MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); | 
|  | void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); | 
|  | void adjustBBOffsetsAfter(MachineBasicBlock *BB); | 
|  | bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); | 
|  | int findInRangeCPEntry(CPUser& U, unsigned UserOffset); | 
|  | bool findAvailableWater(CPUser&U, unsigned UserOffset, | 
|  | water_iterator &WaterIter); | 
|  | void createNewWater(unsigned CPUserIndex, unsigned UserOffset, | 
|  | MachineBasicBlock *&NewMBB); | 
|  | bool handleConstantPoolUser(unsigned CPUserIndex); | 
|  | void removeDeadCPEMI(MachineInstr *CPEMI); | 
|  | bool removeUnusedCPEntries(); | 
|  | bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, | 
|  | MachineInstr *CPEMI, unsigned Disp, bool NegOk, | 
|  | bool DoDump = false); | 
|  | bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, | 
|  | CPUser &U, unsigned &Growth); | 
|  | bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); | 
|  | bool fixupImmediateBr(ImmBranch &Br); | 
|  | bool fixupConditionalBr(ImmBranch &Br); | 
|  | bool fixupUnconditionalBr(ImmBranch &Br); | 
|  | bool undoLRSpillRestore(); | 
|  | bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; | 
|  | bool optimizeThumb2Instructions(); | 
|  | bool optimizeThumb2Branches(); | 
|  | bool reorderThumb2JumpTables(); | 
|  | bool optimizeThumb2JumpTables(); | 
|  | MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, | 
|  | MachineBasicBlock *JTBB); | 
|  |  | 
|  | void computeBlockSize(MachineBasicBlock *MBB); | 
|  | unsigned getOffsetOf(MachineInstr *MI) const; | 
|  | unsigned getUserOffset(CPUser&) const; | 
|  | void dumpBBs(); | 
|  | void verify(); | 
|  |  | 
|  | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, | 
|  | unsigned Disp, bool NegativeOK, bool IsSoImm = false); | 
|  | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, | 
|  | const CPUser &U) { | 
|  | return isOffsetInRange(UserOffset, TrialOffset, | 
|  | U.getMaxDisp(), U.NegOk, U.IsSoImm); | 
|  | } | 
|  | }; | 
|  | char ARMConstantIslands::ID = 0; | 
|  | } | 
|  |  | 
|  | /// verify - check BBOffsets, BBSizes, alignment of islands | 
|  | void ARMConstantIslands::verify() { | 
|  | #ifndef NDEBUG | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | MachineBasicBlock *MBB = MBBI; | 
|  | unsigned MBBId = MBB->getNumber(); | 
|  | assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); | 
|  | } | 
|  | DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); | 
|  | for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { | 
|  | CPUser &U = CPUsers[i]; | 
|  | unsigned UserOffset = getUserOffset(U); | 
|  | // Verify offset using the real max displacement without the safety | 
|  | // adjustment. | 
|  | if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, | 
|  | /* DoDump = */ true)) { | 
|  | DEBUG(dbgs() << "OK\n"); | 
|  | continue; | 
|  | } | 
|  | DEBUG(dbgs() << "Out of range.\n"); | 
|  | dumpBBs(); | 
|  | DEBUG(MF->dump()); | 
|  | llvm_unreachable("Constant pool entry out of range!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// print block size and offset information - debugging | 
|  | void ARMConstantIslands::dumpBBs() { | 
|  | DEBUG({ | 
|  | for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { | 
|  | const BasicBlockInfo &BBI = BBInfo[J]; | 
|  | dbgs() << format("%08x BB#%u\t", BBI.Offset, J) | 
|  | << " kb=" << unsigned(BBI.KnownBits) | 
|  | << " ua=" << unsigned(BBI.Unalign) | 
|  | << " pa=" << unsigned(BBI.PostAlign) | 
|  | << format(" size=%#x\n", BBInfo[J].Size); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// createARMConstantIslandPass - returns an instance of the constpool | 
|  | /// island pass. | 
|  | FunctionPass *llvm::createARMConstantIslandPass() { | 
|  | return new ARMConstantIslands(); | 
|  | } | 
|  |  | 
|  | bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { | 
|  | MF = &mf; | 
|  | MCP = mf.getConstantPool(); | 
|  |  | 
|  | DEBUG(dbgs() << "***** ARMConstantIslands: " | 
|  | << MCP->getConstants().size() << " CP entries, aligned to " | 
|  | << MCP->getConstantPoolAlignment() << " bytes *****\n"); | 
|  |  | 
|  | TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo(); | 
|  | AFI = MF->getInfo<ARMFunctionInfo>(); | 
|  | STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); | 
|  |  | 
|  | isThumb = AFI->isThumbFunction(); | 
|  | isThumb1 = AFI->isThumb1OnlyFunction(); | 
|  | isThumb2 = AFI->isThumb2Function(); | 
|  |  | 
|  | HasFarJump = false; | 
|  |  | 
|  | // This pass invalidates liveness information when it splits basic blocks. | 
|  | MF->getRegInfo().invalidateLiveness(); | 
|  |  | 
|  | // Renumber all of the machine basic blocks in the function, guaranteeing that | 
|  | // the numbers agree with the position of the block in the function. | 
|  | MF->RenumberBlocks(); | 
|  |  | 
|  | // Try to reorder and otherwise adjust the block layout to make good use | 
|  | // of the TB[BH] instructions. | 
|  | bool MadeChange = false; | 
|  | if (isThumb2 && AdjustJumpTableBlocks) { | 
|  | scanFunctionJumpTables(); | 
|  | MadeChange |= reorderThumb2JumpTables(); | 
|  | // Data is out of date, so clear it. It'll be re-computed later. | 
|  | T2JumpTables.clear(); | 
|  | // Blocks may have shifted around. Keep the numbering up to date. | 
|  | MF->RenumberBlocks(); | 
|  | } | 
|  |  | 
|  | // Thumb1 functions containing constant pools get 4-byte alignment. | 
|  | // This is so we can keep exact track of where the alignment padding goes. | 
|  |  | 
|  | // ARM and Thumb2 functions need to be 4-byte aligned. | 
|  | if (!isThumb1) | 
|  | MF->ensureAlignment(2);  // 2 = log2(4) | 
|  |  | 
|  | // Perform the initial placement of the constant pool entries.  To start with, | 
|  | // we put them all at the end of the function. | 
|  | std::vector<MachineInstr*> CPEMIs; | 
|  | if (!MCP->isEmpty()) | 
|  | doInitialPlacement(CPEMIs); | 
|  |  | 
|  | /// The next UID to take is the first unused one. | 
|  | AFI->initPICLabelUId(CPEMIs.size()); | 
|  |  | 
|  | // Do the initial scan of the function, building up information about the | 
|  | // sizes of each block, the location of all the water, and finding all of the | 
|  | // constant pool users. | 
|  | initializeFunctionInfo(CPEMIs); | 
|  | CPEMIs.clear(); | 
|  | DEBUG(dumpBBs()); | 
|  |  | 
|  |  | 
|  | /// Remove dead constant pool entries. | 
|  | MadeChange |= removeUnusedCPEntries(); | 
|  |  | 
|  | // Iteratively place constant pool entries and fix up branches until there | 
|  | // is no change. | 
|  | unsigned NoCPIters = 0, NoBRIters = 0; | 
|  | while (true) { | 
|  | DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); | 
|  | bool CPChange = false; | 
|  | for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) | 
|  | CPChange |= handleConstantPoolUser(i); | 
|  | if (CPChange && ++NoCPIters > 30) | 
|  | report_fatal_error("Constant Island pass failed to converge!"); | 
|  | DEBUG(dumpBBs()); | 
|  |  | 
|  | // Clear NewWaterList now.  If we split a block for branches, it should | 
|  | // appear as "new water" for the next iteration of constant pool placement. | 
|  | NewWaterList.clear(); | 
|  |  | 
|  | DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); | 
|  | bool BRChange = false; | 
|  | for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) | 
|  | BRChange |= fixupImmediateBr(ImmBranches[i]); | 
|  | if (BRChange && ++NoBRIters > 30) | 
|  | report_fatal_error("Branch Fix Up pass failed to converge!"); | 
|  | DEBUG(dumpBBs()); | 
|  |  | 
|  | if (!CPChange && !BRChange) | 
|  | break; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Shrink 32-bit Thumb2 branch, load, and store instructions. | 
|  | if (isThumb2 && !STI->prefers32BitThumb()) | 
|  | MadeChange |= optimizeThumb2Instructions(); | 
|  |  | 
|  | // After a while, this might be made debug-only, but it is not expensive. | 
|  | verify(); | 
|  |  | 
|  | // If LR has been forced spilled and no far jump (i.e. BL) has been issued, | 
|  | // undo the spill / restore of LR if possible. | 
|  | if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) | 
|  | MadeChange |= undoLRSpillRestore(); | 
|  |  | 
|  | // Save the mapping between original and cloned constpool entries. | 
|  | for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { | 
|  | for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { | 
|  | const CPEntry & CPE = CPEntries[i][j]; | 
|  | AFI->recordCPEClone(i, CPE.CPI); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << '\n'; dumpBBs()); | 
|  |  | 
|  | BBInfo.clear(); | 
|  | WaterList.clear(); | 
|  | CPUsers.clear(); | 
|  | CPEntries.clear(); | 
|  | ImmBranches.clear(); | 
|  | PushPopMIs.clear(); | 
|  | T2JumpTables.clear(); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// doInitialPlacement - Perform the initial placement of the constant pool | 
|  | /// entries.  To start with, we put them all at the end of the function. | 
|  | void | 
|  | ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { | 
|  | // Create the basic block to hold the CPE's. | 
|  | MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); | 
|  | MF->push_back(BB); | 
|  |  | 
|  | // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). | 
|  | unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); | 
|  |  | 
|  | // Mark the basic block as required by the const-pool. | 
|  | // If AlignConstantIslands isn't set, use 4-byte alignment for everything. | 
|  | BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); | 
|  |  | 
|  | // The function needs to be as aligned as the basic blocks. The linker may | 
|  | // move functions around based on their alignment. | 
|  | MF->ensureAlignment(BB->getAlignment()); | 
|  |  | 
|  | // Order the entries in BB by descending alignment.  That ensures correct | 
|  | // alignment of all entries as long as BB is sufficiently aligned.  Keep | 
|  | // track of the insertion point for each alignment.  We are going to bucket | 
|  | // sort the entries as they are created. | 
|  | SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); | 
|  |  | 
|  | // Add all of the constants from the constant pool to the end block, use an | 
|  | // identity mapping of CPI's to CPE's. | 
|  | const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); | 
|  |  | 
|  | const DataLayout &TD = *MF->getTarget().getDataLayout(); | 
|  | for (unsigned i = 0, e = CPs.size(); i != e; ++i) { | 
|  | unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); | 
|  | assert(Size >= 4 && "Too small constant pool entry"); | 
|  | unsigned Align = CPs[i].getAlignment(); | 
|  | assert(isPowerOf2_32(Align) && "Invalid alignment"); | 
|  | // Verify that all constant pool entries are a multiple of their alignment. | 
|  | // If not, we would have to pad them out so that instructions stay aligned. | 
|  | assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); | 
|  |  | 
|  | // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. | 
|  | unsigned LogAlign = Log2_32(Align); | 
|  | MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; | 
|  | MachineInstr *CPEMI = | 
|  | BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) | 
|  | .addImm(i).addConstantPoolIndex(i).addImm(Size); | 
|  | CPEMIs.push_back(CPEMI); | 
|  |  | 
|  | // Ensure that future entries with higher alignment get inserted before | 
|  | // CPEMI. This is bucket sort with iterators. | 
|  | for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) | 
|  | if (InsPoint[a] == InsAt) | 
|  | InsPoint[a] = CPEMI; | 
|  |  | 
|  | // Add a new CPEntry, but no corresponding CPUser yet. | 
|  | std::vector<CPEntry> CPEs; | 
|  | CPEs.push_back(CPEntry(CPEMI, i)); | 
|  | CPEntries.push_back(CPEs); | 
|  | ++NumCPEs; | 
|  | DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " | 
|  | << Size << ", align = " << Align <<'\n'); | 
|  | } | 
|  | DEBUG(BB->dump()); | 
|  | } | 
|  |  | 
|  | /// BBHasFallthrough - Return true if the specified basic block can fallthrough | 
|  | /// into the block immediately after it. | 
|  | static bool BBHasFallthrough(MachineBasicBlock *MBB) { | 
|  | // Get the next machine basic block in the function. | 
|  | MachineFunction::iterator MBBI = MBB; | 
|  | // Can't fall off end of function. | 
|  | if (llvm::next(MBBI) == MBB->getParent()->end()) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *NextBB = llvm::next(MBBI); | 
|  | for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), | 
|  | E = MBB->succ_end(); I != E; ++I) | 
|  | if (*I == NextBB) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, | 
|  | /// look up the corresponding CPEntry. | 
|  | ARMConstantIslands::CPEntry | 
|  | *ARMConstantIslands::findConstPoolEntry(unsigned CPI, | 
|  | const MachineInstr *CPEMI) { | 
|  | std::vector<CPEntry> &CPEs = CPEntries[CPI]; | 
|  | // Number of entries per constpool index should be small, just do a | 
|  | // linear search. | 
|  | for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { | 
|  | if (CPEs[i].CPEMI == CPEMI) | 
|  | return &CPEs[i]; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /// getCPELogAlign - Returns the required alignment of the constant pool entry | 
|  | /// represented by CPEMI.  Alignment is measured in log2(bytes) units. | 
|  | unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { | 
|  | assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); | 
|  |  | 
|  | // Everything is 4-byte aligned unless AlignConstantIslands is set. | 
|  | if (!AlignConstantIslands) | 
|  | return 2; | 
|  |  | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); | 
|  | unsigned Align = MCP->getConstants()[CPI].getAlignment(); | 
|  | assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); | 
|  | return Log2_32(Align); | 
|  | } | 
|  |  | 
|  | /// scanFunctionJumpTables - Do a scan of the function, building up | 
|  | /// information about the sizes of each block and the locations of all | 
|  | /// the jump tables. | 
|  | void ARMConstantIslands::scanFunctionJumpTables() { | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | MachineBasicBlock &MBB = *MBBI; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); | 
|  | I != E; ++I) | 
|  | if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) | 
|  | T2JumpTables.push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// initializeFunctionInfo - Do the initial scan of the function, building up | 
|  | /// information about the sizes of each block, the location of all the water, | 
|  | /// and finding all of the constant pool users. | 
|  | void ARMConstantIslands:: | 
|  | initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { | 
|  | BBInfo.clear(); | 
|  | BBInfo.resize(MF->getNumBlockIDs()); | 
|  |  | 
|  | // First thing, compute the size of all basic blocks, and see if the function | 
|  | // has any inline assembly in it. If so, we have to be conservative about | 
|  | // alignment assumptions, as we don't know for sure the size of any | 
|  | // instructions in the inline assembly. | 
|  | for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) | 
|  | computeBlockSize(I); | 
|  |  | 
|  | // The known bits of the entry block offset are determined by the function | 
|  | // alignment. | 
|  | BBInfo.front().KnownBits = MF->getAlignment(); | 
|  |  | 
|  | // Compute block offsets and known bits. | 
|  | adjustBBOffsetsAfter(MF->begin()); | 
|  |  | 
|  | // Now go back through the instructions and build up our data structures. | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | MachineBasicBlock &MBB = *MBBI; | 
|  |  | 
|  | // If this block doesn't fall through into the next MBB, then this is | 
|  | // 'water' that a constant pool island could be placed. | 
|  | if (!BBHasFallthrough(&MBB)) | 
|  | WaterList.push_back(&MBB); | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); | 
|  | I != E; ++I) { | 
|  | if (I->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | int Opc = I->getOpcode(); | 
|  | if (I->isBranch()) { | 
|  | bool isCond = false; | 
|  | unsigned Bits = 0; | 
|  | unsigned Scale = 1; | 
|  | int UOpc = Opc; | 
|  | switch (Opc) { | 
|  | default: | 
|  | continue;  // Ignore other JT branches | 
|  | case ARM::t2BR_JT: | 
|  | T2JumpTables.push_back(I); | 
|  | continue;   // Does not get an entry in ImmBranches | 
|  | case ARM::Bcc: | 
|  | isCond = true; | 
|  | UOpc = ARM::B; | 
|  | // Fallthrough | 
|  | case ARM::B: | 
|  | Bits = 24; | 
|  | Scale = 4; | 
|  | break; | 
|  | case ARM::tBcc: | 
|  | isCond = true; | 
|  | UOpc = ARM::tB; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case ARM::tB: | 
|  | Bits = 11; | 
|  | Scale = 2; | 
|  | break; | 
|  | case ARM::t2Bcc: | 
|  | isCond = true; | 
|  | UOpc = ARM::t2B; | 
|  | Bits = 20; | 
|  | Scale = 2; | 
|  | break; | 
|  | case ARM::t2B: | 
|  | Bits = 24; | 
|  | Scale = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Record this immediate branch. | 
|  | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; | 
|  | ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); | 
|  | } | 
|  |  | 
|  | if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) | 
|  | PushPopMIs.push_back(I); | 
|  |  | 
|  | if (Opc == ARM::CONSTPOOL_ENTRY) | 
|  | continue; | 
|  |  | 
|  | // Scan the instructions for constant pool operands. | 
|  | for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) | 
|  | if (I->getOperand(op).isCPI()) { | 
|  | // We found one.  The addressing mode tells us the max displacement | 
|  | // from the PC that this instruction permits. | 
|  |  | 
|  | // Basic size info comes from the TSFlags field. | 
|  | unsigned Bits = 0; | 
|  | unsigned Scale = 1; | 
|  | bool NegOk = false; | 
|  | bool IsSoImm = false; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unknown addressing mode for CP reference!"); | 
|  |  | 
|  | // Taking the address of a CP entry. | 
|  | case ARM::LEApcrel: | 
|  | // This takes a SoImm, which is 8 bit immediate rotated. We'll | 
|  | // pretend the maximum offset is 255 * 4. Since each instruction | 
|  | // 4 byte wide, this is always correct. We'll check for other | 
|  | // displacements that fits in a SoImm as well. | 
|  | Bits = 8; | 
|  | Scale = 4; | 
|  | NegOk = true; | 
|  | IsSoImm = true; | 
|  | break; | 
|  | case ARM::t2LEApcrel: | 
|  | Bits = 12; | 
|  | NegOk = true; | 
|  | break; | 
|  | case ARM::tLEApcrel: | 
|  | Bits = 8; | 
|  | Scale = 4; | 
|  | break; | 
|  |  | 
|  | case ARM::LDRi12: | 
|  | case ARM::LDRcp: | 
|  | case ARM::t2LDRpci: | 
|  | Bits = 12;  // +-offset_12 | 
|  | NegOk = true; | 
|  | break; | 
|  |  | 
|  | case ARM::tLDRpci: | 
|  | Bits = 8; | 
|  | Scale = 4;  // +(offset_8*4) | 
|  | break; | 
|  |  | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | Bits = 8; | 
|  | Scale = 4;  // +-(offset_8*4) | 
|  | NegOk = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Remember that this is a user of a CP entry. | 
|  | unsigned CPI = I->getOperand(op).getIndex(); | 
|  | MachineInstr *CPEMI = CPEMIs[CPI]; | 
|  | unsigned MaxOffs = ((1 << Bits)-1) * Scale; | 
|  | CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); | 
|  |  | 
|  | // Increment corresponding CPEntry reference count. | 
|  | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); | 
|  | assert(CPE && "Cannot find a corresponding CPEntry!"); | 
|  | CPE->RefCount++; | 
|  |  | 
|  | // Instructions can only use one CP entry, don't bother scanning the | 
|  | // rest of the operands. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// computeBlockSize - Compute the size and some alignment information for MBB. | 
|  | /// This function updates BBInfo directly. | 
|  | void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { | 
|  | BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; | 
|  | BBI.Size = 0; | 
|  | BBI.Unalign = 0; | 
|  | BBI.PostAlign = 0; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; | 
|  | ++I) { | 
|  | BBI.Size += TII->GetInstSizeInBytes(I); | 
|  | // For inline asm, GetInstSizeInBytes returns a conservative estimate. | 
|  | // The actual size may be smaller, but still a multiple of the instr size. | 
|  | if (I->isInlineAsm()) | 
|  | BBI.Unalign = isThumb ? 1 : 2; | 
|  | // Also consider instructions that may be shrunk later. | 
|  | else if (isThumb && mayOptimizeThumb2Instruction(I)) | 
|  | BBI.Unalign = 1; | 
|  | } | 
|  |  | 
|  | // tBR_JTr contains a .align 2 directive. | 
|  | if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { | 
|  | BBI.PostAlign = 2; | 
|  | MBB->getParent()->ensureAlignment(2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getOffsetOf - Return the current offset of the specified machine instruction | 
|  | /// from the start of the function.  This offset changes as stuff is moved | 
|  | /// around inside the function. | 
|  | unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  |  | 
|  | // The offset is composed of two things: the sum of the sizes of all MBB's | 
|  | // before this instruction's block, and the offset from the start of the block | 
|  | // it is in. | 
|  | unsigned Offset = BBInfo[MBB->getNumber()].Offset; | 
|  |  | 
|  | // Sum instructions before MI in MBB. | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { | 
|  | assert(I != MBB->end() && "Didn't find MI in its own basic block?"); | 
|  | Offset += TII->GetInstSizeInBytes(I); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB | 
|  | /// ID. | 
|  | static bool CompareMBBNumbers(const MachineBasicBlock *LHS, | 
|  | const MachineBasicBlock *RHS) { | 
|  | return LHS->getNumber() < RHS->getNumber(); | 
|  | } | 
|  |  | 
|  | /// updateForInsertedWaterBlock - When a block is newly inserted into the | 
|  | /// machine function, it upsets all of the block numbers.  Renumber the blocks | 
|  | /// and update the arrays that parallel this numbering. | 
|  | void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { | 
|  | // Renumber the MBB's to keep them consecutive. | 
|  | NewBB->getParent()->RenumberBlocks(NewBB); | 
|  |  | 
|  | // Insert an entry into BBInfo to align it properly with the (newly | 
|  | // renumbered) block numbers. | 
|  | BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); | 
|  |  | 
|  | // Next, update WaterList.  Specifically, we need to add NewMBB as having | 
|  | // available water after it. | 
|  | water_iterator IP = | 
|  | std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, | 
|  | CompareMBBNumbers); | 
|  | WaterList.insert(IP, NewBB); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Split the basic block containing MI into two blocks, which are joined by | 
|  | /// an unconditional branch.  Update data structures and renumber blocks to | 
|  | /// account for this change and returns the newly created block. | 
|  | MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { | 
|  | MachineBasicBlock *OrigBB = MI->getParent(); | 
|  |  | 
|  | // Create a new MBB for the code after the OrigBB. | 
|  | MachineBasicBlock *NewBB = | 
|  | MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); | 
|  | MachineFunction::iterator MBBI = OrigBB; ++MBBI; | 
|  | MF->insert(MBBI, NewBB); | 
|  |  | 
|  | // Splice the instructions starting with MI over to NewBB. | 
|  | NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); | 
|  |  | 
|  | // Add an unconditional branch from OrigBB to NewBB. | 
|  | // Note the new unconditional branch is not being recorded. | 
|  | // There doesn't seem to be meaningful DebugInfo available; this doesn't | 
|  | // correspond to anything in the source. | 
|  | unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; | 
|  | if (!isThumb) | 
|  | BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); | 
|  | else | 
|  | BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) | 
|  | .addImm(ARMCC::AL).addReg(0); | 
|  | ++NumSplit; | 
|  |  | 
|  | // Update the CFG.  All succs of OrigBB are now succs of NewBB. | 
|  | NewBB->transferSuccessors(OrigBB); | 
|  |  | 
|  | // OrigBB branches to NewBB. | 
|  | OrigBB->addSuccessor(NewBB); | 
|  |  | 
|  | // Update internal data structures to account for the newly inserted MBB. | 
|  | // This is almost the same as updateForInsertedWaterBlock, except that | 
|  | // the Water goes after OrigBB, not NewBB. | 
|  | MF->RenumberBlocks(NewBB); | 
|  |  | 
|  | // Insert an entry into BBInfo to align it properly with the (newly | 
|  | // renumbered) block numbers. | 
|  | BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); | 
|  |  | 
|  | // Next, update WaterList.  Specifically, we need to add OrigMBB as having | 
|  | // available water after it (but not if it's already there, which happens | 
|  | // when splitting before a conditional branch that is followed by an | 
|  | // unconditional branch - in that case we want to insert NewBB). | 
|  | water_iterator IP = | 
|  | std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, | 
|  | CompareMBBNumbers); | 
|  | MachineBasicBlock* WaterBB = *IP; | 
|  | if (WaterBB == OrigBB) | 
|  | WaterList.insert(llvm::next(IP), NewBB); | 
|  | else | 
|  | WaterList.insert(IP, OrigBB); | 
|  | NewWaterList.insert(OrigBB); | 
|  |  | 
|  | // Figure out how large the OrigBB is.  As the first half of the original | 
|  | // block, it cannot contain a tablejump.  The size includes | 
|  | // the new jump we added.  (It should be possible to do this without | 
|  | // recounting everything, but it's very confusing, and this is rarely | 
|  | // executed.) | 
|  | computeBlockSize(OrigBB); | 
|  |  | 
|  | // Figure out how large the NewMBB is.  As the second half of the original | 
|  | // block, it may contain a tablejump. | 
|  | computeBlockSize(NewBB); | 
|  |  | 
|  | // All BBOffsets following these blocks must be modified. | 
|  | adjustBBOffsetsAfter(OrigBB); | 
|  |  | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | /// getUserOffset - Compute the offset of U.MI as seen by the hardware | 
|  | /// displacement computation.  Update U.KnownAlignment to match its current | 
|  | /// basic block location. | 
|  | unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { | 
|  | unsigned UserOffset = getOffsetOf(U.MI); | 
|  | const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; | 
|  | unsigned KnownBits = BBI.internalKnownBits(); | 
|  |  | 
|  | // The value read from PC is offset from the actual instruction address. | 
|  | UserOffset += (isThumb ? 4 : 8); | 
|  |  | 
|  | // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. | 
|  | // Make sure U.getMaxDisp() returns a constrained range. | 
|  | U.KnownAlignment = (KnownBits >= 2); | 
|  |  | 
|  | // On Thumb, offsets==2 mod 4 are rounded down by the hardware for | 
|  | // purposes of the displacement computation; compensate for that here. | 
|  | // For unknown alignments, getMaxDisp() constrains the range instead. | 
|  | if (isThumb && U.KnownAlignment) | 
|  | UserOffset &= ~3u; | 
|  |  | 
|  | return UserOffset; | 
|  | } | 
|  |  | 
|  | /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool | 
|  | /// reference) is within MaxDisp of TrialOffset (a proposed location of a | 
|  | /// constant pool entry). | 
|  | /// UserOffset is computed by getUserOffset above to include PC adjustments. If | 
|  | /// the mod 4 alignment of UserOffset is not known, the uncertainty must be | 
|  | /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. | 
|  | bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, | 
|  | unsigned TrialOffset, unsigned MaxDisp, | 
|  | bool NegativeOK, bool IsSoImm) { | 
|  | if (UserOffset <= TrialOffset) { | 
|  | // User before the Trial. | 
|  | if (TrialOffset - UserOffset <= MaxDisp) | 
|  | return true; | 
|  | // FIXME: Make use full range of soimm values. | 
|  | } else if (NegativeOK) { | 
|  | if (UserOffset - TrialOffset <= MaxDisp) | 
|  | return true; | 
|  | // FIXME: Make use full range of soimm values. | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isWaterInRange - Returns true if a CPE placed after the specified | 
|  | /// Water (a basic block) will be in range for the specific MI. | 
|  | /// | 
|  | /// Compute how much the function will grow by inserting a CPE after Water. | 
|  | bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, | 
|  | MachineBasicBlock* Water, CPUser &U, | 
|  | unsigned &Growth) { | 
|  | unsigned CPELogAlign = getCPELogAlign(U.CPEMI); | 
|  | unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); | 
|  | unsigned NextBlockOffset, NextBlockAlignment; | 
|  | MachineFunction::const_iterator NextBlock = Water; | 
|  | if (++NextBlock == MF->end()) { | 
|  | NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); | 
|  | NextBlockAlignment = 0; | 
|  | } else { | 
|  | NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; | 
|  | NextBlockAlignment = NextBlock->getAlignment(); | 
|  | } | 
|  | unsigned Size = U.CPEMI->getOperand(2).getImm(); | 
|  | unsigned CPEEnd = CPEOffset + Size; | 
|  |  | 
|  | // The CPE may be able to hide in the alignment padding before the next | 
|  | // block. It may also cause more padding to be required if it is more aligned | 
|  | // that the next block. | 
|  | if (CPEEnd > NextBlockOffset) { | 
|  | Growth = CPEEnd - NextBlockOffset; | 
|  | // Compute the padding that would go at the end of the CPE to align the next | 
|  | // block. | 
|  | Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); | 
|  |  | 
|  | // If the CPE is to be inserted before the instruction, that will raise | 
|  | // the offset of the instruction. Also account for unknown alignment padding | 
|  | // in blocks between CPE and the user. | 
|  | if (CPEOffset < UserOffset) | 
|  | UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); | 
|  | } else | 
|  | // CPE fits in existing padding. | 
|  | Growth = 0; | 
|  |  | 
|  | return isOffsetInRange(UserOffset, CPEOffset, U); | 
|  | } | 
|  |  | 
|  | /// isCPEntryInRange - Returns true if the distance between specific MI and | 
|  | /// specific ConstPool entry instruction can fit in MI's displacement field. | 
|  | bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, | 
|  | MachineInstr *CPEMI, unsigned MaxDisp, | 
|  | bool NegOk, bool DoDump) { | 
|  | unsigned CPEOffset  = getOffsetOf(CPEMI); | 
|  |  | 
|  | if (DoDump) { | 
|  | DEBUG({ | 
|  | unsigned Block = MI->getParent()->getNumber(); | 
|  | const BasicBlockInfo &BBI = BBInfo[Block]; | 
|  | dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() | 
|  | << " max delta=" << MaxDisp | 
|  | << format(" insn address=%#x", UserOffset) | 
|  | << " in BB#" << Block << ": " | 
|  | << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI | 
|  | << format("CPE address=%#x offset=%+d: ", CPEOffset, | 
|  | int(CPEOffset-UserOffset)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// BBIsJumpedOver - Return true of the specified basic block's only predecessor | 
|  | /// unconditionally branches to its only successor. | 
|  | static bool BBIsJumpedOver(MachineBasicBlock *MBB) { | 
|  | if (MBB->pred_size() != 1 || MBB->succ_size() != 1) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *Succ = *MBB->succ_begin(); | 
|  | MachineBasicBlock *Pred = *MBB->pred_begin(); | 
|  | MachineInstr *PredMI = &Pred->back(); | 
|  | if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB | 
|  | || PredMI->getOpcode() == ARM::t2B) | 
|  | return PredMI->getOperand(0).getMBB() == Succ; | 
|  | return false; | 
|  | } | 
|  | #endif // NDEBUG | 
|  |  | 
|  | void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { | 
|  | unsigned BBNum = BB->getNumber(); | 
|  | for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { | 
|  | // Get the offset and known bits at the end of the layout predecessor. | 
|  | // Include the alignment of the current block. | 
|  | unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); | 
|  | unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); | 
|  | unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); | 
|  |  | 
|  | // This is where block i begins.  Stop if the offset is already correct, | 
|  | // and we have updated 2 blocks.  This is the maximum number of blocks | 
|  | // changed before calling this function. | 
|  | if (i > BBNum + 2 && | 
|  | BBInfo[i].Offset == Offset && | 
|  | BBInfo[i].KnownBits == KnownBits) | 
|  | break; | 
|  |  | 
|  | BBInfo[i].Offset = Offset; | 
|  | BBInfo[i].KnownBits = KnownBits; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// decrementCPEReferenceCount - find the constant pool entry with index CPI | 
|  | /// and instruction CPEMI, and decrement its refcount.  If the refcount | 
|  | /// becomes 0 remove the entry and instruction.  Returns true if we removed | 
|  | /// the entry, false if we didn't. | 
|  |  | 
|  | bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, | 
|  | MachineInstr *CPEMI) { | 
|  | // Find the old entry. Eliminate it if it is no longer used. | 
|  | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); | 
|  | assert(CPE && "Unexpected!"); | 
|  | if (--CPE->RefCount == 0) { | 
|  | removeDeadCPEMI(CPEMI); | 
|  | CPE->CPEMI = NULL; | 
|  | --NumCPEs; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// LookForCPEntryInRange - see if the currently referenced CPE is in range; | 
|  | /// if not, see if an in-range clone of the CPE is in range, and if so, | 
|  | /// change the data structures so the user references the clone.  Returns: | 
|  | /// 0 = no existing entry found | 
|  | /// 1 = entry found, and there were no code insertions or deletions | 
|  | /// 2 = entry found, and there were code insertions or deletions | 
|  | int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) | 
|  | { | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  |  | 
|  | // Check to see if the CPE is already in-range. | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, | 
|  | true)) { | 
|  | DEBUG(dbgs() << "In range\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // No.  Look for previously created clones of the CPE that are in range. | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | std::vector<CPEntry> &CPEs = CPEntries[CPI]; | 
|  | for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { | 
|  | // We already tried this one | 
|  | if (CPEs[i].CPEMI == CPEMI) | 
|  | continue; | 
|  | // Removing CPEs can leave empty entries, skip | 
|  | if (CPEs[i].CPEMI == NULL) | 
|  | continue; | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), | 
|  | U.NegOk)) { | 
|  | DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" | 
|  | << CPEs[i].CPI << "\n"); | 
|  | // Point the CPUser node to the replacement | 
|  | U.CPEMI = CPEs[i].CPEMI; | 
|  | // Change the CPI in the instruction operand to refer to the clone. | 
|  | for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) | 
|  | if (UserMI->getOperand(j).isCPI()) { | 
|  | UserMI->getOperand(j).setIndex(CPEs[i].CPI); | 
|  | break; | 
|  | } | 
|  | // Adjust the refcount of the clone... | 
|  | CPEs[i].RefCount++; | 
|  | // ...and the original.  If we didn't remove the old entry, none of the | 
|  | // addresses changed, so we don't need another pass. | 
|  | return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in | 
|  | /// the specific unconditional branch instruction. | 
|  | static inline unsigned getUnconditionalBrDisp(int Opc) { | 
|  | switch (Opc) { | 
|  | case ARM::tB: | 
|  | return ((1<<10)-1)*2; | 
|  | case ARM::t2B: | 
|  | return ((1<<23)-1)*2; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ((1<<23)-1)*4; | 
|  | } | 
|  |  | 
|  | /// findAvailableWater - Look for an existing entry in the WaterList in which | 
|  | /// we can place the CPE referenced from U so it's within range of U's MI. | 
|  | /// Returns true if found, false if not.  If it returns true, WaterIter | 
|  | /// is set to the WaterList entry.  For Thumb, prefer water that will not | 
|  | /// introduce padding to water that will.  To ensure that this pass | 
|  | /// terminates, the CPE location for a particular CPUser is only allowed to | 
|  | /// move to a lower address, so search backward from the end of the list and | 
|  | /// prefer the first water that is in range. | 
|  | bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, | 
|  | water_iterator &WaterIter) { | 
|  | if (WaterList.empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned BestGrowth = ~0u; | 
|  | for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; | 
|  | --IP) { | 
|  | MachineBasicBlock* WaterBB = *IP; | 
|  | // Check if water is in range and is either at a lower address than the | 
|  | // current "high water mark" or a new water block that was created since | 
|  | // the previous iteration by inserting an unconditional branch.  In the | 
|  | // latter case, we want to allow resetting the high water mark back to | 
|  | // this new water since we haven't seen it before.  Inserting branches | 
|  | // should be relatively uncommon and when it does happen, we want to be | 
|  | // sure to take advantage of it for all the CPEs near that block, so that | 
|  | // we don't insert more branches than necessary. | 
|  | unsigned Growth; | 
|  | if (isWaterInRange(UserOffset, WaterBB, U, Growth) && | 
|  | (WaterBB->getNumber() < U.HighWaterMark->getNumber() || | 
|  | NewWaterList.count(WaterBB)) && Growth < BestGrowth) { | 
|  | // This is the least amount of required padding seen so far. | 
|  | BestGrowth = Growth; | 
|  | WaterIter = IP; | 
|  | DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() | 
|  | << " Growth=" << Growth << '\n'); | 
|  |  | 
|  | // Keep looking unless it is perfect. | 
|  | if (BestGrowth == 0) | 
|  | return true; | 
|  | } | 
|  | if (IP == B) | 
|  | break; | 
|  | } | 
|  | return BestGrowth != ~0u; | 
|  | } | 
|  |  | 
|  | /// createNewWater - No existing WaterList entry will work for | 
|  | /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the | 
|  | /// block is used if in range, and the conditional branch munged so control | 
|  | /// flow is correct.  Otherwise the block is split to create a hole with an | 
|  | /// unconditional branch around it.  In either case NewMBB is set to a | 
|  | /// block following which the new island can be inserted (the WaterList | 
|  | /// is not adjusted). | 
|  | void ARMConstantIslands::createNewWater(unsigned CPUserIndex, | 
|  | unsigned UserOffset, | 
|  | MachineBasicBlock *&NewMBB) { | 
|  | CPUser &U = CPUsers[CPUserIndex]; | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  | unsigned CPELogAlign = getCPELogAlign(CPEMI); | 
|  | MachineBasicBlock *UserMBB = UserMI->getParent(); | 
|  | const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; | 
|  |  | 
|  | // If the block does not end in an unconditional branch already, and if the | 
|  | // end of the block is within range, make new water there.  (The addition | 
|  | // below is for the unconditional branch we will be adding: 4 bytes on ARM + | 
|  | // Thumb2, 2 on Thumb1. | 
|  | if (BBHasFallthrough(UserMBB)) { | 
|  | // Size of branch to insert. | 
|  | unsigned Delta = isThumb1 ? 2 : 4; | 
|  | // Compute the offset where the CPE will begin. | 
|  | unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; | 
|  |  | 
|  | if (isOffsetInRange(UserOffset, CPEOffset, U)) { | 
|  | DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() | 
|  | << format(", expected CPE offset %#x\n", CPEOffset)); | 
|  | NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); | 
|  | // Add an unconditional branch from UserMBB to fallthrough block.  Record | 
|  | // it for branch lengthening; this new branch will not get out of range, | 
|  | // but if the preceding conditional branch is out of range, the targets | 
|  | // will be exchanged, and the altered branch may be out of range, so the | 
|  | // machinery has to know about it. | 
|  | int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; | 
|  | if (!isThumb) | 
|  | BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); | 
|  | else | 
|  | BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) | 
|  | .addImm(ARMCC::AL).addReg(0); | 
|  | unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); | 
|  | ImmBranches.push_back(ImmBranch(&UserMBB->back(), | 
|  | MaxDisp, false, UncondBr)); | 
|  | BBInfo[UserMBB->getNumber()].Size += Delta; | 
|  | adjustBBOffsetsAfter(UserMBB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // What a big block.  Find a place within the block to split it.  This is a | 
|  | // little tricky on Thumb1 since instructions are 2 bytes and constant pool | 
|  | // entries are 4 bytes: if instruction I references island CPE, and | 
|  | // instruction I+1 references CPE', it will not work well to put CPE as far | 
|  | // forward as possible, since then CPE' cannot immediately follow it (that | 
|  | // location is 2 bytes farther away from I+1 than CPE was from I) and we'd | 
|  | // need to create a new island.  So, we make a first guess, then walk through | 
|  | // the instructions between the one currently being looked at and the | 
|  | // possible insertion point, and make sure any other instructions that | 
|  | // reference CPEs will be able to use the same island area; if not, we back | 
|  | // up the insertion point. | 
|  |  | 
|  | // Try to split the block so it's fully aligned.  Compute the latest split | 
|  | // point where we can add a 4-byte branch instruction, and then align to | 
|  | // LogAlign which is the largest possible alignment in the function. | 
|  | unsigned LogAlign = MF->getAlignment(); | 
|  | assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); | 
|  | unsigned KnownBits = UserBBI.internalKnownBits(); | 
|  | unsigned UPad = UnknownPadding(LogAlign, KnownBits); | 
|  | unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; | 
|  | DEBUG(dbgs() << format("Split in middle of big block before %#x", | 
|  | BaseInsertOffset)); | 
|  |  | 
|  | // The 4 in the following is for the unconditional branch we'll be inserting | 
|  | // (allows for long branch on Thumb1).  Alignment of the island is handled | 
|  | // inside isOffsetInRange. | 
|  | BaseInsertOffset -= 4; | 
|  |  | 
|  | DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) | 
|  | << " la=" << LogAlign | 
|  | << " kb=" << KnownBits | 
|  | << " up=" << UPad << '\n'); | 
|  |  | 
|  | // This could point off the end of the block if we've already got constant | 
|  | // pool entries following this block; only the last one is in the water list. | 
|  | // Back past any possible branches (allow for a conditional and a maximally | 
|  | // long unconditional). | 
|  | if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { | 
|  | BaseInsertOffset = UserBBI.postOffset() - UPad - 8; | 
|  | DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); | 
|  | } | 
|  | unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + | 
|  | CPEMI->getOperand(2).getImm(); | 
|  | MachineBasicBlock::iterator MI = UserMI; | 
|  | ++MI; | 
|  | unsigned CPUIndex = CPUserIndex+1; | 
|  | unsigned NumCPUsers = CPUsers.size(); | 
|  | MachineInstr *LastIT = 0; | 
|  | for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); | 
|  | Offset < BaseInsertOffset; | 
|  | Offset += TII->GetInstSizeInBytes(MI), | 
|  | MI = llvm::next(MI)) { | 
|  | assert(MI != UserMBB->end() && "Fell off end of block"); | 
|  | if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { | 
|  | CPUser &U = CPUsers[CPUIndex]; | 
|  | if (!isOffsetInRange(Offset, EndInsertOffset, U)) { | 
|  | // Shift intertion point by one unit of alignment so it is within reach. | 
|  | BaseInsertOffset -= 1u << LogAlign; | 
|  | EndInsertOffset  -= 1u << LogAlign; | 
|  | } | 
|  | // This is overly conservative, as we don't account for CPEMIs being | 
|  | // reused within the block, but it doesn't matter much.  Also assume CPEs | 
|  | // are added in order with alignment padding.  We may eventually be able | 
|  | // to pack the aligned CPEs better. | 
|  | EndInsertOffset += U.CPEMI->getOperand(2).getImm(); | 
|  | CPUIndex++; | 
|  | } | 
|  |  | 
|  | // Remember the last IT instruction. | 
|  | if (MI->getOpcode() == ARM::t2IT) | 
|  | LastIT = MI; | 
|  | } | 
|  |  | 
|  | --MI; | 
|  |  | 
|  | // Avoid splitting an IT block. | 
|  | if (LastIT) { | 
|  | unsigned PredReg = 0; | 
|  | ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); | 
|  | if (CC != ARMCC::AL) | 
|  | MI = LastIT; | 
|  | } | 
|  | NewMBB = splitBlockBeforeInstr(MI); | 
|  | } | 
|  |  | 
|  | /// handleConstantPoolUser - Analyze the specified user, checking to see if it | 
|  | /// is out-of-range.  If so, pick up the constant pool value and move it some | 
|  | /// place in-range.  Return true if we changed any addresses (thus must run | 
|  | /// another pass of branch lengthening), false otherwise. | 
|  | bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { | 
|  | CPUser &U = CPUsers[CPUserIndex]; | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | unsigned Size = CPEMI->getOperand(2).getImm(); | 
|  | // Compute this only once, it's expensive. | 
|  | unsigned UserOffset = getUserOffset(U); | 
|  |  | 
|  | // See if the current entry is within range, or there is a clone of it | 
|  | // in range. | 
|  | int result = findInRangeCPEntry(U, UserOffset); | 
|  | if (result==1) return false; | 
|  | else if (result==2) return true; | 
|  |  | 
|  | // No existing clone of this CPE is within range. | 
|  | // We will be generating a new clone.  Get a UID for it. | 
|  | unsigned ID = AFI->createPICLabelUId(); | 
|  |  | 
|  | // Look for water where we can place this CPE. | 
|  | MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *NewMBB; | 
|  | water_iterator IP; | 
|  | if (findAvailableWater(U, UserOffset, IP)) { | 
|  | DEBUG(dbgs() << "Found water in range\n"); | 
|  | MachineBasicBlock *WaterBB = *IP; | 
|  |  | 
|  | // If the original WaterList entry was "new water" on this iteration, | 
|  | // propagate that to the new island.  This is just keeping NewWaterList | 
|  | // updated to match the WaterList, which will be updated below. | 
|  | if (NewWaterList.erase(WaterBB)) | 
|  | NewWaterList.insert(NewIsland); | 
|  |  | 
|  | // The new CPE goes before the following block (NewMBB). | 
|  | NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); | 
|  |  | 
|  | } else { | 
|  | // No water found. | 
|  | DEBUG(dbgs() << "No water found\n"); | 
|  | createNewWater(CPUserIndex, UserOffset, NewMBB); | 
|  |  | 
|  | // splitBlockBeforeInstr adds to WaterList, which is important when it is | 
|  | // called while handling branches so that the water will be seen on the | 
|  | // next iteration for constant pools, but in this context, we don't want | 
|  | // it.  Check for this so it will be removed from the WaterList. | 
|  | // Also remove any entry from NewWaterList. | 
|  | MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); | 
|  | IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); | 
|  | if (IP != WaterList.end()) | 
|  | NewWaterList.erase(WaterBB); | 
|  |  | 
|  | // We are adding new water.  Update NewWaterList. | 
|  | NewWaterList.insert(NewIsland); | 
|  | } | 
|  |  | 
|  | // Remove the original WaterList entry; we want subsequent insertions in | 
|  | // this vicinity to go after the one we're about to insert.  This | 
|  | // considerably reduces the number of times we have to move the same CPE | 
|  | // more than once and is also important to ensure the algorithm terminates. | 
|  | if (IP != WaterList.end()) | 
|  | WaterList.erase(IP); | 
|  |  | 
|  | // Okay, we know we can put an island before NewMBB now, do it! | 
|  | MF->insert(NewMBB, NewIsland); | 
|  |  | 
|  | // Update internal data structures to account for the newly inserted MBB. | 
|  | updateForInsertedWaterBlock(NewIsland); | 
|  |  | 
|  | // Decrement the old entry, and remove it if refcount becomes 0. | 
|  | decrementCPEReferenceCount(CPI, CPEMI); | 
|  |  | 
|  | // Now that we have an island to add the CPE to, clone the original CPE and | 
|  | // add it to the island. | 
|  | U.HighWaterMark = NewIsland; | 
|  | U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) | 
|  | .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); | 
|  | CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); | 
|  | ++NumCPEs; | 
|  |  | 
|  | // Mark the basic block as aligned as required by the const-pool entry. | 
|  | NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); | 
|  |  | 
|  | // Increase the size of the island block to account for the new entry. | 
|  | BBInfo[NewIsland->getNumber()].Size += Size; | 
|  | adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); | 
|  |  | 
|  | // Finally, change the CPI in the instruction operand to be ID. | 
|  | for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) | 
|  | if (UserMI->getOperand(i).isCPI()) { | 
|  | UserMI->getOperand(i).setIndex(ID); | 
|  | break; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI | 
|  | << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update | 
|  | /// sizes and offsets of impacted basic blocks. | 
|  | void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { | 
|  | MachineBasicBlock *CPEBB = CPEMI->getParent(); | 
|  | unsigned Size = CPEMI->getOperand(2).getImm(); | 
|  | CPEMI->eraseFromParent(); | 
|  | BBInfo[CPEBB->getNumber()].Size -= Size; | 
|  | // All succeeding offsets have the current size value added in, fix this. | 
|  | if (CPEBB->empty()) { | 
|  | BBInfo[CPEBB->getNumber()].Size = 0; | 
|  |  | 
|  | // This block no longer needs to be aligned. <rdar://problem/10534709>. | 
|  | CPEBB->setAlignment(0); | 
|  | } else | 
|  | // Entries are sorted by descending alignment, so realign from the front. | 
|  | CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); | 
|  |  | 
|  | adjustBBOffsetsAfter(CPEBB); | 
|  | // An island has only one predecessor BB and one successor BB. Check if | 
|  | // this BB's predecessor jumps directly to this BB's successor. This | 
|  | // shouldn't happen currently. | 
|  | assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); | 
|  | // FIXME: remove the empty blocks after all the work is done? | 
|  | } | 
|  |  | 
|  | /// removeUnusedCPEntries - Remove constant pool entries whose refcounts | 
|  | /// are zero. | 
|  | bool ARMConstantIslands::removeUnusedCPEntries() { | 
|  | unsigned MadeChange = false; | 
|  | for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { | 
|  | std::vector<CPEntry> &CPEs = CPEntries[i]; | 
|  | for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { | 
|  | if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { | 
|  | removeDeadCPEMI(CPEs[j].CPEMI); | 
|  | CPEs[j].CPEMI = NULL; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// isBBInRange - Returns true if the distance between specific MI and | 
|  | /// specific BB can fit in MI's displacement field. | 
|  | bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, | 
|  | unsigned MaxDisp) { | 
|  | unsigned PCAdj      = isThumb ? 4 : 8; | 
|  | unsigned BrOffset   = getOffsetOf(MI) + PCAdj; | 
|  | unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; | 
|  |  | 
|  | DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() | 
|  | << " from BB#" << MI->getParent()->getNumber() | 
|  | << " max delta=" << MaxDisp | 
|  | << " from " << getOffsetOf(MI) << " to " << DestOffset | 
|  | << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); | 
|  |  | 
|  | if (BrOffset <= DestOffset) { | 
|  | // Branch before the Dest. | 
|  | if (DestOffset-BrOffset <= MaxDisp) | 
|  | return true; | 
|  | } else { | 
|  | if (BrOffset-DestOffset <= MaxDisp) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// fixupImmediateBr - Fix up an immediate branch whose destination is too far | 
|  | /// away to fit in its displacement field. | 
|  | bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); | 
|  |  | 
|  | // Check to see if the DestBB is already in-range. | 
|  | if (isBBInRange(MI, DestBB, Br.MaxDisp)) | 
|  | return false; | 
|  |  | 
|  | if (!Br.isCond) | 
|  | return fixupUnconditionalBr(Br); | 
|  | return fixupConditionalBr(Br); | 
|  | } | 
|  |  | 
|  | /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is | 
|  | /// too far away to fit in its displacement field. If the LR register has been | 
|  | /// spilled in the epilogue, then we can use BL to implement a far jump. | 
|  | /// Otherwise, add an intermediate branch instruction to a branch. | 
|  | bool | 
|  | ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | if (!isThumb1) | 
|  | llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); | 
|  |  | 
|  | // Use BL to implement far jump. | 
|  | Br.MaxDisp = (1 << 21) * 2; | 
|  | MI->setDesc(TII->get(ARM::tBfar)); | 
|  | BBInfo[MBB->getNumber()].Size += 2; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | HasFarJump = true; | 
|  | ++NumUBrFixed; | 
|  |  | 
|  | DEBUG(dbgs() << "  Changed B to long jump " << *MI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// fixupConditionalBr - Fix up a conditional branch whose destination is too | 
|  | /// far away to fit in its displacement field. It is converted to an inverse | 
|  | /// conditional branch + an unconditional branch to the destination. | 
|  | bool | 
|  | ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); | 
|  |  | 
|  | // Add an unconditional branch to the destination and invert the branch | 
|  | // condition to jump over it: | 
|  | // blt L1 | 
|  | // => | 
|  | // bge L2 | 
|  | // b   L1 | 
|  | // L2: | 
|  | ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); | 
|  | CC = ARMCC::getOppositeCondition(CC); | 
|  | unsigned CCReg = MI->getOperand(2).getReg(); | 
|  |  | 
|  | // If the branch is at the end of its MBB and that has a fall-through block, | 
|  | // direct the updated conditional branch to the fall-through block. Otherwise, | 
|  | // split the MBB before the next instruction. | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | MachineInstr *BMI = &MBB->back(); | 
|  | bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); | 
|  |  | 
|  | ++NumCBrFixed; | 
|  | if (BMI != MI) { | 
|  | if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && | 
|  | BMI->getOpcode() == Br.UncondBr) { | 
|  | // Last MI in the BB is an unconditional branch. Can we simply invert the | 
|  | // condition and swap destinations: | 
|  | // beq L1 | 
|  | // b   L2 | 
|  | // => | 
|  | // bne L2 | 
|  | // b   L1 | 
|  | MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); | 
|  | if (isBBInRange(MI, NewDest, Br.MaxDisp)) { | 
|  | DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with " | 
|  | << *BMI); | 
|  | BMI->getOperand(0).setMBB(DestBB); | 
|  | MI->getOperand(0).setMBB(NewDest); | 
|  | MI->getOperand(1).setImm(CC); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NeedSplit) { | 
|  | splitBlockBeforeInstr(MI); | 
|  | // No need for the branch to the next block. We're adding an unconditional | 
|  | // branch to the destination. | 
|  | int delta = TII->GetInstSizeInBytes(&MBB->back()); | 
|  | BBInfo[MBB->getNumber()].Size -= delta; | 
|  | MBB->back().eraseFromParent(); | 
|  | // BBInfo[SplitBB].Offset is wrong temporarily, fixed below | 
|  | } | 
|  | MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); | 
|  |  | 
|  | DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber() | 
|  | << " also invert condition and change dest. to BB#" | 
|  | << NextBB->getNumber() << "\n"); | 
|  |  | 
|  | // Insert a new conditional branch and a new unconditional branch. | 
|  | // Also update the ImmBranch as well as adding a new entry for the new branch. | 
|  | BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) | 
|  | .addMBB(NextBB).addImm(CC).addReg(CCReg); | 
|  | Br.MI = &MBB->back(); | 
|  | BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); | 
|  | if (isThumb) | 
|  | BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) | 
|  | .addImm(ARMCC::AL).addReg(0); | 
|  | else | 
|  | BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); | 
|  | BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); | 
|  | unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); | 
|  | ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); | 
|  |  | 
|  | // Remove the old conditional branch.  It may or may not still be in MBB. | 
|  | BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); | 
|  | MI->eraseFromParent(); | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills | 
|  | /// LR / restores LR to pc. FIXME: This is done here because it's only possible | 
|  | /// to do this if tBfar is not used. | 
|  | bool ARMConstantIslands::undoLRSpillRestore() { | 
|  | bool MadeChange = false; | 
|  | for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { | 
|  | MachineInstr *MI = PushPopMIs[i]; | 
|  | // First two operands are predicates. | 
|  | if (MI->getOpcode() == ARM::tPOP_RET && | 
|  | MI->getOperand(2).getReg() == ARM::PC && | 
|  | MI->getNumExplicitOperands() == 3) { | 
|  | // Create the new insn and copy the predicate from the old. | 
|  | BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) | 
|  | .addOperand(MI->getOperand(0)) | 
|  | .addOperand(MI->getOperand(1)); | 
|  | MI->eraseFromParent(); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions | 
|  | // below may shrink MI. | 
|  | bool | 
|  | ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { | 
|  | switch(MI->getOpcode()) { | 
|  | // optimizeThumb2Instructions. | 
|  | case ARM::t2LEApcrel: | 
|  | case ARM::t2LDRpci: | 
|  | // optimizeThumb2Branches. | 
|  | case ARM::t2B: | 
|  | case ARM::t2Bcc: | 
|  | case ARM::tBcc: | 
|  | // optimizeThumb2JumpTables. | 
|  | case ARM::t2BR_JT: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMConstantIslands::optimizeThumb2Instructions() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Shrink ADR and LDR from constantpool. | 
|  | for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { | 
|  | CPUser &U = CPUsers[i]; | 
|  | unsigned Opcode = U.MI->getOpcode(); | 
|  | unsigned NewOpc = 0; | 
|  | unsigned Scale = 1; | 
|  | unsigned Bits = 0; | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ARM::t2LEApcrel: | 
|  | if (isARMLowRegister(U.MI->getOperand(0).getReg())) { | 
|  | NewOpc = ARM::tLEApcrel; | 
|  | Bits = 8; | 
|  | Scale = 4; | 
|  | } | 
|  | break; | 
|  | case ARM::t2LDRpci: | 
|  | if (isARMLowRegister(U.MI->getOperand(0).getReg())) { | 
|  | NewOpc = ARM::tLDRpci; | 
|  | Bits = 8; | 
|  | Scale = 4; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!NewOpc) | 
|  | continue; | 
|  |  | 
|  | unsigned UserOffset = getUserOffset(U); | 
|  | unsigned MaxOffs = ((1 << Bits) - 1) * Scale; | 
|  |  | 
|  | // Be conservative with inline asm. | 
|  | if (!U.KnownAlignment) | 
|  | MaxOffs -= 2; | 
|  |  | 
|  | // FIXME: Check if offset is multiple of scale if scale is not 4. | 
|  | if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { | 
|  | DEBUG(dbgs() << "Shrink: " << *U.MI); | 
|  | U.MI->setDesc(TII->get(NewOpc)); | 
|  | MachineBasicBlock *MBB = U.MI->getParent(); | 
|  | BBInfo[MBB->getNumber()].Size -= 2; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | ++NumT2CPShrunk; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | MadeChange |= optimizeThumb2Branches(); | 
|  | MadeChange |= optimizeThumb2JumpTables(); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool ARMConstantIslands::optimizeThumb2Branches() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { | 
|  | ImmBranch &Br = ImmBranches[i]; | 
|  | unsigned Opcode = Br.MI->getOpcode(); | 
|  | unsigned NewOpc = 0; | 
|  | unsigned Scale = 1; | 
|  | unsigned Bits = 0; | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ARM::t2B: | 
|  | NewOpc = ARM::tB; | 
|  | Bits = 11; | 
|  | Scale = 2; | 
|  | break; | 
|  | case ARM::t2Bcc: { | 
|  | NewOpc = ARM::tBcc; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (NewOpc) { | 
|  | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; | 
|  | MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); | 
|  | if (isBBInRange(Br.MI, DestBB, MaxOffs)) { | 
|  | DEBUG(dbgs() << "Shrink branch: " << *Br.MI); | 
|  | Br.MI->setDesc(TII->get(NewOpc)); | 
|  | MachineBasicBlock *MBB = Br.MI->getParent(); | 
|  | BBInfo[MBB->getNumber()].Size -= 2; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | ++NumT2BrShrunk; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Opcode = Br.MI->getOpcode(); | 
|  | if (Opcode != ARM::tBcc) | 
|  | continue; | 
|  |  | 
|  | // If the conditional branch doesn't kill CPSR, then CPSR can be liveout | 
|  | // so this transformation is not safe. | 
|  | if (!Br.MI->killsRegister(ARM::CPSR)) | 
|  | continue; | 
|  |  | 
|  | NewOpc = 0; | 
|  | unsigned PredReg = 0; | 
|  | ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); | 
|  | if (Pred == ARMCC::EQ) | 
|  | NewOpc = ARM::tCBZ; | 
|  | else if (Pred == ARMCC::NE) | 
|  | NewOpc = ARM::tCBNZ; | 
|  | if (!NewOpc) | 
|  | continue; | 
|  | MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); | 
|  | // Check if the distance is within 126. Subtract starting offset by 2 | 
|  | // because the cmp will be eliminated. | 
|  | unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; | 
|  | unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; | 
|  | if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { | 
|  | MachineBasicBlock::iterator CmpMI = Br.MI; | 
|  | if (CmpMI != Br.MI->getParent()->begin()) { | 
|  | --CmpMI; | 
|  | if (CmpMI->getOpcode() == ARM::tCMPi8) { | 
|  | unsigned Reg = CmpMI->getOperand(0).getReg(); | 
|  | Pred = getInstrPredicate(CmpMI, PredReg); | 
|  | if (Pred == ARMCC::AL && | 
|  | CmpMI->getOperand(1).getImm() == 0 && | 
|  | isARMLowRegister(Reg)) { | 
|  | MachineBasicBlock *MBB = Br.MI->getParent(); | 
|  | DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); | 
|  | MachineInstr *NewBR = | 
|  | BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) | 
|  | .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); | 
|  | CmpMI->eraseFromParent(); | 
|  | Br.MI->eraseFromParent(); | 
|  | Br.MI = NewBR; | 
|  | BBInfo[MBB->getNumber()].Size -= 2; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | ++NumCBZ; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller | 
|  | /// jumptables when it's possible. | 
|  | bool ARMConstantIslands::optimizeThumb2JumpTables() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // FIXME: After the tables are shrunk, can we get rid some of the | 
|  | // constantpool tables? | 
|  | MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | if (MJTI == 0) return false; | 
|  |  | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { | 
|  | MachineInstr *MI = T2JumpTables[i]; | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | unsigned NumOps = MCID.getNumOperands(); | 
|  | unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); | 
|  | MachineOperand JTOP = MI->getOperand(JTOpIdx); | 
|  | unsigned JTI = JTOP.getIndex(); | 
|  | assert(JTI < JT.size()); | 
|  |  | 
|  | bool ByteOk = true; | 
|  | bool HalfWordOk = true; | 
|  | unsigned JTOffset = getOffsetOf(MI) + 4; | 
|  | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
|  | for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { | 
|  | MachineBasicBlock *MBB = JTBBs[j]; | 
|  | unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; | 
|  | // Negative offset is not ok. FIXME: We should change BB layout to make | 
|  | // sure all the branches are forward. | 
|  | if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) | 
|  | ByteOk = false; | 
|  | unsigned TBHLimit = ((1<<16)-1)*2; | 
|  | if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) | 
|  | HalfWordOk = false; | 
|  | if (!ByteOk && !HalfWordOk) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ByteOk || HalfWordOk) { | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | unsigned BaseReg = MI->getOperand(0).getReg(); | 
|  | bool BaseRegKill = MI->getOperand(0).isKill(); | 
|  | if (!BaseRegKill) | 
|  | continue; | 
|  | unsigned IdxReg = MI->getOperand(1).getReg(); | 
|  | bool IdxRegKill = MI->getOperand(1).isKill(); | 
|  |  | 
|  | // Scan backwards to find the instruction that defines the base | 
|  | // register. Due to post-RA scheduling, we can't count on it | 
|  | // immediately preceding the branch instruction. | 
|  | MachineBasicBlock::iterator PrevI = MI; | 
|  | MachineBasicBlock::iterator B = MBB->begin(); | 
|  | while (PrevI != B && !PrevI->definesRegister(BaseReg)) | 
|  | --PrevI; | 
|  |  | 
|  | // If for some reason we didn't find it, we can't do anything, so | 
|  | // just skip this one. | 
|  | if (!PrevI->definesRegister(BaseReg)) | 
|  | continue; | 
|  |  | 
|  | MachineInstr *AddrMI = PrevI; | 
|  | bool OptOk = true; | 
|  | // Examine the instruction that calculates the jumptable entry address. | 
|  | // Make sure it only defines the base register and kills any uses | 
|  | // other than the index register. | 
|  | for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { | 
|  | const MachineOperand &MO = AddrMI->getOperand(k); | 
|  | if (!MO.isReg() || !MO.getReg()) | 
|  | continue; | 
|  | if (MO.isDef() && MO.getReg() != BaseReg) { | 
|  | OptOk = false; | 
|  | break; | 
|  | } | 
|  | if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { | 
|  | OptOk = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!OptOk) | 
|  | continue; | 
|  |  | 
|  | // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction | 
|  | // that gave us the initial base register definition. | 
|  | for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) | 
|  | ; | 
|  |  | 
|  | // The instruction should be a tLEApcrel or t2LEApcrelJT; we want | 
|  | // to delete it as well. | 
|  | MachineInstr *LeaMI = PrevI; | 
|  | if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && | 
|  | LeaMI->getOpcode() != ARM::t2LEApcrelJT) || | 
|  | LeaMI->getOperand(0).getReg() != BaseReg) | 
|  | OptOk = false; | 
|  |  | 
|  | if (!OptOk) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI | 
|  | << "      lea: " << *LeaMI); | 
|  | unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; | 
|  | MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) | 
|  | .addReg(IdxReg, getKillRegState(IdxRegKill)) | 
|  | .addJumpTableIndex(JTI, JTOP.getTargetFlags()) | 
|  | .addImm(MI->getOperand(JTOpIdx+1).getImm()); | 
|  | DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); | 
|  | // FIXME: Insert an "ALIGN" instruction to ensure the next instruction | 
|  | // is 2-byte aligned. For now, asm printer will fix it up. | 
|  | unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); | 
|  | unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); | 
|  | OrigSize += TII->GetInstSizeInBytes(LeaMI); | 
|  | OrigSize += TII->GetInstSizeInBytes(MI); | 
|  |  | 
|  | AddrMI->eraseFromParent(); | 
|  | LeaMI->eraseFromParent(); | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | int delta = OrigSize - NewSize; | 
|  | BBInfo[MBB->getNumber()].Size -= delta; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  |  | 
|  | ++NumTBs; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that | 
|  | /// jump tables always branch forwards, since that's what tbb and tbh need. | 
|  | bool ARMConstantIslands::reorderThumb2JumpTables() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | if (MJTI == 0) return false; | 
|  |  | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { | 
|  | MachineInstr *MI = T2JumpTables[i]; | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | unsigned NumOps = MCID.getNumOperands(); | 
|  | unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); | 
|  | MachineOperand JTOP = MI->getOperand(JTOpIdx); | 
|  | unsigned JTI = JTOP.getIndex(); | 
|  | assert(JTI < JT.size()); | 
|  |  | 
|  | // We prefer if target blocks for the jump table come after the jump | 
|  | // instruction so we can use TB[BH]. Loop through the target blocks | 
|  | // and try to adjust them such that that's true. | 
|  | int JTNumber = MI->getParent()->getNumber(); | 
|  | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
|  | for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { | 
|  | MachineBasicBlock *MBB = JTBBs[j]; | 
|  | int DTNumber = MBB->getNumber(); | 
|  |  | 
|  | if (DTNumber < JTNumber) { | 
|  | // The destination precedes the switch. Try to move the block forward | 
|  | // so we have a positive offset. | 
|  | MachineBasicBlock *NewBB = | 
|  | adjustJTTargetBlockForward(MBB, MI->getParent()); | 
|  | if (NewBB) | 
|  | MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *ARMConstantIslands:: | 
|  | adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { | 
|  | // If the destination block is terminated by an unconditional branch, | 
|  | // try to move it; otherwise, create a new block following the jump | 
|  | // table that branches back to the actual target. This is a very simple | 
|  | // heuristic. FIXME: We can definitely improve it. | 
|  | MachineBasicBlock *TBB = 0, *FBB = 0; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | SmallVector<MachineOperand, 4> CondPrior; | 
|  | MachineFunction::iterator BBi = BB; | 
|  | MachineFunction::iterator OldPrior = prior(BBi); | 
|  |  | 
|  | // If the block terminator isn't analyzable, don't try to move the block | 
|  | bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); | 
|  |  | 
|  | // If the block ends in an unconditional branch, move it. The prior block | 
|  | // has to have an analyzable terminator for us to move this one. Be paranoid | 
|  | // and make sure we're not trying to move the entry block of the function. | 
|  | if (!B && Cond.empty() && BB != MF->begin() && | 
|  | !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { | 
|  | BB->moveAfter(JTBB); | 
|  | OldPrior->updateTerminator(); | 
|  | BB->updateTerminator(); | 
|  | // Update numbering to account for the block being moved. | 
|  | MF->RenumberBlocks(); | 
|  | ++NumJTMoved; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Create a new MBB for the code after the jump BB. | 
|  | MachineBasicBlock *NewBB = | 
|  | MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); | 
|  | MachineFunction::iterator MBBI = JTBB; ++MBBI; | 
|  | MF->insert(MBBI, NewBB); | 
|  |  | 
|  | // Add an unconditional branch from NewBB to BB. | 
|  | // There doesn't seem to be meaningful DebugInfo available; this doesn't | 
|  | // correspond directly to anything in the source. | 
|  | assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); | 
|  | BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) | 
|  | .addImm(ARMCC::AL).addReg(0); | 
|  |  | 
|  | // Update internal data structures to account for the newly inserted MBB. | 
|  | MF->RenumberBlocks(NewBB); | 
|  |  | 
|  | // Update the CFG. | 
|  | NewBB->addSuccessor(BB); | 
|  | JTBB->removeSuccessor(BB); | 
|  | JTBB->addSuccessor(NewBB); | 
|  |  | 
|  | ++NumJTInserted; | 
|  | return NewBB; | 
|  | } |