|  | //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  | #include "SelectionDAGBuild.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetFrameInfo.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// LimitFloatPrecision - Generate low-precision inline sequences for | 
|  | /// some float libcalls (6, 8 or 12 bits). | 
|  | static unsigned LimitFloatPrecision; | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | LimitFPPrecision("limit-float-precision", | 
|  | cl::desc("Generate low-precision inline sequences " | 
|  | "for some float libcalls"), | 
|  | cl::location(LimitFloatPrecision), | 
|  | cl::init(0)); | 
|  |  | 
|  | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence | 
|  | /// insertvalue or extractvalue indices that identify a member, return | 
|  | /// the linearized index of the start of the member. | 
|  | /// | 
|  | static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, | 
|  | const unsigned *Indices, | 
|  | const unsigned *IndicesEnd, | 
|  | unsigned CurIndex = 0) { | 
|  | // Base case: We're done. | 
|  | if (Indices && Indices == IndicesEnd) | 
|  | return CurIndex; | 
|  |  | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) { | 
|  | if (Indices && *Indices == unsigned(EI - EB)) | 
|  | return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); | 
|  | } | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
|  | if (Indices && *Indices == i) | 
|  | return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); | 
|  | } | 
|  | } | 
|  | // We haven't found the type we're looking for, so keep searching. | 
|  | return CurIndex + 1; | 
|  | } | 
|  |  | 
|  | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
|  | /// MVTs that represent all the individual underlying | 
|  | /// non-aggregate types that comprise it. | 
|  | /// | 
|  | /// If Offsets is non-null, it points to a vector to be filled in | 
|  | /// with the in-memory offsets of each of the individual values. | 
|  | /// | 
|  | static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, | 
|  | SmallVectorImpl<MVT> &ValueVTs, | 
|  | SmallVectorImpl<uint64_t> *Offsets = 0, | 
|  | uint64_t StartingOffset = 0) { | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) | 
|  | ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, | 
|  | StartingOffset + SL->getElementOffset(EI - EB)); | 
|  | return; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
|  | ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, | 
|  | StartingOffset + i * EltSize); | 
|  | return; | 
|  | } | 
|  | // Base case: we can get an MVT for this LLVM IR type. | 
|  | ValueVTs.push_back(TLI.getValueType(Ty)); | 
|  | if (Offsets) | 
|  | Offsets->push_back(StartingOffset); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | /// RegsForValue - This struct represents the registers (physical or virtual) | 
|  | /// that a particular set of values is assigned, and the type information about | 
|  | /// the value. The most common situation is to represent one value at a time, | 
|  | /// but struct or array values are handled element-wise as multiple values. | 
|  | /// The splitting of aggregates is performed recursively, so that we never | 
|  | /// have aggregate-typed registers. The values at this point do not necessarily | 
|  | /// have legal types, so each value may require one or more registers of some | 
|  | /// legal type. | 
|  | /// | 
|  | struct VISIBILITY_HIDDEN RegsForValue { | 
|  | /// TLI - The TargetLowering object. | 
|  | /// | 
|  | const TargetLowering *TLI; | 
|  |  | 
|  | /// ValueVTs - The value types of the values, which may not be legal, and | 
|  | /// may need be promoted or synthesized from one or more registers. | 
|  | /// | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  |  | 
|  | /// RegVTs - The value types of the registers. This is the same size as | 
|  | /// ValueVTs and it records, for each value, what the type of the assigned | 
|  | /// register or registers are. (Individual values are never synthesized | 
|  | /// from more than one type of register.) | 
|  | /// | 
|  | /// With virtual registers, the contents of RegVTs is redundant with TLI's | 
|  | /// getRegisterType member function, however when with physical registers | 
|  | /// it is necessary to have a separate record of the types. | 
|  | /// | 
|  | SmallVector<MVT, 4> RegVTs; | 
|  |  | 
|  | /// Regs - This list holds the registers assigned to the values. | 
|  | /// Each legal or promoted value requires one register, and each | 
|  | /// expanded value requires multiple registers. | 
|  | /// | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | RegsForValue() : TLI(0) {} | 
|  |  | 
|  | RegsForValue(const TargetLowering &tli, | 
|  | const SmallVector<unsigned, 4> ®s, | 
|  | MVT regvt, MVT valuevt) | 
|  | : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} | 
|  | RegsForValue(const TargetLowering &tli, | 
|  | const SmallVector<unsigned, 4> ®s, | 
|  | const SmallVector<MVT, 4> ®vts, | 
|  | const SmallVector<MVT, 4> &valuevts) | 
|  | : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} | 
|  | RegsForValue(const TargetLowering &tli, | 
|  | unsigned Reg, const Type *Ty) : TLI(&tli) { | 
|  | ComputeValueVTs(tli, Ty, ValueVTs); | 
|  |  | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | MVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = TLI->getNumRegisters(ValueVT); | 
|  | MVT RegisterVT = TLI->getRegisterType(ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | Regs.push_back(Reg + i); | 
|  | RegVTs.push_back(RegisterVT); | 
|  | Reg += NumRegs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// append - Add the specified values to this one. | 
|  | void append(const RegsForValue &RHS) { | 
|  | TLI = RHS.TLI; | 
|  | ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); | 
|  | RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); | 
|  | Regs.append(RHS.Regs.begin(), RHS.Regs.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVTs value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue getCopyFromRegs(SelectionDAG &DAG, | 
|  | SDValue &Chain, SDValue *Flag) const; | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
|  | /// specified value into the registers specified by this object.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | void getCopyToRegs(SDValue Val, SelectionDAG &DAG, | 
|  | SDValue &Chain, SDValue *Flag) const; | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker and includes the number of | 
|  | /// values added into it. | 
|  | void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
|  | /// PHI nodes or outside of the basic block that defines it, or used by a | 
|  | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
|  | static bool isUsedOutsideOfDefiningBlock(Instruction *I) { | 
|  | if (isa<PHINode>(I)) return true; | 
|  | BasicBlock *BB = I->getParent(); | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) | 
|  | if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) || | 
|  | // FIXME: Remove switchinst special case. | 
|  | isa<SwitchInst>(*UI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
|  | /// entry block, return true.  This includes arguments used by switches, since | 
|  | /// the switch may expand into multiple basic blocks. | 
|  | static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { | 
|  | // With FastISel active, we may be splitting blocks, so force creation | 
|  | // of virtual registers for all non-dead arguments. | 
|  | // Don't force virtual registers for byval arguments though, because | 
|  | // fast-isel can't handle those in all cases. | 
|  | if (EnableFastISel && !A->hasByValAttr()) | 
|  | return A->use_empty(); | 
|  |  | 
|  | BasicBlock *Entry = A->getParent()->begin(); | 
|  | for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) | 
|  | if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) | 
|  | return false;  // Use not in entry block. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) | 
|  | : TLI(tli) { | 
|  | } | 
|  |  | 
|  | void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, | 
|  | bool EnableFastISel) { | 
|  | Fn = &fn; | 
|  | MF = &mf; | 
|  | RegInfo = &MF->getRegInfo(); | 
|  |  | 
|  | // Create a vreg for each argument register that is not dead and is used | 
|  | // outside of the entry block for the function. | 
|  | for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); | 
|  | AI != E; ++AI) | 
|  | if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) | 
|  | InitializeRegForValue(AI); | 
|  |  | 
|  | // Initialize the mapping of values to registers.  This is only set up for | 
|  | // instruction values that are used outside of the block that defines | 
|  | // them. | 
|  | Function::iterator BB = Fn->begin(), EB = Fn->end(); | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
|  | const Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
|  | AI->getAlignment()); | 
|  |  | 
|  | TySize *= CUI->getZExtValue();   // Get total allocated size. | 
|  | if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
|  | StaticAllocaMap[AI] = | 
|  | MF->getFrameInfo()->CreateStackObject(TySize, Align); | 
|  | } | 
|  |  | 
|  | for (; BB != EB; ++BB) | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) | 
|  | if (!isa<AllocaInst>(I) || | 
|  | !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | InitializeRegForValue(I); | 
|  |  | 
|  | // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
|  | // also creates the initial PHI MachineInstrs, though none of the input | 
|  | // operands are populated. | 
|  | for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { | 
|  | MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); | 
|  | MBBMap[BB] = MBB; | 
|  | MF->push_back(MBB); | 
|  |  | 
|  | // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
|  | // appropriate. | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){ | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | unsigned PHIReg = ValueMap[PN]; | 
|  | assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
|  |  | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | MVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(VT); | 
|  | const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
|  | for (unsigned i = 0; i != NumRegisters; ++i) | 
|  | BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); | 
|  | PHIReg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned FunctionLoweringInfo::MakeReg(MVT VT) { | 
|  | return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); | 
|  | } | 
|  |  | 
|  | /// CreateRegForValue - Allocate the appropriate number of virtual registers of | 
|  | /// the correctly promoted or expanded types.  Assign these registers | 
|  | /// consecutive vreg numbers and return the first assigned number. | 
|  | /// | 
|  | /// In the case that the given value has struct or array type, this function | 
|  | /// will assign registers for each member or element. | 
|  | /// | 
|  | unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, V->getType(), ValueVTs); | 
|  |  | 
|  | unsigned FirstReg = 0; | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | MVT ValueVT = ValueVTs[Value]; | 
|  | MVT RegisterVT = TLI.getRegisterType(ValueVT); | 
|  |  | 
|  | unsigned NumRegs = TLI.getNumRegisters(ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | unsigned R = MakeReg(RegisterVT); | 
|  | if (!FirstReg) FirstReg = R; | 
|  | } | 
|  | } | 
|  | return FirstReg; | 
|  | } | 
|  |  | 
|  | /// getCopyFromParts - Create a value that contains the specified legal parts | 
|  | /// combined into the value they represent.  If the parts combine to a type | 
|  | /// larger then ValueVT then AssertOp can be used to specify whether the extra | 
|  | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
|  | /// (ISD::AssertSext). | 
|  | static SDValue getCopyFromParts(SelectionDAG &DAG, | 
|  | const SDValue *Parts, | 
|  | unsigned NumParts, | 
|  | MVT PartVT, | 
|  | MVT ValueVT, | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE) { | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | if (NumParts > 1) { | 
|  | // Assemble the value from multiple parts. | 
|  | if (!ValueVT.isVector()) { | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned ValueBits = ValueVT.getSizeInBits(); | 
|  |  | 
|  | // Assemble the power of 2 part. | 
|  | unsigned RoundParts = NumParts & (NumParts - 1) ? | 
|  | 1 << Log2_32(NumParts) : NumParts; | 
|  | unsigned RoundBits = PartBits * RoundParts; | 
|  | MVT RoundVT = RoundBits == ValueBits ? | 
|  | ValueVT : MVT::getIntegerVT(RoundBits); | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | MVT HalfVT = ValueVT.isInteger() ? | 
|  | MVT::getIntegerVT(RoundBits/2) : | 
|  | MVT::getFloatingPointVT(RoundBits/2); | 
|  |  | 
|  | if (RoundParts > 2) { | 
|  | Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT); | 
|  | Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2, | 
|  | PartVT, HalfVT); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[1]); | 
|  | } | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi); | 
|  |  | 
|  | if (RoundParts < NumParts) { | 
|  | // Assemble the trailing non-power-of-2 part. | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | MVT OddVT = MVT::getIntegerVT(OddParts * PartBits); | 
|  | Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT); | 
|  |  | 
|  | // Combine the round and odd parts. | 
|  | Lo = Val; | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits); | 
|  | Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi); | 
|  | Hi = DAG.getNode(ISD::SHL, TotalVT, Hi, | 
|  | DAG.getConstant(Lo.getValueType().getSizeInBits(), | 
|  | TLI.getShiftAmountTy())); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo); | 
|  | Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi); | 
|  | } | 
|  | } else { | 
|  | // Handle a multi-element vector. | 
|  | MVT IntermediateVT, RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = | 
|  | TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, | 
|  | RegisterVT); | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  | assert(RegisterVT == Parts[0].getValueType() && | 
|  | "Part type doesn't match part!"); | 
|  |  | 
|  | // Assemble the parts into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | if (NumIntermediates == NumParts) { | 
|  | // If the register was not expanded, truncate or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, | 
|  | PartVT, IntermediateVT); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, build the intermediate operands | 
|  | // from the parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor, | 
|  | PartVT, IntermediateVT); | 
|  | } | 
|  |  | 
|  | // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate | 
|  | // operands. | 
|  | Val = DAG.getNode(IntermediateVT.isVector() ? | 
|  | ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, | 
|  | ValueVT, &Ops[0], NumIntermediates); | 
|  | } | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | PartVT = Val.getValueType(); | 
|  |  | 
|  | if (PartVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartVT.isVector()) { | 
|  | assert(ValueVT.isVector() && "Unknown vector conversion!"); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (ValueVT.isVector()) { | 
|  | assert(ValueVT.getVectorElementType() == PartVT && | 
|  | ValueVT.getVectorNumElements() == 1 && | 
|  | "Only trivial scalar-to-vector conversions should get here!"); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartVT.isInteger() && | 
|  | ValueVT.isInteger()) { | 
|  | if (ValueVT.bitsLT(PartVT)) { | 
|  | // For a truncate, see if we have any information to | 
|  | // indicate whether the truncated bits will always be | 
|  | // zero or sign-extension. | 
|  | if (AssertOp != ISD::DELETED_NODE) | 
|  | Val = DAG.getNode(AssertOp, PartVT, Val, | 
|  | DAG.getValueType(ValueVT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); | 
|  | } else { | 
|  | return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | if (ValueVT.bitsLT(Val.getValueType())) | 
|  | // FP_ROUND's are always exact here. | 
|  | return DAG.getNode(ISD::FP_ROUND, ValueVT, Val, | 
|  | DAG.getIntPtrConstant(1)); | 
|  | return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); | 
|  |  | 
|  | assert(0 && "Unknown mismatch!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// getCopyToParts - Create a series of nodes that contain the specified value | 
|  | /// split into legal parts.  If the parts contain more bits than Val, then, for | 
|  | /// integers, ExtendKind can be used to specify how to generate the extra bits. | 
|  | static void getCopyToParts(SelectionDAG &DAG, SDValue Val, | 
|  | SDValue *Parts, unsigned NumParts, MVT PartVT, | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { | 
|  | TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  | MVT ValueVT = Val.getValueType(); | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); | 
|  |  | 
|  | if (!NumParts) | 
|  | return; | 
|  |  | 
|  | if (!ValueVT.isVector()) { | 
|  | if (PartVT == ValueVT) { | 
|  | assert(NumParts == 1 && "No-op copy with multiple parts!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NumParts * PartBits > ValueVT.getSizeInBits()) { | 
|  | // If the parts cover more bits than the value has, promote the value. | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | assert(NumParts == 1 && "Do not know what to promote to!"); | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val); | 
|  | } else if (PartVT.isInteger() && ValueVT.isInteger()) { | 
|  | ValueVT = MVT::getIntegerVT(NumParts * PartBits); | 
|  | Val = DAG.getNode(ExtendKind, ValueVT, Val); | 
|  | } else { | 
|  | assert(0 && "Unknown mismatch!"); | 
|  | } | 
|  | } else if (PartBits == ValueVT.getSizeInBits()) { | 
|  | // Different types of the same size. | 
|  | assert(NumParts == 1 && PartVT != ValueVT); | 
|  | Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); | 
|  | } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { | 
|  | // If the parts cover less bits than value has, truncate the value. | 
|  | if (PartVT.isInteger() && ValueVT.isInteger()) { | 
|  | ValueVT = MVT::getIntegerVT(NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); | 
|  | } else { | 
|  | assert(0 && "Unknown mismatch!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The value may have changed - recompute ValueVT. | 
|  | ValueVT = Val.getValueType(); | 
|  | assert(NumParts * PartBits == ValueVT.getSizeInBits() && | 
|  | "Failed to tile the value with PartVT!"); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | assert(PartVT == ValueVT && "Type conversion failed!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Expand the value into multiple parts. | 
|  | if (NumParts & (NumParts - 1)) { | 
|  | // The number of parts is not a power of 2.  Split off and copy the tail. | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Do not know what to expand to!"); | 
|  | unsigned RoundParts = 1 << Log2_32(NumParts); | 
|  | unsigned RoundBits = RoundParts * PartBits; | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val, | 
|  | DAG.getConstant(RoundBits, | 
|  | TLI.getShiftAmountTy())); | 
|  | getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT); | 
|  | if (TLI.isBigEndian()) | 
|  | // The odd parts were reversed by getCopyToParts - unreverse them. | 
|  | std::reverse(Parts + RoundParts, Parts + NumParts); | 
|  | NumParts = RoundParts; | 
|  | ValueVT = MVT::getIntegerVT(NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // The number of parts is a power of 2.  Repeatedly bisect the value using | 
|  | // EXTRACT_ELEMENT. | 
|  | Parts[0] = DAG.getNode(ISD::BIT_CONVERT, | 
|  | MVT::getIntegerVT(ValueVT.getSizeInBits()), | 
|  | Val); | 
|  | for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { | 
|  | for (unsigned i = 0; i < NumParts; i += StepSize) { | 
|  | unsigned ThisBits = StepSize * PartBits / 2; | 
|  | MVT ThisVT = MVT::getIntegerVT (ThisBits); | 
|  | SDValue &Part0 = Parts[i]; | 
|  | SDValue &Part1 = Parts[i+StepSize/2]; | 
|  |  | 
|  | Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, | 
|  | DAG.getConstant(1, PtrVT)); | 
|  | Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, | 
|  | DAG.getConstant(0, PtrVT)); | 
|  |  | 
|  | if (ThisBits == PartBits && ThisVT != PartVT) { | 
|  | Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0); | 
|  | Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TLI.isBigEndian()) | 
|  | std::reverse(Parts, Parts + NumParts); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Vector ValueVT. | 
|  | if (NumParts == 1) { | 
|  | if (PartVT != ValueVT) { | 
|  | if (PartVT.isVector()) { | 
|  | Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); | 
|  | } else { | 
|  | assert(ValueVT.getVectorElementType() == PartVT && | 
|  | ValueVT.getVectorNumElements() == 1 && | 
|  | "Only trivial vector-to-scalar conversions should get here!"); | 
|  | Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val, | 
|  | DAG.getConstant(0, PtrVT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | MVT IntermediateVT, RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = | 
|  | DAG.getTargetLoweringInfo() | 
|  | .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, | 
|  | RegisterVT); | 
|  | unsigned NumElements = ValueVT.getVectorNumElements(); | 
|  |  | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  |  | 
|  | // Split the vector into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | if (IntermediateVT.isVector()) | 
|  | Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, | 
|  | IntermediateVT, Val, | 
|  | DAG.getConstant(i * (NumElements / NumIntermediates), | 
|  | PtrVT)); | 
|  | else | 
|  | Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, | 
|  | IntermediateVT, Val, | 
|  | DAG.getConstant(i, PtrVT)); | 
|  |  | 
|  | // Split the intermediate operands into legal parts. | 
|  | if (NumParts == NumIntermediates) { | 
|  | // If the register was not expanded, promote or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, split each the value into | 
|  | // legal parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { | 
|  | AA = &aa; | 
|  | GFI = gfi; | 
|  | TD = DAG.getTarget().getTargetData(); | 
|  | } | 
|  |  | 
|  | /// clear - Clear out the curret SelectionDAG and the associated | 
|  | /// state and prepare this SelectionDAGLowering object to be used | 
|  | /// for a new block. This doesn't clear out information about | 
|  | /// additional blocks that are needed to complete switch lowering | 
|  | /// or PHI node updating; that information is cleared out as it is | 
|  | /// consumed. | 
|  | void SelectionDAGLowering::clear() { | 
|  | NodeMap.clear(); | 
|  | PendingLoads.clear(); | 
|  | PendingExports.clear(); | 
|  | DAG.clear(); | 
|  | } | 
|  |  | 
|  | /// getRoot - Return the current virtual root of the Selection DAG, | 
|  | /// flushing any PendingLoad items. This must be done before emitting | 
|  | /// a store or any other node that may need to be ordered after any | 
|  | /// prior load instructions. | 
|  | /// | 
|  | SDValue SelectionDAGLowering::getRoot() { | 
|  | if (PendingLoads.empty()) | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | if (PendingLoads.size() == 1) { | 
|  | SDValue Root = PendingLoads[0]; | 
|  | DAG.setRoot(Root); | 
|  | PendingLoads.clear(); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to make a token factor node. | 
|  | SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &PendingLoads[0], PendingLoads.size()); | 
|  | PendingLoads.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | /// getControlRoot - Similar to getRoot, but instead of flushing all the | 
|  | /// PendingLoad items, flush all the PendingExports items. It is necessary | 
|  | /// to do this before emitting a terminator instruction. | 
|  | /// | 
|  | SDValue SelectionDAGLowering::getControlRoot() { | 
|  | SDValue Root = DAG.getRoot(); | 
|  |  | 
|  | if (PendingExports.empty()) | 
|  | return Root; | 
|  |  | 
|  | // Turn all of the CopyToReg chains into one factored node. | 
|  | if (Root.getOpcode() != ISD::EntryToken) { | 
|  | unsigned i = 0, e = PendingExports.size(); | 
|  | for (; i != e; ++i) { | 
|  | assert(PendingExports[i].getNode()->getNumOperands() > 1); | 
|  | if (PendingExports[i].getNode()->getOperand(0) == Root) | 
|  | break;  // Don't add the root if we already indirectly depend on it. | 
|  | } | 
|  |  | 
|  | if (i == e) | 
|  | PendingExports.push_back(Root); | 
|  | } | 
|  |  | 
|  | Root = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &PendingExports[0], | 
|  | PendingExports.size()); | 
|  | PendingExports.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visit(Instruction &I) { | 
|  | visit(I.getOpcode(), I); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visit(unsigned Opcode, User &I) { | 
|  | // Note: this doesn't use InstVisitor, because it has to work with | 
|  | // ConstantExpr's in addition to instructions. | 
|  | switch (Opcode) { | 
|  | default: assert(0 && "Unknown instruction type encountered!"); | 
|  | abort(); | 
|  | // Build the switch statement using the Instruction.def file. | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
|  | case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); | 
|  | #include "llvm/Instruction.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitAdd(User &I) { | 
|  | if (I.getType()->isFPOrFPVector()) | 
|  | visitBinary(I, ISD::FADD); | 
|  | else | 
|  | visitBinary(I, ISD::ADD); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitMul(User &I) { | 
|  | if (I.getType()->isFPOrFPVector()) | 
|  | visitBinary(I, ISD::FMUL); | 
|  | else | 
|  | visitBinary(I, ISD::MUL); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLowering::getValue(const Value *V) { | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) return N; | 
|  |  | 
|  | if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { | 
|  | MVT VT = TLI.getValueType(V->getType(), true); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
|  | return N = DAG.getConstant(*CI, VT); | 
|  |  | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return N = DAG.getGlobalAddress(GV, VT); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) | 
|  | return N = DAG.getConstant(0, TLI.getPointerTy()); | 
|  |  | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return N = DAG.getConstantFP(*CFP, VT); | 
|  |  | 
|  | if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) && | 
|  | !V->getType()->isAggregateType()) | 
|  | return N = DAG.getNode(ISD::UNDEF, VT); | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | visit(CE->getOpcode(), *CE); | 
|  | SDValue N1 = NodeMap[V]; | 
|  | assert(N1.getNode() && "visit didn't populate the ValueMap!"); | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { | 
|  | SmallVector<SDValue, 4> Constants; | 
|  | for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); | 
|  | OI != OE; ++OI) { | 
|  | SDNode *Val = getValue(*OI).getNode(); | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Constants.push_back(SDValue(Val, i)); | 
|  | } | 
|  | return DAG.getMergeValues(&Constants[0], Constants.size()); | 
|  | } | 
|  |  | 
|  | if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { | 
|  | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
|  | "Unknown struct or array constant!"); | 
|  |  | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, C->getType(), ValueVTs); | 
|  | unsigned NumElts = ValueVTs.size(); | 
|  | if (NumElts == 0) | 
|  | return SDValue(); // empty struct | 
|  | SmallVector<SDValue, 4> Constants(NumElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | MVT EltVT = ValueVTs[i]; | 
|  | if (isa<UndefValue>(C)) | 
|  | Constants[i] = DAG.getNode(ISD::UNDEF, EltVT); | 
|  | else if (EltVT.isFloatingPoint()) | 
|  | Constants[i] = DAG.getConstantFP(0, EltVT); | 
|  | else | 
|  | Constants[i] = DAG.getConstant(0, EltVT); | 
|  | } | 
|  | return DAG.getMergeValues(&Constants[0], NumElts); | 
|  | } | 
|  |  | 
|  | const VectorType *VecTy = cast<VectorType>(V->getType()); | 
|  | unsigned NumElements = VecTy->getNumElements(); | 
|  |  | 
|  | // Now that we know the number and type of the elements, get that number of | 
|  | // elements into the Ops array based on what kind of constant it is. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { | 
|  | for (unsigned i = 0; i != NumElements; ++i) | 
|  | Ops.push_back(getValue(CP->getOperand(i))); | 
|  | } else { | 
|  | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
|  | "Unknown vector constant!"); | 
|  | MVT EltVT = TLI.getValueType(VecTy->getElementType()); | 
|  |  | 
|  | SDValue Op; | 
|  | if (isa<UndefValue>(C)) | 
|  | Op = DAG.getNode(ISD::UNDEF, EltVT); | 
|  | else if (EltVT.isFloatingPoint()) | 
|  | Op = DAG.getConstantFP(0, EltVT); | 
|  | else | 
|  | Op = DAG.getConstant(0, EltVT); | 
|  | Ops.assign(NumElements, Op); | 
|  | } | 
|  |  | 
|  | // Create a BUILD_VECTOR node. | 
|  | return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // If this is a static alloca, generate it as the frameindex instead of | 
|  | // computation. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); | 
|  | } | 
|  |  | 
|  | unsigned InReg = FuncInfo.ValueMap[V]; | 
|  | assert(InReg && "Value not in map!"); | 
|  |  | 
|  | RegsForValue RFV(TLI, InReg, V->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | return RFV.getCopyFromRegs(DAG, Chain, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitRet(ReturnInst &I) { | 
|  | if (I.getNumOperands() == 0) { | 
|  | DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> NewValues; | 
|  | NewValues.push_back(getControlRoot()); | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) continue; | 
|  |  | 
|  | SDValue RetOp = getValue(I.getOperand(i)); | 
|  | for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
|  | MVT VT = ValueVTs[j]; | 
|  |  | 
|  | // FIXME: C calling convention requires the return type to be promoted to | 
|  | // at least 32-bit. But this is not necessary for non-C calling | 
|  | // conventions. | 
|  | if (VT.isInteger()) { | 
|  | MVT MinVT = TLI.getRegisterType(MVT::i32); | 
|  | if (VT.bitsLT(MinVT)) | 
|  | VT = MinVT; | 
|  | } | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegisters(VT); | 
|  | MVT PartVT = TLI.getRegisterType(VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | const Function *F = I.getParent()->getParent(); | 
|  | if (F->paramHasAttr(0, Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (F->paramHasAttr(0, Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j), | 
|  | &Parts[0], NumParts, PartVT, ExtendKind); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (F->paramHasAttr(0, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | NewValues.push_back(Parts[i]); | 
|  | NewValues.push_back(DAG.getArgFlags(Flags)); | 
|  | } | 
|  | } | 
|  | } | 
|  | DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, | 
|  | &NewValues[0], NewValues.size())); | 
|  | } | 
|  |  | 
|  | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
|  | /// the current basic block, add it to ValueMap now so that we'll get a | 
|  | /// CopyTo/FromReg. | 
|  | void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { | 
|  | // No need to export constants. | 
|  | if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
|  |  | 
|  | // Already exported? | 
|  | if (FuncInfo.isExportedInst(V)) return; | 
|  |  | 
|  | unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
|  | CopyValueToVirtualRegister(V, Reg); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, | 
|  | const BasicBlock *FromBB) { | 
|  | // The operands of the setcc have to be in this block.  We don't know | 
|  | // how to export them from some other block. | 
|  | if (Instruction *VI = dyn_cast<Instruction>(V)) { | 
|  | // Can export from current BB. | 
|  | if (VI->getParent() == FromBB) | 
|  | return true; | 
|  |  | 
|  | // Is already exported, noop. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // If this is an argument, we can export it if the BB is the entry block or | 
|  | // if it is already exported. | 
|  | if (isa<Argument>(V)) { | 
|  | if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, can only export this if it is already exported. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // Otherwise, constants can always be exported. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() == BB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR floating-point condition code.  This includes | 
|  | /// consideration of global floating-point math flags. | 
|  | /// | 
|  | static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { | 
|  | ISD::CondCode FPC, FOC; | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
|  | case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
|  | case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
|  | case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
|  | case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
|  | case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
|  | case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
|  | case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; | 
|  | case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; | 
|  | case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
|  | case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
|  | case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
|  | case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
|  | case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
|  | case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
|  | case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
|  | default: | 
|  | assert(0 && "Invalid FCmp predicate opcode!"); | 
|  | FOC = FPC = ISD::SETFALSE; | 
|  | break; | 
|  | } | 
|  | if (FiniteOnlyFPMath()) | 
|  | return FOC; | 
|  | else | 
|  | return FPC; | 
|  | } | 
|  |  | 
|  | /// getICmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR integer condition code. | 
|  | /// | 
|  | static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
|  | case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
|  | case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
|  | case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
|  | case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
|  | case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
|  | case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
|  | case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
|  | case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
|  | case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
|  | default: | 
|  | assert(0 && "Invalid ICmp predicate opcode!"); | 
|  | return ISD::SETNE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. | 
|  | /// This function emits a branch and is used at the leaves of an OR or an | 
|  | /// AND operator tree. | 
|  | /// | 
|  | void | 
|  | SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB) { | 
|  | const BasicBlock *BB = CurBB->getBasicBlock(); | 
|  |  | 
|  | // If the leaf of the tree is a comparison, merge the condition into | 
|  | // the caseblock. | 
|  | if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { | 
|  | // The operands of the cmp have to be in this block.  We don't know | 
|  | // how to export them from some other block.  If this is the first block | 
|  | // of the sequence, no exporting is needed. | 
|  | if (CurBB == CurMBB || | 
|  | (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
|  | isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { | 
|  | ISD::CondCode Condition; | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
|  | Condition = getICmpCondCode(IC->getPredicate()); | 
|  | } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { | 
|  | Condition = getFCmpCondCode(FC->getPredicate()); | 
|  | } else { | 
|  | Condition = ISD::SETEQ; // silence warning. | 
|  | assert(0 && "Unknown compare instruction"); | 
|  | } | 
|  |  | 
|  | CaseBlock CB(Condition, BOp->getOperand(0), | 
|  | BOp->getOperand(1), NULL, TBB, FBB, CurBB); | 
|  | SwitchCases.push_back(CB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), | 
|  | NULL, TBB, FBB, CurBB); | 
|  | SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | /// FindMergedConditions - If Cond is an expression like | 
|  | void SelectionDAGLowering::FindMergedConditions(Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | unsigned Opc) { | 
|  | // If this node is not part of the or/and tree, emit it as a branch. | 
|  | Instruction *BOp = dyn_cast<Instruction>(Cond); | 
|  | if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || | 
|  | (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || | 
|  | BOp->getParent() != CurBB->getBasicBlock() || | 
|  | !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
|  | !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
|  | EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | //  Create TmpBB after CurBB. | 
|  | MachineFunction::iterator BBI = CurBB; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); | 
|  | CurBB->getParent()->insert(++BBI, TmpBB); | 
|  |  | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); | 
|  |  | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
|  | } else { | 
|  | assert(Opc == Instruction::And && "Unknown merge op!"); | 
|  | // Codegen X & Y as: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); | 
|  |  | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the set of cases should be emitted as a series of branches, return true. | 
|  | /// If we should emit this as a bunch of and/or'd together conditions, return | 
|  | /// false. | 
|  | bool | 
|  | SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ | 
|  | if (Cases.size() != 2) return true; | 
|  |  | 
|  | // If this is two comparisons of the same values or'd or and'd together, they | 
|  | // will get folded into a single comparison, so don't emit two blocks. | 
|  | if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
|  | (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitBr(BranchInst &I) { | 
|  | // Update machine-CFG edges. | 
|  | MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | if (I.isUnconditional()) { | 
|  | // Update machine-CFG edges. | 
|  | CurMBB->addSuccessor(Succ0MBB); | 
|  |  | 
|  | // If this is not a fall-through branch, emit the branch. | 
|  | if (Succ0MBB != NextBlock) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Succ0MBB))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this condition is one of the special cases we handle, do special stuff | 
|  | // now. | 
|  | Value *CondVal = I.getCondition(); | 
|  | MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | // If this is a series of conditions that are or'd or and'd together, emit | 
|  | // this as a sequence of branches instead of setcc's with and/or operations. | 
|  | // For example, instead of something like: | 
|  | //     cmp A, B | 
|  | //     C = seteq | 
|  | //     cmp D, E | 
|  | //     F = setle | 
|  | //     or C, F | 
|  | //     jnz foo | 
|  | // Emit: | 
|  | //     cmp A, B | 
|  | //     je foo | 
|  | //     cmp D, E | 
|  | //     jle foo | 
|  | // | 
|  | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
|  | if (BOp->hasOneUse() && | 
|  | (BOp->getOpcode() == Instruction::And || | 
|  | BOp->getOpcode() == Instruction::Or)) { | 
|  | FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); | 
|  | // If the compares in later blocks need to use values not currently | 
|  | // exported from this block, export them now.  This block should always | 
|  | // be the first entry. | 
|  | assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); | 
|  |  | 
|  | // Allow some cases to be rejected. | 
|  | if (ShouldEmitAsBranches(SwitchCases)) { | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpLHS); | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpRHS); | 
|  | } | 
|  |  | 
|  | // Emit the branch for this block. | 
|  | visitSwitchCase(SwitchCases[0]); | 
|  | SwitchCases.erase(SwitchCases.begin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we decided not to do this, remove any inserted MBB's and clear | 
|  | // SwitchCases. | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) | 
|  | CurMBB->getParent()->erase(SwitchCases[i].ThisBB); | 
|  |  | 
|  | SwitchCases.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), | 
|  | NULL, Succ0MBB, Succ1MBB, CurMBB); | 
|  | // Use visitSwitchCase to actually insert the fast branch sequence for this | 
|  | // cond branch. | 
|  | visitSwitchCase(CB); | 
|  | } | 
|  |  | 
|  | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
|  | /// the binary search tree resulting from lowering a switch instruction. | 
|  | void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) { | 
|  | SDValue Cond; | 
|  | SDValue CondLHS = getValue(CB.CmpLHS); | 
|  |  | 
|  | // Build the setcc now. | 
|  | if (CB.CmpMHS == NULL) { | 
|  | // Fold "(X == true)" to X and "(X == false)" to !X to | 
|  | // handle common cases produced by branch lowering. | 
|  | if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) | 
|  | Cond = CondLHS; | 
|  | else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { | 
|  | SDValue True = DAG.getConstant(1, CondLHS.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); | 
|  | } else | 
|  | Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); | 
|  | } else { | 
|  | assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
|  |  | 
|  | uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue(); | 
|  | uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue(); | 
|  |  | 
|  | SDValue CmpOp = getValue(CB.CmpMHS); | 
|  | MVT VT = CmpOp.getValueType(); | 
|  |  | 
|  | if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
|  | Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); | 
|  | } else { | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT)); | 
|  | Cond = DAG.getSetCC(MVT::i1, SUB, | 
|  | DAG.getConstant(High-Low, VT), ISD::SETULE); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info | 
|  | CurMBB->addSuccessor(CB.TrueBB); | 
|  | CurMBB->addSuccessor(CB.FalseBB); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | // If the lhs block is the next block, invert the condition so that we can | 
|  | // fall through to the lhs instead of the rhs block. | 
|  | if (CB.TrueBB == NextBlock) { | 
|  | std::swap(CB.TrueBB, CB.FalseBB); | 
|  | SDValue True = DAG.getConstant(1, Cond.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); | 
|  | } | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(CB.TrueBB)); | 
|  |  | 
|  | // If the branch was constant folded, fix up the CFG. | 
|  | if (BrCond.getOpcode() == ISD::BR) { | 
|  | CurMBB->removeSuccessor(CB.FalseBB); | 
|  | DAG.setRoot(BrCond); | 
|  | } else { | 
|  | // Otherwise, go ahead and insert the false branch. | 
|  | if (BrCond == getControlRoot()) | 
|  | CurMBB->removeSuccessor(CB.TrueBB); | 
|  |  | 
|  | if (CB.FalseBB == NextBlock) | 
|  | DAG.setRoot(BrCond); | 
|  | else | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(CB.FalseBB))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitJumpTable - Emit JumpTable node in the current MBB | 
|  | void SelectionDAGLowering::visitJumpTable(JumpTable &JT) { | 
|  | // Emit the code for the jump table | 
|  | assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
|  | MVT PTy = TLI.getPointerTy(); | 
|  | SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy); | 
|  | SDValue Table = DAG.getJumpTable(JT.JTI, PTy); | 
|  | DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), | 
|  | Table, Index)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// visitJumpTableHeader - This function emits necessary code to produce index | 
|  | /// in the JumpTable from switch case. | 
|  | void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT, | 
|  | JumpTableHeader &JTH) { | 
|  | // Subtract the lowest switch case value from the value being switched on | 
|  | // and conditional branch to default mbb if the result is greater than the | 
|  | // difference between smallest and largest cases. | 
|  | SDValue SwitchOp = getValue(JTH.SValue); | 
|  | MVT VT = SwitchOp.getValueType(); | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, | 
|  | DAG.getConstant(JTH.First, VT)); | 
|  |  | 
|  | // The SDNode we just created, which holds the value being switched on | 
|  | // minus the the smallest case value, needs to be copied to a virtual | 
|  | // register so it can be used as an index into the jump table in a | 
|  | // subsequent basic block.  This value may be smaller or larger than the | 
|  | // target's pointer type, and therefore require extension or truncating. | 
|  | if (VT.bitsGT(TLI.getPointerTy())) | 
|  | SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); | 
|  | else | 
|  | SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); | 
|  |  | 
|  | unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp); | 
|  | JT.Reg = JumpTableReg; | 
|  |  | 
|  | // Emit the range check for the jump table, and branch to the default | 
|  | // block for the switch statement if the value being switched on exceeds | 
|  | // the largest case in the switch. | 
|  | SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, | 
|  | DAG.getConstant(JTH.Last-JTH.First,VT), | 
|  | ISD::SETUGT); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, | 
|  | DAG.getBasicBlock(JT.Default)); | 
|  |  | 
|  | if (JT.MBB == NextBlock) | 
|  | DAG.setRoot(BrCond); | 
|  | else | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(JT.MBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// visitBitTestHeader - This function emits necessary code to produce value | 
|  | /// suitable for "bit tests" | 
|  | void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) { | 
|  | // Subtract the minimum value | 
|  | SDValue SwitchOp = getValue(B.SValue); | 
|  | MVT VT = SwitchOp.getValueType(); | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, | 
|  | DAG.getConstant(B.First, VT)); | 
|  |  | 
|  | // Check range | 
|  | SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, | 
|  | DAG.getConstant(B.Range, VT), | 
|  | ISD::SETUGT); | 
|  |  | 
|  | SDValue ShiftOp; | 
|  | if (VT.bitsGT(TLI.getShiftAmountTy())) | 
|  | ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB); | 
|  | else | 
|  | ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB); | 
|  |  | 
|  | // Make desired shift | 
|  | SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(), | 
|  | DAG.getConstant(1, TLI.getPointerTy()), | 
|  | ShiftOp); | 
|  |  | 
|  | unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal); | 
|  | B.Reg = SwitchReg; | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
|  |  | 
|  | CurMBB->addSuccessor(B.Default); | 
|  | CurMBB->addSuccessor(MBB); | 
|  |  | 
|  | SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp, | 
|  | DAG.getBasicBlock(B.Default)); | 
|  |  | 
|  | if (MBB == NextBlock) | 
|  | DAG.setRoot(BrRange); | 
|  | else | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo, | 
|  | DAG.getBasicBlock(MBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// visitBitTestCase - this function produces one "bit test" | 
|  | void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, | 
|  | unsigned Reg, | 
|  | BitTestCase &B) { | 
|  | // Emit bit tests and jumps | 
|  | SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal, | 
|  | DAG.getConstant(B.Mask, TLI.getPointerTy())); | 
|  | SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp, | 
|  | DAG.getConstant(0, TLI.getPointerTy()), | 
|  | ISD::SETNE); | 
|  |  | 
|  | CurMBB->addSuccessor(B.TargetBB); | 
|  | CurMBB->addSuccessor(NextMBB); | 
|  |  | 
|  | SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), | 
|  | AndCmp, DAG.getBasicBlock(B.TargetBB)); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | if (NextMBB == NextBlock) | 
|  | DAG.setRoot(BrAnd); | 
|  | else | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd, | 
|  | DAG.getBasicBlock(NextMBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitInvoke(InvokeInst &I) { | 
|  | // Retrieve successors. | 
|  | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  | MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | if (isa<InlineAsm>(I.getCalledValue())) | 
|  | visitInlineAsm(&I); | 
|  | else | 
|  | LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad); | 
|  |  | 
|  | // If the value of the invoke is used outside of its defining block, make it | 
|  | // available as a virtual register. | 
|  | if (!I.use_empty()) { | 
|  | DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I); | 
|  | if (VMI != FuncInfo.ValueMap.end()) | 
|  | CopyValueToVirtualRegister(&I, VMI->second); | 
|  | } | 
|  |  | 
|  | // Update successor info | 
|  | CurMBB->addSuccessor(Return); | 
|  | CurMBB->addSuccessor(LandingPad); | 
|  |  | 
|  | // Drop into normal successor. | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Return))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitUnwind(UnwindInst &I) { | 
|  | } | 
|  |  | 
|  | /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for | 
|  | /// small case ranges). | 
|  | bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | Value* SV, | 
|  | MachineBasicBlock* Default) { | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | // Size is the number of Cases represented by this range. | 
|  | unsigned Size = CR.Range.second - CR.Range.first; | 
|  | if (Size > 3) | 
|  | return false; | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = CurMBB->getParent(); | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  |  | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | // TODO: If any two of the cases has the same destination, and if one value | 
|  | // is the same as the other, but has one bit unset that the other has set, | 
|  | // use bit manipulation to do two compares at once.  For example: | 
|  | // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
|  |  | 
|  | // Rearrange the case blocks so that the last one falls through if possible. | 
|  | if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { | 
|  | // The last case block won't fall through into 'NextBlock' if we emit the | 
|  | // branches in this order.  See if rearranging a case value would help. | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { | 
|  | if (I->BB == NextBlock) { | 
|  | std::swap(*I, BackCase); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing a conditional branch to | 
|  | // the Case's target mbb if the value being switched on SV is equal | 
|  | // to C. | 
|  | MachineBasicBlock *CurBlock = CR.CaseBB; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { | 
|  | MachineBasicBlock *FallThrough; | 
|  | if (I != E-1) { | 
|  | FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); | 
|  | CurMF->insert(BBI, FallThrough); | 
|  | } else { | 
|  | // If the last case doesn't match, go to the default block. | 
|  | FallThrough = Default; | 
|  | } | 
|  |  | 
|  | Value *RHS, *LHS, *MHS; | 
|  | ISD::CondCode CC; | 
|  | if (I->High == I->Low) { | 
|  | // This is just small small case range :) containing exactly 1 case | 
|  | CC = ISD::SETEQ; | 
|  | LHS = SV; RHS = I->High; MHS = NULL; | 
|  | } else { | 
|  | CC = ISD::SETLE; | 
|  | LHS = I->Low; MHS = SV; RHS = I->High; | 
|  | } | 
|  | CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); | 
|  |  | 
|  | // If emitting the first comparison, just call visitSwitchCase to emit the | 
|  | // code into the current block.  Otherwise, push the CaseBlock onto the | 
|  | // vector to be later processed by SDISel, and insert the node's MBB | 
|  | // before the next MBB. | 
|  | if (CurBlock == CurMBB) | 
|  | visitSwitchCase(CB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  |  | 
|  | CurBlock = FallThrough; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool areJTsAllowed(const TargetLowering &TLI) { | 
|  | return !DisableJumpTables && | 
|  | (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) || | 
|  | TLI.isOperationLegal(ISD::BRIND, MVT::Other)); | 
|  | } | 
|  |  | 
|  | /// handleJTSwitchCase - Emit jumptable for current switch case range | 
|  | bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | Value* SV, | 
|  | MachineBasicBlock* Default) { | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); | 
|  | int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue(); | 
|  |  | 
|  | uint64_t TSize = 0; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
|  | I!=E; ++I) | 
|  | TSize += I->size(); | 
|  |  | 
|  | if (!areJTsAllowed(TLI) || TSize <= 3) | 
|  | return false; | 
|  |  | 
|  | double Density = (double)TSize / (double)((Last - First) + 1ULL); | 
|  | if (Density < 0.4) | 
|  | return false; | 
|  |  | 
|  | DOUT << "Lowering jump table\n" | 
|  | << "First entry: " << First << ". Last entry: " << Last << "\n" | 
|  | << "Size: " << TSize << ". Density: " << Density << "\n\n"; | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = CurMBB->getParent(); | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  |  | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | // Create a new basic block to hold the code for loading the address | 
|  | // of the jump table, and jumping to it.  Update successor information; | 
|  | // we will either branch to the default case for the switch, or the jump | 
|  | // table. | 
|  | MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, JumpTableBB); | 
|  | CR.CaseBB->addSuccessor(Default); | 
|  | CR.CaseBB->addSuccessor(JumpTableBB); | 
|  |  | 
|  | // Build a vector of destination BBs, corresponding to each target | 
|  | // of the jump table. If the value of the jump table slot corresponds to | 
|  | // a case statement, push the case's BB onto the vector, otherwise, push | 
|  | // the default BB. | 
|  | std::vector<MachineBasicBlock*> DestBBs; | 
|  | int64_t TEI = First; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { | 
|  | int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue(); | 
|  | int64_t High = cast<ConstantInt>(I->High)->getSExtValue(); | 
|  |  | 
|  | if ((Low <= TEI) && (TEI <= High)) { | 
|  | DestBBs.push_back(I->BB); | 
|  | if (TEI==High) | 
|  | ++I; | 
|  | } else { | 
|  | DestBBs.push_back(Default); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info. Add one edge to each unique successor. | 
|  | BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); | 
|  | for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), | 
|  | E = DestBBs.end(); I != E; ++I) { | 
|  | if (!SuccsHandled[(*I)->getNumber()]) { | 
|  | SuccsHandled[(*I)->getNumber()] = true; | 
|  | JumpTableBB->addSuccessor(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a jump table index for this jump table, or return an existing | 
|  | // one. | 
|  | unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); | 
|  |  | 
|  | // Set the jump table information so that we can codegen it as a second | 
|  | // MachineBasicBlock | 
|  | JumpTable JT(-1U, JTI, JumpTableBB, Default); | 
|  | JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); | 
|  | if (CR.CaseBB == CurMBB) | 
|  | visitJumpTableHeader(JT, JTH); | 
|  |  | 
|  | JTCases.push_back(JumpTableBlock(JTH, JT)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// handleBTSplitSwitchCase - emit comparison and split binary search tree into | 
|  | /// 2 subtrees. | 
|  | bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | Value* SV, | 
|  | MachineBasicBlock* Default) { | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = CurMBB->getParent(); | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  |  | 
|  | if (++BBI != CurMBB->getParent()->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | // Size is the number of Cases represented by this range. | 
|  | unsigned Size = CR.Range.second - CR.Range.first; | 
|  |  | 
|  | int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); | 
|  | int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue(); | 
|  | double FMetric = 0; | 
|  | CaseItr Pivot = CR.Range.first + Size/2; | 
|  |  | 
|  | // Select optimal pivot, maximizing sum density of LHS and RHS. This will | 
|  | // (heuristically) allow us to emit JumpTable's later. | 
|  | uint64_t TSize = 0; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
|  | I!=E; ++I) | 
|  | TSize += I->size(); | 
|  |  | 
|  | uint64_t LSize = FrontCase.size(); | 
|  | uint64_t RSize = TSize-LSize; | 
|  | DOUT << "Selecting best pivot: \n" | 
|  | << "First: " << First << ", Last: " << Last <<"\n" | 
|  | << "LSize: " << LSize << ", RSize: " << RSize << "\n"; | 
|  | for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; | 
|  | J!=E; ++I, ++J) { | 
|  | int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue(); | 
|  | int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue(); | 
|  | assert((RBegin-LEnd>=1) && "Invalid case distance"); | 
|  | double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); | 
|  | double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); | 
|  | double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity); | 
|  | // Should always split in some non-trivial place | 
|  | DOUT <<"=>Step\n" | 
|  | << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n" | 
|  | << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n" | 
|  | << "Metric: " << Metric << "\n"; | 
|  | if (FMetric < Metric) { | 
|  | Pivot = J; | 
|  | FMetric = Metric; | 
|  | DOUT << "Current metric set to: " << FMetric << "\n"; | 
|  | } | 
|  |  | 
|  | LSize += J->size(); | 
|  | RSize -= J->size(); | 
|  | } | 
|  | if (areJTsAllowed(TLI)) { | 
|  | // If our case is dense we *really* should handle it earlier! | 
|  | assert((FMetric > 0) && "Should handle dense range earlier!"); | 
|  | } else { | 
|  | Pivot = CR.Range.first + Size/2; | 
|  | } | 
|  |  | 
|  | CaseRange LHSR(CR.Range.first, Pivot); | 
|  | CaseRange RHSR(Pivot, CR.Range.second); | 
|  | Constant *C = Pivot->Low; | 
|  | MachineBasicBlock *FalseBB = 0, *TrueBB = 0; | 
|  |  | 
|  | // We know that we branch to the LHS if the Value being switched on is | 
|  | // less than the Pivot value, C.  We use this to optimize our binary | 
|  | // tree a bit, by recognizing that if SV is greater than or equal to the | 
|  | // LHS's Case Value, and that Case Value is exactly one less than the | 
|  | // Pivot's Value, then we can branch directly to the LHS's Target, | 
|  | // rather than creating a leaf node for it. | 
|  | if ((LHSR.second - LHSR.first) == 1 && | 
|  | LHSR.first->High == CR.GE && | 
|  | cast<ConstantInt>(C)->getSExtValue() == | 
|  | (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) { | 
|  | TrueBB = LHSR.first->BB; | 
|  | } else { | 
|  | TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, TrueBB); | 
|  | WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); | 
|  | } | 
|  |  | 
|  | // Similar to the optimization above, if the Value being switched on is | 
|  | // known to be less than the Constant CR.LT, and the current Case Value | 
|  | // is CR.LT - 1, then we can branch directly to the target block for | 
|  | // the current Case Value, rather than emitting a RHS leaf node for it. | 
|  | if ((RHSR.second - RHSR.first) == 1 && CR.LT && | 
|  | cast<ConstantInt>(RHSR.first->Low)->getSExtValue() == | 
|  | (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) { | 
|  | FalseBB = RHSR.first->BB; | 
|  | } else { | 
|  | FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, FalseBB); | 
|  | WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing a conditional branch to | 
|  | // the LHS node if the value being switched on SV is less than C. | 
|  | // Otherwise, branch to LHS. | 
|  | CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); | 
|  |  | 
|  | if (CR.CaseBB == CurMBB) | 
|  | visitSwitchCase(CB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// handleBitTestsSwitchCase - if current case range has few destination and | 
|  | /// range span less, than machine word bitwidth, encode case range into series | 
|  | /// of masks and emit bit tests with these masks. | 
|  | bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | Value* SV, | 
|  | MachineBasicBlock* Default){ | 
|  | unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits(); | 
|  |  | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = CurMBB->getParent(); | 
|  |  | 
|  | unsigned numCmps = 0; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
|  | I!=E; ++I) { | 
|  | // Single case counts one, case range - two. | 
|  | if (I->Low == I->High) | 
|  | numCmps +=1; | 
|  | else | 
|  | numCmps +=2; | 
|  | } | 
|  |  | 
|  | // Count unique destinations | 
|  | SmallSet<MachineBasicBlock*, 4> Dests; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
|  | Dests.insert(I->BB); | 
|  | if (Dests.size() > 3) | 
|  | // Don't bother the code below, if there are too much unique destinations | 
|  | return false; | 
|  | } | 
|  | DOUT << "Total number of unique destinations: " << Dests.size() << "\n" | 
|  | << "Total number of comparisons: " << numCmps << "\n"; | 
|  |  | 
|  | // Compute span of values. | 
|  | Constant* minValue = FrontCase.Low; | 
|  | Constant* maxValue = BackCase.High; | 
|  | uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() - | 
|  | cast<ConstantInt>(minValue)->getSExtValue(); | 
|  | DOUT << "Compare range: " << range << "\n" | 
|  | << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n" | 
|  | << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n"; | 
|  |  | 
|  | if (range>=IntPtrBits || | 
|  | (!(Dests.size() == 1 && numCmps >= 3) && | 
|  | !(Dests.size() == 2 && numCmps >= 5) && | 
|  | !(Dests.size() >= 3 && numCmps >= 6))) | 
|  | return false; | 
|  |  | 
|  | DOUT << "Emitting bit tests\n"; | 
|  | int64_t lowBound = 0; | 
|  |  | 
|  | // Optimize the case where all the case values fit in a | 
|  | // word without having to subtract minValue. In this case, | 
|  | // we can optimize away the subtraction. | 
|  | if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 && | 
|  | cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) { | 
|  | range = cast<ConstantInt>(maxValue)->getSExtValue(); | 
|  | } else { | 
|  | lowBound = cast<ConstantInt>(minValue)->getSExtValue(); | 
|  | } | 
|  |  | 
|  | CaseBitsVector CasesBits; | 
|  | unsigned i, count = 0; | 
|  |  | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
|  | MachineBasicBlock* Dest = I->BB; | 
|  | for (i = 0; i < count; ++i) | 
|  | if (Dest == CasesBits[i].BB) | 
|  | break; | 
|  |  | 
|  | if (i == count) { | 
|  | assert((count < 3) && "Too much destinations to test!"); | 
|  | CasesBits.push_back(CaseBits(0, Dest, 0)); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound; | 
|  | uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound; | 
|  |  | 
|  | for (uint64_t j = lo; j <= hi; j++) { | 
|  | CasesBits[i].Mask |=  1ULL << j; | 
|  | CasesBits[i].Bits++; | 
|  | } | 
|  |  | 
|  | } | 
|  | std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); | 
|  |  | 
|  | BitTestInfo BTC; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  | ++BBI; | 
|  |  | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | DOUT << "Cases:\n"; | 
|  | for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { | 
|  | DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits | 
|  | << ", BB: " << CasesBits[i].BB << "\n"; | 
|  |  | 
|  | MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, CaseBB); | 
|  | BTC.push_back(BitTestCase(CasesBits[i].Mask, | 
|  | CaseBB, | 
|  | CasesBits[i].BB)); | 
|  | } | 
|  |  | 
|  | BitTestBlock BTB(lowBound, range, SV, | 
|  | -1U, (CR.CaseBB == CurMBB), | 
|  | CR.CaseBB, Default, BTC); | 
|  |  | 
|  | if (CR.CaseBB == CurMBB) | 
|  | visitBitTestHeader(BTB); | 
|  |  | 
|  | BitTestCases.push_back(BTB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Clusterify - Transform simple list of Cases into list of CaseRange's | 
|  | unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases, | 
|  | const SwitchInst& SI) { | 
|  | unsigned numCmps = 0; | 
|  |  | 
|  | // Start with "simple" cases | 
|  | for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) { | 
|  | MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; | 
|  | Cases.push_back(Case(SI.getSuccessorValue(i), | 
|  | SI.getSuccessorValue(i), | 
|  | SMBB)); | 
|  | } | 
|  | std::sort(Cases.begin(), Cases.end(), CaseCmp()); | 
|  |  | 
|  | // Merge case into clusters | 
|  | if (Cases.size()>=2) | 
|  | // Must recompute end() each iteration because it may be | 
|  | // invalidated by erase if we hold on to it | 
|  | for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) { | 
|  | int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); | 
|  | int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); | 
|  | MachineBasicBlock* nextBB = J->BB; | 
|  | MachineBasicBlock* currentBB = I->BB; | 
|  |  | 
|  | // If the two neighboring cases go to the same destination, merge them | 
|  | // into a single case. | 
|  | if ((nextValue-currentValue==1) && (currentBB == nextBB)) { | 
|  | I->High = J->High; | 
|  | J = Cases.erase(J); | 
|  | } else { | 
|  | I = J++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { | 
|  | if (I->Low != I->High) | 
|  | // A range counts double, since it requires two compares. | 
|  | ++numCmps; | 
|  | } | 
|  |  | 
|  | return numCmps; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CurMBB; | 
|  |  | 
|  | MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
|  |  | 
|  | // If there is only the default destination, branch to it if it is not the | 
|  | // next basic block.  Otherwise, just fall through. | 
|  | if (SI.getNumOperands() == 2) { | 
|  | // Update machine-CFG edges. | 
|  |  | 
|  | // If this is not a fall-through branch, emit the branch. | 
|  | CurMBB->addSuccessor(Default); | 
|  | if (Default != NextBlock) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Default))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there are any non-default case statements, create a vector of Cases | 
|  | // representing each one, and sort the vector so that we can efficiently | 
|  | // create a binary search tree from them. | 
|  | CaseVector Cases; | 
|  | unsigned numCmps = Clusterify(Cases, SI); | 
|  | DOUT << "Clusterify finished. Total clusters: " << Cases.size() | 
|  | << ". Total compares: " << numCmps << "\n"; | 
|  |  | 
|  | // Get the Value to be switched on and default basic blocks, which will be | 
|  | // inserted into CaseBlock records, representing basic blocks in the binary | 
|  | // search tree. | 
|  | Value *SV = SI.getOperand(0); | 
|  |  | 
|  | // Push the initial CaseRec onto the worklist | 
|  | CaseRecVector WorkList; | 
|  | WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | // Grab a record representing a case range to process off the worklist | 
|  | CaseRec CR = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) | 
|  | continue; | 
|  |  | 
|  | // If the range has few cases (two or less) emit a series of specific | 
|  | // tests. | 
|  | if (handleSmallSwitchRange(CR, WorkList, SV, Default)) | 
|  | continue; | 
|  |  | 
|  | // If the switch has more than 5 blocks, and at least 40% dense, and the | 
|  | // target supports indirect branches, then emit a jump table rather than | 
|  | // lowering the switch to a binary tree of conditional branches. | 
|  | if (handleJTSwitchCase(CR, WorkList, SV, Default)) | 
|  | continue; | 
|  |  | 
|  | // Emit binary tree. We need to pick a pivot, and push left and right ranges | 
|  | // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. | 
|  | handleBTSplitSwitchCase(CR, WorkList, SV, Default); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitSub(User &I) { | 
|  | // -0.0 - X --> fneg | 
|  | const Type *Ty = I.getType(); | 
|  | if (isa<VectorType>(Ty)) { | 
|  | if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { | 
|  | const VectorType *DestTy = cast<VectorType>(I.getType()); | 
|  | const Type *ElTy = DestTy->getElementType(); | 
|  | if (ElTy->isFloatingPoint()) { | 
|  | unsigned VL = DestTy->getNumElements(); | 
|  | std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); | 
|  | Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); | 
|  | if (CV == CNZ) { | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Ty->isFloatingPoint()) { | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) | 
|  | if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | if (!isa<VectorType>(I.getType())) { | 
|  | if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType())) | 
|  | Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); | 
|  | else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType())) | 
|  | Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitICmp(User &I) { | 
|  | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
|  | predicate = IC->getPredicate(); | 
|  | else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = ICmpInst::Predicate(IC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Opcode = getICmpCondCode(predicate); | 
|  | setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFCmp(User &I) { | 
|  | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
|  | if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
|  | predicate = FC->getPredicate(); | 
|  | else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = FCmpInst::Predicate(FC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Condition = getFCmpCondCode(predicate); | 
|  | setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVICmp(User &I) { | 
|  | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | if (VICmpInst *IC = dyn_cast<VICmpInst>(&I)) | 
|  | predicate = IC->getPredicate(); | 
|  | else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = ICmpInst::Predicate(IC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Opcode = getICmpCondCode(predicate); | 
|  | setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVFCmp(User &I) { | 
|  | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
|  | if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I)) | 
|  | predicate = FC->getPredicate(); | 
|  | else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = FCmpInst::Predicate(FC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Condition = getFCmpCondCode(predicate); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  |  | 
|  | setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitSelect(User &I) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I.getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues != 0) { | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SDValue Cond     = getValue(I.getOperand(0)); | 
|  | SDValue TrueVal  = getValue(I.getOperand(1)); | 
|  | SDValue FalseVal = getValue(I.getOperand(2)); | 
|  |  | 
|  | for (unsigned i = 0; i != NumValues; ++i) | 
|  | Values[i] = DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, | 
|  | SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), | 
|  | SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&ValueVTs[0], NumValues), | 
|  | &Values[0], NumValues)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitTrunc(User &I) { | 
|  | // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitZExt(User &I) { | 
|  | // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitSExt(User &I) { | 
|  | // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFPTrunc(User &I) { | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFPExt(User &I){ | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFPToUI(User &I) { | 
|  | // FPToUI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFPToSI(User &I) { | 
|  | // FPToSI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitUIToFP(User &I) { | 
|  | // UIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitSIToFP(User &I){ | 
|  | // SIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitPtrToInt(User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT SrcVT = N.getValueType(); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | SDValue Result; | 
|  | if (DestVT.bitsLT(SrcVT)) | 
|  | Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); | 
|  | else | 
|  | // Note: ZERO_EXTEND can handle cases where the sizes are equal too | 
|  | Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); | 
|  | setValue(&I, Result); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitIntToPtr(User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT SrcVT = N.getValueType(); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | if (DestVT.bitsLT(SrcVT)) | 
|  | setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); | 
|  | else | 
|  | // Note: ZERO_EXTEND can handle cases where the sizes are equal too | 
|  | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitBitCast(User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  |  | 
|  | // BitCast assures us that source and destination are the same size so this | 
|  | // is either a BIT_CONVERT or a no-op. | 
|  | if (DestVT != N.getValueType()) | 
|  | setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types | 
|  | else | 
|  | setValue(&I, N); // noop cast. | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitInsertElement(User &I) { | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InVal = getValue(I.getOperand(1)); | 
|  | SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), | 
|  | getValue(I.getOperand(2))); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, | 
|  | TLI.getValueType(I.getType()), | 
|  | InVec, InVal, InIdx)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitExtractElement(User &I) { | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), | 
|  | getValue(I.getOperand(1))); | 
|  | setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, | 
|  | TLI.getValueType(I.getType()), InVec, InIdx)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Utility for visitShuffleVector - Returns true if the mask is mask starting | 
|  | // from SIndx and increasing to the element length (undefs are allowed). | 
|  | static bool SequentialMask(SDValue Mask, unsigned SIndx) { | 
|  | unsigned MaskNumElts = Mask.getNumOperands(); | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | if (Mask.getOperand(i).getOpcode() != ISD::UNDEF) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue(); | 
|  | if (Idx != i + SIndx) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitShuffleVector(User &I) { | 
|  | SDValue Src1 = getValue(I.getOperand(0)); | 
|  | SDValue Src2 = getValue(I.getOperand(1)); | 
|  | SDValue Mask = getValue(I.getOperand(2)); | 
|  |  | 
|  | MVT VT = TLI.getValueType(I.getType()); | 
|  | MVT SrcVT = Src1.getValueType(); | 
|  | int MaskNumElts = Mask.getNumOperands(); | 
|  | int SrcNumElts = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | if (SrcNumElts == MaskNumElts) { | 
|  | setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Normalize the shuffle vector since mask and vector length don't match. | 
|  | MVT MaskEltVT = Mask.getValueType().getVectorElementType(); | 
|  |  | 
|  | if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { | 
|  | // Mask is longer than the source vectors and is a multiple of the source | 
|  | // vectors.  We can use concatenate vector to make the mask and vectors | 
|  | // lengths match. | 
|  | if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { | 
|  | // The shuffle is concatenating two vectors together. | 
|  | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, VT, Src1, Src2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Pad both vectors with undefs to make them the same length as the mask. | 
|  | unsigned NumConcat = MaskNumElts / SrcNumElts; | 
|  | SDValue UndefVal = DAG.getNode(ISD::UNDEF, SrcVT); | 
|  |  | 
|  | SDValue* MOps1 = new SDValue[NumConcat]; | 
|  | SDValue* MOps2 = new SDValue[NumConcat]; | 
|  | MOps1[0] = Src1; | 
|  | MOps2[0] = Src2; | 
|  | for (unsigned i = 1; i != NumConcat; ++i) { | 
|  | MOps1[i] = UndefVal; | 
|  | MOps2[i] = UndefVal; | 
|  | } | 
|  | Src1 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps1, NumConcat); | 
|  | Src2 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps2, NumConcat); | 
|  |  | 
|  | delete [] MOps1; | 
|  | delete [] MOps2; | 
|  |  | 
|  | // Readjust mask for new input vector length. | 
|  | SmallVector<SDValue, 8> MappedOps; | 
|  | for (int i = 0; i != MaskNumElts; ++i) { | 
|  | if (Mask.getOperand(i).getOpcode() == ISD::UNDEF) { | 
|  | MappedOps.push_back(Mask.getOperand(i)); | 
|  | } else { | 
|  | int Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue(); | 
|  | if (Idx < SrcNumElts) | 
|  | MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT)); | 
|  | else | 
|  | MappedOps.push_back(DAG.getConstant(Idx + MaskNumElts - SrcNumElts, | 
|  | MaskEltVT)); | 
|  | } | 
|  | } | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), | 
|  | &MappedOps[0], MappedOps.size()); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcNumElts > MaskNumElts) { | 
|  | // Resulting vector is shorter than the incoming vector. | 
|  | if (SrcNumElts == MaskNumElts && SequentialMask(Mask,0)) { | 
|  | // Shuffle extracts 1st vector. | 
|  | setValue(&I, Src1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcNumElts == MaskNumElts && SequentialMask(Mask,MaskNumElts)) { | 
|  | // Shuffle extracts 2nd vector. | 
|  | setValue(&I, Src2); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Analyze the access pattern of the vector to see if we can extract | 
|  | // two subvectors and do the shuffle. The analysis is done by calculating | 
|  | // the range of elements the mask access on both vectors. | 
|  | int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; | 
|  | int MaxRange[2] = {-1, -1}; | 
|  |  | 
|  | for (int i = 0; i != MaskNumElts; ++i) { | 
|  | SDValue Arg = Mask.getOperand(i); | 
|  | if (Arg.getOpcode() != ISD::UNDEF) { | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | int Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); | 
|  | int Input = 0; | 
|  | if (Idx >= SrcNumElts) { | 
|  | Input = 1; | 
|  | Idx -= SrcNumElts; | 
|  | } | 
|  | if (Idx > MaxRange[Input]) | 
|  | MaxRange[Input] = Idx; | 
|  | if (Idx < MinRange[Input]) | 
|  | MinRange[Input] = Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the access is smaller than the vector size and can we find | 
|  | // a reasonable extract index. | 
|  | int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract. | 
|  | int StartIdx[2];  // StartIdx to extract from | 
|  | for (int Input=0; Input < 2; ++Input) { | 
|  | if (MinRange[Input] == SrcNumElts+1 && MaxRange[Input] == -1) { | 
|  | RangeUse[Input] = 0; // Unused | 
|  | StartIdx[Input] = 0; | 
|  | } else if (MaxRange[Input] - MinRange[Input] < MaskNumElts) { | 
|  | // Fits within range but we should see if we can find a good | 
|  | // start index that is a multiple of the mask length. | 
|  | if (MaxRange[Input] < MaskNumElts) { | 
|  | RangeUse[Input] = 1; // Extract from beginning of the vector | 
|  | StartIdx[Input] = 0; | 
|  | } else { | 
|  | StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; | 
|  | if (MaxRange[Input] - StartIdx[Input] < MaskNumElts && | 
|  | StartIdx[Input] + MaskNumElts < SrcNumElts) | 
|  | RangeUse[Input] = 1; // Extract from a multiple of the mask length. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RangeUse[0] == 0 && RangeUse[0] == 0) { | 
|  | setValue(&I, DAG.getNode(ISD::UNDEF, VT));  // Vectors are not used. | 
|  | return; | 
|  | } | 
|  | else if (RangeUse[0] < 2 && RangeUse[1] < 2) { | 
|  | // Extract appropriate subvector and generate a vector shuffle | 
|  | for (int Input=0; Input < 2; ++Input) { | 
|  | SDValue& Src = Input == 0 ? Src1 : Src2; | 
|  | if (RangeUse[Input] == 0) { | 
|  | Src = DAG.getNode(ISD::UNDEF, VT); | 
|  | } else { | 
|  | Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, VT, Src, | 
|  | DAG.getIntPtrConstant(StartIdx[Input])); | 
|  | } | 
|  | } | 
|  | // Calculate new mask. | 
|  | SmallVector<SDValue, 8> MappedOps; | 
|  | for (int i = 0; i != MaskNumElts; ++i) { | 
|  | SDValue Arg = Mask.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) { | 
|  | MappedOps.push_back(Arg); | 
|  | } else { | 
|  | int Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); | 
|  | if (Idx < SrcNumElts) | 
|  | MappedOps.push_back(DAG.getConstant(Idx - StartIdx[0], MaskEltVT)); | 
|  | else { | 
|  | Idx = Idx - SrcNumElts - StartIdx[1] + MaskNumElts; | 
|  | MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), | 
|  | &MappedOps[0], MappedOps.size()); | 
|  | setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't use either concat vectors or extract subvectors so fall back to | 
|  | // replacing the shuffle with extract and build vector. | 
|  | // to insert and build vector. | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  | SmallVector<SDValue,8> Ops; | 
|  | for (int i = 0; i != MaskNumElts; ++i) { | 
|  | SDValue Arg = Mask.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) { | 
|  | Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); | 
|  | } else { | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | int Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); | 
|  | if (Idx < SrcNumElts) | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src1, | 
|  | DAG.getConstant(Idx, PtrVT))); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src2, | 
|  | DAG.getConstant(Idx - SrcNumElts, PtrVT))); | 
|  | } | 
|  | } | 
|  | setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | const Value *Op1 = I.getOperand(1); | 
|  | const Type *AggTy = I.getType(); | 
|  | const Type *ValTy = Op1->getType(); | 
|  | bool IntoUndef = isa<UndefValue>(Op0); | 
|  | bool FromUndef = isa<UndefValue>(Op1); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, | 
|  | I.idx_begin(), I.idx_end()); | 
|  |  | 
|  | SmallVector<MVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, AggTy, AggValueVTs); | 
|  | SmallVector<MVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumAggValues = AggValueVTs.size(); | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumAggValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | SDValue Val = getValue(Op1); | 
|  | unsigned i = 0; | 
|  | // Copy the beginning value(s) from the original aggregate. | 
|  | for (; i != LinearIndex; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  | // Copy values from the inserted value(s). | 
|  | for (; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : | 
|  | SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); | 
|  | // Copy remaining value(s) from the original aggregate. | 
|  | for (; i != NumAggValues; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&AggValueVTs[0], NumAggValues), | 
|  | &Values[0], NumAggValues)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | const Type *AggTy = Op0->getType(); | 
|  | const Type *ValTy = I.getType(); | 
|  | bool OutOfUndef = isa<UndefValue>(Op0); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, | 
|  | I.idx_begin(), I.idx_end()); | 
|  |  | 
|  | SmallVector<MVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumValValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | // Copy out the selected value(s). | 
|  | for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i - LinearIndex] = | 
|  | OutOfUndef ? | 
|  | DAG.getNode(ISD::UNDEF, | 
|  | Agg.getNode()->getValueType(Agg.getResNo() + i)) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&ValValueVTs[0], NumValValues), | 
|  | &Values[0], NumValValues)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitGetElementPtr(User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | const Type *Ty = I.getOperand(0)->getType(); | 
|  |  | 
|  | for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); | 
|  | OI != E; ++OI) { | 
|  | Value *Idx = *OI; | 
|  | if (const StructType *StTy = dyn_cast<StructType>(Ty)) { | 
|  | unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); | 
|  | N = DAG.getNode(ISD::ADD, N.getValueType(), N, | 
|  | DAG.getIntPtrConstant(Offset)); | 
|  | } | 
|  | Ty = StTy->getElementType(Field); | 
|  | } else { | 
|  | Ty = cast<SequentialType>(Ty)->getElementType(); | 
|  |  | 
|  | // If this is a constant subscript, handle it quickly. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (CI->getZExtValue() == 0) continue; | 
|  | uint64_t Offs = | 
|  | TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); | 
|  | N = DAG.getNode(ISD::ADD, N.getValueType(), N, | 
|  | DAG.getIntPtrConstant(Offs)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | uint64_t ElementSize = TD->getABITypeSize(Ty); | 
|  | SDValue IdxN = getValue(Idx); | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend | 
|  | // it. | 
|  | if (IdxN.getValueType().bitsLT(N.getValueType())) | 
|  | IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); | 
|  | else if (IdxN.getValueType().bitsGT(N.getValueType())) | 
|  | IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); | 
|  |  | 
|  | // If this is a multiply by a power of two, turn it into a shl | 
|  | // immediately.  This is a very common case. | 
|  | if (ElementSize != 1) { | 
|  | if (isPowerOf2_64(ElementSize)) { | 
|  | unsigned Amt = Log2_64(ElementSize); | 
|  | IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, | 
|  | DAG.getConstant(Amt, TLI.getShiftAmountTy())); | 
|  | } else { | 
|  | SDValue Scale = DAG.getIntPtrConstant(ElementSize); | 
|  | IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); | 
|  | } | 
|  | } | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitAlloca(AllocaInst &I) { | 
|  | // If this is a fixed sized alloca in the entry block of the function, | 
|  | // allocate it statically on the stack. | 
|  | if (FuncInfo.StaticAllocaMap.count(&I)) | 
|  | return;   // getValue will auto-populate this. | 
|  |  | 
|  | const Type *Ty = I.getAllocatedType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
|  | I.getAlignment()); | 
|  |  | 
|  | SDValue AllocSize = getValue(I.getArraySize()); | 
|  | MVT IntPtr = TLI.getPointerTy(); | 
|  | if (IntPtr.bitsLT(AllocSize.getValueType())) | 
|  | AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); | 
|  | else if (IntPtr.bitsGT(AllocSize.getValueType())) | 
|  | AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); | 
|  |  | 
|  | AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, | 
|  | DAG.getIntPtrConstant(TySize)); | 
|  |  | 
|  | // Handle alignment.  If the requested alignment is less than or equal to | 
|  | // the stack alignment, ignore it.  If the size is greater than or equal to | 
|  | // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
|  | unsigned StackAlign = | 
|  | TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); | 
|  | if (Align <= StackAlign) | 
|  | Align = 0; | 
|  |  | 
|  | // Round the size of the allocation up to the stack alignment size | 
|  | // by add SA-1 to the size. | 
|  | AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(StackAlign-1)); | 
|  | // Mask out the low bits for alignment purposes. | 
|  | AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); | 
|  |  | 
|  | SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; | 
|  | const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), | 
|  | MVT::Other); | 
|  | SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); | 
|  | setValue(&I, DSA); | 
|  | DAG.setRoot(DSA.getValue(1)); | 
|  |  | 
|  | // Inform the Frame Information that we have just allocated a variable-sized | 
|  | // object. | 
|  | CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitLoad(LoadInst &I) { | 
|  | const Value *SV = I.getOperand(0); | 
|  | SDValue Ptr = getValue(SV); | 
|  |  | 
|  | const Type *Ty = I.getType(); | 
|  | bool isVolatile = I.isVolatile(); | 
|  | unsigned Alignment = I.getAlignment(); | 
|  |  | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  | if (I.isVolatile()) | 
|  | // Serialize volatile loads with other side effects. | 
|  | Root = getRoot(); | 
|  | else if (AA->pointsToConstantMemory(SV)) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  | MVT PtrVT = Ptr.getValueType(); | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | SDValue L = DAG.getLoad(ValueVTs[i], Root, | 
|  | DAG.getNode(ISD::ADD, PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], PtrVT)), | 
|  | SV, Offsets[i], | 
|  | isVolatile, Alignment); | 
|  | Values[i] = L; | 
|  | Chains[i] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | if (!ConstantMemory) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &Chains[0], NumValues); | 
|  | if (isVolatile) | 
|  | DAG.setRoot(Chain); | 
|  | else | 
|  | PendingLoads.push_back(Chain); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&ValueVTs[0], NumValues), | 
|  | &Values[0], NumValues)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitStore(StoreInst &I) { | 
|  | Value *SrcV = I.getOperand(0); | 
|  | Value *PtrV = I.getOperand(1); | 
|  |  | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | // Get the lowered operands. Note that we do this after | 
|  | // checking if NumResults is zero, because with zero results | 
|  | // the operands won't have values in the map. | 
|  | SDValue Src = getValue(SrcV); | 
|  | SDValue Ptr = getValue(PtrV); | 
|  |  | 
|  | SDValue Root = getRoot(); | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  | MVT PtrVT = Ptr.getValueType(); | 
|  | bool isVolatile = I.isVolatile(); | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | for (unsigned i = 0; i != NumValues; ++i) | 
|  | Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i), | 
|  | DAG.getNode(ISD::ADD, PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], PtrVT)), | 
|  | PtrV, Offsets[i], | 
|  | isVolatile, Alignment); | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues)); | 
|  | } | 
|  |  | 
|  | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
|  | /// node. | 
|  | void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | bool HasChain = !I.doesNotAccessMemory(); | 
|  | bool OnlyLoad = HasChain && I.onlyReadsMemory(); | 
|  |  | 
|  | // Build the operand list. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
|  | if (OnlyLoad) { | 
|  | // We don't need to serialize loads against other loads. | 
|  | Ops.push_back(DAG.getRoot()); | 
|  | } else { | 
|  | Ops.push_back(getRoot()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Info is set by getTgtMemInstrinsic | 
|  | TargetLowering::IntrinsicInfo Info; | 
|  | bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); | 
|  |  | 
|  | // Add the intrinsic ID as an integer operand if it's not a target intrinsic. | 
|  | if (!IsTgtIntrinsic) | 
|  | Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); | 
|  |  | 
|  | // Add all operands of the call to the operand list. | 
|  | for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = getValue(I.getOperand(i)); | 
|  | assert(TLI.isTypeLegal(Op.getValueType()) && | 
|  | "Intrinsic uses a non-legal type?"); | 
|  | Ops.push_back(Op); | 
|  | } | 
|  |  | 
|  | std::vector<MVT> VTs; | 
|  | if (I.getType() != Type::VoidTy) { | 
|  | MVT VT = TLI.getValueType(I.getType()); | 
|  | if (VT.isVector()) { | 
|  | const VectorType *DestTy = cast<VectorType>(I.getType()); | 
|  | MVT EltVT = TLI.getValueType(DestTy->getElementType()); | 
|  |  | 
|  | VT = MVT::getVectorVT(EltVT, DestTy->getNumElements()); | 
|  | assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); | 
|  | } | 
|  |  | 
|  | assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); | 
|  | VTs.push_back(VT); | 
|  | } | 
|  | if (HasChain) | 
|  | VTs.push_back(MVT::Other); | 
|  |  | 
|  | const MVT *VTList = DAG.getNodeValueTypes(VTs); | 
|  |  | 
|  | // Create the node. | 
|  | SDValue Result; | 
|  | if (IsTgtIntrinsic) { | 
|  | // This is target intrinsic that touches memory | 
|  | Result = DAG.getMemIntrinsicNode(Info.opc, VTList, VTs.size(), | 
|  | &Ops[0], Ops.size(), | 
|  | Info.memVT, Info.ptrVal, Info.offset, | 
|  | Info.align, Info.vol, | 
|  | Info.readMem, Info.writeMem); | 
|  | } | 
|  | else if (!HasChain) | 
|  | Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), | 
|  | &Ops[0], Ops.size()); | 
|  | else if (I.getType() != Type::VoidTy) | 
|  | Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), | 
|  | &Ops[0], Ops.size()); | 
|  | else | 
|  | Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), | 
|  | &Ops[0], Ops.size()); | 
|  |  | 
|  | if (HasChain) { | 
|  | SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); | 
|  | if (OnlyLoad) | 
|  | PendingLoads.push_back(Chain); | 
|  | else | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  | if (I.getType() != Type::VoidTy) { | 
|  | if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
|  | MVT VT = TLI.getValueType(PTy); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result); | 
|  | } | 
|  | setValue(&I, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
|  | static GlobalVariable *ExtractTypeInfo(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
|  | assert ((GV || isa<ConstantPointerNull>(V)) && | 
|  | "TypeInfo must be a global variable or NULL"); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// AddCatchInfo - Extract the personality and type infos from an eh.selector | 
|  | /// call, and add them to the specified machine basic block. | 
|  | void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, | 
|  | MachineBasicBlock *MBB) { | 
|  | // Inform the MachineModuleInfo of the personality for this landing pad. | 
|  | ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); | 
|  | assert(CE->getOpcode() == Instruction::BitCast && | 
|  | isa<Function>(CE->getOperand(0)) && | 
|  | "Personality should be a function"); | 
|  | MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
|  |  | 
|  | // Gather all the type infos for this landing pad and pass them along to | 
|  | // MachineModuleInfo. | 
|  | std::vector<GlobalVariable *> TyInfo; | 
|  | unsigned N = I.getNumOperands(); | 
|  |  | 
|  | for (unsigned i = N - 1; i > 2; --i) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { | 
|  | unsigned FilterLength = CI->getZExtValue(); | 
|  | unsigned FirstCatch = i + FilterLength + !FilterLength; | 
|  | assert (FirstCatch <= N && "Invalid filter length"); | 
|  |  | 
|  | if (FirstCatch < N) { | 
|  | TyInfo.reserve(N - FirstCatch); | 
|  | for (unsigned j = FirstCatch; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | if (!FilterLength) { | 
|  | // Cleanup. | 
|  | MMI->addCleanup(MBB); | 
|  | } else { | 
|  | // Filter. | 
|  | TyInfo.reserve(FilterLength - 1); | 
|  | for (unsigned j = i + 1; j < FirstCatch; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addFilterTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | N = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N > 3) { | 
|  | TyInfo.reserve(N - 3); | 
|  | for (unsigned j = 3; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /// GetSignificand - Get the significand and build it into a floating-point | 
|  | /// number with exponent of 1: | 
|  | /// | 
|  | ///   Op = (Op & 0x007fffff) | 0x3f800000; | 
|  | /// | 
|  | /// where Op is the hexidecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetSignificand(SelectionDAG &DAG, SDValue Op) { | 
|  | SDValue t1 = DAG.getNode(ISD::AND, MVT::i32, Op, | 
|  | DAG.getConstant(0x007fffff, MVT::i32)); | 
|  | SDValue t2 = DAG.getNode(ISD::OR, MVT::i32, t1, | 
|  | DAG.getConstant(0x3f800000, MVT::i32)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// GetExponent - Get the exponent: | 
|  | /// | 
|  | ///   (float)((Op1 >> 23) - 127); | 
|  | /// | 
|  | /// where Op is the hexidecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetExponent(SelectionDAG &DAG, SDValue Op) { | 
|  | SDValue t1 = DAG.getNode(ISD::SRL, MVT::i32, Op, | 
|  | DAG.getConstant(23, MVT::i32)); | 
|  | SDValue t2 = DAG.getNode(ISD::SUB, MVT::i32, t1, | 
|  | DAG.getConstant(127, MVT::i32)); | 
|  | return DAG.getNode(ISD::UINT_TO_FP, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// getF32Constant - Get 32-bit floating point constant. | 
|  | static SDValue | 
|  | getF32Constant(SelectionDAG &DAG, unsigned Flt) { | 
|  | return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); | 
|  | } | 
|  |  | 
|  | /// Inlined utility function to implement binary input atomic intrinsics for | 
|  | /// visitIntrinsicCall: I is a call instruction | 
|  | ///                     Op is the associated NodeType for I | 
|  | const char * | 
|  | SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { | 
|  | SDValue Root = getRoot(); | 
|  | SDValue L = DAG.getAtomic(Op, Root, | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | I.getOperand(1)); | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(L.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // implVisitAluOverflow - Lower arithmetic overflow instrinsics. | 
|  | const char * | 
|  | SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { | 
|  | SDValue Op1 = getValue(I.getOperand(1)); | 
|  | SDValue Op2 = getValue(I.getOperand(2)); | 
|  |  | 
|  | MVT ValueVTs[] = { Op1.getValueType(), MVT::i1 }; | 
|  | SDValue Ops[] = { Op1, Op2 }; | 
|  |  | 
|  | SDValue Result = DAG.getNode(Op, DAG.getVTList(&ValueVTs[0], 2), &Ops[0], 2); | 
|  |  | 
|  | setValue(&I, Result); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// visitExp - Lower an exp intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGLowering::visitExp(CallInst &I) { | 
|  | SDValue result; | 
|  |  | 
|  | if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(1)); | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OFe 1.4426950f | 
|  | //   IntegerPartOfX = ((int32_t)(X * LOG2OFe)); | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op, | 
|  | getF32Constant(DAG, 0x3fb8aa3b)); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, MVT::i32)); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t6 = DAG.getNode(ISD::ADD, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t6); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // 0.000107046256 error, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t8 = DAG.getNode(ISD::ADD, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t8); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t14 = DAG.getNode(ISD::ADD, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t14); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FEXP, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog - Lower a log intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGLowering::visitLog(CallInst &I) { | 
|  | SDValue result; | 
|  |  | 
|  | if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(1)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log(2) [0.69314718f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3f317218)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   LogofMantissa = | 
|  | //     -1.1609546f + | 
|  | //       (1.4034025f - 0.23903021f * x) * x; | 
|  | // | 
|  | // error 0.0034276066, which is better than 8 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbe74c456)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3fb3a2b1)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f949a29)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -1.7417939f + | 
|  | //       (2.8212026f + | 
|  | //         (-1.4699568f + | 
|  | //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.000061011436, which is 14 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbd67b6d6)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ee4f4b8)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fbc278b)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40348e95)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fdef31a)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -2.1072184f + | 
|  | //       (4.2372794f + | 
|  | //         (-3.7029485f + | 
|  | //           (2.2781945f + | 
|  | //             (-0.87823314f + | 
|  | //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; | 
|  | // | 
|  | // error 0.0000023660568, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbc91e5ac)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e4350aa)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f60d3e3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x4011cdf0)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x406cfd1c)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x408797cb)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4006dcab)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGLowering::visitLog2(CallInst &I) { | 
|  | SDValue result; | 
|  |  | 
|  | if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(1)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); | 
|  |  | 
|  | // Get the exponent. | 
|  | SDValue LogOfExponent = GetExponent(DAG, Op1); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1); | 
|  |  | 
|  | // Different possible minimax approximations of significand in | 
|  | // floating-point for various degrees of accuracy over [1,2]. | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; | 
|  | // | 
|  | // error 0.0049451742, which is more than 7 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbeb08fe0)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x40019463)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fd6633d)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -2.51285454f + | 
|  | //       (4.07009056f + | 
|  | //         (-2.12067489f + | 
|  | //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000876136000, which is better than 13 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbda7262e)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f25280b)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x4007b923)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40823e2f)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x4020d29c)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -3.0400495f + | 
|  | //       (6.1129976f + | 
|  | //         (-5.3420409f + | 
|  | //           (3.2865683f + | 
|  | //             (-1.2669343f + | 
|  | //               (0.27515199f - | 
|  | //                 0.25691327e-1f * x) * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000018516, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbcd2769e)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e8ce0b9)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fa22ae7)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40525723)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x40aaf200)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x40c39dad)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4042902c)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG2, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGLowering::visitLog10(CallInst &I) { | 
|  | SDValue result; | 
|  |  | 
|  | if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(1)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log10(2) [0.30102999f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3e9a209a)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.50419619f + | 
|  | //       (0.60948995f - 0.10380950f * x) * x; | 
|  | // | 
|  | // error 0.0014886165, which is 6 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbdd49a13)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f1c0789)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f011300)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.64831180f + | 
|  | //       (0.91751397f + | 
|  | //         (-0.31664806f + 0.47637168e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.00019228036, which is better than 12 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3d431f31)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ea21fb2)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f6ae232)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f25f7c3)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.84299375f + | 
|  | //       (1.5327582f + | 
|  | //         (-1.0688956f + | 
|  | //           (0.49102474f + | 
|  | //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000037995730, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3c5d51ce)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e00685a)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3efb6798)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FSUB, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f88d192)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fc4316c)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3f57ce70)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG10, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGLowering::visitExp2(CallInst &I) { | 
|  | SDValue result; | 
|  |  | 
|  | if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(1)); | 
|  |  | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Op); | 
|  |  | 
|  | //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, Op, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, MVT::i32)); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FEXP2, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitPow - Lower a pow intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode with x == 10.0f. | 
|  | void | 
|  | SelectionDAGLowering::visitPow(CallInst &I) { | 
|  | SDValue result; | 
|  | Value *Val = I.getOperand(1); | 
|  | bool IsExp10 = false; | 
|  |  | 
|  | if (getValue(Val).getValueType() == MVT::f32 && | 
|  | getValue(I.getOperand(2)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | APFloat Ten(10.0f); | 
|  | IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getOperand(2)); | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OF10 3.3219281f | 
|  | //   IntegerPartOfX = (int32_t)(x * LOG2OF10); | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op, | 
|  | getF32Constant(DAG, 0x40549a78)); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, MVT::i32)); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   twoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FPOW, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If | 
|  | /// we want to emit this as a call to a named external function, return the name | 
|  | /// otherwise lower it and return null. | 
|  | const char * | 
|  | SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { | 
|  | switch (Intrinsic) { | 
|  | default: | 
|  | // By default, turn this into a target intrinsic node. | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return 0; | 
|  | case Intrinsic::vastart:  visitVAStart(I); return 0; | 
|  | case Intrinsic::vaend:    visitVAEnd(I); return 0; | 
|  | case Intrinsic::vacopy:   visitVACopy(I); return 0; | 
|  | case Intrinsic::returnaddress: | 
|  | setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::frameaddress: | 
|  | setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::setjmp: | 
|  | return "_setjmp"+!TLI.usesUnderscoreSetJmp(); | 
|  | break; | 
|  | case Intrinsic::longjmp: | 
|  | return "_longjmp"+!TLI.usesUnderscoreLongJmp(); | 
|  | break; | 
|  | case Intrinsic::memcpy: { | 
|  | SDValue Op1 = getValue(I.getOperand(1)); | 
|  | SDValue Op2 = getValue(I.getOperand(2)); | 
|  | SDValue Op3 = getValue(I.getOperand(3)); | 
|  | unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
|  | DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, | 
|  | I.getOperand(1), 0, I.getOperand(2), 0)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | SDValue Op1 = getValue(I.getOperand(1)); | 
|  | SDValue Op2 = getValue(I.getOperand(2)); | 
|  | SDValue Op3 = getValue(I.getOperand(3)); | 
|  | unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
|  | DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align, | 
|  | I.getOperand(1), 0)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | SDValue Op1 = getValue(I.getOperand(1)); | 
|  | SDValue Op2 = getValue(I.getOperand(2)); | 
|  | SDValue Op3 = getValue(I.getOperand(3)); | 
|  | unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
|  |  | 
|  | // If the source and destination are known to not be aliases, we can | 
|  | // lower memmove as memcpy. | 
|  | uint64_t Size = -1ULL; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) | 
|  | Size = C->getZExtValue(); | 
|  | if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == | 
|  | AliasAnalysis::NoAlias) { | 
|  | DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, | 
|  | I.getOperand(1), 0, I.getOperand(2), 0)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align, | 
|  | I.getOperand(1), 0, I.getOperand(2), 0)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_stoppoint: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); | 
|  | if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { | 
|  | DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); | 
|  | assert(DD && "Not a debug information descriptor"); | 
|  | DAG.setRoot(DAG.getDbgStopPoint(getRoot(), | 
|  | SPI.getLine(), | 
|  | SPI.getColumn(), | 
|  | cast<CompileUnitDesc>(DD))); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_region_start: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); | 
|  | if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { | 
|  | unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); | 
|  | DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_region_end: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); | 
|  | if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { | 
|  | unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); | 
|  | DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_func_start: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | if (!MMI) return 0; | 
|  | DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); | 
|  | Value *SP = FSI.getSubprogram(); | 
|  | if (SP && MMI->Verify(SP)) { | 
|  | // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is | 
|  | // what (most?) gdb expects. | 
|  | DebugInfoDesc *DD = MMI->getDescFor(SP); | 
|  | assert(DD && "Not a debug information descriptor"); | 
|  | SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD); | 
|  | const CompileUnitDesc *CompileUnit = Subprogram->getFile(); | 
|  | unsigned SrcFile = MMI->RecordSource(CompileUnit); | 
|  | // Record the source line but does not create a label for the normal | 
|  | // function start. It will be emitted at asm emission time. However, | 
|  | // create a label if this is a beginning of inlined function. | 
|  | unsigned LabelID = MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile); | 
|  | if (MMI->getSourceLines().size() != 1) | 
|  | DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_declare: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | DbgDeclareInst &DI = cast<DbgDeclareInst>(I); | 
|  | Value *Variable = DI.getVariable(); | 
|  | if (MMI && Variable && MMI->Verify(Variable)) | 
|  | DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(), | 
|  | getValue(DI.getAddress()), getValue(Variable))); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_exception: { | 
|  | if (!CurMBB->isLandingPad()) { | 
|  | // FIXME: Mark exception register as live in.  Hack for PR1508. | 
|  | unsigned Reg = TLI.getExceptionAddressRegister(); | 
|  | if (Reg) CurMBB->addLiveIn(Reg); | 
|  | } | 
|  | // Insert the EXCEPTIONADDR instruction. | 
|  | SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
|  | SDValue Ops[1]; | 
|  | Ops[0] = DAG.getRoot(); | 
|  | SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); | 
|  | setValue(&I, Op); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_selector_i32: | 
|  | case Intrinsic::eh_selector_i64: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ? | 
|  | MVT::i32 : MVT::i64); | 
|  |  | 
|  | if (MMI) { | 
|  | if (CurMBB->isLandingPad()) | 
|  | AddCatchInfo(I, MMI, CurMBB); | 
|  | else { | 
|  | #ifndef NDEBUG | 
|  | FuncInfo.CatchInfoLost.insert(&I); | 
|  | #endif | 
|  | // FIXME: Mark exception selector register as live in.  Hack for PR1508. | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | if (Reg) CurMBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | // Insert the EHSELECTION instruction. | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::Other); | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getValue(I.getOperand(1)); | 
|  | Ops[1] = getRoot(); | 
|  | SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); | 
|  | setValue(&I, Op); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | } else { | 
|  | setValue(&I, DAG.getConstant(0, VT)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_typeid_for_i32: | 
|  | case Intrinsic::eh_typeid_for_i64: { | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ? | 
|  | MVT::i32 : MVT::i64); | 
|  |  | 
|  | if (MMI) { | 
|  | // Find the type id for the given typeinfo. | 
|  | GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); | 
|  |  | 
|  | unsigned TypeID = MMI->getTypeIDFor(GV); | 
|  | setValue(&I, DAG.getConstant(TypeID, VT)); | 
|  | } else { | 
|  | // Return something different to eh_selector. | 
|  | setValue(&I, DAG.getConstant(1, VT)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_return_i32: | 
|  | case Intrinsic::eh_return_i64: | 
|  | if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { | 
|  | MMI->setCallsEHReturn(true); | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_RETURN, | 
|  | MVT::Other, | 
|  | getControlRoot(), | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)))); | 
|  | } else { | 
|  | setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | case Intrinsic::eh_unwind_init: | 
|  | if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { | 
|  | MMI->setCallsUnwindInit(true); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::eh_dwarf_cfa: { | 
|  | MVT VT = getValue(I.getOperand(1)).getValueType(); | 
|  | SDValue CfaArg; | 
|  | if (VT.bitsGT(TLI.getPointerTy())) | 
|  | CfaArg = DAG.getNode(ISD::TRUNCATE, | 
|  | TLI.getPointerTy(), getValue(I.getOperand(1))); | 
|  | else | 
|  | CfaArg = DAG.getNode(ISD::SIGN_EXTEND, | 
|  | TLI.getPointerTy(), getValue(I.getOperand(1))); | 
|  |  | 
|  | SDValue Offset = DAG.getNode(ISD::ADD, | 
|  | TLI.getPointerTy(), | 
|  | DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, | 
|  | TLI.getPointerTy()), | 
|  | CfaArg); | 
|  | setValue(&I, DAG.getNode(ISD::ADD, | 
|  | TLI.getPointerTy(), | 
|  | DAG.getNode(ISD::FRAMEADDR, | 
|  | TLI.getPointerTy(), | 
|  | DAG.getConstant(0, | 
|  | TLI.getPointerTy())), | 
|  | Offset)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::convertff: | 
|  | case Intrinsic::convertfsi: | 
|  | case Intrinsic::convertfui: | 
|  | case Intrinsic::convertsif: | 
|  | case Intrinsic::convertuif: | 
|  | case Intrinsic::convertss: | 
|  | case Intrinsic::convertsu: | 
|  | case Intrinsic::convertus: | 
|  | case Intrinsic::convertuu: { | 
|  | ISD::CvtCode Code = ISD::CVT_INVALID; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::convertff:  Code = ISD::CVT_FF; break; | 
|  | case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; | 
|  | case Intrinsic::convertfui: Code = ISD::CVT_FU; break; | 
|  | case Intrinsic::convertsif: Code = ISD::CVT_SF; break; | 
|  | case Intrinsic::convertuif: Code = ISD::CVT_UF; break; | 
|  | case Intrinsic::convertss:  Code = ISD::CVT_SS; break; | 
|  | case Intrinsic::convertsu:  Code = ISD::CVT_SU; break; | 
|  | case Intrinsic::convertus:  Code = ISD::CVT_US; break; | 
|  | case Intrinsic::convertuu:  Code = ISD::CVT_UU; break; | 
|  | } | 
|  | MVT DestVT = TLI.getValueType(I.getType()); | 
|  | Value* Op1 = I.getOperand(1); | 
|  | setValue(&I, DAG.getConvertRndSat(DestVT, getValue(Op1), | 
|  | DAG.getValueType(DestVT), | 
|  | DAG.getValueType(getValue(Op1).getValueType()), | 
|  | getValue(I.getOperand(2)), | 
|  | getValue(I.getOperand(3)), | 
|  | Code)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::sqrt: | 
|  | setValue(&I, DAG.getNode(ISD::FSQRT, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::powi: | 
|  | setValue(&I, DAG.getNode(ISD::FPOWI, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)))); | 
|  | return 0; | 
|  | case Intrinsic::sin: | 
|  | setValue(&I, DAG.getNode(ISD::FSIN, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::cos: | 
|  | setValue(&I, DAG.getNode(ISD::FCOS, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::log: | 
|  | visitLog(I); | 
|  | return 0; | 
|  | case Intrinsic::log2: | 
|  | visitLog2(I); | 
|  | return 0; | 
|  | case Intrinsic::log10: | 
|  | visitLog10(I); | 
|  | return 0; | 
|  | case Intrinsic::exp: | 
|  | visitExp(I); | 
|  | return 0; | 
|  | case Intrinsic::exp2: | 
|  | visitExp2(I); | 
|  | return 0; | 
|  | case Intrinsic::pow: | 
|  | visitPow(I); | 
|  | return 0; | 
|  | case Intrinsic::pcmarker: { | 
|  | SDValue Tmp = getValue(I.getOperand(1)); | 
|  | DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::readcyclecounter: { | 
|  | SDValue Op = getRoot(); | 
|  | SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, | 
|  | DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, | 
|  | &Op, 1); | 
|  | setValue(&I, Tmp); | 
|  | DAG.setRoot(Tmp.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::part_select: { | 
|  | // Currently not implemented: just abort | 
|  | assert(0 && "part_select intrinsic not implemented"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::part_set: { | 
|  | // Currently not implemented: just abort | 
|  | assert(0 && "part_set intrinsic not implemented"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::bswap: | 
|  | setValue(&I, DAG.getNode(ISD::BSWAP, | 
|  | getValue(I.getOperand(1)).getValueType(), | 
|  | getValue(I.getOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::cttz: { | 
|  | SDValue Arg = getValue(I.getOperand(1)); | 
|  | MVT Ty = Arg.getValueType(); | 
|  | SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg); | 
|  | setValue(&I, result); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::ctlz: { | 
|  | SDValue Arg = getValue(I.getOperand(1)); | 
|  | MVT Ty = Arg.getValueType(); | 
|  | SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg); | 
|  | setValue(&I, result); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::ctpop: { | 
|  | SDValue Arg = getValue(I.getOperand(1)); | 
|  | MVT Ty = Arg.getValueType(); | 
|  | SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg); | 
|  | setValue(&I, result); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stacksave: { | 
|  | SDValue Op = getRoot(); | 
|  | SDValue Tmp = DAG.getNode(ISD::STACKSAVE, | 
|  | DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); | 
|  | setValue(&I, Tmp); | 
|  | DAG.setRoot(Tmp.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stackrestore: { | 
|  | SDValue Tmp = getValue(I.getOperand(1)); | 
|  | DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stackprotector: { | 
|  | // Emit code into the DAG to store the stack guard onto the stack. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | MVT PtrTy = TLI.getPointerTy(); | 
|  |  | 
|  | SDValue Src = getValue(I.getOperand(1));   // The guard's value. | 
|  | AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); | 
|  |  | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MFI->setStackProtectorIndex(FI); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
|  |  | 
|  | // Store the stack protector onto the stack. | 
|  | SDValue Result = DAG.getStore(getRoot(), Src, FIN, | 
|  | PseudoSourceValue::getFixedStack(FI), | 
|  | 0, true); | 
|  | setValue(&I, Result); | 
|  | DAG.setRoot(Result); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::var_annotation: | 
|  | // Discard annotate attributes | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::init_trampoline: { | 
|  | const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); | 
|  |  | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getOperand(1)); | 
|  | Ops[2] = getValue(I.getOperand(2)); | 
|  | Ops[3] = getValue(I.getOperand(3)); | 
|  | Ops[4] = DAG.getSrcValue(I.getOperand(1)); | 
|  | Ops[5] = DAG.getSrcValue(F); | 
|  |  | 
|  | SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, | 
|  | DAG.getNodeValueTypes(TLI.getPointerTy(), | 
|  | MVT::Other), 2, | 
|  | Ops, 6); | 
|  |  | 
|  | setValue(&I, Tmp); | 
|  | DAG.setRoot(Tmp.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::gcroot: | 
|  | if (GFI) { | 
|  | Value *Alloca = I.getOperand(1); | 
|  | Constant *TypeMap = cast<Constant>(I.getOperand(2)); | 
|  |  | 
|  | FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); | 
|  | GFI->addStackRoot(FI->getIndex(), TypeMap); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::gcread: | 
|  | case Intrinsic::gcwrite: | 
|  | assert(0 && "GC failed to lower gcread/gcwrite intrinsics!"); | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::flt_rounds: { | 
|  | setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::trap: { | 
|  | DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot())); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::UADDO); | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SADDO); | 
|  | case Intrinsic::usub_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::USUBO); | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SSUBO); | 
|  | case Intrinsic::umul_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::UMULO); | 
|  | case Intrinsic::smul_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SMULO); | 
|  |  | 
|  | case Intrinsic::prefetch: { | 
|  | SDValue Ops[4]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getOperand(1)); | 
|  | Ops[2] = getValue(I.getOperand(2)); | 
|  | Ops[3] = getValue(I.getOperand(3)); | 
|  | DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::memory_barrier: { | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = getRoot(); | 
|  | for (int x = 1; x < 6; ++x) | 
|  | Ops[x] = getValue(I.getOperand(x)); | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::atomic_cmp_swap: { | 
|  | SDValue Root = getRoot(); | 
|  | SDValue L; | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root, | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | getValue(I.getOperand(3)), | 
|  | I.getOperand(1)); | 
|  | break; | 
|  | case MVT::i16: | 
|  | L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root, | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | getValue(I.getOperand(3)), | 
|  | I.getOperand(1)); | 
|  | break; | 
|  | case MVT::i32: | 
|  | L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root, | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | getValue(I.getOperand(3)), | 
|  | I.getOperand(1)); | 
|  | break; | 
|  | case MVT::i64: | 
|  | L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root, | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | getValue(I.getOperand(3)), | 
|  | I.getOperand(1)); | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(L.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::atomic_load_add: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_sub: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_or: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_xor: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_and: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_nand: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_max: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_min: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_umin: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_load_umax: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | case Intrinsic::atomic_swap: | 
|  | switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) { | 
|  | case MVT::i8: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8); | 
|  | case MVT::i16: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16); | 
|  | case MVT::i32: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32); | 
|  | case MVT::i64: | 
|  | return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64); | 
|  | default: | 
|  | assert(0 && "Invalid atomic type"); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, | 
|  | bool IsTailCall, | 
|  | MachineBasicBlock *LandingPad) { | 
|  | const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  | const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); | 
|  | MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
|  | unsigned BeginLabel = 0, EndLabel = 0; | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Args.reserve(CS.arg_size()); | 
|  | for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | SDValue ArgNode = getValue(*i); | 
|  | Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); | 
|  |  | 
|  | unsigned attrInd = i - CS.arg_begin() + 1; | 
|  | Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt); | 
|  | Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt); | 
|  | Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); | 
|  | Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet); | 
|  | Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest); | 
|  | Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); | 
|  | Entry.Alignment = CS.getParamAlignment(attrInd); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | if (LandingPad && MMI) { | 
|  | // Insert a label before the invoke call to mark the try range.  This can be | 
|  | // used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | BeginLabel = MMI->NextLabelID(); | 
|  | // Both PendingLoads and PendingExports must be flushed here; | 
|  | // this call might not return. | 
|  | (void)getRoot(); | 
|  | DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel)); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue,SDValue> Result = | 
|  | TLI.LowerCallTo(getRoot(), CS.getType(), | 
|  | CS.paramHasAttr(0, Attribute::SExt), | 
|  | CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), | 
|  | CS.paramHasAttr(0, Attribute::InReg), | 
|  | CS.getCallingConv(), | 
|  | IsTailCall && PerformTailCallOpt, | 
|  | Callee, Args, DAG); | 
|  | if (CS.getType() != Type::VoidTy) | 
|  | setValue(CS.getInstruction(), Result.first); | 
|  | DAG.setRoot(Result.second); | 
|  |  | 
|  | if (LandingPad && MMI) { | 
|  | // Insert a label at the end of the invoke call to mark the try range.  This | 
|  | // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | EndLabel = MMI->NextLabelID(); | 
|  | DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel)); | 
|  |  | 
|  | // Inform MachineModuleInfo of range. | 
|  | MMI->addInvoke(LandingPad, BeginLabel, EndLabel); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitCall(CallInst &I) { | 
|  | const char *RenameFn = 0; | 
|  | if (Function *F = I.getCalledFunction()) { | 
|  | if (F->isDeclaration()) { | 
|  | if (unsigned IID = F->getIntrinsicID()) { | 
|  | RenameFn = visitIntrinsicCall(I, IID); | 
|  | if (!RenameFn) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for well-known libc/libm calls.  If the function is internal, it | 
|  | // can't be a library call. | 
|  | unsigned NameLen = F->getNameLen(); | 
|  | if (!F->hasInternalLinkage() && NameLen) { | 
|  | const char *NameStr = F->getNameStart(); | 
|  | if (NameStr[0] == 'c' && | 
|  | ((NameLen == 8 && !strcmp(NameStr, "copysign")) || | 
|  | (NameLen == 9 && !strcmp(NameStr, "copysignf")))) { | 
|  | if (I.getNumOperands() == 3 &&   // Basic sanity checks. | 
|  | I.getOperand(1)->getType()->isFloatingPoint() && | 
|  | I.getType() == I.getOperand(1)->getType() && | 
|  | I.getType() == I.getOperand(2)->getType()) { | 
|  | SDValue LHS = getValue(I.getOperand(1)); | 
|  | SDValue RHS = getValue(I.getOperand(2)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), | 
|  | LHS, RHS)); | 
|  | return; | 
|  | } | 
|  | } else if (NameStr[0] == 'f' && | 
|  | ((NameLen == 4 && !strcmp(NameStr, "fabs")) || | 
|  | (NameLen == 5 && !strcmp(NameStr, "fabsf")) || | 
|  | (NameLen == 5 && !strcmp(NameStr, "fabsl")))) { | 
|  | if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
|  | I.getOperand(1)->getType()->isFloatingPoint() && | 
|  | I.getType() == I.getOperand(1)->getType()) { | 
|  | SDValue Tmp = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (NameStr[0] == 's' && | 
|  | ((NameLen == 3 && !strcmp(NameStr, "sin")) || | 
|  | (NameLen == 4 && !strcmp(NameStr, "sinf")) || | 
|  | (NameLen == 4 && !strcmp(NameStr, "sinl")))) { | 
|  | if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
|  | I.getOperand(1)->getType()->isFloatingPoint() && | 
|  | I.getType() == I.getOperand(1)->getType()) { | 
|  | SDValue Tmp = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (NameStr[0] == 'c' && | 
|  | ((NameLen == 3 && !strcmp(NameStr, "cos")) || | 
|  | (NameLen == 4 && !strcmp(NameStr, "cosf")) || | 
|  | (NameLen == 4 && !strcmp(NameStr, "cosl")))) { | 
|  | if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
|  | I.getOperand(1)->getType()->isFloatingPoint() && | 
|  | I.getType() == I.getOperand(1)->getType()) { | 
|  | SDValue Tmp = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (isa<InlineAsm>(I.getOperand(0))) { | 
|  | visitInlineAsm(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Callee; | 
|  | if (!RenameFn) | 
|  | Callee = getValue(I.getOperand(0)); | 
|  | else | 
|  | Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); | 
|  |  | 
|  | LowerCallTo(&I, Callee, I.isTailCall()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVT value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, | 
|  | SDValue &Chain, | 
|  | SDValue *Flag) const { | 
|  | // Assemble the legal parts into the final values. | 
|  | SmallVector<SDValue, 4> Values(ValueVTs.size()); | 
|  | SmallVector<SDValue, 8> Parts; | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | // Copy the legal parts from the registers. | 
|  | MVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = TLI->getNumRegisters(ValueVT); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | Parts.resize(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue P; | 
|  | if (Flag == 0) | 
|  | P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT); | 
|  | else { | 
|  | P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag); | 
|  | *Flag = P.getValue(2); | 
|  | } | 
|  | Chain = P.getValue(1); | 
|  |  | 
|  | // If the source register was virtual and if we know something about it, | 
|  | // add an assert node. | 
|  | if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && | 
|  | RegisterVT.isInteger() && !RegisterVT.isVector()) { | 
|  | unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; | 
|  | FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); | 
|  | if (FLI.LiveOutRegInfo.size() > SlotNo) { | 
|  | FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; | 
|  |  | 
|  | unsigned RegSize = RegisterVT.getSizeInBits(); | 
|  | unsigned NumSignBits = LOI.NumSignBits; | 
|  | unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); | 
|  |  | 
|  | // FIXME: We capture more information than the dag can represent.  For | 
|  | // now, just use the tightest assertzext/assertsext possible. | 
|  | bool isSExt = true; | 
|  | MVT FromVT(MVT::Other); | 
|  | if (NumSignBits == RegSize) | 
|  | isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1 | 
|  | else if (NumZeroBits >= RegSize-1) | 
|  | isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1 | 
|  | else if (NumSignBits > RegSize-8) | 
|  | isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8 | 
|  | else if (NumZeroBits >= RegSize-9) | 
|  | isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8 | 
|  | else if (NumSignBits > RegSize-16) | 
|  | isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16 | 
|  | else if (NumZeroBits >= RegSize-17) | 
|  | isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 | 
|  | else if (NumSignBits > RegSize-32) | 
|  | isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32 | 
|  | else if (NumZeroBits >= RegSize-33) | 
|  | isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 | 
|  |  | 
|  | if (FromVT != MVT::Other) { | 
|  | P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, | 
|  | RegisterVT, P, DAG.getValueType(FromVT)); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Parts[i] = P; | 
|  | } | 
|  |  | 
|  | Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT, | 
|  | ValueVT); | 
|  | Part += NumRegs; | 
|  | Parts.clear(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&ValueVTs[0], ValueVTs.size()), | 
|  | &Values[0], ValueVTs.size()); | 
|  | } | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
|  | /// specified value into the registers specified by this object.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, | 
|  | SDValue &Chain, SDValue *Flag) const { | 
|  | // Get the list of the values's legal parts. | 
|  | unsigned NumRegs = Regs.size(); | 
|  | SmallVector<SDValue, 8> Parts(NumRegs); | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | MVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumParts = TLI->getNumRegisters(ValueVT); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value), | 
|  | &Parts[Part], NumParts, RegisterVT); | 
|  | Part += NumParts; | 
|  | } | 
|  |  | 
|  | // Copy the parts into the registers. | 
|  | SmallVector<SDValue, 8> Chains(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue Part; | 
|  | if (Flag == 0) | 
|  | Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]); | 
|  | else { | 
|  | Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag); | 
|  | *Flag = Part.getValue(1); | 
|  | } | 
|  | Chains[i] = Part.getValue(0); | 
|  | } | 
|  |  | 
|  | if (NumRegs == 1 || Flag) | 
|  | // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is | 
|  | // flagged to it. That is the CopyToReg nodes and the user are considered | 
|  | // a single scheduling unit. If we create a TokenFactor and return it as | 
|  | // chain, then the TokenFactor is both a predecessor (operand) of the | 
|  | // user as well as a successor (the TF operands are flagged to the user). | 
|  | // c1, f1 = CopyToReg | 
|  | // c2, f2 = CopyToReg | 
|  | // c3     = TokenFactor c1, c2 | 
|  | // ... | 
|  | //        = op c3, ..., f2 | 
|  | Chain = Chains[NumRegs-1]; | 
|  | else | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs); | 
|  | } | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker and includes the number of | 
|  | /// values added into it. | 
|  | void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const { | 
|  | MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); | 
|  | Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy)); | 
|  | for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | assert(Reg < Regs.size() && "Mismatch in # registers expected"); | 
|  | Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isAllocatableRegister - If the specified register is safe to allocate, | 
|  | /// i.e. it isn't a stack pointer or some other special register, return the | 
|  | /// register class for the register.  Otherwise, return null. | 
|  | static const TargetRegisterClass * | 
|  | isAllocatableRegister(unsigned Reg, MachineFunction &MF, | 
|  | const TargetLowering &TLI, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | MVT FoundVT = MVT::Other; | 
|  | const TargetRegisterClass *FoundRC = 0; | 
|  | for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), | 
|  | E = TRI->regclass_end(); RCI != E; ++RCI) { | 
|  | MVT ThisVT = MVT::Other; | 
|  |  | 
|  | const TargetRegisterClass *RC = *RCI; | 
|  | // If none of the the value types for this register class are valid, we | 
|  | // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
|  | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
|  | I != E; ++I) { | 
|  | if (TLI.isTypeLegal(*I)) { | 
|  | // If we have already found this register in a different register class, | 
|  | // choose the one with the largest VT specified.  For example, on | 
|  | // PowerPC, we favor f64 register classes over f32. | 
|  | if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { | 
|  | ThisVT = *I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ThisVT == MVT::Other) continue; | 
|  |  | 
|  | // NOTE: This isn't ideal.  In particular, this might allocate the | 
|  | // frame pointer in functions that need it (due to them not being taken | 
|  | // out of allocation, because a variable sized allocation hasn't been seen | 
|  | // yet).  This is a slight code pessimization, but should still work. | 
|  | for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), | 
|  | E = RC->allocation_order_end(MF); I != E; ++I) | 
|  | if (*I == Reg) { | 
|  | // We found a matching register class.  Keep looking at others in case | 
|  | // we find one with larger registers that this physreg is also in. | 
|  | FoundRC = RC; | 
|  | FoundVT = ThisVT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return FoundRC; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace llvm { | 
|  | /// AsmOperandInfo - This contains information for each constraint that we are | 
|  | /// lowering. | 
|  | struct VISIBILITY_HIDDEN SDISelAsmOperandInfo : | 
|  | public TargetLowering::AsmOperandInfo { | 
|  | /// CallOperand - If this is the result output operand or a clobber | 
|  | /// this is null, otherwise it is the incoming operand to the CallInst. | 
|  | /// This gets modified as the asm is processed. | 
|  | SDValue CallOperand; | 
|  |  | 
|  | /// AssignedRegs - If this is a register or register class operand, this | 
|  | /// contains the set of register corresponding to the operand. | 
|  | RegsForValue AssignedRegs; | 
|  |  | 
|  | explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) | 
|  | : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { | 
|  | } | 
|  |  | 
|  | /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers | 
|  | /// busy in OutputRegs/InputRegs. | 
|  | void MarkAllocatedRegs(bool isOutReg, bool isInReg, | 
|  | std::set<unsigned> &OutputRegs, | 
|  | std::set<unsigned> &InputRegs, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | if (isOutReg) { | 
|  | for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
|  | MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); | 
|  | } | 
|  | if (isInReg) { | 
|  | for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
|  | MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCallOperandValMVT - Return the MVT of the Value* that this operand | 
|  | /// corresponds to.  If there is no Value* for this operand, it returns | 
|  | /// MVT::Other. | 
|  | MVT getCallOperandValMVT(const TargetLowering &TLI, | 
|  | const TargetData *TD) const { | 
|  | if (CallOperandVal == 0) return MVT::Other; | 
|  |  | 
|  | if (isa<BasicBlock>(CallOperandVal)) | 
|  | return TLI.getPointerTy(); | 
|  |  | 
|  | const llvm::Type *OpTy = CallOperandVal->getType(); | 
|  |  | 
|  | // If this is an indirect operand, the operand is a pointer to the | 
|  | // accessed type. | 
|  | if (isIndirect) | 
|  | OpTy = cast<PointerType>(OpTy)->getElementType(); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = TD->getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpTy = IntegerType::get(BitSize); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TLI.getValueType(OpTy, true); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// MarkRegAndAliases - Mark the specified register and all aliases in the | 
|  | /// specified set. | 
|  | static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); | 
|  | Regs.insert(Reg); | 
|  | if (const unsigned *Aliases = TRI.getAliasSet(Reg)) | 
|  | for (; *Aliases; ++Aliases) | 
|  | Regs.insert(*Aliases); | 
|  | } | 
|  | }; | 
|  | } // end llvm namespace. | 
|  |  | 
|  |  | 
|  | /// GetRegistersForValue - Assign registers (virtual or physical) for the | 
|  | /// specified operand.  We prefer to assign virtual registers, to allow the | 
|  | /// register allocator handle the assignment process.  However, if the asm uses | 
|  | /// features that we can't model on machineinstrs, we have SDISel do the | 
|  | /// allocation.  This produces generally horrible, but correct, code. | 
|  | /// | 
|  | ///   OpInfo describes the operand. | 
|  | ///   Input and OutputRegs are the set of already allocated physical registers. | 
|  | /// | 
|  | void SelectionDAGLowering:: | 
|  | GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, | 
|  | std::set<unsigned> &OutputRegs, | 
|  | std::set<unsigned> &InputRegs) { | 
|  | // Compute whether this value requires an input register, an output register, | 
|  | // or both. | 
|  | bool isOutReg = false; | 
|  | bool isInReg = false; | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | isOutReg = true; | 
|  |  | 
|  | // If there is an input constraint that matches this, we need to reserve | 
|  | // the input register so no other inputs allocate to it. | 
|  | isInReg = OpInfo.hasMatchingInput(); | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | isInReg = true; | 
|  | isOutReg = false; | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | isOutReg = true; | 
|  | isInReg = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | // If this is a constraint for a single physreg, or a constraint for a | 
|  | // register class, find it. | 
|  | std::pair<unsigned, const TargetRegisterClass*> PhysReg = | 
|  | TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  |  | 
|  | unsigned NumRegs = 1; | 
|  | if (OpInfo.ConstraintVT != MVT::Other) { | 
|  | // If this is a FP input in an integer register (or visa versa) insert a bit | 
|  | // cast of the input value.  More generally, handle any case where the input | 
|  | // value disagrees with the register class we plan to stick this in. | 
|  | if (OpInfo.Type == InlineAsm::isInput && | 
|  | PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { | 
|  | // Try to convert to the first MVT that the reg class contains.  If the | 
|  | // types are identical size, use a bitcast to convert (e.g. two differing | 
|  | // vector types). | 
|  | MVT RegVT = *PhysReg.second->vt_begin(); | 
|  | if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT, | 
|  | OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { | 
|  | // If the input is a FP value and we want it in FP registers, do a | 
|  | // bitcast to the corresponding integer type.  This turns an f64 value | 
|  | // into i64, which can be passed with two i32 values on a 32-bit | 
|  | // machine. | 
|  | RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT, | 
|  | OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); | 
|  | } | 
|  |  | 
|  | MVT RegVT; | 
|  | MVT ValueVT = OpInfo.ConstraintVT; | 
|  |  | 
|  | // If this is a constraint for a specific physical register, like {r17}, | 
|  | // assign it now. | 
|  | if (PhysReg.first) { | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = *PhysReg.second->vt_begin(); | 
|  |  | 
|  | // Get the actual register value type.  This is important, because the user | 
|  | // may have asked for (e.g.) the AX register in i32 type.  We need to | 
|  | // remember that AX is actually i16 to get the right extension. | 
|  | RegVT = *PhysReg.second->vt_begin(); | 
|  |  | 
|  | // This is a explicit reference to a physical register. | 
|  | Regs.push_back(PhysReg.first); | 
|  |  | 
|  | // If this is an expanded reference, add the rest of the regs to Regs. | 
|  | if (NumRegs != 1) { | 
|  | TargetRegisterClass::iterator I = PhysReg.second->begin(); | 
|  | for (; *I != PhysReg.first; ++I) | 
|  | assert(I != PhysReg.second->end() && "Didn't find reg!"); | 
|  |  | 
|  | // Already added the first reg. | 
|  | --NumRegs; ++I; | 
|  | for (; NumRegs; --NumRegs, ++I) { | 
|  | assert(I != PhysReg.second->end() && "Ran out of registers to allocate!"); | 
|  | Regs.push_back(*I); | 
|  | } | 
|  | } | 
|  | OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); | 
|  | const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
|  | OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this was a reference to an LLVM register class, create vregs | 
|  | // for this reference. | 
|  | std::vector<unsigned> RegClassRegs; | 
|  | const TargetRegisterClass *RC = PhysReg.second; | 
|  | if (RC) { | 
|  | // If this is a tied register, our regalloc doesn't know how to maintain | 
|  | // the constraint, so we have to pick a register to pin the input/output to. | 
|  | // If it isn't a matched constraint, go ahead and create vreg and let the | 
|  | // regalloc do its thing. | 
|  | if (!OpInfo.hasMatchingInput()) { | 
|  | RegVT = *PhysReg.second->vt_begin(); | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = RegVT; | 
|  |  | 
|  | // Create the appropriate number of virtual registers. | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | for (; NumRegs; --NumRegs) | 
|  | Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second)); | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't allocate it.  Let the code below figure out how to | 
|  | // maintain these constraints. | 
|  | RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); | 
|  |  | 
|  | } else { | 
|  | // This is a reference to a register class that doesn't directly correspond | 
|  | // to an LLVM register class.  Allocate NumRegs consecutive, available, | 
|  | // registers from the class. | 
|  | RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | } | 
|  |  | 
|  | const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
|  | unsigned NumAllocated = 0; | 
|  | for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { | 
|  | unsigned Reg = RegClassRegs[i]; | 
|  | // See if this register is available. | 
|  | if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used. | 
|  | (isInReg  && InputRegs.count(Reg))) {    // Already used. | 
|  | // Make sure we find consecutive registers. | 
|  | NumAllocated = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if this register is allocatable (i.e. don't give out the | 
|  | // stack pointer). | 
|  | if (RC == 0) { | 
|  | RC = isAllocatableRegister(Reg, MF, TLI, TRI); | 
|  | if (!RC) {        // Couldn't allocate this register. | 
|  | // Reset NumAllocated to make sure we return consecutive registers. | 
|  | NumAllocated = 0; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this register is good, we can use it. | 
|  | ++NumAllocated; | 
|  |  | 
|  | // If we allocated enough consecutive registers, succeed. | 
|  | if (NumAllocated == NumRegs) { | 
|  | unsigned RegStart = (i-NumAllocated)+1; | 
|  | unsigned RegEnd   = i+1; | 
|  | // Mark all of the allocated registers used. | 
|  | for (unsigned i = RegStart; i != RegEnd; ++i) | 
|  | Regs.push_back(RegClassRegs[i]); | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), | 
|  | OpInfo.ConstraintVT); | 
|  | OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we couldn't allocate enough registers for this. | 
|  | } | 
|  |  | 
|  | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
|  | /// processed uses a memory 'm' constraint. | 
|  | static bool | 
|  | hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, | 
|  | TargetLowering &TLI) { | 
|  | for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
|  | InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
|  | for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
|  | /// | 
|  | void SelectionDAGLowering::visitInlineAsm(CallSite CS) { | 
|  | InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  |  | 
|  | /// ConstraintOperands - Information about all of the constraints. | 
|  | std::vector<SDISelAsmOperandInfo> ConstraintOperands; | 
|  |  | 
|  | SDValue Chain = getRoot(); | 
|  | SDValue Flag; | 
|  |  | 
|  | std::set<unsigned> OutputRegs, InputRegs; | 
|  |  | 
|  | // Do a prepass over the constraints, canonicalizing them, and building up the | 
|  | // ConstraintOperands list. | 
|  | std::vector<InlineAsm::ConstraintInfo> | 
|  | ConstraintInfos = IA->ParseConstraints(); | 
|  |  | 
|  | bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); | 
|  |  | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  | for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
|  | ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | MVT OpVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = CS.getArgument(ArgNo++); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); | 
|  | if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpVT = TLI.getValueType(STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpVT = TLI.getValueType(CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = CS.getArgument(ArgNo++); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is an input or an indirect output, process the call argument. | 
|  | // BasicBlocks are labels, currently appearing only in asm's. | 
|  | if (OpInfo.CallOperandVal) { | 
|  | if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { | 
|  | OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); | 
|  | } else { | 
|  | OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
|  | } | 
|  |  | 
|  | OpVT = OpInfo.getCallOperandValMVT(TLI, TD); | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintVT = OpVT; | 
|  | } | 
|  |  | 
|  | // Second pass over the constraints: compute which constraint option to use | 
|  | // and assign registers to constraints that want a specific physreg. | 
|  | for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input.  It might have a different type (e.g. the output might be | 
|  | // i32 and the input i64) and we need to pick the larger width to ensure we | 
|  | // reserve the right number of registers. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | assert(OpInfo.ConstraintVT.isInteger() && | 
|  | Input.ConstraintVT.isInteger() && | 
|  | "Asm constraints must be the same or different sized integers"); | 
|  | if (OpInfo.ConstraintVT.getSizeInBits() < | 
|  | Input.ConstraintVT.getSizeInBits()) | 
|  | OpInfo.ConstraintVT = Input.ConstraintVT; | 
|  | else | 
|  | Input.ConstraintVT = OpInfo.ConstraintVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); | 
|  |  | 
|  | // If this is a memory input, and if the operand is not indirect, do what we | 
|  | // need to to provide an address for the memory input. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | !OpInfo.isIndirect) { | 
|  | assert(OpInfo.Type == InlineAsm::isInput && | 
|  | "Can only indirectify direct input operands!"); | 
|  |  | 
|  | // Memory operands really want the address of the value.  If we don't have | 
|  | // an indirect input, put it in the constpool if we can, otherwise spill | 
|  | // it to a stack slot. | 
|  |  | 
|  | // If the operand is a float, integer, or vector constant, spill to a | 
|  | // constant pool entry to get its address. | 
|  | Value *OpVal = OpInfo.CallOperandVal; | 
|  | if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
|  | isa<ConstantVector>(OpVal)) { | 
|  | OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), | 
|  | TLI.getPointerTy()); | 
|  | } else { | 
|  | // Otherwise, create a stack slot and emit a store to it before the | 
|  | // asm. | 
|  | const Type *Ty = OpVal->getType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); | 
|  | unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); | 
|  | Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0); | 
|  | OpInfo.CallOperand = StackSlot; | 
|  | } | 
|  |  | 
|  | // There is no longer a Value* corresponding to this operand. | 
|  | OpInfo.CallOperandVal = 0; | 
|  | // It is now an indirect operand. | 
|  | OpInfo.isIndirect = true; | 
|  | } | 
|  |  | 
|  | // If this constraint is for a specific register, allocate it before | 
|  | // anything else. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Register) | 
|  | GetRegistersForValue(OpInfo, OutputRegs, InputRegs); | 
|  | } | 
|  | ConstraintInfos.clear(); | 
|  |  | 
|  |  | 
|  | // Second pass - Loop over all of the operands, assigning virtual or physregs | 
|  | // to register class operands. | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // C_Register operands have already been allocated, Other/Memory don't need | 
|  | // to be. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) | 
|  | GetRegistersForValue(OpInfo, OutputRegs, InputRegs); | 
|  | } | 
|  |  | 
|  | // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
|  | std::vector<SDValue> AsmNodeOperands; | 
|  | AsmNodeOperands.push_back(SDValue());  // reserve space for input chain | 
|  | AsmNodeOperands.push_back( | 
|  | DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); | 
|  |  | 
|  |  | 
|  | // Loop over all of the inputs, copying the operand values into the | 
|  | // appropriate registers and processing the output regs. | 
|  | RegsForValue RetValRegs; | 
|  |  | 
|  | // IndirectStoresToEmit - The set of stores to emit after the inline asm node. | 
|  | std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; | 
|  |  | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: { | 
|  | if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && | 
|  | OpInfo.ConstraintType != TargetLowering::C_Register) { | 
|  | // Memory output, or 'other' output (e.g. 'X' constraint). | 
|  | assert(OpInfo.isIndirect && "Memory output must be indirect operand"); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this output. | 
|  | unsigned ResOpType = 4/*MEM*/ | (1<<3); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(OpInfo.CallOperand); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a register or register class output. | 
|  |  | 
|  | // Copy the output from the appropriate register.  Find a register that | 
|  | // we can use. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | cerr << "Couldn't allocate output reg for constraint '" | 
|  | << OpInfo.ConstraintCode << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // If this is an indirect operand, store through the pointer after the | 
|  | // asm. | 
|  | if (OpInfo.isIndirect) { | 
|  | IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, | 
|  | OpInfo.CallOperandVal)); | 
|  | } else { | 
|  | // This is the result value of the call. | 
|  | assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); | 
|  | // Concatenate this output onto the outputs list. | 
|  | RetValRegs.append(OpInfo.AssignedRegs); | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know that this register is | 
|  | // set. | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? | 
|  | 6 /* EARLYCLOBBER REGDEF */ : | 
|  | 2 /* REGDEF */ , | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isInput: { | 
|  | SDValue InOperandVal = OpInfo.CallOperand; | 
|  |  | 
|  | if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint? | 
|  | // If this is required to match an output register we have already set, | 
|  | // just use its register. | 
|  | unsigned OperandNo = OpInfo.getMatchedOperand(); | 
|  |  | 
|  | // Scan until we find the definition we already emitted of this operand. | 
|  | // When we find it, create a RegsForValue operand. | 
|  | unsigned CurOp = 2;  // The first operand. | 
|  | for (; OperandNo; --OperandNo) { | 
|  | // Advance to the next operand. | 
|  | unsigned NumOps = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | assert(((NumOps & 7) == 2 /*REGDEF*/ || | 
|  | (NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ || | 
|  | (NumOps & 7) == 4 /*MEM*/) && | 
|  | "Skipped past definitions?"); | 
|  | CurOp += (NumOps>>3)+1; | 
|  | } | 
|  |  | 
|  | unsigned NumOps = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | if ((NumOps & 7) == 2 /*REGDEF*/ | 
|  | || (NumOps & 7) == 6 /* EARLYCLOBBER REGDEF */) { | 
|  | // Add NumOps>>3 registers to MatchedRegs. | 
|  | RegsForValue MatchedRegs; | 
|  | MatchedRegs.TLI = &TLI; | 
|  | MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); | 
|  | MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType()); | 
|  | for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { | 
|  | unsigned Reg = | 
|  | cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg(); | 
|  | MatchedRegs.Regs.push_back(Reg); | 
|  | } | 
|  |  | 
|  | // Use the produced MatchedRegs object to | 
|  | MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); | 
|  | MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); | 
|  | break; | 
|  | } else { | 
|  | assert(((NumOps & 7) == 4) && "Unknown matching constraint!"); | 
|  | assert((NumOps >> 3) == 1 && "Unexpected number of operands"); | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | assert(!OpInfo.isIndirect && | 
|  | "Don't know how to handle indirect other inputs yet!"); | 
|  |  | 
|  | std::vector<SDValue> Ops; | 
|  | TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], | 
|  | hasMemory, Ops, DAG); | 
|  | if (Ops.empty()) { | 
|  | cerr << "Invalid operand for inline asm constraint '" | 
|  | << OpInfo.ConstraintCode << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
|  | break; | 
|  | } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
|  | assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
|  | assert(InOperandVal.getValueType() == TLI.getPointerTy() && | 
|  | "Memory operands expect pointer values"); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = 4/*MEM*/ | (1<<3); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(InOperandVal); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Register) && | 
|  | "Unknown constraint type!"); | 
|  | assert(!OpInfo.isIndirect && | 
|  | "Don't know how to handle indirect register inputs yet!"); | 
|  |  | 
|  | // Copy the input into the appropriate registers. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | cerr << "Couldn't allocate output reg for constraint '" | 
|  | << OpInfo.ConstraintCode << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); | 
|  |  | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isClobber: { | 
|  | // Add the clobbered value to the operand list, so that the register | 
|  | // allocator is aware that the physreg got clobbered. | 
|  | if (!OpInfo.AssignedRegs.Regs.empty()) | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finish up input operands. | 
|  | AsmNodeOperands[0] = Chain; | 
|  | if (Flag.getNode()) AsmNodeOperands.push_back(Flag); | 
|  |  | 
|  | Chain = DAG.getNode(ISD::INLINEASM, | 
|  | DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, | 
|  | &AsmNodeOperands[0], AsmNodeOperands.size()); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // If this asm returns a register value, copy the result from that register | 
|  | // and set it as the value of the call. | 
|  | if (!RetValRegs.Regs.empty()) { | 
|  | SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag); | 
|  |  | 
|  | // FIXME: Why don't we do this for inline asms with MRVs? | 
|  | if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { | 
|  | MVT ResultType = TLI.getValueType(CS.getType()); | 
|  |  | 
|  | // If any of the results of the inline asm is a vector, it may have the | 
|  | // wrong width/num elts.  This can happen for register classes that can | 
|  | // contain multiple different value types.  The preg or vreg allocated may | 
|  | // not have the same VT as was expected.  Convert it to the right type | 
|  | // with bit_convert. | 
|  | if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { | 
|  | Val = DAG.getNode(ISD::BIT_CONVERT, ResultType, Val); | 
|  |  | 
|  | } else if (ResultType != Val.getValueType() && | 
|  | ResultType.isInteger() && Val.getValueType().isInteger()) { | 
|  | // If a result value was tied to an input value, the computed result may | 
|  | // have a wider width than the expected result.  Extract the relevant | 
|  | // portion. | 
|  | Val = DAG.getNode(ISD::TRUNCATE, ResultType, Val); | 
|  | } | 
|  |  | 
|  | assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); | 
|  | } | 
|  |  | 
|  | setValue(CS.getInstruction(), Val); | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<SDValue, Value*> > StoresToEmit; | 
|  |  | 
|  | // Process indirect outputs, first output all of the flagged copies out of | 
|  | // physregs. | 
|  | for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { | 
|  | RegsForValue &OutRegs = IndirectStoresToEmit[i].first; | 
|  | Value *Ptr = IndirectStoresToEmit[i].second; | 
|  | SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag); | 
|  | StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); | 
|  | } | 
|  |  | 
|  | // Emit the non-flagged stores from the physregs. | 
|  | SmallVector<SDValue, 8> OutChains; | 
|  | for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) | 
|  | OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, | 
|  | getValue(StoresToEmit[i].second), | 
|  | StoresToEmit[i].second, 0)); | 
|  | if (!OutChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
|  | &OutChains[0], OutChains.size()); | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::visitMalloc(MallocInst &I) { | 
|  | SDValue Src = getValue(I.getOperand(0)); | 
|  |  | 
|  | MVT IntPtr = TLI.getPointerTy(); | 
|  |  | 
|  | if (IntPtr.bitsLT(Src.getValueType())) | 
|  | Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); | 
|  | else if (IntPtr.bitsGT(Src.getValueType())) | 
|  | Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); | 
|  |  | 
|  | // Scale the source by the type size. | 
|  | uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType()); | 
|  | Src = DAG.getNode(ISD::MUL, Src.getValueType(), | 
|  | Src, DAG.getIntPtrConstant(ElementSize)); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = Src; | 
|  | Entry.Ty = TLI.getTargetData()->getIntPtrType(); | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | std::pair<SDValue,SDValue> Result = | 
|  | TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false, | 
|  | CallingConv::C, PerformTailCallOpt, | 
|  | DAG.getExternalSymbol("malloc", IntPtr), | 
|  | Args, DAG); | 
|  | setValue(&I, Result.first);  // Pointers always fit in registers | 
|  | DAG.setRoot(Result.second); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitFree(FreeInst &I) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = getValue(I.getOperand(0)); | 
|  | Entry.Ty = TLI.getTargetData()->getIntPtrType(); | 
|  | Args.push_back(Entry); | 
|  | MVT IntPtr = TLI.getPointerTy(); | 
|  | std::pair<SDValue,SDValue> Result = | 
|  | TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false, | 
|  | CallingConv::C, PerformTailCallOpt, | 
|  | DAG.getExternalSymbol("free", IntPtr), Args, DAG); | 
|  | DAG.setRoot(Result.second); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVAStart(CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), | 
|  | getValue(I.getOperand(1)), | 
|  | DAG.getSrcValue(I.getOperand(1)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVAArg(VAArgInst &I) { | 
|  | SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), | 
|  | getValue(I.getOperand(0)), | 
|  | DAG.getSrcValue(I.getOperand(0))); | 
|  | setValue(&I, V); | 
|  | DAG.setRoot(V.getValue(1)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVAEnd(CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), | 
|  | getValue(I.getOperand(1)), | 
|  | DAG.getSrcValue(I.getOperand(1)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLowering::visitVACopy(CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), | 
|  | getValue(I.getOperand(1)), | 
|  | getValue(I.getOperand(2)), | 
|  | DAG.getSrcValue(I.getOperand(1)), | 
|  | DAG.getSrcValue(I.getOperand(2)))); | 
|  | } | 
|  |  | 
|  | /// TargetLowering::LowerArguments - This is the default LowerArguments | 
|  | /// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all | 
|  | /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be | 
|  | /// integrated into SDISel. | 
|  | void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &ArgValues) { | 
|  | // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. | 
|  | SmallVector<SDValue, 3+16> Ops; | 
|  | Ops.push_back(DAG.getRoot()); | 
|  | Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); | 
|  | Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); | 
|  |  | 
|  | // Add one result value for each formal argument. | 
|  | SmallVector<MVT, 16> RetVals; | 
|  | unsigned j = 1; | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
|  | I != E; ++I, ++j) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, I->getType(), ValueVTs); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | MVT VT = ValueVTs[Value]; | 
|  | const Type *ArgTy = VT.getTypeForMVT(); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = | 
|  | getTargetData()->getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (F.paramHasAttr(j, Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  | if (F.paramHasAttr(j, Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (F.paramHasAttr(j, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  | if (F.paramHasAttr(j, Attribute::StructRet)) | 
|  | Flags.setSRet(); | 
|  | if (F.paramHasAttr(j, Attribute::ByVal)) { | 
|  | Flags.setByVal(); | 
|  | const PointerType *Ty = cast<PointerType>(I->getType()); | 
|  | const Type *ElementTy = Ty->getElementType(); | 
|  | unsigned FrameAlign = getByValTypeAlignment(ElementTy); | 
|  | unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy); | 
|  | // For ByVal, alignment should be passed from FE.  BE will guess if | 
|  | // this info is not there but there are cases it cannot get right. | 
|  | if (F.getParamAlignment(j)) | 
|  | FrameAlign = F.getParamAlignment(j); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | Flags.setByValSize(FrameSize); | 
|  | } | 
|  | if (F.paramHasAttr(j, Attribute::Nest)) | 
|  | Flags.setNest(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | MVT RegisterVT = getRegisterType(VT); | 
|  | unsigned NumRegs = getNumRegisters(VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | RetVals.push_back(RegisterVT); | 
|  | ISD::ArgFlagsTy MyFlags = Flags; | 
|  | if (NumRegs > 1 && i == 0) | 
|  | MyFlags.setSplit(); | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | else if (i > 0) | 
|  | MyFlags.setOrigAlign(1); | 
|  | Ops.push_back(DAG.getArgFlags(MyFlags)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // Create the node. | 
|  | SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, | 
|  | DAG.getVTList(&RetVals[0], RetVals.size()), | 
|  | &Ops[0], Ops.size()).getNode(); | 
|  |  | 
|  | // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but | 
|  | // allows exposing the loads that may be part of the argument access to the | 
|  | // first DAGCombiner pass. | 
|  | SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG); | 
|  |  | 
|  | // The number of results should match up, except that the lowered one may have | 
|  | // an extra flag result. | 
|  | assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() || | 
|  | (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() && | 
|  | TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag)) | 
|  | && "Lowering produced unexpected number of results!"); | 
|  |  | 
|  | // The FORMAL_ARGUMENTS node itself is likely no longer needed. | 
|  | if (Result != TmpRes.getNode() && Result->use_empty()) { | 
|  | HandleSDNode Dummy(DAG.getRoot()); | 
|  | DAG.RemoveDeadNode(Result); | 
|  | } | 
|  |  | 
|  | Result = TmpRes.getNode(); | 
|  |  | 
|  | unsigned NumArgRegs = Result->getNumValues() - 1; | 
|  | DAG.setRoot(SDValue(Result, NumArgRegs)); | 
|  |  | 
|  | // Set up the return result vector. | 
|  | unsigned i = 0; | 
|  | unsigned Idx = 1; | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; | 
|  | ++I, ++Idx) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, I->getType(), ValueVTs); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | MVT VT = ValueVTs[Value]; | 
|  | MVT PartVT = getRegisterType(VT); | 
|  |  | 
|  | unsigned NumParts = getNumRegisters(VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | for (unsigned j = 0; j != NumParts; ++j) | 
|  | Parts[j] = SDValue(Result, i++); | 
|  |  | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | if (F.paramHasAttr(Idx, Attribute::SExt)) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (F.paramHasAttr(Idx, Attribute::ZExt)) | 
|  | AssertOp = ISD::AssertZext; | 
|  |  | 
|  | ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT, | 
|  | AssertOp)); | 
|  | } | 
|  | } | 
|  | assert(i == NumArgRegs && "Argument register count mismatch!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
|  | /// implementation, which just inserts an ISD::CALL node, which is later custom | 
|  | /// lowered by the target to something concrete.  FIXME: When all targets are | 
|  | /// migrated to using ISD::CALL, this hook should be integrated into SDISel. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, | 
|  | bool RetSExt, bool RetZExt, bool isVarArg, | 
|  | bool isInreg, | 
|  | unsigned CallingConv, bool isTailCall, | 
|  | SDValue Callee, | 
|  | ArgListTy &Args, SelectionDAG &DAG) { | 
|  | assert((!isTailCall || PerformTailCallOpt) && | 
|  | "isTailCall set when tail-call optimizations are disabled!"); | 
|  |  | 
|  | SmallVector<SDValue, 32> Ops; | 
|  | Ops.push_back(Chain);   // Op#0 - Chain | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Handle all of the outgoing arguments. | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, Args[i].Ty, ValueVTs); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | MVT VT = ValueVTs[Value]; | 
|  | const Type *ArgTy = VT.getTypeForMVT(); | 
|  | SDValue Op = SDValue(Args[i].Node.getNode(), | 
|  | Args[i].Node.getResNo() + Value); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = | 
|  | getTargetData()->getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (Args[i].isZExt) | 
|  | Flags.setZExt(); | 
|  | if (Args[i].isSExt) | 
|  | Flags.setSExt(); | 
|  | if (Args[i].isInReg) | 
|  | Flags.setInReg(); | 
|  | if (Args[i].isSRet) | 
|  | Flags.setSRet(); | 
|  | if (Args[i].isByVal) { | 
|  | Flags.setByVal(); | 
|  | const PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
|  | const Type *ElementTy = Ty->getElementType(); | 
|  | unsigned FrameAlign = getByValTypeAlignment(ElementTy); | 
|  | unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy); | 
|  | // For ByVal, alignment should come from FE.  BE will guess if this | 
|  | // info is not there but there are cases it cannot get right. | 
|  | if (Args[i].Alignment) | 
|  | FrameAlign = Args[i].Alignment; | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | Flags.setByValSize(FrameSize); | 
|  | } | 
|  | if (Args[i].isNest) | 
|  | Flags.setNest(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | MVT PartVT = getRegisterType(VT); | 
|  | unsigned NumParts = getNumRegisters(VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (Args[i].isSExt) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (Args[i].isZExt) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind); | 
|  |  | 
|  | for (unsigned i = 0; i != NumParts; ++i) { | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | ISD::ArgFlagsTy MyFlags = Flags; | 
|  | if (NumParts > 1 && i == 0) | 
|  | MyFlags.setSplit(); | 
|  | else if (i != 0) | 
|  | MyFlags.setOrigAlign(1); | 
|  |  | 
|  | Ops.push_back(Parts[i]); | 
|  | Ops.push_back(DAG.getArgFlags(MyFlags)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the result value types. We start by making a list of | 
|  | // the potentially illegal return value types. | 
|  | SmallVector<MVT, 4> LoweredRetTys; | 
|  | SmallVector<MVT, 4> RetTys; | 
|  | ComputeValueVTs(*this, RetTy, RetTys); | 
|  |  | 
|  | // Then we translate that to a list of legal types. | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | MVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterType(VT); | 
|  | unsigned NumRegs = getNumRegisters(VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | LoweredRetTys.push_back(RegisterVT); | 
|  | } | 
|  |  | 
|  | LoweredRetTys.push_back(MVT::Other);  // Always has a chain. | 
|  |  | 
|  | // Create the CALL node. | 
|  | SDValue Res = DAG.getCall(CallingConv, isVarArg, isTailCall, isInreg, | 
|  | DAG.getVTList(&LoweredRetTys[0], | 
|  | LoweredRetTys.size()), | 
|  | &Ops[0], Ops.size() | 
|  | ); | 
|  | Chain = Res.getValue(LoweredRetTys.size() - 1); | 
|  |  | 
|  | // Gather up the call result into a single value. | 
|  | if (RetTy != Type::VoidTy && !RetTys.empty()) { | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  |  | 
|  | if (RetSExt) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (RetZExt) | 
|  | AssertOp = ISD::AssertZext; | 
|  |  | 
|  | SmallVector<SDValue, 4> ReturnValues; | 
|  | unsigned RegNo = 0; | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | MVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterType(VT); | 
|  | unsigned NumRegs = getNumRegisters(VT); | 
|  | unsigned RegNoEnd = NumRegs + RegNo; | 
|  | SmallVector<SDValue, 4> Results; | 
|  | for (; RegNo != RegNoEnd; ++RegNo) | 
|  | Results.push_back(Res.getValue(RegNo)); | 
|  | SDValue ReturnValue = | 
|  | getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, | 
|  | AssertOp); | 
|  | ReturnValues.push_back(ReturnValue); | 
|  | } | 
|  | Res = DAG.getNode(ISD::MERGE_VALUES, | 
|  | DAG.getVTList(&RetTys[0], RetTys.size()), | 
|  | &ReturnValues[0], ReturnValues.size()); | 
|  | } | 
|  |  | 
|  | return std::make_pair(Res, Chain); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(0 && "LowerOperation not implemented for this target!"); | 
|  | abort(); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { | 
|  | SDValue Op = getValue(V); | 
|  | assert((Op.getOpcode() != ISD::CopyFromReg || | 
|  | cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
|  | "Copy from a reg to the same reg!"); | 
|  | assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); | 
|  |  | 
|  | RegsForValue RFV(TLI, Reg, V->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | RFV.getCopyToRegs(Op, DAG, Chain, 0); | 
|  | PendingExports.push_back(Chain); | 
|  | } | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  |  | 
|  | void SelectionDAGISel:: | 
|  | LowerArguments(BasicBlock *LLVMBB) { | 
|  | // If this is the entry block, emit arguments. | 
|  | Function &F = *LLVMBB->getParent(); | 
|  | SDValue OldRoot = SDL->DAG.getRoot(); | 
|  | SmallVector<SDValue, 16> Args; | 
|  | TLI.LowerArguments(F, SDL->DAG, Args); | 
|  |  | 
|  | unsigned a = 0; | 
|  | for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); | 
|  | AI != E; ++AI) { | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, AI->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (!AI->use_empty()) { | 
|  | SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues)); | 
|  | // If this argument is live outside of the entry block, insert a copy from | 
|  | // whereever we got it to the vreg that other BB's will reference it as. | 
|  | DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI); | 
|  | if (VMI != FuncInfo->ValueMap.end()) { | 
|  | SDL->CopyValueToVirtualRegister(AI, VMI->second); | 
|  | } | 
|  | } | 
|  | a += NumValues; | 
|  | } | 
|  |  | 
|  | // Finally, if the target has anything special to do, allow it to do so. | 
|  | // FIXME: this should insert code into the DAG! | 
|  | EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction()); | 
|  | } | 
|  |  | 
|  | /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
|  | /// ensure constants are generated when needed.  Remember the virtual registers | 
|  | /// that need to be added to the Machine PHI nodes as input.  We cannot just | 
|  | /// directly add them, because expansion might result in multiple MBB's for one | 
|  | /// BB.  As such, the start of the BB might correspond to a different MBB than | 
|  | /// the end. | 
|  | /// | 
|  | void | 
|  | SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { | 
|  | TerminatorInst *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  |  | 
|  | // Check successor nodes' PHI nodes that expect a constant to be available | 
|  | // from this block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB)) continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  | PHINode *PN; | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (BasicBlock::iterator I = SuccBB->begin(); | 
|  | (PN = dyn_cast<PHINode>(I)); ++I) { | 
|  | // Ignore dead phi's. | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | unsigned Reg; | 
|  | Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(PHIOp)) { | 
|  | unsigned &RegOut = SDL->ConstantsOut[C]; | 
|  | if (RegOut == 0) { | 
|  | RegOut = FuncInfo->CreateRegForValue(C); | 
|  | SDL->CopyValueToVirtualRegister(C, RegOut); | 
|  | } | 
|  | Reg = RegOut; | 
|  | } else { | 
|  | Reg = FuncInfo->ValueMap[PHIOp]; | 
|  | if (Reg == 0) { | 
|  | assert(isa<AllocaInst>(PHIOp) && | 
|  | FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
|  | "Didn't codegen value into a register!??"); | 
|  | Reg = FuncInfo->CreateRegForValue(PHIOp); | 
|  | SDL->CopyValueToVirtualRegister(PHIOp, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember that this register needs to added to the machine PHI node as | 
|  | // the input for this MBB. | 
|  | SmallVector<MVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | MVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(VT); | 
|  | for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
|  | SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); | 
|  | Reg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  | SDL->ConstantsOut.clear(); | 
|  | } | 
|  |  | 
|  | /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only | 
|  | /// supports legal types, and it emits MachineInstrs directly instead of | 
|  | /// creating SelectionDAG nodes. | 
|  | /// | 
|  | bool | 
|  | SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, | 
|  | FastISel *F) { | 
|  | TerminatorInst *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  | unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size(); | 
|  |  | 
|  | // Check successor nodes' PHI nodes that expect a constant to be available | 
|  | // from this block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB)) continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  | PHINode *PN; | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (BasicBlock::iterator I = SuccBB->begin(); | 
|  | (PN = dyn_cast<PHINode>(I)); ++I) { | 
|  | // Ignore dead phi's. | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | // Only handle legal types. Two interesting things to note here. First, | 
|  | // by bailing out early, we may leave behind some dead instructions, | 
|  | // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its | 
|  | // own moves. Second, this check is necessary becuase FastISel doesn't | 
|  | // use CreateRegForValue to create registers, so it always creates | 
|  | // exactly one register for each non-void instruction. | 
|  | MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); | 
|  | if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { | 
|  | // Promote MVT::i1. | 
|  | if (VT == MVT::i1) | 
|  | VT = TLI.getTypeToTransformTo(VT); | 
|  | else { | 
|  | SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | unsigned Reg = F->getRegForValue(PHIOp); | 
|  | if (Reg == 0) { | 
|  | SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |