|  | //===- HexagonBlockRanges.cpp ---------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonBlockRanges.h" | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hbr" | 
|  |  | 
|  | bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { | 
|  | // If A contains start(), or "this" contains A.start(), then overlap. | 
|  | IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); | 
|  | if (AS == S) | 
|  | return true; | 
|  | bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE. | 
|  | bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E. | 
|  | if ((AS < S && SbAE) || (S < AS && ASbE)) | 
|  | return true; | 
|  | // Otherwise no overlap. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { | 
|  | if (start() <= A.start()) { | 
|  | // Treat "None" in the range end as equal to the range start. | 
|  | IndexType E = (end() != IndexType::None) ? end() : start(); | 
|  | IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); | 
|  | if (AE <= E) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { | 
|  | // Allow merging adjacent ranges. | 
|  | assert(end() == A.start() || overlaps(A)); | 
|  | IndexType AS = A.start(), AE = A.end(); | 
|  | if (AS < start() || start() == IndexType::None) | 
|  | setStart(AS); | 
|  | if (end() < AE || end() == IndexType::None) { | 
|  | setEnd(AE); | 
|  | TiedEnd = A.TiedEnd; | 
|  | } else { | 
|  | if (end() == AE) | 
|  | TiedEnd |= A.TiedEnd; | 
|  | } | 
|  | if (A.Fixed) | 
|  | Fixed = true; | 
|  | } | 
|  |  | 
|  | void HexagonBlockRanges::RangeList::include(const RangeList &RL) { | 
|  | for (auto &R : RL) | 
|  | if (!is_contained(*this, R)) | 
|  | push_back(R); | 
|  | } | 
|  |  | 
|  | // Merge all overlapping ranges in the list, so that all that remains | 
|  | // is a list of disjoint ranges. | 
|  | void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { | 
|  | if (empty()) | 
|  | return; | 
|  |  | 
|  | llvm::sort(begin(), end()); | 
|  | iterator Iter = begin(); | 
|  |  | 
|  | while (Iter != end()-1) { | 
|  | iterator Next = std::next(Iter); | 
|  | // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. | 
|  | // This allows merging dead ranges, but is not valid for live ranges. | 
|  | bool Merge = MergeAdjacent && (Iter->end() == Next->start()); | 
|  | if (Merge || Iter->overlaps(*Next)) { | 
|  | Iter->merge(*Next); | 
|  | erase(Next); | 
|  | continue; | 
|  | } | 
|  | ++Iter; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute a range A-B and add it to the list. | 
|  | void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, | 
|  | const IndexRange &B) { | 
|  | // Exclusion of non-overlapping ranges makes some checks simpler | 
|  | // later in this function. | 
|  | if (!A.overlaps(B)) { | 
|  | // A - B = A. | 
|  | add(A); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IndexType AS = A.start(), AE = A.end(); | 
|  | IndexType BS = B.start(), BE = B.end(); | 
|  |  | 
|  | // If AE is None, then A is included in B, since A and B overlap. | 
|  | // The result of subtraction if empty, so just return. | 
|  | if (AE == IndexType::None) | 
|  | return; | 
|  |  | 
|  | if (AS < BS) { | 
|  | // A starts before B. | 
|  | // AE cannot be None since A and B overlap. | 
|  | assert(AE != IndexType::None); | 
|  | // Add the part of A that extends on the "less" side of B. | 
|  | add(AS, BS, A.Fixed, false); | 
|  | } | 
|  |  | 
|  | if (BE < AE) { | 
|  | // BE cannot be Exit here. | 
|  | if (BE == IndexType::None) | 
|  | add(BS, AE, A.Fixed, false); | 
|  | else | 
|  | add(BE, AE, A.Fixed, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Subtract a given range from each element in the list. | 
|  | void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { | 
|  | // Cannot assume that the list is unionized (i.e. contains only non- | 
|  | // overlapping ranges. | 
|  | RangeList T; | 
|  | for (iterator Next, I = begin(); I != end(); I = Next) { | 
|  | IndexRange &Rg = *I; | 
|  | if (Rg.overlaps(Range)) { | 
|  | T.addsub(Rg, Range); | 
|  | Next = this->erase(I); | 
|  | } else { | 
|  | Next = std::next(I); | 
|  | } | 
|  | } | 
|  | include(T); | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) | 
|  | : Block(B) { | 
|  | IndexType Idx = IndexType::First; | 
|  | First = Idx; | 
|  | for (auto &In : B) { | 
|  | if (In.isDebugInstr()) | 
|  | continue; | 
|  | assert(getIndex(&In) == IndexType::None && "Instruction already in map"); | 
|  | Map.insert(std::make_pair(Idx, &In)); | 
|  | ++Idx; | 
|  | } | 
|  | Last = B.empty() ? IndexType::None : unsigned(Idx)-1; | 
|  | } | 
|  |  | 
|  | MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { | 
|  | auto F = Map.find(Idx); | 
|  | return (F != Map.end()) ? F->second : nullptr; | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( | 
|  | MachineInstr *MI) const { | 
|  | for (auto &I : Map) | 
|  | if (I.second == MI) | 
|  | return I.first; | 
|  | return IndexType::None; | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( | 
|  | IndexType Idx) const { | 
|  | assert (Idx != IndexType::None); | 
|  | if (Idx == IndexType::Entry) | 
|  | return IndexType::None; | 
|  | if (Idx == IndexType::Exit) | 
|  | return Last; | 
|  | if (Idx == First) | 
|  | return IndexType::Entry; | 
|  | return unsigned(Idx)-1; | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( | 
|  | IndexType Idx) const { | 
|  | assert (Idx != IndexType::None); | 
|  | if (Idx == IndexType::Entry) | 
|  | return IndexType::First; | 
|  | if (Idx == IndexType::Exit || Idx == Last) | 
|  | return IndexType::None; | 
|  | return unsigned(Idx)+1; | 
|  | } | 
|  |  | 
|  | void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, | 
|  | MachineInstr *NewMI) { | 
|  | for (auto &I : Map) { | 
|  | if (I.second != OldMI) | 
|  | continue; | 
|  | if (NewMI != nullptr) | 
|  | I.second = NewMI; | 
|  | else | 
|  | Map.erase(I.first); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) | 
|  | : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), | 
|  | TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), | 
|  | Reserved(TRI.getReservedRegs(mf)) { | 
|  | // Consider all non-allocatable registers as reserved. | 
|  | for (const TargetRegisterClass *RC : TRI.regclasses()) { | 
|  | if (RC->isAllocatable()) | 
|  | continue; | 
|  | for (unsigned R : *RC) | 
|  | Reserved[R] = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( | 
|  | const MachineBasicBlock &B, const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | RegisterSet LiveIns; | 
|  | RegisterSet Tmp; | 
|  |  | 
|  | for (auto I : B.liveins()) { | 
|  | MCSubRegIndexIterator S(I.PhysReg, &TRI); | 
|  | if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { | 
|  | Tmp.insert({I.PhysReg, 0}); | 
|  | continue; | 
|  | } | 
|  | for (; S.isValid(); ++S) { | 
|  | unsigned SI = S.getSubRegIndex(); | 
|  | if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any()) | 
|  | Tmp.insert({S.getSubReg(), 0}); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto R : Tmp) { | 
|  | if (!Reserved[R.Reg]) | 
|  | LiveIns.insert(R); | 
|  | for (auto S : expandToSubRegs(R, MRI, TRI)) | 
|  | if (!Reserved[S.Reg]) | 
|  | LiveIns.insert(S); | 
|  | } | 
|  | return LiveIns; | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( | 
|  | RegisterRef R, const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | RegisterSet SRs; | 
|  |  | 
|  | if (R.Sub != 0) { | 
|  | SRs.insert(R); | 
|  | return SRs; | 
|  | } | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) { | 
|  | MCSubRegIterator I(R.Reg, &TRI); | 
|  | if (!I.isValid()) | 
|  | SRs.insert({R.Reg, 0}); | 
|  | for (; I.isValid(); ++I) | 
|  | SRs.insert({*I, 0}); | 
|  | } else { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(R.Reg)); | 
|  | auto &RC = *MRI.getRegClass(R.Reg); | 
|  | unsigned PReg = *RC.begin(); | 
|  | MCSubRegIndexIterator I(PReg, &TRI); | 
|  | if (!I.isValid()) | 
|  | SRs.insert({R.Reg, 0}); | 
|  | for (; I.isValid(); ++I) | 
|  | SRs.insert({R.Reg, I.getSubRegIndex()}); | 
|  | } | 
|  | return SRs; | 
|  | } | 
|  |  | 
|  | void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, | 
|  | RegToRangeMap &LiveMap) { | 
|  | std::map<RegisterRef,IndexType> LastDef, LastUse; | 
|  | RegisterSet LiveOnEntry; | 
|  | MachineBasicBlock &B = IndexMap.getBlock(); | 
|  | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); | 
|  |  | 
|  | for (auto R : getLiveIns(B, MRI, TRI)) | 
|  | LiveOnEntry.insert(R); | 
|  |  | 
|  | for (auto R : LiveOnEntry) | 
|  | LastDef[R] = IndexType::Entry; | 
|  |  | 
|  | auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { | 
|  | auto LD = LastDef[R], LU = LastUse[R]; | 
|  | if (LD == IndexType::None) | 
|  | LD = IndexType::Entry; | 
|  | if (LU == IndexType::None) | 
|  | LU = IndexType::Exit; | 
|  | LiveMap[R].add(LD, LU, false, false); | 
|  | LastUse[R] = LastDef[R] = IndexType::None; | 
|  | }; | 
|  |  | 
|  | RegisterSet Defs, Clobbers; | 
|  |  | 
|  | for (auto &In : B) { | 
|  | if (In.isDebugInstr()) | 
|  | continue; | 
|  | IndexType Index = IndexMap.getIndex(&In); | 
|  | // Process uses first. | 
|  | for (auto &Op : In.operands()) { | 
|  | if (!Op.isReg() || !Op.isUse() || Op.isUndef()) | 
|  | continue; | 
|  | RegisterRef R = { Op.getReg(), Op.getSubReg() }; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) | 
|  | continue; | 
|  | bool IsKill = Op.isKill(); | 
|  | for (auto S : expandToSubRegs(R, MRI, TRI)) { | 
|  | LastUse[S] = Index; | 
|  | if (IsKill) | 
|  | closeRange(S); | 
|  | } | 
|  | } | 
|  | // Process defs and clobbers. | 
|  | Defs.clear(); | 
|  | Clobbers.clear(); | 
|  | for (auto &Op : In.operands()) { | 
|  | if (!Op.isReg() || !Op.isDef() || Op.isUndef()) | 
|  | continue; | 
|  | RegisterRef R = { Op.getReg(), Op.getSubReg() }; | 
|  | for (auto S : expandToSubRegs(R, MRI, TRI)) { | 
|  | if (TargetRegisterInfo::isPhysicalRegister(S.Reg) && Reserved[S.Reg]) | 
|  | continue; | 
|  | if (Op.isDead()) | 
|  | Clobbers.insert(S); | 
|  | else | 
|  | Defs.insert(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto &Op : In.operands()) { | 
|  | if (!Op.isRegMask()) | 
|  | continue; | 
|  | const uint32_t *BM = Op.getRegMask(); | 
|  | for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { | 
|  | // Skip registers that have subregisters. A register is preserved | 
|  | // iff its bit is set in the regmask, so if R1:0 was preserved, both | 
|  | // R1 and R0 would also be present. | 
|  | if (MCSubRegIterator(PR, &TRI, false).isValid()) | 
|  | continue; | 
|  | if (Reserved[PR]) | 
|  | continue; | 
|  | if (BM[PR/32] & (1u << (PR%32))) | 
|  | continue; | 
|  | RegisterRef R = { PR, 0 }; | 
|  | if (!Defs.count(R)) | 
|  | Clobbers.insert(R); | 
|  | } | 
|  | } | 
|  | // Defs and clobbers can overlap, e.g. | 
|  | // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 | 
|  | for (RegisterRef R : Defs) | 
|  | Clobbers.erase(R); | 
|  |  | 
|  | // Update maps for defs. | 
|  | for (RegisterRef S : Defs) { | 
|  | // Defs should already be expanded into subregs. | 
|  | assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || | 
|  | !MCSubRegIterator(S.Reg, &TRI, false).isValid()); | 
|  | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) | 
|  | closeRange(S); | 
|  | LastDef[S] = Index; | 
|  | } | 
|  | // Update maps for clobbers. | 
|  | for (RegisterRef S : Clobbers) { | 
|  | // Clobbers should already be expanded into subregs. | 
|  | assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || | 
|  | !MCSubRegIterator(S.Reg, &TRI, false).isValid()); | 
|  | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) | 
|  | closeRange(S); | 
|  | // Create a single-instruction range. | 
|  | LastDef[S] = LastUse[S] = Index; | 
|  | closeRange(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect live-on-exit. | 
|  | RegisterSet LiveOnExit; | 
|  | for (auto *SB : B.successors()) | 
|  | for (auto R : getLiveIns(*SB, MRI, TRI)) | 
|  | LiveOnExit.insert(R); | 
|  |  | 
|  | for (auto R : LiveOnExit) | 
|  | LastUse[R] = IndexType::Exit; | 
|  |  | 
|  | // Process remaining registers. | 
|  | RegisterSet Left; | 
|  | for (auto &I : LastUse) | 
|  | if (I.second != IndexType::None) | 
|  | Left.insert(I.first); | 
|  | for (auto &I : LastDef) | 
|  | if (I.second != IndexType::None) | 
|  | Left.insert(I.first); | 
|  | for (auto R : Left) | 
|  | closeRange(R); | 
|  |  | 
|  | // Finalize the live ranges. | 
|  | for (auto &P : LiveMap) | 
|  | P.second.unionize(); | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( | 
|  | InstrIndexMap &IndexMap) { | 
|  | RegToRangeMap LiveMap; | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); | 
|  | computeInitialLiveRanges(IndexMap, LiveMap); | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": live map\n" | 
|  | << PrintRangeMap(LiveMap, TRI) << '\n'); | 
|  | return LiveMap; | 
|  | } | 
|  |  | 
|  | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( | 
|  | InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { | 
|  | RegToRangeMap DeadMap; | 
|  |  | 
|  | auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { | 
|  | auto F = LiveMap.find(R); | 
|  | if (F == LiveMap.end() || F->second.empty()) { | 
|  | DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | RangeList &RL = F->second; | 
|  | RangeList::iterator A = RL.begin(), Z = RL.end()-1; | 
|  |  | 
|  | // Try to create the initial range. | 
|  | if (A->start() != IndexType::Entry) { | 
|  | IndexType DE = IndexMap.getPrevIndex(A->start()); | 
|  | if (DE != IndexType::Entry) | 
|  | DeadMap[R].add(IndexType::Entry, DE, false, false); | 
|  | } | 
|  |  | 
|  | while (A != Z) { | 
|  | // Creating a dead range that follows A.  Pay attention to empty | 
|  | // ranges (i.e. those ending with "None"). | 
|  | IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); | 
|  | IndexType DS = IndexMap.getNextIndex(AE); | 
|  | ++A; | 
|  | IndexType DE = IndexMap.getPrevIndex(A->start()); | 
|  | if (DS < DE) | 
|  | DeadMap[R].add(DS, DE, false, false); | 
|  | } | 
|  |  | 
|  | // Try to create the final range. | 
|  | if (Z->end() != IndexType::Exit) { | 
|  | IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); | 
|  | IndexType DS = IndexMap.getNextIndex(ZE); | 
|  | if (DS < IndexType::Exit) | 
|  | DeadMap[R].add(DS, IndexType::Exit, false, false); | 
|  | } | 
|  | }; | 
|  |  | 
|  | MachineFunction &MF = *IndexMap.getBlock().getParent(); | 
|  | auto &MRI = MF.getRegInfo(); | 
|  | unsigned NumRegs = TRI.getNumRegs(); | 
|  | BitVector Visited(NumRegs); | 
|  | for (unsigned R = 1; R < NumRegs; ++R) { | 
|  | for (auto S : expandToSubRegs({R,0}, MRI, TRI)) { | 
|  | if (Reserved[S.Reg] || Visited[S.Reg]) | 
|  | continue; | 
|  | addDeadRanges(S); | 
|  | Visited[S.Reg] = true; | 
|  | } | 
|  | } | 
|  | for (auto &P : LiveMap) | 
|  | if (TargetRegisterInfo::isVirtualRegister(P.first.Reg)) | 
|  | addDeadRanges(P.first); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" | 
|  | << PrintRangeMap(DeadMap, TRI) << '\n'); | 
|  | return DeadMap; | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | HexagonBlockRanges::IndexType Idx) { | 
|  | if (Idx == HexagonBlockRanges::IndexType::None) | 
|  | return OS << '-'; | 
|  | if (Idx == HexagonBlockRanges::IndexType::Entry) | 
|  | return OS << 'n'; | 
|  | if (Idx == HexagonBlockRanges::IndexType::Exit) | 
|  | return OS << 'x'; | 
|  | return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; | 
|  | } | 
|  |  | 
|  | // A mapping to translate between instructions and their indices. | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | const HexagonBlockRanges::IndexRange &IR) { | 
|  | OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); | 
|  | if (IR.Fixed) | 
|  | OS << '!'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | const HexagonBlockRanges::RangeList &RL) { | 
|  | for (auto &R : RL) | 
|  | OS << R << " "; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | const HexagonBlockRanges::InstrIndexMap &M) { | 
|  | for (auto &In : M.Block) { | 
|  | HexagonBlockRanges::IndexType Idx = M.getIndex(&In); | 
|  | OS << Idx << (Idx == M.Last ? ". " : "  ") << In; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
|  | const HexagonBlockRanges::PrintRangeMap &P) { | 
|  | for (auto &I : P.Map) { | 
|  | const HexagonBlockRanges::RangeList &RL = I.second; | 
|  | OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n"; | 
|  | } | 
|  | return OS; | 
|  | } |