|  | //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the MapValue function, which is shared by various parts of | 
|  | // the lib/Transforms/Utils library. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalObject.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <cassert> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Out of line method to get vtable etc for class. | 
|  | void ValueMapTypeRemapper::anchor() {} | 
|  | void ValueMaterializer::anchor() {} | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A basic block used in a BlockAddress whose function body is not yet | 
|  | /// materialized. | 
|  | struct DelayedBasicBlock { | 
|  | BasicBlock *OldBB; | 
|  | std::unique_ptr<BasicBlock> TempBB; | 
|  |  | 
|  | DelayedBasicBlock(const BlockAddress &Old) | 
|  | : OldBB(Old.getBasicBlock()), | 
|  | TempBB(BasicBlock::Create(Old.getContext())) {} | 
|  | }; | 
|  |  | 
|  | struct WorklistEntry { | 
|  | enum EntryKind { | 
|  | MapGlobalInit, | 
|  | MapAppendingVar, | 
|  | MapGlobalAliasee, | 
|  | RemapFunction | 
|  | }; | 
|  | struct GVInitTy { | 
|  | GlobalVariable *GV; | 
|  | Constant *Init; | 
|  | }; | 
|  | struct AppendingGVTy { | 
|  | GlobalVariable *GV; | 
|  | Constant *InitPrefix; | 
|  | }; | 
|  | struct GlobalAliaseeTy { | 
|  | GlobalAlias *GA; | 
|  | Constant *Aliasee; | 
|  | }; | 
|  |  | 
|  | unsigned Kind : 2; | 
|  | unsigned MCID : 29; | 
|  | unsigned AppendingGVIsOldCtorDtor : 1; | 
|  | unsigned AppendingGVNumNewMembers; | 
|  | union { | 
|  | GVInitTy GVInit; | 
|  | AppendingGVTy AppendingGV; | 
|  | GlobalAliaseeTy GlobalAliasee; | 
|  | Function *RemapF; | 
|  | } Data; | 
|  | }; | 
|  |  | 
|  | struct MappingContext { | 
|  | ValueToValueMapTy *VM; | 
|  | ValueMaterializer *Materializer = nullptr; | 
|  |  | 
|  | /// Construct a MappingContext with a value map and materializer. | 
|  | explicit MappingContext(ValueToValueMapTy &VM, | 
|  | ValueMaterializer *Materializer = nullptr) | 
|  | : VM(&VM), Materializer(Materializer) {} | 
|  | }; | 
|  |  | 
|  | class Mapper { | 
|  | friend class MDNodeMapper; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | DenseSet<GlobalValue *> AlreadyScheduled; | 
|  | #endif | 
|  |  | 
|  | RemapFlags Flags; | 
|  | ValueMapTypeRemapper *TypeMapper; | 
|  | unsigned CurrentMCID = 0; | 
|  | SmallVector<MappingContext, 2> MCs; | 
|  | SmallVector<WorklistEntry, 4> Worklist; | 
|  | SmallVector<DelayedBasicBlock, 1> DelayedBBs; | 
|  | SmallVector<Constant *, 16> AppendingInits; | 
|  |  | 
|  | public: | 
|  | Mapper(ValueToValueMapTy &VM, RemapFlags Flags, | 
|  | ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) | 
|  | : Flags(Flags), TypeMapper(TypeMapper), | 
|  | MCs(1, MappingContext(VM, Materializer)) {} | 
|  |  | 
|  | /// ValueMapper should explicitly call \a flush() before destruction. | 
|  | ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } | 
|  |  | 
|  | bool hasWorkToDo() const { return !Worklist.empty(); } | 
|  |  | 
|  | unsigned | 
|  | registerAlternateMappingContext(ValueToValueMapTy &VM, | 
|  | ValueMaterializer *Materializer = nullptr) { | 
|  | MCs.push_back(MappingContext(VM, Materializer)); | 
|  | return MCs.size() - 1; | 
|  | } | 
|  |  | 
|  | void addFlags(RemapFlags Flags); | 
|  |  | 
|  | void remapGlobalObjectMetadata(GlobalObject &GO); | 
|  |  | 
|  | Value *mapValue(const Value *V); | 
|  | void remapInstruction(Instruction *I); | 
|  | void remapFunction(Function &F); | 
|  |  | 
|  | Constant *mapConstant(const Constant *C) { | 
|  | return cast_or_null<Constant>(mapValue(C)); | 
|  | } | 
|  |  | 
|  | /// Map metadata. | 
|  | /// | 
|  | /// Find the mapping for MD.  Guarantees that the return will be resolved | 
|  | /// (not an MDNode, or MDNode::isResolved() returns true). | 
|  | Metadata *mapMetadata(const Metadata *MD); | 
|  |  | 
|  | void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, | 
|  | unsigned MCID); | 
|  | void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, | 
|  | bool IsOldCtorDtor, | 
|  | ArrayRef<Constant *> NewMembers, | 
|  | unsigned MCID); | 
|  | void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, | 
|  | unsigned MCID); | 
|  | void scheduleRemapFunction(Function &F, unsigned MCID); | 
|  |  | 
|  | void flush(); | 
|  |  | 
|  | private: | 
|  | void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); | 
|  | void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, | 
|  | bool IsOldCtorDtor, | 
|  | ArrayRef<Constant *> NewMembers); | 
|  | void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); | 
|  | void remapFunction(Function &F, ValueToValueMapTy &VM); | 
|  |  | 
|  | ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } | 
|  | ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } | 
|  |  | 
|  | Value *mapBlockAddress(const BlockAddress &BA); | 
|  |  | 
|  | /// Map metadata that doesn't require visiting operands. | 
|  | Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); | 
|  |  | 
|  | Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); | 
|  | Metadata *mapToSelf(const Metadata *MD); | 
|  | }; | 
|  |  | 
|  | class MDNodeMapper { | 
|  | Mapper &M; | 
|  |  | 
|  | /// Data about a node in \a UniquedGraph. | 
|  | struct Data { | 
|  | bool HasChanged = false; | 
|  | unsigned ID = std::numeric_limits<unsigned>::max(); | 
|  | TempMDNode Placeholder; | 
|  | }; | 
|  |  | 
|  | /// A graph of uniqued nodes. | 
|  | struct UniquedGraph { | 
|  | SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. | 
|  | SmallVector<MDNode *, 16> POT;                  // Post-order traversal. | 
|  |  | 
|  | /// Propagate changed operands through the post-order traversal. | 
|  | /// | 
|  | /// Iteratively update \a Data::HasChanged for each node based on \a | 
|  | /// Data::HasChanged of its operands, until fixed point. | 
|  | void propagateChanges(); | 
|  |  | 
|  | /// Get a forward reference to a node to use as an operand. | 
|  | Metadata &getFwdReference(MDNode &Op); | 
|  | }; | 
|  |  | 
|  | /// Worklist of distinct nodes whose operands need to be remapped. | 
|  | SmallVector<MDNode *, 16> DistinctWorklist; | 
|  |  | 
|  | // Storage for a UniquedGraph. | 
|  | SmallDenseMap<const Metadata *, Data, 32> InfoStorage; | 
|  | SmallVector<MDNode *, 16> POTStorage; | 
|  |  | 
|  | public: | 
|  | MDNodeMapper(Mapper &M) : M(M) {} | 
|  |  | 
|  | /// Map a metadata node (and its transitive operands). | 
|  | /// | 
|  | /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative | 
|  | /// algorithm handles distinct nodes and uniqued node subgraphs using | 
|  | /// different strategies. | 
|  | /// | 
|  | /// Distinct nodes are immediately mapped and added to \a DistinctWorklist | 
|  | /// using \a mapDistinctNode().  Their mapping can always be computed | 
|  | /// immediately without visiting operands, even if their operands change. | 
|  | /// | 
|  | /// The mapping for uniqued nodes depends on whether their operands change. | 
|  | /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of | 
|  | /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are | 
|  | /// added to \a DistinctWorklist with \a mapDistinctNode(). | 
|  | /// | 
|  | /// After mapping \c N itself, this function remaps the operands of the | 
|  | /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c | 
|  | /// N has been mapped. | 
|  | Metadata *map(const MDNode &N); | 
|  |  | 
|  | private: | 
|  | /// Map a top-level uniqued node and the uniqued subgraph underneath it. | 
|  | /// | 
|  | /// This builds up a post-order traversal of the (unmapped) uniqued subgraph | 
|  | /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses | 
|  | /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its | 
|  | /// operands uses the identity mapping. | 
|  | /// | 
|  | /// The algorithm works as follows: | 
|  | /// | 
|  | ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and | 
|  | ///     save the post-order traversal in the given \a UniquedGraph, tracking | 
|  | ///     nodes' operands change. | 
|  | /// | 
|  | ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands | 
|  | ///     through the \a UniquedGraph until fixed point, following the rule | 
|  | ///     that if a node changes, any node that references must also change. | 
|  | /// | 
|  | ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes | 
|  | ///     (referencing new operands) where necessary. | 
|  | Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); | 
|  |  | 
|  | /// Try to map the operand of an \a MDNode. | 
|  | /// | 
|  | /// If \c Op is already mapped, return the mapping.  If it's not an \a | 
|  | /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode, | 
|  | /// return the result of \a mapDistinctNode(). | 
|  | /// | 
|  | /// \return None if \c Op is an unmapped uniqued \a MDNode. | 
|  | /// \post getMappedOp(Op) only returns None if this returns None. | 
|  | Optional<Metadata *> tryToMapOperand(const Metadata *Op); | 
|  |  | 
|  | /// Map a distinct node. | 
|  | /// | 
|  | /// Return the mapping for the distinct node \c N, saving the result in \a | 
|  | /// DistinctWorklist for later remapping. | 
|  | /// | 
|  | /// \pre \c N is not yet mapped. | 
|  | /// \pre \c N.isDistinct(). | 
|  | MDNode *mapDistinctNode(const MDNode &N); | 
|  |  | 
|  | /// Get a previously mapped node. | 
|  | Optional<Metadata *> getMappedOp(const Metadata *Op) const; | 
|  |  | 
|  | /// Create a post-order traversal of an unmapped uniqued node subgraph. | 
|  | /// | 
|  | /// This traverses the metadata graph deeply enough to map \c FirstN.  It | 
|  | /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any | 
|  | /// metadata that has already been mapped will not be part of the POT. | 
|  | /// | 
|  | /// Each node that has a changed operand from outside the graph (e.g., a | 
|  | /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) | 
|  | /// is marked with \a Data::HasChanged. | 
|  | /// | 
|  | /// \return \c true if any nodes in \c G have \a Data::HasChanged. | 
|  | /// \post \c G.POT is a post-order traversal ending with \c FirstN. | 
|  | /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs | 
|  | /// to change because of operands outside the graph. | 
|  | bool createPOT(UniquedGraph &G, const MDNode &FirstN); | 
|  |  | 
|  | /// Visit the operands of a uniqued node in the POT. | 
|  | /// | 
|  | /// Visit the operands in the range from \c I to \c E, returning the first | 
|  | /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to | 
|  | /// where to continue the loop through the operands. | 
|  | /// | 
|  | /// This sets \c HasChanged if any of the visited operands change. | 
|  | MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, | 
|  | MDNode::op_iterator E, bool &HasChanged); | 
|  |  | 
|  | /// Map all the nodes in the given uniqued graph. | 
|  | /// | 
|  | /// This visits all the nodes in \c G in post-order, using the identity | 
|  | /// mapping or creating a new node depending on \a Data::HasChanged. | 
|  | /// | 
|  | /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of | 
|  | /// their operands outside of \c G. | 
|  | /// \pre \a Data::HasChanged is true for a node in \c G iff any of its | 
|  | /// operands have changed. | 
|  | /// \post \a getMappedOp() returns the mapped node for every node in \c G. | 
|  | void mapNodesInPOT(UniquedGraph &G); | 
|  |  | 
|  | /// Remap a node's operands using the given functor. | 
|  | /// | 
|  | /// Iterate through the operands of \c N and update them in place using \c | 
|  | /// mapOperand. | 
|  | /// | 
|  | /// \pre N.isDistinct() or N.isTemporary(). | 
|  | template <class OperandMapper> | 
|  | void remapOperands(MDNode &N, OperandMapper mapOperand); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | Value *Mapper::mapValue(const Value *V) { | 
|  | ValueToValueMapTy::iterator I = getVM().find(V); | 
|  |  | 
|  | // If the value already exists in the map, use it. | 
|  | if (I != getVM().end()) { | 
|  | assert(I->second && "Unexpected null mapping"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | // If we have a materializer and it can materialize a value, use that. | 
|  | if (auto *Materializer = getMaterializer()) { | 
|  | if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { | 
|  | getVM()[V] = NewV; | 
|  | return NewV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Global values do not need to be seeded into the VM if they | 
|  | // are using the identity mapping. | 
|  | if (isa<GlobalValue>(V)) { | 
|  | if (Flags & RF_NullMapMissingGlobalValues) | 
|  | return nullptr; | 
|  | return getVM()[V] = const_cast<Value *>(V); | 
|  | } | 
|  |  | 
|  | if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { | 
|  | // Inline asm may need *type* remapping. | 
|  | FunctionType *NewTy = IA->getFunctionType(); | 
|  | if (TypeMapper) { | 
|  | NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); | 
|  |  | 
|  | if (NewTy != IA->getFunctionType()) | 
|  | V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), | 
|  | IA->hasSideEffects(), IA->isAlignStack()); | 
|  | } | 
|  |  | 
|  | return getVM()[V] = const_cast<Value *>(V); | 
|  | } | 
|  |  | 
|  | if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { | 
|  | const Metadata *MD = MDV->getMetadata(); | 
|  |  | 
|  | if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { | 
|  | // Look through to grab the local value. | 
|  | if (Value *LV = mapValue(LAM->getValue())) { | 
|  | if (V == LAM->getValue()) | 
|  | return const_cast<Value *>(V); | 
|  | return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); | 
|  | } | 
|  |  | 
|  | // FIXME: always return nullptr once Verifier::verifyDominatesUse() | 
|  | // ensures metadata operands only reference defined SSA values. | 
|  | return (Flags & RF_IgnoreMissingLocals) | 
|  | ? nullptr | 
|  | : MetadataAsValue::get(V->getContext(), | 
|  | MDTuple::get(V->getContext(), None)); | 
|  | } | 
|  |  | 
|  | // If this is a module-level metadata and we know that nothing at the module | 
|  | // level is changing, then use an identity mapping. | 
|  | if (Flags & RF_NoModuleLevelChanges) | 
|  | return getVM()[V] = const_cast<Value *>(V); | 
|  |  | 
|  | // Map the metadata and turn it into a value. | 
|  | auto *MappedMD = mapMetadata(MD); | 
|  | if (MD == MappedMD) | 
|  | return getVM()[V] = const_cast<Value *>(V); | 
|  | return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); | 
|  | } | 
|  |  | 
|  | // Okay, this either must be a constant (which may or may not be mappable) or | 
|  | // is something that is not in the mapping table. | 
|  | Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) | 
|  | return mapBlockAddress(*BA); | 
|  |  | 
|  | auto mapValueOrNull = [this](Value *V) { | 
|  | auto Mapped = mapValue(V); | 
|  | assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && | 
|  | "Unexpected null mapping for constant operand without " | 
|  | "NullMapMissingGlobalValues flag"); | 
|  | return Mapped; | 
|  | }; | 
|  |  | 
|  | // Otherwise, we have some other constant to remap.  Start by checking to see | 
|  | // if all operands have an identity remapping. | 
|  | unsigned OpNo = 0, NumOperands = C->getNumOperands(); | 
|  | Value *Mapped = nullptr; | 
|  | for (; OpNo != NumOperands; ++OpNo) { | 
|  | Value *Op = C->getOperand(OpNo); | 
|  | Mapped = mapValueOrNull(Op); | 
|  | if (!Mapped) | 
|  | return nullptr; | 
|  | if (Mapped != Op) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // See if the type mapper wants to remap the type as well. | 
|  | Type *NewTy = C->getType(); | 
|  | if (TypeMapper) | 
|  | NewTy = TypeMapper->remapType(NewTy); | 
|  |  | 
|  | // If the result type and all operands match up, then just insert an identity | 
|  | // mapping. | 
|  | if (OpNo == NumOperands && NewTy == C->getType()) | 
|  | return getVM()[V] = C; | 
|  |  | 
|  | // Okay, we need to create a new constant.  We've already processed some or | 
|  | // all of the operands, set them all up now. | 
|  | SmallVector<Constant*, 8> Ops; | 
|  | Ops.reserve(NumOperands); | 
|  | for (unsigned j = 0; j != OpNo; ++j) | 
|  | Ops.push_back(cast<Constant>(C->getOperand(j))); | 
|  |  | 
|  | // If one of the operands mismatch, push it and the other mapped operands. | 
|  | if (OpNo != NumOperands) { | 
|  | Ops.push_back(cast<Constant>(Mapped)); | 
|  |  | 
|  | // Map the rest of the operands that aren't processed yet. | 
|  | for (++OpNo; OpNo != NumOperands; ++OpNo) { | 
|  | Mapped = mapValueOrNull(C->getOperand(OpNo)); | 
|  | if (!Mapped) | 
|  | return nullptr; | 
|  | Ops.push_back(cast<Constant>(Mapped)); | 
|  | } | 
|  | } | 
|  | Type *NewSrcTy = nullptr; | 
|  | if (TypeMapper) | 
|  | if (auto *GEPO = dyn_cast<GEPOperator>(C)) | 
|  | NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) | 
|  | return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); | 
|  | if (isa<ConstantArray>(C)) | 
|  | return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); | 
|  | if (isa<ConstantStruct>(C)) | 
|  | return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); | 
|  | if (isa<ConstantVector>(C)) | 
|  | return getVM()[V] = ConstantVector::get(Ops); | 
|  | // If this is a no-operand constant, it must be because the type was remapped. | 
|  | if (isa<UndefValue>(C)) | 
|  | return getVM()[V] = UndefValue::get(NewTy); | 
|  | if (isa<ConstantAggregateZero>(C)) | 
|  | return getVM()[V] = ConstantAggregateZero::get(NewTy); | 
|  | assert(isa<ConstantPointerNull>(C)); | 
|  | return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); | 
|  | } | 
|  |  | 
|  | Value *Mapper::mapBlockAddress(const BlockAddress &BA) { | 
|  | Function *F = cast<Function>(mapValue(BA.getFunction())); | 
|  |  | 
|  | // F may not have materialized its initializer.  In that case, create a | 
|  | // dummy basic block for now, and replace it once we've materialized all | 
|  | // the initializers. | 
|  | BasicBlock *BB; | 
|  | if (F->empty()) { | 
|  | DelayedBBs.push_back(DelayedBasicBlock(BA)); | 
|  | BB = DelayedBBs.back().TempBB.get(); | 
|  | } else { | 
|  | BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); | 
|  | } | 
|  |  | 
|  | return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); | 
|  | } | 
|  |  | 
|  | Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { | 
|  | getVM().MD()[Key].reset(Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Metadata *Mapper::mapToSelf(const Metadata *MD) { | 
|  | return mapToMetadata(MD, const_cast<Metadata *>(MD)); | 
|  | } | 
|  |  | 
|  | Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { | 
|  | if (!Op) | 
|  | return nullptr; | 
|  |  | 
|  | if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { | 
|  | #ifndef NDEBUG | 
|  | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) | 
|  | assert((!*MappedOp || M.getVM().count(CMD->getValue()) || | 
|  | M.getVM().getMappedMD(Op)) && | 
|  | "Expected Value to be memoized"); | 
|  | else | 
|  | assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && | 
|  | "Expected result to be memoized"); | 
|  | #endif | 
|  | return *MappedOp; | 
|  | } | 
|  |  | 
|  | const MDNode &N = *cast<MDNode>(Op); | 
|  | if (N.isDistinct()) | 
|  | return mapDistinctNode(N); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static Metadata *cloneOrBuildODR(const MDNode &N) { | 
|  | auto *CT = dyn_cast<DICompositeType>(&N); | 
|  | // If ODR type uniquing is enabled, we would have uniqued composite types | 
|  | // with identifiers during bitcode reading, so we can just use CT. | 
|  | if (CT && CT->getContext().isODRUniquingDebugTypes() && | 
|  | CT->getIdentifier() != "") | 
|  | return const_cast<DICompositeType *>(CT); | 
|  | return MDNode::replaceWithDistinct(N.clone()); | 
|  | } | 
|  |  | 
|  | MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { | 
|  | assert(N.isDistinct() && "Expected a distinct node"); | 
|  | assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); | 
|  | DistinctWorklist.push_back( | 
|  | cast<MDNode>((M.Flags & RF_MoveDistinctMDs) | 
|  | ? M.mapToSelf(&N) | 
|  | : M.mapToMetadata(&N, cloneOrBuildODR(N)))); | 
|  | return DistinctWorklist.back(); | 
|  | } | 
|  |  | 
|  | static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, | 
|  | Value *MappedV) { | 
|  | if (CMD.getValue() == MappedV) | 
|  | return const_cast<ConstantAsMetadata *>(&CMD); | 
|  | return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; | 
|  | } | 
|  |  | 
|  | Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { | 
|  | if (!Op) | 
|  | return nullptr; | 
|  |  | 
|  | if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) | 
|  | return *MappedOp; | 
|  |  | 
|  | if (isa<MDString>(Op)) | 
|  | return const_cast<Metadata *>(Op); | 
|  |  | 
|  | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) | 
|  | return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { | 
|  | auto Where = Info.find(&Op); | 
|  | assert(Where != Info.end() && "Expected a valid reference"); | 
|  |  | 
|  | auto &OpD = Where->second; | 
|  | if (!OpD.HasChanged) | 
|  | return Op; | 
|  |  | 
|  | // Lazily construct a temporary node. | 
|  | if (!OpD.Placeholder) | 
|  | OpD.Placeholder = Op.clone(); | 
|  |  | 
|  | return *OpD.Placeholder; | 
|  | } | 
|  |  | 
|  | template <class OperandMapper> | 
|  | void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { | 
|  | assert(!N.isUniqued() && "Expected distinct or temporary nodes"); | 
|  | for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { | 
|  | Metadata *Old = N.getOperand(I); | 
|  | Metadata *New = mapOperand(Old); | 
|  |  | 
|  | if (Old != New) | 
|  | N.replaceOperandWith(I, New); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// An entry in the worklist for the post-order traversal. | 
|  | struct POTWorklistEntry { | 
|  | MDNode *N;              ///< Current node. | 
|  | MDNode::op_iterator Op; ///< Current operand of \c N. | 
|  |  | 
|  | /// Keep a flag of whether operands have changed in the worklist to avoid | 
|  | /// hitting the map in \a UniquedGraph. | 
|  | bool HasChanged = false; | 
|  |  | 
|  | POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { | 
|  | assert(G.Info.empty() && "Expected a fresh traversal"); | 
|  | assert(FirstN.isUniqued() && "Expected uniqued node in POT"); | 
|  |  | 
|  | // Construct a post-order traversal of the uniqued subgraph under FirstN. | 
|  | bool AnyChanges = false; | 
|  | SmallVector<POTWorklistEntry, 16> Worklist; | 
|  | Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); | 
|  | (void)G.Info[&FirstN]; | 
|  | while (!Worklist.empty()) { | 
|  | // Start or continue the traversal through the this node's operands. | 
|  | auto &WE = Worklist.back(); | 
|  | if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { | 
|  | // Push a new node to traverse first. | 
|  | Worklist.push_back(POTWorklistEntry(*N)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Push the node onto the POT. | 
|  | assert(WE.N->isUniqued() && "Expected only uniqued nodes"); | 
|  | assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); | 
|  | auto &D = G.Info[WE.N]; | 
|  | AnyChanges |= D.HasChanged = WE.HasChanged; | 
|  | D.ID = G.POT.size(); | 
|  | G.POT.push_back(WE.N); | 
|  |  | 
|  | // Pop the node off the worklist. | 
|  | Worklist.pop_back(); | 
|  | } | 
|  | return AnyChanges; | 
|  | } | 
|  |  | 
|  | MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, | 
|  | MDNode::op_iterator E, bool &HasChanged) { | 
|  | while (I != E) { | 
|  | Metadata *Op = *I++; // Increment even on early return. | 
|  | if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { | 
|  | // Check if the operand changes. | 
|  | HasChanged |= Op != *MappedOp; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A uniqued metadata node. | 
|  | MDNode &OpN = *cast<MDNode>(Op); | 
|  | assert(OpN.isUniqued() && | 
|  | "Only uniqued operands cannot be mapped immediately"); | 
|  | if (G.Info.insert(std::make_pair(&OpN, Data())).second) | 
|  | return &OpN; // This is a new one.  Return it. | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void MDNodeMapper::UniquedGraph::propagateChanges() { | 
|  | bool AnyChanges; | 
|  | do { | 
|  | AnyChanges = false; | 
|  | for (MDNode *N : POT) { | 
|  | auto &D = Info[N]; | 
|  | if (D.HasChanged) | 
|  | continue; | 
|  |  | 
|  | if (llvm::none_of(N->operands(), [&](const Metadata *Op) { | 
|  | auto Where = Info.find(Op); | 
|  | return Where != Info.end() && Where->second.HasChanged; | 
|  | })) | 
|  | continue; | 
|  |  | 
|  | AnyChanges = D.HasChanged = true; | 
|  | } | 
|  | } while (AnyChanges); | 
|  | } | 
|  |  | 
|  | void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { | 
|  | // Construct uniqued nodes, building forward references as necessary. | 
|  | SmallVector<MDNode *, 16> CyclicNodes; | 
|  | for (auto *N : G.POT) { | 
|  | auto &D = G.Info[N]; | 
|  | if (!D.HasChanged) { | 
|  | // The node hasn't changed. | 
|  | M.mapToSelf(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Remember whether this node had a placeholder. | 
|  | bool HadPlaceholder(D.Placeholder); | 
|  |  | 
|  | // Clone the uniqued node and remap the operands. | 
|  | TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); | 
|  | remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { | 
|  | if (Optional<Metadata *> MappedOp = getMappedOp(Old)) | 
|  | return *MappedOp; | 
|  | (void)D; | 
|  | assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); | 
|  | return &G.getFwdReference(*cast<MDNode>(Old)); | 
|  | }); | 
|  |  | 
|  | auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); | 
|  | M.mapToMetadata(N, NewN); | 
|  |  | 
|  | // Nodes that were referenced out of order in the POT are involved in a | 
|  | // uniquing cycle. | 
|  | if (HadPlaceholder) | 
|  | CyclicNodes.push_back(NewN); | 
|  | } | 
|  |  | 
|  | // Resolve cycles. | 
|  | for (auto *N : CyclicNodes) | 
|  | if (!N->isResolved()) | 
|  | N->resolveCycles(); | 
|  | } | 
|  |  | 
|  | Metadata *MDNodeMapper::map(const MDNode &N) { | 
|  | assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); | 
|  | assert(!(M.Flags & RF_NoModuleLevelChanges) && | 
|  | "MDNodeMapper::map assumes module-level changes"); | 
|  |  | 
|  | // Require resolved nodes whenever metadata might be remapped. | 
|  | assert(N.isResolved() && "Unexpected unresolved node"); | 
|  |  | 
|  | Metadata *MappedN = | 
|  | N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); | 
|  | while (!DistinctWorklist.empty()) | 
|  | remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { | 
|  | if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) | 
|  | return *MappedOp; | 
|  | return mapTopLevelUniquedNode(*cast<MDNode>(Old)); | 
|  | }); | 
|  | return MappedN; | 
|  | } | 
|  |  | 
|  | Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { | 
|  | assert(FirstN.isUniqued() && "Expected uniqued node"); | 
|  |  | 
|  | // Create a post-order traversal of uniqued nodes under FirstN. | 
|  | UniquedGraph G; | 
|  | if (!createPOT(G, FirstN)) { | 
|  | // Return early if no nodes have changed. | 
|  | for (const MDNode *N : G.POT) | 
|  | M.mapToSelf(N); | 
|  | return &const_cast<MDNode &>(FirstN); | 
|  | } | 
|  |  | 
|  | // Update graph with all nodes that have changed. | 
|  | G.propagateChanges(); | 
|  |  | 
|  | // Map all the nodes in the graph. | 
|  | mapNodesInPOT(G); | 
|  |  | 
|  | // Return the original node, remapped. | 
|  | return *getMappedOp(&FirstN); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct MapMetadataDisabler { | 
|  | ValueToValueMapTy &VM; | 
|  |  | 
|  | MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { | 
|  | VM.disableMapMetadata(); | 
|  | } | 
|  |  | 
|  | ~MapMetadataDisabler() { VM.enableMapMetadata(); } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { | 
|  | // If the value already exists in the map, use it. | 
|  | if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) | 
|  | return *NewMD; | 
|  |  | 
|  | if (isa<MDString>(MD)) | 
|  | return const_cast<Metadata *>(MD); | 
|  |  | 
|  | // This is a module-level metadata.  If nothing at the module level is | 
|  | // changing, use an identity mapping. | 
|  | if ((Flags & RF_NoModuleLevelChanges)) | 
|  | return const_cast<Metadata *>(MD); | 
|  |  | 
|  | if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { | 
|  | // Disallow recursion into metadata mapping through mapValue. | 
|  | MapMetadataDisabler MMD(getVM()); | 
|  |  | 
|  | // Don't memoize ConstantAsMetadata.  Instead of lasting until the | 
|  | // LLVMContext is destroyed, they can be deleted when the GlobalValue they | 
|  | // reference is destructed.  These aren't super common, so the extra | 
|  | // indirection isn't that expensive. | 
|  | return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); | 
|  | } | 
|  |  | 
|  | assert(isa<MDNode>(MD) && "Expected a metadata node"); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Metadata *Mapper::mapMetadata(const Metadata *MD) { | 
|  | assert(MD && "Expected valid metadata"); | 
|  | assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); | 
|  |  | 
|  | if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) | 
|  | return *NewMD; | 
|  |  | 
|  | return MDNodeMapper(*this).map(*cast<MDNode>(MD)); | 
|  | } | 
|  |  | 
|  | void Mapper::flush() { | 
|  | // Flush out the worklist of global values. | 
|  | while (!Worklist.empty()) { | 
|  | WorklistEntry E = Worklist.pop_back_val(); | 
|  | CurrentMCID = E.MCID; | 
|  | switch (E.Kind) { | 
|  | case WorklistEntry::MapGlobalInit: | 
|  | E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); | 
|  | remapGlobalObjectMetadata(*E.Data.GVInit.GV); | 
|  | break; | 
|  | case WorklistEntry::MapAppendingVar: { | 
|  | unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; | 
|  | mapAppendingVariable(*E.Data.AppendingGV.GV, | 
|  | E.Data.AppendingGV.InitPrefix, | 
|  | E.AppendingGVIsOldCtorDtor, | 
|  | makeArrayRef(AppendingInits).slice(PrefixSize)); | 
|  | AppendingInits.resize(PrefixSize); | 
|  | break; | 
|  | } | 
|  | case WorklistEntry::MapGlobalAliasee: | 
|  | E.Data.GlobalAliasee.GA->setAliasee( | 
|  | mapConstant(E.Data.GlobalAliasee.Aliasee)); | 
|  | break; | 
|  | case WorklistEntry::RemapFunction: | 
|  | remapFunction(*E.Data.RemapF); | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurrentMCID = 0; | 
|  |  | 
|  | // Finish logic for block addresses now that all global values have been | 
|  | // handled. | 
|  | while (!DelayedBBs.empty()) { | 
|  | DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); | 
|  | BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); | 
|  | DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Mapper::remapInstruction(Instruction *I) { | 
|  | // Remap operands. | 
|  | for (Use &Op : I->operands()) { | 
|  | Value *V = mapValue(Op); | 
|  | // If we aren't ignoring missing entries, assert that something happened. | 
|  | if (V) | 
|  | Op = V; | 
|  | else | 
|  | assert((Flags & RF_IgnoreMissingLocals) && | 
|  | "Referenced value not in value map!"); | 
|  | } | 
|  |  | 
|  | // Remap phi nodes' incoming blocks. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = mapValue(PN->getIncomingBlock(i)); | 
|  | // If we aren't ignoring missing entries, assert that something happened. | 
|  | if (V) | 
|  | PN->setIncomingBlock(i, cast<BasicBlock>(V)); | 
|  | else | 
|  | assert((Flags & RF_IgnoreMissingLocals) && | 
|  | "Referenced block not in value map!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remap attached metadata. | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | 
|  | I->getAllMetadata(MDs); | 
|  | for (const auto &MI : MDs) { | 
|  | MDNode *Old = MI.second; | 
|  | MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); | 
|  | if (New != Old) | 
|  | I->setMetadata(MI.first, New); | 
|  | } | 
|  |  | 
|  | if (!TypeMapper) | 
|  | return; | 
|  |  | 
|  | // If the instruction's type is being remapped, do so now. | 
|  | if (auto CS = CallSite(I)) { | 
|  | SmallVector<Type *, 3> Tys; | 
|  | FunctionType *FTy = CS.getFunctionType(); | 
|  | Tys.reserve(FTy->getNumParams()); | 
|  | for (Type *Ty : FTy->params()) | 
|  | Tys.push_back(TypeMapper->remapType(Ty)); | 
|  | CS.mutateFunctionType(FunctionType::get( | 
|  | TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); | 
|  |  | 
|  | LLVMContext &C = CS->getContext(); | 
|  | AttributeList Attrs = CS.getAttributes(); | 
|  | for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { | 
|  | if (Attrs.hasAttribute(i, Attribute::ByVal)) { | 
|  | Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); | 
|  | if (!Ty) | 
|  | continue; | 
|  |  | 
|  | Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); | 
|  | Attrs = Attrs.addAttribute( | 
|  | C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty))); | 
|  | } | 
|  | } | 
|  | CS.setAttributes(Attrs); | 
|  | return; | 
|  | } | 
|  | if (auto *AI = dyn_cast<AllocaInst>(I)) | 
|  | AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { | 
|  | GEP->setSourceElementType( | 
|  | TypeMapper->remapType(GEP->getSourceElementType())); | 
|  | GEP->setResultElementType( | 
|  | TypeMapper->remapType(GEP->getResultElementType())); | 
|  | } | 
|  | I->mutateType(TypeMapper->remapType(I->getType())); | 
|  | } | 
|  |  | 
|  | void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; | 
|  | GO.getAllMetadata(MDs); | 
|  | GO.clearMetadata(); | 
|  | for (const auto &I : MDs) | 
|  | GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); | 
|  | } | 
|  |  | 
|  | void Mapper::remapFunction(Function &F) { | 
|  | // Remap the operands. | 
|  | for (Use &Op : F.operands()) | 
|  | if (Op) | 
|  | Op = mapValue(Op); | 
|  |  | 
|  | // Remap the metadata attachments. | 
|  | remapGlobalObjectMetadata(F); | 
|  |  | 
|  | // Remap the argument types. | 
|  | if (TypeMapper) | 
|  | for (Argument &A : F.args()) | 
|  | A.mutateType(TypeMapper->remapType(A.getType())); | 
|  |  | 
|  | // Remap the instructions. | 
|  | for (BasicBlock &BB : F) | 
|  | for (Instruction &I : BB) | 
|  | remapInstruction(&I); | 
|  | } | 
|  |  | 
|  | void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, | 
|  | bool IsOldCtorDtor, | 
|  | ArrayRef<Constant *> NewMembers) { | 
|  | SmallVector<Constant *, 16> Elements; | 
|  | if (InitPrefix) { | 
|  | unsigned NumElements = | 
|  | cast<ArrayType>(InitPrefix->getType())->getNumElements(); | 
|  | for (unsigned I = 0; I != NumElements; ++I) | 
|  | Elements.push_back(InitPrefix->getAggregateElement(I)); | 
|  | } | 
|  |  | 
|  | PointerType *VoidPtrTy; | 
|  | Type *EltTy; | 
|  | if (IsOldCtorDtor) { | 
|  | // FIXME: This upgrade is done during linking to support the C API.  See | 
|  | // also IRLinker::linkAppendingVarProto() in IRMover.cpp. | 
|  | VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); | 
|  | auto &ST = *cast<StructType>(NewMembers.front()->getType()); | 
|  | Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; | 
|  | EltTy = StructType::get(GV.getContext(), Tys, false); | 
|  | } | 
|  |  | 
|  | for (auto *V : NewMembers) { | 
|  | Constant *NewV; | 
|  | if (IsOldCtorDtor) { | 
|  | auto *S = cast<ConstantStruct>(V); | 
|  | auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); | 
|  | auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); | 
|  | Constant *Null = Constant::getNullValue(VoidPtrTy); | 
|  | NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); | 
|  | } else { | 
|  | NewV = cast_or_null<Constant>(mapValue(V)); | 
|  | } | 
|  | Elements.push_back(NewV); | 
|  | } | 
|  |  | 
|  | GV.setInitializer(ConstantArray::get( | 
|  | cast<ArrayType>(GV.getType()->getElementType()), Elements)); | 
|  | } | 
|  |  | 
|  | void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, | 
|  | unsigned MCID) { | 
|  | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); | 
|  | assert(MCID < MCs.size() && "Invalid mapping context"); | 
|  |  | 
|  | WorklistEntry WE; | 
|  | WE.Kind = WorklistEntry::MapGlobalInit; | 
|  | WE.MCID = MCID; | 
|  | WE.Data.GVInit.GV = &GV; | 
|  | WE.Data.GVInit.Init = &Init; | 
|  | Worklist.push_back(WE); | 
|  | } | 
|  |  | 
|  | void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, | 
|  | Constant *InitPrefix, | 
|  | bool IsOldCtorDtor, | 
|  | ArrayRef<Constant *> NewMembers, | 
|  | unsigned MCID) { | 
|  | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); | 
|  | assert(MCID < MCs.size() && "Invalid mapping context"); | 
|  |  | 
|  | WorklistEntry WE; | 
|  | WE.Kind = WorklistEntry::MapAppendingVar; | 
|  | WE.MCID = MCID; | 
|  | WE.Data.AppendingGV.GV = &GV; | 
|  | WE.Data.AppendingGV.InitPrefix = InitPrefix; | 
|  | WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; | 
|  | WE.AppendingGVNumNewMembers = NewMembers.size(); | 
|  | Worklist.push_back(WE); | 
|  | AppendingInits.append(NewMembers.begin(), NewMembers.end()); | 
|  | } | 
|  |  | 
|  | void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, | 
|  | unsigned MCID) { | 
|  | assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); | 
|  | assert(MCID < MCs.size() && "Invalid mapping context"); | 
|  |  | 
|  | WorklistEntry WE; | 
|  | WE.Kind = WorklistEntry::MapGlobalAliasee; | 
|  | WE.MCID = MCID; | 
|  | WE.Data.GlobalAliasee.GA = &GA; | 
|  | WE.Data.GlobalAliasee.Aliasee = &Aliasee; | 
|  | Worklist.push_back(WE); | 
|  | } | 
|  |  | 
|  | void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { | 
|  | assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); | 
|  | assert(MCID < MCs.size() && "Invalid mapping context"); | 
|  |  | 
|  | WorklistEntry WE; | 
|  | WE.Kind = WorklistEntry::RemapFunction; | 
|  | WE.MCID = MCID; | 
|  | WE.Data.RemapF = &F; | 
|  | Worklist.push_back(WE); | 
|  | } | 
|  |  | 
|  | void Mapper::addFlags(RemapFlags Flags) { | 
|  | assert(!hasWorkToDo() && "Expected to have flushed the worklist"); | 
|  | this->Flags = this->Flags | Flags; | 
|  | } | 
|  |  | 
|  | static Mapper *getAsMapper(void *pImpl) { | 
|  | return reinterpret_cast<Mapper *>(pImpl); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class FlushingMapper { | 
|  | Mapper &M; | 
|  |  | 
|  | public: | 
|  | explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { | 
|  | assert(!M.hasWorkToDo() && "Expected to be flushed"); | 
|  | } | 
|  |  | 
|  | ~FlushingMapper() { M.flush(); } | 
|  |  | 
|  | Mapper *operator->() const { return &M; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, | 
|  | ValueMapTypeRemapper *TypeMapper, | 
|  | ValueMaterializer *Materializer) | 
|  | : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} | 
|  |  | 
|  | ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } | 
|  |  | 
|  | unsigned | 
|  | ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, | 
|  | ValueMaterializer *Materializer) { | 
|  | return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); | 
|  | } | 
|  |  | 
|  | void ValueMapper::addFlags(RemapFlags Flags) { | 
|  | FlushingMapper(pImpl)->addFlags(Flags); | 
|  | } | 
|  |  | 
|  | Value *ValueMapper::mapValue(const Value &V) { | 
|  | return FlushingMapper(pImpl)->mapValue(&V); | 
|  | } | 
|  |  | 
|  | Constant *ValueMapper::mapConstant(const Constant &C) { | 
|  | return cast_or_null<Constant>(mapValue(C)); | 
|  | } | 
|  |  | 
|  | Metadata *ValueMapper::mapMetadata(const Metadata &MD) { | 
|  | return FlushingMapper(pImpl)->mapMetadata(&MD); | 
|  | } | 
|  |  | 
|  | MDNode *ValueMapper::mapMDNode(const MDNode &N) { | 
|  | return cast_or_null<MDNode>(mapMetadata(N)); | 
|  | } | 
|  |  | 
|  | void ValueMapper::remapInstruction(Instruction &I) { | 
|  | FlushingMapper(pImpl)->remapInstruction(&I); | 
|  | } | 
|  |  | 
|  | void ValueMapper::remapFunction(Function &F) { | 
|  | FlushingMapper(pImpl)->remapFunction(F); | 
|  | } | 
|  |  | 
|  | void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, | 
|  | Constant &Init, | 
|  | unsigned MCID) { | 
|  | getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); | 
|  | } | 
|  |  | 
|  | void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, | 
|  | Constant *InitPrefix, | 
|  | bool IsOldCtorDtor, | 
|  | ArrayRef<Constant *> NewMembers, | 
|  | unsigned MCID) { | 
|  | getAsMapper(pImpl)->scheduleMapAppendingVariable( | 
|  | GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); | 
|  | } | 
|  |  | 
|  | void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, | 
|  | unsigned MCID) { | 
|  | getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); | 
|  | } | 
|  |  | 
|  | void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { | 
|  | getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); | 
|  | } |