|  | //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the Hexagon implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonFrameLowering.h" | 
|  | #include "HexagonHazardRecognizer.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/CodeGen/DFAPacketizer.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineInstrBundle.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <cassert> | 
|  | #include <cctype> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-instrinfo" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #define GET_INSTRMAP_INFO | 
|  | #include "HexagonDepTimingClasses.h" | 
|  | #include "HexagonGenDFAPacketizer.inc" | 
|  | #include "HexagonGenInstrInfo.inc" | 
|  |  | 
|  | cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, | 
|  | cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" | 
|  | "packetization boundary.")); | 
|  |  | 
|  | static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction", | 
|  | cl::Hidden, cl::init(true), cl::desc("Enable branch prediction")); | 
|  |  | 
|  | static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Disable schedule adjustment for new value stores.")); | 
|  |  | 
|  | static cl::opt<bool> EnableTimingClassLatency( | 
|  | "enable-timing-class-latency", cl::Hidden, cl::init(false), | 
|  | cl::desc("Enable timing class latency")); | 
|  |  | 
|  | static cl::opt<bool> EnableALUForwarding( | 
|  | "enable-alu-forwarding", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable vec alu forwarding")); | 
|  |  | 
|  | static cl::opt<bool> EnableACCForwarding( | 
|  | "enable-acc-forwarding", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable vec acc forwarding")); | 
|  |  | 
|  | static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large", | 
|  | cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm")); | 
|  |  | 
|  | static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec", | 
|  | cl::init(true), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Use the DFA based hazard recognizer.")); | 
|  |  | 
|  | /// Constants for Hexagon instructions. | 
|  | const int Hexagon_MEMW_OFFSET_MAX = 4095; | 
|  | const int Hexagon_MEMW_OFFSET_MIN = -4096; | 
|  | const int Hexagon_MEMD_OFFSET_MAX = 8191; | 
|  | const int Hexagon_MEMD_OFFSET_MIN = -8192; | 
|  | const int Hexagon_MEMH_OFFSET_MAX = 2047; | 
|  | const int Hexagon_MEMH_OFFSET_MIN = -2048; | 
|  | const int Hexagon_MEMB_OFFSET_MAX = 1023; | 
|  | const int Hexagon_MEMB_OFFSET_MIN = -1024; | 
|  | const int Hexagon_ADDI_OFFSET_MAX = 32767; | 
|  | const int Hexagon_ADDI_OFFSET_MIN = -32768; | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void HexagonInstrInfo::anchor() {} | 
|  |  | 
|  | HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) | 
|  | : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), | 
|  | Subtarget(ST) {} | 
|  |  | 
|  | static bool isIntRegForSubInst(unsigned Reg) { | 
|  | return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || | 
|  | (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); | 
|  | } | 
|  |  | 
|  | static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) { | 
|  | return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) && | 
|  | isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi)); | 
|  | } | 
|  |  | 
|  | /// Calculate number of instructions excluding the debug instructions. | 
|  | static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, | 
|  | MachineBasicBlock::const_instr_iterator MIE) { | 
|  | unsigned Count = 0; | 
|  | for (; MIB != MIE; ++MIB) { | 
|  | if (!MIB->isDebugInstr()) | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// Find the hardware loop instruction used to set-up the specified loop. | 
|  | /// On Hexagon, we have two instructions used to set-up the hardware loop | 
|  | /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions | 
|  | /// to indicate the end of a loop. | 
|  | MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, | 
|  | unsigned EndLoopOp, MachineBasicBlock *TargetBB, | 
|  | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { | 
|  | unsigned LOOPi; | 
|  | unsigned LOOPr; | 
|  | if (EndLoopOp == Hexagon::ENDLOOP0) { | 
|  | LOOPi = Hexagon::J2_loop0i; | 
|  | LOOPr = Hexagon::J2_loop0r; | 
|  | } else { // EndLoopOp == Hexagon::EndLOOP1 | 
|  | LOOPi = Hexagon::J2_loop1i; | 
|  | LOOPr = Hexagon::J2_loop1r; | 
|  | } | 
|  |  | 
|  | // The loop set-up instruction will be in a predecessor block | 
|  | for (MachineBasicBlock *PB : BB->predecessors()) { | 
|  | // If this has been visited, already skip it. | 
|  | if (!Visited.insert(PB).second) | 
|  | continue; | 
|  | if (PB == BB) | 
|  | continue; | 
|  | for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) { | 
|  | unsigned Opc = I->getOpcode(); | 
|  | if (Opc == LOOPi || Opc == LOOPr) | 
|  | return &*I; | 
|  | // We've reached a different loop, which means the loop01 has been | 
|  | // removed. | 
|  | if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB) | 
|  | return nullptr; | 
|  | } | 
|  | // Check the predecessors for the LOOP instruction. | 
|  | if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited)) | 
|  | return Loop; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Gather register def/uses from MI. | 
|  | /// This treats possible (predicated) defs as actually happening ones | 
|  | /// (conservatively). | 
|  | static inline void parseOperands(const MachineInstr &MI, | 
|  | SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) { | 
|  | Defs.clear(); | 
|  | Uses.clear(); | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  |  | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  |  | 
|  | if (MO.isUse()) | 
|  | Uses.push_back(MO.getReg()); | 
|  |  | 
|  | if (MO.isDef()) | 
|  | Defs.push_back(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Position dependent, so check twice for swap. | 
|  | static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { | 
|  | switch (Ga) { | 
|  | case HexagonII::HSIG_None: | 
|  | default: | 
|  | return false; | 
|  | case HexagonII::HSIG_L1: | 
|  | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); | 
|  | case HexagonII::HSIG_L2: | 
|  | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | 
|  | Gb == HexagonII::HSIG_A); | 
|  | case HexagonII::HSIG_S1: | 
|  | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | 
|  | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); | 
|  | case HexagonII::HSIG_S2: | 
|  | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | 
|  | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || | 
|  | Gb == HexagonII::HSIG_A); | 
|  | case HexagonII::HSIG_A: | 
|  | return (Gb == HexagonII::HSIG_A); | 
|  | case HexagonII::HSIG_Compound: | 
|  | return (Gb == HexagonII::HSIG_Compound); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isLoadFromStackSlot - If the specified machine instruction is a direct | 
|  | /// load from a stack slot, return the virtual or physical register number of | 
|  | /// the destination along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than loading from the stack slot. | 
|  | unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case Hexagon::L2_loadri_io: | 
|  | case Hexagon::L2_loadrd_io: | 
|  | case Hexagon::V6_vL32b_ai: | 
|  | case Hexagon::V6_vL32b_nt_ai: | 
|  | case Hexagon::V6_vL32Ub_ai: | 
|  | case Hexagon::LDriw_pred: | 
|  | case Hexagon::LDriw_ctr: | 
|  | case Hexagon::PS_vloadrq_ai: | 
|  | case Hexagon::PS_vloadrw_ai: | 
|  | case Hexagon::PS_vloadrw_nt_ai: { | 
|  | const MachineOperand OpFI = MI.getOperand(1); | 
|  | if (!OpFI.isFI()) | 
|  | return 0; | 
|  | const MachineOperand OpOff = MI.getOperand(2); | 
|  | if (!OpOff.isImm() || OpOff.getImm() != 0) | 
|  | return 0; | 
|  | FrameIndex = OpFI.getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | case Hexagon::L2_ploadrit_io: | 
|  | case Hexagon::L2_ploadrif_io: | 
|  | case Hexagon::L2_ploadrdt_io: | 
|  | case Hexagon::L2_ploadrdf_io: { | 
|  | const MachineOperand OpFI = MI.getOperand(2); | 
|  | if (!OpFI.isFI()) | 
|  | return 0; | 
|  | const MachineOperand OpOff = MI.getOperand(3); | 
|  | if (!OpOff.isImm() || OpOff.getImm() != 0) | 
|  | return 0; | 
|  | FrameIndex = OpFI.getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isStoreToStackSlot - If the specified machine instruction is a direct | 
|  | /// store to a stack slot, return the virtual or physical register number of | 
|  | /// the source reg along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than storing to the stack slot. | 
|  | unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case Hexagon::S2_storerb_io: | 
|  | case Hexagon::S2_storerh_io: | 
|  | case Hexagon::S2_storeri_io: | 
|  | case Hexagon::S2_storerd_io: | 
|  | case Hexagon::V6_vS32b_ai: | 
|  | case Hexagon::V6_vS32Ub_ai: | 
|  | case Hexagon::STriw_pred: | 
|  | case Hexagon::STriw_ctr: | 
|  | case Hexagon::PS_vstorerq_ai: | 
|  | case Hexagon::PS_vstorerw_ai: { | 
|  | const MachineOperand &OpFI = MI.getOperand(0); | 
|  | if (!OpFI.isFI()) | 
|  | return 0; | 
|  | const MachineOperand &OpOff = MI.getOperand(1); | 
|  | if (!OpOff.isImm() || OpOff.getImm() != 0) | 
|  | return 0; | 
|  | FrameIndex = OpFI.getIndex(); | 
|  | return MI.getOperand(2).getReg(); | 
|  | } | 
|  |  | 
|  | case Hexagon::S2_pstorerbt_io: | 
|  | case Hexagon::S2_pstorerbf_io: | 
|  | case Hexagon::S2_pstorerht_io: | 
|  | case Hexagon::S2_pstorerhf_io: | 
|  | case Hexagon::S2_pstorerit_io: | 
|  | case Hexagon::S2_pstorerif_io: | 
|  | case Hexagon::S2_pstorerdt_io: | 
|  | case Hexagon::S2_pstorerdf_io: { | 
|  | const MachineOperand &OpFI = MI.getOperand(1); | 
|  | if (!OpFI.isFI()) | 
|  | return 0; | 
|  | const MachineOperand &OpOff = MI.getOperand(2); | 
|  | if (!OpOff.isImm() || OpOff.getImm() != 0) | 
|  | return 0; | 
|  | FrameIndex = OpFI.getIndex(); | 
|  | return MI.getOperand(3).getReg(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function checks if the instruction or bundle of instructions | 
|  | /// has load from stack slot and returns frameindex and machine memory | 
|  | /// operand of that instruction if true. | 
|  | bool HexagonInstrInfo::hasLoadFromStackSlot( | 
|  | const MachineInstr &MI, | 
|  | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | 
|  | if (MI.isBundle()) { | 
|  | const MachineBasicBlock *MBB = MI.getParent(); | 
|  | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); | 
|  | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) | 
|  | if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); | 
|  | } | 
|  |  | 
|  | /// This function checks if the instruction or bundle of instructions | 
|  | /// has store to stack slot and returns frameindex and machine memory | 
|  | /// operand of that instruction if true. | 
|  | bool HexagonInstrInfo::hasStoreToStackSlot( | 
|  | const MachineInstr &MI, | 
|  | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | 
|  | if (MI.isBundle()) { | 
|  | const MachineBasicBlock *MBB = MI.getParent(); | 
|  | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); | 
|  | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) | 
|  | if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); | 
|  | } | 
|  |  | 
|  | /// This function can analyze one/two way branching only and should (mostly) be | 
|  | /// called by target independent side. | 
|  | /// First entry is always the opcode of the branching instruction, except when | 
|  | /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a | 
|  | /// BB with only unconditional jump. Subsequent entries depend upon the opcode, | 
|  | /// e.g. Jump_c p will have | 
|  | /// Cond[0] = Jump_c | 
|  | /// Cond[1] = p | 
|  | /// HW-loop ENDLOOP: | 
|  | /// Cond[0] = ENDLOOP | 
|  | /// Cond[1] = MBB | 
|  | /// New value jump: | 
|  | /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode | 
|  | /// Cond[1] = R | 
|  | /// Cond[2] = Imm | 
|  | bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | TBB = nullptr; | 
|  | FBB = nullptr; | 
|  | Cond.clear(); | 
|  |  | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::instr_iterator I = MBB.instr_end(); | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  |  | 
|  | // A basic block may looks like this: | 
|  | // | 
|  | //  [   insn | 
|  | //     EH_LABEL | 
|  | //      insn | 
|  | //      insn | 
|  | //      insn | 
|  | //     EH_LABEL | 
|  | //      insn     ] | 
|  | // | 
|  | // It has two succs but does not have a terminator | 
|  | // Don't know how to handle it. | 
|  | do { | 
|  | --I; | 
|  | if (I->isEHLabel()) | 
|  | // Don't analyze EH branches. | 
|  | return true; | 
|  | } while (I != MBB.instr_begin()); | 
|  |  | 
|  | I = MBB.instr_end(); | 
|  | --I; | 
|  |  | 
|  | while (I->isDebugInstr()) { | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  |  | 
|  | bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && | 
|  | I->getOperand(0).isMBB(); | 
|  | // Delete the J2_jump if it's equivalent to a fall-through. | 
|  | if (AllowModify && JumpToBlock && | 
|  | MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";); | 
|  | I->eraseFromParent(); | 
|  | I = MBB.instr_end(); | 
|  | if (I == MBB.instr_begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | return false; | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr *LastInst = &*I; | 
|  | MachineInstr *SecondLastInst = nullptr; | 
|  | // Find one more terminator if present. | 
|  | while (true) { | 
|  | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { | 
|  | if (!SecondLastInst) | 
|  | SecondLastInst = &*I; | 
|  | else | 
|  | // This is a third branch. | 
|  | return true; | 
|  | } | 
|  | if (I == MBB.instr_begin()) | 
|  | break; | 
|  | --I; | 
|  | } | 
|  |  | 
|  | int LastOpcode = LastInst->getOpcode(); | 
|  | int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; | 
|  | // If the branch target is not a basic block, it could be a tail call. | 
|  | // (It is, if the target is a function.) | 
|  | if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (SecLastOpcode == Hexagon::J2_jump && | 
|  | !SecondLastInst->getOperand(0).isMBB()) | 
|  | return true; | 
|  |  | 
|  | bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); | 
|  | bool LastOpcodeHasNVJump = isNewValueJump(*LastInst); | 
|  |  | 
|  | if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB()) | 
|  | return true; | 
|  |  | 
|  | // If there is only one terminator instruction, process it. | 
|  | if (LastInst && !SecondLastInst) { | 
|  | if (LastOpcode == Hexagon::J2_jump) { | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  | if (isEndLoopN(LastOpcode)) { | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | 
|  | Cond.push_back(LastInst->getOperand(0)); | 
|  | return false; | 
|  | } | 
|  | if (LastOpcodeHasJMP_c) { | 
|  | TBB = LastInst->getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | 
|  | Cond.push_back(LastInst->getOperand(0)); | 
|  | return false; | 
|  | } | 
|  | // Only supporting rr/ri versions of new-value jumps. | 
|  | if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { | 
|  | TBB = LastInst->getOperand(2).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | 
|  | Cond.push_back(LastInst->getOperand(0)); | 
|  | Cond.push_back(LastInst->getOperand(1)); | 
|  | return false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) | 
|  | << " with one jump\n";); | 
|  | // Otherwise, don't know what this is. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); | 
|  | bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst); | 
|  | if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { | 
|  | if (!SecondLastInst->getOperand(1).isMBB()) | 
|  | return true; | 
|  | TBB =  SecondLastInst->getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | 
|  | Cond.push_back(SecondLastInst->getOperand(0)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only supporting rr/ri versions of new-value jumps. | 
|  | if (SecLastOpcodeHasNVJump && | 
|  | (SecondLastInst->getNumExplicitOperands() == 3) && | 
|  | (LastOpcode == Hexagon::J2_jump)) { | 
|  | TBB = SecondLastInst->getOperand(2).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | 
|  | Cond.push_back(SecondLastInst->getOperand(0)); | 
|  | Cond.push_back(SecondLastInst->getOperand(1)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with two Hexagon:JMPs, handle it.  The second one is not | 
|  | // executed, so remove it. | 
|  | if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { | 
|  | TBB = SecondLastInst->getOperand(0).getMBB(); | 
|  | I = LastInst->getIterator(); | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with an ENDLOOP, and J2_jump, handle it. | 
|  | if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { | 
|  | TBB = SecondLastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | 
|  | Cond.push_back(SecondLastInst->getOperand(0)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) | 
|  | << " with two jumps";); | 
|  | // Otherwise, can't handle this. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved) const { | 
|  | assert(!BytesRemoved && "code size not handled"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB)); | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | unsigned Count = 0; | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  | // Only removing branches from end of MBB. | 
|  | if (!I->isBranch()) | 
|  | return Count; | 
|  | if (Count && (I->getOpcode() == Hexagon::J2_jump)) | 
|  | llvm_unreachable("Malformed basic block: unconditional branch not last"); | 
|  | MBB.erase(&MBB.back()); | 
|  | I = MBB.end(); | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, | 
|  | int *BytesAdded) const { | 
|  | unsigned BOpc   = Hexagon::J2_jump; | 
|  | unsigned BccOpc = Hexagon::J2_jumpt; | 
|  | assert(validateBranchCond(Cond) && "Invalid branching condition"); | 
|  | assert(TBB && "insertBranch must not be told to insert a fallthrough"); | 
|  | assert(!BytesAdded && "code size not handled"); | 
|  |  | 
|  | // Check if reverseBranchCondition has asked to reverse this branch | 
|  | // If we want to reverse the branch an odd number of times, we want | 
|  | // J2_jumpf. | 
|  | if (!Cond.empty() && Cond[0].isImm()) | 
|  | BccOpc = Cond[0].getImm(); | 
|  |  | 
|  | if (!FBB) { | 
|  | if (Cond.empty()) { | 
|  | // Due to a bug in TailMerging/CFG Optimization, we need to add a | 
|  | // special case handling of a predicated jump followed by an | 
|  | // unconditional jump. If not, Tail Merging and CFG Optimization go | 
|  | // into an infinite loop. | 
|  | MachineBasicBlock *NewTBB, *NewFBB; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | auto Term = MBB.getFirstTerminator(); | 
|  | if (Term != MBB.end() && isPredicated(*Term) && | 
|  | !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) && | 
|  | MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { | 
|  | reverseBranchCondition(Cond); | 
|  | removeBranch(MBB); | 
|  | return insertBranch(MBB, TBB, nullptr, Cond, DL); | 
|  | } | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); | 
|  | } else if (isEndLoopN(Cond[0].getImm())) { | 
|  | int EndLoopOp = Cond[0].getImm(); | 
|  | assert(Cond[1].isMBB()); | 
|  | // Since we're adding an ENDLOOP, there better be a LOOP instruction. | 
|  | // Check for it, and change the BB target if needed. | 
|  | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | 
|  | MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), | 
|  | VisitedBBs); | 
|  | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); | 
|  | Loop->getOperand(0).setMBB(TBB); | 
|  | // Add the ENDLOOP after the finding the LOOP0. | 
|  | BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); | 
|  | } else if (isNewValueJump(Cond[0].getImm())) { | 
|  | assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump"); | 
|  | // New value jump | 
|  | // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) | 
|  | // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) | 
|  | unsigned Flags1 = getUndefRegState(Cond[1].isUndef()); | 
|  | LLVM_DEBUG(dbgs() << "\nInserting NVJump for " | 
|  | << printMBBReference(MBB);); | 
|  | if (Cond[2].isReg()) { | 
|  | unsigned Flags2 = getUndefRegState(Cond[2].isUndef()); | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). | 
|  | addReg(Cond[2].getReg(), Flags2).addMBB(TBB); | 
|  | } else if(Cond[2].isImm()) { | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). | 
|  | addImm(Cond[2].getImm()).addMBB(TBB); | 
|  | } else | 
|  | llvm_unreachable("Invalid condition for branching"); | 
|  | } else { | 
|  | assert((Cond.size() == 2) && "Malformed cond vector"); | 
|  | const MachineOperand &RO = Cond[1]; | 
|  | unsigned Flags = getUndefRegState(RO.isUndef()); | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | assert((!Cond.empty()) && | 
|  | "Cond. cannot be empty when multiple branchings are required"); | 
|  | assert((!isNewValueJump(Cond[0].getImm())) && | 
|  | "NV-jump cannot be inserted with another branch"); | 
|  | // Special case for hardware loops.  The condition is a basic block. | 
|  | if (isEndLoopN(Cond[0].getImm())) { | 
|  | int EndLoopOp = Cond[0].getImm(); | 
|  | assert(Cond[1].isMBB()); | 
|  | // Since we're adding an ENDLOOP, there better be a LOOP instruction. | 
|  | // Check for it, and change the BB target if needed. | 
|  | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | 
|  | MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), | 
|  | VisitedBBs); | 
|  | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); | 
|  | Loop->getOperand(0).setMBB(TBB); | 
|  | // Add the ENDLOOP after the finding the LOOP0. | 
|  | BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); | 
|  | } else { | 
|  | const MachineOperand &RO = Cond[1]; | 
|  | unsigned Flags = getUndefRegState(RO.isUndef()); | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); | 
|  | } | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /// Analyze the loop code to find the loop induction variable and compare used | 
|  | /// to compute the number of iterations. Currently, we analyze loop that are | 
|  | /// controlled using hardware loops.  In this case, the induction variable | 
|  | /// instruction is null.  For all other cases, this function returns true, which | 
|  | /// means we're unable to analyze it. | 
|  | bool HexagonInstrInfo::analyzeLoop(MachineLoop &L, | 
|  | MachineInstr *&IndVarInst, | 
|  | MachineInstr *&CmpInst) const { | 
|  |  | 
|  | MachineBasicBlock *LoopEnd = L.getBottomBlock(); | 
|  | MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator(); | 
|  | // We really "analyze" only hardware loops right now. | 
|  | if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) { | 
|  | IndVarInst = nullptr; | 
|  | CmpInst = &*I; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Generate code to reduce the loop iteration by one and check if the loop is | 
|  | /// finished. Return the value/register of the new loop count. this function | 
|  | /// assumes the nth iteration is peeled first. | 
|  | unsigned HexagonInstrInfo::reduceLoopCount( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, | 
|  | MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond, | 
|  | SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter, | 
|  | unsigned MaxIter) const { | 
|  | // We expect a hardware loop currently. This means that IndVar is set | 
|  | // to null, and the compare is the ENDLOOP instruction. | 
|  | assert((!IndVar) && isEndLoopN(Cmp.getOpcode()) | 
|  | && "Expecting a hardware loop"); | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | DebugLoc DL = Cmp.getDebugLoc(); | 
|  | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | 
|  | MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(), | 
|  | Cmp.getOperand(0).getMBB(), VisitedBBs); | 
|  | if (!Loop) | 
|  | return 0; | 
|  | // If the loop trip count is a compile-time value, then just change the | 
|  | // value. | 
|  | if (Loop->getOpcode() == Hexagon::J2_loop0i || | 
|  | Loop->getOpcode() == Hexagon::J2_loop1i) { | 
|  | int64_t Offset = Loop->getOperand(1).getImm(); | 
|  | if (Offset <= 1) | 
|  | Loop->eraseFromParent(); | 
|  | else | 
|  | Loop->getOperand(1).setImm(Offset - 1); | 
|  | return Offset - 1; | 
|  | } | 
|  | // The loop trip count is a run-time value. We generate code to subtract | 
|  | // one from the trip count, and update the loop instruction. | 
|  | assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction"); | 
|  | unsigned LoopCount = Loop->getOperand(1).getReg(); | 
|  | // Check if we're done with the loop. | 
|  | unsigned LoopEnd = createVR(MF, MVT::i1); | 
|  | MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd). | 
|  | addReg(LoopCount).addImm(1); | 
|  | unsigned NewLoopCount = createVR(MF, MVT::i32); | 
|  | MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount). | 
|  | addReg(LoopCount).addImm(-1); | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | // Update the previously generated instructions with the new loop counter. | 
|  | for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(), | 
|  | E = PrevInsts.end(); I != E; ++I) | 
|  | (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI); | 
|  | PrevInsts.clear(); | 
|  | PrevInsts.push_back(NewCmp); | 
|  | PrevInsts.push_back(NewAdd); | 
|  | // Insert the new loop instruction if this is the last time the loop is | 
|  | // decremented. | 
|  | if (Iter == MaxIter) | 
|  | BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)). | 
|  | addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount); | 
|  | // Delete the old loop instruction. | 
|  | if (Iter == 0) | 
|  | Loop->eraseFromParent(); | 
|  | Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf)); | 
|  | Cond.push_back(NewCmp->getOperand(0)); | 
|  | return NewLoopCount; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, | 
|  | unsigned NumCycles, unsigned ExtraPredCycles, | 
|  | BranchProbability Probability) const { | 
|  | return nonDbgBBSize(&MBB) <= 3; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, | 
|  | unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) | 
|  | const { | 
|  | return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, | 
|  | unsigned NumInstrs, BranchProbability Probability) const { | 
|  | return NumInstrs <= 4; | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, unsigned DestReg, | 
|  | unsigned SrcReg, bool KillSrc) const { | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | unsigned KillFlag = getKillRegState(KillSrc); | 
|  |  | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { | 
|  | // Map Pd = Ps to Pd = or(Ps, Ps). | 
|  | BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg) | 
|  | .addReg(SrcReg).addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::CtrRegsRegClass.contains(DestReg) && | 
|  | Hexagon::IntRegsRegClass.contains(SrcReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::IntRegsRegClass.contains(DestReg) && | 
|  | Hexagon::CtrRegsRegClass.contains(SrcReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::ModRegsRegClass.contains(DestReg) && | 
|  | Hexagon::IntRegsRegClass.contains(SrcReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg) && | 
|  | Hexagon::IntRegsRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | 
|  | Hexagon::PredRegsRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg) && | 
|  | Hexagon::IntRegsRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg). | 
|  | addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) { | 
|  | unsigned LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | 
|  | unsigned HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | 
|  | BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg) | 
|  | .addReg(HiSrc, KillFlag) | 
|  | .addReg(LoSrc, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg) | 
|  | .addReg(SrcReg) | 
|  | .addReg(SrcReg, KillFlag); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::HvxQRRegClass.contains(SrcReg) && | 
|  | Hexagon::HvxVRRegClass.contains(DestReg)) { | 
|  | llvm_unreachable("Unimplemented pred to vec"); | 
|  | return; | 
|  | } | 
|  | if (Hexagon::HvxQRRegClass.contains(DestReg) && | 
|  | Hexagon::HvxVRRegClass.contains(SrcReg)) { | 
|  | llvm_unreachable("Unimplemented vec to pred"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Show the invalid registers to ease debugging. | 
|  | dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " | 
|  | << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; | 
|  | #endif | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, | 
|  | const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL = MBB.findDebugLoc(I); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned SlotAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned RegAlign = TRI->getSpillAlignment(*RC); | 
|  | unsigned KillFlag = getKillRegState(isKill); | 
|  | bool HasAlloca = MFI.hasVarSizedObjects(); | 
|  | const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering(); | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  |  | 
|  | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | 
|  | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | 
|  | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | 
|  | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | 
|  | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | 
|  | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { | 
|  | // If there are variable-sized objects, spills will not be aligned. | 
|  | if (HasAlloca) | 
|  | SlotAlign = HFI.getStackAlignment(); | 
|  | unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai | 
|  | : Hexagon::V6_vS32b_ai; | 
|  | MachineMemOperand *MMOA = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  | BuildMI(MBB, I, DL, get(Opc)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMOA); | 
|  | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { | 
|  | // If there are variable-sized objects, spills will not be aligned. | 
|  | if (HasAlloca) | 
|  | SlotAlign = HFI.getStackAlignment(); | 
|  | unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai | 
|  | : Hexagon::PS_vstorerw_ai; | 
|  | MachineMemOperand *MMOA = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  | BuildMI(MBB, I, DL, get(Opc)) | 
|  | .addFrameIndex(FI).addImm(0) | 
|  | .addReg(SrcReg, KillFlag).addMemOperand(MMOA); | 
|  | } else { | 
|  | llvm_unreachable("Unimplemented"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo::loadRegFromStackSlot( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, | 
|  | int FI, const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL = MBB.findDebugLoc(I); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned SlotAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned RegAlign = TRI->getSpillAlignment(*RC); | 
|  | bool HasAlloca = MFI.hasVarSizedObjects(); | 
|  | const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering(); | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  |  | 
|  | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | 
|  | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { | 
|  | // If there are variable-sized objects, spills will not be aligned. | 
|  | if (HasAlloca) | 
|  | SlotAlign = HFI.getStackAlignment(); | 
|  | unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai | 
|  | : Hexagon::V6_vL32b_ai; | 
|  | MachineMemOperand *MMOA = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  | BuildMI(MBB, I, DL, get(Opc), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMOA); | 
|  | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { | 
|  | // If there are variable-sized objects, spills will not be aligned. | 
|  | if (HasAlloca) | 
|  | SlotAlign = HFI.getStackAlignment(); | 
|  | unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai | 
|  | : Hexagon::PS_vloadrw_ai; | 
|  | MachineMemOperand *MMOA = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), SlotAlign); | 
|  | BuildMI(MBB, I, DL, get(Opc), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMOA); | 
|  | } else { | 
|  | llvm_unreachable("Can't store this register to stack slot"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { | 
|  | const MachineBasicBlock &B = *MI.getParent(); | 
|  | Regs.addLiveOuts(B); | 
|  | auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); | 
|  | for (auto I = B.rbegin(); I != E; ++I) | 
|  | Regs.stepBackward(*I); | 
|  | } | 
|  |  | 
|  | /// expandPostRAPseudo - This function is called for all pseudo instructions | 
|  | /// that remain after register allocation. Many pseudo instructions are | 
|  | /// created to help register allocation. This is the place to convert them | 
|  | /// into real instructions. The target can edit MI in place, or it can insert | 
|  | /// new instructions and erase MI. The function should return true if | 
|  | /// anything was changed. | 
|  | bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { | 
|  | unsigned Mx = MI.getOperand(MxOp).getReg(); | 
|  | unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx) | 
|  | .add(MI.getOperand((HasImm ? 5 : 4))); | 
|  | auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0)) | 
|  | .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3)); | 
|  | if (HasImm) | 
|  | MIB.add(MI.getOperand(4)); | 
|  | MIB.addReg(CSx, RegState::Implicit); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | switch (Opc) { | 
|  | case TargetOpcode::COPY: { | 
|  | MachineOperand &MD = MI.getOperand(0); | 
|  | MachineOperand &MS = MI.getOperand(1); | 
|  | MachineBasicBlock::iterator MBBI = MI.getIterator(); | 
|  | if (MD.getReg() != MS.getReg() && !MS.isUndef()) { | 
|  | copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill()); | 
|  | std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI); | 
|  | } | 
|  | MBB.erase(MBBI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_aligna: | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg()) | 
|  | .addReg(HRI.getFrameRegister()) | 
|  | .addImm(-MI.getOperand(1).getImm()); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | case Hexagon::V6_vassignp: { | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned Kill = getKillRegState(MI.getOperand(1).isKill()); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg) | 
|  | .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill) | 
|  | .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::V6_lo: { | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | 
|  | copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill()); | 
|  | MBB.erase(MI); | 
|  | MRI.clearKillFlags(SrcSubLo); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::V6_hi: { | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | 
|  | copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill()); | 
|  | MBB.erase(MI); | 
|  | MRI.clearKillFlags(SrcSubHi); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vstorerw_ai: | 
|  | case Hexagon::PS_vstorerwu_ai: { | 
|  | bool Aligned = Opc == Hexagon::PS_vstorerw_ai; | 
|  | unsigned SrcReg = MI.getOperand(2).getReg(); | 
|  | unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | 
|  | unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | 
|  | unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai; | 
|  | unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
|  |  | 
|  | MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(MI.getOperand(1).getImm()) | 
|  | .addReg(SrcSubLo) | 
|  | .cloneMemRefs(MI); | 
|  | MI1New->getOperand(0).setIsKill(false); | 
|  | BuildMI(MBB, MI, DL, get(NewOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | // The Vectors are indexed in multiples of vector size. | 
|  | .addImm(MI.getOperand(1).getImm() + Offset) | 
|  | .addReg(SrcSubHi) | 
|  | .cloneMemRefs(MI); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vloadrw_ai: | 
|  | case Hexagon::PS_vloadrwu_ai: { | 
|  | bool Aligned = Opc == Hexagon::PS_vloadrw_ai; | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai; | 
|  | unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
|  |  | 
|  | MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc), | 
|  | HRI.getSubReg(DstReg, Hexagon::vsub_lo)) | 
|  | .add(MI.getOperand(1)) | 
|  | .addImm(MI.getOperand(2).getImm()) | 
|  | .cloneMemRefs(MI); | 
|  | MI1New->getOperand(1).setIsKill(false); | 
|  | BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi)) | 
|  | .add(MI.getOperand(1)) | 
|  | // The Vectors are indexed in multiples of vector size. | 
|  | .addImm(MI.getOperand(2).getImm() + Offset) | 
|  | .cloneMemRefs(MI); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_true: { | 
|  | unsigned Reg = MI.getOperand(0).getReg(); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_false: { | 
|  | unsigned Reg = MI.getOperand(0).getReg(); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_qtrue: { | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg()) | 
|  | .addReg(Hexagon::V0, RegState::Undef) | 
|  | .addReg(Hexagon::V0, RegState::Undef); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_qfalse: { | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg()) | 
|  | .addReg(Hexagon::V0, RegState::Undef) | 
|  | .addReg(Hexagon::V0, RegState::Undef); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vdd0: { | 
|  | unsigned Vd = MI.getOperand(0).getReg(); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd) | 
|  | .addReg(Vd, RegState::Undef) | 
|  | .addReg(Vd, RegState::Undef); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vmulw: { | 
|  | // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned Src1Reg = MI.getOperand(1).getReg(); | 
|  | unsigned Src2Reg = MI.getOperand(2).getReg(); | 
|  | unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); | 
|  | unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); | 
|  | unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); | 
|  | unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); | 
|  | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), | 
|  | HRI.getSubReg(DstReg, Hexagon::isub_hi)) | 
|  | .addReg(Src1SubHi) | 
|  | .addReg(Src2SubHi); | 
|  | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), | 
|  | HRI.getSubReg(DstReg, Hexagon::isub_lo)) | 
|  | .addReg(Src1SubLo) | 
|  | .addReg(Src2SubLo); | 
|  | MBB.erase(MI); | 
|  | MRI.clearKillFlags(Src1SubHi); | 
|  | MRI.clearKillFlags(Src1SubLo); | 
|  | MRI.clearKillFlags(Src2SubHi); | 
|  | MRI.clearKillFlags(Src2SubLo); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vmulw_acc: { | 
|  | // Expand 64-bit vector multiply with addition into 2 scalar multiplies. | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned Src1Reg = MI.getOperand(1).getReg(); | 
|  | unsigned Src2Reg = MI.getOperand(2).getReg(); | 
|  | unsigned Src3Reg = MI.getOperand(3).getReg(); | 
|  | unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); | 
|  | unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); | 
|  | unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); | 
|  | unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); | 
|  | unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi); | 
|  | unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo); | 
|  | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), | 
|  | HRI.getSubReg(DstReg, Hexagon::isub_hi)) | 
|  | .addReg(Src1SubHi) | 
|  | .addReg(Src2SubHi) | 
|  | .addReg(Src3SubHi); | 
|  | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), | 
|  | HRI.getSubReg(DstReg, Hexagon::isub_lo)) | 
|  | .addReg(Src1SubLo) | 
|  | .addReg(Src2SubLo) | 
|  | .addReg(Src3SubLo); | 
|  | MBB.erase(MI); | 
|  | MRI.clearKillFlags(Src1SubHi); | 
|  | MRI.clearKillFlags(Src1SubLo); | 
|  | MRI.clearKillFlags(Src2SubHi); | 
|  | MRI.clearKillFlags(Src2SubLo); | 
|  | MRI.clearKillFlags(Src3SubHi); | 
|  | MRI.clearKillFlags(Src3SubLo); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_pselect: { | 
|  | const MachineOperand &Op0 = MI.getOperand(0); | 
|  | const MachineOperand &Op1 = MI.getOperand(1); | 
|  | const MachineOperand &Op2 = MI.getOperand(2); | 
|  | const MachineOperand &Op3 = MI.getOperand(3); | 
|  | unsigned Rd = Op0.getReg(); | 
|  | unsigned Pu = Op1.getReg(); | 
|  | unsigned Rs = Op2.getReg(); | 
|  | unsigned Rt = Op3.getReg(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned K1 = getKillRegState(Op1.isKill()); | 
|  | unsigned K2 = getKillRegState(Op2.isKill()); | 
|  | unsigned K3 = getKillRegState(Op3.isKill()); | 
|  | if (Rd != Rs) | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd) | 
|  | .addReg(Pu, (Rd == Rt) ? K1 : 0) | 
|  | .addReg(Rs, K2); | 
|  | if (Rd != Rt) | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd) | 
|  | .addReg(Pu, K1) | 
|  | .addReg(Rt, K3); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_vselect: { | 
|  | const MachineOperand &Op0 = MI.getOperand(0); | 
|  | const MachineOperand &Op1 = MI.getOperand(1); | 
|  | const MachineOperand &Op2 = MI.getOperand(2); | 
|  | const MachineOperand &Op3 = MI.getOperand(3); | 
|  | LivePhysRegs LiveAtMI(HRI); | 
|  | getLiveRegsAt(LiveAtMI, MI); | 
|  | bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg()); | 
|  | unsigned PReg = Op1.getReg(); | 
|  | assert(Op1.getSubReg() == 0); | 
|  | unsigned PState = getRegState(Op1); | 
|  |  | 
|  | if (Op0.getReg() != Op2.getReg()) { | 
|  | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill | 
|  | : PState; | 
|  | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov)) | 
|  | .add(Op0) | 
|  | .addReg(PReg, S) | 
|  | .add(Op2); | 
|  | if (IsDestLive) | 
|  | T.addReg(Op0.getReg(), RegState::Implicit); | 
|  | IsDestLive = true; | 
|  | } | 
|  | if (Op0.getReg() != Op3.getReg()) { | 
|  | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov)) | 
|  | .add(Op0) | 
|  | .addReg(PReg, PState) | 
|  | .add(Op3); | 
|  | if (IsDestLive) | 
|  | T.addReg(Op0.getReg(), RegState::Implicit); | 
|  | } | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | case Hexagon::PS_wselect: { | 
|  | MachineOperand &Op0 = MI.getOperand(0); | 
|  | MachineOperand &Op1 = MI.getOperand(1); | 
|  | MachineOperand &Op2 = MI.getOperand(2); | 
|  | MachineOperand &Op3 = MI.getOperand(3); | 
|  | LivePhysRegs LiveAtMI(HRI); | 
|  | getLiveRegsAt(LiveAtMI, MI); | 
|  | bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg()); | 
|  | unsigned PReg = Op1.getReg(); | 
|  | assert(Op1.getSubReg() == 0); | 
|  | unsigned PState = getRegState(Op1); | 
|  |  | 
|  | if (Op0.getReg() != Op2.getReg()) { | 
|  | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill | 
|  | : PState; | 
|  | unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo); | 
|  | unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi); | 
|  | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine)) | 
|  | .add(Op0) | 
|  | .addReg(PReg, S) | 
|  | .addReg(SrcHi) | 
|  | .addReg(SrcLo); | 
|  | if (IsDestLive) | 
|  | T.addReg(Op0.getReg(), RegState::Implicit); | 
|  | IsDestLive = true; | 
|  | } | 
|  | if (Op0.getReg() != Op3.getReg()) { | 
|  | unsigned SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo); | 
|  | unsigned SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi); | 
|  | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine)) | 
|  | .add(Op0) | 
|  | .addReg(PReg, PState) | 
|  | .addReg(SrcHi) | 
|  | .addReg(SrcLo); | 
|  | if (IsDestLive) | 
|  | T.addReg(Op0.getReg(), RegState::Implicit); | 
|  | } | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Hexagon::PS_crash: { | 
|  | // Generate a misaligned load that is guaranteed to cause a crash. | 
|  | class CrashPseudoSourceValue : public PseudoSourceValue { | 
|  | public: | 
|  | CrashPseudoSourceValue(const TargetInstrInfo &TII) | 
|  | : PseudoSourceValue(TargetCustom, TII) {} | 
|  |  | 
|  | bool isConstant(const MachineFrameInfo *) const override { | 
|  | return false; | 
|  | } | 
|  | bool isAliased(const MachineFrameInfo *) const override { | 
|  | return false; | 
|  | } | 
|  | bool mayAlias(const MachineFrameInfo *) const override { | 
|  | return false; | 
|  | } | 
|  | void printCustom(raw_ostream &OS) const override { | 
|  | OS << "MisalignedCrash"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const CrashPseudoSourceValue CrashPSV(*this); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(&CrashPSV), | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13) | 
|  | .addImm(0xBADC0FEE)  // Misaligned load. | 
|  | .addMemOperand(MMO); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Hexagon::PS_tailcall_i: | 
|  | MI.setDesc(get(Hexagon::J2_jump)); | 
|  | return true; | 
|  | case Hexagon::PS_tailcall_r: | 
|  | case Hexagon::PS_jmpret: | 
|  | MI.setDesc(get(Hexagon::J2_jumpr)); | 
|  | return true; | 
|  | case Hexagon::PS_jmprett: | 
|  | MI.setDesc(get(Hexagon::J2_jumprt)); | 
|  | return true; | 
|  | case Hexagon::PS_jmpretf: | 
|  | MI.setDesc(get(Hexagon::J2_jumprf)); | 
|  | return true; | 
|  | case Hexagon::PS_jmprettnewpt: | 
|  | MI.setDesc(get(Hexagon::J2_jumprtnewpt)); | 
|  | return true; | 
|  | case Hexagon::PS_jmpretfnewpt: | 
|  | MI.setDesc(get(Hexagon::J2_jumprfnewpt)); | 
|  | return true; | 
|  | case Hexagon::PS_jmprettnew: | 
|  | MI.setDesc(get(Hexagon::J2_jumprtnew)); | 
|  | return true; | 
|  | case Hexagon::PS_jmpretfnew: | 
|  | MI.setDesc(get(Hexagon::J2_jumprfnew)); | 
|  | return true; | 
|  |  | 
|  | case Hexagon::PS_loadrub_pci: | 
|  | return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadrb_pci: | 
|  | return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadruh_pci: | 
|  | return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadrh_pci: | 
|  | return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadri_pci: | 
|  | return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadrd_pci: | 
|  | return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4); | 
|  | case Hexagon::PS_loadrub_pcr: | 
|  | return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_loadrb_pcr: | 
|  | return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_loadruh_pcr: | 
|  | return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_loadrh_pcr: | 
|  | return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_loadri_pcr: | 
|  | return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_loadrd_pcr: | 
|  | return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3); | 
|  | case Hexagon::PS_storerb_pci: | 
|  | return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3); | 
|  | case Hexagon::PS_storerh_pci: | 
|  | return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3); | 
|  | case Hexagon::PS_storerf_pci: | 
|  | return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3); | 
|  | case Hexagon::PS_storeri_pci: | 
|  | return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3); | 
|  | case Hexagon::PS_storerd_pci: | 
|  | return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3); | 
|  | case Hexagon::PS_storerb_pcr: | 
|  | return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); | 
|  | case Hexagon::PS_storerh_pcr: | 
|  | return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); | 
|  | case Hexagon::PS_storerf_pcr: | 
|  | return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); | 
|  | case Hexagon::PS_storeri_pcr: | 
|  | return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); | 
|  | case Hexagon::PS_storerd_pcr: | 
|  | return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::instr_iterator | 
|  | HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | MachineBasicBlock::iterator First; | 
|  |  | 
|  | switch (Opc) { | 
|  | case Hexagon::V6_vgathermh_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  |  | 
|  | case Hexagon::V6_vgathermw_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  |  | 
|  | case Hexagon::V6_vgathermhw_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  |  | 
|  | case Hexagon::V6_vgathermhq_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)) | 
|  | .add(MI.getOperand(4)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  |  | 
|  | case Hexagon::V6_vgathermwq_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)) | 
|  | .add(MI.getOperand(4)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  |  | 
|  | case Hexagon::V6_vgathermhwq_pseudo: | 
|  | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(MI.getOperand(3)) | 
|  | .add(MI.getOperand(4)); | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(0) | 
|  | .addReg(Hexagon::VTMP); | 
|  | MBB.erase(MI); | 
|  | return First.getInstrIterator(); | 
|  | } | 
|  |  | 
|  | return MI.getIterator(); | 
|  | } | 
|  |  | 
|  | // We indicate that we want to reverse the branch by | 
|  | // inserting the reversed branching opcode. | 
|  | bool HexagonInstrInfo::reverseBranchCondition( | 
|  | SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | if (Cond.empty()) | 
|  | return true; | 
|  | assert(Cond[0].isImm() && "First entry in the cond vector not imm-val"); | 
|  | unsigned opcode = Cond[0].getImm(); | 
|  | //unsigned temp; | 
|  | assert(get(opcode).isBranch() && "Should be a branching condition."); | 
|  | if (isEndLoopN(opcode)) | 
|  | return true; | 
|  | unsigned NewOpcode = getInvertedPredicatedOpcode(opcode); | 
|  | Cond[0].setImm(NewOpcode); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | DebugLoc DL; | 
|  | BuildMI(MBB, MI, DL, get(Hexagon::A2_nop)); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { | 
|  | return getAddrMode(MI) == HexagonII::PostInc; | 
|  | } | 
|  |  | 
|  | // Returns true if an instruction is predicated irrespective of the predicate | 
|  | // sense. For example, all of the following will return true. | 
|  | // if (p0) R1 = add(R2, R3) | 
|  | // if (!p0) R1 = add(R2, R3) | 
|  | // if (p0.new) R1 = add(R2, R3) | 
|  | // if (!p0.new) R1 = add(R2, R3) | 
|  | // Note: New-value stores are not included here as in the current | 
|  | // implementation, we don't need to check their predicate sense. | 
|  | bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::PredicateInstruction( | 
|  | MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { | 
|  | if (Cond.empty() || isNewValueJump(Cond[0].getImm()) || | 
|  | isEndLoopN(Cond[0].getImm())) { | 
|  | LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump();); | 
|  | return false; | 
|  | } | 
|  | int Opc = MI.getOpcode(); | 
|  | assert (isPredicable(MI) && "Expected predicable instruction"); | 
|  | bool invertJump = predOpcodeHasNot(Cond); | 
|  |  | 
|  | // We have to predicate MI "in place", i.e. after this function returns, | 
|  | // MI will need to be transformed into a predicated form. To avoid com- | 
|  | // plicated manipulations with the operands (handling tied operands, | 
|  | // etc.), build a new temporary instruction, then overwrite MI with it. | 
|  |  | 
|  | MachineBasicBlock &B = *MI.getParent(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned PredOpc = getCondOpcode(Opc, invertJump); | 
|  | MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc)); | 
|  | unsigned NOp = 0, NumOps = MI.getNumOperands(); | 
|  | while (NOp < NumOps) { | 
|  | MachineOperand &Op = MI.getOperand(NOp); | 
|  | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) | 
|  | break; | 
|  | T.add(Op); | 
|  | NOp++; | 
|  | } | 
|  |  | 
|  | unsigned PredReg, PredRegPos, PredRegFlags; | 
|  | bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); | 
|  | (void)GotPredReg; | 
|  | assert(GotPredReg); | 
|  | T.addReg(PredReg, PredRegFlags); | 
|  | while (NOp < NumOps) | 
|  | T.add(MI.getOperand(NOp++)); | 
|  |  | 
|  | MI.setDesc(get(PredOpc)); | 
|  | while (unsigned n = MI.getNumOperands()) | 
|  | MI.RemoveOperand(n-1); | 
|  | for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) | 
|  | MI.addOperand(T->getOperand(i)); | 
|  |  | 
|  | MachineBasicBlock::instr_iterator TI = T->getIterator(); | 
|  | B.erase(TI); | 
|  |  | 
|  | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); | 
|  | MRI.clearKillFlags(PredReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
|  | ArrayRef<MachineOperand> Pred2) const { | 
|  | // TODO: Fix this | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI, | 
|  | std::vector<MachineOperand> &Pred) const { | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  |  | 
|  | for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) { | 
|  | MachineOperand MO = MI.getOperand(oper); | 
|  | if (MO.isReg()) { | 
|  | if (!MO.isDef()) | 
|  | continue; | 
|  | const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg()); | 
|  | if (RC == &Hexagon::PredRegsRegClass) { | 
|  | Pred.push_back(MO); | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } else if (MO.isRegMask()) { | 
|  | for (unsigned PR : Hexagon::PredRegsRegClass) { | 
|  | if (!MI.modifiesRegister(PR, &HRI)) | 
|  | continue; | 
|  | Pred.push_back(MO); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { | 
|  | if (!MI.getDesc().isPredicable()) | 
|  | return false; | 
|  |  | 
|  | if (MI.isCall() || isTailCall(MI)) { | 
|  | if (!Subtarget.usePredicatedCalls()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // HVX loads are not predicable on v60, but are on v62. | 
|  | if (!Subtarget.hasV62Ops()) { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::V6_vL32b_ai: | 
|  | case Hexagon::V6_vL32b_pi: | 
|  | case Hexagon::V6_vL32b_ppu: | 
|  | case Hexagon::V6_vL32b_cur_ai: | 
|  | case Hexagon::V6_vL32b_cur_pi: | 
|  | case Hexagon::V6_vL32b_cur_ppu: | 
|  | case Hexagon::V6_vL32b_nt_ai: | 
|  | case Hexagon::V6_vL32b_nt_pi: | 
|  | case Hexagon::V6_vL32b_nt_ppu: | 
|  | case Hexagon::V6_vL32b_tmp_ai: | 
|  | case Hexagon::V6_vL32b_tmp_pi: | 
|  | case Hexagon::V6_vL32b_tmp_ppu: | 
|  | case Hexagon::V6_vL32b_nt_cur_ai: | 
|  | case Hexagon::V6_vL32b_nt_cur_pi: | 
|  | case Hexagon::V6_vL32b_nt_cur_ppu: | 
|  | case Hexagon::V6_vL32b_nt_tmp_ai: | 
|  | case Hexagon::V6_vL32b_nt_tmp_pi: | 
|  | case Hexagon::V6_vL32b_nt_tmp_ppu: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Debug info is never a scheduling boundary. It's necessary to be explicit | 
|  | // due to the special treatment of IT instructions below, otherwise a | 
|  | // dbg_value followed by an IT will result in the IT instruction being | 
|  | // considered a scheduling hazard, which is wrong. It should be the actual | 
|  | // instruction preceding the dbg_value instruction(s), just like it is | 
|  | // when debug info is not present. | 
|  | if (MI.isDebugInstr()) | 
|  | return false; | 
|  |  | 
|  | // Throwing call is a boundary. | 
|  | if (MI.isCall()) { | 
|  | // Don't mess around with no return calls. | 
|  | if (doesNotReturn(MI)) | 
|  | return true; | 
|  | // If any of the block's successors is a landing pad, this could be a | 
|  | // throwing call. | 
|  | for (auto I : MBB->successors()) | 
|  | if (I->isEHPad()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI.getDesc().isTerminator() || MI.isPosition()) | 
|  | return true; | 
|  |  | 
|  | if (MI.isInlineAsm() && !ScheduleInlineAsm) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Measure the specified inline asm to determine an approximation of its | 
|  | /// length. | 
|  | /// Comments (which run till the next SeparatorString or newline) do not | 
|  | /// count as an instruction. | 
|  | /// Any other non-whitespace text is considered an instruction, with | 
|  | /// multiple instructions separated by SeparatorString or newlines. | 
|  | /// Variable-length instructions are not handled here; this function | 
|  | /// may be overloaded in the target code to do that. | 
|  | /// Hexagon counts the number of ##'s and adjust for that many | 
|  | /// constant exenders. | 
|  | unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, | 
|  | const MCAsmInfo &MAI, | 
|  | const TargetSubtargetInfo *STI) const { | 
|  | StringRef AStr(Str); | 
|  | // Count the number of instructions in the asm. | 
|  | bool atInsnStart = true; | 
|  | unsigned Length = 0; | 
|  | const unsigned MaxInstLength = MAI.getMaxInstLength(STI); | 
|  | for (; *Str; ++Str) { | 
|  | if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | 
|  | strlen(MAI.getSeparatorString())) == 0) | 
|  | atInsnStart = true; | 
|  | if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { | 
|  | Length += MaxInstLength; | 
|  | atInsnStart = false; | 
|  | } | 
|  | if (atInsnStart && strncmp(Str, MAI.getCommentString().data(), | 
|  | MAI.getCommentString().size()) == 0) | 
|  | atInsnStart = false; | 
|  | } | 
|  |  | 
|  | // Add to size number of constant extenders seen * 4. | 
|  | StringRef Occ("##"); | 
|  | Length += AStr.count(Occ)*4; | 
|  | return Length; | 
|  | } | 
|  |  | 
|  | ScheduleHazardRecognizer* | 
|  | HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( | 
|  | const InstrItineraryData *II, const ScheduleDAG *DAG) const { | 
|  | if (UseDFAHazardRec) | 
|  | return new HexagonHazardRecognizer(II, this, Subtarget); | 
|  | return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | /// For a comparison instruction, return the source registers in | 
|  | /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it | 
|  | /// compares against in CmpValue. Return true if the comparison instruction | 
|  | /// can be analyzed. | 
|  | bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &Mask, | 
|  | int &Value) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | // Set mask and the first source register. | 
|  | switch (Opc) { | 
|  | case Hexagon::C2_cmpeq: | 
|  | case Hexagon::C2_cmpeqp: | 
|  | case Hexagon::C2_cmpgt: | 
|  | case Hexagon::C2_cmpgtp: | 
|  | case Hexagon::C2_cmpgtu: | 
|  | case Hexagon::C2_cmpgtup: | 
|  | case Hexagon::C4_cmpneq: | 
|  | case Hexagon::C4_cmplte: | 
|  | case Hexagon::C4_cmplteu: | 
|  | case Hexagon::C2_cmpeqi: | 
|  | case Hexagon::C2_cmpgti: | 
|  | case Hexagon::C2_cmpgtui: | 
|  | case Hexagon::C4_cmpneqi: | 
|  | case Hexagon::C4_cmplteui: | 
|  | case Hexagon::C4_cmpltei: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | Mask = ~0; | 
|  | break; | 
|  | case Hexagon::A4_cmpbeq: | 
|  | case Hexagon::A4_cmpbgt: | 
|  | case Hexagon::A4_cmpbgtu: | 
|  | case Hexagon::A4_cmpbeqi: | 
|  | case Hexagon::A4_cmpbgti: | 
|  | case Hexagon::A4_cmpbgtui: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | Mask = 0xFF; | 
|  | break; | 
|  | case Hexagon::A4_cmpheq: | 
|  | case Hexagon::A4_cmphgt: | 
|  | case Hexagon::A4_cmphgtu: | 
|  | case Hexagon::A4_cmpheqi: | 
|  | case Hexagon::A4_cmphgti: | 
|  | case Hexagon::A4_cmphgtui: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | Mask = 0xFFFF; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Set the value/second source register. | 
|  | switch (Opc) { | 
|  | case Hexagon::C2_cmpeq: | 
|  | case Hexagon::C2_cmpeqp: | 
|  | case Hexagon::C2_cmpgt: | 
|  | case Hexagon::C2_cmpgtp: | 
|  | case Hexagon::C2_cmpgtu: | 
|  | case Hexagon::C2_cmpgtup: | 
|  | case Hexagon::A4_cmpbeq: | 
|  | case Hexagon::A4_cmpbgt: | 
|  | case Hexagon::A4_cmpbgtu: | 
|  | case Hexagon::A4_cmpheq: | 
|  | case Hexagon::A4_cmphgt: | 
|  | case Hexagon::A4_cmphgtu: | 
|  | case Hexagon::C4_cmpneq: | 
|  | case Hexagon::C4_cmplte: | 
|  | case Hexagon::C4_cmplteu: | 
|  | SrcReg2 = MI.getOperand(2).getReg(); | 
|  | return true; | 
|  |  | 
|  | case Hexagon::C2_cmpeqi: | 
|  | case Hexagon::C2_cmpgtui: | 
|  | case Hexagon::C2_cmpgti: | 
|  | case Hexagon::C4_cmpneqi: | 
|  | case Hexagon::C4_cmplteui: | 
|  | case Hexagon::C4_cmpltei: | 
|  | case Hexagon::A4_cmpbeqi: | 
|  | case Hexagon::A4_cmpbgti: | 
|  | case Hexagon::A4_cmpbgtui: | 
|  | case Hexagon::A4_cmpheqi: | 
|  | case Hexagon::A4_cmphgti: | 
|  | case Hexagon::A4_cmphgtui: { | 
|  | SrcReg2 = 0; | 
|  | const MachineOperand &Op2 = MI.getOperand(2); | 
|  | if (!Op2.isImm()) | 
|  | return false; | 
|  | Value = MI.getOperand(2).getImm(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost) const { | 
|  | return getInstrTimingClassLatency(ItinData, MI); | 
|  | } | 
|  |  | 
|  | DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( | 
|  | const TargetSubtargetInfo &STI) const { | 
|  | const InstrItineraryData *II = STI.getInstrItineraryData(); | 
|  | return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II); | 
|  | } | 
|  |  | 
|  | // Inspired by this pair: | 
|  | //  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] | 
|  | //  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1] | 
|  | // Currently AA considers the addresses in these instructions to be aliasing. | 
|  | bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( | 
|  | const MachineInstr &MIa, const MachineInstr &MIb, | 
|  | AliasAnalysis *AA) const { | 
|  | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || | 
|  | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) | 
|  | return false; | 
|  |  | 
|  | // Instructions that are pure loads, not loads and stores like memops are not | 
|  | // dependent. | 
|  | if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb)) | 
|  | return true; | 
|  |  | 
|  | // Get the base register in MIa. | 
|  | unsigned BasePosA, OffsetPosA; | 
|  | if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA)) | 
|  | return false; | 
|  | const MachineOperand &BaseA = MIa.getOperand(BasePosA); | 
|  | unsigned BaseRegA = BaseA.getReg(); | 
|  | unsigned BaseSubA = BaseA.getSubReg(); | 
|  |  | 
|  | // Get the base register in MIb. | 
|  | unsigned BasePosB, OffsetPosB; | 
|  | if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB)) | 
|  | return false; | 
|  | const MachineOperand &BaseB = MIb.getOperand(BasePosB); | 
|  | unsigned BaseRegB = BaseB.getReg(); | 
|  | unsigned BaseSubB = BaseB.getSubReg(); | 
|  |  | 
|  | if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) | 
|  | return false; | 
|  |  | 
|  | // Get the access sizes. | 
|  | unsigned SizeA = getMemAccessSize(MIa); | 
|  | unsigned SizeB = getMemAccessSize(MIb); | 
|  |  | 
|  | // Get the offsets. Handle immediates only for now. | 
|  | const MachineOperand &OffA = MIa.getOperand(OffsetPosA); | 
|  | const MachineOperand &OffB = MIb.getOperand(OffsetPosB); | 
|  | if (!MIa.getOperand(OffsetPosA).isImm() || | 
|  | !MIb.getOperand(OffsetPosB).isImm()) | 
|  | return false; | 
|  | int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm(); | 
|  | int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm(); | 
|  |  | 
|  | // This is a mem access with the same base register and known offsets from it. | 
|  | // Reason about it. | 
|  | if (OffsetA > OffsetB) { | 
|  | uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); | 
|  | return SizeB <= OffDiff; | 
|  | } | 
|  | if (OffsetA < OffsetB) { | 
|  | uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); | 
|  | return SizeA <= OffDiff; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If the instruction is an increment of a constant value, return the amount. | 
|  | bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, | 
|  | int &Value) const { | 
|  | if (isPostIncrement(MI)) { | 
|  | unsigned BasePos = 0, OffsetPos = 0; | 
|  | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) | 
|  | return false; | 
|  | const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); | 
|  | if (OffsetOp.isImm()) { | 
|  | Value = OffsetOp.getImm(); | 
|  | return true; | 
|  | } | 
|  | } else if (MI.getOpcode() == Hexagon::A2_addi) { | 
|  | const MachineOperand &AddOp = MI.getOperand(2); | 
|  | if (AddOp.isImm()) { | 
|  | Value = AddOp.getImm(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | return std::make_pair(TF & ~HexagonII::MO_Bitmasks, | 
|  | TF & HexagonII::MO_Bitmasks); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char*>> | 
|  | HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace HexagonII; | 
|  |  | 
|  | static const std::pair<unsigned, const char*> Flags[] = { | 
|  | {MO_PCREL,  "hexagon-pcrel"}, | 
|  | {MO_GOT,    "hexagon-got"}, | 
|  | {MO_LO16,   "hexagon-lo16"}, | 
|  | {MO_HI16,   "hexagon-hi16"}, | 
|  | {MO_GPREL,  "hexagon-gprel"}, | 
|  | {MO_GDGOT,  "hexagon-gdgot"}, | 
|  | {MO_GDPLT,  "hexagon-gdplt"}, | 
|  | {MO_IE,     "hexagon-ie"}, | 
|  | {MO_IEGOT,  "hexagon-iegot"}, | 
|  | {MO_TPREL,  "hexagon-tprel"} | 
|  | }; | 
|  | return makeArrayRef(Flags); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char*>> | 
|  | HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { | 
|  | using namespace HexagonII; | 
|  |  | 
|  | static const std::pair<unsigned, const char*> Flags[] = { | 
|  | {HMOTF_ConstExtended, "hexagon-ext"} | 
|  | }; | 
|  | return makeArrayRef(Flags); | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetRegisterClass *TRC; | 
|  | if (VT == MVT::i1) { | 
|  | TRC = &Hexagon::PredRegsRegClass; | 
|  | } else if (VT == MVT::i32 || VT == MVT::f32) { | 
|  | TRC = &Hexagon::IntRegsRegClass; | 
|  | } else if (VT == MVT::i64 || VT == MVT::f64) { | 
|  | TRC = &Hexagon::DoubleRegsRegClass; | 
|  | } else { | 
|  | llvm_unreachable("Cannot handle this register class"); | 
|  | } | 
|  |  | 
|  | unsigned NewReg = MRI.createVirtualRegister(TRC); | 
|  | return NewReg; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { | 
|  | return (getAddrMode(MI) == HexagonII::AbsoluteSet); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { | 
|  | return getAddrMode(MI) == HexagonII::BaseImmOffset; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { | 
|  | return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && | 
|  | !MI.getDesc().mayStore() && | 
|  | MI.getDesc().getOpcode() != Hexagon::S2_allocframe && | 
|  | MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && | 
|  | !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); | 
|  | } | 
|  |  | 
|  | // Return true if the instruction is a compund branch instruction. | 
|  | bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { | 
|  | return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); | 
|  | } | 
|  |  | 
|  | // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle | 
|  | // isFPImm and later getFPImm as well. | 
|  | bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; | 
|  | if (isExtended) // Instruction must be extended. | 
|  | return true; | 
|  |  | 
|  | unsigned isExtendable = | 
|  | (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; | 
|  | if (!isExtendable) | 
|  | return false; | 
|  |  | 
|  | if (MI.isCall()) | 
|  | return false; | 
|  |  | 
|  | short ExtOpNum = getCExtOpNum(MI); | 
|  | const MachineOperand &MO = MI.getOperand(ExtOpNum); | 
|  | // Use MO operand flags to determine if MO | 
|  | // has the HMOTF_ConstExtended flag set. | 
|  | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) | 
|  | return true; | 
|  | // If this is a Machine BB address we are talking about, and it is | 
|  | // not marked as extended, say so. | 
|  | if (MO.isMBB()) | 
|  | return false; | 
|  |  | 
|  | // We could be using an instruction with an extendable immediate and shoehorn | 
|  | // a global address into it. If it is a global address it will be constant | 
|  | // extended. We do this for COMBINE. | 
|  | if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || | 
|  | MO.isJTI() || MO.isCPI() || MO.isFPImm()) | 
|  | return true; | 
|  |  | 
|  | // If the extendable operand is not 'Immediate' type, the instruction should | 
|  | // have 'isExtended' flag set. | 
|  | assert(MO.isImm() && "Extendable operand must be Immediate type"); | 
|  |  | 
|  | int MinValue = getMinValue(MI); | 
|  | int MaxValue = getMaxValue(MI); | 
|  | int ImmValue = MO.getImm(); | 
|  |  | 
|  | return (ImmValue < MinValue || ImmValue > MaxValue); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::L4_return: | 
|  | case Hexagon::L4_return_t: | 
|  | case Hexagon::L4_return_f: | 
|  | case Hexagon::L4_return_tnew_pnt: | 
|  | case Hexagon::L4_return_fnew_pnt: | 
|  | case Hexagon::L4_return_tnew_pt: | 
|  | case Hexagon::L4_return_fnew_pt: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true when ConsMI uses a register defined by ProdMI. | 
|  | bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const { | 
|  | if (!ProdMI.getDesc().getNumDefs()) | 
|  | return false; | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  |  | 
|  | SmallVector<unsigned, 4> DefsA; | 
|  | SmallVector<unsigned, 4> DefsB; | 
|  | SmallVector<unsigned, 8> UsesA; | 
|  | SmallVector<unsigned, 8> UsesB; | 
|  |  | 
|  | parseOperands(ProdMI, DefsA, UsesA); | 
|  | parseOperands(ConsMI, DefsB, UsesB); | 
|  |  | 
|  | for (auto &RegA : DefsA) | 
|  | for (auto &RegB : UsesB) { | 
|  | // True data dependency. | 
|  | if (RegA == RegB) | 
|  | return true; | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(RegA)) | 
|  | for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs) | 
|  | if (RegB == *SubRegs) | 
|  | return true; | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(RegB)) | 
|  | for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs) | 
|  | if (RegA == *SubRegs) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true if the instruction is alread a .cur. | 
|  | bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::V6_vL32b_cur_pi: | 
|  | case Hexagon::V6_vL32b_cur_ai: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true, if any one of the operands is a dot new | 
|  | // insn, whether it is predicated dot new or register dot new. | 
|  | bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { | 
|  | if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Symmetrical. See if these two instructions are fit for duplex pair. | 
|  | bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, | 
|  | const MachineInstr &MIb) const { | 
|  | HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa); | 
|  | HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb); | 
|  | return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const { | 
|  | if (MI.mayLoad() || MI.mayStore() || MI.isCompare()) | 
|  | return true; | 
|  |  | 
|  | // Multiply | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return is_TC4x(SchedClass) || is_TC3x(SchedClass); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { | 
|  | return (Opcode == Hexagon::ENDLOOP0 || | 
|  | Opcode == Hexagon::ENDLOOP1); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isExpr(unsigned OpType) const { | 
|  | switch(OpType) { | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { | 
|  | const MCInstrDesc &MID = MI.getDesc(); | 
|  | const uint64_t F = MID.TSFlags; | 
|  | if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) | 
|  | return true; | 
|  |  | 
|  | // TODO: This is largely obsolete now. Will need to be removed | 
|  | // in consecutive patches. | 
|  | switch (MI.getOpcode()) { | 
|  | // PS_fi and PS_fia remain special cases. | 
|  | case Hexagon::PS_fi: | 
|  | case Hexagon::PS_fia: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | return  false; | 
|  | } | 
|  |  | 
|  | // This returns true in two cases: | 
|  | // - The OP code itself indicates that this is an extended instruction. | 
|  | // - One of MOs has been marked with HMOTF_ConstExtended flag. | 
|  | bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { | 
|  | // First check if this is permanently extended op code. | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) | 
|  | return true; | 
|  | // Use MO operand flags to determine if one of MI's operands | 
|  | // has HMOTF_ConstExtended flag set. | 
|  | for (const MachineOperand &MO : MI.operands()) | 
|  | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) | 
|  | return true; | 
|  | return  false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | return (F >> HexagonII::FPPos) & HexagonII::FPMask; | 
|  | } | 
|  |  | 
|  | // No V60 HVX VMEM with A_INDIRECT. | 
|  | bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, | 
|  | const MachineInstr &J) const { | 
|  | if (!isHVXVec(I)) | 
|  | return false; | 
|  | if (!I.mayLoad() && !I.mayStore()) | 
|  | return false; | 
|  | return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::J2_callr: | 
|  | case Hexagon::J2_callrf: | 
|  | case Hexagon::J2_callrt: | 
|  | case Hexagon::PS_call_nr: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::L4_return: | 
|  | case Hexagon::L4_return_t: | 
|  | case Hexagon::L4_return_f: | 
|  | case Hexagon::L4_return_fnew_pnt: | 
|  | case Hexagon::L4_return_fnew_pt: | 
|  | case Hexagon::L4_return_tnew_pnt: | 
|  | case Hexagon::L4_return_tnew_pt: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::J2_jumpr: | 
|  | case Hexagon::J2_jumprt: | 
|  | case Hexagon::J2_jumprf: | 
|  | case Hexagon::J2_jumprtnewpt: | 
|  | case Hexagon::J2_jumprfnewpt: | 
|  | case Hexagon::J2_jumprtnew: | 
|  | case Hexagon::J2_jumprfnew: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if a given MI can accommodate given offset. | 
|  | // Use abs estimate as oppose to the exact number. | 
|  | // TODO: This will need to be changed to use MC level | 
|  | // definition of instruction extendable field size. | 
|  | bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, | 
|  | unsigned offset) const { | 
|  | // This selection of jump instructions matches to that what | 
|  | // analyzeBranch can parse, plus NVJ. | 
|  | if (isNewValueJump(MI)) // r9:2 | 
|  | return isInt<11>(offset); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | // Still missing Jump to address condition on register value. | 
|  | default: | 
|  | return false; | 
|  | case Hexagon::J2_jump: // bits<24> dst; // r22:2 | 
|  | case Hexagon::J2_call: | 
|  | case Hexagon::PS_call_nr: | 
|  | return isInt<24>(offset); | 
|  | case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 | 
|  | case Hexagon::J2_jumpf: | 
|  | case Hexagon::J2_jumptnew: | 
|  | case Hexagon::J2_jumptnewpt: | 
|  | case Hexagon::J2_jumpfnew: | 
|  | case Hexagon::J2_jumpfnewpt: | 
|  | case Hexagon::J2_callt: | 
|  | case Hexagon::J2_callf: | 
|  | return isInt<17>(offset); | 
|  | case Hexagon::J2_loop0i: | 
|  | case Hexagon::J2_loop0iext: | 
|  | case Hexagon::J2_loop0r: | 
|  | case Hexagon::J2_loop0rext: | 
|  | case Hexagon::J2_loop1i: | 
|  | case Hexagon::J2_loop1iext: | 
|  | case Hexagon::J2_loop1r: | 
|  | case Hexagon::J2_loop1rext: | 
|  | return isInt<9>(offset); | 
|  | // TODO: Add all the compound branches here. Can we do this in Relation model? | 
|  | case Hexagon::J4_cmpeqi_tp0_jump_nt: | 
|  | case Hexagon::J4_cmpeqi_tp1_jump_nt: | 
|  | case Hexagon::J4_cmpeqn1_tp0_jump_nt: | 
|  | case Hexagon::J4_cmpeqn1_tp1_jump_nt: | 
|  | return isInt<11>(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI, | 
|  | const MachineInstr &ESMI) const { | 
|  | bool isLate = isLateResultInstr(LRMI); | 
|  | bool isEarly = isEarlySourceInstr(ESMI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR  " : " --  ")); | 
|  | LLVM_DEBUG(LRMI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES  " : " --  ")); | 
|  | LLVM_DEBUG(ESMI.dump()); | 
|  |  | 
|  | if (isLate && isEarly) { | 
|  | LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::EXTRACT_SUBREG: | 
|  | case TargetOpcode::INSERT_SUBREG: | 
|  | case TargetOpcode::SUBREG_TO_REG: | 
|  | case TargetOpcode::REG_SEQUENCE: | 
|  | case TargetOpcode::IMPLICIT_DEF: | 
|  | case TargetOpcode::COPY: | 
|  | case TargetOpcode::INLINEASM: | 
|  | case TargetOpcode::PHI: | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return !is_TC1(SchedClass); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { | 
|  | // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply | 
|  | // resource, but all operands can be received late like an ALU instruction. | 
|  | return getType(MI) == HexagonII::TypeCVI_VX_LATE; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | return Opcode == Hexagon::J2_loop0i    || | 
|  | Opcode == Hexagon::J2_loop0r    || | 
|  | Opcode == Hexagon::J2_loop0iext || | 
|  | Opcode == Hexagon::J2_loop0rext || | 
|  | Opcode == Hexagon::J2_loop1i    || | 
|  | Opcode == Hexagon::J2_loop1r    || | 
|  | Opcode == Hexagon::J2_loop1iext || | 
|  | Opcode == Hexagon::J2_loop1rext; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return false; | 
|  | case Hexagon::L4_iadd_memopw_io: | 
|  | case Hexagon::L4_isub_memopw_io: | 
|  | case Hexagon::L4_add_memopw_io: | 
|  | case Hexagon::L4_sub_memopw_io: | 
|  | case Hexagon::L4_and_memopw_io: | 
|  | case Hexagon::L4_or_memopw_io: | 
|  | case Hexagon::L4_iadd_memoph_io: | 
|  | case Hexagon::L4_isub_memoph_io: | 
|  | case Hexagon::L4_add_memoph_io: | 
|  | case Hexagon::L4_sub_memoph_io: | 
|  | case Hexagon::L4_and_memoph_io: | 
|  | case Hexagon::L4_or_memoph_io: | 
|  | case Hexagon::L4_iadd_memopb_io: | 
|  | case Hexagon::L4_isub_memopb_io: | 
|  | case Hexagon::L4_add_memopb_io: | 
|  | case Hexagon::L4_sub_memopb_io: | 
|  | case Hexagon::L4_and_memopb_io: | 
|  | case Hexagon::L4_or_memopb_io: | 
|  | case Hexagon::L4_ior_memopb_io: | 
|  | case Hexagon::L4_ior_memoph_io: | 
|  | case Hexagon::L4_ior_memopw_io: | 
|  | case Hexagon::L4_iand_memopb_io: | 
|  | case Hexagon::L4_iand_memoph_io: | 
|  | case Hexagon::L4_iand_memopw_io: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { | 
|  | return isNewValueJump(MI) || isNewValueStore(MI); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { | 
|  | return isNewValue(MI) && MI.isBranch(); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { | 
|  | return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; | 
|  | } | 
|  |  | 
|  | // Returns true if a particular operand is extendable for an instruction. | 
|  | bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, | 
|  | unsigned OperandNum) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) | 
|  | == OperandNum; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | assert(isPredicated(MI)); | 
|  | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | assert(isPredicated(Opcode)); | 
|  | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return !((F >> HexagonII::PredicatedFalsePos) & | 
|  | HexagonII::PredicatedFalseMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | // Make sure that the instruction is predicated. | 
|  | assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); | 
|  | return !((F >> HexagonII::PredicatedFalsePos) & | 
|  | HexagonII::PredicatedFalseMask); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { | 
|  | const uint64_t F = get(Opcode).TSFlags; | 
|  | assert(get(Opcode).isBranch() && | 
|  | (isPredicatedNew(Opcode) || isNewValue(Opcode))); | 
|  | return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { | 
|  | return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || | 
|  | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || | 
|  | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || | 
|  | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | // Byte | 
|  | case Hexagon::L2_loadrb_io: | 
|  | case Hexagon::L4_loadrb_ur: | 
|  | case Hexagon::L4_loadrb_ap: | 
|  | case Hexagon::L2_loadrb_pr: | 
|  | case Hexagon::L2_loadrb_pbr: | 
|  | case Hexagon::L2_loadrb_pi: | 
|  | case Hexagon::L2_loadrb_pci: | 
|  | case Hexagon::L2_loadrb_pcr: | 
|  | case Hexagon::L2_loadbsw2_io: | 
|  | case Hexagon::L4_loadbsw2_ur: | 
|  | case Hexagon::L4_loadbsw2_ap: | 
|  | case Hexagon::L2_loadbsw2_pr: | 
|  | case Hexagon::L2_loadbsw2_pbr: | 
|  | case Hexagon::L2_loadbsw2_pi: | 
|  | case Hexagon::L2_loadbsw2_pci: | 
|  | case Hexagon::L2_loadbsw2_pcr: | 
|  | case Hexagon::L2_loadbsw4_io: | 
|  | case Hexagon::L4_loadbsw4_ur: | 
|  | case Hexagon::L4_loadbsw4_ap: | 
|  | case Hexagon::L2_loadbsw4_pr: | 
|  | case Hexagon::L2_loadbsw4_pbr: | 
|  | case Hexagon::L2_loadbsw4_pi: | 
|  | case Hexagon::L2_loadbsw4_pci: | 
|  | case Hexagon::L2_loadbsw4_pcr: | 
|  | case Hexagon::L4_loadrb_rr: | 
|  | case Hexagon::L2_ploadrbt_io: | 
|  | case Hexagon::L2_ploadrbt_pi: | 
|  | case Hexagon::L2_ploadrbf_io: | 
|  | case Hexagon::L2_ploadrbf_pi: | 
|  | case Hexagon::L2_ploadrbtnew_io: | 
|  | case Hexagon::L2_ploadrbfnew_io: | 
|  | case Hexagon::L4_ploadrbt_rr: | 
|  | case Hexagon::L4_ploadrbf_rr: | 
|  | case Hexagon::L4_ploadrbtnew_rr: | 
|  | case Hexagon::L4_ploadrbfnew_rr: | 
|  | case Hexagon::L2_ploadrbtnew_pi: | 
|  | case Hexagon::L2_ploadrbfnew_pi: | 
|  | case Hexagon::L4_ploadrbt_abs: | 
|  | case Hexagon::L4_ploadrbf_abs: | 
|  | case Hexagon::L4_ploadrbtnew_abs: | 
|  | case Hexagon::L4_ploadrbfnew_abs: | 
|  | case Hexagon::L2_loadrbgp: | 
|  | // Half | 
|  | case Hexagon::L2_loadrh_io: | 
|  | case Hexagon::L4_loadrh_ur: | 
|  | case Hexagon::L4_loadrh_ap: | 
|  | case Hexagon::L2_loadrh_pr: | 
|  | case Hexagon::L2_loadrh_pbr: | 
|  | case Hexagon::L2_loadrh_pi: | 
|  | case Hexagon::L2_loadrh_pci: | 
|  | case Hexagon::L2_loadrh_pcr: | 
|  | case Hexagon::L4_loadrh_rr: | 
|  | case Hexagon::L2_ploadrht_io: | 
|  | case Hexagon::L2_ploadrht_pi: | 
|  | case Hexagon::L2_ploadrhf_io: | 
|  | case Hexagon::L2_ploadrhf_pi: | 
|  | case Hexagon::L2_ploadrhtnew_io: | 
|  | case Hexagon::L2_ploadrhfnew_io: | 
|  | case Hexagon::L4_ploadrht_rr: | 
|  | case Hexagon::L4_ploadrhf_rr: | 
|  | case Hexagon::L4_ploadrhtnew_rr: | 
|  | case Hexagon::L4_ploadrhfnew_rr: | 
|  | case Hexagon::L2_ploadrhtnew_pi: | 
|  | case Hexagon::L2_ploadrhfnew_pi: | 
|  | case Hexagon::L4_ploadrht_abs: | 
|  | case Hexagon::L4_ploadrhf_abs: | 
|  | case Hexagon::L4_ploadrhtnew_abs: | 
|  | case Hexagon::L4_ploadrhfnew_abs: | 
|  | case Hexagon::L2_loadrhgp: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::STriw_pred: | 
|  | case Hexagon::LDriw_pred: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { | 
|  | if (!MI.isBranch()) | 
|  | return false; | 
|  |  | 
|  | for (auto &Op : MI.operands()) | 
|  | if (Op.isGlobal() || Op.isSymbol()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true when SU has a timing class TC1. | 
|  | bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return is_TC1(SchedClass); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return is_TC2(SchedClass); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return is_TC2early(SchedClass); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | return is_TC4x(SchedClass); | 
|  | } | 
|  |  | 
|  | // Schedule this ASAP. | 
|  | bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, | 
|  | const MachineInstr &MI2) const { | 
|  | if (mayBeCurLoad(MI1)) { | 
|  | // if (result of SU is used in Next) return true; | 
|  | unsigned DstReg = MI1.getOperand(0).getReg(); | 
|  | int N = MI2.getNumOperands(); | 
|  | for (int I = 0; I < N; I++) | 
|  | if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg()) | 
|  | return true; | 
|  | } | 
|  | if (mayBeNewStore(MI2)) | 
|  | if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) | 
|  | if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() && | 
|  | MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { | 
|  | const uint64_t V = getType(MI); | 
|  | return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; | 
|  | } | 
|  |  | 
|  | // Check if the Offset is a valid auto-inc imm by Load/Store Type. | 
|  | bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { | 
|  | int Size = VT.getSizeInBits() / 8; | 
|  | if (Offset % Size != 0) | 
|  | return false; | 
|  | int Count = Offset / Size; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | // For scalars the auto-inc is s4 | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | case MVT::v2i16: | 
|  | case MVT::v2i32: | 
|  | case MVT::v4i8: | 
|  | case MVT::v4i16: | 
|  | case MVT::v8i8: | 
|  | return isInt<4>(Count); | 
|  | // For HVX vectors the auto-inc is s3 | 
|  | case MVT::v64i8: | 
|  | case MVT::v32i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | case MVT::v128i8: | 
|  | case MVT::v64i16: | 
|  | case MVT::v32i32: | 
|  | case MVT::v16i64: | 
|  | return isInt<3>(Count); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Not an valid type!"); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, | 
|  | const TargetRegisterInfo *TRI, bool Extend) const { | 
|  | // This function is to check whether the "Offset" is in the correct range of | 
|  | // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is | 
|  | // inserted to calculate the final address. Due to this reason, the function | 
|  | // assumes that the "Offset" has correct alignment. | 
|  | // We used to assert if the offset was not properly aligned, however, | 
|  | // there are cases where a misaligned pointer recast can cause this | 
|  | // problem, and we need to allow for it. The front end warns of such | 
|  | // misaligns with respect to load size. | 
|  | switch (Opcode) { | 
|  | case Hexagon::PS_vstorerq_ai: | 
|  | case Hexagon::PS_vstorerw_ai: | 
|  | case Hexagon::PS_vstorerw_nt_ai: | 
|  | case Hexagon::PS_vloadrq_ai: | 
|  | case Hexagon::PS_vloadrw_ai: | 
|  | case Hexagon::PS_vloadrw_nt_ai: | 
|  | case Hexagon::V6_vL32b_ai: | 
|  | case Hexagon::V6_vS32b_ai: | 
|  | case Hexagon::V6_vL32b_nt_ai: | 
|  | case Hexagon::V6_vS32b_nt_ai: | 
|  | case Hexagon::V6_vL32Ub_ai: | 
|  | case Hexagon::V6_vS32Ub_ai: { | 
|  | unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass); | 
|  | assert(isPowerOf2_32(VectorSize)); | 
|  | if (Offset & (VectorSize-1)) | 
|  | return false; | 
|  | return isInt<4>(Offset >> Log2_32(VectorSize)); | 
|  | } | 
|  |  | 
|  | case Hexagon::J2_loop0i: | 
|  | case Hexagon::J2_loop1i: | 
|  | return isUInt<10>(Offset); | 
|  |  | 
|  | case Hexagon::S4_storeirb_io: | 
|  | case Hexagon::S4_storeirbt_io: | 
|  | case Hexagon::S4_storeirbf_io: | 
|  | return isUInt<6>(Offset); | 
|  |  | 
|  | case Hexagon::S4_storeirh_io: | 
|  | case Hexagon::S4_storeirht_io: | 
|  | case Hexagon::S4_storeirhf_io: | 
|  | return isShiftedUInt<6,1>(Offset); | 
|  |  | 
|  | case Hexagon::S4_storeiri_io: | 
|  | case Hexagon::S4_storeirit_io: | 
|  | case Hexagon::S4_storeirif_io: | 
|  | return isShiftedUInt<6,2>(Offset); | 
|  | } | 
|  |  | 
|  | if (Extend) | 
|  | return true; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case Hexagon::L2_loadri_io: | 
|  | case Hexagon::S2_storeri_io: | 
|  | return (Offset >= Hexagon_MEMW_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMW_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::L2_loadrd_io: | 
|  | case Hexagon::S2_storerd_io: | 
|  | return (Offset >= Hexagon_MEMD_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMD_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::L2_loadrh_io: | 
|  | case Hexagon::L2_loadruh_io: | 
|  | case Hexagon::S2_storerh_io: | 
|  | case Hexagon::S2_storerf_io: | 
|  | return (Offset >= Hexagon_MEMH_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMH_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::L2_loadrb_io: | 
|  | case Hexagon::L2_loadrub_io: | 
|  | case Hexagon::S2_storerb_io: | 
|  | return (Offset >= Hexagon_MEMB_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_MEMB_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::A2_addi: | 
|  | return (Offset >= Hexagon_ADDI_OFFSET_MIN) && | 
|  | (Offset <= Hexagon_ADDI_OFFSET_MAX); | 
|  |  | 
|  | case Hexagon::L4_iadd_memopw_io: | 
|  | case Hexagon::L4_isub_memopw_io: | 
|  | case Hexagon::L4_add_memopw_io: | 
|  | case Hexagon::L4_sub_memopw_io: | 
|  | case Hexagon::L4_and_memopw_io: | 
|  | case Hexagon::L4_or_memopw_io: | 
|  | return (0 <= Offset && Offset <= 255); | 
|  |  | 
|  | case Hexagon::L4_iadd_memoph_io: | 
|  | case Hexagon::L4_isub_memoph_io: | 
|  | case Hexagon::L4_add_memoph_io: | 
|  | case Hexagon::L4_sub_memoph_io: | 
|  | case Hexagon::L4_and_memoph_io: | 
|  | case Hexagon::L4_or_memoph_io: | 
|  | return (0 <= Offset && Offset <= 127); | 
|  |  | 
|  | case Hexagon::L4_iadd_memopb_io: | 
|  | case Hexagon::L4_isub_memopb_io: | 
|  | case Hexagon::L4_add_memopb_io: | 
|  | case Hexagon::L4_sub_memopb_io: | 
|  | case Hexagon::L4_and_memopb_io: | 
|  | case Hexagon::L4_or_memopb_io: | 
|  | return (0 <= Offset && Offset <= 63); | 
|  |  | 
|  | // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of | 
|  | // any size. Later pass knows how to handle it. | 
|  | case Hexagon::STriw_pred: | 
|  | case Hexagon::LDriw_pred: | 
|  | case Hexagon::STriw_ctr: | 
|  | case Hexagon::LDriw_ctr: | 
|  | return true; | 
|  |  | 
|  | case Hexagon::PS_fi: | 
|  | case Hexagon::PS_fia: | 
|  | case Hexagon::INLINEASM: | 
|  | return true; | 
|  |  | 
|  | case Hexagon::L2_ploadrbt_io: | 
|  | case Hexagon::L2_ploadrbf_io: | 
|  | case Hexagon::L2_ploadrubt_io: | 
|  | case Hexagon::L2_ploadrubf_io: | 
|  | case Hexagon::S2_pstorerbt_io: | 
|  | case Hexagon::S2_pstorerbf_io: | 
|  | return isUInt<6>(Offset); | 
|  |  | 
|  | case Hexagon::L2_ploadrht_io: | 
|  | case Hexagon::L2_ploadrhf_io: | 
|  | case Hexagon::L2_ploadruht_io: | 
|  | case Hexagon::L2_ploadruhf_io: | 
|  | case Hexagon::S2_pstorerht_io: | 
|  | case Hexagon::S2_pstorerhf_io: | 
|  | return isShiftedUInt<6,1>(Offset); | 
|  |  | 
|  | case Hexagon::L2_ploadrit_io: | 
|  | case Hexagon::L2_ploadrif_io: | 
|  | case Hexagon::S2_pstorerit_io: | 
|  | case Hexagon::S2_pstorerif_io: | 
|  | return isShiftedUInt<6,2>(Offset); | 
|  |  | 
|  | case Hexagon::L2_ploadrdt_io: | 
|  | case Hexagon::L2_ploadrdf_io: | 
|  | case Hexagon::S2_pstorerdt_io: | 
|  | case Hexagon::S2_pstorerdf_io: | 
|  | return isShiftedUInt<6,3>(Offset); | 
|  | } // switch | 
|  |  | 
|  | llvm_unreachable("No offset range is defined for this opcode. " | 
|  | "Please define it in the above switch statement!"); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { | 
|  | return isHVXVec(MI) && isAccumulator(MI); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { | 
|  | const uint64_t F = get(MI.getOpcode()).TSFlags; | 
|  | const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); | 
|  | return | 
|  | V == HexagonII::TypeCVI_VA         || | 
|  | V == HexagonII::TypeCVI_VA_DV; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const { | 
|  | if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI)) | 
|  | return true; | 
|  |  | 
|  | if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI))) | 
|  | return true; | 
|  |  | 
|  | if (mayBeNewStore(ConsMI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | // Byte | 
|  | case Hexagon::L2_loadrub_io: | 
|  | case Hexagon::L4_loadrub_ur: | 
|  | case Hexagon::L4_loadrub_ap: | 
|  | case Hexagon::L2_loadrub_pr: | 
|  | case Hexagon::L2_loadrub_pbr: | 
|  | case Hexagon::L2_loadrub_pi: | 
|  | case Hexagon::L2_loadrub_pci: | 
|  | case Hexagon::L2_loadrub_pcr: | 
|  | case Hexagon::L2_loadbzw2_io: | 
|  | case Hexagon::L4_loadbzw2_ur: | 
|  | case Hexagon::L4_loadbzw2_ap: | 
|  | case Hexagon::L2_loadbzw2_pr: | 
|  | case Hexagon::L2_loadbzw2_pbr: | 
|  | case Hexagon::L2_loadbzw2_pi: | 
|  | case Hexagon::L2_loadbzw2_pci: | 
|  | case Hexagon::L2_loadbzw2_pcr: | 
|  | case Hexagon::L2_loadbzw4_io: | 
|  | case Hexagon::L4_loadbzw4_ur: | 
|  | case Hexagon::L4_loadbzw4_ap: | 
|  | case Hexagon::L2_loadbzw4_pr: | 
|  | case Hexagon::L2_loadbzw4_pbr: | 
|  | case Hexagon::L2_loadbzw4_pi: | 
|  | case Hexagon::L2_loadbzw4_pci: | 
|  | case Hexagon::L2_loadbzw4_pcr: | 
|  | case Hexagon::L4_loadrub_rr: | 
|  | case Hexagon::L2_ploadrubt_io: | 
|  | case Hexagon::L2_ploadrubt_pi: | 
|  | case Hexagon::L2_ploadrubf_io: | 
|  | case Hexagon::L2_ploadrubf_pi: | 
|  | case Hexagon::L2_ploadrubtnew_io: | 
|  | case Hexagon::L2_ploadrubfnew_io: | 
|  | case Hexagon::L4_ploadrubt_rr: | 
|  | case Hexagon::L4_ploadrubf_rr: | 
|  | case Hexagon::L4_ploadrubtnew_rr: | 
|  | case Hexagon::L4_ploadrubfnew_rr: | 
|  | case Hexagon::L2_ploadrubtnew_pi: | 
|  | case Hexagon::L2_ploadrubfnew_pi: | 
|  | case Hexagon::L4_ploadrubt_abs: | 
|  | case Hexagon::L4_ploadrubf_abs: | 
|  | case Hexagon::L4_ploadrubtnew_abs: | 
|  | case Hexagon::L4_ploadrubfnew_abs: | 
|  | case Hexagon::L2_loadrubgp: | 
|  | // Half | 
|  | case Hexagon::L2_loadruh_io: | 
|  | case Hexagon::L4_loadruh_ur: | 
|  | case Hexagon::L4_loadruh_ap: | 
|  | case Hexagon::L2_loadruh_pr: | 
|  | case Hexagon::L2_loadruh_pbr: | 
|  | case Hexagon::L2_loadruh_pi: | 
|  | case Hexagon::L2_loadruh_pci: | 
|  | case Hexagon::L2_loadruh_pcr: | 
|  | case Hexagon::L4_loadruh_rr: | 
|  | case Hexagon::L2_ploadruht_io: | 
|  | case Hexagon::L2_ploadruht_pi: | 
|  | case Hexagon::L2_ploadruhf_io: | 
|  | case Hexagon::L2_ploadruhf_pi: | 
|  | case Hexagon::L2_ploadruhtnew_io: | 
|  | case Hexagon::L2_ploadruhfnew_io: | 
|  | case Hexagon::L4_ploadruht_rr: | 
|  | case Hexagon::L4_ploadruhf_rr: | 
|  | case Hexagon::L4_ploadruhtnew_rr: | 
|  | case Hexagon::L4_ploadruhfnew_rr: | 
|  | case Hexagon::L2_ploadruhtnew_pi: | 
|  | case Hexagon::L2_ploadruhfnew_pi: | 
|  | case Hexagon::L4_ploadruht_abs: | 
|  | case Hexagon::L4_ploadruhf_abs: | 
|  | case Hexagon::L4_ploadruhtnew_abs: | 
|  | case Hexagon::L4_ploadruhfnew_abs: | 
|  | case Hexagon::L2_loadruhgp: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add latency to instruction. | 
|  | bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, | 
|  | const MachineInstr &MI2) const { | 
|  | if (isHVXVec(MI1) && isHVXVec(MI2)) | 
|  | if (!isVecUsableNextPacket(MI1, MI2)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get the base register and byte offset of a load/store instr. | 
|  | bool HexagonInstrInfo::getMemOperandWithOffset( | 
|  | const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | unsigned AccessSize = 0; | 
|  | BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize); | 
|  | assert((!BaseOp || BaseOp->isReg()) && | 
|  | "getMemOperandWithOffset only supports base " | 
|  | "operands of type register."); | 
|  | return BaseOp != nullptr; | 
|  | } | 
|  |  | 
|  | /// Can these instructions execute at the same time in a bundle. | 
|  | bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, | 
|  | const MachineInstr &Second) const { | 
|  | if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { | 
|  | const MachineOperand &Op = Second.getOperand(0); | 
|  | if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) | 
|  | return true; | 
|  | } | 
|  | if (DisableNVSchedule) | 
|  | return false; | 
|  | if (mayBeNewStore(Second)) { | 
|  | // Make sure the definition of the first instruction is the value being | 
|  | // stored. | 
|  | const MachineOperand &Stored = | 
|  | Second.getOperand(Second.getNumOperands() - 1); | 
|  | if (!Stored.isReg()) | 
|  | return false; | 
|  | for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { | 
|  | const MachineOperand &Op = First.getOperand(i); | 
|  | if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { | 
|  | unsigned Opc = CallMI.getOpcode(); | 
|  | return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { | 
|  | for (auto &I : *B) | 
|  | if (I.isEHLabel()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true if an instruction can be converted into a non-extended | 
|  | // equivalent instruction. | 
|  | bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { | 
|  | short NonExtOpcode; | 
|  | // Check if the instruction has a register form that uses register in place | 
|  | // of the extended operand, if so return that as the non-extended form. | 
|  | if (Hexagon::getRegForm(MI.getOpcode()) >= 0) | 
|  | return true; | 
|  |  | 
|  | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { | 
|  | // Check addressing mode and retrieve non-ext equivalent instruction. | 
|  |  | 
|  | switch (getAddrMode(MI)) { | 
|  | case HexagonII::Absolute: | 
|  | // Load/store with absolute addressing mode can be converted into | 
|  | // base+offset mode. | 
|  | NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode()); | 
|  | break; | 
|  | case HexagonII::BaseImmOffset: | 
|  | // Load/store with base+offset addressing mode can be converted into | 
|  | // base+register offset addressing mode. However left shift operand should | 
|  | // be set to 0. | 
|  | NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode()); | 
|  | break; | 
|  | case HexagonII::BaseLongOffset: | 
|  | NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | if (NonExtOpcode < 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { | 
|  | return Hexagon::getRealHWInstr(MI.getOpcode(), | 
|  | Hexagon::InstrType_Pseudo) >= 0; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) | 
|  | const { | 
|  | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); | 
|  | while (I != E) { | 
|  | if (I->isBarrier()) | 
|  | return true; | 
|  | ++I; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true, if a LD insn can be promoted to a cur load. | 
|  | bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && | 
|  | Subtarget.hasV60Ops(); | 
|  | } | 
|  |  | 
|  | // Returns true, if a ST insn can be promoted to a new-value store. | 
|  | bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { | 
|  | if (MI.mayStore() && !Subtarget.useNewValueStores()) | 
|  | return false; | 
|  |  | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const { | 
|  | // There is no stall when ProdMI is not a V60 vector. | 
|  | if (!isHVXVec(ProdMI)) | 
|  | return false; | 
|  |  | 
|  | // There is no stall when ProdMI and ConsMI are not dependent. | 
|  | if (!isDependent(ProdMI, ConsMI)) | 
|  | return false; | 
|  |  | 
|  | // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI | 
|  | // are scheduled in consecutive packets. | 
|  | if (isVecUsableNextPacket(ProdMI, ConsMI)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::producesStall(const MachineInstr &MI, | 
|  | MachineBasicBlock::const_instr_iterator BII) const { | 
|  | // There is no stall when I is not a V60 vector. | 
|  | if (!isHVXVec(MI)) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock::const_instr_iterator MII = BII; | 
|  | MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); | 
|  |  | 
|  | if (!MII->isBundle()) | 
|  | return producesStall(*MII, MI); | 
|  |  | 
|  | for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { | 
|  | const MachineInstr &J = *MII; | 
|  | if (producesStall(J, MI)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, | 
|  | unsigned PredReg) const { | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | // Predicate register must be explicitly defined. | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(PredReg)) | 
|  | return false; | 
|  | if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Instruction that produce late predicate cannot be used as sources of | 
|  | // dot-new. | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::A4_addp_c: | 
|  | case Hexagon::A4_subp_c: | 
|  | case Hexagon::A4_tlbmatch: | 
|  | case Hexagon::A5_ACS: | 
|  | case Hexagon::F2_sfinvsqrta: | 
|  | case Hexagon::F2_sfrecipa: | 
|  | case Hexagon::J2_endloop0: | 
|  | case Hexagon::J2_endloop01: | 
|  | case Hexagon::J2_ploop1si: | 
|  | case Hexagon::J2_ploop1sr: | 
|  | case Hexagon::J2_ploop2si: | 
|  | case Hexagon::J2_ploop2sr: | 
|  | case Hexagon::J2_ploop3si: | 
|  | case Hexagon::J2_ploop3sr: | 
|  | case Hexagon::S2_cabacdecbin: | 
|  | case Hexagon::S2_storew_locked: | 
|  | case Hexagon::S4_stored_locked: | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { | 
|  | return Opcode == Hexagon::J2_jumpt      || | 
|  | Opcode == Hexagon::J2_jumptpt    || | 
|  | Opcode == Hexagon::J2_jumpf      || | 
|  | Opcode == Hexagon::J2_jumpfpt    || | 
|  | Opcode == Hexagon::J2_jumptnew   || | 
|  | Opcode == Hexagon::J2_jumpfnew   || | 
|  | Opcode == Hexagon::J2_jumptnewpt || | 
|  | Opcode == Hexagon::J2_jumpfnewpt; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { | 
|  | if (Cond.empty() || !isPredicated(Cond[0].getImm())) | 
|  | return false; | 
|  | return !isPredicatedTrue(Cond[0].getImm()); | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; | 
|  | } | 
|  |  | 
|  | // Returns the base register in a memory access (load/store). The offset is | 
|  | // returned in Offset and the access size is returned in AccessSize. | 
|  | // If the base operand has a subregister or the offset field does not contain | 
|  | // an immediate value, return nullptr. | 
|  | MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, | 
|  | int64_t &Offset, | 
|  | unsigned &AccessSize) const { | 
|  | // Return if it is not a base+offset type instruction or a MemOp. | 
|  | if (getAddrMode(MI) != HexagonII::BaseImmOffset && | 
|  | getAddrMode(MI) != HexagonII::BaseLongOffset && | 
|  | !isMemOp(MI) && !isPostIncrement(MI)) | 
|  | return nullptr; | 
|  |  | 
|  | AccessSize = getMemAccessSize(MI); | 
|  |  | 
|  | unsigned BasePos = 0, OffsetPos = 0; | 
|  | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) | 
|  | return nullptr; | 
|  |  | 
|  | // Post increment updates its EA after the mem access, | 
|  | // so we need to treat its offset as zero. | 
|  | if (isPostIncrement(MI)) { | 
|  | Offset = 0; | 
|  | } else { | 
|  | const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); | 
|  | if (!OffsetOp.isImm()) | 
|  | return nullptr; | 
|  | Offset = OffsetOp.getImm(); | 
|  | } | 
|  |  | 
|  | const MachineOperand &BaseOp = MI.getOperand(BasePos); | 
|  | if (BaseOp.getSubReg() != 0) | 
|  | return nullptr; | 
|  | return &const_cast<MachineOperand&>(BaseOp); | 
|  | } | 
|  |  | 
|  | /// Return the position of the base and offset operands for this instruction. | 
|  | bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, | 
|  | unsigned &BasePos, unsigned &OffsetPos) const { | 
|  | if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) | 
|  | return false; | 
|  |  | 
|  | // Deal with memops first. | 
|  | if (isMemOp(MI)) { | 
|  | BasePos = 0; | 
|  | OffsetPos = 1; | 
|  | } else if (MI.mayStore()) { | 
|  | BasePos = 0; | 
|  | OffsetPos = 1; | 
|  | } else if (MI.mayLoad()) { | 
|  | BasePos = 1; | 
|  | OffsetPos = 2; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | if (isPredicated(MI)) { | 
|  | BasePos++; | 
|  | OffsetPos++; | 
|  | } | 
|  | if (isPostIncrement(MI)) { | 
|  | BasePos++; | 
|  | OffsetPos++; | 
|  | } | 
|  |  | 
|  | if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Inserts branching instructions in reverse order of their occurrence. | 
|  | // e.g. jump_t t1 (i1) | 
|  | // jump t2        (i2) | 
|  | // Jumpers = {i2, i1} | 
|  | SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( | 
|  | MachineBasicBlock& MBB) const { | 
|  | SmallVector<MachineInstr*, 2> Jumpers; | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::instr_iterator I = MBB.instr_end(); | 
|  | if (I == MBB.instr_begin()) | 
|  | return Jumpers; | 
|  |  | 
|  | // A basic block may looks like this: | 
|  | // | 
|  | //  [   insn | 
|  | //     EH_LABEL | 
|  | //      insn | 
|  | //      insn | 
|  | //      insn | 
|  | //     EH_LABEL | 
|  | //      insn     ] | 
|  | // | 
|  | // It has two succs but does not have a terminator | 
|  | // Don't know how to handle it. | 
|  | do { | 
|  | --I; | 
|  | if (I->isEHLabel()) | 
|  | return Jumpers; | 
|  | } while (I != MBB.instr_begin()); | 
|  |  | 
|  | I = MBB.instr_end(); | 
|  | --I; | 
|  |  | 
|  | while (I->isDebugInstr()) { | 
|  | if (I == MBB.instr_begin()) | 
|  | return Jumpers; | 
|  | --I; | 
|  | } | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | return Jumpers; | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr *LastInst = &*I; | 
|  | Jumpers.push_back(LastInst); | 
|  | MachineInstr *SecondLastInst = nullptr; | 
|  | // Find one more terminator if present. | 
|  | do { | 
|  | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { | 
|  | if (!SecondLastInst) { | 
|  | SecondLastInst = &*I; | 
|  | Jumpers.push_back(SecondLastInst); | 
|  | } else // This is a third branch. | 
|  | return Jumpers; | 
|  | } | 
|  | if (I == MBB.instr_begin()) | 
|  | break; | 
|  | --I; | 
|  | } while (true); | 
|  | return Jumpers; | 
|  | } | 
|  |  | 
|  | // Returns Operand Index for the constant extended instruction. | 
|  | unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; | 
|  | } | 
|  |  | 
|  | // See if instruction could potentially be a duplex candidate. | 
|  | // If so, return its group. Zero otherwise. | 
|  | HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( | 
|  | const MachineInstr &MI) const { | 
|  | unsigned DstReg, SrcReg, Src1Reg, Src2Reg; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return HexagonII::HCG_None; | 
|  | // | 
|  | // Compound pairs. | 
|  | // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" | 
|  | // "Rd16=#U6 ; jump #r9:2" | 
|  | // "Rd16=Rs16 ; jump #r9:2" | 
|  | // | 
|  | case Hexagon::C2_cmpeq: | 
|  | case Hexagon::C2_cmpgt: | 
|  | case Hexagon::C2_cmpgtu: | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | Src1Reg = MI.getOperand(1).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(DstReg) && | 
|  | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | 
|  | isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg)) | 
|  | return HexagonII::HCG_A; | 
|  | break; | 
|  | case Hexagon::C2_cmpeqi: | 
|  | case Hexagon::C2_cmpgti: | 
|  | case Hexagon::C2_cmpgtui: | 
|  | // P0 = cmp.eq(Rs,#u2) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(DstReg) && | 
|  | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | 
|  | isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && | 
|  | ((isUInt<5>(MI.getOperand(2).getImm())) || | 
|  | (MI.getOperand(2).getImm() == -1))) | 
|  | return HexagonII::HCG_A; | 
|  | break; | 
|  | case Hexagon::A2_tfr: | 
|  | // Rd = Rs | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | 
|  | return HexagonII::HCG_A; | 
|  | break; | 
|  | case Hexagon::A2_tfrsi: | 
|  | // Rd = #u6 | 
|  | // Do not test for #u6 size since the const is getting extended | 
|  | // regardless and compound could be formed. | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | if (isIntRegForSubInst(DstReg)) | 
|  | return HexagonII::HCG_A; | 
|  | break; | 
|  | case Hexagon::S2_tstbit_i: | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | Src1Reg = MI.getOperand(1).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(DstReg) && | 
|  | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | 
|  | MI.getOperand(2).isImm() && | 
|  | isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0)) | 
|  | return HexagonII::HCG_A; | 
|  | break; | 
|  | // The fact that .new form is used pretty much guarantees | 
|  | // that predicate register will match. Nevertheless, | 
|  | // there could be some false positives without additional | 
|  | // checking. | 
|  | case Hexagon::J2_jumptnew: | 
|  | case Hexagon::J2_jumpfnew: | 
|  | case Hexagon::J2_jumptnewpt: | 
|  | case Hexagon::J2_jumpfnewpt: | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(Src1Reg) && | 
|  | (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) | 
|  | return HexagonII::HCG_B; | 
|  | break; | 
|  | // Transfer and jump: | 
|  | // Rd=#U6 ; jump #r9:2 | 
|  | // Rd=Rs ; jump #r9:2 | 
|  | // Do not test for jump range here. | 
|  | case Hexagon::J2_jump: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | 
|  | return HexagonII::HCG_C; | 
|  | } | 
|  |  | 
|  | return HexagonII::HCG_None; | 
|  | } | 
|  |  | 
|  | // Returns -1 when there is no opcode found. | 
|  | unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, | 
|  | const MachineInstr &GB) const { | 
|  | assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A); | 
|  | assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B); | 
|  | if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || | 
|  | (GB.getOpcode() != Hexagon::J2_jumptnew)) | 
|  | return -1u; | 
|  | unsigned DestReg = GA.getOperand(0).getReg(); | 
|  | if (!GB.readsRegister(DestReg)) | 
|  | return -1u; | 
|  | if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) | 
|  | return -1u; | 
|  | // The value compared against must be either u5 or -1. | 
|  | const MachineOperand &CmpOp = GA.getOperand(2); | 
|  | if (!CmpOp.isImm()) | 
|  | return -1u; | 
|  | int V = CmpOp.getImm(); | 
|  | if (V == -1) | 
|  | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt | 
|  | : Hexagon::J4_cmpeqn1_tp1_jump_nt; | 
|  | if (!isUInt<5>(V)) | 
|  | return -1u; | 
|  | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt | 
|  | : Hexagon::J4_cmpeqi_tp1_jump_nt; | 
|  | } | 
|  |  | 
|  | int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { | 
|  | enum Hexagon::PredSense inPredSense; | 
|  | inPredSense = invertPredicate ? Hexagon::PredSense_false : | 
|  | Hexagon::PredSense_true; | 
|  | int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); | 
|  | if (CondOpcode >= 0) // Valid Conditional opcode/instruction | 
|  | return CondOpcode; | 
|  |  | 
|  | llvm_unreachable("Unexpected predicable instruction"); | 
|  | } | 
|  |  | 
|  | // Return the cur value instruction for a given store. | 
|  | int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown .cur type"); | 
|  | case Hexagon::V6_vL32b_pi: | 
|  | return Hexagon::V6_vL32b_cur_pi; | 
|  | case Hexagon::V6_vL32b_ai: | 
|  | return Hexagon::V6_vL32b_cur_ai; | 
|  | case Hexagon::V6_vL32b_nt_pi: | 
|  | return Hexagon::V6_vL32b_nt_cur_pi; | 
|  | case Hexagon::V6_vL32b_nt_ai: | 
|  | return Hexagon::V6_vL32b_nt_cur_ai; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return the regular version of the .cur instruction. | 
|  | int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown .cur type"); | 
|  | case Hexagon::V6_vL32b_cur_pi: | 
|  | return Hexagon::V6_vL32b_pi; | 
|  | case Hexagon::V6_vL32b_cur_ai: | 
|  | return Hexagon::V6_vL32b_ai; | 
|  | case Hexagon::V6_vL32b_nt_cur_pi: | 
|  | return Hexagon::V6_vL32b_nt_pi; | 
|  | case Hexagon::V6_vL32b_nt_cur_ai: | 
|  | return Hexagon::V6_vL32b_nt_ai; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The diagram below shows the steps involved in the conversion of a predicated | 
|  | // store instruction to its .new predicated new-value form. | 
|  | // | 
|  | // Note: It doesn't include conditional new-value stores as they can't be | 
|  | // converted to .new predicate. | 
|  | // | 
|  | //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] | 
|  | //                ^           ^ | 
|  | //               /             \ (not OK. it will cause new-value store to be | 
|  | //              /               X conditional on p0.new while R2 producer is | 
|  | //             /                 \ on p0) | 
|  | //            /                   \. | 
|  | //     p.new store                 p.old NV store | 
|  | // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new] | 
|  | //            ^                  ^ | 
|  | //             \                / | 
|  | //              \              / | 
|  | //               \            / | 
|  | //                 p.old store | 
|  | //             [if (p0)memw(R0+#0)=R2] | 
|  | // | 
|  | // The following set of instructions further explains the scenario where | 
|  | // conditional new-value store becomes invalid when promoted to .new predicate | 
|  | // form. | 
|  | // | 
|  | // { 1) if (p0) r0 = add(r1, r2) | 
|  | //   2) p0 = cmp.eq(r3, #0) } | 
|  | // | 
|  | //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with | 
|  | // the first two instructions because in instr 1, r0 is conditional on old value | 
|  | // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which | 
|  | // is not valid for new-value stores. | 
|  | // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded | 
|  | // from the "Conditional Store" list. Because a predicated new value store | 
|  | // would NOT be promoted to a double dot new store. See diagram below: | 
|  | // This function returns yes for those stores that are predicated but not | 
|  | // yet promoted to predicate dot new instructions. | 
|  | // | 
|  | //                          +---------------------+ | 
|  | //                    /-----| if (p0) memw(..)=r0 |---------\~ | 
|  | //                   ||     +---------------------+         || | 
|  | //          promote  ||       /\       /\                   ||  promote | 
|  | //                   ||      /||\     /||\                  || | 
|  | //                  \||/    demote     ||                  \||/ | 
|  | //                   \/       ||       ||                   \/ | 
|  | //       +-------------------------+   ||   +-------------------------+ | 
|  | //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new | | 
|  | //       +-------------------------+   ||   +-------------------------+ | 
|  | //                        ||           ||         || | 
|  | //                        ||         demote      \||/ | 
|  | //                      promote        ||         \/ NOT possible | 
|  | //                        ||           ||         /\~ | 
|  | //                       \||/          ||        /||\~ | 
|  | //                        \/           ||         || | 
|  | //                      +-----------------------------+ | 
|  | //                      | if (p0.new) memw(..)=r0.new | | 
|  | //                      +-----------------------------+ | 
|  | //                           Double Dot New Store | 
|  | // | 
|  | // Returns the most basic instruction for the .new predicated instructions and | 
|  | // new-value stores. | 
|  | // For example, all of the following instructions will be converted back to the | 
|  | // same instruction: | 
|  | // 1) if (p0.new) memw(R0+#0) = R1.new  ---> | 
|  | // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1 | 
|  | // 3) if (p0.new) memw(R0+#0) = R1      ---> | 
|  | // | 
|  | // To understand the translation of instruction 1 to its original form, consider | 
|  | // a packet with 3 instructions. | 
|  | // { p0 = cmp.eq(R0,R1) | 
|  | //   if (p0.new) R2 = add(R3, R4) | 
|  | //   R5 = add (R3, R1) | 
|  | // } | 
|  | // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet | 
|  | // | 
|  | // This instruction can be part of the previous packet only if both p0 and R2 | 
|  | // are promoted to .new values. This promotion happens in steps, first | 
|  | // predicate register is promoted to .new and in the next iteration R2 is | 
|  | // promoted. Therefore, in case of dependence check failure (due to R5) during | 
|  | // next iteration, it should be converted back to its most basic form. | 
|  |  | 
|  | // Return the new value instruction for a given store. | 
|  | int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { | 
|  | int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode()); | 
|  | if (NVOpcode >= 0) // Valid new-value store instruction. | 
|  | return NVOpcode; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | report_fatal_error(std::string("Unknown .new type: ") + | 
|  | std::to_string(MI.getOpcode())); | 
|  | case Hexagon::S4_storerb_ur: | 
|  | return Hexagon::S4_storerbnew_ur; | 
|  |  | 
|  | case Hexagon::S2_storerb_pci: | 
|  | return Hexagon::S2_storerb_pci; | 
|  |  | 
|  | case Hexagon::S2_storeri_pci: | 
|  | return Hexagon::S2_storeri_pci; | 
|  |  | 
|  | case Hexagon::S2_storerh_pci: | 
|  | return Hexagon::S2_storerh_pci; | 
|  |  | 
|  | case Hexagon::S2_storerd_pci: | 
|  | return Hexagon::S2_storerd_pci; | 
|  |  | 
|  | case Hexagon::S2_storerf_pci: | 
|  | return Hexagon::S2_storerf_pci; | 
|  |  | 
|  | case Hexagon::V6_vS32b_ai: | 
|  | return Hexagon::V6_vS32b_new_ai; | 
|  |  | 
|  | case Hexagon::V6_vS32b_pi: | 
|  | return Hexagon::V6_vS32b_new_pi; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns the opcode to use when converting MI, which is a conditional jump, | 
|  | // into a conditional instruction which uses the .new value of the predicate. | 
|  | // We also use branch probabilities to add a hint to the jump. | 
|  | // If MBPI is null, all edges will be treated as equally likely for the | 
|  | // purposes of establishing a predication hint. | 
|  | int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, | 
|  | const MachineBranchProbabilityInfo *MBPI) const { | 
|  | // We assume that block can have at most two successors. | 
|  | const MachineBasicBlock *Src = MI.getParent(); | 
|  | const MachineOperand &BrTarget = MI.getOperand(1); | 
|  | bool Taken = false; | 
|  | const BranchProbability OneHalf(1, 2); | 
|  |  | 
|  | auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, | 
|  | const MachineBasicBlock *Dst) { | 
|  | if (MBPI) | 
|  | return MBPI->getEdgeProbability(Src, Dst); | 
|  | return BranchProbability(1, Src->succ_size()); | 
|  | }; | 
|  |  | 
|  | if (BrTarget.isMBB()) { | 
|  | const MachineBasicBlock *Dst = BrTarget.getMBB(); | 
|  | Taken = getEdgeProbability(Src, Dst) >= OneHalf; | 
|  | } else { | 
|  | // The branch target is not a basic block (most likely a function). | 
|  | // Since BPI only gives probabilities for targets that are basic blocks, | 
|  | // try to identify another target of this branch (potentially a fall- | 
|  | // -through) and check the probability of that target. | 
|  | // | 
|  | // The only handled branch combinations are: | 
|  | // - one conditional branch, | 
|  | // - one conditional branch followed by one unconditional branch. | 
|  | // Otherwise, assume not-taken. | 
|  | assert(MI.isConditionalBranch()); | 
|  | const MachineBasicBlock &B = *MI.getParent(); | 
|  | bool SawCond = false, Bad = false; | 
|  | for (const MachineInstr &I : B) { | 
|  | if (!I.isBranch()) | 
|  | continue; | 
|  | if (I.isConditionalBranch()) { | 
|  | SawCond = true; | 
|  | if (&I != &MI) { | 
|  | Bad = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (I.isUnconditionalBranch() && !SawCond) { | 
|  | Bad = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Bad) { | 
|  | MachineBasicBlock::const_instr_iterator It(MI); | 
|  | MachineBasicBlock::const_instr_iterator NextIt = std::next(It); | 
|  | if (NextIt == B.instr_end()) { | 
|  | // If this branch is the last, look for the fall-through block. | 
|  | for (const MachineBasicBlock *SB : B.successors()) { | 
|  | if (!B.isLayoutSuccessor(SB)) | 
|  | continue; | 
|  | Taken = getEdgeProbability(Src, SB) < OneHalf; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | assert(NextIt->isUnconditionalBranch()); | 
|  | // Find the first MBB operand and assume it's the target. | 
|  | const MachineBasicBlock *BT = nullptr; | 
|  | for (const MachineOperand &Op : NextIt->operands()) { | 
|  | if (!Op.isMBB()) | 
|  | continue; | 
|  | BT = Op.getMBB(); | 
|  | break; | 
|  | } | 
|  | Taken = BT && getEdgeProbability(Src, BT) < OneHalf; | 
|  | } | 
|  | } // if (!Bad) | 
|  | } | 
|  |  | 
|  | // The Taken flag should be set to something reasonable by this point. | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::J2_jumpt: | 
|  | return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; | 
|  | case Hexagon::J2_jumpf: | 
|  | return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Unexpected jump instruction."); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return .new predicate version for an instruction. | 
|  | int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, | 
|  | const MachineBranchProbabilityInfo *MBPI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | // Condtional Jumps | 
|  | case Hexagon::J2_jumpt: | 
|  | case Hexagon::J2_jumpf: | 
|  | return getDotNewPredJumpOp(MI, MBPI); | 
|  | } | 
|  |  | 
|  | int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode()); | 
|  | if (NewOpcode >= 0) | 
|  | return NewOpcode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { | 
|  | int NewOp = MI.getOpcode(); | 
|  | if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form | 
|  | NewOp = Hexagon::getPredOldOpcode(NewOp); | 
|  | // All Hexagon architectures have prediction bits on dot-new branches, | 
|  | // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure | 
|  | // to pick the right opcode when converting back to dot-old. | 
|  | if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) { | 
|  | switch (NewOp) { | 
|  | case Hexagon::J2_jumptpt: | 
|  | NewOp = Hexagon::J2_jumpt; | 
|  | break; | 
|  | case Hexagon::J2_jumpfpt: | 
|  | NewOp = Hexagon::J2_jumpf; | 
|  | break; | 
|  | case Hexagon::J2_jumprtpt: | 
|  | NewOp = Hexagon::J2_jumprt; | 
|  | break; | 
|  | case Hexagon::J2_jumprfpt: | 
|  | NewOp = Hexagon::J2_jumprf; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(NewOp >= 0 && | 
|  | "Couldn't change predicate new instruction to its old form."); | 
|  | } | 
|  |  | 
|  | if (isNewValueStore(NewOp)) { // Convert into non-new-value format | 
|  | NewOp = Hexagon::getNonNVStore(NewOp); | 
|  | assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasV60Ops()) | 
|  | return NewOp; | 
|  |  | 
|  | // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. | 
|  | switch (NewOp) { | 
|  | case Hexagon::J2_jumpfpt: | 
|  | return Hexagon::J2_jumpf; | 
|  | case Hexagon::J2_jumptpt: | 
|  | return Hexagon::J2_jumpt; | 
|  | case Hexagon::J2_jumprfpt: | 
|  | return Hexagon::J2_jumprf; | 
|  | case Hexagon::J2_jumprtpt: | 
|  | return Hexagon::J2_jumprt; | 
|  | } | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // See if instruction could potentially be a duplex candidate. | 
|  | // If so, return its group. Zero otherwise. | 
|  | HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( | 
|  | const MachineInstr &MI) const { | 
|  | unsigned DstReg, SrcReg, Src1Reg, Src2Reg; | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return HexagonII::HSIG_None; | 
|  | // | 
|  | // Group L1: | 
|  | // | 
|  | // Rd = memw(Rs+#u4:2) | 
|  | // Rd = memub(Rs+#u4:0) | 
|  | case Hexagon::L2_loadri_io: | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | // Special case this one from Group L2. | 
|  | // Rd = memw(r29+#u5:2) | 
|  | if (isIntRegForSubInst(DstReg)) { | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | 
|  | HRI.getStackRegister() == SrcReg && | 
|  | MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<5,2>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_L2; | 
|  | // Rd = memw(Rs+#u4:2) | 
|  | if (isIntRegForSubInst(SrcReg) && | 
|  | (MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<4,2>(MI.getOperand(2).getImm()))) | 
|  | return HexagonII::HSIG_L1; | 
|  | } | 
|  | break; | 
|  | case Hexagon::L2_loadrub_io: | 
|  | // Rd = memub(Rs+#u4:0) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | 
|  | MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_L1; | 
|  | break; | 
|  | // | 
|  | // Group L2: | 
|  | // | 
|  | // Rd = memh/memuh(Rs+#u3:1) | 
|  | // Rd = memb(Rs+#u3:0) | 
|  | // Rd = memw(r29+#u5:2) - Handled above. | 
|  | // Rdd = memd(r29+#u5:3) | 
|  | // deallocframe | 
|  | // [if ([!]p0[.new])] dealloc_return | 
|  | // [if ([!]p0[.new])] jumpr r31 | 
|  | case Hexagon::L2_loadrh_io: | 
|  | case Hexagon::L2_loadruh_io: | 
|  | // Rd = memh/memuh(Rs+#u3:1) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | 
|  | MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<3,1>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | case Hexagon::L2_loadrb_io: | 
|  | // Rd = memb(Rs+#u3:0) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | 
|  | MI.getOperand(2).isImm() && | 
|  | isUInt<3>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | case Hexagon::L2_loadrd_io: | 
|  | // Rdd = memd(r29+#u5:3) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isDblRegForSubInst(DstReg, HRI) && | 
|  | Hexagon::IntRegsRegClass.contains(SrcReg) && | 
|  | HRI.getStackRegister() == SrcReg && | 
|  | MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<5,3>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | // dealloc_return is not documented in Hexagon Manual, but marked | 
|  | // with A_SUBINSN attribute in iset_v4classic.py. | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | 
|  | case Hexagon::L4_return: | 
|  | case Hexagon::L2_deallocframe: | 
|  | return HexagonII::HSIG_L2; | 
|  | case Hexagon::EH_RETURN_JMPR: | 
|  | case Hexagon::PS_jmpret: | 
|  | case Hexagon::SL2_jumpr31: | 
|  | // jumpr r31 | 
|  | // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | case Hexagon::PS_jmprett: | 
|  | case Hexagon::PS_jmpretf: | 
|  | case Hexagon::PS_jmprettnewpt: | 
|  | case Hexagon::PS_jmpretfnewpt: | 
|  | case Hexagon::PS_jmprettnew: | 
|  | case Hexagon::PS_jmpretfnew: | 
|  | case Hexagon::SL2_jumpr31_t: | 
|  | case Hexagon::SL2_jumpr31_f: | 
|  | case Hexagon::SL2_jumpr31_tnew: | 
|  | DstReg = MI.getOperand(1).getReg(); | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | // [if ([!]p0[.new])] jumpr r31 | 
|  | if ((Hexagon::PredRegsRegClass.contains(SrcReg) && | 
|  | (Hexagon::P0 == SrcReg)) && | 
|  | (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | case Hexagon::L4_return_t: | 
|  | case Hexagon::L4_return_f: | 
|  | case Hexagon::L4_return_tnew_pnt: | 
|  | case Hexagon::L4_return_fnew_pnt: | 
|  | case Hexagon::L4_return_tnew_pt: | 
|  | case Hexagon::L4_return_fnew_pt: | 
|  | // [if ([!]p0[.new])] dealloc_return | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg)) | 
|  | return HexagonII::HSIG_L2; | 
|  | break; | 
|  | // | 
|  | // Group S1: | 
|  | // | 
|  | // memw(Rs+#u4:2) = Rt | 
|  | // memb(Rs+#u4:0) = Rt | 
|  | case Hexagon::S2_storeri_io: | 
|  | // Special case this one from Group S2. | 
|  | // memw(r29+#u5:2) = Rt | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (Hexagon::IntRegsRegClass.contains(Src1Reg) && | 
|  | isIntRegForSubInst(Src2Reg) && | 
|  | HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && | 
|  | isShiftedUInt<5,2>(MI.getOperand(1).getImm())) | 
|  | return HexagonII::HSIG_S2; | 
|  | // memw(Rs+#u4:2) = Rt | 
|  | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | 
|  | MI.getOperand(1).isImm() && | 
|  | isShiftedUInt<4,2>(MI.getOperand(1).getImm())) | 
|  | return HexagonII::HSIG_S1; | 
|  | break; | 
|  | case Hexagon::S2_storerb_io: | 
|  | // memb(Rs+#u4:0) = Rt | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | 
|  | MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm())) | 
|  | return HexagonII::HSIG_S1; | 
|  | break; | 
|  | // | 
|  | // Group S2: | 
|  | // | 
|  | // memh(Rs+#u3:1) = Rt | 
|  | // memw(r29+#u5:2) = Rt | 
|  | // memd(r29+#s6:3) = Rtt | 
|  | // memw(Rs+#u4:2) = #U1 | 
|  | // memb(Rs+#u4) = #U1 | 
|  | // allocframe(#u5:3) | 
|  | case Hexagon::S2_storerh_io: | 
|  | // memh(Rs+#u3:1) = Rt | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | 
|  | MI.getOperand(1).isImm() && | 
|  | isShiftedUInt<3,1>(MI.getOperand(1).getImm())) | 
|  | return HexagonII::HSIG_S1; | 
|  | break; | 
|  | case Hexagon::S2_storerd_io: | 
|  | // memd(r29+#s6:3) = Rtt | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (isDblRegForSubInst(Src2Reg, HRI) && | 
|  | Hexagon::IntRegsRegClass.contains(Src1Reg) && | 
|  | HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && | 
|  | isShiftedInt<6,3>(MI.getOperand(1).getImm())) | 
|  | return HexagonII::HSIG_S2; | 
|  | break; | 
|  | case Hexagon::S4_storeiri_io: | 
|  | // memw(Rs+#u4:2) = #U1 | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() && | 
|  | isShiftedUInt<4,2>(MI.getOperand(1).getImm()) && | 
|  | MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_S2; | 
|  | break; | 
|  | case Hexagon::S4_storeirb_io: | 
|  | // memb(Rs+#u4) = #U1 | 
|  | Src1Reg = MI.getOperand(0).getReg(); | 
|  | if (isIntRegForSubInst(Src1Reg) && | 
|  | MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) && | 
|  | MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_S2; | 
|  | break; | 
|  | case Hexagon::S2_allocframe: | 
|  | if (MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<5,3>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_S1; | 
|  | break; | 
|  | // | 
|  | // Group A: | 
|  | // | 
|  | // Rx = add(Rx,#s7) | 
|  | // Rd = Rs | 
|  | // Rd = #u6 | 
|  | // Rd = #-1 | 
|  | // if ([!]P0[.new]) Rd = #0 | 
|  | // Rd = add(r29,#u6:2) | 
|  | // Rx = add(Rx,Rs) | 
|  | // P0 = cmp.eq(Rs,#u2) | 
|  | // Rdd = combine(#0,Rs) | 
|  | // Rdd = combine(Rs,#0) | 
|  | // Rdd = combine(#u2,#U2) | 
|  | // Rd = add(Rs,#1) | 
|  | // Rd = add(Rs,#-1) | 
|  | // Rd = sxth/sxtb/zxtb/zxth(Rs) | 
|  | // Rd = and(Rs,#1) | 
|  | case Hexagon::A2_addi: | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg)) { | 
|  | // Rd = add(r29,#u6:2) | 
|  | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | 
|  | HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() && | 
|  | isShiftedUInt<6,2>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_A; | 
|  | // Rx = add(Rx,#s7) | 
|  | if ((DstReg == SrcReg) && MI.getOperand(2).isImm() && | 
|  | isInt<7>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_A; | 
|  | // Rd = add(Rs,#1) | 
|  | // Rd = add(Rs,#-1) | 
|  | if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && | 
|  | ((MI.getOperand(2).getImm() == 1) || | 
|  | (MI.getOperand(2).getImm() == -1))) | 
|  | return HexagonII::HSIG_A; | 
|  | } | 
|  | break; | 
|  | case Hexagon::A2_add: | 
|  | // Rx = add(Rx,Rs) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | Src1Reg = MI.getOperand(1).getReg(); | 
|  | Src2Reg = MI.getOperand(2).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && | 
|  | isIntRegForSubInst(Src2Reg)) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A2_andir: | 
|  | // Same as zxtb. | 
|  | // Rd16=and(Rs16,#255) | 
|  | // Rd16=and(Rs16,#1) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | 
|  | MI.getOperand(2).isImm() && | 
|  | ((MI.getOperand(2).getImm() == 1) || | 
|  | (MI.getOperand(2).getImm() == 255))) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A2_tfr: | 
|  | // Rd = Rs | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A2_tfrsi: | 
|  | // Rd = #u6 | 
|  | // Do not test for #u6 size since the const is getting extended | 
|  | // regardless and compound could be formed. | 
|  | // Rd = #-1 | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | if (isIntRegForSubInst(DstReg)) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::C2_cmoveit: | 
|  | case Hexagon::C2_cmovenewit: | 
|  | case Hexagon::C2_cmoveif: | 
|  | case Hexagon::C2_cmovenewif: | 
|  | // if ([!]P0[.new]) Rd = #0 | 
|  | // Actual form: | 
|  | // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && | 
|  | Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg && | 
|  | MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::C2_cmpeqi: | 
|  | // P0 = cmp.eq(Rs,#u2) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (Hexagon::PredRegsRegClass.contains(DstReg) && | 
|  | Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) && | 
|  | MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A2_combineii: | 
|  | case Hexagon::A4_combineii: | 
|  | // Rdd = combine(#u2,#U2) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | if (isDblRegForSubInst(DstReg, HRI) && | 
|  | ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) || | 
|  | (MI.getOperand(1).isGlobal() && | 
|  | isUInt<2>(MI.getOperand(1).getOffset()))) && | 
|  | ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) || | 
|  | (MI.getOperand(2).isGlobal() && | 
|  | isUInt<2>(MI.getOperand(2).getOffset())))) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A4_combineri: | 
|  | // Rdd = combine(Rs,#0) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && | 
|  | ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) || | 
|  | (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0))) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A4_combineir: | 
|  | // Rdd = combine(#0,Rs) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(2).getReg(); | 
|  | if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && | 
|  | ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) || | 
|  | (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0))) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | case Hexagon::A2_sxtb: | 
|  | case Hexagon::A2_sxth: | 
|  | case Hexagon::A2_zxtb: | 
|  | case Hexagon::A2_zxth: | 
|  | // Rd = sxth/sxtb/zxtb/zxth(Rs) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | 
|  | return HexagonII::HSIG_A; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return HexagonII::HSIG_None; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { | 
|  | return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real); | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getInstrTimingClassLatency( | 
|  | const InstrItineraryData *ItinData, const MachineInstr &MI) const { | 
|  | // Default to one cycle for no itinerary. However, an "empty" itinerary may | 
|  | // still have a MinLatency property, which getStageLatency checks. | 
|  | if (!ItinData) | 
|  | return getInstrLatency(ItinData, MI); | 
|  |  | 
|  | if (MI.isTransient()) | 
|  | return 0; | 
|  | return ItinData->getStageLatency(MI.getDesc().getSchedClass()); | 
|  | } | 
|  |  | 
|  | /// getOperandLatency - Compute and return the use operand latency of a given | 
|  | /// pair of def and use. | 
|  | /// In most cases, the static scheduling itinerary was enough to determine the | 
|  | /// operand latency. But it may not be possible for instructions with variable | 
|  | /// number of defs / uses. | 
|  | /// | 
|  | /// This is a raw interface to the itinerary that may be directly overriden by | 
|  | /// a target. Use computeOperandLatency to get the best estimate of latency. | 
|  | int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  |  | 
|  | // Get DefIdx and UseIdx for super registers. | 
|  | const MachineOperand &DefMO = DefMI.getOperand(DefIdx); | 
|  |  | 
|  | if (DefMO.isReg() && HRI.isPhysicalRegister(DefMO.getReg())) { | 
|  | if (DefMO.isImplicit()) { | 
|  | for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) { | 
|  | int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI); | 
|  | if (Idx != -1) { | 
|  | DefIdx = Idx; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const MachineOperand &UseMO = UseMI.getOperand(UseIdx); | 
|  | if (UseMO.isImplicit()) { | 
|  | for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) { | 
|  | int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI); | 
|  | if (Idx != -1) { | 
|  | UseIdx = Idx; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, | 
|  | UseMI, UseIdx); | 
|  | if (!Latency) | 
|  | // We should never have 0 cycle latency between two instructions unless | 
|  | // they can be packetized together. However, this decision can't be made | 
|  | // here. | 
|  | Latency = 1; | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | // inverts the predication logic. | 
|  | // p -> NotP | 
|  | // NotP -> P | 
|  | bool HexagonInstrInfo::getInvertedPredSense( | 
|  | SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | if (Cond.empty()) | 
|  | return false; | 
|  | unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm()); | 
|  | Cond[0].setImm(Opc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { | 
|  | int InvPredOpcode; | 
|  | InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) | 
|  | : Hexagon::getTruePredOpcode(Opc); | 
|  | if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. | 
|  | return InvPredOpcode; | 
|  |  | 
|  | llvm_unreachable("Unexpected predicated instruction"); | 
|  | } | 
|  |  | 
|  | // Returns the max value that doesn't need to be extended. | 
|  | int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | 
|  | & HexagonII::ExtentSignedMask; | 
|  | unsigned bits =  (F >> HexagonII::ExtentBitsPos) | 
|  | & HexagonII::ExtentBitsMask; | 
|  |  | 
|  | if (isSigned) // if value is signed | 
|  | return ~(-1U << (bits - 1)); | 
|  | else | 
|  | return ~(-1U << bits); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::L2_loadrbgp: | 
|  | case Hexagon::L2_loadrdgp: | 
|  | case Hexagon::L2_loadrhgp: | 
|  | case Hexagon::L2_loadrigp: | 
|  | case Hexagon::L2_loadrubgp: | 
|  | case Hexagon::L2_loadruhgp: | 
|  | case Hexagon::S2_storerbgp: | 
|  | case Hexagon::S2_storerbnewgp: | 
|  | case Hexagon::S2_storerhgp: | 
|  | case Hexagon::S2_storerhnewgp: | 
|  | case Hexagon::S2_storerigp: | 
|  | case Hexagon::S2_storerinewgp: | 
|  | case Hexagon::S2_storerdgp: | 
|  | case Hexagon::S2_storerfgp: | 
|  | return true; | 
|  | } | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | unsigned addrMode = | 
|  | ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); | 
|  | // Disallow any base+offset instruction. The assembler does not yet reorder | 
|  | // based up any zero offset instruction. | 
|  | return (addrMode == HexagonII::BaseRegOffset || | 
|  | addrMode == HexagonII::BaseImmOffset || | 
|  | addrMode == HexagonII::BaseLongOffset); | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { | 
|  | using namespace HexagonII; | 
|  |  | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; | 
|  | unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S)); | 
|  | if (Size != 0) | 
|  | return Size; | 
|  |  | 
|  | // Handle vector access sizes. | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | switch (S) { | 
|  | case HexagonII::HVXVectorAccess: | 
|  | return HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the min value that doesn't need to be extended. | 
|  | int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | 
|  | & HexagonII::ExtentSignedMask; | 
|  | unsigned bits =  (F >> HexagonII::ExtentBitsPos) | 
|  | & HexagonII::ExtentBitsMask; | 
|  |  | 
|  | if (isSigned) // if value is signed | 
|  | return -1U << (bits - 1); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns opcode of the non-extended equivalent instruction. | 
|  | short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { | 
|  | // Check if the instruction has a register form that uses register in place | 
|  | // of the extended operand, if so return that as the non-extended form. | 
|  | short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode()); | 
|  | if (NonExtOpcode >= 0) | 
|  | return NonExtOpcode; | 
|  |  | 
|  | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { | 
|  | // Check addressing mode and retrieve non-ext equivalent instruction. | 
|  | switch (getAddrMode(MI)) { | 
|  | case HexagonII::Absolute: | 
|  | return Hexagon::changeAddrMode_abs_io(MI.getOpcode()); | 
|  | case HexagonII::BaseImmOffset: | 
|  | return Hexagon::changeAddrMode_io_rr(MI.getOpcode()); | 
|  | case HexagonII::BaseLongOffset: | 
|  | return Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, | 
|  | unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { | 
|  | if (Cond.empty()) | 
|  | return false; | 
|  | assert(Cond.size() == 2); | 
|  | if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) { | 
|  | LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop"); | 
|  | return false; | 
|  | } | 
|  | PredReg = Cond[1].getReg(); | 
|  | PredRegPos = 1; | 
|  | // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef | 
|  | PredRegFlags = 0; | 
|  | if (Cond[1].isImplicit()) | 
|  | PredRegFlags = RegState::Implicit; | 
|  | if (Cond[1].isUndef()) | 
|  | PredRegFlags |= RegState::Undef; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { | 
|  | return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo); | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { | 
|  | return Hexagon::getRegForm(MI.getOpcode()); | 
|  | } | 
|  |  | 
|  | // Return the number of bytes required to encode the instruction. | 
|  | // Hexagon instructions are fixed length, 4 bytes, unless they | 
|  | // use a constant extender, which requires another 4 bytes. | 
|  | // For debug instructions and prolog labels, return 0. | 
|  | unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { | 
|  | if (MI.isDebugInstr() || MI.isPosition()) | 
|  | return 0; | 
|  |  | 
|  | unsigned Size = MI.getDesc().getSize(); | 
|  | if (!Size) | 
|  | // Assume the default insn size in case it cannot be determined | 
|  | // for whatever reason. | 
|  | Size = HEXAGON_INSTR_SIZE; | 
|  |  | 
|  | if (isConstExtended(MI) || isExtended(MI)) | 
|  | Size += HEXAGON_INSTR_SIZE; | 
|  |  | 
|  | // Try and compute number of instructions in asm. | 
|  | if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { | 
|  | const MachineBasicBlock &MBB = *MI.getParent(); | 
|  | const MachineFunction *MF = MBB.getParent(); | 
|  | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); | 
|  |  | 
|  | // Count the number of register definitions to find the asm string. | 
|  | unsigned NumDefs = 0; | 
|  | for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef(); | 
|  | ++NumDefs) | 
|  | assert(NumDefs != MI.getNumOperands()-2 && "No asm string?"); | 
|  |  | 
|  | assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?"); | 
|  | // Disassemble the AsmStr and approximate number of instructions. | 
|  | const char *AsmStr = MI.getOperand(NumDefs).getSymbolName(); | 
|  | Size = getInlineAsmLength(AsmStr, *MAI); | 
|  | } | 
|  |  | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { | 
|  | const uint64_t F = MI.getDesc().TSFlags; | 
|  | return (F >> HexagonII::TypePos) & HexagonII::TypeMask; | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const { | 
|  | const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); | 
|  | const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass()); | 
|  |  | 
|  | return IS.getUnits(); | 
|  | } | 
|  |  | 
|  | // Calculate size of the basic block without debug instructions. | 
|  | unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { | 
|  | return nonDbgMICount(BB->instr_begin(), BB->instr_end()); | 
|  | } | 
|  |  | 
|  | unsigned HexagonInstrInfo::nonDbgBundleSize( | 
|  | MachineBasicBlock::const_iterator BundleHead) const { | 
|  | assert(BundleHead->isBundle() && "Not a bundle header"); | 
|  | auto MII = BundleHead.getInstrIterator(); | 
|  | // Skip the bundle header. | 
|  | return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator())); | 
|  | } | 
|  |  | 
|  | /// immediateExtend - Changes the instruction in place to one using an immediate | 
|  | /// extender. | 
|  | void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { | 
|  | assert((isExtendable(MI)||isConstExtended(MI)) && | 
|  | "Instruction must be extendable"); | 
|  | // Find which operand is extendable. | 
|  | short ExtOpNum = getCExtOpNum(MI); | 
|  | MachineOperand &MO = MI.getOperand(ExtOpNum); | 
|  | // This needs to be something we understand. | 
|  | assert((MO.isMBB() || MO.isImm()) && | 
|  | "Branch with unknown extendable field type"); | 
|  | // Mark given operand as extended. | 
|  | MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::invertAndChangeJumpTarget( | 
|  | MachineInstr &MI, MachineBasicBlock *NewTarget) const { | 
|  | LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to " | 
|  | << printMBBReference(*NewTarget); | 
|  | MI.dump();); | 
|  | assert(MI.isBranch()); | 
|  | unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode()); | 
|  | int TargetPos = MI.getNumOperands() - 1; | 
|  | // In general branch target is the last operand, | 
|  | // but some implicit defs added at the end might change it. | 
|  | while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB()) | 
|  | --TargetPos; | 
|  | assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()); | 
|  | MI.getOperand(TargetPos).setMBB(NewTarget); | 
|  | if (EnableBranchPrediction && isPredicatedNew(MI)) { | 
|  | NewOpcode = reversePrediction(NewOpcode); | 
|  | } | 
|  | MI.setDesc(get(NewOpcode)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { | 
|  | /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ | 
|  | MachineFunction::iterator A = MF.begin(); | 
|  | MachineBasicBlock &B = *A; | 
|  | MachineBasicBlock::iterator I = B.begin(); | 
|  | DebugLoc DL = I->getDebugLoc(); | 
|  | MachineInstr *NewMI; | 
|  |  | 
|  | for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; | 
|  | insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { | 
|  | NewMI = BuildMI(B, I, DL, get(insn)); | 
|  | LLVM_DEBUG(dbgs() << "\n" | 
|  | << getName(NewMI->getOpcode()) | 
|  | << "  Class: " << NewMI->getDesc().getSchedClass()); | 
|  | NewMI->eraseFromParent(); | 
|  | } | 
|  | /* --- The code above is used to generate complete set of Hexagon Insn --- */ | 
|  | } | 
|  |  | 
|  | // inverts the predication logic. | 
|  | // p -> NotP | 
|  | // NotP -> P | 
|  | bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { | 
|  | LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump()); | 
|  | MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode()))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reverse the branch prediction. | 
|  | unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { | 
|  | int PredRevOpcode = -1; | 
|  | if (isPredictedTaken(Opcode)) | 
|  | PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); | 
|  | else | 
|  | PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); | 
|  | assert(PredRevOpcode > 0); | 
|  | return PredRevOpcode; | 
|  | } | 
|  |  | 
|  | // TODO: Add more rigorous validation. | 
|  | bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) | 
|  | const { | 
|  | return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); | 
|  | } | 
|  |  | 
|  | void HexagonInstrInfo:: | 
|  | setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { | 
|  | assert(MIB->isBundle()); | 
|  | MachineOperand &Operand = MIB->getOperand(0); | 
|  | if (Operand.isImm()) | 
|  | Operand.setImm(Operand.getImm() | memShufDisabledMask); | 
|  | else | 
|  | MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask)); | 
|  | } | 
|  |  | 
|  | bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { | 
|  | assert(MIB.isBundle()); | 
|  | const MachineOperand &Operand = MIB.getOperand(0); | 
|  | return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); | 
|  | } | 
|  |  | 
|  | // Addressing mode relations. | 
|  | short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc; | 
|  | } | 
|  |  | 
|  | short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { | 
|  | return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc; | 
|  | } |