|  | //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===---------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass aims to reduce the number of logical operations on bits in the CR | 
|  | // register. These instructions have a fairly high latency and only a single | 
|  | // pipeline at their disposal in modern PPC cores. Furthermore, they have a | 
|  | // tendency to occur in fairly small blocks where there's little opportunity | 
|  | // to hide the latency between the CR logical operation and its user. | 
|  | // | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-reduce-cr-ops" | 
|  |  | 
|  | STATISTIC(NumContainedSingleUseBinOps, | 
|  | "Number of single-use binary CR logical ops contained in a block"); | 
|  | STATISTIC(NumToSplitBlocks, | 
|  | "Number of binary CR logical ops that can be used to split blocks"); | 
|  | STATISTIC(TotalCRLogicals, "Number of CR logical ops."); | 
|  | STATISTIC(TotalNullaryCRLogicals, | 
|  | "Number of nullary CR logical ops (CRSET/CRUNSET)."); | 
|  | STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops."); | 
|  | STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops."); | 
|  | STATISTIC(NumBlocksSplitOnBinaryCROp, | 
|  | "Number of blocks split on CR binary logical ops."); | 
|  | STATISTIC(NumNotSplitIdenticalOperands, | 
|  | "Number of blocks not split due to operands being identical."); | 
|  | STATISTIC(NumNotSplitChainCopies, | 
|  | "Number of blocks not split due to operands being chained copies."); | 
|  | STATISTIC(NumNotSplitWrongOpcode, | 
|  | "Number of blocks not split due to the wrong opcode."); | 
|  |  | 
|  | /// Given a basic block \p Successor that potentially contains PHIs, this | 
|  | /// function will look for any incoming values in the PHIs that are supposed to | 
|  | /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. | 
|  | /// Any such PHIs will be updated to reflect reality. | 
|  | static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, | 
|  | MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { | 
|  | for (auto &MI : Successor->instrs()) { | 
|  | if (!MI.isPHI()) | 
|  | continue; | 
|  | // This is a really ugly-looking loop, but it was pillaged directly from | 
|  | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). | 
|  | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.getMBB() == OrigMBB) { | 
|  | // Check if the instruction is actually defined in NewMBB. | 
|  | if (MI.getOperand(i - 1).isReg()) { | 
|  | MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg()); | 
|  | if (DefMI->getParent() == NewMBB || | 
|  | !OrigMBB->isSuccessor(Successor)) { | 
|  | MO.setMBB(NewMBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given a basic block \p Successor that potentially contains PHIs, this | 
|  | /// function will look for PHIs that have an incoming value from \p OrigMBB | 
|  | /// and will add the same incoming value from \p NewMBB. | 
|  | /// NOTE: This should only be used if \p NewMBB is an immediate dominator of | 
|  | /// \p OrigMBB. | 
|  | static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, | 
|  | MachineBasicBlock *OrigMBB, | 
|  | MachineBasicBlock *NewMBB, | 
|  | MachineRegisterInfo *MRI) { | 
|  | assert(OrigMBB->isSuccessor(NewMBB) && | 
|  | "NewMBB must be a successor of OrigMBB"); | 
|  | for (auto &MI : Successor->instrs()) { | 
|  | if (!MI.isPHI()) | 
|  | continue; | 
|  | // This is a really ugly-looking loop, but it was pillaged directly from | 
|  | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). | 
|  | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.getMBB() == OrigMBB) { | 
|  | MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); | 
|  | MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct BlockSplitInfo { | 
|  | MachineInstr *OrigBranch; | 
|  | MachineInstr *SplitBefore; | 
|  | MachineInstr *SplitCond; | 
|  | bool InvertNewBranch; | 
|  | bool InvertOrigBranch; | 
|  | bool BranchToFallThrough; | 
|  | const MachineBranchProbabilityInfo *MBPI; | 
|  | MachineInstr *MIToDelete; | 
|  | MachineInstr *NewCond; | 
|  | bool allInstrsInSameMBB() { | 
|  | if (!OrigBranch || !SplitBefore || !SplitCond) | 
|  | return false; | 
|  | MachineBasicBlock *MBB = OrigBranch->getParent(); | 
|  | if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) | 
|  | return false; | 
|  | if (MIToDelete && MIToDelete->getParent() != MBB) | 
|  | return false; | 
|  | if (NewCond && NewCond->getParent() != MBB) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original | 
|  | /// branch is \p OrigBranch. The target of the new branch can either be the same | 
|  | /// as the target of the original branch or the fallthrough successor of the | 
|  | /// original block as determined by \p BranchToFallThrough. The branch | 
|  | /// conditions will be inverted according to \p InvertNewBranch and | 
|  | /// \p InvertOrigBranch. If an instruction that previously fed the branch is to | 
|  | /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as | 
|  | /// the branch condition. The branch probabilities will be set if the | 
|  | /// MachineBranchProbabilityInfo isn't null. | 
|  | static bool splitMBB(BlockSplitInfo &BSI) { | 
|  | assert(BSI.allInstrsInSameMBB() && | 
|  | "All instructions must be in the same block."); | 
|  |  | 
|  | MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); | 
|  | MachineFunction *MF = ThisMBB->getParent(); | 
|  | MachineRegisterInfo *MRI = &MF->getRegInfo(); | 
|  | assert(MRI->isSSA() && "Can only do this while the function is in SSA form."); | 
|  | if (ThisMBB->succ_size() != 2) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Don't know how to handle blocks that don't have exactly" | 
|  | << " two successors.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | 
|  | unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); | 
|  | unsigned InvertedOpcode = | 
|  | OrigBROpcode == PPC::BC | 
|  | ? PPC::BCn | 
|  | : OrigBROpcode == PPC::BCn | 
|  | ? PPC::BC | 
|  | : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; | 
|  | unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; | 
|  | MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB(); | 
|  | MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() | 
|  | ? *ThisMBB->succ_rbegin() | 
|  | : *ThisMBB->succ_begin(); | 
|  | MachineBasicBlock *NewBRTarget = | 
|  | BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; | 
|  |  | 
|  | // It's impossible to know the precise branch probability after the split. | 
|  | // But it still needs to be reasonable, the whole probability to original | 
|  | // targets should not be changed. | 
|  | // After split NewBRTarget will get two incoming edges. Assume P0 is the | 
|  | // original branch probability to NewBRTarget, P1 and P2 are new branch | 
|  | // probabilies to NewBRTarget after split. If the two edge frequencies are | 
|  | // same, then | 
|  | //      F * P1 = F * P0 / 2            ==>  P1 = P0 / 2 | 
|  | //      F * (1 - P1) * P2 = F * P1     ==>  P2 = P1 / (1 - P1) | 
|  | BranchProbability ProbToNewTarget, ProbFallThrough;     // Prob for new Br. | 
|  | BranchProbability ProbOrigTarget, ProbOrigFallThrough;  // Prob for orig Br. | 
|  | ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); | 
|  | ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); | 
|  | if (BSI.MBPI) { | 
|  | if (BSI.BranchToFallThrough) { | 
|  | ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2; | 
|  | ProbFallThrough = ProbToNewTarget.getCompl(); | 
|  | ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); | 
|  | ProbOrigTarget = ProbOrigFallThrough.getCompl(); | 
|  | } else { | 
|  | ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2; | 
|  | ProbFallThrough = ProbToNewTarget.getCompl(); | 
|  | ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); | 
|  | ProbOrigFallThrough = ProbOrigTarget.getCompl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a new basic block. | 
|  | MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; | 
|  | const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); | 
|  | MachineFunction::iterator It = ThisMBB->getIterator(); | 
|  | MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MF->insert(++It, NewMBB); | 
|  |  | 
|  | // Move everything after SplitBefore into the new block. | 
|  | NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end()); | 
|  | NewMBB->transferSuccessors(ThisMBB); | 
|  | if (!ProbOrigTarget.isUnknown()) { | 
|  | auto MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigTarget); | 
|  | NewMBB->setSuccProbability(MBBI, ProbOrigTarget); | 
|  | MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigFallThrough); | 
|  | NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough); | 
|  | } | 
|  |  | 
|  | // Add the two successors to ThisMBB. | 
|  | ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget); | 
|  | ThisMBB->addSuccessor(NewMBB, ProbFallThrough); | 
|  |  | 
|  | // Add the branches to ThisMBB. | 
|  | BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), | 
|  | TII->get(NewBROpcode)) | 
|  | .addReg(BSI.SplitCond->getOperand(0).getReg()) | 
|  | .addMBB(NewBRTarget); | 
|  | BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), | 
|  | TII->get(PPC::B)) | 
|  | .addMBB(NewMBB); | 
|  | if (BSI.MIToDelete) | 
|  | BSI.MIToDelete->eraseFromParent(); | 
|  |  | 
|  | // Change the condition on the original branch and invert it if requested. | 
|  | auto FirstTerminator = NewMBB->getFirstTerminator(); | 
|  | if (BSI.NewCond) { | 
|  | assert(FirstTerminator->getOperand(0).isReg() && | 
|  | "Can't update condition of unconditional branch."); | 
|  | FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg()); | 
|  | } | 
|  | if (BSI.InvertOrigBranch) | 
|  | FirstTerminator->setDesc(TII->get(InvertedOpcode)); | 
|  |  | 
|  | // If any of the PHIs in the successors of NewMBB reference values that | 
|  | // now come from NewMBB, they need to be updated. | 
|  | for (auto *Succ : NewMBB->successors()) { | 
|  | updatePHIs(Succ, ThisMBB, NewMBB, MRI); | 
|  | } | 
|  | addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump()); | 
|  | LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump()); | 
|  | LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isBinary(MachineInstr &MI) { | 
|  | return MI.getNumOperands() == 3; | 
|  | } | 
|  |  | 
|  | static bool isNullary(MachineInstr &MI) { | 
|  | return MI.getNumOperands() == 1; | 
|  | } | 
|  |  | 
|  | /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as | 
|  | /// a flag to indicate if the first operand of \p CROp is used as the | 
|  | /// SplitBefore operand, determines whether either of the branches are to be | 
|  | /// inverted as well as whether the new target should be the original | 
|  | /// fall-through block. | 
|  | static void | 
|  | computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, | 
|  | bool &InvertNewBranch, bool &InvertOrigBranch, | 
|  | bool &TargetIsFallThrough) { | 
|  | // The conditions under which each of the output operands should be [un]set | 
|  | // can certainly be written much more concisely with just 3 if statements or | 
|  | // ternary expressions. However, this provides a much clearer overview to the | 
|  | // reader as to what is set for each <CROp, BROp, OpUsed> combination. | 
|  | if (BROp == PPC::BC || BROp == PPC::BCLR) { | 
|  | // Regular branches. | 
|  | switch (CROp) { | 
|  | default: | 
|  | llvm_unreachable("Don't know how to handle this CR logical."); | 
|  | case PPC::CROR: | 
|  | InvertNewBranch = false; | 
|  | InvertOrigBranch = false; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | case PPC::CRAND: | 
|  | InvertNewBranch = true; | 
|  | InvertOrigBranch = false; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | case PPC::CRNAND: | 
|  | InvertNewBranch = true; | 
|  | InvertOrigBranch = true; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | case PPC::CRNOR: | 
|  | InvertNewBranch = false; | 
|  | InvertOrigBranch = true; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | case PPC::CRORC: | 
|  | InvertNewBranch = UsingDef1; | 
|  | InvertOrigBranch = !UsingDef1; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | case PPC::CRANDC: | 
|  | InvertNewBranch = !UsingDef1; | 
|  | InvertOrigBranch = !UsingDef1; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | } | 
|  | } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { | 
|  | // Negated branches. | 
|  | switch (CROp) { | 
|  | default: | 
|  | llvm_unreachable("Don't know how to handle this CR logical."); | 
|  | case PPC::CROR: | 
|  | InvertNewBranch = true; | 
|  | InvertOrigBranch = false; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | case PPC::CRAND: | 
|  | InvertNewBranch = false; | 
|  | InvertOrigBranch = false; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | case PPC::CRNAND: | 
|  | InvertNewBranch = false; | 
|  | InvertOrigBranch = true; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | case PPC::CRNOR: | 
|  | InvertNewBranch = true; | 
|  | InvertOrigBranch = true; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | case PPC::CRORC: | 
|  | InvertNewBranch = !UsingDef1; | 
|  | InvertOrigBranch = !UsingDef1; | 
|  | TargetIsFallThrough = true; | 
|  | return; | 
|  | case PPC::CRANDC: | 
|  | InvertNewBranch = UsingDef1; | 
|  | InvertOrigBranch = !UsingDef1; | 
|  | TargetIsFallThrough = false; | 
|  | return; | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Don't know how to handle this branch."); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class PPCReduceCRLogicals : public MachineFunctionPass { | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | struct CRLogicalOpInfo { | 
|  | MachineInstr *MI; | 
|  | // FIXME: If chains of copies are to be handled, this should be a vector. | 
|  | std::pair<MachineInstr*, MachineInstr*> CopyDefs; | 
|  | std::pair<MachineInstr*, MachineInstr*> TrueDefs; | 
|  | unsigned IsBinary : 1; | 
|  | unsigned IsNullary : 1; | 
|  | unsigned ContainedInBlock : 1; | 
|  | unsigned FeedsISEL : 1; | 
|  | unsigned FeedsBR : 1; | 
|  | unsigned FeedsLogical : 1; | 
|  | unsigned SingleUse : 1; | 
|  | unsigned DefsSingleUse : 1; | 
|  | unsigned SubregDef1; | 
|  | unsigned SubregDef2; | 
|  | CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), | 
|  | ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), | 
|  | FeedsLogical(0), SingleUse(0), DefsSingleUse(1), | 
|  | SubregDef1(0), SubregDef2(0) { } | 
|  | void dump(); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const PPCInstrInfo *TII; | 
|  | MachineFunction *MF; | 
|  | MachineRegisterInfo *MRI; | 
|  | const MachineBranchProbabilityInfo *MBPI; | 
|  |  | 
|  | // A vector to contain all the CR logical operations | 
|  | std::vector<CRLogicalOpInfo> AllCRLogicalOps; | 
|  | void initialize(MachineFunction &MFParm); | 
|  | void collectCRLogicals(); | 
|  | bool handleCROp(CRLogicalOpInfo &CRI); | 
|  | bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); | 
|  | static bool isCRLogical(MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || | 
|  | Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV || | 
|  | Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET || | 
|  | Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET; | 
|  | } | 
|  | bool simplifyCode() { | 
|  | bool Changed = false; | 
|  | // Not using a range-based for loop here as the vector may grow while being | 
|  | // operated on. | 
|  | for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) | 
|  | Changed |= handleCROp(AllCRLogicalOps[i]); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | public: | 
|  | PPCReduceCRLogicals() : MachineFunctionPass(ID) { | 
|  | initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, | 
|  | MachineInstr *&CpDef); | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | // If the subtarget doesn't use CR bits, there's nothing to do. | 
|  | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); | 
|  | if (!STI.useCRBits()) | 
|  | return false; | 
|  |  | 
|  | initialize(MF); | 
|  | collectCRLogicals(); | 
|  | return simplifyCode(); | 
|  | } | 
|  | CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineBranchProbabilityInfo>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { | 
|  | dbgs() << "CRLogicalOpMI: "; | 
|  | MI->dump(); | 
|  | dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; | 
|  | dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: "; | 
|  | dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; | 
|  | dbgs() << ", DefsSingleUse: " << DefsSingleUse; | 
|  | dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: "; | 
|  | dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; | 
|  | if (!IsNullary) { | 
|  | dbgs() << "\nDefs:\n"; | 
|  | TrueDefs.first->dump(); | 
|  | } | 
|  | if (IsBinary) | 
|  | TrueDefs.second->dump(); | 
|  | dbgs() << "\n"; | 
|  | if (CopyDefs.first) { | 
|  | dbgs() << "CopyDef1: "; | 
|  | CopyDefs.first->dump(); | 
|  | } | 
|  | if (CopyDefs.second) { | 
|  | dbgs() << "CopyDef2: "; | 
|  | CopyDefs.second->dump(); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | PPCReduceCRLogicals::CRLogicalOpInfo | 
|  | PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { | 
|  | CRLogicalOpInfo Ret; | 
|  | Ret.MI = &MIParam; | 
|  | // Get the defs | 
|  | if (isNullary(MIParam)) { | 
|  | Ret.IsNullary = 1; | 
|  | Ret.TrueDefs = std::make_pair(nullptr, nullptr); | 
|  | Ret.CopyDefs = std::make_pair(nullptr, nullptr); | 
|  | } else { | 
|  | MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(), | 
|  | Ret.SubregDef1, Ret.CopyDefs.first); | 
|  | Ret.DefsSingleUse &= | 
|  | MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg()); | 
|  | Ret.DefsSingleUse &= | 
|  | MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg()); | 
|  | assert(Def1 && "Must be able to find a definition of operand 1."); | 
|  | if (isBinary(MIParam)) { | 
|  | Ret.IsBinary = 1; | 
|  | MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(), | 
|  | Ret.SubregDef2, | 
|  | Ret.CopyDefs.second); | 
|  | Ret.DefsSingleUse &= | 
|  | MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg()); | 
|  | Ret.DefsSingleUse &= | 
|  | MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg()); | 
|  | assert(Def2 && "Must be able to find a definition of operand 2."); | 
|  | Ret.TrueDefs = std::make_pair(Def1, Def2); | 
|  | } else { | 
|  | Ret.TrueDefs = std::make_pair(Def1, nullptr); | 
|  | Ret.CopyDefs.second = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Ret.ContainedInBlock = 1; | 
|  | // Get the uses | 
|  | for (MachineInstr &UseMI : | 
|  | MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) { | 
|  | unsigned Opc = UseMI.getOpcode(); | 
|  | if (Opc == PPC::ISEL || Opc == PPC::ISEL8) | 
|  | Ret.FeedsISEL = 1; | 
|  | if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || | 
|  | Opc == PPC::BCLRn) | 
|  | Ret.FeedsBR = 1; | 
|  | Ret.FeedsLogical = isCRLogical(UseMI); | 
|  | if (UseMI.getParent() != MIParam.getParent()) | 
|  | Ret.ContainedInBlock = 0; | 
|  | } | 
|  | Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0; | 
|  |  | 
|  | // We now know whether all the uses of the CR logical are in the same block. | 
|  | if (!Ret.IsNullary) { | 
|  | Ret.ContainedInBlock &= | 
|  | (MIParam.getParent() == Ret.TrueDefs.first->getParent()); | 
|  | if (Ret.IsBinary) | 
|  | Ret.ContainedInBlock &= | 
|  | (MIParam.getParent() == Ret.TrueDefs.second->getParent()); | 
|  | } | 
|  | LLVM_DEBUG(Ret.dump()); | 
|  | if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { | 
|  | NumContainedSingleUseBinOps++; | 
|  | if (Ret.FeedsBR && Ret.DefsSingleUse) | 
|  | NumToSplitBlocks++; | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// Looks through a COPY instruction to the actual definition of the CR-bit | 
|  | /// register and returns the instruction that defines it. | 
|  | /// FIXME: This currently handles what is by-far the most common case: | 
|  | /// an instruction that defines a CR field followed by a single copy of a bit | 
|  | /// from that field into a virtual register. If chains of copies need to be | 
|  | /// handled, this should have a loop until a non-copy instruction is found. | 
|  | MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, | 
|  | unsigned &Subreg, | 
|  | MachineInstr *&CpDef) { | 
|  | Subreg = -1; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return nullptr; | 
|  | MachineInstr *Copy = MRI->getVRegDef(Reg); | 
|  | CpDef = Copy; | 
|  | if (!Copy->isCopy()) | 
|  | return Copy; | 
|  | unsigned CopySrc = Copy->getOperand(1).getReg(); | 
|  | Subreg = Copy->getOperand(1).getSubReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) { | 
|  | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); | 
|  | // Set the Subreg | 
|  | if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) | 
|  | Subreg = PPC::sub_eq; | 
|  | if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) | 
|  | Subreg = PPC::sub_lt; | 
|  | if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) | 
|  | Subreg = PPC::sub_gt; | 
|  | if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) | 
|  | Subreg = PPC::sub_un; | 
|  | // Loop backwards and return the first MI that modifies the physical CR Reg. | 
|  | MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); | 
|  | while (Me != B) | 
|  | if ((--Me)->modifiesRegister(CopySrc, TRI)) | 
|  | return &*Me; | 
|  | return nullptr; | 
|  | } | 
|  | return MRI->getVRegDef(CopySrc); | 
|  | } | 
|  |  | 
|  | void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { | 
|  | MF = &MFParam; | 
|  | MRI = &MF->getRegInfo(); | 
|  | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | 
|  | MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); | 
|  |  | 
|  | AllCRLogicalOps.clear(); | 
|  | } | 
|  |  | 
|  | /// Contains all the implemented transformations on CR logical operations. | 
|  | /// For example, a binary CR logical can be used to split a block on its inputs, | 
|  | /// a unary CR logical might be used to change the condition code on a | 
|  | /// comparison feeding it. A nullary CR logical might simply be removable | 
|  | /// if the user of the bit it [un]sets can be transformed. | 
|  | bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) { | 
|  | // We can definitely split a block on the inputs to a binary CR operation | 
|  | // whose defs and (single) use are within the same block. | 
|  | bool Changed = false; | 
|  | if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && | 
|  | CRI.DefsSingleUse) { | 
|  | Changed = splitBlockOnBinaryCROp(CRI); | 
|  | if (Changed) | 
|  | NumBlocksSplitOnBinaryCROp++; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Splits a block that contains a CR-logical operation that feeds a branch | 
|  | /// and whose operands are produced within the block. | 
|  | /// Example: | 
|  | ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 | 
|  | ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 | 
|  | ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 | 
|  | ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 | 
|  | ///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 | 
|  | ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 | 
|  | /// Becomes: | 
|  | ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 | 
|  | ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 | 
|  | ///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 | 
|  | /// | 
|  | ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 | 
|  | ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 | 
|  | ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 | 
|  | bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { | 
|  | if (CRI.CopyDefs.first == CRI.CopyDefs.second) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n"); | 
|  | NumNotSplitIdenticalOperands++; | 
|  | return false; | 
|  | } | 
|  | if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || | 
|  | CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Unable to split because one of the operands is a PHI or " | 
|  | "chain of copies.\n"); | 
|  | NumNotSplitChainCopies++; | 
|  | return false; | 
|  | } | 
|  | // Note: keep in sync with computeBranchTargetAndInversion(). | 
|  | if (CRI.MI->getOpcode() != PPC::CROR && | 
|  | CRI.MI->getOpcode() != PPC::CRAND && | 
|  | CRI.MI->getOpcode() != PPC::CRNOR && | 
|  | CRI.MI->getOpcode() != PPC::CRNAND && | 
|  | CRI.MI->getOpcode() != PPC::CRORC && | 
|  | CRI.MI->getOpcode() != PPC::CRANDC) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n"); | 
|  | NumNotSplitWrongOpcode++; | 
|  | return false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump()); | 
|  | MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; | 
|  | MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; | 
|  |  | 
|  | bool UsingDef1 = false; | 
|  | MachineInstr *SplitBefore = &*Def2It; | 
|  | for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { | 
|  | if (Def1It == Def2It) { // Def2 comes before Def1. | 
|  | SplitBefore = &*Def1It; | 
|  | UsingDef1 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "We will split the following block:\n";); | 
|  | LLVM_DEBUG(CRI.MI->getParent()->dump()); | 
|  | LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump()); | 
|  |  | 
|  | // Get the branch instruction. | 
|  | MachineInstr *Branch = | 
|  | MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent(); | 
|  |  | 
|  | // We want the new block to have no code in it other than the definition | 
|  | // of the input to the CR logical and the CR logical itself. So we move | 
|  | // those to the bottom of the block (just before the branch). Then we | 
|  | // will split before the CR logical. | 
|  | MachineBasicBlock *MBB = SplitBefore->getParent(); | 
|  | auto FirstTerminator = MBB->getFirstTerminator(); | 
|  | MachineBasicBlock::iterator FirstInstrToMove = | 
|  | UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; | 
|  | MachineBasicBlock::iterator SecondInstrToMove = | 
|  | UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; | 
|  |  | 
|  | // The instructions that need to be moved are not guaranteed to be | 
|  | // contiguous. Move them individually. | 
|  | // FIXME: If one of the operands is a chain of (single use) copies, they | 
|  | // can all be moved and we can still split. | 
|  | MBB->splice(FirstTerminator, MBB, FirstInstrToMove); | 
|  | if (FirstInstrToMove != SecondInstrToMove) | 
|  | MBB->splice(FirstTerminator, MBB, SecondInstrToMove); | 
|  | MBB->splice(FirstTerminator, MBB, CRI.MI); | 
|  |  | 
|  | unsigned Opc = CRI.MI->getOpcode(); | 
|  | bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; | 
|  | computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1, | 
|  | InvertNewBranch, InvertOrigBranch, | 
|  | TargetIsFallThrough); | 
|  | MachineInstr *SplitCond = | 
|  | UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; | 
|  | LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy")); | 
|  | LLVM_DEBUG(dbgs() << " the original branch and the target is the " | 
|  | << (TargetIsFallThrough ? "fallthrough block\n" | 
|  | : "orig. target block\n")); | 
|  | LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump()); | 
|  | BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch, | 
|  | InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI, | 
|  | UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; | 
|  | bool Changed = splitMBB(BSI); | 
|  | // If we've split on a CR logical that is fed by a CR logical, | 
|  | // recompute the source CR logical as it may be usable for splitting. | 
|  | if (Changed) { | 
|  | bool Input1CRlogical = | 
|  | CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first); | 
|  | bool Input2CRlogical = | 
|  | CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second); | 
|  | if (Input1CRlogical) | 
|  | AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first)); | 
|  | if (Input2CRlogical) | 
|  | AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second)); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void PPCReduceCRLogicals::collectCRLogicals() { | 
|  | for (MachineBasicBlock &MBB : *MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  | if (isCRLogical(MI)) { | 
|  | AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI)); | 
|  | TotalCRLogicals++; | 
|  | if (AllCRLogicalOps.back().IsNullary) | 
|  | TotalNullaryCRLogicals++; | 
|  | else if (AllCRLogicalOps.back().IsBinary) | 
|  | TotalBinaryCRLogicals++; | 
|  | else | 
|  | TotalUnaryCRLogicals++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, | 
|  | "PowerPC Reduce CR logical Operation", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, | 
|  | "PowerPC Reduce CR logical Operation", false, false) | 
|  |  | 
|  | char PPCReduceCRLogicals::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } |