|  | //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the PowerPC implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPC.h" | 
|  | #include "PPCHazardRecognizers.h" | 
|  | #include "PPCInstrBuilder.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-instr-info" | 
|  |  | 
|  | #define GET_INSTRMAP_INFO | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "PPCGenInstrInfo.inc" | 
|  |  | 
|  | static cl:: | 
|  | opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, | 
|  | cl::desc("Disable analysis for CTR loops")); | 
|  |  | 
|  | static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", | 
|  | cl::desc("Disable compare instruction optimization"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", | 
|  | cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, | 
|  | cl::desc("Use the old (incorrect) instruction latency calculation")); | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void PPCInstrInfo::anchor() {} | 
|  |  | 
|  | PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) | 
|  | : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), | 
|  | Subtarget(STI), RI(STI.getTargetMachine()) {} | 
|  |  | 
|  | /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for | 
|  | /// this target when scheduling the DAG. | 
|  | ScheduleHazardRecognizer * | 
|  | PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
|  | const ScheduleDAG *DAG) const { | 
|  | unsigned Directive = | 
|  | static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); | 
|  | if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || | 
|  | Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { | 
|  | const InstrItineraryData *II = | 
|  | static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); | 
|  | return new ScoreboardHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); | 
|  | } | 
|  |  | 
|  | /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer | 
|  | /// to use for this target when scheduling the DAG. | 
|  | ScheduleHazardRecognizer * | 
|  | PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | unsigned Directive = | 
|  | DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); | 
|  |  | 
|  | // FIXME: Leaving this as-is until we have POWER9 scheduling info | 
|  | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) | 
|  | return new PPCDispatchGroupSBHazardRecognizer(II, DAG); | 
|  |  | 
|  | // Most subtargets use a PPC970 recognizer. | 
|  | if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && | 
|  | Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { | 
|  | assert(DAG->TII && "No InstrInfo?"); | 
|  |  | 
|  | return new PPCHazardRecognizer970(*DAG); | 
|  | } | 
|  |  | 
|  | return new ScoreboardHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost) const { | 
|  | if (!ItinData || UseOldLatencyCalc) | 
|  | return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); | 
|  |  | 
|  | // The default implementation of getInstrLatency calls getStageLatency, but | 
|  | // getStageLatency does not do the right thing for us. While we have | 
|  | // itinerary, most cores are fully pipelined, and so the itineraries only | 
|  | // express the first part of the pipeline, not every stage. Instead, we need | 
|  | // to use the listed output operand cycle number (using operand 0 here, which | 
|  | // is an output). | 
|  |  | 
|  | unsigned Latency = 1; | 
|  | unsigned DefClass = MI.getDesc().getSchedClass(); | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) | 
|  | continue; | 
|  |  | 
|  | int Cycle = ItinData->getOperandCycle(DefClass, i); | 
|  | if (Cycle < 0) | 
|  | continue; | 
|  |  | 
|  | Latency = std::max(Latency, (unsigned) Cycle); | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, | 
|  | UseMI, UseIdx); | 
|  |  | 
|  | if (!DefMI.getParent()) | 
|  | return Latency; | 
|  |  | 
|  | const MachineOperand &DefMO = DefMI.getOperand(DefIdx); | 
|  | unsigned Reg = DefMO.getReg(); | 
|  |  | 
|  | bool IsRegCR; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | const MachineRegisterInfo *MRI = | 
|  | &DefMI.getParent()->getParent()->getRegInfo(); | 
|  | IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || | 
|  | MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); | 
|  | } else { | 
|  | IsRegCR = PPC::CRRCRegClass.contains(Reg) || | 
|  | PPC::CRBITRCRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | if (UseMI.isBranch() && IsRegCR) { | 
|  | if (Latency < 0) | 
|  | Latency = getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | // On some cores, there is an additional delay between writing to a condition | 
|  | // register, and using it from a branch. | 
|  | unsigned Directive = Subtarget.getDarwinDirective(); | 
|  | switch (Directive) { | 
|  | default: break; | 
|  | case PPC::DIR_7400: | 
|  | case PPC::DIR_750: | 
|  | case PPC::DIR_970: | 
|  | case PPC::DIR_E5500: | 
|  | case PPC::DIR_PWR4: | 
|  | case PPC::DIR_PWR5: | 
|  | case PPC::DIR_PWR5X: | 
|  | case PPC::DIR_PWR6: | 
|  | case PPC::DIR_PWR6X: | 
|  | case PPC::DIR_PWR7: | 
|  | case PPC::DIR_PWR8: | 
|  | // FIXME: Is this needed for POWER9? | 
|  | Latency += 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | // This function does not list all associative and commutative operations, but | 
|  | // only those worth feeding through the machine combiner in an attempt to | 
|  | // reduce the critical path. Mostly, this means floating-point operations, | 
|  | // because they have high latencies (compared to other operations, such and | 
|  | // and/or, which are also associative and commutative, but have low latencies). | 
|  | bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { | 
|  | switch (Inst.getOpcode()) { | 
|  | // FP Add: | 
|  | case PPC::FADD: | 
|  | case PPC::FADDS: | 
|  | // FP Multiply: | 
|  | case PPC::FMUL: | 
|  | case PPC::FMULS: | 
|  | // Altivec Add: | 
|  | case PPC::VADDFP: | 
|  | // VSX Add: | 
|  | case PPC::XSADDDP: | 
|  | case PPC::XVADDDP: | 
|  | case PPC::XVADDSP: | 
|  | case PPC::XSADDSP: | 
|  | // VSX Multiply: | 
|  | case PPC::XSMULDP: | 
|  | case PPC::XVMULDP: | 
|  | case PPC::XVMULSP: | 
|  | case PPC::XSMULSP: | 
|  | // QPX Add: | 
|  | case PPC::QVFADD: | 
|  | case PPC::QVFADDS: | 
|  | case PPC::QVFADDSs: | 
|  | // QPX Multiply: | 
|  | case PPC::QVFMUL: | 
|  | case PPC::QVFMULS: | 
|  | case PPC::QVFMULSs: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::getMachineCombinerPatterns( | 
|  | MachineInstr &Root, | 
|  | SmallVectorImpl<MachineCombinerPattern> &Patterns) const { | 
|  | // Using the machine combiner in this way is potentially expensive, so | 
|  | // restrict to when aggressive optimizations are desired. | 
|  | if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) | 
|  | return false; | 
|  |  | 
|  | // FP reassociation is only legal when we don't need strict IEEE semantics. | 
|  | if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) | 
|  | return false; | 
|  |  | 
|  | return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); | 
|  | } | 
|  |  | 
|  | // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. | 
|  | bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return false; | 
|  | case PPC::EXTSW: | 
|  | case PPC::EXTSW_32_64: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SubIdx = PPC::sub_32; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | // Note: This list must be kept consistent with LoadRegFromStackSlot. | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case PPC::LD: | 
|  | case PPC::LWZ: | 
|  | case PPC::LFS: | 
|  | case PPC::LFD: | 
|  | case PPC::RESTORE_CR: | 
|  | case PPC::RESTORE_CRBIT: | 
|  | case PPC::LVX: | 
|  | case PPC::LXVD2X: | 
|  | case PPC::QVLFDX: | 
|  | case PPC::QVLFSXs: | 
|  | case PPC::QVLFDXb: | 
|  | case PPC::RESTORE_VRSAVE: | 
|  | // Check for the operands added by addFrameReference (the immediate is the | 
|  | // offset which defaults to 0). | 
|  | if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && | 
|  | MI.getOperand(2).isFI()) { | 
|  | FrameIndex = MI.getOperand(2).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | // Note: This list must be kept consistent with StoreRegToStackSlot. | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case PPC::STD: | 
|  | case PPC::STW: | 
|  | case PPC::STFS: | 
|  | case PPC::STFD: | 
|  | case PPC::SPILL_CR: | 
|  | case PPC::SPILL_CRBIT: | 
|  | case PPC::STVX: | 
|  | case PPC::STXVD2X: | 
|  | case PPC::QVSTFDX: | 
|  | case PPC::QVSTFSXs: | 
|  | case PPC::QVSTFDXb: | 
|  | case PPC::SPILL_VRSAVE: | 
|  | // Check for the operands added by addFrameReference (the immediate is the | 
|  | // offset which defaults to 0). | 
|  | if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && | 
|  | MI.getOperand(2).isFI()) { | 
|  | FrameIndex = MI.getOperand(2).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  |  | 
|  | // Normal instructions can be commuted the obvious way. | 
|  | if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a | 
|  | // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because | 
|  | // changing the relative order of the mask operands might change what happens | 
|  | // to the high-bits of the mask (and, thus, the result). | 
|  |  | 
|  | // Cannot commute if it has a non-zero rotate count. | 
|  | if (MI.getOperand(3).getImm() != 0) | 
|  | return nullptr; | 
|  |  | 
|  | // If we have a zero rotate count, we have: | 
|  | //   M = mask(MB,ME) | 
|  | //   Op0 = (Op1 & ~M) | (Op2 & M) | 
|  | // Change this to: | 
|  | //   M = mask((ME+1)&31, (MB-1)&31) | 
|  | //   Op0 = (Op2 & ~M) | (Op1 & M) | 
|  |  | 
|  | // Swap op1/op2 | 
|  | assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && | 
|  | "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); | 
|  | unsigned Reg0 = MI.getOperand(0).getReg(); | 
|  | unsigned Reg1 = MI.getOperand(1).getReg(); | 
|  | unsigned Reg2 = MI.getOperand(2).getReg(); | 
|  | unsigned SubReg1 = MI.getOperand(1).getSubReg(); | 
|  | unsigned SubReg2 = MI.getOperand(2).getSubReg(); | 
|  | bool Reg1IsKill = MI.getOperand(1).isKill(); | 
|  | bool Reg2IsKill = MI.getOperand(2).isKill(); | 
|  | bool ChangeReg0 = false; | 
|  | // If machine instrs are no longer in two-address forms, update | 
|  | // destination register as well. | 
|  | if (Reg0 == Reg1) { | 
|  | // Must be two address instruction! | 
|  | assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && | 
|  | "Expecting a two-address instruction!"); | 
|  | assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); | 
|  | Reg2IsKill = false; | 
|  | ChangeReg0 = true; | 
|  | } | 
|  |  | 
|  | // Masks. | 
|  | unsigned MB = MI.getOperand(4).getImm(); | 
|  | unsigned ME = MI.getOperand(5).getImm(); | 
|  |  | 
|  | // We can't commute a trivial mask (there is no way to represent an all-zero | 
|  | // mask). | 
|  | if (MB == 0 && ME == 31) | 
|  | return nullptr; | 
|  |  | 
|  | if (NewMI) { | 
|  | // Create a new instruction. | 
|  | unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); | 
|  | bool Reg0IsDead = MI.getOperand(0).isDead(); | 
|  | return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) | 
|  | .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) | 
|  | .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
|  | .addReg(Reg1, getKillRegState(Reg1IsKill)) | 
|  | .addImm((ME + 1) & 31) | 
|  | .addImm((MB - 1) & 31); | 
|  | } | 
|  |  | 
|  | if (ChangeReg0) { | 
|  | MI.getOperand(0).setReg(Reg2); | 
|  | MI.getOperand(0).setSubReg(SubReg2); | 
|  | } | 
|  | MI.getOperand(2).setReg(Reg1); | 
|  | MI.getOperand(1).setReg(Reg2); | 
|  | MI.getOperand(2).setSubReg(SubReg1); | 
|  | MI.getOperand(1).setSubReg(SubReg2); | 
|  | MI.getOperand(2).setIsKill(Reg1IsKill); | 
|  | MI.getOperand(1).setIsKill(Reg2IsKill); | 
|  |  | 
|  | // Swap the mask around. | 
|  | MI.getOperand(4).setImm((ME + 1) & 31); | 
|  | MI.getOperand(5).setImm((MB - 1) & 31); | 
|  | return &MI; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | // For VSX A-Type FMA instructions, it is the first two operands that can be | 
|  | // commuted, however, because the non-encoded tied input operand is listed | 
|  | // first, the operands to swap are actually the second and third. | 
|  |  | 
|  | int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); | 
|  | if (AltOpc == -1) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  |  | 
|  | // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 | 
|  | // and SrcOpIdx2. | 
|  | return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | // This function is used for scheduling, and the nop wanted here is the type | 
|  | // that terminates dispatch groups on the POWER cores. | 
|  | unsigned Directive = Subtarget.getDarwinDirective(); | 
|  | unsigned Opcode; | 
|  | switch (Directive) { | 
|  | default:            Opcode = PPC::NOP; break; | 
|  | case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; | 
|  | case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; | 
|  | case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ | 
|  | // FIXME: Update when POWER9 scheduling model is ready. | 
|  | case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; | 
|  | } | 
|  |  | 
|  | DebugLoc DL; | 
|  | BuildMI(MBB, MI, DL, get(Opcode)); | 
|  | } | 
|  |  | 
|  | /// getNoopForMachoTarget - Return the noop instruction to use for a noop. | 
|  | void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | 
|  | NopInst.setOpcode(PPC::NOP); | 
|  | } | 
|  |  | 
|  | // Branch analysis. | 
|  | // Note: If the condition register is set to CTR or CTR8 then this is a | 
|  | // BDNZ (imm == 1) or BDZ (imm == 0) branch. | 
|  | bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return false; | 
|  |  | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | return false; | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr &LastInst = *I; | 
|  |  | 
|  | // If there is only one terminator instruction, process it. | 
|  | if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { | 
|  | if (LastInst.getOpcode() == PPC::B) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BCC) { | 
|  | if (!LastInst.getOperand(2).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(2).getMBB(); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | Cond.push_back(LastInst.getOperand(1)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BC) { | 
|  | if (!LastInst.getOperand(1).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BCn) { | 
|  | if (!LastInst.getOperand(1).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BDNZ8 || | 
|  | LastInst.getOpcode() == PPC::BDNZ) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(1)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BDZ8 || | 
|  | LastInst.getOpcode() == PPC::BDZ) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, don't know what this is. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Get the instruction before it if it's a terminator. | 
|  | MachineInstr &SecondLastInst = *I; | 
|  |  | 
|  | // If there are three terminators, we don't know what sort of block this is. | 
|  | if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) | 
|  | return true; | 
|  |  | 
|  | // If the block ends with PPC::B and PPC:BCC, handle it. | 
|  | if (SecondLastInst.getOpcode() == PPC::BCC && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(2).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(2).getMBB(); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | Cond.push_back(SecondLastInst.getOperand(1)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (SecondLastInst.getOpcode() == PPC::BC && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(1).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (SecondLastInst.getOpcode() == PPC::BCn && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(1).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || | 
|  | SecondLastInst.getOpcode() == PPC::BDNZ) && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(1)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || | 
|  | SecondLastInst.getOpcode() == PPC::BDZ) && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with two PPC:Bs, handle it.  The second one is not | 
|  | // executed, so remove it. | 
|  | if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | I = LastInst; | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, can't handle this. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
|  | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return 0; | 
|  |  | 
|  | if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && | 
|  | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && | 
|  | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && | 
|  | I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ) | 
|  | return 0; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | I = MBB.end(); | 
|  |  | 
|  | if (I == MBB.begin()) return 1; | 
|  | --I; | 
|  | if (I->getOpcode() != PPC::BCC && | 
|  | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && | 
|  | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && | 
|  | I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ) | 
|  | return 1; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL) const { | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 2 || Cond.size() == 0) && | 
|  | "PPC branch conditions have two components!"); | 
|  |  | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | // One-way branch. | 
|  | if (!FBB) { | 
|  | if (Cond.empty())   // Unconditional branch | 
|  | BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); | 
|  | else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | BuildMI(&MBB, DL, get(Cond[0].getImm() ? | 
|  | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : | 
|  | (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) | 
|  | BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) | 
|  | BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); | 
|  | else                // Conditional branch | 
|  | BuildMI(&MBB, DL, get(PPC::BCC)) | 
|  | .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Two-way Conditional Branch. | 
|  | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | BuildMI(&MBB, DL, get(Cond[0].getImm() ? | 
|  | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : | 
|  | (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) | 
|  | BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) | 
|  | BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); | 
|  | else | 
|  | BuildMI(&MBB, DL, get(PPC::BCC)) | 
|  | .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); | 
|  | BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // Select analysis. | 
|  | bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | unsigned TrueReg, unsigned FalseReg, | 
|  | int &CondCycles, int &TrueCycles, int &FalseCycles) const { | 
|  | if (!Subtarget.hasISEL()) | 
|  | return false; | 
|  |  | 
|  | if (Cond.size() != 2) | 
|  | return false; | 
|  |  | 
|  | // If this is really a bdnz-like condition, then it cannot be turned into a | 
|  | // select. | 
|  | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | return false; | 
|  |  | 
|  | // Check register classes. | 
|  | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // isel is for regular integer GPRs only. | 
|  | if (!PPC::GPRCRegClass.hasSubClassEq(RC) && | 
|  | !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && | 
|  | !PPC::G8RCRegClass.hasSubClassEq(RC) && | 
|  | !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: These numbers are for the A2, how well they work for other cores is | 
|  | // an open question. On the A2, the isel instruction has a 2-cycle latency | 
|  | // but single-cycle throughput. These numbers are used in combination with | 
|  | // the MispredictPenalty setting from the active SchedMachineModel. | 
|  | CondCycles = 1; | 
|  | TrueCycles = 1; | 
|  | FalseCycles = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const DebugLoc &dl, unsigned DestReg, | 
|  | ArrayRef<MachineOperand> Cond, unsigned TrueReg, | 
|  | unsigned FalseReg) const { | 
|  | assert(Cond.size() == 2 && | 
|  | "PPC branch conditions have two components!"); | 
|  |  | 
|  | assert(Subtarget.hasISEL() && | 
|  | "Cannot insert select on target without ISEL support"); | 
|  |  | 
|  | // Get the register classes. | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | assert(RC && "TrueReg and FalseReg must have overlapping register classes"); | 
|  |  | 
|  | bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); | 
|  | assert((Is64Bit || | 
|  | PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && | 
|  | "isel is for regular integer GPRs only"); | 
|  |  | 
|  | unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; | 
|  | auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); | 
|  |  | 
|  | unsigned SubIdx = 0; | 
|  | bool SwapOps = false; | 
|  | switch (SelectPred) { | 
|  | case PPC::PRED_EQ: | 
|  | case PPC::PRED_EQ_MINUS: | 
|  | case PPC::PRED_EQ_PLUS: | 
|  | SubIdx = PPC::sub_eq; SwapOps = false; break; | 
|  | case PPC::PRED_NE: | 
|  | case PPC::PRED_NE_MINUS: | 
|  | case PPC::PRED_NE_PLUS: | 
|  | SubIdx = PPC::sub_eq; SwapOps = true; break; | 
|  | case PPC::PRED_LT: | 
|  | case PPC::PRED_LT_MINUS: | 
|  | case PPC::PRED_LT_PLUS: | 
|  | SubIdx = PPC::sub_lt; SwapOps = false; break; | 
|  | case PPC::PRED_GE: | 
|  | case PPC::PRED_GE_MINUS: | 
|  | case PPC::PRED_GE_PLUS: | 
|  | SubIdx = PPC::sub_lt; SwapOps = true; break; | 
|  | case PPC::PRED_GT: | 
|  | case PPC::PRED_GT_MINUS: | 
|  | case PPC::PRED_GT_PLUS: | 
|  | SubIdx = PPC::sub_gt; SwapOps = false; break; | 
|  | case PPC::PRED_LE: | 
|  | case PPC::PRED_LE_MINUS: | 
|  | case PPC::PRED_LE_PLUS: | 
|  | SubIdx = PPC::sub_gt; SwapOps = true; break; | 
|  | case PPC::PRED_UN: | 
|  | case PPC::PRED_UN_MINUS: | 
|  | case PPC::PRED_UN_PLUS: | 
|  | SubIdx = PPC::sub_un; SwapOps = false; break; | 
|  | case PPC::PRED_NU: | 
|  | case PPC::PRED_NU_MINUS: | 
|  | case PPC::PRED_NU_PLUS: | 
|  | SubIdx = PPC::sub_un; SwapOps = true; break; | 
|  | case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break; | 
|  | case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; | 
|  | } | 
|  |  | 
|  | unsigned FirstReg =  SwapOps ? FalseReg : TrueReg, | 
|  | SecondReg = SwapOps ? TrueReg  : FalseReg; | 
|  |  | 
|  | // The first input register of isel cannot be r0. If it is a member | 
|  | // of a register class that can be r0, then copy it first (the | 
|  | // register allocator should eliminate the copy). | 
|  | if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || | 
|  | MRI.getRegClass(FirstReg)->contains(PPC::X0)) { | 
|  | const TargetRegisterClass *FirstRC = | 
|  | MRI.getRegClass(FirstReg)->contains(PPC::X0) ? | 
|  | &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; | 
|  | unsigned OldFirstReg = FirstReg; | 
|  | FirstReg = MRI.createVirtualRegister(FirstRC); | 
|  | BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) | 
|  | .addReg(OldFirstReg); | 
|  | } | 
|  |  | 
|  | BuildMI(MBB, MI, dl, get(OpCode), DestReg) | 
|  | .addReg(FirstReg).addReg(SecondReg) | 
|  | .addReg(Cond[1].getReg(), 0, SubIdx); | 
|  | } | 
|  |  | 
|  | static unsigned getCRBitValue(unsigned CRBit) { | 
|  | unsigned Ret = 4; | 
|  | if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || | 
|  | CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || | 
|  | CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || | 
|  | CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) | 
|  | Ret = 3; | 
|  | if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || | 
|  | CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || | 
|  | CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || | 
|  | CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) | 
|  | Ret = 2; | 
|  | if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || | 
|  | CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || | 
|  | CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || | 
|  | CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) | 
|  | Ret = 1; | 
|  | if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || | 
|  | CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || | 
|  | CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || | 
|  | CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) | 
|  | Ret = 0; | 
|  |  | 
|  | assert(Ret != 4 && "Invalid CR bit register"); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, unsigned DestReg, | 
|  | unsigned SrcReg, bool KillSrc) const { | 
|  | // We can end up with self copies and similar things as a result of VSX copy | 
|  | // legalization. Promote them here. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (PPC::F8RCRegClass.contains(DestReg) && | 
|  | PPC::VSRCRegClass.contains(SrcReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && SrcReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | DestReg = SuperReg; | 
|  | } else if (PPC::VRRCRegClass.contains(DestReg) && | 
|  | PPC::VSRCRegClass.contains(SrcReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && SrcReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | DestReg = SuperReg; | 
|  | } else if (PPC::F8RCRegClass.contains(SrcReg) && | 
|  | PPC::VSRCRegClass.contains(DestReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && DestReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | SrcReg = SuperReg; | 
|  | } else if (PPC::VRRCRegClass.contains(SrcReg) && | 
|  | PPC::VSRCRegClass.contains(DestReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && DestReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | SrcReg = SuperReg; | 
|  | } | 
|  |  | 
|  | // Different class register copy | 
|  | if (PPC::CRBITRCRegClass.contains(SrcReg) && | 
|  | PPC::GPRCRegClass.contains(DestReg)) { | 
|  | unsigned CRReg = getCRFromCRBit(SrcReg); | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); | 
|  | getKillRegState(KillSrc); | 
|  | // Rotate the CR bit in the CR fields to be the least significant bit and | 
|  | // then mask with 0x1 (MB = ME = 31). | 
|  | BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) | 
|  | .addReg(DestReg, RegState::Kill) | 
|  | .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) | 
|  | .addImm(31) | 
|  | .addImm(31); | 
|  | return; | 
|  | } else if (PPC::CRRCRegClass.contains(SrcReg) && | 
|  | PPC::G8RCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::CRRCRegClass.contains(SrcReg) && | 
|  | PPC::GPRCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Opc; | 
|  | if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::OR; | 
|  | else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::OR8; | 
|  | else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::FMR; | 
|  | else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::MCRF; | 
|  | else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::VOR; | 
|  | else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) | 
|  | // There are two different ways this can be done: | 
|  | //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only | 
|  | //      issue in VSU pipeline 0. | 
|  | //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but | 
|  | //      can go to either pipeline. | 
|  | // We'll always use xxlor here, because in practically all cases where | 
|  | // copies are generated, they are close enough to some use that the | 
|  | // lower-latency form is preferable. | 
|  | Opc = PPC::XXLOR; | 
|  | else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || | 
|  | PPC::VSSRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::XXLORf; | 
|  | else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMR; | 
|  | else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMRs; | 
|  | else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMRb; | 
|  | else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::CROR; | 
|  | else | 
|  | llvm_unreachable("Impossible reg-to-reg copy"); | 
|  |  | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | if (MCID.getNumOperands() == 3) | 
|  | BuildMI(MBB, I, DL, MCID, DestReg) | 
|  | .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | else | 
|  | BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | } | 
|  |  | 
|  | // This function returns true if a CR spill is necessary and false otherwise. | 
|  | bool | 
|  | PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, | 
|  | unsigned SrcReg, bool isKill, | 
|  | int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs, | 
|  | bool &NonRI, bool &SpillsVRS) const{ | 
|  | // Note: If additional store instructions are added here, | 
|  | // update isStoreToStackSlot. | 
|  |  | 
|  | DebugLoc DL; | 
|  | if (PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | return true; | 
|  | } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | return true; | 
|  | } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { | 
|  | assert(Subtarget.isDarwin() && | 
|  | "VRSAVE only needs spill/restore on Darwin"); | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | SpillsVRS = true; | 
|  | } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) | 
|  | .addReg(SrcReg, | 
|  | getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  |  | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setHasSpills(); | 
|  |  | 
|  | bool NonRI = false, SpillsVRS = false; | 
|  | if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, | 
|  | NonRI, SpillsVRS)) | 
|  | FuncInfo->setSpillsCR(); | 
|  |  | 
|  | if (SpillsVRS) | 
|  | FuncInfo->setSpillsVRSAVE(); | 
|  |  | 
|  | if (NonRI) | 
|  | FuncInfo->setHasNonRISpills(); | 
|  |  | 
|  | for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) | 
|  | MBB.insert(MI, NewMIs[i]); | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIdx), | 
|  | MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), | 
|  | MFI.getObjectAlignment(FrameIdx)); | 
|  | NewMIs.back()->addMemOperand(MF, MMO); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr *> &NewMIs, | 
|  | bool &NonRI, bool &SpillsVRS) const { | 
|  | // Note: If additional load instructions are added here, | 
|  | // update isLoadFromStackSlot. | 
|  |  | 
|  | if (PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), | 
|  | DestReg), FrameIdx)); | 
|  | } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), | 
|  | FrameIdx)); | 
|  | } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), | 
|  | FrameIdx)); | 
|  | } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), | 
|  | FrameIdx)); | 
|  | } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, | 
|  | get(PPC::RESTORE_CR), DestReg), | 
|  | FrameIdx)); | 
|  | return true; | 
|  | } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, | 
|  | get(PPC::RESTORE_CRBIT), DestReg), | 
|  | FrameIdx)); | 
|  | return true; | 
|  | } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { | 
|  | assert(Subtarget.isDarwin() && | 
|  | "VRSAVE only needs spill/restore on Darwin"); | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, | 
|  | get(PPC::RESTORE_VRSAVE), | 
|  | DestReg), | 
|  | FrameIdx)); | 
|  | SpillsVRS = true; | 
|  | } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), | 
|  | FrameIdx)); | 
|  | NonRI = true; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | DebugLoc DL; | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  |  | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setHasSpills(); | 
|  |  | 
|  | bool NonRI = false, SpillsVRS = false; | 
|  | if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, | 
|  | NonRI, SpillsVRS)) | 
|  | FuncInfo->setSpillsCR(); | 
|  |  | 
|  | if (SpillsVRS) | 
|  | FuncInfo->setSpillsVRSAVE(); | 
|  |  | 
|  | if (NonRI) | 
|  | FuncInfo->setHasNonRISpills(); | 
|  |  | 
|  | for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) | 
|  | MBB.insert(MI, NewMIs[i]); | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIdx), | 
|  | MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), | 
|  | MFI.getObjectAlignment(FrameIdx)); | 
|  | NewMIs.back()->addMemOperand(MF, MMO); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo:: | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); | 
|  | if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) | 
|  | Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); | 
|  | else | 
|  | // Leave the CR# the same, but invert the condition. | 
|  | Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, | 
|  | unsigned Reg, MachineRegisterInfo *MRI) const { | 
|  | // For some instructions, it is legal to fold ZERO into the RA register field. | 
|  | // A zero immediate should always be loaded with a single li. | 
|  | unsigned DefOpc = DefMI.getOpcode(); | 
|  | if (DefOpc != PPC::LI && DefOpc != PPC::LI8) | 
|  | return false; | 
|  | if (!DefMI.getOperand(1).isImm()) | 
|  | return false; | 
|  | if (DefMI.getOperand(1).getImm() != 0) | 
|  | return false; | 
|  |  | 
|  | // Note that we cannot here invert the arguments of an isel in order to fold | 
|  | // a ZERO into what is presented as the second argument. All we have here | 
|  | // is the condition bit, and that might come from a CR-logical bit operation. | 
|  |  | 
|  | const MCInstrDesc &UseMCID = UseMI.getDesc(); | 
|  |  | 
|  | // Only fold into real machine instructions. | 
|  | if (UseMCID.isPseudo()) | 
|  | return false; | 
|  |  | 
|  | unsigned UseIdx; | 
|  | for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) | 
|  | if (UseMI.getOperand(UseIdx).isReg() && | 
|  | UseMI.getOperand(UseIdx).getReg() == Reg) | 
|  | break; | 
|  |  | 
|  | assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); | 
|  | assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); | 
|  |  | 
|  | const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; | 
|  |  | 
|  | // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 | 
|  | // register (which might also be specified as a pointer class kind). | 
|  | if (UseInfo->isLookupPtrRegClass()) { | 
|  | if (UseInfo->RegClass /* Kind */ != 1) | 
|  | return false; | 
|  | } else { | 
|  | if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && | 
|  | UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure this is not tied to an output register (or otherwise | 
|  | // constrained). This is true for ST?UX registers, for example, which | 
|  | // are tied to their output registers. | 
|  | if (UseInfo->Constraints != 0) | 
|  | return false; | 
|  |  | 
|  | unsigned ZeroReg; | 
|  | if (UseInfo->isLookupPtrRegClass()) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; | 
|  | } else { | 
|  | ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? | 
|  | PPC::ZERO8 : PPC::ZERO; | 
|  | } | 
|  |  | 
|  | bool DeleteDef = MRI->hasOneNonDBGUse(Reg); | 
|  | UseMI.getOperand(UseIdx).setReg(ZeroReg); | 
|  |  | 
|  | if (DeleteDef) | 
|  | DefMI.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool MBBDefinesCTR(MachineBasicBlock &MBB) { | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); | 
|  | I != IE; ++I) | 
|  | if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We should make sure that, if we're going to predicate both sides of a | 
|  | // condition (a diamond), that both sides don't define the counter register. We | 
|  | // can predicate counter-decrement-based branches, but while that predicates | 
|  | // the branching, it does not predicate the counter decrement. If we tried to | 
|  | // merge the triangle into one predicated block, we'd decrement the counter | 
|  | // twice. | 
|  | bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned NumT, unsigned ExtraT, | 
|  | MachineBasicBlock &FMBB, | 
|  | unsigned NumF, unsigned ExtraF, | 
|  | BranchProbability Probability) const { | 
|  | return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { | 
|  | // The predicated branches are identified by their type, not really by the | 
|  | // explicit presence of a predicate. Furthermore, some of them can be | 
|  | // predicated more than once. Because if conversion won't try to predicate | 
|  | // any instruction which already claims to be predicated (by returning true | 
|  | // here), always return false. In doing so, we let isPredicable() be the | 
|  | // final word on whether not the instruction can be (further) predicated. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { | 
|  | if (!MI.isTerminator()) | 
|  | return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI.isBranch() && !MI.isBarrier()) | 
|  | return true; | 
|  |  | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, | 
|  | ArrayRef<MachineOperand> Pred) const { | 
|  | unsigned OpC = MI.getOpcode(); | 
|  | if (OpC == PPC::BLR || OpC == PPC::BLR8) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) | 
|  | : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MI.setDesc(get(PPC::BCLR)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MI.setDesc(get(PPC::BCLRn)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } else { | 
|  | MI.setDesc(get(PPC::BCCLR)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } else if (OpC == PPC::B) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) | 
|  | : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BC)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BCn)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } else { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BCC)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 || | 
|  | OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) | 
|  | llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); | 
|  |  | 
|  | bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) | 
|  | : (setLR ? PPC::BCCTRL : PPC::BCCTR))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) | 
|  | : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) | 
|  | : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
|  | ArrayRef<MachineOperand> Pred2) const { | 
|  | assert(Pred1.size() == 2 && "Invalid PPC first predicate"); | 
|  | assert(Pred2.size() == 2 && "Invalid PPC second predicate"); | 
|  |  | 
|  | if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) | 
|  | return false; | 
|  | if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) | 
|  | return false; | 
|  |  | 
|  | // P1 can only subsume P2 if they test the same condition register. | 
|  | if (Pred1[1].getReg() != Pred2[1].getReg()) | 
|  | return false; | 
|  |  | 
|  | PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); | 
|  | PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); | 
|  |  | 
|  | if (P1 == P2) | 
|  | return true; | 
|  |  | 
|  | // Does P1 subsume P2, e.g. GE subsumes GT. | 
|  | if (P1 == PPC::PRED_LE && | 
|  | (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) | 
|  | return true; | 
|  | if (P1 == PPC::PRED_GE && | 
|  | (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, | 
|  | std::vector<MachineOperand> &Pred) const { | 
|  | // Note: At the present time, the contents of Pred from this function is | 
|  | // unused by IfConversion. This implementation follows ARM by pushing the | 
|  | // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of | 
|  | // predicate, instructions defining CTR or CTR8 are also included as | 
|  | // predicate-defining instructions. | 
|  |  | 
|  | const TargetRegisterClass *RCs[] = | 
|  | { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, | 
|  | &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; | 
|  |  | 
|  | bool Found = false; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { | 
|  | const TargetRegisterClass *RC = RCs[c]; | 
|  | if (MO.isReg()) { | 
|  | if (MO.isDef() && RC->contains(MO.getReg())) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } else if (MO.isRegMask()) { | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), | 
|  | IE = RC->end(); I != IE; ++I) | 
|  | if (MO.clobbersPhysReg(*I)) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isPredicable(MachineInstr &MI) const { | 
|  | unsigned OpC = MI.getOpcode(); | 
|  | switch (OpC) { | 
|  | default: | 
|  | return false; | 
|  | case PPC::B: | 
|  | case PPC::BLR: | 
|  | case PPC::BLR8: | 
|  | case PPC::BCTR: | 
|  | case PPC::BCTR8: | 
|  | case PPC::BCTRL: | 
|  | case PPC::BCTRL8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &Mask, | 
|  | int &Value) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: return false; | 
|  | case PPC::CMPWI: | 
|  | case PPC::CMPLWI: | 
|  | case PPC::CMPDI: | 
|  | case PPC::CMPLDI: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | Value = MI.getOperand(2).getImm(); | 
|  | Mask = 0xFFFF; | 
|  | return true; | 
|  | case PPC::CMPW: | 
|  | case PPC::CMPLW: | 
|  | case PPC::CMPD: | 
|  | case PPC::CMPLD: | 
|  | case PPC::FCMPUS: | 
|  | case PPC::FCMPUD: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = MI.getOperand(2).getReg(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, | 
|  | unsigned SrcReg2, int Mask, int Value, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | if (DisableCmpOpt) | 
|  | return false; | 
|  |  | 
|  | int OpC = CmpInstr.getOpcode(); | 
|  | unsigned CRReg = CmpInstr.getOperand(0).getReg(); | 
|  |  | 
|  | // FP record forms set CR1 based on the execption status bits, not a | 
|  | // comparison with zero. | 
|  | if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) | 
|  | return false; | 
|  |  | 
|  | // The record forms set the condition register based on a signed comparison | 
|  | // with zero (so says the ISA manual). This is not as straightforward as it | 
|  | // seems, however, because this is always a 64-bit comparison on PPC64, even | 
|  | // for instructions that are 32-bit in nature (like slw for example). | 
|  | // So, on PPC32, for unsigned comparisons, we can use the record forms only | 
|  | // for equality checks (as those don't depend on the sign). On PPC64, | 
|  | // we are restricted to equality for unsigned 64-bit comparisons and for | 
|  | // signed 32-bit comparisons the applicability is more restricted. | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW; | 
|  | bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; | 
|  | bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; | 
|  |  | 
|  | // Get the unique definition of SrcReg. | 
|  | MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | 
|  | if (!MI) return false; | 
|  | int MIOpC = MI->getOpcode(); | 
|  |  | 
|  | bool equalityOnly = false; | 
|  | bool noSub = false; | 
|  | if (isPPC64) { | 
|  | if (is32BitSignedCompare) { | 
|  | // We can perform this optimization only if MI is sign-extending. | 
|  | if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo || | 
|  | MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || | 
|  | MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || | 
|  | MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || | 
|  | MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { | 
|  | noSub = true; | 
|  | } else | 
|  | return false; | 
|  | } else if (is32BitUnsignedCompare) { | 
|  | // 32-bit rotate and mask instructions are zero extending only if MB <= ME | 
|  | bool isZeroExtendingRotate  = | 
|  | (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || | 
|  | MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) | 
|  | && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); | 
|  |  | 
|  | // We can perform this optimization, equality only, if MI is | 
|  | // zero-extending. | 
|  | if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || | 
|  | MIOpC == PPC::SLW    || MIOpC == PPC::SLWo || | 
|  | MIOpC == PPC::SRW    || MIOpC == PPC::SRWo || | 
|  | isZeroExtendingRotate) { | 
|  | noSub = true; | 
|  | equalityOnly = true; | 
|  | } else | 
|  | return false; | 
|  | } else | 
|  | equalityOnly = is64BitUnsignedCompare; | 
|  | } else | 
|  | equalityOnly = is32BitUnsignedCompare; | 
|  |  | 
|  | if (equalityOnly) { | 
|  | // We need to check the uses of the condition register in order to reject | 
|  | // non-equality comparisons. | 
|  | for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), | 
|  | IE = MRI->use_instr_end(); I != IE; ++I) { | 
|  | MachineInstr *UseMI = &*I; | 
|  | if (UseMI->getOpcode() == PPC::BCC) { | 
|  | unsigned Pred = UseMI->getOperand(0).getImm(); | 
|  | if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) | 
|  | return false; | 
|  | } else if (UseMI->getOpcode() == PPC::ISEL || | 
|  | UseMI->getOpcode() == PPC::ISEL8) { | 
|  | unsigned SubIdx = UseMI->getOperand(3).getSubReg(); | 
|  | if (SubIdx != PPC::sub_eq) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator I = CmpInstr; | 
|  |  | 
|  | // Scan forward to find the first use of the compare. | 
|  | for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; | 
|  | ++I) { | 
|  | bool FoundUse = false; | 
|  | for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), | 
|  | JE = MRI->use_instr_end(); J != JE; ++J) | 
|  | if (&*J == &*I) { | 
|  | FoundUse = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (FoundUse) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // There are two possible candidates which can be changed to set CR[01]. | 
|  | // One is MI, the other is a SUB instruction. | 
|  | // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). | 
|  | MachineInstr *Sub = nullptr; | 
|  | if (SrcReg2 != 0) | 
|  | // MI is not a candidate for CMPrr. | 
|  | MI = nullptr; | 
|  | // FIXME: Conservatively refuse to convert an instruction which isn't in the | 
|  | // same BB as the comparison. This is to allow the check below to avoid calls | 
|  | // (and other explicit clobbers); instead we should really check for these | 
|  | // more explicitly (in at least a few predecessors). | 
|  | else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { | 
|  | // PPC does not have a record-form SUBri. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Search for Sub. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | --I; | 
|  |  | 
|  | // Get ready to iterate backward from CmpInstr. | 
|  | MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); | 
|  |  | 
|  | for (; I != E && !noSub; --I) { | 
|  | const MachineInstr &Instr = *I; | 
|  | unsigned IOpC = Instr.getOpcode(); | 
|  |  | 
|  | if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || | 
|  | Instr.readsRegister(PPC::CR0, TRI))) | 
|  | // This instruction modifies or uses the record condition register after | 
|  | // the one we want to change. While we could do this transformation, it | 
|  | // would likely not be profitable. This transformation removes one | 
|  | // instruction, and so even forcing RA to generate one move probably | 
|  | // makes it unprofitable. | 
|  | return false; | 
|  |  | 
|  | // Check whether CmpInstr can be made redundant by the current instruction. | 
|  | if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || | 
|  | OpC == PPC::CMPD || OpC == PPC::CMPLD) && | 
|  | (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && | 
|  | ((Instr.getOperand(1).getReg() == SrcReg && | 
|  | Instr.getOperand(2).getReg() == SrcReg2) || | 
|  | (Instr.getOperand(1).getReg() == SrcReg2 && | 
|  | Instr.getOperand(2).getReg() == SrcReg))) { | 
|  | Sub = &*I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (I == B) | 
|  | // The 'and' is below the comparison instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return false if no candidates exist. | 
|  | if (!MI && !Sub) | 
|  | return false; | 
|  |  | 
|  | // The single candidate is called MI. | 
|  | if (!MI) MI = Sub; | 
|  |  | 
|  | int NewOpC = -1; | 
|  | MIOpC = MI->getOpcode(); | 
|  | if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) | 
|  | NewOpC = MIOpC; | 
|  | else { | 
|  | NewOpC = PPC::getRecordFormOpcode(MIOpC); | 
|  | if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) | 
|  | NewOpC = MIOpC; | 
|  | } | 
|  |  | 
|  | // FIXME: On the non-embedded POWER architectures, only some of the record | 
|  | // forms are fast, and we should use only the fast ones. | 
|  |  | 
|  | // The defining instruction has a record form (or is already a record | 
|  | // form). It is possible, however, that we'll need to reverse the condition | 
|  | // code of the users. | 
|  | if (NewOpC == -1) | 
|  | return false; | 
|  |  | 
|  | SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; | 
|  | SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; | 
|  |  | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP | 
|  | // needs to be updated to be based on SUB.  Push the condition code | 
|  | // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the | 
|  | // condition code of these operands will be modified. | 
|  | bool ShouldSwap = false; | 
|  | if (Sub) { | 
|  | ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && | 
|  | Sub->getOperand(2).getReg() == SrcReg; | 
|  |  | 
|  | // The operands to subf are the opposite of sub, so only in the fixed-point | 
|  | // case, invert the order. | 
|  | ShouldSwap = !ShouldSwap; | 
|  | } | 
|  |  | 
|  | if (ShouldSwap) | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); | 
|  | I != IE; ++I) { | 
|  | MachineInstr *UseMI = &*I; | 
|  | if (UseMI->getOpcode() == PPC::BCC) { | 
|  | PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); | 
|  | assert((!equalityOnly || | 
|  | Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && | 
|  | "Invalid predicate for equality-only optimization"); | 
|  | PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), | 
|  | PPC::getSwappedPredicate(Pred))); | 
|  | } else if (UseMI->getOpcode() == PPC::ISEL || | 
|  | UseMI->getOpcode() == PPC::ISEL8) { | 
|  | unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); | 
|  | assert((!equalityOnly || NewSubReg == PPC::sub_eq) && | 
|  | "Invalid CR bit for equality-only optimization"); | 
|  |  | 
|  | if (NewSubReg == PPC::sub_lt) | 
|  | NewSubReg = PPC::sub_gt; | 
|  | else if (NewSubReg == PPC::sub_gt) | 
|  | NewSubReg = PPC::sub_lt; | 
|  |  | 
|  | SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), | 
|  | NewSubReg)); | 
|  | } else // We need to abort on a user we don't understand. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create a new virtual register to hold the value of the CR set by the | 
|  | // record-form instruction. If the instruction was not previously in | 
|  | // record form, then set the kill flag on the CR. | 
|  | CmpInstr.eraseFromParent(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), | 
|  | get(TargetOpcode::COPY), CRReg) | 
|  | .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); | 
|  |  | 
|  | // Even if CR0 register were dead before, it is alive now since the | 
|  | // instruction we just built uses it. | 
|  | MI->clearRegisterDeads(PPC::CR0); | 
|  |  | 
|  | if (MIOpC != NewOpC) { | 
|  | // We need to be careful here: we're replacing one instruction with | 
|  | // another, and we need to make sure that we get all of the right | 
|  | // implicit uses and defs. On the other hand, the caller may be holding | 
|  | // an iterator to this instruction, and so we can't delete it (this is | 
|  | // specifically the case if this is the instruction directly after the | 
|  | // compare). | 
|  |  | 
|  | const MCInstrDesc &NewDesc = get(NewOpC); | 
|  | MI->setDesc(NewDesc); | 
|  |  | 
|  | if (NewDesc.ImplicitDefs) | 
|  | for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); | 
|  | *ImpDefs; ++ImpDefs) | 
|  | if (!MI->definesRegister(*ImpDefs)) | 
|  | MI->addOperand(*MI->getParent()->getParent(), | 
|  | MachineOperand::CreateReg(*ImpDefs, true, true)); | 
|  | if (NewDesc.ImplicitUses) | 
|  | for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); | 
|  | *ImpUses; ++ImpUses) | 
|  | if (!MI->readsRegister(*ImpUses)) | 
|  | MI->addOperand(*MI->getParent()->getParent(), | 
|  | MachineOperand::CreateReg(*ImpUses, false, true)); | 
|  | } | 
|  | assert(MI->definesRegister(PPC::CR0) && | 
|  | "Record-form instruction does not define cr0?"); | 
|  |  | 
|  | // Modify the condition code of operands in OperandsToUpdate. | 
|  | // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to | 
|  | // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) | 
|  | PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); | 
|  |  | 
|  | for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) | 
|  | SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// GetInstSize - Return the number of bytes of code the specified | 
|  | /// instruction may be.  This returns the maximum number of bytes. | 
|  | /// | 
|  | unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  |  | 
|  | if (Opcode == PPC::INLINEASM) { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const char *AsmStr = MI.getOperand(0).getSymbolName(); | 
|  | return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); | 
|  | } else if (Opcode == TargetOpcode::STACKMAP) { | 
|  | StackMapOpers Opers(&MI); | 
|  | return Opers.getNumPatchBytes(); | 
|  | } else if (Opcode == TargetOpcode::PATCHPOINT) { | 
|  | PatchPointOpers Opers(&MI); | 
|  | return Opers.getNumPatchBytes(); | 
|  | } else { | 
|  | const MCInstrDesc &Desc = get(Opcode); | 
|  | return Desc.getSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | const unsigned Mask = PPCII::MO_ACCESS_MASK; | 
|  | return std::make_pair(TF & Mask, TF & ~Mask); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace PPCII; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_LO, "ppc-lo"}, | 
|  | {MO_HA, "ppc-ha"}, | 
|  | {MO_TPREL_LO, "ppc-tprel-lo"}, | 
|  | {MO_TPREL_HA, "ppc-tprel-ha"}, | 
|  | {MO_DTPREL_LO, "ppc-dtprel-lo"}, | 
|  | {MO_TLSLD_LO, "ppc-tlsld-lo"}, | 
|  | {MO_TOC_LO, "ppc-toc-lo"}, | 
|  | {MO_TLS, "ppc-tls"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { | 
|  | using namespace PPCII; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_PLT, "ppc-plt"}, | 
|  | {MO_PIC_FLAG, "ppc-pic"}, | 
|  | {MO_NLP_FLAG, "ppc-nlp"}, | 
|  | {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::LOAD_STACK_GUARD: { | 
|  | assert(Subtarget.isTargetLinux() && | 
|  | "Only Linux target is expected to contain LOAD_STACK_GUARD"); | 
|  | const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; | 
|  | const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; | 
|  | MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Offset) | 
|  | .addReg(Reg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } |