|  | //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines several CodeGen-specific LLVM IR analysis utilities. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Transforms/Utils/GlobalStatus.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// Compute the linearized index of a member in a nested aggregate/struct/array | 
|  | /// by recursing and accumulating CurIndex as long as there are indices in the | 
|  | /// index list. | 
|  | unsigned llvm::ComputeLinearIndex(Type *Ty, | 
|  | const unsigned *Indices, | 
|  | const unsigned *IndicesEnd, | 
|  | unsigned CurIndex) { | 
|  | // Base case: We're done. | 
|  | if (Indices && Indices == IndicesEnd) | 
|  | return CurIndex; | 
|  |  | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) { | 
|  | if (Indices && *Indices == unsigned(EI - EB)) | 
|  | return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); | 
|  | } | 
|  | assert(!Indices && "Unexpected out of bound"); | 
|  | return CurIndex; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Type *EltTy = ATy->getElementType(); | 
|  | unsigned NumElts = ATy->getNumElements(); | 
|  | // Compute the Linear offset when jumping one element of the array | 
|  | unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); | 
|  | if (Indices) { | 
|  | assert(*Indices < NumElts && "Unexpected out of bound"); | 
|  | // If the indice is inside the array, compute the index to the requested | 
|  | // elt and recurse inside the element with the end of the indices list | 
|  | CurIndex += EltLinearOffset* *Indices; | 
|  | return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); | 
|  | } | 
|  | CurIndex += EltLinearOffset*NumElts; | 
|  | return CurIndex; | 
|  | } | 
|  | // We haven't found the type we're looking for, so keep searching. | 
|  | return CurIndex + 1; | 
|  | } | 
|  |  | 
|  | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
|  | /// EVTs that represent all the individual underlying | 
|  | /// non-aggregate types that comprise it. | 
|  | /// | 
|  | /// If Offsets is non-null, it points to a vector to be filled in | 
|  | /// with the in-memory offsets of each of the individual values. | 
|  | /// | 
|  | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, | 
|  | Type *Ty, SmallVectorImpl<EVT> &ValueVTs, | 
|  | SmallVectorImpl<EVT> *MemVTs, | 
|  | SmallVectorImpl<uint64_t> *Offsets, | 
|  | uint64_t StartingOffset) { | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) | 
|  | ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, | 
|  | StartingOffset + SL->getElementOffset(EI - EB)); | 
|  | return; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
|  | ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, | 
|  | StartingOffset + i * EltSize); | 
|  | return; | 
|  | } | 
|  | // Interpret void as zero return values. | 
|  | if (Ty->isVoidTy()) | 
|  | return; | 
|  | // Base case: we can get an EVT for this LLVM IR type. | 
|  | ValueVTs.push_back(TLI.getValueType(DL, Ty)); | 
|  | if (MemVTs) | 
|  | MemVTs->push_back(TLI.getMemValueType(DL, Ty)); | 
|  | if (Offsets) | 
|  | Offsets->push_back(StartingOffset); | 
|  | } | 
|  |  | 
|  | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, | 
|  | Type *Ty, SmallVectorImpl<EVT> &ValueVTs, | 
|  | SmallVectorImpl<uint64_t> *Offsets, | 
|  | uint64_t StartingOffset) { | 
|  | return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, | 
|  | StartingOffset); | 
|  | } | 
|  |  | 
|  | void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, | 
|  | SmallVectorImpl<LLT> &ValueTys, | 
|  | SmallVectorImpl<uint64_t> *Offsets, | 
|  | uint64_t StartingOffset) { | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (StructType *STy = dyn_cast<StructType>(&Ty)) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) | 
|  | computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, | 
|  | StartingOffset + SL->getElementOffset(I)); | 
|  | return; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { | 
|  | Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
|  | computeValueLLTs(DL, *EltTy, ValueTys, Offsets, | 
|  | StartingOffset + i * EltSize); | 
|  | return; | 
|  | } | 
|  | // Interpret void as zero return values. | 
|  | if (Ty.isVoidTy()) | 
|  | return; | 
|  | // Base case: we can get an LLT for this LLVM IR type. | 
|  | ValueTys.push_back(getLLTForType(Ty, DL)); | 
|  | if (Offsets != nullptr) | 
|  | Offsets->push_back(StartingOffset * 8); | 
|  | } | 
|  |  | 
|  | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
|  | GlobalValue *llvm::ExtractTypeInfo(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | GlobalValue *GV = dyn_cast<GlobalValue>(V); | 
|  | GlobalVariable *Var = dyn_cast<GlobalVariable>(V); | 
|  |  | 
|  | if (Var && Var->getName() == "llvm.eh.catch.all.value") { | 
|  | assert(Var->hasInitializer() && | 
|  | "The EH catch-all value must have an initializer"); | 
|  | Value *Init = Var->getInitializer(); | 
|  | GV = dyn_cast<GlobalValue>(Init); | 
|  | if (!GV) V = cast<ConstantPointerNull>(Init); | 
|  | } | 
|  |  | 
|  | assert((GV || isa<ConstantPointerNull>(V)) && | 
|  | "TypeInfo must be a global variable or NULL"); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
|  | /// processed uses a memory 'm' constraint. | 
|  | bool | 
|  | llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, | 
|  | const TargetLowering &TLI) { | 
|  | for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
|  | InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
|  | for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Indirect operand accesses access memory. | 
|  | if (CI.isIndirect) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR floating-point condition code.  This includes | 
|  | /// consideration of global floating-point math flags. | 
|  | /// | 
|  | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; | 
|  | case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ; | 
|  | case FCmpInst::FCMP_OGT:   return ISD::SETOGT; | 
|  | case FCmpInst::FCMP_OGE:   return ISD::SETOGE; | 
|  | case FCmpInst::FCMP_OLT:   return ISD::SETOLT; | 
|  | case FCmpInst::FCMP_OLE:   return ISD::SETOLE; | 
|  | case FCmpInst::FCMP_ONE:   return ISD::SETONE; | 
|  | case FCmpInst::FCMP_ORD:   return ISD::SETO; | 
|  | case FCmpInst::FCMP_UNO:   return ISD::SETUO; | 
|  | case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ; | 
|  | case FCmpInst::FCMP_UGT:   return ISD::SETUGT; | 
|  | case FCmpInst::FCMP_UGE:   return ISD::SETUGE; | 
|  | case FCmpInst::FCMP_ULT:   return ISD::SETULT; | 
|  | case FCmpInst::FCMP_ULE:   return ISD::SETULE; | 
|  | case FCmpInst::FCMP_UNE:   return ISD::SETUNE; | 
|  | case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE; | 
|  | default: llvm_unreachable("Invalid FCmp predicate opcode!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; | 
|  | case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; | 
|  | case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; | 
|  | case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; | 
|  | case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; | 
|  | case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; | 
|  | default: return CC; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getICmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR integer condition code. | 
|  | /// | 
|  | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
|  | case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
|  | case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
|  | case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
|  | case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
|  | case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
|  | case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
|  | case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
|  | case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
|  | case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
|  | default: | 
|  | llvm_unreachable("Invalid ICmp predicate opcode!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isNoopBitcast(Type *T1, Type *T2, | 
|  | const TargetLoweringBase& TLI) { | 
|  | return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || | 
|  | (isa<VectorType>(T1) && isa<VectorType>(T2) && | 
|  | TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); | 
|  | } | 
|  |  | 
|  | /// Look through operations that will be free to find the earliest source of | 
|  | /// this value. | 
|  | /// | 
|  | /// @param ValLoc If V has aggegate type, we will be interested in a particular | 
|  | /// scalar component. This records its address; the reverse of this list gives a | 
|  | /// sequence of indices appropriate for an extractvalue to locate the important | 
|  | /// value. This value is updated during the function and on exit will indicate | 
|  | /// similar information for the Value returned. | 
|  | /// | 
|  | /// @param DataBits If this function looks through truncate instructions, this | 
|  | /// will record the smallest size attained. | 
|  | static const Value *getNoopInput(const Value *V, | 
|  | SmallVectorImpl<unsigned> &ValLoc, | 
|  | unsigned &DataBits, | 
|  | const TargetLoweringBase &TLI, | 
|  | const DataLayout &DL) { | 
|  | while (true) { | 
|  | // Try to look through V1; if V1 is not an instruction, it can't be looked | 
|  | // through. | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I || I->getNumOperands() == 0) return V; | 
|  | const Value *NoopInput = nullptr; | 
|  |  | 
|  | Value *Op = I->getOperand(0); | 
|  | if (isa<BitCastInst>(I)) { | 
|  | // Look through truly no-op bitcasts. | 
|  | if (isNoopBitcast(Op->getType(), I->getType(), TLI)) | 
|  | NoopInput = Op; | 
|  | } else if (isa<GetElementPtrInst>(I)) { | 
|  | // Look through getelementptr | 
|  | if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) | 
|  | NoopInput = Op; | 
|  | } else if (isa<IntToPtrInst>(I)) { | 
|  | // Look through inttoptr. | 
|  | // Make sure this isn't a truncating or extending cast.  We could | 
|  | // support this eventually, but don't bother for now. | 
|  | if (!isa<VectorType>(I->getType()) && | 
|  | DL.getPointerSizeInBits() == | 
|  | cast<IntegerType>(Op->getType())->getBitWidth()) | 
|  | NoopInput = Op; | 
|  | } else if (isa<PtrToIntInst>(I)) { | 
|  | // Look through ptrtoint. | 
|  | // Make sure this isn't a truncating or extending cast.  We could | 
|  | // support this eventually, but don't bother for now. | 
|  | if (!isa<VectorType>(I->getType()) && | 
|  | DL.getPointerSizeInBits() == | 
|  | cast<IntegerType>(I->getType())->getBitWidth()) | 
|  | NoopInput = Op; | 
|  | } else if (isa<TruncInst>(I) && | 
|  | TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { | 
|  | DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); | 
|  | NoopInput = Op; | 
|  | } else if (auto CS = ImmutableCallSite(I)) { | 
|  | const Value *ReturnedOp = CS.getReturnedArgOperand(); | 
|  | if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) | 
|  | NoopInput = ReturnedOp; | 
|  | } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { | 
|  | // Value may come from either the aggregate or the scalar | 
|  | ArrayRef<unsigned> InsertLoc = IVI->getIndices(); | 
|  | if (ValLoc.size() >= InsertLoc.size() && | 
|  | std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { | 
|  | // The type being inserted is a nested sub-type of the aggregate; we | 
|  | // have to remove those initial indices to get the location we're | 
|  | // interested in for the operand. | 
|  | ValLoc.resize(ValLoc.size() - InsertLoc.size()); | 
|  | NoopInput = IVI->getInsertedValueOperand(); | 
|  | } else { | 
|  | // The struct we're inserting into has the value we're interested in, no | 
|  | // change of address. | 
|  | NoopInput = Op; | 
|  | } | 
|  | } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { | 
|  | // The part we're interested in will inevitably be some sub-section of the | 
|  | // previous aggregate. Combine the two paths to obtain the true address of | 
|  | // our element. | 
|  | ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); | 
|  | ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); | 
|  | NoopInput = Op; | 
|  | } | 
|  | // Terminate if we couldn't find anything to look through. | 
|  | if (!NoopInput) | 
|  | return V; | 
|  |  | 
|  | V = NoopInput; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if this scalar return value only has bits discarded on its path | 
|  | /// from the "tail call" to the "ret". This includes the obvious noop | 
|  | /// instructions handled by getNoopInput above as well as free truncations (or | 
|  | /// extensions prior to the call). | 
|  | static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, | 
|  | SmallVectorImpl<unsigned> &RetIndices, | 
|  | SmallVectorImpl<unsigned> &CallIndices, | 
|  | bool AllowDifferingSizes, | 
|  | const TargetLoweringBase &TLI, | 
|  | const DataLayout &DL) { | 
|  |  | 
|  | // Trace the sub-value needed by the return value as far back up the graph as | 
|  | // possible, in the hope that it will intersect with the value produced by the | 
|  | // call. In the simple case with no "returned" attribute, the hope is actually | 
|  | // that we end up back at the tail call instruction itself. | 
|  | unsigned BitsRequired = UINT_MAX; | 
|  | RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); | 
|  |  | 
|  | // If this slot in the value returned is undef, it doesn't matter what the | 
|  | // call puts there, it'll be fine. | 
|  | if (isa<UndefValue>(RetVal)) | 
|  | return true; | 
|  |  | 
|  | // Now do a similar search up through the graph to find where the value | 
|  | // actually returned by the "tail call" comes from. In the simple case without | 
|  | // a "returned" attribute, the search will be blocked immediately and the loop | 
|  | // a Noop. | 
|  | unsigned BitsProvided = UINT_MAX; | 
|  | CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); | 
|  |  | 
|  | // There's no hope if we can't actually trace them to (the same part of!) the | 
|  | // same value. | 
|  | if (CallVal != RetVal || CallIndices != RetIndices) | 
|  | return false; | 
|  |  | 
|  | // However, intervening truncates may have made the call non-tail. Make sure | 
|  | // all the bits that are needed by the "ret" have been provided by the "tail | 
|  | // call". FIXME: with sufficiently cunning bit-tracking, we could look through | 
|  | // extensions too. | 
|  | if (BitsProvided < BitsRequired || | 
|  | (!AllowDifferingSizes && BitsProvided != BitsRequired)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// For an aggregate type, determine whether a given index is within bounds or | 
|  | /// not. | 
|  | static bool indexReallyValid(CompositeType *T, unsigned Idx) { | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(T)) | 
|  | return Idx < AT->getNumElements(); | 
|  |  | 
|  | return Idx < cast<StructType>(T)->getNumElements(); | 
|  | } | 
|  |  | 
|  | /// Move the given iterators to the next leaf type in depth first traversal. | 
|  | /// | 
|  | /// Performs a depth-first traversal of the type as specified by its arguments, | 
|  | /// stopping at the next leaf node (which may be a legitimate scalar type or an | 
|  | /// empty struct or array). | 
|  | /// | 
|  | /// @param SubTypes List of the partial components making up the type from | 
|  | /// outermost to innermost non-empty aggregate. The element currently | 
|  | /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). | 
|  | /// | 
|  | /// @param Path Set of extractvalue indices leading from the outermost type | 
|  | /// (SubTypes[0]) to the leaf node currently represented. | 
|  | /// | 
|  | /// @returns true if a new type was found, false otherwise. Calling this | 
|  | /// function again on a finished iterator will repeatedly return | 
|  | /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty | 
|  | /// aggregate or a non-aggregate | 
|  | static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, | 
|  | SmallVectorImpl<unsigned> &Path) { | 
|  | // First march back up the tree until we can successfully increment one of the | 
|  | // coordinates in Path. | 
|  | while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { | 
|  | Path.pop_back(); | 
|  | SubTypes.pop_back(); | 
|  | } | 
|  |  | 
|  | // If we reached the top, then the iterator is done. | 
|  | if (Path.empty()) | 
|  | return false; | 
|  |  | 
|  | // We know there's *some* valid leaf now, so march back down the tree picking | 
|  | // out the left-most element at each node. | 
|  | ++Path.back(); | 
|  | Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); | 
|  | while (DeeperType->isAggregateType()) { | 
|  | CompositeType *CT = cast<CompositeType>(DeeperType); | 
|  | if (!indexReallyValid(CT, 0)) | 
|  | return true; | 
|  |  | 
|  | SubTypes.push_back(CT); | 
|  | Path.push_back(0); | 
|  |  | 
|  | DeeperType = CT->getTypeAtIndex(0U); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Find the first non-empty, scalar-like type in Next and setup the iterator | 
|  | /// components. | 
|  | /// | 
|  | /// Assuming Next is an aggregate of some kind, this function will traverse the | 
|  | /// tree from left to right (i.e. depth-first) looking for the first | 
|  | /// non-aggregate type which will play a role in function return. | 
|  | /// | 
|  | /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup | 
|  | /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first | 
|  | /// i32 in that type. | 
|  | static bool firstRealType(Type *Next, | 
|  | SmallVectorImpl<CompositeType *> &SubTypes, | 
|  | SmallVectorImpl<unsigned> &Path) { | 
|  | // First initialise the iterator components to the first "leaf" node | 
|  | // (i.e. node with no valid sub-type at any index, so {} does count as a leaf | 
|  | // despite nominally being an aggregate). | 
|  | while (Next->isAggregateType() && | 
|  | indexReallyValid(cast<CompositeType>(Next), 0)) { | 
|  | SubTypes.push_back(cast<CompositeType>(Next)); | 
|  | Path.push_back(0); | 
|  | Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); | 
|  | } | 
|  |  | 
|  | // If there's no Path now, Next was originally scalar already (or empty | 
|  | // leaf). We're done. | 
|  | if (Path.empty()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, use normal iteration to keep looking through the tree until we | 
|  | // find a non-aggregate type. | 
|  | while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { | 
|  | if (!advanceToNextLeafType(SubTypes, Path)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Set the iterator data-structures to the next non-empty, non-aggregate | 
|  | /// subtype. | 
|  | static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, | 
|  | SmallVectorImpl<unsigned> &Path) { | 
|  | do { | 
|  | if (!advanceToNextLeafType(SubTypes, Path)) | 
|  | return false; | 
|  |  | 
|  | assert(!Path.empty() && "found a leaf but didn't set the path?"); | 
|  | } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Test if the given instruction is in a position to be optimized | 
|  | /// with a tail-call. This roughly means that it's in a block with | 
|  | /// a return and there's nothing that needs to be scheduled | 
|  | /// between it and the return. | 
|  | /// | 
|  | /// This function only tests target-independent requirements. | 
|  | bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { | 
|  | const Instruction *I = CS.getInstruction(); | 
|  | const BasicBlock *ExitBB = I->getParent(); | 
|  | const Instruction *Term = ExitBB->getTerminator(); | 
|  | const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); | 
|  |  | 
|  | // The block must end in a return statement or unreachable. | 
|  | // | 
|  | // FIXME: Decline tailcall if it's not guaranteed and if the block ends in | 
|  | // an unreachable, for now. The way tailcall optimization is currently | 
|  | // implemented means it will add an epilogue followed by a jump. That is | 
|  | // not profitable. Also, if the callee is a special function (e.g. | 
|  | // longjmp on x86), it can end up causing miscompilation that has not | 
|  | // been fully understood. | 
|  | if (!Ret && | 
|  | (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) | 
|  | return false; | 
|  |  | 
|  | // If I will have a chain, make sure no other instruction that will have a | 
|  | // chain interposes between I and the return. | 
|  | if (I->mayHaveSideEffects() || I->mayReadFromMemory() || | 
|  | !isSafeToSpeculativelyExecute(I)) | 
|  | for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { | 
|  | if (&*BBI == I) | 
|  | break; | 
|  | // Debug info intrinsics do not get in the way of tail call optimization. | 
|  | if (isa<DbgInfoIntrinsic>(BBI)) | 
|  | continue; | 
|  | // A lifetime end intrinsic should not stop tail call optimization. | 
|  | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_end) | 
|  | continue; | 
|  | if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || | 
|  | !isSafeToSpeculativelyExecute(&*BBI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Function *F = ExitBB->getParent(); | 
|  | return returnTypeIsEligibleForTailCall( | 
|  | F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); | 
|  | } | 
|  |  | 
|  | bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, | 
|  | const ReturnInst *Ret, | 
|  | const TargetLoweringBase &TLI, | 
|  | bool *AllowDifferingSizes) { | 
|  | // ADS may be null, so don't write to it directly. | 
|  | bool DummyADS; | 
|  | bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; | 
|  | ADS = true; | 
|  |  | 
|  | AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); | 
|  | AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), | 
|  | AttributeList::ReturnIndex); | 
|  |  | 
|  | // NoAlias and NonNull are completely benign as far as calling convention | 
|  | // goes, they shouldn't affect whether the call is a tail call. | 
|  | CallerAttrs.removeAttribute(Attribute::NoAlias); | 
|  | CalleeAttrs.removeAttribute(Attribute::NoAlias); | 
|  | CallerAttrs.removeAttribute(Attribute::NonNull); | 
|  | CalleeAttrs.removeAttribute(Attribute::NonNull); | 
|  |  | 
|  | if (CallerAttrs.contains(Attribute::ZExt)) { | 
|  | if (!CalleeAttrs.contains(Attribute::ZExt)) | 
|  | return false; | 
|  |  | 
|  | ADS = false; | 
|  | CallerAttrs.removeAttribute(Attribute::ZExt); | 
|  | CalleeAttrs.removeAttribute(Attribute::ZExt); | 
|  | } else if (CallerAttrs.contains(Attribute::SExt)) { | 
|  | if (!CalleeAttrs.contains(Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | ADS = false; | 
|  | CallerAttrs.removeAttribute(Attribute::SExt); | 
|  | CalleeAttrs.removeAttribute(Attribute::SExt); | 
|  | } | 
|  |  | 
|  | // Drop sext and zext return attributes if the result is not used. | 
|  | // This enables tail calls for code like: | 
|  | // | 
|  | // define void @caller() { | 
|  | // entry: | 
|  | //   %unused_result = tail call zeroext i1 @callee() | 
|  | //   br label %retlabel | 
|  | // retlabel: | 
|  | //   ret void | 
|  | // } | 
|  | if (I->use_empty()) { | 
|  | CalleeAttrs.removeAttribute(Attribute::SExt); | 
|  | CalleeAttrs.removeAttribute(Attribute::ZExt); | 
|  | } | 
|  |  | 
|  | // If they're still different, there's some facet we don't understand | 
|  | // (currently only "inreg", but in future who knows). It may be OK but the | 
|  | // only safe option is to reject the tail call. | 
|  | return CallerAttrs == CalleeAttrs; | 
|  | } | 
|  |  | 
|  | bool llvm::returnTypeIsEligibleForTailCall(const Function *F, | 
|  | const Instruction *I, | 
|  | const ReturnInst *Ret, | 
|  | const TargetLoweringBase &TLI) { | 
|  | // If the block ends with a void return or unreachable, it doesn't matter | 
|  | // what the call's return type is. | 
|  | if (!Ret || Ret->getNumOperands() == 0) return true; | 
|  |  | 
|  | // If the return value is undef, it doesn't matter what the call's | 
|  | // return type is. | 
|  | if (isa<UndefValue>(Ret->getOperand(0))) return true; | 
|  |  | 
|  | // Make sure the attributes attached to each return are compatible. | 
|  | bool AllowDifferingSizes; | 
|  | if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) | 
|  | return false; | 
|  |  | 
|  | const Value *RetVal = Ret->getOperand(0), *CallVal = I; | 
|  | // Intrinsic like llvm.memcpy has no return value, but the expanded | 
|  | // libcall may or may not have return value. On most platforms, it | 
|  | // will be expanded as memcpy in libc, which returns the first | 
|  | // argument. On other platforms like arm-none-eabi, memcpy may be | 
|  | // expanded as library call without return value, like __aeabi_memcpy. | 
|  | const CallInst *Call = cast<CallInst>(I); | 
|  | if (Function *F = Call->getCalledFunction()) { | 
|  | Intrinsic::ID IID = F->getIntrinsicID(); | 
|  | if (((IID == Intrinsic::memcpy && | 
|  | TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || | 
|  | (IID == Intrinsic::memmove && | 
|  | TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || | 
|  | (IID == Intrinsic::memset && | 
|  | TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && | 
|  | RetVal == Call->getArgOperand(0)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 4> RetPath, CallPath; | 
|  | SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; | 
|  |  | 
|  | bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); | 
|  | bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); | 
|  |  | 
|  | // Nothing's actually returned, it doesn't matter what the callee put there | 
|  | // it's a valid tail call. | 
|  | if (RetEmpty) | 
|  | return true; | 
|  |  | 
|  | // Iterate pairwise through each of the value types making up the tail call | 
|  | // and the corresponding return. For each one we want to know whether it's | 
|  | // essentially going directly from the tail call to the ret, via operations | 
|  | // that end up not generating any code. | 
|  | // | 
|  | // We allow a certain amount of covariance here. For example it's permitted | 
|  | // for the tail call to define more bits than the ret actually cares about | 
|  | // (e.g. via a truncate). | 
|  | do { | 
|  | if (CallEmpty) { | 
|  | // We've exhausted the values produced by the tail call instruction, the | 
|  | // rest are essentially undef. The type doesn't really matter, but we need | 
|  | // *something*. | 
|  | Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); | 
|  | CallVal = UndefValue::get(SlotType); | 
|  | } | 
|  |  | 
|  | // The manipulations performed when we're looking through an insertvalue or | 
|  | // an extractvalue would happen at the front of the RetPath list, so since | 
|  | // we have to copy it anyway it's more efficient to create a reversed copy. | 
|  | SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); | 
|  | SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); | 
|  |  | 
|  | // Finally, we can check whether the value produced by the tail call at this | 
|  | // index is compatible with the value we return. | 
|  | if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, | 
|  | AllowDifferingSizes, TLI, | 
|  | F->getParent()->getDataLayout())) | 
|  | return false; | 
|  |  | 
|  | CallEmpty  = !nextRealType(CallSubTypes, CallPath); | 
|  | } while(nextRealType(RetSubTypes, RetPath)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void collectEHScopeMembers( | 
|  | DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, | 
|  | const MachineBasicBlock *MBB) { | 
|  | SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; | 
|  | while (!Worklist.empty()) { | 
|  | const MachineBasicBlock *Visiting = Worklist.pop_back_val(); | 
|  | // Don't follow blocks which start new scopes. | 
|  | if (Visiting->isEHPad() && Visiting != MBB) | 
|  | continue; | 
|  |  | 
|  | // Add this MBB to our scope. | 
|  | auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); | 
|  |  | 
|  | // Don't revisit blocks. | 
|  | if (!P.second) { | 
|  | assert(P.first->second == EHScope && "MBB is part of two scopes!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Returns are boundaries where scope transfer can occur, don't follow | 
|  | // successors. | 
|  | if (Visiting->isEHScopeReturnBlock()) | 
|  | continue; | 
|  |  | 
|  | for (const MachineBasicBlock *Succ : Visiting->successors()) | 
|  | Worklist.push_back(Succ); | 
|  | } | 
|  | } | 
|  |  | 
|  | DenseMap<const MachineBasicBlock *, int> | 
|  | llvm::getEHScopeMembership(const MachineFunction &MF) { | 
|  | DenseMap<const MachineBasicBlock *, int> EHScopeMembership; | 
|  |  | 
|  | // We don't have anything to do if there aren't any EH pads. | 
|  | if (!MF.hasEHScopes()) | 
|  | return EHScopeMembership; | 
|  |  | 
|  | int EntryBBNumber = MF.front().getNumber(); | 
|  | bool IsSEH = isAsynchronousEHPersonality( | 
|  | classifyEHPersonality(MF.getFunction().getPersonalityFn())); | 
|  |  | 
|  | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
|  | SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; | 
|  | SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; | 
|  | SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; | 
|  | SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; | 
|  | for (const MachineBasicBlock &MBB : MF) { | 
|  | if (MBB.isEHScopeEntry()) { | 
|  | EHScopeBlocks.push_back(&MBB); | 
|  | } else if (IsSEH && MBB.isEHPad()) { | 
|  | SEHCatchPads.push_back(&MBB); | 
|  | } else if (MBB.pred_empty()) { | 
|  | UnreachableBlocks.push_back(&MBB); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); | 
|  |  | 
|  | // CatchPads are not scopes for SEH so do not consider CatchRet to | 
|  | // transfer control to another scope. | 
|  | if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) | 
|  | continue; | 
|  |  | 
|  | // FIXME: SEH CatchPads are not necessarily in the parent function: | 
|  | // they could be inside a finally block. | 
|  | const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); | 
|  | const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); | 
|  | CatchRetSuccessors.push_back( | 
|  | {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); | 
|  | } | 
|  |  | 
|  | // We don't have anything to do if there aren't any EH pads. | 
|  | if (EHScopeBlocks.empty()) | 
|  | return EHScopeMembership; | 
|  |  | 
|  | // Identify all the basic blocks reachable from the function entry. | 
|  | collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); | 
|  | // All blocks not part of a scope are in the parent function. | 
|  | for (const MachineBasicBlock *MBB : UnreachableBlocks) | 
|  | collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); | 
|  | // Next, identify all the blocks inside the scopes. | 
|  | for (const MachineBasicBlock *MBB : EHScopeBlocks) | 
|  | collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); | 
|  | // SEH CatchPads aren't really scopes, handle them separately. | 
|  | for (const MachineBasicBlock *MBB : SEHCatchPads) | 
|  | collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); | 
|  | // Finally, identify all the targets of a catchret. | 
|  | for (std::pair<const MachineBasicBlock *, int> CatchRetPair : | 
|  | CatchRetSuccessors) | 
|  | collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, | 
|  | CatchRetPair.first); | 
|  | return EHScopeMembership; | 
|  | } |