|  | //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86ISelLowering.h" | 
|  | #include "Utils/X86ShuffleDecode.h" | 
|  | #include "X86CallingConv.h" | 
|  | #include "X86FrameLowering.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86TargetObjectFile.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "X86IntrinsicsInfo.h" | 
|  | #include <bitset> | 
|  | #include <numeric> | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | static cl::opt<bool> ExperimentalVectorWideningLegalization( | 
|  | "x86-experimental-vector-widening-legalization", cl::init(false), | 
|  | cl::desc("Enable an experimental vector type legalization through widening " | 
|  | "rather than promotion."), | 
|  | cl::Hidden); | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, | 
|  | const X86Subtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(&STI) { | 
|  | X86ScalarSSEf64 = Subtarget->hasSSE2(); | 
|  | X86ScalarSSEf32 = Subtarget->hasSSE1(); | 
|  | MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); | 
|  |  | 
|  | // Set up the TargetLowering object. | 
|  | static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; | 
|  |  | 
|  | // X86 is weird. It always uses i8 for shift amounts and setcc results. | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | // X86-SSE is even stranger. It uses -1 or 0 for vector masks. | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | // For 64-bit, since we have so many registers, use the ILP scheduler. | 
|  | // For 32-bit, use the register pressure specific scheduling. | 
|  | // For Atom, always use ILP scheduling. | 
|  | if (Subtarget->isAtom()) | 
|  | setSchedulingPreference(Sched::ILP); | 
|  | else if (Subtarget->is64Bit()) | 
|  | setSchedulingPreference(Sched::ILP); | 
|  | else | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); | 
|  |  | 
|  | // Bypass expensive divides on Atom when compiling with O2. | 
|  | if (TM.getOptLevel() >= CodeGenOpt::Default) { | 
|  | if (Subtarget->hasSlowDivide32()) | 
|  | addBypassSlowDiv(32, 8); | 
|  | if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit()) | 
|  | addBypassSlowDiv(64, 16); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetKnownWindowsMSVC()) { | 
|  | // Setup Windows compiler runtime calls. | 
|  | setLibcallName(RTLIB::SDIV_I64, "_alldiv"); | 
|  | setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); | 
|  | setLibcallName(RTLIB::SREM_I64, "_allrem"); | 
|  | setLibcallName(RTLIB::UREM_I64, "_aullrem"); | 
|  | setLibcallName(RTLIB::MUL_I64, "_allmul"); | 
|  | setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(false); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else if (Subtarget->isTargetWindowsGNU()) { | 
|  | // MS runtime is weird: it exports _setjmp, but longjmp! | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else { | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  | } | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, &X86::GR8RegClass); | 
|  | addRegisterClass(MVT::i16, &X86::GR16RegClass); | 
|  | addRegisterClass(MVT::i32, &X86::GR32RegClass); | 
|  | if (Subtarget->is64Bit()) | 
|  | addRegisterClass(MVT::i64, &X86::GR64RegClass); | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | 
|  |  | 
|  | // We don't accept any truncstore of integer registers. | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i16, MVT::i8,  Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // SETOEQ and SETUNE require checking two conditions. | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) | 
|  | // f32/f64 are legal, f80 is custom. | 
|  | setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom); | 
|  | else | 
|  | setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom); | 
|  | } else if (!Subtarget->useSoftFloat()) { | 
|  | // We have an algorithm for SSE2->double, and we turn this into a | 
|  | // 64-bit FILD followed by conditional FADD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom); | 
|  | // We have an algorithm for SSE2, and we turn this into a 64-bit | 
|  | // FILD or VCVTUSI2SS/SD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  |  | 
|  | if (!Subtarget->useSoftFloat()) { | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote); | 
|  | } | 
|  |  | 
|  | // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64 | 
|  | // are Legal, f80 is custom lowered. | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { | 
|  | // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Expand); | 
|  | } | 
|  | } else if (!Subtarget->useSoftFloat()) { | 
|  | // Since AVX is a superset of SSE3, only check for SSE here. | 
|  | if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand); | 
|  | else | 
|  | // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom. | 
|  | // With SSE3 we can use fisttpll to convert to a signed i64; without | 
|  | // SSE, we're stuck with a fistpll. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | // TODO: when we have SSE, these could be more efficient, by using movd/movq. | 
|  | if (!X86ScalarSSEf64) { | 
|  | setOperationAction(ISD::BITCAST        , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::BITCAST        , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::BITCAST      , MVT::f64  , Expand); | 
|  | // Without SSE, i64->f64 goes through memory. | 
|  | setOperationAction(ISD::BITCAST      , MVT::i64  , Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scalar integer divide and remainder are lowered to use operations that | 
|  | // produce two results, to match the available instructions. This exposes | 
|  | // the two-result form to trivial CSE, which is able to combine x/y and x%y | 
|  | // into a single instruction. | 
|  | // | 
|  | // Scalar integer multiply-high is also lowered to use two-result | 
|  | // operations, to match the available instructions. However, plain multiply | 
|  | // (low) operations are left as Legal, as there are single-result | 
|  | // instructions for this in x86. Using the two-result multiply instructions | 
|  | // when both high and low results are needed must be arranged by dagcombine. | 
|  | for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  |  | 
|  | // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. | 
|  | setOperationAction(ISD::ADDC, VT, Custom); | 
|  | setOperationAction(ISD::ADDE, VT, Custom); | 
|  | setOperationAction(ISD::SUBC, VT, Custom); | 
|  | setOperationAction(ISD::SUBE, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BR_JT            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f32,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f64,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f80,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i8,    Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i16,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i32,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::f32,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::f64,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::f80,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::i8,    Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::i16,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::i32,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::i64,   Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  |  | 
|  | if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) { | 
|  | // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)` | 
|  | // is. We should promote the value to 64-bits to solve this. | 
|  | // This is what the CRT headers do - `fmodf` is an inline header | 
|  | // function casting to f64 and calling `fmod`. | 
|  | setOperationAction(ISD::FREM           , MVT::f32  , Promote); | 
|  | } else { | 
|  | setOperationAction(ISD::FREM           , MVT::f32  , Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom); | 
|  |  | 
|  | // Promote the i8 variants and force them on up to i32 which has a shorter | 
|  | // encoding. | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32); | 
|  | if (Subtarget->hasBMI()) { | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  | } else { | 
|  | setOperationAction(ISD::CTTZ           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTTZ           , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTTZ         , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasLZCNT()) { | 
|  | // When promoting the i8 variants, force them to i32 for a shorter | 
|  | // encoding. | 
|  | setOperationAction(ISD::CTLZ           , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  | } else { | 
|  | setOperationAction(ISD::CTLZ           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::CTLZ         , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special handling for half-precision floating point conversions. | 
|  | // If we don't have F16C support, then lower half float conversions | 
|  | // into library calls. | 
|  | if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) { | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); | 
|  | } | 
|  |  | 
|  | // There's never any support for operations beyond MVT::f32. | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f80, MVT::f16, Expand); | 
|  |  | 
|  | if (Subtarget->hasPOPCNT()) { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Promote); | 
|  | } else { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTPOP        , MVT::i64  , Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  |  | 
|  | if (!Subtarget->hasMOVBE()) | 
|  | setOperationAction(ISD::BSWAP          , MVT::i16  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT          , MVT::i1   , Promote); | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT          , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f80  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f80  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SELECT        , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SETCC         , MVT::i64  , Custom); | 
|  | } | 
|  | setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom); | 
|  | // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support | 
|  | // SjLj exception handling but a light-weight setjmp/longjmp replacement to | 
|  | // support continuation, user-level threading, and etc.. As a result, no | 
|  | // other SjLj exception interfaces are implemented and please don't build | 
|  | // your own exception handling based on them. | 
|  | // LLVM/Clang supports zero-cost DWARF exception handling. | 
|  | setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); | 
|  |  | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::JumpTable       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::JumpTable     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom); | 
|  | } | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE1()) | 
|  | setOperationAction(ISD::PREFETCH      , MVT::Other, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom); | 
|  |  | 
|  | // Expand certain atomics | 
|  | for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_STORE, VT, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasCmpxchg16b()) { | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); | 
|  | } | 
|  |  | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && | 
|  | !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) { | 
|  | setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTarget64BitLP64()) { | 
|  | setExceptionPointerRegister(X86::RAX); | 
|  | setExceptionSelectorRegister(X86::RDX); | 
|  | } else { | 
|  | setExceptionPointerRegister(X86::EAX); | 
|  | setExceptionSelectorRegister(X86::EDX); | 
|  | } | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); | 
|  | setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Custom); | 
|  | } else { | 
|  | // TargetInfo::CharPtrBuiltinVaList | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); | 
|  |  | 
|  | // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering. | 
|  | setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom); | 
|  | setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom); | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) { | 
|  | // f32 and f64 use SSE. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, &X86::FR32RegClass); | 
|  | addRegisterClass(MVT::f64, &X86::FR64RegClass); | 
|  |  | 
|  | // Use ANDPD to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | // Use ANDPD and ORPD to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // Lower this to FGETSIGNx86 plus an AND. | 
|  | setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  |  | 
|  | // Expand FP immediates into loads from the stack, except for the special | 
|  | // cases we handle. | 
|  | addLegalFPImmediate(APFloat(+0.0)); // xorpd | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) { | 
|  | // Use SSE for f32, x87 for f64. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, &X86::FR32RegClass); | 
|  | addRegisterClass(MVT::f64, &X86::RFP64RegClass); | 
|  |  | 
|  | // Use ANDPS to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  |  | 
|  | // Use ANDPS and ORPS to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  |  | 
|  | // Special cases we handle for FP constants. | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | } | 
|  | } else if (!Subtarget->useSoftFloat()) { | 
|  | // f32 and f64 in x87. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, &X86::RFP64RegClass); | 
|  | addRegisterClass(MVT::f32, &X86::RFP32RegClass); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  | } | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0f)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | // We don't support FMA. | 
|  | setOperationAction(ISD::FMA, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::f32, Expand); | 
|  |  | 
|  | // Long double always uses X87. | 
|  | if (!Subtarget->useSoftFloat()) { | 
|  | addRegisterClass(MVT::f80, &X86::RFP80RegClass); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); | 
|  | { | 
|  | APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0 | 
|  | TmpFlt.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0/FCHS | 
|  |  | 
|  | bool ignored; | 
|  | APFloat TmpFlt2(+1.0); | 
|  | TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1 | 
|  | TmpFlt2.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f80, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f80, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCEIL,  MVT::f80, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FRINT,  MVT::f80, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::f80, Expand); | 
|  | } | 
|  |  | 
|  | // Always use a library call for pow. | 
|  | setOperationAction(ISD::FPOW             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f80  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLOG, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); | 
|  |  | 
|  | // First set operation action for all vector types to either promote | 
|  | // (for widening) or expand (for scalarization). Then we will selectively | 
|  | // turn on ones that can be effectively codegen'd. | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | setOperationAction(ISD::ADD , VT, Expand); | 
|  | setOperationAction(ISD::SUB , VT, Expand); | 
|  | setOperationAction(ISD::FADD, VT, Expand); | 
|  | setOperationAction(ISD::FNEG, VT, Expand); | 
|  | setOperationAction(ISD::FSUB, VT, Expand); | 
|  | setOperationAction(ISD::MUL , VT, Expand); | 
|  | setOperationAction(ISD::FMUL, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::FDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::LOAD, VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); | 
|  | setOperationAction(ISD::FABS, VT, Expand); | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FSINCOS, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FSINCOS, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  | setOperationAction(ISD::FMA,  VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, VT, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, VT, Expand); | 
|  | setOperationAction(ISD::FFLOOR, VT, Expand); | 
|  | setOperationAction(ISD::FCEIL, VT, Expand); | 
|  | setOperationAction(ISD::FTRUNC, VT, Expand); | 
|  | setOperationAction(ISD::FRINT, VT, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::SHL, VT, Expand); | 
|  | setOperationAction(ISD::SRA, VT, Expand); | 
|  | setOperationAction(ISD::SRL, VT, Expand); | 
|  | setOperationAction(ISD::ROTL, VT, Expand); | 
|  | setOperationAction(ISD::ROTR, VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  | setOperationAction(ISD::SETCC, VT, Expand); | 
|  | setOperationAction(ISD::FLOG, VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, VT, Expand); | 
|  | setOperationAction(ISD::FEXP, VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_SINT, VT, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); | 
|  | setOperationAction(ISD::TRUNCATE, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::ANY_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | for (MVT InnerVT : MVT::vector_valuetypes()) { | 
|  | setTruncStoreAction(InnerVT, VT, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); | 
|  |  | 
|  | // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like | 
|  | // types, we have to deal with them whether we ask for Expansion or not. | 
|  | // Setting Expand causes its own optimisation problems though, so leave | 
|  | // them legal. | 
|  | if (VT.getVectorElementType() == MVT::i1) | 
|  | setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); | 
|  |  | 
|  | // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are | 
|  | // split/scalarized right now. | 
|  | if (VT.getVectorElementType() == MVT::f16) | 
|  | setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: In order to prevent SSE instructions being expanded to MMX ones | 
|  | // with -msoft-float, disable use of MMX as well. | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) { | 
|  | addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); | 
|  | // No operations on x86mmx supported, everything uses intrinsics. | 
|  | } | 
|  |  | 
|  | // MMX-sized vectors (other than x86mmx) are expected to be expanded | 
|  | // into smaller operations. | 
|  | for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) { | 
|  | setOperationAction(ISD::MULHS,              MMXTy,      Expand); | 
|  | setOperationAction(ISD::AND,                MMXTy,      Expand); | 
|  | setOperationAction(ISD::OR,                 MMXTy,      Expand); | 
|  | setOperationAction(ISD::XOR,                MMXTy,      Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MMXTy,      Expand); | 
|  | setOperationAction(ISD::SELECT,             MMXTy,      Expand); | 
|  | setOperationAction(ISD::BITCAST,            MMXTy,      Expand); | 
|  | } | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand); | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) { | 
|  | addRegisterClass(MVT::v4f32, &X86::VR128RegClass); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) { | 
|  | addRegisterClass(MVT::v2f64, &X86::VR128RegClass); | 
|  |  | 
|  | // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM | 
|  | // registers cannot be used even for integer operations. | 
|  | addRegisterClass(MVT::v16i8, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v8i16, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v4i32, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v2i64, &X86::VR128RegClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL,                MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MULHU,              MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::MULHS,              MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v2f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,               MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v16i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,              MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTPOP,              MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::CTPOP,              MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::CTPOP,              MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::CTPOP,              MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ,               MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::CTTZ,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::CTTZ,               MVT::v4i32, Custom); | 
|  | // ISD::CTTZ v2i64 - scalarization is faster. | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v4i32, Custom); | 
|  | // ISD::CTTZ_ZERO_UNDEF v2i64 - scalarization is faster. | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-power-of-2 vectors | 
|  | if (!isPowerOf2_32(VT.getVectorNumElements())) | 
|  | continue; | 
|  | // Do not attempt to custom lower non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::VSELECT,            VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | } | 
|  |  | 
|  | // We support custom legalizing of sext and anyext loads for specific | 
|  | // memory vector types which we can load as a scalar (or sequence of | 
|  | // scalars) and extend in-register to a legal 128-bit vector type. For sext | 
|  | // loads these must work with a single scalar load. | 
|  | for (MVT VT : MVT::integer_vector_valuetypes()) { | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. | 
|  | for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v2i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | // Custom lower v2i64 and v2f64 selects. | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom); | 
|  | // As there is no 64-bit GPR available, we need build a special custom | 
|  | // sequence to convert from v2i32 to v2f32. | 
|  | if (!Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom); | 
|  |  | 
|  | for (MVT VT : MVT::fp_vector_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) { | 
|  | for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { | 
|  | setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal); | 
|  | setOperationAction(ISD::FCEIL,            RoundedTy,  Legal); | 
|  | setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal); | 
|  | setOperationAction(ISD::FRINT,            RoundedTy,  Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::SMAX,               MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SMAX,               MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v4i32, Legal); | 
|  |  | 
|  | // FIXME: Do we need to handle scalar-to-vector here? | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Legal); | 
|  |  | 
|  | // We directly match byte blends in the backend as they match the VSELECT | 
|  | // condition form. | 
|  | setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal); | 
|  |  | 
|  | // SSE41 brings specific instructions for doing vector sign extend even in | 
|  | // cases where we don't have SRA. | 
|  | for (MVT VT : MVT::integer_vector_valuetypes()) { | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); | 
|  | } | 
|  |  | 
|  | // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); | 
|  |  | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); | 
|  |  | 
|  | // i8 and i16 vectors are custom because the source register and source | 
|  | // source memory operand types are not the same width.  f32 vectors are | 
|  | // custom since the immediate controlling the insert encodes additional | 
|  | // information. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  |  | 
|  | // FIXME: these should be Legal, but that's only for the case where | 
|  | // the index is constant.  For now custom expand to deal with that. | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE2()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRL,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v16i8, Custom); | 
|  |  | 
|  | // In the customized shift lowering, the legal cases in AVX2 will be | 
|  | // recognized. | 
|  | setOperationAction(ISD::SRL,               MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v4i32, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) { | 
|  | addRegisterClass(MVT::v32i8,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v16i16, &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v8i32,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v8f32,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v4i64,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v4f64,  &X86::VR256RegClass); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f32, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v4f64, Custom); | 
|  |  | 
|  | // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted | 
|  | // even though v8i16 is a legal type. | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom); | 
|  |  | 
|  | for (MVT VT : MVT::fp_vector_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SRL,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,             MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v4i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SELECT,            MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::SELECT,            MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SELECT,            MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTPOP,             MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::CTPOP,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::CTPOP,             MVT::v4i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ,              MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::CTTZ,              MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::CTTZ,              MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::CTTZ,              MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v4i64, Custom); | 
|  |  | 
|  | if (Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512()) { | 
|  | setOperationAction(ISD::FMA,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasInt256()) { | 
|  | setOperationAction(ISD::ADD,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v32i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SUB,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v32i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MUL,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::MUL,             MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::MUL,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::MULHU,           MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::MULHS,           MVT::v16i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,            MVT::v32i8,  Legal); | 
|  | setOperationAction(ISD::SMAX,            MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::SMAX,            MVT::v8i32,  Legal); | 
|  | setOperationAction(ISD::UMAX,            MVT::v32i8,  Legal); | 
|  | setOperationAction(ISD::UMAX,            MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::UMAX,            MVT::v8i32,  Legal); | 
|  | setOperationAction(ISD::SMIN,            MVT::v32i8,  Legal); | 
|  | setOperationAction(ISD::SMIN,            MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::SMIN,            MVT::v8i32,  Legal); | 
|  | setOperationAction(ISD::UMIN,            MVT::v32i8,  Legal); | 
|  | setOperationAction(ISD::UMIN,            MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::UMIN,            MVT::v8i32,  Legal); | 
|  |  | 
|  | // The custom lowering for UINT_TO_FP for v8i32 becomes interesting | 
|  | // when we have a 256bit-wide blend with immediate. | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); | 
|  |  | 
|  | // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal); | 
|  |  | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal); | 
|  | } else { | 
|  | setOperationAction(ISD::ADD,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SUB,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::MUL,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,            MVT::v32i8,  Custom); | 
|  | setOperationAction(ISD::SMAX,            MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SMAX,            MVT::v8i32,  Custom); | 
|  | setOperationAction(ISD::UMAX,            MVT::v32i8,  Custom); | 
|  | setOperationAction(ISD::UMAX,            MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::UMAX,            MVT::v8i32,  Custom); | 
|  | setOperationAction(ISD::SMIN,            MVT::v32i8,  Custom); | 
|  | setOperationAction(ISD::SMIN,            MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SMIN,            MVT::v8i32,  Custom); | 
|  | setOperationAction(ISD::UMIN,            MVT::v32i8,  Custom); | 
|  | setOperationAction(ISD::UMIN,            MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::UMIN,            MVT::v8i32,  Custom); | 
|  | } | 
|  |  | 
|  | // In the customized shift lowering, the legal cases in AVX2 will be | 
|  | // recognized. | 
|  | setOperationAction(ISD::SRL,               MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v8i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v8i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v8i32, Custom); | 
|  |  | 
|  | // Custom lower several nodes for 256-bit types. | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | if (VT.getScalarSizeInBits() >= 32) { | 
|  | setOperationAction(ISD::MLOAD,  VT, Legal); | 
|  | setOperationAction(ISD::MSTORE, VT, Legal); | 
|  | } | 
|  | // Extract subvector is special because the value type | 
|  | // (result) is 128-bit but the source is 256-bit wide. | 
|  | if (VT.is128BitVector()) { | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | 
|  | } | 
|  | // Do not attempt to custom lower other non-256-bit vectors | 
|  | if (!VT.is256BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::VSELECT,            VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasInt256()) | 
|  | setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal); | 
|  |  | 
|  | // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. | 
|  | for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-256-bit vectors | 
|  | if (!VT.is256BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v4i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { | 
|  | addRegisterClass(MVT::v16i32, &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v16f32, &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v8i64,  &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v8f64,  &X86::VR512RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::i1,     &X86::VK1RegClass); | 
|  | addRegisterClass(MVT::v8i1,   &X86::VK8RegClass); | 
|  | addRegisterClass(MVT::v16i1,  &X86::VK16RegClass); | 
|  |  | 
|  | for (MVT VT : MVT::fp_vector_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); | 
|  |  | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal); | 
|  |  | 
|  | setOperationAction(ISD::BR_CC,              MVT::i1,    Expand); | 
|  | setOperationAction(ISD::SETCC,              MVT::i1,    Custom); | 
|  | setOperationAction(ISD::XOR,                MVT::i1,    Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::i1,    Legal); | 
|  | setOperationAction(ISD::AND,                MVT::i1,    Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::i1,    Custom); | 
|  | setOperationAction(ISD::ADD,                MVT::i1,    Custom); | 
|  | setOperationAction(ISD::MUL,                MVT::i1,    Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16i1, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v16f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f64, Custom); | 
|  | setOperationAction(ISD::FMA,                MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FMA,                MVT::v16f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,   Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1,  Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v16i8,  Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v16i16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal); | 
|  |  | 
|  | setTruncStoreAction(MVT::v8i64,   MVT::v8i8,   Legal); | 
|  | setTruncStoreAction(MVT::v8i64,   MVT::v8i16,  Legal); | 
|  | setTruncStoreAction(MVT::v8i64,   MVT::v8i32,  Legal); | 
|  | setTruncStoreAction(MVT::v16i32,  MVT::v16i8,  Legal); | 
|  | setTruncStoreAction(MVT::v16i32,  MVT::v16i16, Legal); | 
|  | if (Subtarget->hasVLX()){ | 
|  | setTruncStoreAction(MVT::v4i64, MVT::v4i8,  Legal); | 
|  | setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal); | 
|  | setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i8,  Legal); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal); | 
|  |  | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i8,  Legal); | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal); | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); | 
|  | } | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i1,  Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v16i1, Custom); | 
|  | if (Subtarget->hasDQI()) { | 
|  | setOperationAction(ISD::TRUNCATE,         MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,         MVT::v4i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP,       MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,       MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,       MVT::v8i64, Legal); | 
|  | if (Subtarget->hasVLX()) { | 
|  | setOperationAction(ISD::SINT_TO_FP,    MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,    MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,    MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,    MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,    MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,    MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,    MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,    MVT::v2i64, Legal); | 
|  | } | 
|  | } | 
|  | if (Subtarget->hasVLX()) { | 
|  | setOperationAction(ISD::SINT_TO_FP,       MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,       MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,       MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,       MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,       MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,       MVT::v4i32, Legal); | 
|  | } | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,         MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,         MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom); | 
|  | if (Subtarget->hasDQI()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v2i64, Custom); | 
|  | } | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v8f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,              MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v8i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::MUL,              MVT::v8i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v16f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i1,  Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::SMAX,               MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v8i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SUB,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MUL,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SRL,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SRL,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SHL,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SRA,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::AND,                MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v16i32, Legal); | 
|  |  | 
|  | if (Subtarget->hasCDI()) { | 
|  | setOperationAction(ISD::CTLZ,             MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v16i32, Custom); | 
|  | } | 
|  | if (Subtarget->hasVLX() && Subtarget->hasCDI()) { | 
|  | setOperationAction(ISD::CTLZ,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::CTLZ,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::CTLZ,             MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::CTLZ,             MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i32, Custom); | 
|  | } | 
|  | if (Subtarget->hasDQI()) { | 
|  | setOperationAction(ISD::MUL,             MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::MUL,             MVT::v8i64, Legal); | 
|  | } | 
|  | // Custom lower several nodes. | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | if (EltSize == 1) { | 
|  | setOperationAction(ISD::AND, VT, Legal); | 
|  | setOperationAction(ISD::OR,  VT, Legal); | 
|  | setOperationAction(ISD::XOR,  VT, Legal); | 
|  | } | 
|  | if (EltSize >= 32 && VT.getSizeInBits() <= 512) { | 
|  | setOperationAction(ISD::MGATHER,  VT, Custom); | 
|  | setOperationAction(ISD::MSCATTER, VT, Custom); | 
|  | } | 
|  | // Extract subvector is special because the value type | 
|  | // (result) is 256/128-bit but the source is 512-bit wide. | 
|  | if (VT.is128BitVector() || VT.is256BitVector()) { | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | 
|  | } | 
|  | if (VT.getVectorElementType() == MVT::i1) | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); | 
|  |  | 
|  | // Do not attempt to custom lower other non-512-bit vectors | 
|  | if (!VT.is512BitVector()) | 
|  | continue; | 
|  |  | 
|  | if (EltSize >= 32) { | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,        VT, Custom); | 
|  | setOperationAction(ISD::VSELECT,             VT, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom); | 
|  | setOperationAction(ISD::MLOAD,               VT, Legal); | 
|  | setOperationAction(ISD::MSTORE,              VT, Legal); | 
|  | } | 
|  | } | 
|  | for (int i = MVT::v32i8; i != MVT::v8i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-512-bit vectors. | 
|  | if (!VT.is512BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v8i64); | 
|  | } | 
|  | }// has  AVX-512 | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) { | 
|  | addRegisterClass(MVT::v32i16, &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v64i8,  &X86::VR512RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v32i1,  &X86::VK32RegClass); | 
|  | addRegisterClass(MVT::v64i1,  &X86::VK64RegClass); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::SETCC,              MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v64i1, Custom); | 
|  | setOperationAction(ISD::ADD,                MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::MULHS,              MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::MULHU,              MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Legal); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Legal); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v64i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i16, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i16, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v64i8, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v64i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i1, Custom); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v64i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i1, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,               MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::SMAX,               MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v32i16, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v64i8, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v32i16, Legal); | 
|  |  | 
|  | setTruncStoreAction(MVT::v32i16,  MVT::v32i8, Legal); | 
|  | setTruncStoreAction(MVT::v16i16,  MVT::v16i8, Legal); | 
|  | if (Subtarget->hasVLX()) | 
|  | setTruncStoreAction(MVT::v8i16,   MVT::v8i8,  Legal); | 
|  |  | 
|  | for (int i = MVT::v32i8; i != MVT::v8i64; ++i) { | 
|  | const MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | const unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // Do not attempt to promote non-512-bit vectors. | 
|  | if (!VT.is512BitVector()) | 
|  | continue; | 
|  |  | 
|  | if (EltSize < 32) { | 
|  | setOperationAction(ISD::BUILD_VECTOR,        VT, Custom); | 
|  | setOperationAction(ISD::VSELECT,             VT, Legal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) { | 
|  | addRegisterClass(MVT::v4i1,   &X86::VK4RegClass); | 
|  | addRegisterClass(MVT::v2i1,   &X86::VK2RegClass); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,              MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND,                MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::AND,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SRA,                MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SRA,                MVT::v4i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMAX,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SMAX,               MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::UMAX,               MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SMIN,               MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::UMIN,               MVT::v4i64, Legal); | 
|  | } | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  | if (!Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); | 
|  |  | 
|  | // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't | 
|  | // handle type legalization for these operations here. | 
|  | // | 
|  | // FIXME: We really should do custom legalization for addition and | 
|  | // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better | 
|  | // than generic legalization for 64-bit multiplication-with-overflow, though. | 
|  | for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { | 
|  | // Add/Sub/Mul with overflow operations are custom lowered. | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::SADDO, VT, Custom); | 
|  | setOperationAction(ISD::UADDO, VT, Custom); | 
|  | setOperationAction(ISD::SSUBO, VT, Custom); | 
|  | setOperationAction(ISD::USUBO, VT, Custom); | 
|  | setOperationAction(ISD::SMULO, VT, Custom); | 
|  | setOperationAction(ISD::UMULO, VT, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRA_I128, nullptr); | 
|  | } | 
|  |  | 
|  | // Combine sin / cos into one node or libcall if possible. | 
|  | if (Subtarget->hasSinCos()) { | 
|  | setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
|  | setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // For MacOSX, we don't want the normal expansion of a libcall to sincos. | 
|  | // We want to issue a libcall to __sincos_stret to avoid memory traffic. | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetWin64()) { | 
|  | setOperationAction(ISD::SDIV, MVT::i128, Custom); | 
|  | setOperationAction(ISD::UDIV, MVT::i128, Custom); | 
|  | setOperationAction(ISD::SREM, MVT::i128, Custom); | 
|  | setOperationAction(ISD::UREM, MVT::i128, Custom); | 
|  | setOperationAction(ISD::SDIVREM, MVT::i128, Custom); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i128, Custom); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::VECTOR_SHUFFLE); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::BITCAST); | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FMA); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::MLOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::MSTORE); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::ANY_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::UINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::BUILD_VECTOR); | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  |  | 
|  | computeRegisterProperties(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores | 
|  | MaxStoresPerMemsetOptSize = 8; | 
|  | MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores | 
|  | MaxStoresPerMemcpyOptSize = 4; | 
|  | MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores | 
|  | MaxStoresPerMemmoveOptSize = 4; | 
|  | setPrefLoopAlignment(4); // 2^4 bytes. | 
|  |  | 
|  | // A predictable cmov does not hurt on an in-order CPU. | 
|  | // FIXME: Use a CPU attribute to trigger this, not a CPU model. | 
|  | PredictableSelectIsExpensive = !Subtarget->isAtom(); | 
|  | EnableExtLdPromotion = true; | 
|  | setPrefFunctionAlignment(4); // 2^4 bytes. | 
|  |  | 
|  | verifyIntrinsicTables(); | 
|  | } | 
|  |  | 
|  | // This has so far only been implemented for 64-bit MachO. | 
|  | bool X86TargetLowering::useLoadStackGuardNode() const { | 
|  | return Subtarget->isTargetMachO() && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | X86TargetLowering::getPreferredVectorAction(EVT VT) const { | 
|  | if (ExperimentalVectorWideningLegalization && | 
|  | VT.getVectorNumElements() != 1 && | 
|  | VT.getVectorElementType().getSimpleVT() != MVT::i1) | 
|  | return TypeWidenVector; | 
|  |  | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  |  | 
|  | EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return Subtarget->hasAVX512() ? MVT::i1: MVT::i8; | 
|  |  | 
|  | const unsigned NumElts = VT.getVectorNumElements(); | 
|  | const EVT EltVT = VT.getVectorElementType(); | 
|  | if (VT.is512BitVector()) { | 
|  | if (Subtarget->hasAVX512()) | 
|  | if (EltVT == MVT::i32 || EltVT == MVT::i64 || | 
|  | EltVT == MVT::f32 || EltVT == MVT::f64) | 
|  | switch(NumElts) { | 
|  | case  8: return MVT::v8i1; | 
|  | case 16: return MVT::v16i1; | 
|  | } | 
|  | if (Subtarget->hasBWI()) | 
|  | if (EltVT == MVT::i8 || EltVT == MVT::i16) | 
|  | switch(NumElts) { | 
|  | case 32: return MVT::v32i1; | 
|  | case 64: return MVT::v64i1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT.is256BitVector() || VT.is128BitVector()) { | 
|  | if (Subtarget->hasVLX()) | 
|  | if (EltVT == MVT::i32 || EltVT == MVT::i64 || | 
|  | EltVT == MVT::f32 || EltVT == MVT::f64) | 
|  | switch(NumElts) { | 
|  | case 2: return MVT::v2i1; | 
|  | case 4: return MVT::v4i1; | 
|  | case 8: return MVT::v8i1; | 
|  | } | 
|  | if (Subtarget->hasBWI() && Subtarget->hasVLX()) | 
|  | if (EltVT == MVT::i8 || EltVT == MVT::i16) | 
|  | switch(NumElts) { | 
|  | case  8: return MVT::v8i1; | 
|  | case 16: return MVT::v16i1; | 
|  | case 32: return MVT::v32i1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | /// Helper for getByValTypeAlignment to determine | 
|  | /// the desired ByVal argument alignment. | 
|  | static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { | 
|  | if (MaxAlign == 16) | 
|  | return; | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { | 
|  | if (VTy->getBitWidth() == 128) | 
|  | MaxAlign = 16; | 
|  | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(ATy->getElementType(), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | } else if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (auto *EltTy : STy->elements()) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(EltTy, EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | if (MaxAlign == 16) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. For X86, aggregates | 
|  | /// that contain SSE vectors are placed at 16-byte boundaries while the rest | 
|  | /// are at 4-byte boundaries. | 
|  | unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty, | 
|  | const DataLayout &DL) const { | 
|  | if (Subtarget->is64Bit()) { | 
|  | // Max of 8 and alignment of type. | 
|  | unsigned TyAlign = DL.getABITypeAlignment(Ty); | 
|  | if (TyAlign > 8) | 
|  | return TyAlign; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | unsigned Align = 4; | 
|  | if (Subtarget->hasSSE1()) | 
|  | getMaxByValAlign(Ty, Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. If DstAlign is zero that means it's safe to destination | 
|  | /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it | 
|  | /// means there isn't a need to check it against alignment requirement, | 
|  | /// probably because the source does not need to be loaded. If 'IsMemset' is | 
|  | /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that | 
|  | /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy | 
|  | /// source is constant so it does not need to be loaded. | 
|  | /// It returns EVT::Other if the type should be determined using generic | 
|  | /// target-independent logic. | 
|  | EVT | 
|  | X86TargetLowering::getOptimalMemOpType(uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, | 
|  | bool IsMemset, bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | const Function *F = MF.getFunction(); | 
|  | if ((!IsMemset || ZeroMemset) && | 
|  | !F->hasFnAttribute(Attribute::NoImplicitFloat)) { | 
|  | if (Size >= 16 && | 
|  | (!Subtarget->isUnalignedMem16Slow() || | 
|  | ((DstAlign == 0 || DstAlign >= 16) && | 
|  | (SrcAlign == 0 || SrcAlign >= 16)))) { | 
|  | if (Size >= 32) { | 
|  | // FIXME: Check if unaligned 32-byte accesses are slow. | 
|  | if (Subtarget->hasInt256()) | 
|  | return MVT::v8i32; | 
|  | if (Subtarget->hasFp256()) | 
|  | return MVT::v8f32; | 
|  | } | 
|  | if (Subtarget->hasSSE2()) | 
|  | return MVT::v4i32; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return MVT::v4f32; | 
|  | } else if (!MemcpyStrSrc && Size >= 8 && | 
|  | !Subtarget->is64Bit() && | 
|  | Subtarget->hasSSE2()) { | 
|  | // Do not use f64 to lower memcpy if source is string constant. It's | 
|  | // better to use i32 to avoid the loads. | 
|  | return MVT::f64; | 
|  | } | 
|  | } | 
|  | // This is a compromise. If we reach here, unaligned accesses may be slow on | 
|  | // this target. However, creating smaller, aligned accesses could be even | 
|  | // slower and would certainly be a lot more code. | 
|  | if (Subtarget->is64Bit() && Size >= 8) | 
|  | return MVT::i64; | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isSafeMemOpType(MVT VT) const { | 
|  | if (VT == MVT::f32) | 
|  | return X86ScalarSSEf32; | 
|  | else if (VT == MVT::f64) | 
|  | return X86ScalarSSEf64; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned, | 
|  | unsigned, | 
|  | bool *Fast) const { | 
|  | if (Fast) { | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | // 8-byte and under are always assumed to be fast. | 
|  | *Fast = true; | 
|  | break; | 
|  | case 128: | 
|  | *Fast = !Subtarget->isUnalignedMem16Slow(); | 
|  | break; | 
|  | case 256: | 
|  | *Fast = !Subtarget->isUnalignedMem32Slow(); | 
|  | break; | 
|  | // TODO: What about AVX-512 (512-bit) accesses? | 
|  | } | 
|  | } | 
|  | // Misaligned accesses of any size are always allowed. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the entry encoding for a jump table in the | 
|  | /// current function.  The returned value is a member of the | 
|  | /// MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned X86TargetLowering::getJumpTableEncoding() const { | 
|  | // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF | 
|  | // symbol. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()) | 
|  | return MachineJumpTableInfo::EK_Custom32; | 
|  |  | 
|  | // Otherwise, use the normal jump table encoding heuristics. | 
|  | return TargetLowering::getJumpTableEncoding(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::useSoftFloat() const { | 
|  | return Subtarget->useSoftFloat(); | 
|  | } | 
|  |  | 
|  | const MCExpr * | 
|  | X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, | 
|  | const MachineBasicBlock *MBB, | 
|  | unsigned uid,MCContext &Ctx) const{ | 
|  | assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()); | 
|  | // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF | 
|  | // entries. | 
|  | return MCSymbolRefExpr::create(MBB->getSymbol(), | 
|  | MCSymbolRefExpr::VK_GOTOFF, Ctx); | 
|  | } | 
|  |  | 
|  | /// Returns relocation base for the given PIC jumptable. | 
|  | SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!Subtarget->is64Bit()) | 
|  | // This doesn't have SDLoc associated with it, but is not really the | 
|  | // same as a Register. | 
|  | return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// This returns the relocation base for the given PIC jumptable, | 
|  | /// the same as getPICJumpTableRelocBase, but as an MCExpr. | 
|  | const MCExpr *X86TargetLowering:: | 
|  | getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, | 
|  | MCContext &Ctx) const { | 
|  | // X86-64 uses RIP relative addressing based on the jump table label. | 
|  | if (Subtarget->isPICStyleRIPRel()) | 
|  | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); | 
|  |  | 
|  | // Otherwise, the reference is relative to the PIC base. | 
|  | return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); | 
|  | } | 
|  |  | 
|  | std::pair<const TargetRegisterClass *, uint8_t> | 
|  | X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, | 
|  | MVT VT) const { | 
|  | const TargetRegisterClass *RRC = nullptr; | 
|  | uint8_t Cost = 1; | 
|  | switch (VT.SimpleTy) { | 
|  | default: | 
|  | return TargetLowering::findRepresentativeClass(TRI, VT); | 
|  | case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: | 
|  | RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | break; | 
|  | case MVT::x86mmx: | 
|  | RRC = &X86::VR64RegClass; | 
|  | break; | 
|  | case MVT::f32: case MVT::f64: | 
|  | case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: | 
|  | case MVT::v4f32: case MVT::v2f64: | 
|  | case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: | 
|  | case MVT::v4f64: | 
|  | RRC = &X86::VR128RegClass; | 
|  | break; | 
|  | } | 
|  | return std::make_pair(RRC, Cost); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, | 
|  | unsigned &Offset) const { | 
|  | if (!Subtarget->isTargetLinux()) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: | 
|  | Offset = 0x28; | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Kernel) | 
|  | AddressSpace = 256; | 
|  | else | 
|  | AddressSpace = 257; | 
|  | } else { | 
|  | // %gs:0x14 on i386 | 
|  | Offset = 0x14; | 
|  | AddressSpace = 256; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Android provides a fixed TLS slot for the SafeStack pointer. | 
|  | /// See the definition of TLS_SLOT_SAFESTACK in | 
|  | /// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h | 
|  | bool X86TargetLowering::getSafeStackPointerLocation(unsigned &AddressSpace, | 
|  | unsigned &Offset) const { | 
|  | if (!Subtarget->isTargetAndroid()) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: | 
|  | Offset = 0x48; | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Kernel) | 
|  | AddressSpace = 256; | 
|  | else | 
|  | AddressSpace = 257; | 
|  | } else { | 
|  | // %gs:0x24 on i386 | 
|  | Offset = 0x24; | 
|  | AddressSpace = 256; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | assert(SrcAS != DestAS && "Expected different address spaces!"); | 
|  |  | 
|  | return SrcAS < 256 && DestAS < 256; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86GenCallingConv.inc" | 
|  |  | 
|  | bool X86TargetLowering::CanLowerReturn( | 
|  | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_X86); | 
|  | } | 
|  |  | 
|  | const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { | 
|  | static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; | 
|  | return ScratchRegs; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerReturn(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_X86); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 6> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  | // Operand #1 = Bytes To Pop | 
|  | RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl, | 
|  | MVT::i16)); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | SDValue ValToCopy = OutVals[i]; | 
|  | EVT ValVT = ValToCopy.getValueType(); | 
|  |  | 
|  | // Promote values to the appropriate types. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else if (VA.getLocInfo() == CCValAssign::AExt) { | 
|  | if (ValVT.isVector() && ValVT.getScalarType() == MVT::i1) | 
|  | ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else | 
|  | ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | } | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); | 
|  |  | 
|  | assert(VA.getLocInfo() != CCValAssign::FPExt && | 
|  | "Unexpected FP-extend for return value."); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values, | 
|  | // or SSE or MMX vectors. | 
|  | if ((ValVT == MVT::f32 || ValVT == MVT::f64 || | 
|  | VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  | // Likewise we can't return F64 values with SSE1 only.  gcc does so, but | 
|  | // llvm-gcc has never done it right and no one has noticed, so this | 
|  | // should be OK for now. | 
|  | if (ValVT == MVT::f64 && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasSSE2())) | 
|  | report_fatal_error("SSE2 register return with SSE2 disabled"); | 
|  |  | 
|  | // Returns in ST0/ST1 are handled specially: these are pushed as operands to | 
|  | // the RET instruction and handled by the FP Stackifier. | 
|  | if (VA.getLocReg() == X86::FP0 || | 
|  | VA.getLocReg() == X86::FP1) { | 
|  | // If this is a copy from an xmm register to ST(0), use an FPExtend to | 
|  | // change the value to the FP stack register class. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) | 
|  | ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); | 
|  | RetOps.push_back(ValToCopy); | 
|  | // Don't emit a copytoreg. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 | 
|  | // which is returned in RAX / RDX. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (ValVT == MVT::x86mmx) { | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { | 
|  | ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy); | 
|  | ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, | 
|  | ValToCopy); | 
|  | // If we don't have SSE2 available, convert to v4f32 so the generated | 
|  | // register is legal. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // All x86 ABIs require that for returning structs by value we copy | 
|  | // the sret argument into %rax/%eax (depending on ABI) for the return. | 
|  | // We saved the argument into a virtual register in the entry block, | 
|  | // so now we copy the value out and into %rax/%eax. | 
|  | // | 
|  | // Checking Function.hasStructRetAttr() here is insufficient because the IR | 
|  | // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is | 
|  | // false, then an sret argument may be implicitly inserted in the SelDAG. In | 
|  | // either case FuncInfo->setSRetReturnReg() will have been called. | 
|  | if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, | 
|  | getPointerTy(MF.getDataLayout())); | 
|  |  | 
|  | unsigned RetValReg | 
|  | = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? | 
|  | X86::RAX : X86::EAX; | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // RAX/EAX now acts like a return value. | 
|  | RetOps.push_back( | 
|  | DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { | 
|  | if (N->getNumValues() != 1) | 
|  | return false; | 
|  | if (!N->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  |  | 
|  | SDValue TCChain = Chain; | 
|  | SDNode *Copy = *N->use_begin(); | 
|  | if (Copy->getOpcode() == ISD::CopyToReg) { | 
|  | // If the copy has a glue operand, we conservatively assume it isn't safe to | 
|  | // perform a tail call. | 
|  | if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) | 
|  | return false; | 
|  | TCChain = Copy->getOperand(0); | 
|  | } else if (Copy->getOpcode() != ISD::FP_EXTEND) | 
|  | return false; | 
|  |  | 
|  | bool HasRet = false; | 
|  | for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | if (UI->getOpcode() != X86ISD::RET_FLAG) | 
|  | return false; | 
|  | // If we are returning more than one value, we can definitely | 
|  | // not make a tail call see PR19530 | 
|  | if (UI->getNumOperands() > 4) | 
|  | return false; | 
|  | if (UI->getNumOperands() == 4 && | 
|  | UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) | 
|  | return false; | 
|  | HasRet = true; | 
|  | } | 
|  |  | 
|  | if (!HasRet) | 
|  | return false; | 
|  |  | 
|  | Chain = TCChain; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EVT | 
|  | X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, | 
|  | ISD::NodeType ExtendKind) const { | 
|  | MVT ReturnMVT; | 
|  | // TODO: Is this also valid on 32-bit? | 
|  | if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) | 
|  | ReturnMVT = MVT::i8; | 
|  | else | 
|  | ReturnMVT = MVT::i32; | 
|  |  | 
|  | EVT MinVT = getRegisterType(Context, ReturnMVT); | 
|  | return VT.bitsLT(MinVT) ? MinVT : VT; | 
|  | } | 
|  |  | 
|  | /// Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | /// | 
|  | SDValue | 
|  | X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | EVT CopyVT = VA.getLocVT(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values | 
|  | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && | 
|  | ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  |  | 
|  | // If we prefer to use the value in xmm registers, copy it out as f80 and | 
|  | // use a truncate to move it from fp stack reg to xmm reg. | 
|  | bool RoundAfterCopy = false; | 
|  | if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && | 
|  | isScalarFPTypeInSSEReg(VA.getValVT())) { | 
|  | CopyVT = MVT::f80; | 
|  | RoundAfterCopy = (CopyVT != VA.getLocVT()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | CopyVT, InFlag).getValue(1); | 
|  | SDValue Val = Chain.getValue(0); | 
|  |  | 
|  | if (RoundAfterCopy) | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, | 
|  | // This truncation won't change the value. | 
|  | DAG.getIntPtrConstant(1, dl)); | 
|  |  | 
|  | if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1) | 
|  | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); | 
|  |  | 
|  | InFlag = Chain.getValue(2); | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                C & StdCall & Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  StdCall calling convention seems to be standard for many Windows' API | 
|  | //  routines and around. It differs from C calling convention just a little: | 
|  | //  callee should clean up the stack, not caller. Symbols should be also | 
|  | //  decorated in some fancy way :) It doesn't support any vector arguments. | 
|  | //  For info on fast calling convention see Fast Calling Convention (tail call) | 
|  | //  implementation LowerX86_32FastCCCallTo. | 
|  |  | 
|  | /// CallIsStructReturn - Determines whether a call uses struct return | 
|  | /// semantics. | 
|  | enum StructReturnType { | 
|  | NotStructReturn, | 
|  | RegStructReturn, | 
|  | StackStructReturn | 
|  | }; | 
|  | static StructReturnType | 
|  | callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { | 
|  | if (Outs.empty()) | 
|  | return NotStructReturn; | 
|  |  | 
|  | const ISD::ArgFlagsTy &Flags = Outs[0].Flags; | 
|  | if (!Flags.isSRet()) | 
|  | return NotStructReturn; | 
|  | if (Flags.isInReg()) | 
|  | return RegStructReturn; | 
|  | return StackStructReturn; | 
|  | } | 
|  |  | 
|  | /// Determines whether a function uses struct return semantics. | 
|  | static StructReturnType | 
|  | argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { | 
|  | if (Ins.empty()) | 
|  | return NotStructReturn; | 
|  |  | 
|  | const ISD::ArgFlagsTy &Flags = Ins[0].Flags; | 
|  | if (!Flags.isSRet()) | 
|  | return NotStructReturn; | 
|  | if (Flags.isInReg()) | 
|  | return RegStructReturn; | 
|  | return StackStructReturn; | 
|  | } | 
|  |  | 
|  | /// Make a copy of an aggregate at address specified by "Src" to address | 
|  | /// "Dst" with size and alignment information specified by the specific | 
|  | /// parameter attribute. The copy will be passed as a byval function parameter. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | /*isVolatile*/false, /*AlwaysInline=*/true, | 
|  | /*isTailCall*/false, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | /// Return true if the calling convention is one that | 
|  | /// supports tail call optimization. | 
|  | static bool IsTailCallConvention(CallingConv::ID CC) { | 
|  | return (CC == CallingConv::Fast || CC == CallingConv::GHC || | 
|  | CC == CallingConv::HiPE || CC == CallingConv::HHVM); | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the calling convention is a C calling convention. | 
|  | static bool IsCCallConvention(CallingConv::ID CC) { | 
|  | return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 || | 
|  | CC == CallingConv::X86_64_SysV); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { | 
|  | auto Attr = | 
|  | CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); | 
|  | if (!CI->isTailCall() || Attr.getValueAsString() == "true") | 
|  | return false; | 
|  |  | 
|  | CallSite CS(CI); | 
|  | CallingConv::ID CalleeCC = CS.getCallingConv(); | 
|  | if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the function is being made into | 
|  | /// a tailcall target by changing its ABI. | 
|  | static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, | 
|  | bool GuaranteedTailCallOpt) { | 
|  | return GuaranteedTailCallOpt && IsTailCallConvention(CC); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemArgument(SDValue Chain, | 
|  | CallingConv::ID CallConv, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | MachineFrameInfo *MFI, | 
|  | unsigned i) const { | 
|  | // Create the nodes corresponding to a load from this parameter slot. | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | bool AlwaysUseMutable = FuncIsMadeTailCallSafe( | 
|  | CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); | 
|  | bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); | 
|  | EVT ValVT; | 
|  |  | 
|  | // If value is passed by pointer we have address passed instead of the value | 
|  | // itself. | 
|  | bool ExtendedInMem = VA.isExtInLoc() && | 
|  | VA.getValVT().getScalarType() == MVT::i1; | 
|  |  | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) | 
|  | ValVT = VA.getLocVT(); | 
|  | else | 
|  | ValVT = VA.getValVT(); | 
|  |  | 
|  | // FIXME: For now, all byval parameter objects are marked mutable. This can be | 
|  | // changed with more analysis. | 
|  | // In case of tail call optimization mark all arguments mutable. Since they | 
|  | // could be overwritten by lowering of arguments in case of a tail call. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned Bytes = Flags.getByValSize(); | 
|  | if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. | 
|  | int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); | 
|  | return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | } else { | 
|  | int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, | 
|  | VA.getLocMemOffset(), isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Val = DAG.getLoad( | 
|  | ValVT, dl, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, | 
|  | false, false, 0); | 
|  | return ExtendedInMem ? | 
|  | DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Get this from tablegen. | 
|  | static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, | 
|  | const X86Subtarget *Subtarget) { | 
|  | assert(Subtarget->is64Bit()); | 
|  |  | 
|  | if (Subtarget->isCallingConvWin64(CallConv)) { | 
|  | static const MCPhysReg GPR64ArgRegsWin64[] = { | 
|  | X86::RCX, X86::RDX, X86::R8,  X86::R9 | 
|  | }; | 
|  | return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); | 
|  | } | 
|  |  | 
|  | static const MCPhysReg GPR64ArgRegs64Bit[] = { | 
|  | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 | 
|  | }; | 
|  | return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); | 
|  | } | 
|  |  | 
|  | // FIXME: Get this from tablegen. | 
|  | static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, | 
|  | CallingConv::ID CallConv, | 
|  | const X86Subtarget *Subtarget) { | 
|  | assert(Subtarget->is64Bit()); | 
|  | if (Subtarget->isCallingConvWin64(CallConv)) { | 
|  | // The XMM registers which might contain var arg parameters are shadowed | 
|  | // in their paired GPR.  So we only need to save the GPR to their home | 
|  | // slots. | 
|  | // TODO: __vectorcall will change this. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | const Function *Fn = MF.getFunction(); | 
|  | bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat); | 
|  | bool isSoftFloat = Subtarget->useSoftFloat(); | 
|  | assert(!(isSoftFloat && NoImplicitFloatOps) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) | 
|  | // Kernel mode asks for SSE to be disabled, so there are no XMM argument | 
|  | // registers. | 
|  | return None; | 
|  |  | 
|  | static const MCPhysReg XMMArgRegs64Bit[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); | 
|  |  | 
|  | const Function* Fn = MF.getFunction(); | 
|  | if (Fn->hasExternalLinkage() && | 
|  | Subtarget->isTargetCygMing() && | 
|  | Fn->getName() == "main") | 
|  | FuncInfo->setForceFramePointer(true); | 
|  |  | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc, ghc or hipe"); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_X86); | 
|  |  | 
|  | unsigned LastVal = ~0U; | 
|  | SDValue ArgValue; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later | 
|  | // places. | 
|  | assert(VA.getValNo() != LastVal && | 
|  | "Don't support value assigned to multiple locs yet"); | 
|  | (void)LastVal; | 
|  | LastVal = VA.getValNo(); | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (RegVT == MVT::i32) | 
|  | RC = &X86::GR32RegClass; | 
|  | else if (Is64Bit && RegVT == MVT::i64) | 
|  | RC = &X86::GR64RegClass; | 
|  | else if (RegVT == MVT::f32) | 
|  | RC = &X86::FR32RegClass; | 
|  | else if (RegVT == MVT::f64) | 
|  | RC = &X86::FR64RegClass; | 
|  | else if (RegVT.is512BitVector()) | 
|  | RC = &X86::VR512RegClass; | 
|  | else if (RegVT.is256BitVector()) | 
|  | RC = &X86::VR256RegClass; | 
|  | else if (RegVT.is128BitVector()) | 
|  | RC = &X86::VR128RegClass; | 
|  | else if (RegVT == MVT::x86mmx) | 
|  | RC = &X86::VR64RegClass; | 
|  | else if (RegVT == MVT::i1) | 
|  | RC = &X86::VK1RegClass; | 
|  | else if (RegVT == MVT::v8i1) | 
|  | RC = &X86::VK8RegClass; | 
|  | else if (RegVT == MVT::v16i1) | 
|  | RC = &X86::VK16RegClass; | 
|  | else if (RegVT == MVT::v32i1) | 
|  | RC = &X86::VK32RegClass; | 
|  | else if (RegVT == MVT::v64i1) | 
|  | RC = &X86::VK64RegClass; | 
|  | else | 
|  | llvm_unreachable("Unknown argument type!"); | 
|  |  | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted to 32 | 
|  | // bits.  Insert an assert[sz]ext to capture this, then truncate to the | 
|  | // right size. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); | 
|  |  | 
|  | if (VA.isExtInLoc()) { | 
|  | // Handle MMX values passed in XMM regs. | 
|  | if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) | 
|  | ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); | 
|  | else | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  | } | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  | ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); | 
|  | } | 
|  |  | 
|  | // If value is passed via pointer - do a load. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | // All x86 ABIs require that for returning structs by value we copy the | 
|  | // sret argument into %rax/%eax (depending on ABI) for the return. Save | 
|  | // the argument into a virtual register so that we can access it from the | 
|  | // return points. | 
|  | if (Ins[i].Flags.isSRet()) { | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | MVT PtrTy = getPointerTy(DAG.getDataLayout()); | 
|  | Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); | 
|  | FuncInfo->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned StackSize = CCInfo.getNextStackOffset(); | 
|  | // Align stack specially for tail calls. | 
|  | if (FuncIsMadeTailCallSafe(CallConv, | 
|  | MF.getTarget().Options.GuaranteedTailCallOpt)) | 
|  | StackSize = GetAlignedArgumentStackSize(StackSize, DAG); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. We | 
|  | // can skip this if there are no va_start calls. | 
|  | if (MFI->hasVAStart() && | 
|  | (Is64Bit || (CallConv != CallingConv::X86_FastCall && | 
|  | CallConv != CallingConv::X86_ThisCall))) { | 
|  | FuncInfo->setVarArgsFrameIndex( | 
|  | MFI->CreateFixedObject(1, StackSize, true)); | 
|  | } | 
|  |  | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | const Function *WinEHParent = nullptr; | 
|  | if (MMI.hasWinEHFuncInfo(Fn)) | 
|  | WinEHParent = MMI.getWinEHParent(Fn); | 
|  | bool IsWinEHParent = WinEHParent && WinEHParent == Fn; | 
|  |  | 
|  | // Figure out if XMM registers are in use. | 
|  | assert(!(Subtarget->useSoftFloat() && | 
|  | Fn->hasFnAttribute(Attribute::NoImplicitFloat)) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  |  | 
|  | // 64-bit calling conventions support varargs and register parameters, so we | 
|  | // have to do extra work to spill them in the prologue. | 
|  | if (Is64Bit && isVarArg && MFI->hasVAStart()) { | 
|  | // Find the first unallocated argument registers. | 
|  | ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); | 
|  | ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); | 
|  | unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs); | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs); | 
|  | assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  |  | 
|  | // Gather all the live in physical registers. | 
|  | SmallVector<SDValue, 6> LiveGPRs; | 
|  | SmallVector<SDValue, 8> LiveXMMRegs; | 
|  | SDValue ALVal; | 
|  | for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { | 
|  | unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); | 
|  | LiveGPRs.push_back( | 
|  | DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); | 
|  | } | 
|  | if (!ArgXMMs.empty()) { | 
|  | unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); | 
|  | ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); | 
|  | for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { | 
|  | unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); | 
|  | LiveXMMRegs.push_back( | 
|  | DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsWin64) { | 
|  | // Get to the caller-allocated home save location.  Add 8 to account | 
|  | // for the return address. | 
|  | int HomeOffset = TFI.getOffsetOfLocalArea() + 8; | 
|  | FuncInfo->setRegSaveFrameIndex( | 
|  | MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); | 
|  | // Fixup to set vararg frame on shadow area (4 x i64). | 
|  | if (NumIntRegs < 4) | 
|  | FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); | 
|  | } else { | 
|  | // For X86-64, if there are vararg parameters that are passed via | 
|  | // registers, then we must store them to their spots on the stack so | 
|  | // they may be loaded by deferencing the result of va_next. | 
|  | FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); | 
|  | FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); | 
|  | FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject( | 
|  | ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); | 
|  | } | 
|  |  | 
|  | // Store the integer parameter registers. | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Offset = FuncInfo->getVarArgsGPOffset(); | 
|  | for (SDValue Val : LiveGPRs) { | 
|  | SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), | 
|  | RSFIN, DAG.getIntPtrConstant(Offset, dl)); | 
|  | SDValue Store = | 
|  | DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), | 
|  | FuncInfo->getRegSaveFrameIndex(), Offset), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | Offset += 8; | 
|  | } | 
|  |  | 
|  | if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { | 
|  | // Now store the XMM (fp + vector) parameter registers. | 
|  | SmallVector<SDValue, 12> SaveXMMOps; | 
|  | SaveXMMOps.push_back(Chain); | 
|  | SaveXMMOps.push_back(ALVal); | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getRegSaveFrameIndex(), dl)); | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getVarArgsFPOffset(), dl)); | 
|  | SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), | 
|  | LiveXMMRegs.end()); | 
|  | MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, | 
|  | MVT::Other, SaveXMMOps)); | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); | 
|  | } | 
|  |  | 
|  | if (isVarArg && MFI->hasMustTailInVarArgFunc()) { | 
|  | // Find the largest legal vector type. | 
|  | MVT VecVT = MVT::Other; | 
|  | // FIXME: Only some x86_32 calling conventions support AVX512. | 
|  | if (Subtarget->hasAVX512() && | 
|  | (Is64Bit || (CallConv == CallingConv::X86_VectorCall || | 
|  | CallConv == CallingConv::Intel_OCL_BI))) | 
|  | VecVT = MVT::v16f32; | 
|  | else if (Subtarget->hasAVX()) | 
|  | VecVT = MVT::v8f32; | 
|  | else if (Subtarget->hasSSE2()) | 
|  | VecVT = MVT::v4f32; | 
|  |  | 
|  | // We forward some GPRs and some vector types. | 
|  | SmallVector<MVT, 2> RegParmTypes; | 
|  | MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; | 
|  | RegParmTypes.push_back(IntVT); | 
|  | if (VecVT != MVT::Other) | 
|  | RegParmTypes.push_back(VecVT); | 
|  |  | 
|  | // Compute the set of forwarded registers. The rest are scratch. | 
|  | SmallVectorImpl<ForwardedRegister> &Forwards = | 
|  | FuncInfo->getForwardedMustTailRegParms(); | 
|  | CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); | 
|  |  | 
|  | // Conservatively forward AL on x86_64, since it might be used for varargs. | 
|  | if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { | 
|  | unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); | 
|  | Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Copy all forwards from physical to virtual registers. | 
|  | for (ForwardedRegister &F : Forwards) { | 
|  | // FIXME: Can we use a less constrained schedule? | 
|  | SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); | 
|  | F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some CCs need callee pop. | 
|  | if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, | 
|  | MF.getTarget().Options.GuaranteedTailCallOpt)) { | 
|  | FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. | 
|  | } else { | 
|  | FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. | 
|  | // If this is an sret function, the return should pop the hidden pointer. | 
|  | if (!Is64Bit && !IsTailCallConvention(CallConv) && | 
|  | !Subtarget->getTargetTriple().isOSMSVCRT() && | 
|  | argsAreStructReturn(Ins) == StackStructReturn) | 
|  | FuncInfo->setBytesToPopOnReturn(4); | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) { | 
|  | // RegSaveFrameIndex is X86-64 only. | 
|  | FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); | 
|  | if (CallConv == CallingConv::X86_FastCall || | 
|  | CallConv == CallingConv::X86_ThisCall) | 
|  | // fastcc functions can't have varargs. | 
|  | FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); | 
|  | } | 
|  |  | 
|  | FuncInfo->setArgumentStackSize(StackSize); | 
|  |  | 
|  | if (IsWinEHParent) { | 
|  | if (Is64Bit) { | 
|  | int UnwindHelpFI = MFI->CreateStackObject(8, 8, /*isSS=*/false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(UnwindHelpFI, MVT::i64); | 
|  | MMI.getWinEHFuncInfo(MF.getFunction()).UnwindHelpFrameIdx = UnwindHelpFI; | 
|  | SDValue Neg2 = DAG.getConstant(-2, dl, MVT::i64); | 
|  | Chain = DAG.getStore(Chain, dl, Neg2, StackSlot, | 
|  | MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), UnwindHelpFI), | 
|  | /*isVolatile=*/true, | 
|  | /*isNonTemporal=*/false, /*Alignment=*/0); | 
|  | } else { | 
|  | // Functions using Win32 EH are considered to have opaque SP adjustments | 
|  | // to force local variables to be addressed from the frame or base | 
|  | // pointers. | 
|  | MFI->setHasOpaqueSPAdjustment(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemOpCallTo(SDValue Chain, | 
|  | SDValue StackPtr, SDValue Arg, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | ISD::ArgFlagsTy Flags) const { | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), | 
|  | StackPtr, PtrOff); | 
|  | if (Flags.isByVal()) | 
|  | return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); | 
|  |  | 
|  | return DAG.getStore( | 
|  | Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | /// Emit a load of return address if tail call | 
|  | /// optimization is performed and it is required. | 
|  | SDValue | 
|  | X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, | 
|  | SDValue &OutRetAddr, SDValue Chain, | 
|  | bool IsTailCall, bool Is64Bit, | 
|  | int FPDiff, SDLoc dl) const { | 
|  | // Adjust the Return address stack slot. | 
|  | EVT VT = getPointerTy(DAG.getDataLayout()); | 
|  | OutRetAddr = getReturnAddressFrameIndex(DAG); | 
|  |  | 
|  | // Load the "old" Return address. | 
|  | OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return SDValue(OutRetAddr.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// Emit a store of the return address if tail call | 
|  | /// optimization is performed and it is required (FPDiff!=0). | 
|  | static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, | 
|  | SDValue Chain, SDValue RetAddrFrIdx, | 
|  | EVT PtrVT, unsigned SlotSize, | 
|  | int FPDiff, SDLoc dl) { | 
|  | // Store the return address to the appropriate stack slot. | 
|  | if (!FPDiff) return Chain; | 
|  | // Calculate the new stack slot for the return address. | 
|  | int NewReturnAddrFI = | 
|  | MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, | 
|  | false); | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); | 
|  | Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, | 
|  | MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), NewReturnAddrFI), | 
|  | false, false, 0); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// Returns a vector_shuffle mask for an movs{s|d}, movd | 
|  | /// operation of specified width. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | Mask.push_back(NumElems); | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | Mask.push_back(i); | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// Check if the fall through instruction after a call site is unreachable. | 
|  | /// FIXME: This will fail if there are interesting non-code generating IR | 
|  | /// instructions between the call and the unreachable (lifetime.end). In | 
|  | /// practice, this should be rare because optimizations like to delete non-call | 
|  | /// code before unreachable. | 
|  | static bool isCallFollowedByUnreachable(ImmutableCallSite CS) { | 
|  | const Instruction *NextInst; | 
|  | if (auto *II = dyn_cast<InvokeInst>(CS.getInstruction())) | 
|  | NextInst = II->getNormalDest()->getFirstNonPHIOrDbg(); | 
|  | else | 
|  | NextInst = CS.getInstruction()->getNextNode(); | 
|  | return isa<UnreachableInst>(NextInst); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG                     = CLI.DAG; | 
|  | SDLoc &dl                             = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins; | 
|  | SDValue Chain                         = CLI.Chain; | 
|  | SDValue Callee                        = CLI.Callee; | 
|  | CallingConv::ID CallConv              = CLI.CallConv; | 
|  | bool &isTailCall                      = CLI.IsTailCall; | 
|  | bool isVarArg                         = CLI.IsVarArg; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool Is64Bit        = Subtarget->is64Bit(); | 
|  | bool IsWin64        = Subtarget->isCallingConvWin64(CallConv); | 
|  | StructReturnType SR = callIsStructReturn(Outs); | 
|  | bool IsSibcall      = false; | 
|  | X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); | 
|  |  | 
|  | if (Attr.getValueAsString() == "true") | 
|  | isTailCall = false; | 
|  |  | 
|  | if (Subtarget->isPICStyleGOT() && | 
|  | !MF.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | // If we are using a GOT, disable tail calls to external symbols with | 
|  | // default visibility. Tail calling such a symbol requires using a GOT | 
|  | // relocation, which forces early binding of the symbol. This breaks code | 
|  | // that require lazy function symbol resolution. Using musttail or | 
|  | // GuaranteedTailCallOpt will override this. | 
|  | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
|  | if (!G || (!G->getGlobal()->hasLocalLinkage() && | 
|  | G->getGlobal()->hasDefaultVisibility())) | 
|  | isTailCall = false; | 
|  | } | 
|  |  | 
|  | bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall(); | 
|  | if (IsMustTail) { | 
|  | // Force this to be a tail call.  The verifier rules are enough to ensure | 
|  | // that we can lower this successfully without moving the return address | 
|  | // around. | 
|  | isTailCall = true; | 
|  | } else if (isTailCall) { | 
|  | // Check if it's really possible to do a tail call. | 
|  | isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, | 
|  | isVarArg, SR != NotStructReturn, | 
|  | MF.getFunction()->hasStructRetAttr(), CLI.RetTy, | 
|  | Outs, OutVals, Ins, DAG); | 
|  |  | 
|  | // Sibcalls are automatically detected tailcalls which do not require | 
|  | // ABI changes. | 
|  | if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) | 
|  | IsSibcall = true; | 
|  |  | 
|  | if (isTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc, ghc or hipe"); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); | 
|  | if (IsSibcall) | 
|  | // This is a sibcall. The memory operands are available in caller's | 
|  | // own caller's stack. | 
|  | NumBytes = 0; | 
|  | else if (MF.getTarget().Options.GuaranteedTailCallOpt && | 
|  | IsTailCallConvention(CallConv)) | 
|  | NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); | 
|  |  | 
|  | int FPDiff = 0; | 
|  | if (isTailCall && !IsSibcall && !IsMustTail) { | 
|  | // Lower arguments at fp - stackoffset + fpdiff. | 
|  | unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); | 
|  |  | 
|  | FPDiff = NumBytesCallerPushed - NumBytes; | 
|  |  | 
|  | // Set the delta of movement of the returnaddr stackslot. | 
|  | // But only set if delta is greater than previous delta. | 
|  | if (FPDiff < X86Info->getTCReturnAddrDelta()) | 
|  | X86Info->setTCReturnAddrDelta(FPDiff); | 
|  | } | 
|  |  | 
|  | unsigned NumBytesToPush = NumBytes; | 
|  | unsigned NumBytesToPop = NumBytes; | 
|  |  | 
|  | // If we have an inalloca argument, all stack space has already been allocated | 
|  | // for us and be right at the top of the stack.  We don't support multiple | 
|  | // arguments passed in memory when using inalloca. | 
|  | if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { | 
|  | NumBytesToPush = 0; | 
|  | if (!ArgLocs.back().isMemLoc()) | 
|  | report_fatal_error("cannot use inalloca attribute on a register " | 
|  | "parameter"); | 
|  | if (ArgLocs.back().getLocMemOffset() != 0) | 
|  | report_fatal_error("any parameter with the inalloca attribute must be " | 
|  | "the only memory argument"); | 
|  | } | 
|  |  | 
|  | if (!IsSibcall) | 
|  | Chain = DAG.getCALLSEQ_START( | 
|  | Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl); | 
|  |  | 
|  | SDValue RetAddrFrIdx; | 
|  | // Load return address for tail calls. | 
|  | if (isTailCall && FPDiff) | 
|  | Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, | 
|  | Is64Bit, FPDiff, dl); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | SDValue StackPtr; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads.  In the case | 
|  | // of tail call optimization arguments are handle later. | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | // Skip inalloca arguments, they have already been written. | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | if (Flags.isInAlloca()) | 
|  | continue; | 
|  |  | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | SDValue Arg = OutVals[i]; | 
|  | bool isByVal = Flags.isByVal(); | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | if (Arg.getValueType().isVector() && | 
|  | Arg.getValueType().getScalarType() == MVT::i1) | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); | 
|  | else if (RegVT.is128BitVector()) { | 
|  | // Special case: passing MMX values in XMM registers. | 
|  | Arg = DAG.getBitcast(MVT::i64, Arg); | 
|  | Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); | 
|  | Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); | 
|  | } else | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getBitcast(RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::Indirect: { | 
|  | // Store the argument. | 
|  | SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); | 
|  | int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | Chain = DAG.getStore( | 
|  | Chain, dl, Arg, SpillSlot, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | 
|  | false, false, 0); | 
|  | Arg = SpillSlot; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | if (isVarArg && IsWin64) { | 
|  | // Win64 ABI requires argument XMM reg to be copied to the corresponding | 
|  | // shadow reg if callee is a varargs function. | 
|  | unsigned ShadowReg = 0; | 
|  | switch (VA.getLocReg()) { | 
|  | case X86::XMM0: ShadowReg = X86::RCX; break; | 
|  | case X86::XMM1: ShadowReg = X86::RDX; break; | 
|  | case X86::XMM2: ShadowReg = X86::R8; break; | 
|  | case X86::XMM3: ShadowReg = X86::R9; break; | 
|  | } | 
|  | if (ShadowReg) | 
|  | RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); | 
|  | } | 
|  | } else if (!IsSibcall && (!isTailCall || isByVal)) { | 
|  | assert(VA.isMemLoc()); | 
|  | if (!StackPtr.getNode()) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, | 
|  | dl, DAG, VA, Flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | 
|  |  | 
|  | if (Subtarget->isPICStyleGOT()) { | 
|  | // ELF / PIC requires GOT in the EBX register before function calls via PLT | 
|  | // GOT pointer. | 
|  | if (!isTailCall) { | 
|  | RegsToPass.push_back(std::make_pair( | 
|  | unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), | 
|  | getPointerTy(DAG.getDataLayout())))); | 
|  | } else { | 
|  | // If we are tail calling and generating PIC/GOT style code load the | 
|  | // address of the callee into ECX. The value in ecx is used as target of | 
|  | // the tail jump. This is done to circumvent the ebx/callee-saved problem | 
|  | // for tail calls on PIC/GOT architectures. Normally we would just put the | 
|  | // address of GOT into ebx and then call target@PLT. But for tail calls | 
|  | // ebx would be restored (since ebx is callee saved) before jumping to the | 
|  | // target@PLT. | 
|  |  | 
|  | // Note: The actual moving to ECX is done further down. | 
|  | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
|  | if (G && !G->getGlobal()->hasLocalLinkage() && | 
|  | G->getGlobal()->hasDefaultVisibility()) | 
|  | Callee = LowerGlobalAddress(Callee, DAG); | 
|  | else if (isa<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = LowerExternalSymbol(Callee, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { | 
|  | // From AMD64 ABI document: | 
|  | // For calls that may call functions that use varargs or stdargs | 
|  | // (prototype-less calls or calls to functions containing ellipsis (...) in | 
|  | // the declaration) %al is used as hidden argument to specify the number | 
|  | // of SSE registers used. The contents of %al do not need to match exactly | 
|  | // the number of registers, but must be an ubound on the number of SSE | 
|  | // registers used and is in the range 0 - 8 inclusive. | 
|  |  | 
|  | // Count the number of XMM registers allocated. | 
|  | static const MCPhysReg XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); | 
|  | assert((Subtarget->hasSSE1() || !NumXMMRegs) | 
|  | && "SSE registers cannot be used when SSE is disabled"); | 
|  |  | 
|  | RegsToPass.push_back(std::make_pair(unsigned(X86::AL), | 
|  | DAG.getConstant(NumXMMRegs, dl, | 
|  | MVT::i8))); | 
|  | } | 
|  |  | 
|  | if (isVarArg && IsMustTail) { | 
|  | const auto &Forwards = X86Info->getForwardedMustTailRegParms(); | 
|  | for (const auto &F : Forwards) { | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); | 
|  | RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls | 
|  | // don't need this because the eligibility check rejects calls that require | 
|  | // shuffling arguments passed in memory. | 
|  | if (!IsSibcall && isTailCall) { | 
|  | // Force all the incoming stack arguments to be loaded from the stack | 
|  | // before any new outgoing arguments are stored to the stack, because the | 
|  | // outgoing stack slots may alias the incoming argument stack slots, and | 
|  | // the alias isn't otherwise explicit. This is slightly more conservative | 
|  | // than necessary, because it means that each store effectively depends | 
|  | // on every argument instead of just those arguments it would clobber. | 
|  | SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | SDValue FIN; | 
|  | int FI = 0; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (VA.isRegLoc()) | 
|  | continue; | 
|  | assert(VA.isMemLoc()); | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | // Skip inalloca arguments.  They don't require any work. | 
|  | if (Flags.isInAlloca()) | 
|  | continue; | 
|  | // Create frame index. | 
|  | int32_t Offset = VA.getLocMemOffset()+FPDiff; | 
|  | uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; | 
|  | FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); | 
|  | FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Copy relative to framepointer. | 
|  | SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); | 
|  | if (!StackPtr.getNode()) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  | Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), | 
|  | StackPtr, Source); | 
|  |  | 
|  | MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, | 
|  | ArgChain, | 
|  | Flags, DAG, dl)); | 
|  | } else { | 
|  | // Store relative to framepointer. | 
|  | MemOpChains2.push_back(DAG.getStore( | 
|  | ArgChain, dl, Arg, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | 
|  | false, false, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, | 
|  | getPointerTy(DAG.getDataLayout()), | 
|  | RegInfo->getSlotSize(), FPDiff, dl); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (DAG.getTarget().getCodeModel() == CodeModel::Large) { | 
|  | assert(Is64Bit && "Large code model is only legal in 64-bit mode."); | 
|  | // In the 64-bit large code model, we have to make all calls | 
|  | // through a register, since the call instruction's 32-bit | 
|  | // pc-relative offset may not be large enough to hold the whole | 
|  | // address. | 
|  | } else if (Callee->getOpcode() == ISD::GlobalAddress) { | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call | 
|  | // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack | 
|  | // it. | 
|  | GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee); | 
|  |  | 
|  | // We should use extra load for direct calls to dllimported functions in | 
|  | // non-JIT mode. | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | if (!GV->hasDLLImportStorageClass()) { | 
|  | unsigned char OpFlags = 0; | 
|  | bool ExtraLoad = false; | 
|  | unsigned WrapperKind = ISD::DELETED_NODE; | 
|  |  | 
|  | // On ELF targets, in both X86-64 and X86-32 mode, direct calls to | 
|  | // external symbols most go through the PLT in PIC mode.  If the symbol | 
|  | // has hidden or protected visibility, or if it is static or local, then | 
|  | // we don't need to use the PLT - we can directly call it. | 
|  | if (Subtarget->isTargetELF() && | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_ && | 
|  | GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | !GV->isStrongDefinitionForLinker() && | 
|  | (!Subtarget->getTargetTriple().isMacOSX() || | 
|  | Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) && | 
|  | cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) { | 
|  | // If the function is marked as non-lazy, generate an indirect call | 
|  | // which loads from the GOT directly. This avoids runtime overhead | 
|  | // at the cost of eager binding (and one extra byte of encoding). | 
|  | OpFlags = X86II::MO_GOTPCREL; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | ExtraLoad = true; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetGlobalAddress( | 
|  | GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); | 
|  |  | 
|  | // Add a wrapper if needed. | 
|  | if (WrapperKind != ISD::DELETED_NODE) | 
|  | Callee = DAG.getNode(X86ISD::WrapperRIP, dl, | 
|  | getPointerTy(DAG.getDataLayout()), Callee); | 
|  | // Add extra indirection if needed. | 
|  | if (ExtraLoad) | 
|  | Callee = DAG.getLoad( | 
|  | getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, | 
|  | false, 0); | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in either X86-64 or X86-32 mode, direct calls to | 
|  | // external symbols should go through the PLT. | 
|  | if (Subtarget->isTargetELF() && | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | (!Subtarget->getTargetTriple().isMacOSX() || | 
|  | Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetExternalSymbol( | 
|  | S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); | 
|  | } else if (Subtarget->isTarget64BitILP32() && | 
|  | Callee->getValueType(0) == MVT::i32) { | 
|  | // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI | 
|  | Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | if (!IsSibcall && isTailCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytesToPop, dl, true), | 
|  | DAG.getIntPtrConstant(0, dl, true), InFlag, dl); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  |  | 
|  | // If this is an invoke in a 32-bit function using an MSVC personality, assume | 
|  | // the function clobbers all registers. If an exception is thrown, the runtime | 
|  | // will not restore CSRs. | 
|  | // FIXME: Model this more precisely so that we can register allocate across | 
|  | // the normal edge and spill and fill across the exceptional edge. | 
|  | if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) { | 
|  | const Function *CallerFn = MF.getFunction(); | 
|  | EHPersonality Pers = | 
|  | CallerFn->hasPersonalityFn() | 
|  | ? classifyEHPersonality(CallerFn->getPersonalityFn()) | 
|  | : EHPersonality::Unknown; | 
|  | if (isMSVCEHPersonality(Pers)) | 
|  | Mask = RegInfo->getNoPreservedMask(); | 
|  | } | 
|  |  | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | if (isTailCall) { | 
|  | // We used to do: | 
|  | //// If this is the first return lowered for this function, add the regs | 
|  | //// to the liveout set for the function. | 
|  | // This isn't right, although it's probably harmless on x86; liveouts | 
|  | // should be computed from returns not tail calls.  Consider a void | 
|  | // function making a tail call to a function returning int. | 
|  | MF.getFrameInfo()->setHasTailCall(); | 
|  | return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | unsigned NumBytesForCalleeToPop; | 
|  | if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, | 
|  | DAG.getTarget().Options.GuaranteedTailCallOpt)) | 
|  | NumBytesForCalleeToPop = NumBytes;    // Callee pops everything | 
|  | else if (!Is64Bit && !IsTailCallConvention(CallConv) && | 
|  | !Subtarget->getTargetTriple().isOSMSVCRT() && | 
|  | SR == StackStructReturn) | 
|  | // If this is a call to a struct-return function, the callee | 
|  | // pops the hidden struct pointer, so we have to push it back. | 
|  | // This is common for Darwin/X86, Linux & Mingw32 targets. | 
|  | // For MSVC Win32 targets, the caller pops the hidden struct pointer. | 
|  | NumBytesForCalleeToPop = 4; | 
|  | else | 
|  | NumBytesForCalleeToPop = 0;  // Callee pops nothing. | 
|  |  | 
|  | // Returns a flag for retval copy to use. | 
|  | if (!IsSibcall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytesToPop, dl, true), | 
|  | DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl, | 
|  | true), | 
|  | InFlag, dl); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetWin64() && CLI.CS) { | 
|  | // Look for a call followed by unreachable. On Win64, we need to ensure that | 
|  | // the call does not accidentally fall through to something that looks like | 
|  | // an epilogue. We do this by inserting a DEBUGTRAP, which lowers to int3, | 
|  | // which is what MSVC emits after noreturn calls. | 
|  | if (isCallFollowedByUnreachable(*CLI.CS)) | 
|  | Chain = DAG.getNode(ISD::DEBUGTRAP, dl, MVT::Other, Chain); | 
|  | } | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, | 
|  | Ins, dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                Fast Calling Convention (tail call) implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //  Like std call, callee cleans arguments, convention except that ECX is | 
|  | //  reserved for storing the tail called function address. Only 2 registers are | 
|  | //  free for argument passing (inreg). Tail call optimization is performed | 
|  | //  provided: | 
|  | //                * tailcallopt is enabled | 
|  | //                * caller/callee are fastcc | 
|  | //  On X86_64 architecture with GOT-style position independent code only local | 
|  | //  (within module) calls are supported at the moment. | 
|  | //  To keep the stack aligned according to platform abi the function | 
|  | //  GetAlignedArgumentStackSize ensures that argument delta is always multiples | 
|  | //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example) | 
|  | //  If a tail called function callee has more arguments than the caller the | 
|  | //  caller needs to make sure that there is room to move the RETADDR to. This is | 
|  | //  achieved by reserving an area the size of the argument delta right after the | 
|  | //  original RETADDR, but before the saved framepointer or the spilled registers | 
|  | //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) | 
|  | //  stack layout: | 
|  | //    arg1 | 
|  | //    arg2 | 
|  | //    RETADDR | 
|  | //    [ new RETADDR | 
|  | //      move area ] | 
|  | //    (possible EBP) | 
|  | //    ESI | 
|  | //    EDI | 
|  | //    local1 .. | 
|  |  | 
|  | /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align | 
|  | /// requirement. | 
|  | unsigned | 
|  | X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, | 
|  | SelectionDAG& DAG) const { | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | uint64_t AlignMask = StackAlignment - 1; | 
|  | int64_t Offset = StackSize; | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  | if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { | 
|  | // Number smaller than 12 so just add the difference. | 
|  | Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); | 
|  | } else { | 
|  | // Mask out lower bits, add stackalignment once plus the 12 bytes. | 
|  | Offset = ((~AlignMask) & Offset) + StackAlignment + | 
|  | (StackAlignment-SlotSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// Return true if the given stack call argument is already available in the | 
|  | /// same position (relatively) of the caller's incoming argument stack. | 
|  | static | 
|  | bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, | 
|  | MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, | 
|  | const X86InstrInfo *TII) { | 
|  | unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; | 
|  | int FI = INT_MAX; | 
|  | if (Arg.getOpcode() == ISD::CopyFromReg) { | 
|  | unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VR)) | 
|  | return false; | 
|  | MachineInstr *Def = MRI->getVRegDef(VR); | 
|  | if (!Def) | 
|  | return false; | 
|  | if (!Flags.isByVal()) { | 
|  | if (!TII->isLoadFromStackSlot(Def, FI)) | 
|  | return false; | 
|  | } else { | 
|  | unsigned Opcode = Def->getOpcode(); | 
|  | if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || | 
|  | Opcode == X86::LEA64_32r) && | 
|  | Def->getOperand(1).isFI()) { | 
|  | FI = Def->getOperand(1).getIndex(); | 
|  | Bytes = Flags.getByValSize(); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { | 
|  | if (Flags.isByVal()) | 
|  | // ByVal argument is passed in as a pointer but it's now being | 
|  | // dereferenced. e.g. | 
|  | // define @foo(%struct.X* %A) { | 
|  | //   tail call @bar(%struct.X* byval %A) | 
|  | // } | 
|  | return false; | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); | 
|  | if (!FINode) | 
|  | return false; | 
|  | FI = FINode->getIndex(); | 
|  | } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { | 
|  | FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); | 
|  | FI = FINode->getIndex(); | 
|  | Bytes = Flags.getByValSize(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | assert(FI != INT_MAX); | 
|  | if (!MFI->isFixedObjectIndex(FI)) | 
|  | return false; | 
|  | return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); | 
|  | } | 
|  |  | 
|  | /// Check whether the call is eligible for tail call optimization. Targets | 
|  | /// that want to do tail call optimization should implement this function. | 
|  | bool X86TargetLowering::IsEligibleForTailCallOptimization( | 
|  | SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, | 
|  | bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { | 
|  | if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | // If -tailcallopt is specified, make fastcc functions tail-callable. | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *CallerF = MF.getFunction(); | 
|  |  | 
|  | // If the function return type is x86_fp80 and the callee return type is not, | 
|  | // then the FP_EXTEND of the call result is not a nop. It's not safe to | 
|  | // perform a tailcall optimization here. | 
|  | if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) | 
|  | return false; | 
|  |  | 
|  | CallingConv::ID CallerCC = CallerF->getCallingConv(); | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  | bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); | 
|  | bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC); | 
|  |  | 
|  | // Win64 functions have extra shadow space for argument homing. Don't do the | 
|  | // sibcall if the caller and callee have mismatched expectations for this | 
|  | // space. | 
|  | if (IsCalleeWin64 != IsCallerWin64) | 
|  | return false; | 
|  |  | 
|  | if (DAG.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | if (IsTailCallConvention(CalleeCC) && CCMatch) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look for obvious safe cases to perform tail call optimization that do not | 
|  | // require ABI changes. This is what gcc calls sibcall. | 
|  |  | 
|  | // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to | 
|  | // emit a special epilogue. | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | if (RegInfo->needsStackRealignment(MF)) | 
|  | return false; | 
|  |  | 
|  | // Also avoid sibcall optimization if either caller or callee uses struct | 
|  | // return semantics. | 
|  | if (isCalleeStructRet || isCallerStructRet) | 
|  | return false; | 
|  |  | 
|  | // An stdcall/thiscall caller is expected to clean up its arguments; the | 
|  | // callee isn't going to do that. | 
|  | // FIXME: this is more restrictive than needed. We could produce a tailcall | 
|  | // when the stack adjustment matches. For example, with a thiscall that takes | 
|  | // only one argument. | 
|  | if (!CCMatch && (CallerCC == CallingConv::X86_StdCall || | 
|  | CallerCC == CallingConv::X86_ThisCall)) | 
|  | return false; | 
|  |  | 
|  | // Do not sibcall optimize vararg calls unless all arguments are passed via | 
|  | // registers. | 
|  | if (isVarArg && !Outs.empty()) { | 
|  |  | 
|  | // Optimizing for varargs on Win64 is unlikely to be safe without | 
|  | // additional testing. | 
|  | if (IsCalleeWin64 || IsCallerWin64) | 
|  | return false; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) | 
|  | if (!ArgLocs[i].isRegLoc()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the call result is in ST0 / ST1, it needs to be popped off the x87 | 
|  | // stack.  Therefore, if it's not used by the call it is not safe to optimize | 
|  | // this into a sibcall. | 
|  | bool Unused = false; | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | if (!Ins[i].Used) { | 
|  | Unused = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Unused) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the calling conventions do not match, then we'd better make sure the | 
|  | // results are returned in the same way as what the caller expects. | 
|  | if (!CCMatch) { | 
|  | SmallVector<CCValAssign, 16> RVLocs1; | 
|  | CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, | 
|  | *DAG.getContext()); | 
|  | CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs2; | 
|  | CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, | 
|  | *DAG.getContext()); | 
|  | CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | if (RVLocs1.size() != RVLocs2.size()) | 
|  | return false; | 
|  | for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { | 
|  | if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) | 
|  | return false; | 
|  | if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) | 
|  | return false; | 
|  | if (RVLocs1[i].isRegLoc()) { | 
|  | if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) | 
|  | return false; | 
|  | } else { | 
|  | if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the callee takes no arguments then go on to check the results of the | 
|  | // call. | 
|  | if (!Outs.empty()) { | 
|  | // Check if stack adjustment is needed. For now, do not do this if any | 
|  | // argument is passed on the stack. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsCalleeWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  | if (CCInfo.getNextStackOffset()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) | 
|  | return false; | 
|  |  | 
|  | // Check if the arguments are already laid out in the right way as | 
|  | // the caller's fixed stack objects. | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | const MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | return false; | 
|  | if (!VA.isRegLoc()) { | 
|  | if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, | 
|  | MFI, MRI, TII)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the tailcall address may be in a register, then make sure it's | 
|  | // possible to register allocate for it. In 32-bit, the call address can | 
|  | // only target EAX, EDX, or ECX since the tail call must be scheduled after | 
|  | // callee-saved registers are restored. These happen to be the same | 
|  | // registers used to pass 'inreg' arguments so watch out for those. | 
|  | if (!Subtarget->is64Bit() && | 
|  | ((!isa<GlobalAddressSDNode>(Callee) && | 
|  | !isa<ExternalSymbolSDNode>(Callee)) || | 
|  | DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { | 
|  | unsigned NumInRegs = 0; | 
|  | // In PIC we need an extra register to formulate the address computation | 
|  | // for the callee. | 
|  | unsigned MaxInRegs = | 
|  | (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3; | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (!VA.isRegLoc()) | 
|  | continue; | 
|  | unsigned Reg = VA.getLocReg(); | 
|  | switch (Reg) { | 
|  | default: break; | 
|  | case X86::EAX: case X86::EDX: case X86::ECX: | 
|  | if (++NumInRegs == MaxInRegs) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FastISel * | 
|  | X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) const { | 
|  | return X86::createFastISel(funcInfo, libInfo); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Other Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool MayFoldLoad(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); | 
|  | } | 
|  |  | 
|  | static bool MayFoldIntoStore(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); | 
|  | } | 
|  |  | 
|  | static bool isTargetShuffle(unsigned Opcode) { | 
|  | switch(Opcode) { | 
|  | default: return false; | 
|  | case X86ISD::BLENDI: | 
|  | case X86ISD::PSHUFB: | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::SHUFP: | 
|  | case X86ISD::PALIGNR: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | case X86ISD::MOVDDUP: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | case X86ISD::VPERMILPI: | 
|  | case X86ISD::VPERM2X128: | 
|  | case X86ISD::VPERMI: | 
|  | case X86ISD::VPERMV: | 
|  | case X86ISD::VPERMV3: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, unsigned TargetMask, | 
|  | SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::VPERMILPI: | 
|  | case X86ISD::VPERMI: | 
|  | return DAG.getNode(Opc, dl, VT, V1, | 
|  | DAG.getConstant(TargetMask, dl, MVT::i8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, SDValue V2, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | return DAG.getNode(Opc, dl, VT, V1, V2); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | int ReturnAddrIndex = FuncInfo->getRAIndex(); | 
|  |  | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, | 
|  | -(int64_t)SlotSize, | 
|  | false); | 
|  | FuncInfo->setRAIndex(ReturnAddrIndex); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  |  | 
|  | bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, | 
|  | bool hasSymbolicDisplacement) { | 
|  | // Offset should fit into 32 bit immediate field. | 
|  | if (!isInt<32>(Offset)) | 
|  | return false; | 
|  |  | 
|  | // If we don't have a symbolic displacement - we don't have any extra | 
|  | // restrictions. | 
|  | if (!hasSymbolicDisplacement) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Some tweaks might be needed for medium code model. | 
|  | if (M != CodeModel::Small && M != CodeModel::Kernel) | 
|  | return false; | 
|  |  | 
|  | // For small code model we assume that latest object is 16MB before end of 31 | 
|  | // bits boundary. We may also accept pretty large negative constants knowing | 
|  | // that all objects are in the positive half of address space. | 
|  | if (M == CodeModel::Small && Offset < 16*1024*1024) | 
|  | return true; | 
|  |  | 
|  | // For kernel code model we know that all object resist in the negative half | 
|  | // of 32bits address space. We may not accept negative offsets, since they may | 
|  | // be just off and we may accept pretty large positive ones. | 
|  | if (M == CodeModel::Kernel && Offset >= 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determines whether the callee is required to pop its own arguments. | 
|  | /// Callee pop is necessary to support tail calls. | 
|  | bool X86::isCalleePop(CallingConv::ID CallingConv, | 
|  | bool is64Bit, bool IsVarArg, bool TailCallOpt) { | 
|  |  | 
|  | if (IsTailCallConvention(CallingConv)) | 
|  | return IsVarArg ? false : TailCallOpt; | 
|  |  | 
|  | switch (CallingConv) { | 
|  | default: | 
|  | return false; | 
|  | case CallingConv::X86_StdCall: | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::X86_ThisCall: | 
|  | return !is64Bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the condition is an unsigned comparison operation. | 
|  | static bool isX86CCUnsigned(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case X86::COND_E:     return true; | 
|  | case X86::COND_G:     return false; | 
|  | case X86::COND_GE:    return false; | 
|  | case X86::COND_L:     return false; | 
|  | case X86::COND_LE:    return false; | 
|  | case X86::COND_NE:    return true; | 
|  | case X86::COND_B:     return true; | 
|  | case X86::COND_A:     return true; | 
|  | case X86::COND_BE:    return true; | 
|  | case X86::COND_AE:    return true; | 
|  | } | 
|  | llvm_unreachable("covered switch fell through?!"); | 
|  | } | 
|  |  | 
|  | /// Do a one-to-one translation of a ISD::CondCode to the X86-specific | 
|  | /// condition code, returning the condition code and the LHS/RHS of the | 
|  | /// comparison to make. | 
|  | static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP, | 
|  | SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { | 
|  | if (!isFP) { | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { | 
|  | // X > -1   -> X == 0, jump !sign. | 
|  | RHS = DAG.getConstant(0, DL, RHS.getValueType()); | 
|  | return X86::COND_NS; | 
|  | } | 
|  | if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { | 
|  | // X < 0   -> X == 0, jump on sign. | 
|  | return X86::COND_S; | 
|  | } | 
|  | if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { | 
|  | // X < 1   -> X <= 0 | 
|  | RHS = DAG.getConstant(0, DL, RHS.getValueType()); | 
|  | return X86::COND_LE; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case ISD::SETEQ:  return X86::COND_E; | 
|  | case ISD::SETGT:  return X86::COND_G; | 
|  | case ISD::SETGE:  return X86::COND_GE; | 
|  | case ISD::SETLT:  return X86::COND_L; | 
|  | case ISD::SETLE:  return X86::COND_LE; | 
|  | case ISD::SETNE:  return X86::COND_NE; | 
|  | case ISD::SETULT: return X86::COND_B; | 
|  | case ISD::SETUGT: return X86::COND_A; | 
|  | case ISD::SETULE: return X86::COND_BE; | 
|  | case ISD::SETUGE: return X86::COND_AE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First determine if it is required or is profitable to flip the operands. | 
|  |  | 
|  | // If LHS is a foldable load, but RHS is not, flip the condition. | 
|  | if (ISD::isNON_EXTLoad(LHS.getNode()) && | 
|  | !ISD::isNON_EXTLoad(RHS.getNode())) { | 
|  | SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | std::swap(LHS, RHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Condcode should be pre-legalized away"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:   return X86::COND_E; | 
|  | case ISD::SETOLT:              // flipped | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:   return X86::COND_A; | 
|  | case ISD::SETOLE:              // flipped | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:   return X86::COND_AE; | 
|  | case ISD::SETUGT:              // flipped | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:   return X86::COND_B; | 
|  | case ISD::SETUGE:              // flipped | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:   return X86::COND_BE; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:   return X86::COND_NE; | 
|  | case ISD::SETUO:   return X86::COND_P; | 
|  | case ISD::SETO:    return X86::COND_NP; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETUNE:  return X86::COND_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Is there a floating point cmov for the specific X86 condition code? | 
|  | /// Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | case X86::COND_E: | 
|  | case X86::COND_P: | 
|  | case X86::COND_A: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_NE: | 
|  | case X86::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if the target can instruction select the | 
|  | /// specified FP immediate natively. If false, the legalizer will | 
|  | /// materialize the FP immediate as a load from a constant pool. | 
|  | bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
|  | for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { | 
|  | if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, | 
|  | ISD::LoadExtType ExtTy, | 
|  | EVT NewVT) const { | 
|  | // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF | 
|  | // relocation target a movq or addq instruction: don't let the load shrink. | 
|  | SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr(); | 
|  | if (BasePtr.getOpcode() == X86ISD::WrapperRIP) | 
|  | if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) | 
|  | return GA->getTargetFlags() != X86II::MO_GOTTPOFF; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Returns true if it is beneficial to convert a load of a constant | 
|  | /// to just the constant itself. | 
|  | bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0 || BitSize > 64) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, | 
|  | unsigned Index) const { | 
|  | if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) | 
|  | return false; | 
|  |  | 
|  | return (Index == 0 || Index == ResVT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isCheapToSpeculateCttz() const { | 
|  | // Speculate cttz only if we can directly use TZCNT. | 
|  | return Subtarget->hasBMI(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isCheapToSpeculateCtlz() const { | 
|  | // Speculate ctlz only if we can directly use LZCNT. | 
|  | return Subtarget->hasLZCNT(); | 
|  | } | 
|  |  | 
|  | /// Return true if every element in Mask, beginning | 
|  | /// from position Pos and ending in Pos+Size is undef. | 
|  | static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) { | 
|  | for (unsigned i = Pos, e = Pos + Size; i != e; ++i) | 
|  | if (0 <= Mask[i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if Val is undef or if its value falls within the | 
|  | /// specified range (L, H]. | 
|  | static bool isUndefOrInRange(int Val, int Low, int Hi) { | 
|  | return (Val < 0) || (Val >= Low && Val < Hi); | 
|  | } | 
|  |  | 
|  | /// Val is either less than zero (undef) or equal to the specified value. | 
|  | static bool isUndefOrEqual(int Val, int CmpVal) { | 
|  | return (Val < 0 || Val == CmpVal); | 
|  | } | 
|  |  | 
|  | /// Return true if every element in Mask, beginning | 
|  | /// from position Pos and ending in Pos+Size, falls within the specified | 
|  | /// sequential range (Low, Low+Size]. or is undef. | 
|  | static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, | 
|  | unsigned Pos, unsigned Size, int Low) { | 
|  | for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) | 
|  | if (!isUndefOrEqual(Mask[i], Low)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector | 
|  | /// extract that is suitable for instruction that extract 128 or 256 bit vectors | 
|  | static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | return false; | 
|  |  | 
|  | // The index should be aligned on a vecWidth-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | unsigned ElSize = VT.getVectorElementType().getSizeInBits(); | 
|  | bool Result = (Index * ElSize) % vecWidth == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified INSERT_SUBVECTOR | 
|  | /// operand specifies a subvector insert that is suitable for input to | 
|  | /// insertion of 128 or 256-bit subvectors | 
|  | static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | return false; | 
|  | // The index should be aligned on a vecWidth-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | unsigned ElSize = VT.getVectorElementType().getSizeInBits(); | 
|  | bool Result = (Index * ElSize) % vecWidth == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool X86::isVINSERT128Index(SDNode *N) { | 
|  | return isVINSERTIndex(N, 128); | 
|  | } | 
|  |  | 
|  | bool X86::isVINSERT256Index(SDNode *N) { | 
|  | return isVINSERTIndex(N, 256); | 
|  | } | 
|  |  | 
|  | bool X86::isVEXTRACT128Index(SDNode *N) { | 
|  | return isVEXTRACTIndex(N, 128); | 
|  | } | 
|  |  | 
|  | bool X86::isVEXTRACT256Index(SDNode *N) { | 
|  | return isVEXTRACTIndex(N, 256); | 
|  | } | 
|  |  | 
|  | static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | llvm_unreachable("Illegal extract subvector for VEXTRACT"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VecVT = N->getOperand(0).getSimpleValueType(); | 
|  | MVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | llvm_unreachable("Illegal insert subvector for VINSERT"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VecVT = N->getSimpleValueType(0); | 
|  | MVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | /// Return the appropriate immediate to extract the specified | 
|  | /// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions. | 
|  | unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) { | 
|  | return getExtractVEXTRACTImmediate(N, 128); | 
|  | } | 
|  |  | 
|  | /// Return the appropriate immediate to extract the specified | 
|  | /// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions. | 
|  | unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) { | 
|  | return getExtractVEXTRACTImmediate(N, 256); | 
|  | } | 
|  |  | 
|  | /// Return the appropriate immediate to insert at the specified | 
|  | /// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions. | 
|  | unsigned X86::getInsertVINSERT128Immediate(SDNode *N) { | 
|  | return getInsertVINSERTImmediate(N, 128); | 
|  | } | 
|  |  | 
|  | /// Return the appropriate immediate to insert at the specified | 
|  | /// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions. | 
|  | unsigned X86::getInsertVINSERT256Immediate(SDNode *N) { | 
|  | return getInsertVINSERTImmediate(N, 256); | 
|  | } | 
|  |  | 
|  | /// Returns true if Elt is a constant integer zero | 
|  | static bool isZero(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isNullValue(); | 
|  | } | 
|  |  | 
|  | /// Returns true if Elt is a constant zero or a floating point constant +0.0. | 
|  | bool X86::isZeroNode(SDValue Elt) { | 
|  | if (isZero(Elt)) | 
|  | return true; | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt)) | 
|  | return CFP->getValueAPF().isPosZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns a vector of specified type with all zero elements. | 
|  | static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build SSE zero vectors as <4 x i32> bitcasted | 
|  | // to their dest type. This ensures they get CSE'd. | 
|  | SDValue Vec; | 
|  | if (VT.is128BitVector()) {  // SSE | 
|  | if (Subtarget->hasSSE2()) {  // SSE2 | 
|  | SDValue Cst = DAG.getConstant(0, dl, MVT::i32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else { // SSE1 | 
|  | SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); | 
|  | } | 
|  | } else if (VT.is256BitVector()) { // AVX | 
|  | if (Subtarget->hasInt256()) { // AVX2 | 
|  | SDValue Cst = DAG.getConstant(0, dl, MVT::i32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); | 
|  | } else { | 
|  | // 256-bit logic and arithmetic instructions in AVX are all | 
|  | // floating-point, no support for integer ops. Emit fp zeroed vectors. | 
|  | SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops); | 
|  | } | 
|  | } else if (VT.is512BitVector()) { // AVX-512 | 
|  | SDValue Cst = DAG.getConstant(0, dl, MVT::i32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); | 
|  | } else if (VT.getScalarType() == MVT::i1) { | 
|  |  | 
|  | assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16) | 
|  | && "Unexpected vector type"); | 
|  | assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8) | 
|  | && "Unexpected vector type"); | 
|  | SDValue Cst = DAG.getConstant(0, dl, MVT::i1); | 
|  | SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } else | 
|  | llvm_unreachable("Unexpected vector type"); | 
|  |  | 
|  | return DAG.getBitcast(VT, Vec); | 
|  | } | 
|  |  | 
|  | static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl, | 
|  | unsigned vectorWidth) { | 
|  | assert((vectorWidth == 128 || vectorWidth == 256) && | 
|  | "Unsupported vector width"); | 
|  | EVT VT = Vec.getValueType(); | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  | unsigned Factor = VT.getSizeInBits()/vectorWidth; | 
|  | EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, | 
|  | VT.getVectorNumElements()/Factor); | 
|  |  | 
|  | // Extract from UNDEF is UNDEF. | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getUNDEF(ResultVT); | 
|  |  | 
|  | // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR | 
|  | unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the vectorWidth-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | // If the input is a buildvector just emit a smaller one. | 
|  | if (Vec.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, | 
|  | makeArrayRef(Vec->op_begin() + NormalizedIdxVal, | 
|  | ElemsPerChunk)); | 
|  |  | 
|  | SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal, dl); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); | 
|  | } | 
|  |  | 
|  | /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 | 
|  | /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 | 
|  | /// instructions or a simple subregister reference. Idx is an index in the | 
|  | /// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes | 
|  | /// lowering EXTRACT_VECTOR_ELT operations easier. | 
|  | static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert((Vec.getValueType().is256BitVector() || | 
|  | Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); | 
|  | return ExtractSubVector(Vec, IdxVal, DAG, dl, 128); | 
|  | } | 
|  |  | 
|  | /// Generate a DAG to grab 256-bits from a 512-bit vector. | 
|  | static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); | 
|  | return ExtractSubVector(Vec, IdxVal, DAG, dl, 256); | 
|  | } | 
|  |  | 
|  | static SDValue InsertSubVector(SDValue Result, SDValue Vec, | 
|  | unsigned IdxVal, SelectionDAG &DAG, | 
|  | SDLoc dl, unsigned vectorWidth) { | 
|  | assert((vectorWidth == 128 || vectorWidth == 256) && | 
|  | "Unsupported vector width"); | 
|  | // Inserting UNDEF is Result | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return Result; | 
|  | EVT VT = Vec.getValueType(); | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  | EVT ResultVT = Result.getValueType(); | 
|  |  | 
|  | // Insert the relevant vectorWidth bits. | 
|  | unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the vectorWidth-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal, dl); | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); | 
|  | } | 
|  |  | 
|  | /// Generate a DAG to put 128-bits into a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or | 
|  | /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a | 
|  | /// simple superregister reference.  Idx is an index in the 128 bits | 
|  | /// we want.  It need not be aligned to a 128-bit boundary.  That makes | 
|  | /// lowering INSERT_VECTOR_ELT operations easier. | 
|  | static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); | 
|  |  | 
|  | // For insertion into the zero index (low half) of a 256-bit vector, it is | 
|  | // more efficient to generate a blend with immediate instead of an insert*128. | 
|  | // We are still creating an INSERT_SUBVECTOR below with an undef node to | 
|  | // extend the subvector to the size of the result vector. Make sure that | 
|  | // we are not recursing on that node by checking for undef here. | 
|  | if (IdxVal == 0 && Result.getValueType().is256BitVector() && | 
|  | Result.getOpcode() != ISD::UNDEF) { | 
|  | EVT ResultVT = Result.getValueType(); | 
|  | SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl); | 
|  | SDValue Undef = DAG.getUNDEF(ResultVT); | 
|  | SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef, | 
|  | Vec, ZeroIndex); | 
|  |  | 
|  | // The blend instruction, and therefore its mask, depend on the data type. | 
|  | MVT ScalarType = ResultVT.getScalarType().getSimpleVT(); | 
|  | if (ScalarType.isFloatingPoint()) { | 
|  | // Choose either vblendps (float) or vblendpd (double). | 
|  | unsigned ScalarSize = ScalarType.getSizeInBits(); | 
|  | assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type"); | 
|  | unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f; | 
|  | SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8); | 
|  | return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask); | 
|  | } | 
|  |  | 
|  | const X86Subtarget &Subtarget = | 
|  | static_cast<const X86Subtarget &>(DAG.getSubtarget()); | 
|  |  | 
|  | // AVX2 is needed for 256-bit integer blend support. | 
|  | // Integers must be cast to 32-bit because there is only vpblendd; | 
|  | // vpblendw can't be used for this because it has a handicapped mask. | 
|  |  | 
|  | // If we don't have AVX2, then cast to float. Using a wrong domain blend | 
|  | // is still more efficient than using the wrong domain vinsertf128 that | 
|  | // will be created by InsertSubVector(). | 
|  | MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32; | 
|  |  | 
|  | SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8); | 
|  | Vec256 = DAG.getBitcast(CastVT, Vec256); | 
|  | Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask); | 
|  | return DAG.getBitcast(ResultVT, Vec256); | 
|  | } | 
|  |  | 
|  | return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); | 
|  | } | 
|  |  | 
|  | static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); | 
|  | return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256); | 
|  | } | 
|  |  | 
|  | /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 | 
|  | /// instructions. This is used because creating CONCAT_VECTOR nodes of | 
|  | /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower | 
|  | /// large BUILD_VECTORS. | 
|  | static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, | 
|  | unsigned NumElems, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); | 
|  | return Insert128BitVector(V, V2, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT, | 
|  | unsigned NumElems, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); | 
|  | return Insert256BitVector(V, V2, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | /// Returns a vector of specified type with all bits set. | 
|  | /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with | 
|  | /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. | 
|  | /// Then bitcast to their original type, ensuring they get CSE'd. | 
|  | static SDValue getOnesVector(EVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32); | 
|  | SDValue Vec; | 
|  | if (VT.is512BitVector()) { | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); | 
|  | } else if (VT.is256BitVector()) { | 
|  | if (Subtarget->hasInt256()) { // AVX2 | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); | 
|  | } else { // AVX | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); | 
|  | } | 
|  | } else if (VT.is128BitVector()) { | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else | 
|  | llvm_unreachable("Unexpected vector type"); | 
|  |  | 
|  | return DAG.getBitcast(VT, Vec); | 
|  | } | 
|  |  | 
|  | /// Returns a vector_shuffle node for an unpackl operation. | 
|  | static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { | 
|  | Mask.push_back(i); | 
|  | Mask.push_back(i + NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// Returns a vector_shuffle node for an unpackh operation. | 
|  | static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { | 
|  | Mask.push_back(i + Half); | 
|  | Mask.push_back(i + NumElems + Half); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// Return a vector_shuffle of the specified vector of zero or undef vector. | 
|  | /// This produces a shuffle where the low element of V2 is swizzled into the | 
|  | /// zero/undef vector, landing at element Idx. | 
|  | /// This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3). | 
|  | static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, | 
|  | bool IsZero, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = V2.getSimpleValueType(); | 
|  | SDValue V1 = IsZero | 
|  | ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 16> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | // If this is the insertion idx, put the low elt of V2 here. | 
|  | MaskVec.push_back(i == Idx ? NumElems : i); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// Calculates the shuffle mask corresponding to the target-specific opcode. | 
|  | /// Returns true if the Mask could be calculated. Sets IsUnary to true if only | 
|  | /// uses one source. Note that this will set IsUnary for shuffles which use a | 
|  | /// single input multiple times, and in those cases it will | 
|  | /// adjust the mask to only have indices within that single input. | 
|  | /// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero. | 
|  | static bool getTargetShuffleMask(SDNode *N, MVT VT, | 
|  | SmallVectorImpl<int> &Mask, bool &IsUnary) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDValue ImmN; | 
|  |  | 
|  | IsUnary = false; | 
|  | bool IsFakeUnary = false; | 
|  | switch(N->getOpcode()) { | 
|  | case X86ISD::BLENDI: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | break; | 
|  | case X86ISD::SHUFP: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); | 
|  | break; | 
|  | case X86ISD::UNPCKH: | 
|  | DecodeUNPCKHMask(VT, Mask); | 
|  | IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); | 
|  | break; | 
|  | case X86ISD::UNPCKL: | 
|  | DecodeUNPCKLMask(VT, Mask); | 
|  | IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); | 
|  | break; | 
|  | case X86ISD::MOVHLPS: | 
|  | DecodeMOVHLPSMask(NumElems, Mask); | 
|  | IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); | 
|  | break; | 
|  | case X86ISD::MOVLHPS: | 
|  | DecodeMOVLHPSMask(NumElems, Mask); | 
|  | IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); | 
|  | break; | 
|  | case X86ISD::PALIGNR: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | break; | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::VPERMILPI: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::PSHUFHW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::PSHUFLW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::PSHUFB: { | 
|  | IsUnary = true; | 
|  | SDValue MaskNode = N->getOperand(1); | 
|  | while (MaskNode->getOpcode() == ISD::BITCAST) | 
|  | MaskNode = MaskNode->getOperand(0); | 
|  |  | 
|  | if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // If we have a build-vector, then things are easy. | 
|  | EVT VT = MaskNode.getValueType(); | 
|  | assert(VT.isVector() && | 
|  | "Can't produce a non-vector with a build_vector!"); | 
|  | if (!VT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8; | 
|  |  | 
|  | SmallVector<uint64_t, 32> RawMask; | 
|  | for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) { | 
|  | SDValue Op = MaskNode->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) { | 
|  | RawMask.push_back((uint64_t)SM_SentinelUndef); | 
|  | continue; | 
|  | } | 
|  | auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); | 
|  | if (!CN) | 
|  | return false; | 
|  | APInt MaskElement = CN->getAPIntValue(); | 
|  |  | 
|  | // We now have to decode the element which could be any integer size and | 
|  | // extract each byte of it. | 
|  | for (int j = 0; j < NumBytesPerElement; ++j) { | 
|  | // Note that this is x86 and so always little endian: the low byte is | 
|  | // the first byte of the mask. | 
|  | RawMask.push_back(MaskElement.getLoBits(8).getZExtValue()); | 
|  | MaskElement = MaskElement.lshr(8); | 
|  | } | 
|  | } | 
|  | DecodePSHUFBMask(RawMask, Mask); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); | 
|  | if (!MaskLoad) | 
|  | return false; | 
|  |  | 
|  | SDValue Ptr = MaskLoad->getBasePtr(); | 
|  | if (Ptr->getOpcode() == X86ISD::Wrapper || | 
|  | Ptr->getOpcode() == X86ISD::WrapperRIP) | 
|  | Ptr = Ptr->getOperand(0); | 
|  |  | 
|  | auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); | 
|  | if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) | 
|  | return false; | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) { | 
|  | DecodePSHUFBMask(C, Mask); | 
|  | if (Mask.empty()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case X86ISD::VPERMI: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask); | 
|  | break; | 
|  | case X86ISD::VPERM2X128: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | if (Mask.empty()) return false; | 
|  | // Mask only contains negative index if an element is zero. | 
|  | if (std::any_of(Mask.begin(), Mask.end(), | 
|  | [](int M){ return M == SM_SentinelZero; })) | 
|  | return false; | 
|  | break; | 
|  | case X86ISD::MOVSLDUP: | 
|  | DecodeMOVSLDUPMask(VT, Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::MOVSHDUP: | 
|  | DecodeMOVSHDUPMask(VT, Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::MOVDDUP: | 
|  | DecodeMOVDDUPMask(VT, Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVLPS: | 
|  | // Not yet implemented | 
|  | return false; | 
|  | case X86ISD::VPERMV: { | 
|  | IsUnary = true; | 
|  | SDValue MaskNode = N->getOperand(0); | 
|  | while (MaskNode->getOpcode() == ISD::BITCAST) | 
|  | MaskNode = MaskNode->getOperand(0); | 
|  |  | 
|  | unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()); | 
|  | SmallVector<uint64_t, 32> RawMask; | 
|  | if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // If we have a build-vector, then things are easy. | 
|  | assert(MaskNode.getValueType().isInteger() && | 
|  | MaskNode.getValueType().getVectorNumElements() == | 
|  | VT.getVectorNumElements()); | 
|  |  | 
|  | for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { | 
|  | SDValue Op = MaskNode->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) | 
|  | RawMask.push_back((uint64_t)SM_SentinelUndef); | 
|  | else if (isa<ConstantSDNode>(Op)) { | 
|  | APInt MaskElement = cast<ConstantSDNode>(Op)->getAPIntValue(); | 
|  | RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | DecodeVPERMVMask(RawMask, Mask); | 
|  | break; | 
|  | } | 
|  | if (MaskNode->getOpcode() == X86ISD::VBROADCAST) { | 
|  | unsigned NumEltsInMask = MaskNode->getNumOperands(); | 
|  | MaskNode = MaskNode->getOperand(0); | 
|  | auto *CN = dyn_cast<ConstantSDNode>(MaskNode); | 
|  | if (CN) { | 
|  | APInt MaskEltValue = CN->getAPIntValue(); | 
|  | for (unsigned i = 0; i < NumEltsInMask; ++i) | 
|  | RawMask.push_back(MaskEltValue.getLoBits(MaskLoBits).getZExtValue()); | 
|  | DecodeVPERMVMask(RawMask, Mask); | 
|  | break; | 
|  | } | 
|  | // It may be a scalar load | 
|  | } | 
|  |  | 
|  | auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); | 
|  | if (!MaskLoad) | 
|  | return false; | 
|  |  | 
|  | SDValue Ptr = MaskLoad->getBasePtr(); | 
|  | if (Ptr->getOpcode() == X86ISD::Wrapper || | 
|  | Ptr->getOpcode() == X86ISD::WrapperRIP) | 
|  | Ptr = Ptr->getOperand(0); | 
|  |  | 
|  | auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); | 
|  | if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) | 
|  | return false; | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(MaskCP->getConstVal()); | 
|  | if (C) { | 
|  | DecodeVPERMVMask(C, VT, Mask); | 
|  | if (Mask.empty()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case X86ISD::VPERMV3: { | 
|  | IsUnary = false; | 
|  | SDValue MaskNode = N->getOperand(1); | 
|  | while (MaskNode->getOpcode() == ISD::BITCAST) | 
|  | MaskNode = MaskNode->getOperand(1); | 
|  |  | 
|  | if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // If we have a build-vector, then things are easy. | 
|  | assert(MaskNode.getValueType().isInteger() && | 
|  | MaskNode.getValueType().getVectorNumElements() == | 
|  | VT.getVectorNumElements()); | 
|  |  | 
|  | SmallVector<uint64_t, 32> RawMask; | 
|  | unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()*2); | 
|  |  | 
|  | for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { | 
|  | SDValue Op = MaskNode->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) | 
|  | RawMask.push_back((uint64_t)SM_SentinelUndef); | 
|  | else { | 
|  | auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); | 
|  | if (!CN) | 
|  | return false; | 
|  | APInt MaskElement = CN->getAPIntValue(); | 
|  | RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); | 
|  | } | 
|  | } | 
|  | DecodeVPERMV3Mask(RawMask, Mask); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); | 
|  | if (!MaskLoad) | 
|  | return false; | 
|  |  | 
|  | SDValue Ptr = MaskLoad->getBasePtr(); | 
|  | if (Ptr->getOpcode() == X86ISD::Wrapper || | 
|  | Ptr->getOpcode() == X86ISD::WrapperRIP) | 
|  | Ptr = Ptr->getOperand(0); | 
|  |  | 
|  | auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); | 
|  | if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) | 
|  | return false; | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(MaskCP->getConstVal()); | 
|  | if (C) { | 
|  | DecodeVPERMV3Mask(C, VT, Mask); | 
|  | if (Mask.empty()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | default: llvm_unreachable("unknown target shuffle node"); | 
|  | } | 
|  |  | 
|  | // If we have a fake unary shuffle, the shuffle mask is spread across two | 
|  | // inputs that are actually the same node. Re-map the mask to always point | 
|  | // into the first input. | 
|  | if (IsFakeUnary) | 
|  | for (int &M : Mask) | 
|  | if (M >= (int)Mask.size()) | 
|  | M -= Mask.size(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns the scalar element that will make up the ith | 
|  | /// element of the result of the vector shuffle. | 
|  | static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, | 
|  | unsigned Depth) { | 
|  | if (Depth == 6) | 
|  | return SDValue();  // Limit search depth. | 
|  |  | 
|  | SDValue V = SDValue(N, 0); | 
|  | EVT VT = V.getValueType(); | 
|  | unsigned Opcode = V.getOpcode(); | 
|  |  | 
|  | // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. | 
|  | if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { | 
|  | int Elt = SV->getMaskElt(Index); | 
|  |  | 
|  | if (Elt < 0) | 
|  | return DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) | 
|  | : SV->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); | 
|  | } | 
|  |  | 
|  | // Recurse into target specific vector shuffles to find scalars. | 
|  | if (isTargetShuffle(Opcode)) { | 
|  | MVT ShufVT = V.getSimpleValueType(); | 
|  | unsigned NumElems = ShufVT.getVectorNumElements(); | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | bool IsUnary; | 
|  |  | 
|  | if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) | 
|  | return SDValue(); | 
|  |  | 
|  | int Elt = ShuffleMask[Index]; | 
|  | if (Elt < 0) | 
|  | return DAG.getUNDEF(ShufVT.getVectorElementType()); | 
|  |  | 
|  | SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) | 
|  | : N->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, | 
|  | Depth+1); | 
|  | } | 
|  |  | 
|  | // Actual nodes that may contain scalar elements | 
|  | if (Opcode == ISD::BITCAST) { | 
|  | V = V.getOperand(0); | 
|  | EVT SrcVT = V.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return (Index == 0) ? V.getOperand(0) | 
|  | : DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return V.getOperand(Index); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Custom lower build_vector of v16i8. | 
|  | static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue V; | 
|  | bool First = true; | 
|  |  | 
|  | // SSE4.1 - use PINSRB to insert each byte directly. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v16i8); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | MVT::v16i8, V, Op.getOperand(i), | 
|  | DAG.getIntPtrConstant(i, dl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Pre-SSE4.1 - merge byte pairs and insert with PINSRW. | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (ThisIsNonZero && First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  |  | 
|  | if ((i & 1) != 0) { | 
|  | SDValue ThisElt, LastElt; | 
|  | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; | 
|  | if (LastIsNonZero) { | 
|  | LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | MVT::i16, Op.getOperand(i-1)); | 
|  | } | 
|  | if (ThisIsNonZero) { | 
|  | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); | 
|  | ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, | 
|  | ThisElt, DAG.getConstant(8, dl, MVT::i8)); | 
|  | if (LastIsNonZero) | 
|  | ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); | 
|  | } else | 
|  | ThisElt = LastElt; | 
|  |  | 
|  | if (ThisElt.getNode()) | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, | 
|  | DAG.getIntPtrConstant(i/2, dl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getBitcast(MVT::v16i8, V); | 
|  | } | 
|  |  | 
|  | /// Custom lower build_vector of v8i16. | 
|  | static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 4) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue V; | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | MVT::v8i16, V, Op.getOperand(i), | 
|  | DAG.getIntPtrConstant(i, dl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// Custom lower build_vector of v4i32 or v4f32. | 
|  | static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget, | 
|  | const TargetLowering &TLI) { | 
|  | // Find all zeroable elements. | 
|  | std::bitset<4> Zeroable; | 
|  | for (int i=0; i < 4; ++i) { | 
|  | SDValue Elt = Op->getOperand(i); | 
|  | Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)); | 
|  | } | 
|  | assert(Zeroable.size() - Zeroable.count() > 1 && | 
|  | "We expect at least two non-zero elements!"); | 
|  |  | 
|  | // We only know how to deal with build_vector nodes where elements are either | 
|  | // zeroable or extract_vector_elt with constant index. | 
|  | SDValue FirstNonZero; | 
|  | unsigned FirstNonZeroIdx; | 
|  | for (unsigned i=0; i < 4; ++i) { | 
|  | if (Zeroable[i]) | 
|  | continue; | 
|  | SDValue Elt = Op->getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(Elt.getOperand(1))) | 
|  | return SDValue(); | 
|  | // Make sure that this node is extracting from a 128-bit vector. | 
|  | MVT VT = Elt.getOperand(0).getSimpleValueType(); | 
|  | if (!VT.is128BitVector()) | 
|  | return SDValue(); | 
|  | if (!FirstNonZero.getNode()) { | 
|  | FirstNonZero = Elt; | 
|  | FirstNonZeroIdx = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); | 
|  | SDValue V1 = FirstNonZero.getOperand(0); | 
|  | MVT VT = V1.getSimpleValueType(); | 
|  |  | 
|  | // See if this build_vector can be lowered as a blend with zero. | 
|  | SDValue Elt; | 
|  | unsigned EltMaskIdx, EltIdx; | 
|  | int Mask[4]; | 
|  | for (EltIdx = 0; EltIdx < 4; ++EltIdx) { | 
|  | if (Zeroable[EltIdx]) { | 
|  | // The zero vector will be on the right hand side. | 
|  | Mask[EltIdx] = EltIdx+4; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Elt = Op->getOperand(EltIdx); | 
|  | // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. | 
|  | EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue(); | 
|  | if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) | 
|  | break; | 
|  | Mask[EltIdx] = EltIdx; | 
|  | } | 
|  |  | 
|  | if (EltIdx == 4) { | 
|  | // Let the shuffle legalizer deal with blend operations. | 
|  | SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); | 
|  | if (V1.getSimpleValueType() != VT) | 
|  | V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]); | 
|  | } | 
|  |  | 
|  | // See if we can lower this build_vector to a INSERTPS. | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue V2 = Elt.getOperand(0); | 
|  | if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) | 
|  | V1 = SDValue(); | 
|  |  | 
|  | bool CanFold = true; | 
|  | for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { | 
|  | if (Zeroable[i]) | 
|  | continue; | 
|  |  | 
|  | SDValue Current = Op->getOperand(i); | 
|  | SDValue SrcVector = Current->getOperand(0); | 
|  | if (!V1.getNode()) | 
|  | V1 = SrcVector; | 
|  | CanFold = SrcVector == V1 && | 
|  | cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i; | 
|  | } | 
|  |  | 
|  | if (!CanFold) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(V1.getNode() && "Expected at least two non-zero elements!"); | 
|  | if (V1.getSimpleValueType() != MVT::v4f32) | 
|  | V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1); | 
|  | if (V2.getSimpleValueType() != MVT::v4f32) | 
|  | V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2); | 
|  |  | 
|  | // Ok, we can emit an INSERTPS instruction. | 
|  | unsigned ZMask = Zeroable.to_ulong(); | 
|  |  | 
|  | unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; | 
|  | assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); | 
|  | SDLoc DL(Op); | 
|  | SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, | 
|  | DAG.getIntPtrConstant(InsertPSMask, DL)); | 
|  | return DAG.getBitcast(VT, Result); | 
|  | } | 
|  |  | 
|  | /// Return a vector logical shift node. | 
|  | static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, | 
|  | unsigned NumBits, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, SDLoc dl) { | 
|  | assert(VT.is128BitVector() && "Unknown type for VShift"); | 
|  | MVT ShVT = MVT::v2i64; | 
|  | unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; | 
|  | SrcOp = DAG.getBitcast(ShVT, SrcOp); | 
|  | MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT); | 
|  | assert(NumBits % 8 == 0 && "Only support byte sized shifts"); | 
|  | SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy); | 
|  | return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal)); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) { | 
|  |  | 
|  | // Check if the scalar load can be widened into a vector load. And if | 
|  | // the address is "base + cst" see if the cst can be "absorbed" into | 
|  | // the shuffle mask. | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | if (!ISD::isNormalLoad(LD) || LD->isVolatile()) | 
|  | return SDValue(); | 
|  | EVT PVT = LD->getValueType(0); | 
|  | if (PVT != MVT::i32 && PVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | int FI = -1; | 
|  | int64_t Offset = 0; | 
|  | if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { | 
|  | FI = FINode->getIndex(); | 
|  | Offset = 0; | 
|  | } else if (DAG.isBaseWithConstantOffset(Ptr) && | 
|  | isa<FrameIndexSDNode>(Ptr.getOperand(0))) { | 
|  | FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); | 
|  | Offset = Ptr.getConstantOperandVal(1); | 
|  | Ptr = Ptr.getOperand(0); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: 256-bit vector instructions don't require a strict alignment, | 
|  | // improve this code to support it better. | 
|  | unsigned RequiredAlign = VT.getSizeInBits()/8; | 
|  | SDValue Chain = LD->getChain(); | 
|  | // Make sure the stack object alignment is at least 16 or 32. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { | 
|  | if (MFI->isFixedObjectIndex(FI)) { | 
|  | // Can't change the alignment. FIXME: It's possible to compute | 
|  | // the exact stack offset and reference FI + adjust offset instead. | 
|  | // If someone *really* cares about this. That's the way to implement it. | 
|  | return SDValue(); | 
|  | } else { | 
|  | MFI->setObjectAlignment(FI, RequiredAlign); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (Offset % 16 or 32) must be multiple of 4. Then address is then | 
|  | // Ptr + (Offset & ~15). | 
|  | if (Offset < 0) | 
|  | return SDValue(); | 
|  | if ((Offset % RequiredAlign) & 3) | 
|  | return SDValue(); | 
|  | int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1); | 
|  | if (StartOffset) { | 
|  | SDLoc DL(Ptr); | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(StartOffset, DL, Ptr.getValueType())); | 
|  | } | 
|  |  | 
|  | int EltNo = (Offset - StartOffset) >> 2; | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); | 
|  | SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(StartOffset), | 
|  | false, false, false, 0); | 
|  |  | 
|  | SmallVector<int, 8> Mask(NumElems, EltNo); | 
|  |  | 
|  | return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given the initializing elements 'Elts' of a vector of type 'VT', see if the | 
|  | /// elements can be replaced by a single large load which has the same value as | 
|  | /// a build_vector or insert_subvector whose loaded operands are 'Elts'. | 
|  | /// | 
|  | /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a | 
|  | /// | 
|  | /// FIXME: we'd also like to handle the case where the last elements are zero | 
|  | /// rather than undef via VZEXT_LOAD, but we do not detect that case today. | 
|  | /// There's even a handy isZeroNode for that purpose. | 
|  | static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts, | 
|  | SDLoc &DL, SelectionDAG &DAG, | 
|  | bool isAfterLegalize) { | 
|  | unsigned NumElems = Elts.size(); | 
|  |  | 
|  | LoadSDNode *LDBase = nullptr; | 
|  | unsigned LastLoadedElt = -1U; | 
|  |  | 
|  | // For each element in the initializer, see if we've found a load or an undef. | 
|  | // If we don't find an initial load element, or later load elements are | 
|  | // non-consecutive, bail out. | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Elts[i]; | 
|  | // Look through a bitcast. | 
|  | if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST) | 
|  | Elt = Elt.getOperand(0); | 
|  | if (!Elt.getNode() || | 
|  | (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) | 
|  | return SDValue(); | 
|  | if (!LDBase) { | 
|  | if (Elt.getNode()->getOpcode() == ISD::UNDEF) | 
|  | return SDValue(); | 
|  | LDBase = cast<LoadSDNode>(Elt.getNode()); | 
|  | LastLoadedElt = i; | 
|  | continue; | 
|  | } | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Elt); | 
|  | EVT LdVT = Elt.getValueType(); | 
|  | // Each loaded element must be the correct fractional portion of the | 
|  | // requested vector load. | 
|  | if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems) | 
|  | return SDValue(); | 
|  | if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i)) | 
|  | return SDValue(); | 
|  | LastLoadedElt = i; | 
|  | } | 
|  |  | 
|  | // If we have found an entire vector of loads and undefs, then return a large | 
|  | // load of the entire vector width starting at the base pointer.  If we found | 
|  | // consecutive loads for the low half, generate a vzext_load node. | 
|  | if (LastLoadedElt == NumElems - 1) { | 
|  | assert(LDBase && "Did not find base load for merging consecutive loads"); | 
|  | EVT EltVT = LDBase->getValueType(0); | 
|  | // Ensure that the input vector size for the merged loads matches the | 
|  | // cumulative size of the input elements. | 
|  | if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems) | 
|  | return SDValue(); | 
|  |  | 
|  | if (isAfterLegalize && | 
|  | !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLd = SDValue(); | 
|  |  | 
|  | NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), | 
|  | LDBase->getPointerInfo(), LDBase->isVolatile(), | 
|  | LDBase->isNonTemporal(), LDBase->isInvariant(), | 
|  | LDBase->getAlignment()); | 
|  |  | 
|  | if (LDBase->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | SDValue(LDBase, 1), | 
|  | SDValue(NewLd.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), | 
|  | SDValue(NewLd.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return NewLd; | 
|  | } | 
|  |  | 
|  | //TODO: The code below fires only for for loading the low v2i32 / v2f32 | 
|  | //of a v4i32 / v4f32. It's probably worth generalizing. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) && | 
|  | DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); | 
|  | SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; | 
|  | SDValue ResNode = | 
|  | DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64, | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->getAlignment(), | 
|  | false/*isVolatile*/, true/*ReadMem*/, | 
|  | false/*WriteMem*/); | 
|  |  | 
|  | // Make sure the newly-created LOAD is in the same position as LDBase in | 
|  | // terms of dependency. We create a TokenFactor for LDBase and ResNode, and | 
|  | // update uses of LDBase's output chain to use the TokenFactor. | 
|  | if (LDBase->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), | 
|  | SDValue(ResNode.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return DAG.getBitcast(VT, ResNode); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction | 
|  | /// to generate a splat value for the following cases: | 
|  | /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. | 
|  | /// 2. A splat shuffle which uses a scalar_to_vector node which comes from | 
|  | /// a scalar load, or a constant. | 
|  | /// The VBROADCAST node is returned when a pattern is found, | 
|  | /// or SDValue() otherwise. | 
|  | static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | // VBROADCAST requires AVX. | 
|  | // TODO: Splats could be generated for non-AVX CPUs using SSE | 
|  | // instructions, but there's less potential gain for only 128-bit vectors. | 
|  | if (!Subtarget->hasAVX()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && | 
|  | "Unsupported vector type for broadcast."); | 
|  |  | 
|  | SDValue Ld; | 
|  | bool ConstSplatVal; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | // Unknown pattern found. | 
|  | return SDValue(); | 
|  |  | 
|  | case ISD::BUILD_VECTOR: { | 
|  | auto *BVOp = cast<BuildVectorSDNode>(Op.getNode()); | 
|  | BitVector UndefElements; | 
|  | SDValue Splat = BVOp->getSplatValue(&UndefElements); | 
|  |  | 
|  | // We need a splat of a single value to use broadcast, and it doesn't | 
|  | // make any sense if the value is only in one element of the vector. | 
|  | if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1) | 
|  | return SDValue(); | 
|  |  | 
|  | Ld = Splat; | 
|  | ConstSplatVal = (Ld.getOpcode() == ISD::Constant || | 
|  | Ld.getOpcode() == ISD::ConstantFP); | 
|  |  | 
|  | // Make sure that all of the users of a non-constant load are from the | 
|  | // BUILD_VECTOR node. | 
|  | if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) | 
|  | return SDValue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  |  | 
|  | // Shuffles must have a splat mask where the first element is | 
|  | // broadcasted. | 
|  | if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Sc = Op.getOperand(0); | 
|  | if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && | 
|  | Sc.getOpcode() != ISD::BUILD_VECTOR) { | 
|  |  | 
|  | if (!Subtarget->hasInt256()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Use the register form of the broadcast instruction available on AVX2. | 
|  | if (VT.getSizeInBits() >= 256) | 
|  | Sc = Extract128BitVector(Sc, 0, DAG, dl); | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); | 
|  | } | 
|  |  | 
|  | Ld = Sc.getOperand(0); | 
|  | ConstSplatVal = (Ld.getOpcode() == ISD::Constant || | 
|  | Ld.getOpcode() == ISD::ConstantFP); | 
|  |  | 
|  | // The scalar_to_vector node and the suspected | 
|  | // load node must have exactly one user. | 
|  | // Constants may have multiple users. | 
|  |  | 
|  | // AVX-512 has register version of the broadcast | 
|  | bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() && | 
|  | Ld.getValueType().getSizeInBits() >= 32; | 
|  | if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) && | 
|  | !hasRegVer)) | 
|  | return SDValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ScalarSize = Ld.getValueType().getSizeInBits(); | 
|  | bool IsGE256 = (VT.getSizeInBits() >= 256); | 
|  |  | 
|  | // When optimizing for size, generate up to 5 extra bytes for a broadcast | 
|  | // instruction to save 8 or more bytes of constant pool data. | 
|  | // TODO: If multiple splats are generated to load the same constant, | 
|  | // it may be detrimental to overall size. There needs to be a way to detect | 
|  | // that condition to know if this is truly a size win. | 
|  | bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); | 
|  |  | 
|  | // Handle broadcasting a single constant scalar from the constant pool | 
|  | // into a vector. | 
|  | // On Sandybridge (no AVX2), it is still better to load a constant vector | 
|  | // from the constant pool and not to broadcast it from a scalar. | 
|  | // But override that restriction when optimizing for size. | 
|  | // TODO: Check if splatting is recommended for other AVX-capable CPUs. | 
|  | if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) { | 
|  | EVT CVT = Ld.getValueType(); | 
|  | assert(!CVT.isVector() && "Must not broadcast a vector type"); | 
|  |  | 
|  | // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. | 
|  | // For size optimization, also splat v2f64 and v2i64, and for size opt | 
|  | // with AVX2, also splat i8 and i16. | 
|  | // With pattern matching, the VBROADCAST node may become a VMOVDDUP. | 
|  | if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || | 
|  | (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) { | 
|  | const Constant *C = nullptr; | 
|  | if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) | 
|  | C = CI->getConstantIntValue(); | 
|  | else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) | 
|  | C = CF->getConstantFPValue(); | 
|  |  | 
|  | assert(C && "Invalid constant type"); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue CP = | 
|  | DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); | 
|  | Ld = DAG.getLoad( | 
|  | CVT, dl, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, | 
|  | false, false, Alignment); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsLoad = ISD::isNormalLoad(Ld.getNode()); | 
|  |  | 
|  | // Handle AVX2 in-register broadcasts. | 
|  | if (!IsLoad && Subtarget->hasInt256() && | 
|  | (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  |  | 
|  | // The scalar source must be a normal load. | 
|  | if (!IsLoad) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || | 
|  | (Subtarget->hasVLX() && ScalarSize == 64)) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  |  | 
|  | // The integer check is needed for the 64-bit into 128-bit so it doesn't match | 
|  | // double since there is no vbroadcastsd xmm | 
|  | if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { | 
|  | if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  | } | 
|  |  | 
|  | // Unsupported broadcast. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real | 
|  | /// underlying vector and index. | 
|  | /// | 
|  | /// Modifies \p ExtractedFromVec to the real vector and returns the real | 
|  | /// index. | 
|  | static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, | 
|  | SDValue ExtIdx) { | 
|  | int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); | 
|  | if (!isa<ShuffleVectorSDNode>(ExtractedFromVec)) | 
|  | return Idx; | 
|  |  | 
|  | // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already | 
|  | // lowered this: | 
|  | //   (extract_vector_elt (v8f32 %vreg1), Constant<6>) | 
|  | // to: | 
|  | //   (extract_vector_elt (vector_shuffle<2,u,u,u> | 
|  | //                           (extract_subvector (v8f32 %vreg0), Constant<4>), | 
|  | //                           undef) | 
|  | //                       Constant<0>) | 
|  | // In this case the vector is the extract_subvector expression and the index | 
|  | // is 2, as specified by the shuffle. | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec); | 
|  | SDValue ShuffleVec = SVOp->getOperand(0); | 
|  | MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); | 
|  | assert(ShuffleVecVT.getVectorElementType() == | 
|  | ExtractedFromVec.getSimpleValueType().getVectorElementType()); | 
|  |  | 
|  | int ShuffleIdx = SVOp->getMaskElt(Idx); | 
|  | if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { | 
|  | ExtractedFromVec = ShuffleVec; | 
|  | return ShuffleIdx; | 
|  | } | 
|  | return Idx; | 
|  | } | 
|  |  | 
|  | static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Skip if insert_vec_elt is not supported. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  |  | 
|  | SDValue VecIn1; | 
|  | SDValue VecIn2; | 
|  | SmallVector<unsigned, 4> InsertIndices; | 
|  | SmallVector<int, 8> Mask(NumElems, -1); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | unsigned Opc = Op.getOperand(i).getOpcode(); | 
|  |  | 
|  | if (Opc == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | if (Opc != ISD::EXTRACT_VECTOR_ELT) { | 
|  | // Quit if more than 1 elements need inserting. | 
|  | if (InsertIndices.size() > 1) | 
|  | return SDValue(); | 
|  |  | 
|  | InsertIndices.push_back(i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); | 
|  | SDValue ExtIdx = Op.getOperand(i).getOperand(1); | 
|  | // Quit if non-constant index. | 
|  | if (!isa<ConstantSDNode>(ExtIdx)) | 
|  | return SDValue(); | 
|  | int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); | 
|  |  | 
|  | // Quit if extracted from vector of different type. | 
|  | if (ExtractedFromVec.getValueType() != VT) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!VecIn1.getNode()) | 
|  | VecIn1 = ExtractedFromVec; | 
|  | else if (VecIn1 != ExtractedFromVec) { | 
|  | if (!VecIn2.getNode()) | 
|  | VecIn2 = ExtractedFromVec; | 
|  | else if (VecIn2 != ExtractedFromVec) | 
|  | // Quit if more than 2 vectors to shuffle | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (ExtractedFromVec == VecIn1) | 
|  | Mask[i] = Idx; | 
|  | else if (ExtractedFromVec == VecIn2) | 
|  | Mask[i] = Idx + NumElems; | 
|  | } | 
|  |  | 
|  | if (!VecIn1.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); | 
|  | SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); | 
|  | for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { | 
|  | unsigned Idx = InsertIndices[i]; | 
|  | NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), | 
|  | DAG.getIntPtrConstant(Idx, DL)); | 
|  | } | 
|  |  | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && | 
|  | Op.getScalarValueSizeInBits() == 1 && | 
|  | "Can not convert non-constant vector"); | 
|  | uint64_t Immediate = 0; | 
|  | for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { | 
|  | SDValue In = Op.getOperand(idx); | 
|  | if (In.getOpcode() != ISD::UNDEF) | 
|  | Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; | 
|  | } | 
|  | SDLoc dl(Op); | 
|  | MVT VT = | 
|  | MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8)); | 
|  | return DAG.getConstant(Immediate, dl, VT); | 
|  | } | 
|  | // Lower BUILD_VECTOR operation for v8i1 and v16i1 types. | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | assert((VT.getVectorElementType() == MVT::i1) && | 
|  | "Unexpected type in LowerBUILD_VECTORvXi1!"); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode())) { | 
|  | SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1); | 
|  | SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | if (ISD::isBuildVectorAllOnes(Op.getNode())) { | 
|  | SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1); | 
|  | SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { | 
|  | SDValue Imm = ConvertI1VectorToInteger(Op, DAG); | 
|  | if (Imm.getValueSizeInBits() == VT.getSizeInBits()) | 
|  | return DAG.getBitcast(VT, Imm); | 
|  | SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | // Vector has one or more non-const elements | 
|  | uint64_t Immediate = 0; | 
|  | SmallVector<unsigned, 16> NonConstIdx; | 
|  | bool IsSplat = true; | 
|  | bool HasConstElts = false; | 
|  | int SplatIdx = -1; | 
|  | for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { | 
|  | SDValue In = Op.getOperand(idx); | 
|  | if (In.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(In)) | 
|  | NonConstIdx.push_back(idx); | 
|  | else { | 
|  | Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; | 
|  | HasConstElts = true; | 
|  | } | 
|  | if (SplatIdx == -1) | 
|  | SplatIdx = idx; | 
|  | else if (In != Op.getOperand(SplatIdx)) | 
|  | IsSplat = false; | 
|  | } | 
|  |  | 
|  | // for splat use " (select i1 splat_elt, all-ones, all-zeroes)" | 
|  | if (IsSplat) | 
|  | return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx), | 
|  | DAG.getConstant(1, dl, VT), | 
|  | DAG.getConstant(0, dl, VT)); | 
|  |  | 
|  | // insert elements one by one | 
|  | SDValue DstVec; | 
|  | SDValue Imm; | 
|  | if (Immediate) { | 
|  | MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8)); | 
|  | Imm = DAG.getConstant(Immediate, dl, ImmVT); | 
|  | } | 
|  | else if (HasConstElts) | 
|  | Imm = DAG.getConstant(0, dl, VT); | 
|  | else | 
|  | Imm = DAG.getUNDEF(VT); | 
|  | if (Imm.getValueSizeInBits() == VT.getSizeInBits()) | 
|  | DstVec = DAG.getBitcast(VT, Imm); | 
|  | else { | 
|  | SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); | 
|  | DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < NonConstIdx.size(); ++i) { | 
|  | unsigned InsertIdx = NonConstIdx[i]; | 
|  | DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, | 
|  | Op.getOperand(InsertIdx), | 
|  | DAG.getIntPtrConstant(InsertIdx, dl)); | 
|  | } | 
|  | return DstVec; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if \p N implements a horizontal binop and return the | 
|  | /// operands for the horizontal binop into V0 and V1. | 
|  | /// | 
|  | /// This is a helper function of LowerToHorizontalOp(). | 
|  | /// This function checks that the build_vector \p N in input implements a | 
|  | /// horizontal operation. Parameter \p Opcode defines the kind of horizontal | 
|  | /// operation to match. | 
|  | /// For example, if \p Opcode is equal to ISD::ADD, then this function | 
|  | /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode | 
|  | /// is equal to ISD::SUB, then this function checks if this is a horizontal | 
|  | /// arithmetic sub. | 
|  | /// | 
|  | /// This function only analyzes elements of \p N whose indices are | 
|  | /// in range [BaseIdx, LastIdx). | 
|  | static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, | 
|  | SelectionDAG &DAG, | 
|  | unsigned BaseIdx, unsigned LastIdx, | 
|  | SDValue &V0, SDValue &V1) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); | 
|  | assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && | 
|  | "Invalid Vector in input!"); | 
|  |  | 
|  | bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); | 
|  | bool CanFold = true; | 
|  | unsigned ExpectedVExtractIdx = BaseIdx; | 
|  | unsigned NumElts = LastIdx - BaseIdx; | 
|  | V0 = DAG.getUNDEF(VT); | 
|  | V1 = DAG.getUNDEF(VT); | 
|  |  | 
|  | // Check if N implements a horizontal binop. | 
|  | for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { | 
|  | SDValue Op = N->getOperand(i + BaseIdx); | 
|  |  | 
|  | // Skip UNDEFs. | 
|  | if (Op->getOpcode() == ISD::UNDEF) { | 
|  | // Update the expected vector extract index. | 
|  | if (i * 2 == NumElts) | 
|  | ExpectedVExtractIdx = BaseIdx; | 
|  | ExpectedVExtractIdx += 2; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); | 
|  |  | 
|  | if (!CanFold) | 
|  | break; | 
|  |  | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | // Try to match the following pattern: | 
|  | // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) | 
|  | CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op0.getOperand(0) == Op1.getOperand(0) && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1)) && | 
|  | isa<ConstantSDNode>(Op1.getOperand(1))); | 
|  | if (!CanFold) | 
|  | break; | 
|  |  | 
|  | unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); | 
|  | unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue(); | 
|  |  | 
|  | if (i * 2 < NumElts) { | 
|  | if (V0.getOpcode() == ISD::UNDEF) { | 
|  | V0 = Op0.getOperand(0); | 
|  | if (V0.getValueType() != VT) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (V1.getOpcode() == ISD::UNDEF) { | 
|  | V1 = Op0.getOperand(0); | 
|  | if (V1.getValueType() != VT) | 
|  | return false; | 
|  | } | 
|  | if (i * 2 == NumElts) | 
|  | ExpectedVExtractIdx = BaseIdx; | 
|  | } | 
|  |  | 
|  | SDValue Expected = (i * 2 < NumElts) ? V0 : V1; | 
|  | if (I0 == ExpectedVExtractIdx) | 
|  | CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; | 
|  | else if (IsCommutable && I1 == ExpectedVExtractIdx) { | 
|  | // Try to match the following dag sequence: | 
|  | // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) | 
|  | CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; | 
|  | } else | 
|  | CanFold = false; | 
|  |  | 
|  | ExpectedVExtractIdx += 2; | 
|  | } | 
|  |  | 
|  | return CanFold; | 
|  | } | 
|  |  | 
|  | /// \brief Emit a sequence of two 128-bit horizontal add/sub followed by | 
|  | /// a concat_vector. | 
|  | /// | 
|  | /// This is a helper function of LowerToHorizontalOp(). | 
|  | /// This function expects two 256-bit vectors called V0 and V1. | 
|  | /// At first, each vector is split into two separate 128-bit vectors. | 
|  | /// Then, the resulting 128-bit vectors are used to implement two | 
|  | /// horizontal binary operations. | 
|  | /// | 
|  | /// The kind of horizontal binary operation is defined by \p X86Opcode. | 
|  | /// | 
|  | /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to | 
|  | /// the two new horizontal binop. | 
|  | /// When Mode is set, the first horizontal binop dag node would take as input | 
|  | /// the lower 128-bit of V0 and the upper 128-bit of V0. The second | 
|  | /// horizontal binop dag node would take as input the lower 128-bit of V1 | 
|  | /// and the upper 128-bit of V1. | 
|  | ///   Example: | 
|  | ///     HADD V0_LO, V0_HI | 
|  | ///     HADD V1_LO, V1_HI | 
|  | /// | 
|  | /// Otherwise, the first horizontal binop dag node takes as input the lower | 
|  | /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop | 
|  | /// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1. | 
|  | ///   Example: | 
|  | ///     HADD V0_LO, V1_LO | 
|  | ///     HADD V0_HI, V1_HI | 
|  | /// | 
|  | /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower | 
|  | /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to | 
|  | /// the upper 128-bits of the result. | 
|  | static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, | 
|  | SDLoc DL, SelectionDAG &DAG, | 
|  | unsigned X86Opcode, bool Mode, | 
|  | bool isUndefLO, bool isUndefHI) { | 
|  | EVT VT = V0.getValueType(); | 
|  | assert(VT.is256BitVector() && VT == V1.getValueType() && | 
|  | "Invalid nodes in input!"); | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL); | 
|  | SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL); | 
|  | SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL); | 
|  | SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL); | 
|  | EVT NewVT = V0_LO.getValueType(); | 
|  |  | 
|  | SDValue LO = DAG.getUNDEF(NewVT); | 
|  | SDValue HI = DAG.getUNDEF(NewVT); | 
|  |  | 
|  | if (Mode) { | 
|  | // Don't emit a horizontal binop if the result is expected to be UNDEF. | 
|  | if (!isUndefLO && V0->getOpcode() != ISD::UNDEF) | 
|  | LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); | 
|  | if (!isUndefHI && V1->getOpcode() != ISD::UNDEF) | 
|  | HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); | 
|  | } else { | 
|  | // Don't emit a horizontal binop if the result is expected to be UNDEF. | 
|  | if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF || | 
|  | V1_LO->getOpcode() != ISD::UNDEF)) | 
|  | LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); | 
|  |  | 
|  | if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF || | 
|  | V1_HI->getOpcode() != ISD::UNDEF)) | 
|  | HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); | 
|  | } | 
|  |  | 
|  | /// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB | 
|  | /// node. | 
|  | static SDValue LowerToAddSub(const BuildVectorSDNode *BV, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | EVT VT = BV->getValueType(0); | 
|  | if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) && | 
|  | (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(BV); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | SDValue InVec0 = DAG.getUNDEF(VT); | 
|  | SDValue InVec1 = DAG.getUNDEF(VT); | 
|  |  | 
|  | assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f64) && "build_vector with an invalid type found!"); | 
|  |  | 
|  | // Odd-numbered elements in the input build vector are obtained from | 
|  | // adding two integer/float elements. | 
|  | // Even-numbered elements in the input build vector are obtained from | 
|  | // subtracting two integer/float elements. | 
|  | unsigned ExpectedOpcode = ISD::FSUB; | 
|  | unsigned NextExpectedOpcode = ISD::FADD; | 
|  | bool AddFound = false; | 
|  | bool SubFound = false; | 
|  |  | 
|  | for (unsigned i = 0, e = NumElts; i != e; ++i) { | 
|  | SDValue Op = BV->getOperand(i); | 
|  |  | 
|  | // Skip 'undef' values. | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::UNDEF) { | 
|  | std::swap(ExpectedOpcode, NextExpectedOpcode); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Early exit if we found an unexpected opcode. | 
|  | if (Opcode != ExpectedOpcode) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | // Try to match the following pattern: | 
|  | // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) | 
|  | // Early exit if we cannot match that sequence. | 
|  | if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(Op0.getOperand(1)) || | 
|  | !isa<ConstantSDNode>(Op1.getOperand(1)) || | 
|  | Op0.getOperand(1) != Op1.getOperand(1)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); | 
|  | if (I0 != i) | 
|  | return SDValue(); | 
|  |  | 
|  | // We found a valid add/sub node. Update the information accordingly. | 
|  | if (i & 1) | 
|  | AddFound = true; | 
|  | else | 
|  | SubFound = true; | 
|  |  | 
|  | // Update InVec0 and InVec1. | 
|  | if (InVec0.getOpcode() == ISD::UNDEF) { | 
|  | InVec0 = Op0.getOperand(0); | 
|  | if (InVec0.getValueType() != VT) | 
|  | return SDValue(); | 
|  | } | 
|  | if (InVec1.getOpcode() == ISD::UNDEF) { | 
|  | InVec1 = Op1.getOperand(0); | 
|  | if (InVec1.getValueType() != VT) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Make sure that operands in input to each add/sub node always | 
|  | // come from a same pair of vectors. | 
|  | if (InVec0 != Op0.getOperand(0)) { | 
|  | if (ExpectedOpcode == ISD::FSUB) | 
|  | return SDValue(); | 
|  |  | 
|  | // FADD is commutable. Try to commute the operands | 
|  | // and then test again. | 
|  | std::swap(Op0, Op1); | 
|  | if (InVec0 != Op0.getOperand(0)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (InVec1 != Op1.getOperand(0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Update the pair of expected opcodes. | 
|  | std::swap(ExpectedOpcode, NextExpectedOpcode); | 
|  | } | 
|  |  | 
|  | // Don't try to fold this build_vector into an ADDSUB if the inputs are undef. | 
|  | if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF && | 
|  | InVec1.getOpcode() != ISD::UNDEF) | 
|  | return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Lower BUILD_VECTOR to a horizontal add/sub operation if possible. | 
|  | static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = BV->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumUndefsLO = 0; | 
|  | unsigned NumUndefsHI = 0; | 
|  | unsigned Half = NumElts/2; | 
|  |  | 
|  | // Count the number of UNDEF operands in the build_vector in input. | 
|  | for (unsigned i = 0, e = Half; i != e; ++i) | 
|  | if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) | 
|  | NumUndefsLO++; | 
|  |  | 
|  | for (unsigned i = Half, e = NumElts; i != e; ++i) | 
|  | if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) | 
|  | NumUndefsHI++; | 
|  |  | 
|  | // Early exit if this is either a build_vector of all UNDEFs or all the | 
|  | // operands but one are UNDEF. | 
|  | if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(BV); | 
|  | SDValue InVec0, InVec1; | 
|  | if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) { | 
|  | // Try to match an SSE3 float HADD/HSUB. | 
|  | if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); | 
|  |  | 
|  | if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); | 
|  | } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) { | 
|  | // Try to match an SSSE3 integer HADD/HSUB. | 
|  | if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); | 
|  |  | 
|  | if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasAVX()) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { | 
|  | // Try to match an AVX horizontal add/sub of packed single/double | 
|  | // precision floating point values from 256-bit vectors. | 
|  | SDValue InVec2, InVec3; | 
|  | if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && | 
|  | isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && | 
|  | ((InVec0.getOpcode() == ISD::UNDEF || | 
|  | InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && | 
|  | ((InVec1.getOpcode() == ISD::UNDEF || | 
|  | InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) | 
|  | return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); | 
|  |  | 
|  | if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && | 
|  | isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && | 
|  | ((InVec0.getOpcode() == ISD::UNDEF || | 
|  | InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && | 
|  | ((InVec1.getOpcode() == ISD::UNDEF || | 
|  | InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) | 
|  | return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); | 
|  | } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { | 
|  | // Try to match an AVX2 horizontal add/sub of signed integers. | 
|  | SDValue InVec2, InVec3; | 
|  | unsigned X86Opcode; | 
|  | bool CanFold = true; | 
|  |  | 
|  | if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && | 
|  | isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && | 
|  | ((InVec0.getOpcode() == ISD::UNDEF || | 
|  | InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && | 
|  | ((InVec1.getOpcode() == ISD::UNDEF || | 
|  | InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) | 
|  | X86Opcode = X86ISD::HADD; | 
|  | else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && | 
|  | isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && | 
|  | ((InVec0.getOpcode() == ISD::UNDEF || | 
|  | InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && | 
|  | ((InVec1.getOpcode() == ISD::UNDEF || | 
|  | InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) | 
|  | X86Opcode = X86ISD::HSUB; | 
|  | else | 
|  | CanFold = false; | 
|  |  | 
|  | if (CanFold) { | 
|  | // Fold this build_vector into a single horizontal add/sub. | 
|  | // Do this only if the target has AVX2. | 
|  | if (Subtarget->hasAVX2()) | 
|  | return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); | 
|  |  | 
|  | // Do not try to expand this build_vector into a pair of horizontal | 
|  | // add/sub if we can emit a pair of scalar add/sub. | 
|  | if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) | 
|  | return SDValue(); | 
|  |  | 
|  | // Convert this build_vector into a pair of horizontal binop followed by | 
|  | // a concat vector. | 
|  | bool isUndefLO = NumUndefsLO == Half; | 
|  | bool isUndefHI = NumUndefsHI == Half; | 
|  | return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, | 
|  | isUndefLO, isUndefHI); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || | 
|  | VT == MVT::v16i16) && Subtarget->hasAVX()) { | 
|  | unsigned X86Opcode; | 
|  | if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | X86Opcode = X86ISD::HADD; | 
|  | else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | X86Opcode = X86ISD::HSUB; | 
|  | else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | X86Opcode = X86ISD::FHADD; | 
|  | else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) | 
|  | X86Opcode = X86ISD::FHSUB; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't try to expand this build_vector into a pair of horizontal add/sub | 
|  | // if we can simply emit a pair of scalar add/sub. | 
|  | if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) | 
|  | return SDValue(); | 
|  |  | 
|  | // Convert this build_vector into two horizontal add/sub followed by | 
|  | // a concat vector. | 
|  | bool isUndefLO = NumUndefsLO == Half; | 
|  | bool isUndefHI = NumUndefsHI == Half; | 
|  | return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, | 
|  | isUndefLO, isUndefHI); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT ExtVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  |  | 
|  | // Generate vectors for predicate vectors. | 
|  | if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512()) | 
|  | return LowerBUILD_VECTORvXi1(Op, DAG); | 
|  |  | 
|  | // Vectors containing all zeros can be matched by pxor and xorps later | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode())) { | 
|  | // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd | 
|  | // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. | 
|  | if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) | 
|  | return Op; | 
|  |  | 
|  | return getZeroVector(VT, Subtarget, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Vectors containing all ones can be matched by pcmpeqd on 128-bit width | 
|  | // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use | 
|  | // vpcmpeqd on 256-bit vectors. | 
|  | if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { | 
|  | if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) | 
|  | return Op; | 
|  |  | 
|  | if (!VT.is512BitVector()) | 
|  | return getOnesVector(VT, Subtarget, DAG, dl); | 
|  | } | 
|  |  | 
|  | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode()); | 
|  | if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG)) | 
|  | return AddSub; | 
|  | if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG)) | 
|  | return HorizontalOp; | 
|  | if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  |  | 
|  | unsigned NumZero  = 0; | 
|  | unsigned NumNonZero = 0; | 
|  | unsigned NonZeros = 0; | 
|  | bool IsAllConstants = true; | 
|  | SmallSet<SDValue, 8> Values; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Op.getOperand(i); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | Values.insert(Elt); | 
|  | if (Elt.getOpcode() != ISD::Constant && | 
|  | Elt.getOpcode() != ISD::ConstantFP) | 
|  | IsAllConstants = false; | 
|  | if (X86::isZeroNode(Elt)) | 
|  | NumZero++; | 
|  | else { | 
|  | NonZeros |= (1 << i); | 
|  | NumNonZero++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All undef vector. Return an UNDEF.  All zero vectors were handled above. | 
|  | if (NumNonZero == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Special case for single non-zero, non-undef, element. | 
|  | if (NumNonZero == 1) { | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  |  | 
|  | // If this is an insertion of an i64 value on x86-32, and if the top bits of | 
|  | // the value are obviously zero, truncate the value to i32 and do the | 
|  | // insertion that way.  Only do this if the value is non-constant or if the | 
|  | // value is a constant being inserted into element 0.  It is cheaper to do | 
|  | // a constant pool load than it is to do a movd + shuffle. | 
|  | if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && | 
|  | (!IsAllConstants || Idx == 0)) { | 
|  | if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { | 
|  | // Handle SSE only. | 
|  | assert(VT == MVT::v2i64 && "Expected an SSE value type!"); | 
|  | EVT VecVT = MVT::v4i32; | 
|  |  | 
|  | // Truncate the value (which may itself be a constant) to i32, and | 
|  | // convert it to a vector with movd (S2V+shuffle to zero extend). | 
|  | Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); | 
|  | return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef( | 
|  | Item, Idx * 2, true, Subtarget, DAG)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a constant or non-constant insertion into the low element of | 
|  | // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into | 
|  | // the rest of the elements.  This will be matched as movd/movq/movss/movsd | 
|  | // depending on what the source datatype is. | 
|  | if (Idx == 0) { | 
|  | if (NumZero == 0) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  |  | 
|  | if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || | 
|  | (ExtVT == MVT::i64 && Subtarget->is64Bit())) { | 
|  | if (VT.is512BitVector()) { | 
|  | SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, | 
|  | Item, DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Expected an SSE value type!"); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. | 
|  | return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | // We can't directly insert an i8 or i16 into a vector, so zero extend | 
|  | // it to i32 first. | 
|  | if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { | 
|  | Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); | 
|  | if (VT.is256BitVector()) { | 
|  | if (Subtarget->hasAVX()) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  | } else { | 
|  | // Without AVX, we need to extend to a 128-bit vector and then | 
|  | // insert into the 256-bit vector. | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); | 
|  | SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); | 
|  | Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); | 
|  | } | 
|  | } else { | 
|  | assert(VT.is128BitVector() && "Expected an SSE value type!"); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  | } | 
|  | return DAG.getBitcast(VT, Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is it a vector logical left shift? | 
|  | if (NumElems == 2 && Idx == 1 && | 
|  | X86::isZeroNode(Op.getOperand(0)) && | 
|  | !X86::isZeroNode(Op.getOperand(1))) { | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | return getVShift(true, VT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | VT, Op.getOperand(1)), | 
|  | NumBits/2, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (IsAllConstants) // Otherwise, it's better to do a constpool load. | 
|  | return SDValue(); | 
|  |  | 
|  | // Otherwise, if this is a vector with i32 or f32 elements, and the element | 
|  | // is a non-constant being inserted into an element other than the low one, | 
|  | // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka | 
|  | // movd/movss) to move this into the low element, then shuffle it into | 
|  | // place. | 
|  | if (EVTBits == 32) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Splat is obviously ok. Let legalizer expand it to a shuffle. | 
|  | if (Values.size() == 1) { | 
|  | if (EVTBits == 32) { | 
|  | // Instead of a shuffle like this: | 
|  | // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> | 
|  | // Check if it's possible to issue this instead. | 
|  | // shuffle (vload ptr)), undef, <1, 1, 1, 1> | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  | if (Op.getNode()->isOnlyUserOf(Item.getNode())) | 
|  | return LowerAsSplatVectorLoad(Item, VT, dl, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // A vector full of immediates; various special cases are already | 
|  | // handled, so this is best done with a single constant-pool load. | 
|  | if (IsAllConstants) | 
|  | return SDValue(); | 
|  |  | 
|  | // For AVX-length vectors, see if we can use a vector load to get all of the | 
|  | // elements, otherwise build the individual 128-bit pieces and use | 
|  | // shuffles to put them in place. | 
|  | if (VT.is256BitVector() || VT.is512BitVector()) { | 
|  | SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems); | 
|  |  | 
|  | // Check for a build vector of consecutive loads. | 
|  | if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) | 
|  | return LD; | 
|  |  | 
|  | EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); | 
|  |  | 
|  | // Build both the lower and upper subvector. | 
|  | SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, | 
|  | makeArrayRef(&V[0], NumElems/2)); | 
|  | SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, | 
|  | makeArrayRef(&V[NumElems / 2], NumElems/2)); | 
|  |  | 
|  | // Recreate the wider vector with the lower and upper part. | 
|  | if (VT.is256BitVector()) | 
|  | return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); | 
|  | return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Let legalizer expand 2-wide build_vectors. | 
|  | if (EVTBits == 64) { | 
|  | if (NumNonZero == 1) { | 
|  | // One half is zero or undef. | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, | 
|  | Op.getOperand(Idx)); | 
|  | return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If element VT is < 32 bits, convert it to inserts into a zero vector. | 
|  | if (EVTBits == 8 && NumElems == 16) | 
|  | if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | Subtarget, *this)) | 
|  | return V; | 
|  |  | 
|  | if (EVTBits == 16 && NumElems == 8) | 
|  | if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | Subtarget, *this)) | 
|  | return V; | 
|  |  | 
|  | // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS | 
|  | if (EVTBits == 32 && NumElems == 4) | 
|  | if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this)) | 
|  | return V; | 
|  |  | 
|  | // If element VT is == 32 bits, turn it into a number of shuffles. | 
|  | SmallVector<SDValue, 8> V(NumElems); | 
|  | if (NumElems == 4 && NumZero > 0) { | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | bool isZero = !(NonZeros & (1 << i)); | 
|  | if (isZero) | 
|  | V[i] = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | else | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { | 
|  | default: break; | 
|  | case 0: | 
|  | V[i] = V[i*2];  // Must be a zero vector. | 
|  | break; | 
|  | case 1: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); | 
|  | break; | 
|  | case 2: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | case 3: | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Reverse1 = (NonZeros & 0x3) == 2; | 
|  | bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; | 
|  | int MaskVec[] = { | 
|  | Reverse1 ? 1 : 0, | 
|  | Reverse1 ? 0 : 1, | 
|  | static_cast<int>(Reverse2 ? NumElems+1 : NumElems), | 
|  | static_cast<int>(Reverse2 ? NumElems   : NumElems+1) | 
|  | }; | 
|  | return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | if (Values.size() > 1 && VT.is128BitVector()) { | 
|  | // Check for a build vector of consecutive loads. | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = Op.getOperand(i); | 
|  |  | 
|  | // Check for elements which are consecutive loads. | 
|  | if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) | 
|  | return LD; | 
|  |  | 
|  | // Check for a build vector from mostly shuffle plus few inserting. | 
|  | if (SDValue Sh = buildFromShuffleMostly(Op, DAG)) | 
|  | return Sh; | 
|  |  | 
|  | // For SSE 4.1, use insertps to put the high elements into the low element. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Result; | 
|  | if (Op.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); | 
|  | else | 
|  | Result = DAG.getUNDEF(VT); | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, | 
|  | Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Otherwise, expand into a number of unpckl*, start by extending each of | 
|  | // our (non-undef) elements to the full vector width with the element in the | 
|  | // bottom slot of the vector (which generates no code for SSE). | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | else | 
|  | V[i] = DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | // Next, we iteratively mix elements, e.g. for v4f32: | 
|  | //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> | 
|  | //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> | 
|  | //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0> | 
|  | unsigned EltStride = NumElems >> 1; | 
|  | while (EltStride != 0) { | 
|  | for (unsigned i = 0; i < EltStride; ++i) { | 
|  | // If V[i+EltStride] is undef and this is the first round of mixing, | 
|  | // then it is safe to just drop this shuffle: V[i] is already in the | 
|  | // right place, the one element (since it's the first round) being | 
|  | // inserted as undef can be dropped.  This isn't safe for successive | 
|  | // rounds because they will permute elements within both vectors. | 
|  | if (V[i+EltStride].getOpcode() == ISD::UNDEF && | 
|  | EltStride == NumElems/2) | 
|  | continue; | 
|  |  | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); | 
|  | } | 
|  | EltStride >>= 1; | 
|  | } | 
|  | return V[0]; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // 256-bit AVX can use the vinsertf128 instruction | 
|  | // to create 256-bit vectors from two other 128-bit ones. | 
|  | static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT ResVT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert((ResVT.is256BitVector() || | 
|  | ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); | 
|  |  | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | unsigned NumElems = ResVT.getVectorNumElements(); | 
|  | if (ResVT.is256BitVector()) | 
|  | return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); | 
|  |  | 
|  | if (Op.getNumOperands() == 4) { | 
|  | MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(), | 
|  | ResVT.getVectorNumElements()/2); | 
|  | SDValue V3 = Op.getOperand(2); | 
|  | SDValue V4 = Op.getOperand(3); | 
|  | return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl), | 
|  | Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl); | 
|  | } | 
|  | return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG & DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT ResVT = Op.getSimpleValueType(); | 
|  | unsigned NumOfOperands = Op.getNumOperands(); | 
|  |  | 
|  | assert(isPowerOf2_32(NumOfOperands) && | 
|  | "Unexpected number of operands in CONCAT_VECTORS"); | 
|  |  | 
|  | if (NumOfOperands > 2) { | 
|  | MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(), | 
|  | ResVT.getVectorNumElements()/2); | 
|  | SmallVector<SDValue, 2> Ops; | 
|  | for (unsigned i = 0; i < NumOfOperands/2; i++) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  | SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); | 
|  | Ops.clear(); | 
|  | for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  | SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); | 
|  | } | 
|  |  | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode()); | 
|  | bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode()); | 
|  |  | 
|  | if (IsZeroV1 && IsZeroV2) | 
|  | return getZeroVector(ResVT, Subtarget, DAG, dl); | 
|  |  | 
|  | SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); | 
|  | SDValue Undef = DAG.getUNDEF(ResVT); | 
|  | unsigned NumElems = ResVT.getVectorNumElements(); | 
|  | SDValue ShiftBits = DAG.getConstant(NumElems/2, dl, MVT::i8); | 
|  |  | 
|  | V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, ZeroIdx); | 
|  | V2 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V2, ShiftBits); | 
|  | if (IsZeroV1) | 
|  | return V2; | 
|  |  | 
|  | V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx); | 
|  | // Zero the upper bits of V1 | 
|  | V1 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V1, ShiftBits); | 
|  | V1 = DAG.getNode(X86ISD::VSRLI, dl, ResVT, V1, ShiftBits); | 
|  | if (IsZeroV2) | 
|  | return V1; | 
|  | return DAG.getNode(ISD::OR, dl, ResVT, V1, V2); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCONCAT_VECTORS(SDValue Op, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | if (VT.getVectorElementType() == MVT::i1) | 
|  | return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG); | 
|  |  | 
|  | assert((VT.is256BitVector() && Op.getNumOperands() == 2) || | 
|  | (VT.is512BitVector() && (Op.getNumOperands() == 2 || | 
|  | Op.getNumOperands() == 4))); | 
|  |  | 
|  | // AVX can use the vinsertf128 instruction to create 256-bit vectors | 
|  | // from two other 128-bit ones. | 
|  |  | 
|  | // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors | 
|  | return LowerAVXCONCAT_VECTORS(Op, DAG); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Vector shuffle lowering | 
|  | // | 
|  | // This is an experimental code path for lowering vector shuffles on x86. It is | 
|  | // designed to handle arbitrary vector shuffles and blends, gracefully | 
|  | // degrading performance as necessary. It works hard to recognize idiomatic | 
|  | // shuffles and lower them to optimal instruction patterns without leaving | 
|  | // a framework that allows reasonably efficient handling of all vector shuffle | 
|  | // patterns. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// \brief Tiny helper function to identify a no-op mask. | 
|  | /// | 
|  | /// This is a somewhat boring predicate function. It checks whether the mask | 
|  | /// array input, which is assumed to be a single-input shuffle mask of the kind | 
|  | /// used by the X86 shuffle instructions (not a fully general | 
|  | /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an | 
|  | /// in-place shuffle are 'no-op's. | 
|  | static bool isNoopShuffleMask(ArrayRef<int> Mask) { | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (Mask[i] != -1 && Mask[i] != i) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Helper function to classify a mask as a single-input mask. | 
|  | /// | 
|  | /// This isn't a generic single-input test because in the vector shuffle | 
|  | /// lowering we canonicalize single inputs to be the first input operand. This | 
|  | /// means we can more quickly test for a single input by only checking whether | 
|  | /// an input from the second operand exists. We also assume that the size of | 
|  | /// mask corresponds to the size of the input vectors which isn't true in the | 
|  | /// fully general case. | 
|  | static bool isSingleInputShuffleMask(ArrayRef<int> Mask) { | 
|  | for (int M : Mask) | 
|  | if (M >= (int)Mask.size()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Test whether there are elements crossing 128-bit lanes in this | 
|  | /// shuffle mask. | 
|  | /// | 
|  | /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations | 
|  | /// and we routinely test for these. | 
|  | static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) { | 
|  | int LaneSize = 128 / VT.getScalarSizeInBits(); | 
|  | int Size = Mask.size(); | 
|  | for (int i = 0; i < Size; ++i) | 
|  | if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Test whether a shuffle mask is equivalent within each 128-bit lane. | 
|  | /// | 
|  | /// This checks a shuffle mask to see if it is performing the same | 
|  | /// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies | 
|  | /// that it is also not lane-crossing. It may however involve a blend from the | 
|  | /// same lane of a second vector. | 
|  | /// | 
|  | /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is | 
|  | /// non-trivial to compute in the face of undef lanes. The representation is | 
|  | /// *not* suitable for use with existing 128-bit shuffles as it will contain | 
|  | /// entries from both V1 and V2 inputs to the wider mask. | 
|  | static bool | 
|  | is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, | 
|  | SmallVectorImpl<int> &RepeatedMask) { | 
|  | int LaneSize = 128 / VT.getScalarSizeInBits(); | 
|  | RepeatedMask.resize(LaneSize, -1); | 
|  | int Size = Mask.size(); | 
|  | for (int i = 0; i < Size; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  | if ((Mask[i] % Size) / LaneSize != i / LaneSize) | 
|  | // This entry crosses lanes, so there is no way to model this shuffle. | 
|  | return false; | 
|  |  | 
|  | // Ok, handle the in-lane shuffles by detecting if and when they repeat. | 
|  | if (RepeatedMask[i % LaneSize] == -1) | 
|  | // This is the first non-undef entry in this slot of a 128-bit lane. | 
|  | RepeatedMask[i % LaneSize] = | 
|  | Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size; | 
|  | else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i]) | 
|  | // Found a mismatch with the repeated mask. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Checks whether a shuffle mask is equivalent to an explicit list of | 
|  | /// arguments. | 
|  | /// | 
|  | /// This is a fast way to test a shuffle mask against a fixed pattern: | 
|  | /// | 
|  | ///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... } | 
|  | /// | 
|  | /// It returns true if the mask is exactly as wide as the argument list, and | 
|  | /// each element of the mask is either -1 (signifying undef) or the value given | 
|  | /// in the argument. | 
|  | static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask, | 
|  | ArrayRef<int> ExpectedMask) { | 
|  | if (Mask.size() != ExpectedMask.size()) | 
|  | return false; | 
|  |  | 
|  | int Size = Mask.size(); | 
|  |  | 
|  | // If the values are build vectors, we can look through them to find | 
|  | // equivalent inputs that make the shuffles equivalent. | 
|  | auto *BV1 = dyn_cast<BuildVectorSDNode>(V1); | 
|  | auto *BV2 = dyn_cast<BuildVectorSDNode>(V2); | 
|  |  | 
|  | for (int i = 0; i < Size; ++i) | 
|  | if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) { | 
|  | auto *MaskBV = Mask[i] < Size ? BV1 : BV2; | 
|  | auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2; | 
|  | if (!MaskBV || !ExpectedBV || | 
|  | MaskBV->getOperand(Mask[i] % Size) != | 
|  | ExpectedBV->getOperand(ExpectedMask[i] % Size)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Get a 4-lane 8-bit shuffle immediate for a mask. | 
|  | /// | 
|  | /// This helper function produces an 8-bit shuffle immediate corresponding to | 
|  | /// the ubiquitous shuffle encoding scheme used in x86 instructions for | 
|  | /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for | 
|  | /// example. | 
|  | /// | 
|  | /// NB: We rely heavily on "undef" masks preserving the input lane. | 
|  | static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); | 
|  | assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); | 
|  | assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); | 
|  | assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); | 
|  | assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); | 
|  |  | 
|  | unsigned Imm = 0; | 
|  | Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0; | 
|  | Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2; | 
|  | Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4; | 
|  | Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6; | 
|  | return DAG.getConstant(Imm, DL, MVT::i8); | 
|  | } | 
|  |  | 
|  | /// \brief Compute whether each element of a shuffle is zeroable. | 
|  | /// | 
|  | /// A "zeroable" vector shuffle element is one which can be lowered to zero. | 
|  | /// Either it is an undef element in the shuffle mask, the element of the input | 
|  | /// referenced is undef, or the element of the input referenced is known to be | 
|  | /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle | 
|  | /// as many lanes with this technique as possible to simplify the remaining | 
|  | /// shuffle. | 
|  | static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask, | 
|  | SDValue V1, SDValue V2) { | 
|  | SmallBitVector Zeroable(Mask.size(), false); | 
|  |  | 
|  | while (V1.getOpcode() == ISD::BITCAST) | 
|  | V1 = V1->getOperand(0); | 
|  | while (V2.getOpcode() == ISD::BITCAST) | 
|  | V2 = V2->getOperand(0); | 
|  |  | 
|  | bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); | 
|  | bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); | 
|  |  | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) { | 
|  | int M = Mask[i]; | 
|  | // Handle the easy cases. | 
|  | if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { | 
|  | Zeroable[i] = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is an index into a build_vector node (which has the same number | 
|  | // of elements), dig out the input value and use it. | 
|  | SDValue V = M < Size ? V1 : V2; | 
|  | if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands()) | 
|  | continue; | 
|  |  | 
|  | SDValue Input = V.getOperand(M % Size); | 
|  | // The UNDEF opcode check really should be dead code here, but not quite | 
|  | // worth asserting on (it isn't invalid, just unexpected). | 
|  | if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input)) | 
|  | Zeroable[i] = true; | 
|  | } | 
|  |  | 
|  | return Zeroable; | 
|  | } | 
|  |  | 
|  | // X86 has dedicated unpack instructions that can handle specific blend | 
|  | // operations: UNPCKH and UNPCKL. | 
|  | static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask, | 
|  | SDValue V1, SDValue V2, | 
|  | SelectionDAG &DAG) { | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | bool Unpckl = true; | 
|  | bool Unpckh = true; | 
|  | bool UnpcklSwapped = true; | 
|  | bool UnpckhSwapped = true; | 
|  | int NumEltsInLane = 128 / VT.getScalarSizeInBits(); | 
|  |  | 
|  | for (int i = 0; i < NumElts; ++i) { | 
|  | unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane; | 
|  |  | 
|  | int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2); | 
|  | int HiPos = LoPos + NumEltsInLane / 2; | 
|  | int LoPosSwapped = (LoPos + NumElts) % (NumElts * 2); | 
|  | int HiPosSwapped = (HiPos + NumElts) % (NumElts * 2); | 
|  |  | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | if (Mask[i] != LoPos) | 
|  | Unpckl = false; | 
|  | if (Mask[i] != HiPos) | 
|  | Unpckh = false; | 
|  | if (Mask[i] != LoPosSwapped) | 
|  | UnpcklSwapped = false; | 
|  | if (Mask[i] != HiPosSwapped) | 
|  | UnpckhSwapped = false; | 
|  | if (!Unpckl && !Unpckh && !UnpcklSwapped && !UnpckhSwapped) | 
|  | return SDValue(); | 
|  | } | 
|  | if (Unpckl) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); | 
|  | if (Unpckh) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); | 
|  | if (UnpcklSwapped) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1); | 
|  | if (UnpckhSwapped) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1); | 
|  |  | 
|  | llvm_unreachable("Unexpected result of UNPCK mask analysis"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Try to emit a bitmask instruction for a shuffle. | 
|  | /// | 
|  | /// This handles cases where we can model a blend exactly as a bitmask due to | 
|  | /// one of the inputs being zeroable. | 
|  | static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | MVT EltVT = VT.getScalarType(); | 
|  | int NumEltBits = EltVT.getSizeInBits(); | 
|  | MVT IntEltVT = MVT::getIntegerVT(NumEltBits); | 
|  | SDValue Zero = DAG.getConstant(0, DL, IntEltVT); | 
|  | SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, | 
|  | IntEltVT); | 
|  | if (EltVT.isFloatingPoint()) { | 
|  | Zero = DAG.getBitcast(EltVT, Zero); | 
|  | AllOnes = DAG.getBitcast(EltVT, AllOnes); | 
|  | } | 
|  | SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero); | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  | SDValue V; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) { | 
|  | if (Zeroable[i]) | 
|  | continue; | 
|  | if (Mask[i] % Size != i) | 
|  | return SDValue(); // Not a blend. | 
|  | if (!V) | 
|  | V = Mask[i] < Size ? V1 : V2; | 
|  | else if (V != (Mask[i] < Size ? V1 : V2)) | 
|  | return SDValue(); // Can only let one input through the mask. | 
|  |  | 
|  | VMaskOps[i] = AllOnes; | 
|  | } | 
|  | if (!V) | 
|  | return SDValue(); // No non-zeroable elements! | 
|  |  | 
|  | SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps); | 
|  | V = DAG.getNode(VT.isFloatingPoint() | 
|  | ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND, | 
|  | DL, VT, V, VMask); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// \brief Try to emit a blend instruction for a shuffle using bit math. | 
|  | /// | 
|  | /// This is used as a fallback approach when first class blend instructions are | 
|  | /// unavailable. Currently it is only suitable for integer vectors, but could | 
|  | /// be generalized for floating point vectors if desirable. | 
|  | static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | assert(VT.isInteger() && "Only supports integer vector types!"); | 
|  | MVT EltVT = VT.getScalarType(); | 
|  | int NumEltBits = EltVT.getSizeInBits(); | 
|  | SDValue Zero = DAG.getConstant(0, DL, EltVT); | 
|  | SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, | 
|  | EltVT); | 
|  | SmallVector<SDValue, 16> MaskOps; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) { | 
|  | if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size) | 
|  | return SDValue(); // Shuffled input! | 
|  | MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero); | 
|  | } | 
|  |  | 
|  | SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps); | 
|  | V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask); | 
|  | // We have to cast V2 around. | 
|  | MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); | 
|  | V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT, | 
|  | DAG.getBitcast(MaskVT, V1Mask), | 
|  | DAG.getBitcast(MaskVT, V2))); | 
|  | return DAG.getNode(ISD::OR, DL, VT, V1, V2); | 
|  | } | 
|  |  | 
|  | /// \brief Try to emit a blend instruction for a shuffle. | 
|  | /// | 
|  | /// This doesn't do any checks for the availability of instructions for blending | 
|  | /// these values. It relies on the availability of the X86ISD::BLENDI pattern to | 
|  | /// be matched in the backend with the type given. What it does check for is | 
|  | /// that the shuffle mask is in fact a blend. | 
|  | static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | unsigned BlendMask = 0; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) { | 
|  | if (Mask[i] >= Size) { | 
|  | if (Mask[i] != i + Size) | 
|  | return SDValue(); // Shuffled V2 input! | 
|  | BlendMask |= 1u << i; | 
|  | continue; | 
|  | } | 
|  | if (Mask[i] >= 0 && Mask[i] != i) | 
|  | return SDValue(); // Shuffled V1 input! | 
|  | } | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::v2f64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v4f64: | 
|  | case MVT::v8f32: | 
|  | return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, | 
|  | DAG.getConstant(BlendMask, DL, MVT::i8)); | 
|  |  | 
|  | case MVT::v4i64: | 
|  | case MVT::v8i32: | 
|  | assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); | 
|  | // FALLTHROUGH | 
|  | case MVT::v2i64: | 
|  | case MVT::v4i32: | 
|  | // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into | 
|  | // that instruction. | 
|  | if (Subtarget->hasAVX2()) { | 
|  | // Scale the blend by the number of 32-bit dwords per element. | 
|  | int Scale =  VT.getScalarSizeInBits() / 32; | 
|  | BlendMask = 0; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (Mask[i] >= Size) | 
|  | for (int j = 0; j < Scale; ++j) | 
|  | BlendMask |= 1u << (i * Scale + j); | 
|  |  | 
|  | MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; | 
|  | V1 = DAG.getBitcast(BlendVT, V1); | 
|  | V2 = DAG.getBitcast(BlendVT, V2); | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, | 
|  | DAG.getConstant(BlendMask, DL, MVT::i8))); | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MVT::v8i16: { | 
|  | // For integer shuffles we need to expand the mask and cast the inputs to | 
|  | // v8i16s prior to blending. | 
|  | int Scale = 8 / VT.getVectorNumElements(); | 
|  | BlendMask = 0; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (Mask[i] >= Size) | 
|  | for (int j = 0; j < Scale; ++j) | 
|  | BlendMask |= 1u << (i * Scale + j); | 
|  |  | 
|  | V1 = DAG.getBitcast(MVT::v8i16, V1); | 
|  | V2 = DAG.getBitcast(MVT::v8i16, V2); | 
|  | return DAG.getBitcast(VT, | 
|  | DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, | 
|  | DAG.getConstant(BlendMask, DL, MVT::i8))); | 
|  | } | 
|  |  | 
|  | case MVT::v16i16: { | 
|  | assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); | 
|  | SmallVector<int, 8> RepeatedMask; | 
|  | if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { | 
|  | // We can lower these with PBLENDW which is mirrored across 128-bit lanes. | 
|  | assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); | 
|  | BlendMask = 0; | 
|  | for (int i = 0; i < 8; ++i) | 
|  | if (RepeatedMask[i] >= 16) | 
|  | BlendMask |= 1u << i; | 
|  | return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, | 
|  | DAG.getConstant(BlendMask, DL, MVT::i8)); | 
|  | } | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MVT::v16i8: | 
|  | case MVT::v32i8: { | 
|  | assert((VT.getSizeInBits() == 128 || Subtarget->hasAVX2()) && | 
|  | "256-bit byte-blends require AVX2 support!"); | 
|  |  | 
|  | // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB. | 
|  | if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG)) | 
|  | return Masked; | 
|  |  | 
|  | // Scale the blend by the number of bytes per element. | 
|  | int Scale = VT.getScalarSizeInBits() / 8; | 
|  |  | 
|  | // This form of blend is always done on bytes. Compute the byte vector | 
|  | // type. | 
|  | MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); | 
|  |  | 
|  | // Compute the VSELECT mask. Note that VSELECT is really confusing in the | 
|  | // mix of LLVM's code generator and the x86 backend. We tell the code | 
|  | // generator that boolean values in the elements of an x86 vector register | 
|  | // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' | 
|  | // mapping a select to operand #1, and 'false' mapping to operand #2. The | 
|  | // reality in x86 is that vector masks (pre-AVX-512) use only the high bit | 
|  | // of the element (the remaining are ignored) and 0 in that high bit would | 
|  | // mean operand #1 while 1 in the high bit would mean operand #2. So while | 
|  | // the LLVM model for boolean values in vector elements gets the relevant | 
|  | // bit set, it is set backwards and over constrained relative to x86's | 
|  | // actual model. | 
|  | SmallVector<SDValue, 32> VSELECTMask; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | for (int j = 0; j < Scale; ++j) | 
|  | VSELECTMask.push_back( | 
|  | Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) | 
|  | : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL, | 
|  | MVT::i8)); | 
|  |  | 
|  | V1 = DAG.getBitcast(BlendVT, V1); | 
|  | V2 = DAG.getBitcast(BlendVT, V2); | 
|  | return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, | 
|  | BlendVT, VSELECTMask), | 
|  | V1, V2)); | 
|  | } | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Not a supported integer vector type!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower as a blend of elements from two inputs followed by | 
|  | /// a single-input permutation. | 
|  | /// | 
|  | /// This matches the pattern where we can blend elements from two inputs and | 
|  | /// then reduce the shuffle to a single-input permutation. | 
|  | static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | // We build up the blend mask while checking whether a blend is a viable way | 
|  | // to reduce the shuffle. | 
|  | SmallVector<int, 32> BlendMask(Mask.size(), -1); | 
|  | SmallVector<int, 32> PermuteMask(Mask.size(), -1); | 
|  |  | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  |  | 
|  | assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds."); | 
|  |  | 
|  | if (BlendMask[Mask[i] % Size] == -1) | 
|  | BlendMask[Mask[i] % Size] = Mask[i]; | 
|  | else if (BlendMask[Mask[i] % Size] != Mask[i]) | 
|  | return SDValue(); // Can't blend in the needed input! | 
|  |  | 
|  | PermuteMask[i] = Mask[i] % Size; | 
|  | } | 
|  |  | 
|  | SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); | 
|  | return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask); | 
|  | } | 
|  |  | 
|  | /// \brief Generic routine to decompose a shuffle and blend into indepndent | 
|  | /// blends and permutes. | 
|  | /// | 
|  | /// This matches the extremely common pattern for handling combined | 
|  | /// shuffle+blend operations on newer X86 ISAs where we have very fast blend | 
|  | /// operations. It will try to pick the best arrangement of shuffles and | 
|  | /// blends. | 
|  | static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT, | 
|  | SDValue V1, | 
|  | SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | // Shuffle the input elements into the desired positions in V1 and V2 and | 
|  | // blend them together. | 
|  | SmallVector<int, 32> V1Mask(Mask.size(), -1); | 
|  | SmallVector<int, 32> V2Mask(Mask.size(), -1); | 
|  | SmallVector<int, 32> BlendMask(Mask.size(), -1); | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] < Size) { | 
|  | V1Mask[i] = Mask[i]; | 
|  | BlendMask[i] = i; | 
|  | } else if (Mask[i] >= Size) { | 
|  | V2Mask[i] = Mask[i] - Size; | 
|  | BlendMask[i] = i + Size; | 
|  | } | 
|  |  | 
|  | // Try to lower with the simpler initial blend strategy unless one of the | 
|  | // input shuffles would be a no-op. We prefer to shuffle inputs as the | 
|  | // shuffle may be able to fold with a load or other benefit. However, when | 
|  | // we'll have to do 2x as many shuffles in order to achieve this, blending | 
|  | // first is a better strategy. | 
|  | if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) | 
|  | if (SDValue BlendPerm = | 
|  | lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG)) | 
|  | return BlendPerm; | 
|  |  | 
|  | V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); | 
|  | V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); | 
|  | return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a vector shuffle as a byte rotation. | 
|  | /// | 
|  | /// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary | 
|  | /// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use | 
|  | /// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will | 
|  | /// try to generically lower a vector shuffle through such an pattern. It | 
|  | /// does not check for the profitability of lowering either as PALIGNR or | 
|  | /// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. | 
|  | /// This matches shuffle vectors that look like: | 
|  | /// | 
|  | ///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2] | 
|  | /// | 
|  | /// Essentially it concatenates V1 and V2, shifts right by some number of | 
|  | /// elements, and takes the low elements as the result. Note that while this is | 
|  | /// specified as a *right shift* because x86 is little-endian, it is a *left | 
|  | /// rotate* of the vector lanes. | 
|  | static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); | 
|  |  | 
|  | int NumElts = Mask.size(); | 
|  | int NumLanes = VT.getSizeInBits() / 128; | 
|  | int NumLaneElts = NumElts / NumLanes; | 
|  |  | 
|  | // We need to detect various ways of spelling a rotation: | 
|  | //   [11, 12, 13, 14, 15,  0,  1,  2] | 
|  | //   [-1, 12, 13, 14, -1, -1,  1, -1] | 
|  | //   [-1, -1, -1, -1, -1, -1,  1,  2] | 
|  | //   [ 3,  4,  5,  6,  7,  8,  9, 10] | 
|  | //   [-1,  4,  5,  6, -1, -1,  9, -1] | 
|  | //   [-1,  4,  5,  6, -1, -1, -1, -1] | 
|  | int Rotation = 0; | 
|  | SDValue Lo, Hi; | 
|  | for (int l = 0; l < NumElts; l += NumLaneElts) { | 
|  | for (int i = 0; i < NumLaneElts; ++i) { | 
|  | if (Mask[l + i] == -1) | 
|  | continue; | 
|  | assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!"); | 
|  |  | 
|  | // Get the mod-Size index and lane correct it. | 
|  | int LaneIdx = (Mask[l + i] % NumElts) - l; | 
|  | // Make sure it was in this lane. | 
|  | if (LaneIdx < 0 || LaneIdx >= NumLaneElts) | 
|  | return SDValue(); | 
|  |  | 
|  | // Determine where a rotated vector would have started. | 
|  | int StartIdx = i - LaneIdx; | 
|  | if (StartIdx == 0) | 
|  | // The identity rotation isn't interesting, stop. | 
|  | return SDValue(); | 
|  |  | 
|  | // If we found the tail of a vector the rotation must be the missing | 
|  | // front. If we found the head of a vector, it must be how much of the | 
|  | // head. | 
|  | int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx; | 
|  |  | 
|  | if (Rotation == 0) | 
|  | Rotation = CandidateRotation; | 
|  | else if (Rotation != CandidateRotation) | 
|  | // The rotations don't match, so we can't match this mask. | 
|  | return SDValue(); | 
|  |  | 
|  | // Compute which value this mask is pointing at. | 
|  | SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2; | 
|  |  | 
|  | // Compute which of the two target values this index should be assigned | 
|  | // to. This reflects whether the high elements are remaining or the low | 
|  | // elements are remaining. | 
|  | SDValue &TargetV = StartIdx < 0 ? Hi : Lo; | 
|  |  | 
|  | // Either set up this value if we've not encountered it before, or check | 
|  | // that it remains consistent. | 
|  | if (!TargetV) | 
|  | TargetV = MaskV; | 
|  | else if (TargetV != MaskV) | 
|  | // This may be a rotation, but it pulls from the inputs in some | 
|  | // unsupported interleaving. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that we successfully analyzed the mask, and normalize the results. | 
|  | assert(Rotation != 0 && "Failed to locate a viable rotation!"); | 
|  | assert((Lo || Hi) && "Failed to find a rotated input vector!"); | 
|  | if (!Lo) | 
|  | Lo = Hi; | 
|  | else if (!Hi) | 
|  | Hi = Lo; | 
|  |  | 
|  | // The actual rotate instruction rotates bytes, so we need to scale the | 
|  | // rotation based on how many bytes are in the vector lane. | 
|  | int Scale = 16 / NumLaneElts; | 
|  |  | 
|  | // SSSE3 targets can use the palignr instruction. | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | // Cast the inputs to i8 vector of correct length to match PALIGNR. | 
|  | MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes); | 
|  | Lo = DAG.getBitcast(AlignVT, Lo); | 
|  | Hi = DAG.getBitcast(AlignVT, Hi); | 
|  |  | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi, | 
|  | DAG.getConstant(Rotation * Scale, DL, MVT::i8))); | 
|  | } | 
|  |  | 
|  | assert(VT.getSizeInBits() == 128 && | 
|  | "Rotate-based lowering only supports 128-bit lowering!"); | 
|  | assert(Mask.size() <= 16 && | 
|  | "Can shuffle at most 16 bytes in a 128-bit vector!"); | 
|  |  | 
|  | // Default SSE2 implementation | 
|  | int LoByteShift = 16 - Rotation * Scale; | 
|  | int HiByteShift = Rotation * Scale; | 
|  |  | 
|  | // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ. | 
|  | Lo = DAG.getBitcast(MVT::v2i64, Lo); | 
|  | Hi = DAG.getBitcast(MVT::v2i64, Hi); | 
|  |  | 
|  | SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo, | 
|  | DAG.getConstant(LoByteShift, DL, MVT::i8)); | 
|  | SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi, | 
|  | DAG.getConstant(HiByteShift, DL, MVT::i8)); | 
|  | return DAG.getBitcast(VT, | 
|  | DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift)); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros). | 
|  | /// | 
|  | /// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and | 
|  | /// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function | 
|  | /// matches elements from one of the input vectors shuffled to the left or | 
|  | /// right with zeroable elements 'shifted in'. It handles both the strictly | 
|  | /// bit-wise element shifts and the byte shift across an entire 128-bit double | 
|  | /// quad word lane. | 
|  | /// | 
|  | /// PSHL : (little-endian) left bit shift. | 
|  | /// [ zz, 0, zz,  2 ] | 
|  | /// [ -1, 4, zz, -1 ] | 
|  | /// PSRL : (little-endian) right bit shift. | 
|  | /// [  1, zz,  3, zz] | 
|  | /// [ -1, -1,  7, zz] | 
|  | /// PSLLDQ : (little-endian) left byte shift | 
|  | /// [ zz,  0,  1,  2,  3,  4,  5,  6] | 
|  | /// [ zz, zz, -1, -1,  2,  3,  4, -1] | 
|  | /// [ zz, zz, zz, zz, zz, zz, -1,  1] | 
|  | /// PSRLDQ : (little-endian) right byte shift | 
|  | /// [  5, 6,  7, zz, zz, zz, zz, zz] | 
|  | /// [ -1, 5,  6,  7, zz, zz, zz, zz] | 
|  | /// [  1, 2, -1, -1, -1, -1, zz, zz] | 
|  | static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  |  | 
|  | int Size = Mask.size(); | 
|  | assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); | 
|  |  | 
|  | auto CheckZeros = [&](int Shift, int Scale, bool Left) { | 
|  | for (int i = 0; i < Size; i += Scale) | 
|  | for (int j = 0; j < Shift; ++j) | 
|  | if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) { | 
|  | for (int i = 0; i != Size; i += Scale) { | 
|  | unsigned Pos = Left ? i + Shift : i; | 
|  | unsigned Low = Left ? i : i + Shift; | 
|  | unsigned Len = Scale - Shift; | 
|  | if (!isSequentialOrUndefInRange(Mask, Pos, Len, | 
|  | Low + (V == V1 ? 0 : Size))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | int ShiftEltBits = VT.getScalarSizeInBits() * Scale; | 
|  | bool ByteShift = ShiftEltBits > 64; | 
|  | unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI) | 
|  | : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI); | 
|  | int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1); | 
|  |  | 
|  | // Normalize the scale for byte shifts to still produce an i64 element | 
|  | // type. | 
|  | Scale = ByteShift ? Scale / 2 : Scale; | 
|  |  | 
|  | // We need to round trip through the appropriate type for the shift. | 
|  | MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale); | 
|  | MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale); | 
|  | assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && | 
|  | "Illegal integer vector type"); | 
|  | V = DAG.getBitcast(ShiftVT, V); | 
|  |  | 
|  | V = DAG.getNode(OpCode, DL, ShiftVT, V, | 
|  | DAG.getConstant(ShiftAmt, DL, MVT::i8)); | 
|  | return DAG.getBitcast(VT, V); | 
|  | }; | 
|  |  | 
|  | // SSE/AVX supports logical shifts up to 64-bit integers - so we can just | 
|  | // keep doubling the size of the integer elements up to that. We can | 
|  | // then shift the elements of the integer vector by whole multiples of | 
|  | // their width within the elements of the larger integer vector. Test each | 
|  | // multiple to see if we can find a match with the moved element indices | 
|  | // and that the shifted in elements are all zeroable. | 
|  | for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2) | 
|  | for (int Shift = 1; Shift != Scale; ++Shift) | 
|  | for (bool Left : {true, false}) | 
|  | if (CheckZeros(Shift, Scale, Left)) | 
|  | for (SDValue V : {V1, V2}) | 
|  | if (SDValue Match = MatchShift(Shift, Scale, Left, V)) | 
|  | return Match; | 
|  |  | 
|  | // no match | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ. | 
|  | static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  | assert(!Zeroable.all() && "Fully zeroable shuffle mask"); | 
|  |  | 
|  | int Size = Mask.size(); | 
|  | int HalfSize = Size / 2; | 
|  | assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); | 
|  |  | 
|  | // Upper half must be undefined. | 
|  | if (!isUndefInRange(Mask, HalfSize, HalfSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | // EXTRQ: Extract Len elements from lower half of source, starting at Idx. | 
|  | // Remainder of lower half result is zero and upper half is all undef. | 
|  | auto LowerAsEXTRQ = [&]() { | 
|  | // Determine the extraction length from the part of the | 
|  | // lower half that isn't zeroable. | 
|  | int Len = HalfSize; | 
|  | for (; Len >= 0; --Len) | 
|  | if (!Zeroable[Len - 1]) | 
|  | break; | 
|  | assert(Len > 0 && "Zeroable shuffle mask"); | 
|  |  | 
|  | // Attempt to match first Len sequential elements from the lower half. | 
|  | SDValue Src; | 
|  | int Idx = -1; | 
|  | for (int i = 0; i != Len; ++i) { | 
|  | int M = Mask[i]; | 
|  | if (M < 0) | 
|  | continue; | 
|  | SDValue &V = (M < Size ? V1 : V2); | 
|  | M = M % Size; | 
|  |  | 
|  | // All mask elements must be in the lower half. | 
|  | if (M > HalfSize) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Idx < 0 || (Src == V && Idx == (M - i))) { | 
|  | Src = V; | 
|  | Idx = M - i; | 
|  | continue; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (Idx < 0) | 
|  | return SDValue(); | 
|  |  | 
|  | assert((Idx + Len) <= HalfSize && "Illegal extraction mask"); | 
|  | int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; | 
|  | int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; | 
|  | return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src, | 
|  | DAG.getConstant(BitLen, DL, MVT::i8), | 
|  | DAG.getConstant(BitIdx, DL, MVT::i8)); | 
|  | }; | 
|  |  | 
|  | if (SDValue ExtrQ = LowerAsEXTRQ()) | 
|  | return ExtrQ; | 
|  |  | 
|  | // INSERTQ: Extract lowest Len elements from lower half of second source and | 
|  | // insert over first source, starting at Idx. | 
|  | // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... } | 
|  | auto LowerAsInsertQ = [&]() { | 
|  | for (int Idx = 0; Idx != HalfSize; ++Idx) { | 
|  | SDValue Base; | 
|  |  | 
|  | // Attempt to match first source from mask before insertion point. | 
|  | if (isUndefInRange(Mask, 0, Idx)) { | 
|  | /* EMPTY */ | 
|  | } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) { | 
|  | Base = V1; | 
|  | } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) { | 
|  | Base = V2; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Extend the extraction length looking to match both the insertion of | 
|  | // the second source and the remaining elements of the first. | 
|  | for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) { | 
|  | SDValue Insert; | 
|  | int Len = Hi - Idx; | 
|  |  | 
|  | // Match insertion. | 
|  | if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) { | 
|  | Insert = V1; | 
|  | } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) { | 
|  | Insert = V2; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Match the remaining elements of the lower half. | 
|  | if (isUndefInRange(Mask, Hi, HalfSize - Hi)) { | 
|  | /* EMPTY */ | 
|  | } else if ((!Base || (Base == V1)) && | 
|  | isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) { | 
|  | Base = V1; | 
|  | } else if ((!Base || (Base == V2)) && | 
|  | isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, | 
|  | Size + Hi)) { | 
|  | Base = V2; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We may not have a base (first source) - this can safely be undefined. | 
|  | if (!Base) | 
|  | Base = DAG.getUNDEF(VT); | 
|  |  | 
|  | int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; | 
|  | int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; | 
|  | return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert, | 
|  | DAG.getConstant(BitLen, DL, MVT::i8), | 
|  | DAG.getConstant(BitIdx, DL, MVT::i8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue InsertQ = LowerAsInsertQ()) | 
|  | return InsertQ; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Lower a vector shuffle as a zero or any extension. | 
|  | /// | 
|  | /// Given a specific number of elements, element bit width, and extension | 
|  | /// stride, produce either a zero or any extension based on the available | 
|  | /// features of the subtarget. The extended elements are consecutive and | 
|  | /// begin and can start from an offseted element index in the input; to | 
|  | /// avoid excess shuffling the offset must either being in the bottom lane | 
|  | /// or at the start of a higher lane. All extended elements must be from | 
|  | /// the same lane. | 
|  | static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( | 
|  | SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV, | 
|  | ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | assert(Scale > 1 && "Need a scale to extend."); | 
|  | int EltBits = VT.getScalarSizeInBits(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | int NumEltsPerLane = 128 / EltBits; | 
|  | int OffsetLane = Offset / NumEltsPerLane; | 
|  | assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && | 
|  | "Only 8, 16, and 32 bit elements can be extended."); | 
|  | assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); | 
|  | assert(0 <= Offset && "Extension offset must be positive."); | 
|  | assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) && | 
|  | "Extension offset must be in the first lane or start an upper lane."); | 
|  |  | 
|  | // Check that an index is in same lane as the base offset. | 
|  | auto SafeOffset = [&](int Idx) { | 
|  | return OffsetLane == (Idx / NumEltsPerLane); | 
|  | }; | 
|  |  | 
|  | // Shift along an input so that the offset base moves to the first element. | 
|  | auto ShuffleOffset = [&](SDValue V) { | 
|  | if (!Offset) | 
|  | return V; | 
|  |  | 
|  | SmallVector<int, 8> ShMask((unsigned)NumElements, -1); | 
|  | for (int i = 0; i * Scale < NumElements; ++i) { | 
|  | int SrcIdx = i + Offset; | 
|  | ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1; | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask); | 
|  | }; | 
|  |  | 
|  | // Found a valid zext mask! Try various lowering strategies based on the | 
|  | // input type and available ISA extensions. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | // Not worth offseting 128-bit vectors if scale == 2, a pattern using | 
|  | // PUNPCK will catch this in a later shuffle match. | 
|  | if (Offset && Scale == 2 && VT.getSizeInBits() == 128) | 
|  | return SDValue(); | 
|  | MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), | 
|  | NumElements / Scale); | 
|  | InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, ShuffleOffset(InputV)); | 
|  | return DAG.getBitcast(VT, InputV); | 
|  | } | 
|  |  | 
|  | assert(VT.getSizeInBits() == 128 && "Only 128-bit vectors can be extended."); | 
|  |  | 
|  | // For any extends we can cheat for larger element sizes and use shuffle | 
|  | // instructions that can fold with a load and/or copy. | 
|  | if (AnyExt && EltBits == 32) { | 
|  | int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1, | 
|  | -1}; | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, | 
|  | DAG.getBitcast(MVT::v4i32, InputV), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); | 
|  | } | 
|  | if (AnyExt && EltBits == 16 && Scale > 2) { | 
|  | int PSHUFDMask[4] = {Offset / 2, -1, | 
|  | SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1}; | 
|  | InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, | 
|  | DAG.getBitcast(MVT::v4i32, InputV), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); | 
|  | int PSHUFWMask[4] = {1, -1, -1, -1}; | 
|  | unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW); | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16, | 
|  | DAG.getBitcast(MVT::v8i16, InputV), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG))); | 
|  | } | 
|  |  | 
|  | // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes | 
|  | // to 64-bits. | 
|  | if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget->hasSSE4A()) { | 
|  | assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!"); | 
|  | assert(VT.getSizeInBits() == 128 && "Unexpected vector width!"); | 
|  |  | 
|  | int LoIdx = Offset * EltBits; | 
|  | SDValue Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, | 
|  | DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, | 
|  | DAG.getConstant(EltBits, DL, MVT::i8), | 
|  | DAG.getConstant(LoIdx, DL, MVT::i8))); | 
|  |  | 
|  | if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) || | 
|  | !SafeOffset(Offset + 1)) | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Lo); | 
|  |  | 
|  | int HiIdx = (Offset + 1) * EltBits; | 
|  | SDValue Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, | 
|  | DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, | 
|  | DAG.getConstant(EltBits, DL, MVT::i8), | 
|  | DAG.getConstant(HiIdx, DL, MVT::i8))); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi)); | 
|  | } | 
|  |  | 
|  | // If this would require more than 2 unpack instructions to expand, use | 
|  | // pshufb when available. We can only use more than 2 unpack instructions | 
|  | // when zero extending i8 elements which also makes it easier to use pshufb. | 
|  | if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) { | 
|  | assert(NumElements == 16 && "Unexpected byte vector width!"); | 
|  | SDValue PSHUFBMask[16]; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | int Idx = Offset + (i / Scale); | 
|  | PSHUFBMask[i] = DAG.getConstant( | 
|  | (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8); | 
|  | } | 
|  | InputV = DAG.getBitcast(MVT::v16i8, InputV); | 
|  | return DAG.getBitcast(VT, | 
|  | DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, | 
|  | MVT::v16i8, PSHUFBMask))); | 
|  | } | 
|  |  | 
|  | // If we are extending from an offset, ensure we start on a boundary that | 
|  | // we can unpack from. | 
|  | int AlignToUnpack = Offset % (NumElements / Scale); | 
|  | if (AlignToUnpack) { | 
|  | SmallVector<int, 8> ShMask((unsigned)NumElements, -1); | 
|  | for (int i = AlignToUnpack; i < NumElements; ++i) | 
|  | ShMask[i - AlignToUnpack] = i; | 
|  | InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask); | 
|  | Offset -= AlignToUnpack; | 
|  | } | 
|  |  | 
|  | // Otherwise emit a sequence of unpacks. | 
|  | do { | 
|  | unsigned UnpackLoHi = X86ISD::UNPCKL; | 
|  | if (Offset >= (NumElements / 2)) { | 
|  | UnpackLoHi = X86ISD::UNPCKH; | 
|  | Offset -= (NumElements / 2); | 
|  | } | 
|  |  | 
|  | MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); | 
|  | SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) | 
|  | : getZeroVector(InputVT, Subtarget, DAG, DL); | 
|  | InputV = DAG.getBitcast(InputVT, InputV); | 
|  | InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext); | 
|  | Scale /= 2; | 
|  | EltBits *= 2; | 
|  | NumElements /= 2; | 
|  | } while (Scale > 1); | 
|  | return DAG.getBitcast(VT, InputV); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a vector shuffle as a zero extension on any microarch. | 
|  | /// | 
|  | /// This routine will try to do everything in its power to cleverly lower | 
|  | /// a shuffle which happens to match the pattern of a zero extend. It doesn't | 
|  | /// check for the profitability of this lowering,  it tries to aggressively | 
|  | /// match this pattern. It will use all of the micro-architectural details it | 
|  | /// can to emit an efficient lowering. It handles both blends with all-zero | 
|  | /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to | 
|  | /// masking out later). | 
|  | /// | 
|  | /// The reason we have dedicated lowering for zext-style shuffles is that they | 
|  | /// are both incredibly common and often quite performance sensitive. | 
|  | static SDValue lowerVectorShuffleAsZeroOrAnyExtend( | 
|  | SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  |  | 
|  | int Bits = VT.getSizeInBits(); | 
|  | int NumLanes = Bits / 128; | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | int NumEltsPerLane = NumElements / NumLanes; | 
|  | assert(VT.getScalarSizeInBits() <= 32 && | 
|  | "Exceeds 32-bit integer zero extension limit"); | 
|  | assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size"); | 
|  |  | 
|  | // Define a helper function to check a particular ext-scale and lower to it if | 
|  | // valid. | 
|  | auto Lower = [&](int Scale) -> SDValue { | 
|  | SDValue InputV; | 
|  | bool AnyExt = true; | 
|  | int Offset = 0; | 
|  | int Matches = 0; | 
|  | for (int i = 0; i < NumElements; ++i) { | 
|  | int M = Mask[i]; | 
|  | if (M == -1) | 
|  | continue; // Valid anywhere but doesn't tell us anything. | 
|  | if (i % Scale != 0) { | 
|  | // Each of the extended elements need to be zeroable. | 
|  | if (!Zeroable[i]) | 
|  | return SDValue(); | 
|  |  | 
|  | // We no longer are in the anyext case. | 
|  | AnyExt = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Each of the base elements needs to be consecutive indices into the | 
|  | // same input vector. | 
|  | SDValue V = M < NumElements ? V1 : V2; | 
|  | M = M % NumElements; | 
|  | if (!InputV) { | 
|  | InputV = V; | 
|  | Offset = M - (i / Scale); | 
|  | } else if (InputV != V) | 
|  | return SDValue(); // Flip-flopping inputs. | 
|  |  | 
|  | // Offset must start in the lowest 128-bit lane or at the start of an | 
|  | // upper lane. | 
|  | // FIXME: Is it ever worth allowing a negative base offset? | 
|  | if (!((0 <= Offset && Offset < NumEltsPerLane) || | 
|  | (Offset % NumEltsPerLane) == 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we are offsetting, all referenced entries must come from the same | 
|  | // lane. | 
|  | if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane)) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((M % NumElements) != (Offset + (i / Scale))) | 
|  | return SDValue(); // Non-consecutive strided elements. | 
|  | Matches++; | 
|  | } | 
|  |  | 
|  | // If we fail to find an input, we have a zero-shuffle which should always | 
|  | // have already been handled. | 
|  | // FIXME: Maybe handle this here in case during blending we end up with one? | 
|  | if (!InputV) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we are offsetting, don't extend if we only match a single input, we | 
|  | // can always do better by using a basic PSHUF or PUNPCK. | 
|  | if (Offset != 0 && Matches < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | return lowerVectorShuffleAsSpecificZeroOrAnyExtend( | 
|  | DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG); | 
|  | }; | 
|  |  | 
|  | // The widest scale possible for extending is to a 64-bit integer. | 
|  | assert(Bits % 64 == 0 && | 
|  | "The number of bits in a vector must be divisible by 64 on x86!"); | 
|  | int NumExtElements = Bits / 64; | 
|  |  | 
|  | // Each iteration, try extending the elements half as much, but into twice as | 
|  | // many elements. | 
|  | for (; NumExtElements < NumElements; NumExtElements *= 2) { | 
|  | assert(NumElements % NumExtElements == 0 && | 
|  | "The input vector size must be divisible by the extended size."); | 
|  | if (SDValue V = Lower(NumElements / NumExtElements)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // General extends failed, but 128-bit vectors may be able to use MOVQ. | 
|  | if (Bits != 128) | 
|  | return SDValue(); | 
|  |  | 
|  | // Returns one of the source operands if the shuffle can be reduced to a | 
|  | // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits. | 
|  | auto CanZExtLowHalf = [&]() { | 
|  | for (int i = NumElements / 2; i != NumElements; ++i) | 
|  | if (!Zeroable[i]) | 
|  | return SDValue(); | 
|  | if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0)) | 
|  | return V1; | 
|  | if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements)) | 
|  | return V2; | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue V = CanZExtLowHalf()) { | 
|  | V = DAG.getBitcast(MVT::v2i64, V); | 
|  | V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V); | 
|  | return DAG.getBitcast(VT, V); | 
|  | } | 
|  |  | 
|  | // No viable ext lowering found. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Try to get a scalar value for a specific element of a vector. | 
|  | /// | 
|  | /// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. | 
|  | static SDValue getScalarValueForVectorElement(SDValue V, int Idx, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = V.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | while (V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  | // If the bitcasts shift the element size, we can't extract an equivalent | 
|  | // element from it. | 
|  | MVT NewVT = V.getSimpleValueType(); | 
|  | if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR || | 
|  | (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) { | 
|  | // Ensure the scalar operand is the same size as the destination. | 
|  | // FIXME: Add support for scalar truncation where possible. | 
|  | SDValue S = V.getOperand(Idx); | 
|  | if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Helper to test for a load that can be folded with x86 shuffles. | 
|  | /// | 
|  | /// This is particularly important because the set of instructions varies | 
|  | /// significantly based on whether the operand is a load or not. | 
|  | static bool isShuffleFoldableLoad(SDValue V) { | 
|  | while (V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | return ISD::isNON_EXTLoad(V.getNode()); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower insertion of a single element into a zero vector. | 
|  | /// | 
|  | /// This is a common pattern that we have especially efficient patterns to lower | 
|  | /// across all subtarget feature sets. | 
|  | static SDValue lowerVectorShuffleAsElementInsertion( | 
|  | SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  | MVT ExtVT = VT; | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | int V2Index = std::find_if(Mask.begin(), Mask.end(), | 
|  | [&Mask](int M) { return M >= (int)Mask.size(); }) - | 
|  | Mask.begin(); | 
|  | bool IsV1Zeroable = true; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (i != V2Index && !Zeroable[i]) { | 
|  | IsV1Zeroable = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check for a single input from a SCALAR_TO_VECTOR node. | 
|  | // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and | 
|  | // all the smarts here sunk into that routine. However, the current | 
|  | // lowering of BUILD_VECTOR makes that nearly impossible until the old | 
|  | // vector shuffle lowering is dead. | 
|  | SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(), | 
|  | DAG); | 
|  | if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) { | 
|  | // We need to zext the scalar if it is smaller than an i32. | 
|  | V2S = DAG.getBitcast(EltVT, V2S); | 
|  | if (EltVT == MVT::i8 || EltVT == MVT::i16) { | 
|  | // Using zext to expand a narrow element won't work for non-zero | 
|  | // insertions. | 
|  | if (!IsV1Zeroable) | 
|  | return SDValue(); | 
|  |  | 
|  | // Zero-extend directly to i32. | 
|  | ExtVT = MVT::v4i32; | 
|  | V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); | 
|  | } | 
|  | V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); | 
|  | } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || | 
|  | EltVT == MVT::i16) { | 
|  | // Either not inserting from the low element of the input or the input | 
|  | // element size is too small to use VZEXT_MOVL to clear the high bits. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (!IsV1Zeroable) { | 
|  | // If V1 can't be treated as a zero vector we have fewer options to lower | 
|  | // this. We can't support integer vectors or non-zero targets cheaply, and | 
|  | // the V1 elements can't be permuted in any way. | 
|  | assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); | 
|  | if (!VT.isFloatingPoint() || V2Index != 0) | 
|  | return SDValue(); | 
|  | SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end()); | 
|  | V1Mask[V2Index] = -1; | 
|  | if (!isNoopShuffleMask(V1Mask)) | 
|  | return SDValue(); | 
|  | // This is essentially a special case blend operation, but if we have | 
|  | // general purpose blend operations, they are always faster. Bail and let | 
|  | // the rest of the lowering handle these as blends. | 
|  | if (Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Otherwise, use MOVSD or MOVSS. | 
|  | assert((EltVT == MVT::f32 || EltVT == MVT::f64) && | 
|  | "Only two types of floating point element types to handle!"); | 
|  | return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, | 
|  | ExtVT, V1, V2); | 
|  | } | 
|  |  | 
|  | // This lowering only works for the low element with floating point vectors. | 
|  | if (VT.isFloatingPoint() && V2Index != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); | 
|  | if (ExtVT != VT) | 
|  | V2 = DAG.getBitcast(VT, V2); | 
|  |  | 
|  | if (V2Index != 0) { | 
|  | // If we have 4 or fewer lanes we can cheaply shuffle the element into | 
|  | // the desired position. Otherwise it is more efficient to do a vector | 
|  | // shift left. We know that we can do a vector shift left because all | 
|  | // the inputs are zero. | 
|  | if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { | 
|  | SmallVector<int, 4> V2Shuffle(Mask.size(), 1); | 
|  | V2Shuffle[V2Index] = 0; | 
|  | V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); | 
|  | } else { | 
|  | V2 = DAG.getBitcast(MVT::v2i64, V2); | 
|  | V2 = DAG.getNode( | 
|  | X86ISD::VSHLDQ, DL, MVT::v2i64, V2, | 
|  | DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, | 
|  | DAG.getTargetLoweringInfo().getScalarShiftAmountTy( | 
|  | DAG.getDataLayout(), VT))); | 
|  | V2 = DAG.getBitcast(VT, V2); | 
|  | } | 
|  | } | 
|  | return V2; | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower broadcast of a single element. | 
|  | /// | 
|  | /// For convenience, this code also bundles all of the subtarget feature set | 
|  | /// filtering. While a little annoying to re-dispatch on type here, there isn't | 
|  | /// a convenient way to factor it out. | 
|  | static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V, | 
|  | ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (!Subtarget->hasAVX()) | 
|  | return SDValue(); | 
|  | if (VT.isInteger() && !Subtarget->hasAVX2()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that the mask is a broadcast. | 
|  | int BroadcastIdx = -1; | 
|  | for (int M : Mask) | 
|  | if (M >= 0 && BroadcastIdx == -1) | 
|  | BroadcastIdx = M; | 
|  | else if (M >= 0 && M != BroadcastIdx) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " | 
|  | "a sorted mask where the broadcast " | 
|  | "comes from V1."); | 
|  |  | 
|  | // Go up the chain of (vector) values to find a scalar load that we can | 
|  | // combine with the broadcast. | 
|  | for (;;) { | 
|  | switch (V.getOpcode()) { | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | int OperandSize = Mask.size() / V.getNumOperands(); | 
|  | V = V.getOperand(BroadcastIdx / OperandSize); | 
|  | BroadcastIdx %= OperandSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case ISD::INSERT_SUBVECTOR: { | 
|  | SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); | 
|  | auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); | 
|  | if (!ConstantIdx) | 
|  | break; | 
|  |  | 
|  | int BeginIdx = (int)ConstantIdx->getZExtValue(); | 
|  | int EndIdx = | 
|  | BeginIdx + (int)VInner.getValueType().getVectorNumElements(); | 
|  | if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { | 
|  | BroadcastIdx -= BeginIdx; | 
|  | V = VInner; | 
|  | } else { | 
|  | V = VOuter; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if this is a broadcast of a scalar. We special case lowering | 
|  | // for scalars so that we can more effectively fold with loads. | 
|  | // First, look through bitcast: if the original value has a larger element | 
|  | // type than the shuffle, the broadcast element is in essence truncated. | 
|  | // Make that explicit to ease folding. | 
|  | if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue V0 = V.getOperand(0); | 
|  | EVT V0VT = V0.getValueType(); | 
|  |  | 
|  | if (V0VT.isInteger() && V0VT.getVectorElementType().bitsGT(EltVT) && | 
|  | ((V0.getOpcode() == ISD::BUILD_VECTOR || | 
|  | (V0.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)))) { | 
|  | V = DAG.getNode(ISD::TRUNCATE, DL, EltVT, V0.getOperand(BroadcastIdx)); | 
|  | BroadcastIdx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also check the simpler case, where we can directly reuse the scalar. | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR || | 
|  | (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { | 
|  | V = V.getOperand(BroadcastIdx); | 
|  |  | 
|  | // If the scalar isn't a load, we can't broadcast from it in AVX1. | 
|  | // Only AVX2 has register broadcasts. | 
|  | if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V)) | 
|  | return SDValue(); | 
|  | } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) { | 
|  | // We can't broadcast from a vector register without AVX2, and we can only | 
|  | // broadcast from the zero-element of a vector register. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V); | 
|  | } | 
|  |  | 
|  | // Check for whether we can use INSERTPS to perform the shuffle. We only use | 
|  | // INSERTPS when the V1 elements are already in the correct locations | 
|  | // because otherwise we can just always use two SHUFPS instructions which | 
|  | // are much smaller to encode than a SHUFPS and an INSERTPS. We can also | 
|  | // perform INSERTPS if a single V1 element is out of place and all V2 | 
|  | // elements are zeroable. | 
|  | static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); | 
|  | assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); | 
|  |  | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  |  | 
|  | unsigned ZMask = 0; | 
|  | int V1DstIndex = -1; | 
|  | int V2DstIndex = -1; | 
|  | bool V1UsedInPlace = false; | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | // Synthesize a zero mask from the zeroable elements (includes undefs). | 
|  | if (Zeroable[i]) { | 
|  | ZMask |= 1 << i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Flag if we use any V1 inputs in place. | 
|  | if (i == Mask[i]) { | 
|  | V1UsedInPlace = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can only insert a single non-zeroable element. | 
|  | if (V1DstIndex != -1 || V2DstIndex != -1) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Mask[i] < 4) { | 
|  | // V1 input out of place for insertion. | 
|  | V1DstIndex = i; | 
|  | } else { | 
|  | // V2 input for insertion. | 
|  | V2DstIndex = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't bother if we have no (non-zeroable) element for insertion. | 
|  | if (V1DstIndex == -1 && V2DstIndex == -1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Determine element insertion src/dst indices. The src index is from the | 
|  | // start of the inserted vector, not the start of the concatenated vector. | 
|  | unsigned V2SrcIndex = 0; | 
|  | if (V1DstIndex != -1) { | 
|  | // If we have a V1 input out of place, we use V1 as the V2 element insertion | 
|  | // and don't use the original V2 at all. | 
|  | V2SrcIndex = Mask[V1DstIndex]; | 
|  | V2DstIndex = V1DstIndex; | 
|  | V2 = V1; | 
|  | } else { | 
|  | V2SrcIndex = Mask[V2DstIndex] - 4; | 
|  | } | 
|  |  | 
|  | // If no V1 inputs are used in place, then the result is created only from | 
|  | // the zero mask and the V2 insertion - so remove V1 dependency. | 
|  | if (!V1UsedInPlace) | 
|  | V1 = DAG.getUNDEF(MVT::v4f32); | 
|  |  | 
|  | unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask; | 
|  | assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); | 
|  |  | 
|  | // Insert the V2 element into the desired position. | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, | 
|  | DAG.getConstant(InsertPSMask, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a shuffle as a permute of the inputs followed by an | 
|  | /// UNPCK instruction. | 
|  | /// | 
|  | /// This specifically targets cases where we end up with alternating between | 
|  | /// the two inputs, and so can permute them into something that feeds a single | 
|  | /// UNPCK instruction. Note that this routine only targets integer vectors | 
|  | /// because for floating point vectors we have a generalized SHUFPS lowering | 
|  | /// strategy that handles everything that doesn't *exactly* match an unpack, | 
|  | /// making this clever lowering unnecessary. | 
|  | static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT, | 
|  | SDValue V1, SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | assert(!VT.isFloatingPoint() && | 
|  | "This routine only supports integer vectors."); | 
|  | assert(!isSingleInputShuffleMask(Mask) && | 
|  | "This routine should only be used when blending two inputs."); | 
|  | assert(Mask.size() >= 2 && "Single element masks are invalid."); | 
|  |  | 
|  | int Size = Mask.size(); | 
|  |  | 
|  | int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) { | 
|  | return M >= 0 && M % Size < Size / 2; | 
|  | }); | 
|  | int NumHiInputs = std::count_if( | 
|  | Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; }); | 
|  |  | 
|  | bool UnpackLo = NumLoInputs >= NumHiInputs; | 
|  |  | 
|  | auto TryUnpack = [&](MVT UnpackVT, int Scale) { | 
|  | SmallVector<int, 32> V1Mask(Mask.size(), -1); | 
|  | SmallVector<int, 32> V2Mask(Mask.size(), -1); | 
|  |  | 
|  | for (int i = 0; i < Size; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  |  | 
|  | // Each element of the unpack contains Scale elements from this mask. | 
|  | int UnpackIdx = i / Scale; | 
|  |  | 
|  | // We only handle the case where V1 feeds the first slots of the unpack. | 
|  | // We rely on canonicalization to ensure this is the case. | 
|  | if ((UnpackIdx % 2 == 0) != (Mask[i] < Size)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Setup the mask for this input. The indexing is tricky as we have to | 
|  | // handle the unpack stride. | 
|  | SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask; | 
|  | VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] = | 
|  | Mask[i] % Size; | 
|  | } | 
|  |  | 
|  | // If we will have to shuffle both inputs to use the unpack, check whether | 
|  | // we can just unpack first and shuffle the result. If so, skip this unpack. | 
|  | if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) && | 
|  | !isNoopShuffleMask(V2Mask)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Shuffle the inputs into place. | 
|  | V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); | 
|  | V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); | 
|  |  | 
|  | // Cast the inputs to the type we will use to unpack them. | 
|  | V1 = DAG.getBitcast(UnpackVT, V1); | 
|  | V2 = DAG.getBitcast(UnpackVT, V2); | 
|  |  | 
|  | // Unpack the inputs and cast the result back to the desired type. | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, | 
|  | UnpackVT, V1, V2)); | 
|  | }; | 
|  |  | 
|  | // We try each unpack from the largest to the smallest to try and find one | 
|  | // that fits this mask. | 
|  | int OrigNumElements = VT.getVectorNumElements(); | 
|  | int OrigScalarSize = VT.getScalarSizeInBits(); | 
|  | for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) { | 
|  | int Scale = ScalarSize / OrigScalarSize; | 
|  | int NumElements = OrigNumElements / Scale; | 
|  | MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements); | 
|  | if (SDValue Unpack = TryUnpack(UnpackVT, Scale)) | 
|  | return Unpack; | 
|  | } | 
|  |  | 
|  | // If none of the unpack-rooted lowerings worked (or were profitable) try an | 
|  | // initial unpack. | 
|  | if (NumLoInputs == 0 || NumHiInputs == 0) { | 
|  | assert((NumLoInputs > 0 || NumHiInputs > 0) && | 
|  | "We have to have *some* inputs!"); | 
|  | int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0; | 
|  |  | 
|  | // FIXME: We could consider the total complexity of the permute of each | 
|  | // possible unpacking. Or at the least we should consider how many | 
|  | // half-crossings are created. | 
|  | // FIXME: We could consider commuting the unpacks. | 
|  |  | 
|  | SmallVector<int, 32> PermMask; | 
|  | PermMask.assign(Size, -1); | 
|  | for (int i = 0; i < Size; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  |  | 
|  | assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!"); | 
|  |  | 
|  | PermMask[i] = | 
|  | 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1); | 
|  | } | 
|  | return DAG.getVectorShuffle( | 
|  | VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL, | 
|  | DL, VT, V1, V2), | 
|  | DAG.getUNDEF(VT), PermMask); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 2-lane 64-bit floating point shuffles. | 
|  | /// | 
|  | /// This is the basis function for the 2-lane 64-bit shuffles as we have full | 
|  | /// support for floating point shuffles but not integer shuffles. These | 
|  | /// instructions will incur a domain crossing penalty on some chips though so | 
|  | /// it is better to avoid lowering through this for integer vectors where | 
|  | /// possible. | 
|  | static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | // Use low duplicate instructions for masks that match their pattern. | 
|  | if (Subtarget->hasSSE3()) | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 0})) | 
|  | return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1); | 
|  |  | 
|  | // Straight shuffle of a single input vector. Simulate this by using the | 
|  | // single input as both of the "inputs" to this instruction.. | 
|  | unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); | 
|  |  | 
|  | if (Subtarget->hasAVX()) { | 
|  | // If we have AVX, we can use VPERMILPS which will allow folding a load | 
|  | // into the shuffle. | 
|  | return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, | 
|  | DAG.getConstant(SHUFPDMask, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1, | 
|  | DAG.getConstant(SHUFPDMask, DL, MVT::i8)); | 
|  | } | 
|  | assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!"); | 
|  | assert(Mask[1] >= 2 && "Non-canonicalized blend!"); | 
|  |  | 
|  | // If we have a single input, insert that into V1 if we can do so cheaply. | 
|  | if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { | 
|  | if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( | 
|  | DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Insertion; | 
|  | // Try inverting the insertion since for v2 masks it is easy to do and we | 
|  | // can't reliably sort the mask one way or the other. | 
|  | int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), | 
|  | Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; | 
|  | if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( | 
|  | DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG)) | 
|  | return Insertion; | 
|  | } | 
|  |  | 
|  | // Try to use one of the special instruction patterns to handle two common | 
|  | // blend patterns if a zero-blend above didn't work. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) || | 
|  | isShuffleEquivalent(V1, V2, Mask, {1, 3})) | 
|  | if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) | 
|  | // We can either use a special instruction to load over the low double or | 
|  | // to move just the low double. | 
|  | return DAG.getNode( | 
|  | isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD, | 
|  | DL, MVT::v2f64, V2, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 2})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2); | 
|  |  | 
|  | unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2, | 
|  | DAG.getConstant(SHUFPDMask, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 2-lane 64-bit integer shuffles. | 
|  | /// | 
|  | /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by | 
|  | /// the integer unit to minimize domain crossing penalties. However, for blends | 
|  | /// it falls back to the floating point shuffle operation with appropriate bit | 
|  | /// casting. | 
|  | static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Straight shuffle of a single input vector. For everything from SSE2 | 
|  | // onward this has a single fast instruction with no scary immediates. | 
|  | // We have to map the mask as it is actually a v4i32 shuffle instruction. | 
|  | V1 = DAG.getBitcast(MVT::v4i32, V1); | 
|  | int WidenedMask[4] = { | 
|  | std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, | 
|  | std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; | 
|  | return DAG.getBitcast( | 
|  | MVT::v2i64, | 
|  | DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, | 
|  | getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG))); | 
|  | } | 
|  | assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!"); | 
|  | assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!"); | 
|  | assert(Mask[0] < 2 && "We sort V1 to be the first input."); | 
|  | assert(Mask[1] >= 2 && "We sort V2 to be the second input."); | 
|  |  | 
|  | // If we have a blend of two PACKUS operations an the blend aligns with the | 
|  | // low and half halves, we can just merge the PACKUS operations. This is | 
|  | // particularly important as it lets us merge shuffles that this routine itself | 
|  | // creates. | 
|  | auto GetPackNode = [](SDValue V) { | 
|  | while (V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | return V.getOpcode() == X86ISD::PACKUS ? V : SDValue(); | 
|  | }; | 
|  | if (SDValue V1Pack = GetPackNode(V1)) | 
|  | if (SDValue V2Pack = GetPackNode(V2)) | 
|  | return DAG.getBitcast(MVT::v2i64, | 
|  | DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, | 
|  | Mask[0] == 0 ? V1Pack.getOperand(0) | 
|  | : V1Pack.getOperand(1), | 
|  | Mask[1] == 2 ? V2Pack.getOperand(0) | 
|  | : V2Pack.getOperand(1))); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // When loading a scalar and then shuffling it into a vector we can often do | 
|  | // the insertion cheaply. | 
|  | if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( | 
|  | DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Insertion; | 
|  | // Try inverting the insertion since for v2 masks it is easy to do and we | 
|  | // can't reliably sort the mask one way or the other. | 
|  | int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2}; | 
|  | if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( | 
|  | DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG)) | 
|  | return Insertion; | 
|  |  | 
|  | // We have different paths for blend lowering, but they all must use the | 
|  | // *exact* same predicate. | 
|  | bool IsBlendSupported = Subtarget->hasSSE41(); | 
|  | if (IsBlendSupported) | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 2})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2); | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | // Its more profitable for pre-SSSE3 to use shuffles/unpacks. | 
|  | if (Subtarget->hasSSSE3()) | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | // If we have direct support for blends, we should lower by decomposing into | 
|  | // a permute. That will be faster than the domain cross. | 
|  | if (IsBlendSupported) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | // We implement this with SHUFPD which is pretty lame because it will likely | 
|  | // incur 2 cycles of stall for integer vectors on Nehalem and older chips. | 
|  | // However, all the alternatives are still more cycles and newer chips don't | 
|  | // have this problem. It would be really nice if x86 had better shuffles here. | 
|  | V1 = DAG.getBitcast(MVT::v2f64, V1); | 
|  | V2 = DAG.getBitcast(MVT::v2f64, V2); | 
|  | return DAG.getBitcast(MVT::v2i64, | 
|  | DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); | 
|  | } | 
|  |  | 
|  | /// \brief Test whether this can be lowered with a single SHUFPS instruction. | 
|  | /// | 
|  | /// This is used to disable more specialized lowerings when the shufps lowering | 
|  | /// will happen to be efficient. | 
|  | static bool isSingleSHUFPSMask(ArrayRef<int> Mask) { | 
|  | // This routine only handles 128-bit shufps. | 
|  | assert(Mask.size() == 4 && "Unsupported mask size!"); | 
|  |  | 
|  | // To lower with a single SHUFPS we need to have the low half and high half | 
|  | // each requiring a single input. | 
|  | if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4)) | 
|  | return false; | 
|  | if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Lower a vector shuffle using the SHUFPS instruction. | 
|  | /// | 
|  | /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. | 
|  | /// It makes no assumptions about whether this is the *best* lowering, it simply | 
|  | /// uses it. | 
|  | static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT, | 
|  | ArrayRef<int> Mask, SDValue V1, | 
|  | SDValue V2, SelectionDAG &DAG) { | 
|  | SDValue LowV = V1, HighV = V2; | 
|  | int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; | 
|  |  | 
|  | int NumV2Elements = | 
|  | std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); | 
|  |  | 
|  | if (NumV2Elements == 1) { | 
|  | int V2Index = | 
|  | std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) - | 
|  | Mask.begin(); | 
|  |  | 
|  | // Compute the index adjacent to V2Index and in the same half by toggling | 
|  | // the low bit. | 
|  | int V2AdjIndex = V2Index ^ 1; | 
|  |  | 
|  | if (Mask[V2AdjIndex] == -1) { | 
|  | // Handles all the cases where we have a single V2 element and an undef. | 
|  | // This will only ever happen in the high lanes because we commute the | 
|  | // vector otherwise. | 
|  | if (V2Index < 2) | 
|  | std::swap(LowV, HighV); | 
|  | NewMask[V2Index] -= 4; | 
|  | } else { | 
|  | // Handle the case where the V2 element ends up adjacent to a V1 element. | 
|  | // To make this work, blend them together as the first step. | 
|  | int V1Index = V2AdjIndex; | 
|  | int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; | 
|  | V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, | 
|  | getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); | 
|  |  | 
|  | // Now proceed to reconstruct the final blend as we have the necessary | 
|  | // high or low half formed. | 
|  | if (V2Index < 2) { | 
|  | LowV = V2; | 
|  | HighV = V1; | 
|  | } else { | 
|  | HighV = V2; | 
|  | } | 
|  | NewMask[V1Index] = 2; // We put the V1 element in V2[2]. | 
|  | NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. | 
|  | } | 
|  | } else if (NumV2Elements == 2) { | 
|  | if (Mask[0] < 4 && Mask[1] < 4) { | 
|  | // Handle the easy case where we have V1 in the low lanes and V2 in the | 
|  | // high lanes. | 
|  | NewMask[2] -= 4; | 
|  | NewMask[3] -= 4; | 
|  | } else if (Mask[2] < 4 && Mask[3] < 4) { | 
|  | // We also handle the reversed case because this utility may get called | 
|  | // when we detect a SHUFPS pattern but can't easily commute the shuffle to | 
|  | // arrange things in the right direction. | 
|  | NewMask[0] -= 4; | 
|  | NewMask[1] -= 4; | 
|  | HighV = V1; | 
|  | LowV = V2; | 
|  | } else { | 
|  | // We have a mixture of V1 and V2 in both low and high lanes. Rather than | 
|  | // trying to place elements directly, just blend them and set up the final | 
|  | // shuffle to place them. | 
|  |  | 
|  | // The first two blend mask elements are for V1, the second two are for | 
|  | // V2. | 
|  | int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], | 
|  | Mask[2] < 4 ? Mask[2] : Mask[3], | 
|  | (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, | 
|  | (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; | 
|  | V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, | 
|  | getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); | 
|  |  | 
|  | // Now we do a normal shuffle of V1 by giving V1 as both operands to | 
|  | // a blend. | 
|  | LowV = HighV = V1; | 
|  | NewMask[0] = Mask[0] < 4 ? 0 : 2; | 
|  | NewMask[1] = Mask[0] < 4 ? 2 : 0; | 
|  | NewMask[2] = Mask[2] < 4 ? 1 : 3; | 
|  | NewMask[3] = Mask[2] < 4 ? 3 : 1; | 
|  | } | 
|  | } | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, | 
|  | getV4X86ShuffleImm8ForMask(NewMask, DL, DAG)); | 
|  | } | 
|  |  | 
|  | /// \brief Lower 4-lane 32-bit floating point shuffles. | 
|  | /// | 
|  | /// Uses instructions exclusively from the floating point unit to minimize | 
|  | /// domain crossing penalties, as these are sufficient to implement all v4f32 | 
|  | /// shuffles. | 
|  | static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); | 
|  |  | 
|  | int NumV2Elements = | 
|  | std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); | 
|  |  | 
|  | if (NumV2Elements == 0) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Use even/odd duplicate instructions for masks that match their pattern. | 
|  | if (Subtarget->hasSSE3()) { | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) | 
|  | return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3})) | 
|  | return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasAVX()) { | 
|  | // If we have AVX, we can use VPERMILPS which will allow folding a load | 
|  | // into the shuffle. | 
|  | return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  | } | 
|  |  | 
|  | // Otherwise, use a straight shuffle of a single input vector. We pass the | 
|  | // input vector to both operands to simulate this with a SHUFPS. | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  | } | 
|  |  | 
|  | // There are special ways we can lower some single-element blends. However, we | 
|  | // have custom ways we can lower more complex single-element blends below that | 
|  | // we defer to if both this and BLENDPS fail to match, so restrict this to | 
|  | // when the V2 input is targeting element 0 of the mask -- that is the fast | 
|  | // case here. | 
|  | if (NumV2Elements == 1 && Mask[0] >= 4) | 
|  | if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Use INSERTPS if we can complete the shuffle efficiently. | 
|  | if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (!isSingleSHUFPSMask(Mask)) | 
|  | if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute( | 
|  | DL, MVT::v4f32, V1, V2, Mask, DAG)) | 
|  | return BlendPerm; | 
|  | } | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V2, V1); | 
|  |  | 
|  | // Otherwise fall back to a SHUFPS lowering strategy. | 
|  | return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Lower 4-lane i32 vector shuffles. | 
|  | /// | 
|  | /// We try to handle these with integer-domain shuffles where we can, but for | 
|  | /// blends we use the floating point domain blend instructions. | 
|  | static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); | 
|  |  | 
|  | // Whenever we can lower this as a zext, that instruction is strictly faster | 
|  | // than any alternative. It also allows us to fold memory operands into the | 
|  | // shuffle in many cases. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | int NumV2Elements = | 
|  | std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); | 
|  |  | 
|  | if (NumV2Elements == 0) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Straight shuffle of a single input vector. For everything from SSE2 | 
|  | // onward this has a single fast instruction with no scary immediates. | 
|  | // We coerce the shuffle pattern to be compatible with UNPCK instructions | 
|  | // but we aren't actually going to use the UNPCK instruction because doing | 
|  | // so prevents folding a load into this instruction or making a copy. | 
|  | const int UnpackLoMask[] = {0, 0, 1, 1}; | 
|  | const int UnpackHiMask[] = {2, 2, 3, 3}; | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1})) | 
|  | Mask = UnpackLoMask; | 
|  | else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3})) | 
|  | Mask = UnpackHiMask; | 
|  |  | 
|  | return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  | } | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // There are special ways we can lower some single-element blends. | 
|  | if (NumV2Elements == 1) | 
|  | if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return V; | 
|  |  | 
|  | // We have different paths for blend lowering, but they all must use the | 
|  | // *exact* same predicate. | 
|  | bool IsBlendSupported = Subtarget->hasSSE41(); | 
|  | if (IsBlendSupported) | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | if (SDValue Masked = | 
|  | lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG)) | 
|  | return Masked; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V2, V1); | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | // Its more profitable for pre-SSSE3 to use shuffles/unpacks. | 
|  | if (Subtarget->hasSSSE3()) | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | // If we have direct support for blends, we should lower by decomposing into | 
|  | // a permute. That will be faster than the domain cross. | 
|  | if (IsBlendSupported) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | // Try to lower by permuting the inputs into an unpack instruction. | 
|  | if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1, | 
|  | V2, Mask, DAG)) | 
|  | return Unpack; | 
|  |  | 
|  | // We implement this with SHUFPS because it can blend from two vectors. | 
|  | // Because we're going to eventually use SHUFPS, we use SHUFPS even to build | 
|  | // up the inputs, bypassing domain shift penalties that we would encur if we | 
|  | // directly used PSHUFD on Nehalem and older. For newer chips, this isn't | 
|  | // relevant. | 
|  | return DAG.getBitcast( | 
|  | MVT::v4i32, | 
|  | DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1), | 
|  | DAG.getBitcast(MVT::v4f32, V2), Mask)); | 
|  | } | 
|  |  | 
|  | /// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 | 
|  | /// shuffle lowering, and the most complex part. | 
|  | /// | 
|  | /// The lowering strategy is to try to form pairs of input lanes which are | 
|  | /// targeted at the same half of the final vector, and then use a dword shuffle | 
|  | /// to place them onto the right half, and finally unpack the paired lanes into | 
|  | /// their final position. | 
|  | /// | 
|  | /// The exact breakdown of how to form these dword pairs and align them on the | 
|  | /// correct sides is really tricky. See the comments within the function for | 
|  | /// more of the details. | 
|  | /// | 
|  | /// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each | 
|  | /// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to | 
|  | /// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16 | 
|  | /// vector, form the analogous 128-bit 8-element Mask. | 
|  | static SDValue lowerV8I16GeneralSingleInputVectorShuffle( | 
|  | SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | assert(VT.getScalarType() == MVT::i16 && "Bad input type!"); | 
|  | MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); | 
|  |  | 
|  | assert(Mask.size() == 8 && "Shuffle mask length doen't match!"); | 
|  | MutableArrayRef<int> LoMask = Mask.slice(0, 4); | 
|  | MutableArrayRef<int> HiMask = Mask.slice(4, 4); | 
|  |  | 
|  | SmallVector<int, 4> LoInputs; | 
|  | std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs), | 
|  | [](int M) { return M >= 0; }); | 
|  | std::sort(LoInputs.begin(), LoInputs.end()); | 
|  | LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); | 
|  | SmallVector<int, 4> HiInputs; | 
|  | std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs), | 
|  | [](int M) { return M >= 0; }); | 
|  | std::sort(HiInputs.begin(), HiInputs.end()); | 
|  | HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); | 
|  | int NumLToL = | 
|  | std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); | 
|  | int NumHToL = LoInputs.size() - NumLToL; | 
|  | int NumLToH = | 
|  | std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); | 
|  | int NumHToH = HiInputs.size() - NumLToH; | 
|  | MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL); | 
|  | MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH); | 
|  | MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL); | 
|  | MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH); | 
|  |  | 
|  | // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all | 
|  | // such inputs we can swap two of the dwords across the half mark and end up | 
|  | // with <=2 inputs to each half in each half. Once there, we can fall through | 
|  | // to the generic code below. For example: | 
|  | // | 
|  | // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] | 
|  | // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] | 
|  | // | 
|  | // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half | 
|  | // and an existing 2-into-2 on the other half. In this case we may have to | 
|  | // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or | 
|  | // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. | 
|  | // Fortunately, we don't have to handle anything but a 2-into-2 pattern | 
|  | // because any other situation (including a 3-into-1 or 1-into-3 in the other | 
|  | // half than the one we target for fixing) will be fixed when we re-enter this | 
|  | // path. We will also combine away any sequence of PSHUFD instructions that | 
|  | // result into a single instruction. Here is an example of the tricky case: | 
|  | // | 
|  | // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] | 
|  | // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] | 
|  | // | 
|  | // This now has a 1-into-3 in the high half! Instead, we do two shuffles: | 
|  | // | 
|  | // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] | 
|  | // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] | 
|  | // | 
|  | // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] | 
|  | // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] | 
|  | // | 
|  | // The result is fine to be handled by the generic logic. | 
|  | auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs, | 
|  | ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs, | 
|  | int AOffset, int BOffset) { | 
|  | assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && | 
|  | "Must call this with A having 3 or 1 inputs from the A half."); | 
|  | assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && | 
|  | "Must call this with B having 1 or 3 inputs from the B half."); | 
|  | assert(AToAInputs.size() + BToAInputs.size() == 4 && | 
|  | "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); | 
|  |  | 
|  | bool ThreeAInputs = AToAInputs.size() == 3; | 
|  |  | 
|  | // Compute the index of dword with only one word among the three inputs in | 
|  | // a half by taking the sum of the half with three inputs and subtracting | 
|  | // the sum of the actual three inputs. The difference is the remaining | 
|  | // slot. | 
|  | int ADWord, BDWord; | 
|  | int &TripleDWord = ThreeAInputs ? ADWord : BDWord; | 
|  | int &OneInputDWord = ThreeAInputs ? BDWord : ADWord; | 
|  | int TripleInputOffset = ThreeAInputs ? AOffset : BOffset; | 
|  | ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs; | 
|  | int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0]; | 
|  | int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); | 
|  | int TripleNonInputIdx = | 
|  | TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); | 
|  | TripleDWord = TripleNonInputIdx / 2; | 
|  |  | 
|  | // We use xor with one to compute the adjacent DWord to whichever one the | 
|  | // OneInput is in. | 
|  | OneInputDWord = (OneInput / 2) ^ 1; | 
|  |  | 
|  | // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA | 
|  | // and BToA inputs. If there is also such a problem with the BToB and AToB | 
|  | // inputs, we don't try to fix it necessarily -- we'll recurse and see it in | 
|  | // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it | 
|  | // is essential that we don't *create* a 3<-1 as then we might oscillate. | 
|  | if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { | 
|  | // Compute how many inputs will be flipped by swapping these DWords. We | 
|  | // need | 
|  | // to balance this to ensure we don't form a 3-1 shuffle in the other | 
|  | // half. | 
|  | int NumFlippedAToBInputs = | 
|  | std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + | 
|  | std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); | 
|  | int NumFlippedBToBInputs = | 
|  | std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + | 
|  | std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); | 
|  | if ((NumFlippedAToBInputs == 1 && | 
|  | (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || | 
|  | (NumFlippedBToBInputs == 1 && | 
|  | (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { | 
|  | // We choose whether to fix the A half or B half based on whether that | 
|  | // half has zero flipped inputs. At zero, we may not be able to fix it | 
|  | // with that half. We also bias towards fixing the B half because that | 
|  | // will more commonly be the high half, and we have to bias one way. | 
|  | auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, | 
|  | ArrayRef<int> Inputs) { | 
|  | int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. | 
|  | bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(), | 
|  | PinnedIdx ^ 1) != Inputs.end(); | 
|  | // Determine whether the free index is in the flipped dword or the | 
|  | // unflipped dword based on where the pinned index is. We use this bit | 
|  | // in an xor to conditionally select the adjacent dword. | 
|  | int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); | 
|  | bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), | 
|  | FixFreeIdx) != Inputs.end(); | 
|  | if (IsFixIdxInput == IsFixFreeIdxInput) | 
|  | FixFreeIdx += 1; | 
|  | IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), | 
|  | FixFreeIdx) != Inputs.end(); | 
|  | assert(IsFixIdxInput != IsFixFreeIdxInput && | 
|  | "We need to be changing the number of flipped inputs!"); | 
|  | int PSHUFHalfMask[] = {0, 1, 2, 3}; | 
|  | std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); | 
|  | V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, | 
|  | MVT::v8i16, V, | 
|  | getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); | 
|  |  | 
|  | for (int &M : Mask) | 
|  | if (M != -1 && M == FixIdx) | 
|  | M = FixFreeIdx; | 
|  | else if (M != -1 && M == FixFreeIdx) | 
|  | M = FixIdx; | 
|  | }; | 
|  | if (NumFlippedBToBInputs != 0) { | 
|  | int BPinnedIdx = | 
|  | BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; | 
|  | FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); | 
|  | } else { | 
|  | assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); | 
|  | int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput; | 
|  | FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int PSHUFDMask[] = {0, 1, 2, 3}; | 
|  | PSHUFDMask[ADWord] = BDWord; | 
|  | PSHUFDMask[BDWord] = ADWord; | 
|  | V = DAG.getBitcast( | 
|  | VT, | 
|  | DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); | 
|  |  | 
|  | // Adjust the mask to match the new locations of A and B. | 
|  | for (int &M : Mask) | 
|  | if (M != -1 && M/2 == ADWord) | 
|  | M = 2 * BDWord + M % 2; | 
|  | else if (M != -1 && M/2 == BDWord) | 
|  | M = 2 * ADWord + M % 2; | 
|  |  | 
|  | // Recurse back into this routine to re-compute state now that this isn't | 
|  | // a 3 and 1 problem. | 
|  | return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget, | 
|  | DAG); | 
|  | }; | 
|  | if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) | 
|  | return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); | 
|  | else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) | 
|  | return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); | 
|  |  | 
|  | // At this point there are at most two inputs to the low and high halves from | 
|  | // each half. That means the inputs can always be grouped into dwords and | 
|  | // those dwords can then be moved to the correct half with a dword shuffle. | 
|  | // We use at most one low and one high word shuffle to collect these paired | 
|  | // inputs into dwords, and finally a dword shuffle to place them. | 
|  | int PSHUFLMask[4] = {-1, -1, -1, -1}; | 
|  | int PSHUFHMask[4] = {-1, -1, -1, -1}; | 
|  | int PSHUFDMask[4] = {-1, -1, -1, -1}; | 
|  |  | 
|  | // First fix the masks for all the inputs that are staying in their | 
|  | // original halves. This will then dictate the targets of the cross-half | 
|  | // shuffles. | 
|  | auto fixInPlaceInputs = | 
|  | [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs, | 
|  | MutableArrayRef<int> SourceHalfMask, | 
|  | MutableArrayRef<int> HalfMask, int HalfOffset) { | 
|  | if (InPlaceInputs.empty()) | 
|  | return; | 
|  | if (InPlaceInputs.size() == 1) { | 
|  | SourceHalfMask[InPlaceInputs[0] - HalfOffset] = | 
|  | InPlaceInputs[0] - HalfOffset; | 
|  | PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; | 
|  | return; | 
|  | } | 
|  | if (IncomingInputs.empty()) { | 
|  | // Just fix all of the in place inputs. | 
|  | for (int Input : InPlaceInputs) { | 
|  | SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; | 
|  | PSHUFDMask[Input / 2] = Input / 2; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); | 
|  | SourceHalfMask[InPlaceInputs[0] - HalfOffset] = | 
|  | InPlaceInputs[0] - HalfOffset; | 
|  | // Put the second input next to the first so that they are packed into | 
|  | // a dword. We find the adjacent index by toggling the low bit. | 
|  | int AdjIndex = InPlaceInputs[0] ^ 1; | 
|  | SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; | 
|  | std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); | 
|  | PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; | 
|  | }; | 
|  | fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); | 
|  | fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); | 
|  |  | 
|  | // Now gather the cross-half inputs and place them into a free dword of | 
|  | // their target half. | 
|  | // FIXME: This operation could almost certainly be simplified dramatically to | 
|  | // look more like the 3-1 fixing operation. | 
|  | auto moveInputsToRightHalf = [&PSHUFDMask]( | 
|  | MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs, | 
|  | MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, | 
|  | MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset, | 
|  | int DestOffset) { | 
|  | auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) { | 
|  | return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word; | 
|  | }; | 
|  | auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask, | 
|  | int Word) { | 
|  | int LowWord = Word & ~1; | 
|  | int HighWord = Word | 1; | 
|  | return isWordClobbered(SourceHalfMask, LowWord) || | 
|  | isWordClobbered(SourceHalfMask, HighWord); | 
|  | }; | 
|  |  | 
|  | if (IncomingInputs.empty()) | 
|  | return; | 
|  |  | 
|  | if (ExistingInputs.empty()) { | 
|  | // Map any dwords with inputs from them into the right half. | 
|  | for (int Input : IncomingInputs) { | 
|  | // If the source half mask maps over the inputs, turn those into | 
|  | // swaps and use the swapped lane. | 
|  | if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { | 
|  | if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) { | 
|  | SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = | 
|  | Input - SourceOffset; | 
|  | // We have to swap the uses in our half mask in one sweep. | 
|  | for (int &M : HalfMask) | 
|  | if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) | 
|  | M = Input; | 
|  | else if (M == Input) | 
|  | M = SourceHalfMask[Input - SourceOffset] + SourceOffset; | 
|  | } else { | 
|  | assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == | 
|  | Input - SourceOffset && | 
|  | "Previous placement doesn't match!"); | 
|  | } | 
|  | // Note that this correctly re-maps both when we do a swap and when | 
|  | // we observe the other side of the swap above. We rely on that to | 
|  | // avoid swapping the members of the input list directly. | 
|  | Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; | 
|  | } | 
|  |  | 
|  | // Map the input's dword into the correct half. | 
|  | if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1) | 
|  | PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; | 
|  | else | 
|  | assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == | 
|  | Input / 2 && | 
|  | "Previous placement doesn't match!"); | 
|  | } | 
|  |  | 
|  | // And just directly shift any other-half mask elements to be same-half | 
|  | // as we will have mirrored the dword containing the element into the | 
|  | // same position within that half. | 
|  | for (int &M : HalfMask) | 
|  | if (M >= SourceOffset && M < SourceOffset + 4) { | 
|  | M = M - SourceOffset + DestOffset; | 
|  | assert(M >= 0 && "This should never wrap below zero!"); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ensure we have the input in a viable dword of its current half. This | 
|  | // is particularly tricky because the original position may be clobbered | 
|  | // by inputs being moved and *staying* in that half. | 
|  | if (IncomingInputs.size() == 1) { | 
|  | if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { | 
|  | int InputFixed = std::find(std::begin(SourceHalfMask), | 
|  | std::end(SourceHalfMask), -1) - | 
|  | std::begin(SourceHalfMask) + SourceOffset; | 
|  | SourceHalfMask[InputFixed - SourceOffset] = | 
|  | IncomingInputs[0] - SourceOffset; | 
|  | std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], | 
|  | InputFixed); | 
|  | IncomingInputs[0] = InputFixed; | 
|  | } | 
|  | } else if (IncomingInputs.size() == 2) { | 
|  | if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || | 
|  | isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { | 
|  | // We have two non-adjacent or clobbered inputs we need to extract from | 
|  | // the source half. To do this, we need to map them into some adjacent | 
|  | // dword slot in the source mask. | 
|  | int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, | 
|  | IncomingInputs[1] - SourceOffset}; | 
|  |  | 
|  | // If there is a free slot in the source half mask adjacent to one of | 
|  | // the inputs, place the other input in it. We use (Index XOR 1) to | 
|  | // compute an adjacent index. | 
|  | if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && | 
|  | SourceHalfMask[InputsFixed[0] ^ 1] == -1) { | 
|  | SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; | 
|  | SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; | 
|  | InputsFixed[1] = InputsFixed[0] ^ 1; | 
|  | } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && | 
|  | SourceHalfMask[InputsFixed[1] ^ 1] == -1) { | 
|  | SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; | 
|  | SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; | 
|  | InputsFixed[0] = InputsFixed[1] ^ 1; | 
|  | } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 && | 
|  | SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) { | 
|  | // The two inputs are in the same DWord but it is clobbered and the | 
|  | // adjacent DWord isn't used at all. Move both inputs to the free | 
|  | // slot. | 
|  | SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; | 
|  | SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; | 
|  | InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); | 
|  | InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; | 
|  | } else { | 
|  | // The only way we hit this point is if there is no clobbering | 
|  | // (because there are no off-half inputs to this half) and there is no | 
|  | // free slot adjacent to one of the inputs. In this case, we have to | 
|  | // swap an input with a non-input. | 
|  | for (int i = 0; i < 4; ++i) | 
|  | assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) && | 
|  | "We can't handle any clobbers here!"); | 
|  | assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && | 
|  | "Cannot have adjacent inputs here!"); | 
|  |  | 
|  | SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; | 
|  | SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; | 
|  |  | 
|  | // We also have to update the final source mask in this case because | 
|  | // it may need to undo the above swap. | 
|  | for (int &M : FinalSourceHalfMask) | 
|  | if (M == (InputsFixed[0] ^ 1) + SourceOffset) | 
|  | M = InputsFixed[1] + SourceOffset; | 
|  | else if (M == InputsFixed[1] + SourceOffset) | 
|  | M = (InputsFixed[0] ^ 1) + SourceOffset; | 
|  |  | 
|  | InputsFixed[1] = InputsFixed[0] ^ 1; | 
|  | } | 
|  |  | 
|  | // Point everything at the fixed inputs. | 
|  | for (int &M : HalfMask) | 
|  | if (M == IncomingInputs[0]) | 
|  | M = InputsFixed[0] + SourceOffset; | 
|  | else if (M == IncomingInputs[1]) | 
|  | M = InputsFixed[1] + SourceOffset; | 
|  |  | 
|  | IncomingInputs[0] = InputsFixed[0] + SourceOffset; | 
|  | IncomingInputs[1] = InputsFixed[1] + SourceOffset; | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unhandled input size!"); | 
|  | } | 
|  |  | 
|  | // Now hoist the DWord down to the right half. | 
|  | int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2; | 
|  | assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free"); | 
|  | PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; | 
|  | for (int &M : HalfMask) | 
|  | for (int Input : IncomingInputs) | 
|  | if (M == Input) | 
|  | M = FreeDWord * 2 + Input % 2; | 
|  | }; | 
|  | moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, | 
|  | /*SourceOffset*/ 4, /*DestOffset*/ 0); | 
|  | moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, | 
|  | /*SourceOffset*/ 0, /*DestOffset*/ 4); | 
|  |  | 
|  | // Now enact all the shuffles we've computed to move the inputs into their | 
|  | // target half. | 
|  | if (!isNoopShuffleMask(PSHUFLMask)) | 
|  | V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, | 
|  | getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG)); | 
|  | if (!isNoopShuffleMask(PSHUFHMask)) | 
|  | V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, | 
|  | getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG)); | 
|  | if (!isNoopShuffleMask(PSHUFDMask)) | 
|  | V = DAG.getBitcast( | 
|  | VT, | 
|  | DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); | 
|  |  | 
|  | // At this point, each half should contain all its inputs, and we can then | 
|  | // just shuffle them into their final position. | 
|  | assert(std::count_if(LoMask.begin(), LoMask.end(), | 
|  | [](int M) { return M >= 4; }) == 0 && | 
|  | "Failed to lift all the high half inputs to the low mask!"); | 
|  | assert(std::count_if(HiMask.begin(), HiMask.end(), | 
|  | [](int M) { return M >= 0 && M < 4; }) == 0 && | 
|  | "Failed to lift all the low half inputs to the high mask!"); | 
|  |  | 
|  | // Do a half shuffle for the low mask. | 
|  | if (!isNoopShuffleMask(LoMask)) | 
|  | V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, | 
|  | getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); | 
|  |  | 
|  | // Do a half shuffle with the high mask after shifting its values down. | 
|  | for (int &M : HiMask) | 
|  | if (M >= 0) | 
|  | M -= 4; | 
|  | if (!isNoopShuffleMask(HiMask)) | 
|  | V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, | 
|  | getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// \brief Helper to form a PSHUFB-based shuffle+blend. | 
|  | static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG, bool &V1InUse, | 
|  | bool &V2InUse) { | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  | SDValue V1Mask[16]; | 
|  | SDValue V2Mask[16]; | 
|  | V1InUse = false; | 
|  | V2InUse = false; | 
|  |  | 
|  | int Size = Mask.size(); | 
|  | int Scale = 16 / Size; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | if (Mask[i / Scale] == -1) { | 
|  | V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); | 
|  | } else { | 
|  | const int ZeroMask = 0x80; | 
|  | int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale | 
|  | : ZeroMask; | 
|  | int V2Idx = Mask[i / Scale] < Size | 
|  | ? ZeroMask | 
|  | : (Mask[i / Scale] - Size) * Scale + i % Scale; | 
|  | if (Zeroable[i / Scale]) | 
|  | V1Idx = V2Idx = ZeroMask; | 
|  | V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8); | 
|  | V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8); | 
|  | V1InUse |= (ZeroMask != V1Idx); | 
|  | V2InUse |= (ZeroMask != V2Idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (V1InUse) | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, | 
|  | DAG.getBitcast(MVT::v16i8, V1), | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask)); | 
|  | if (V2InUse) | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, | 
|  | DAG.getBitcast(MVT::v16i8, V2), | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask)); | 
|  |  | 
|  | // If we need shuffled inputs from both, blend the two. | 
|  | SDValue V; | 
|  | if (V1InUse && V2InUse) | 
|  | V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); | 
|  | else | 
|  | V = V1InUse ? V1 : V2; | 
|  |  | 
|  | // Cast the result back to the correct type. | 
|  | return DAG.getBitcast(VT, V); | 
|  | } | 
|  |  | 
|  | /// \brief Generic lowering of 8-lane i16 shuffles. | 
|  | /// | 
|  | /// This handles both single-input shuffles and combined shuffle/blends with | 
|  | /// two inputs. The single input shuffles are immediately delegated to | 
|  | /// a dedicated lowering routine. | 
|  | /// | 
|  | /// The blends are lowered in one of three fundamental ways. If there are few | 
|  | /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle | 
|  | /// of the input is significantly cheaper when lowered as an interleaving of | 
|  | /// the two inputs, try to interleave them. Otherwise, blend the low and high | 
|  | /// halves of the inputs separately (making them have relatively few inputs) | 
|  | /// and then concatenate them. | 
|  | static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> OrigMask = SVOp->getMask(); | 
|  | int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3], | 
|  | OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]}; | 
|  | MutableArrayRef<int> Mask(MaskStorage); | 
|  |  | 
|  | assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); | 
|  |  | 
|  | // Whenever we can lower this as a zext, that instruction is strictly faster | 
|  | // than any alternative. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( | 
|  | DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | auto isV1 = [](int M) { return M >= 0 && M < 8; }; | 
|  | (void)isV1; | 
|  | auto isV2 = [](int M) { return M >= 8; }; | 
|  |  | 
|  | int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2); | 
|  |  | 
|  | if (NumV2Inputs == 0) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V1, Mask, {0, 0, 1, 1, 2, 2, 3, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V1); | 
|  | if (isShuffleEquivalent(V1, V1, Mask, {4, 4, 5, 5, 6, 6, 7, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V1); | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask, | 
|  | Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | assert(std::any_of(Mask.begin(), Mask.end(), isV1) && | 
|  | "All single-input shuffles should be canonicalized to be V1-input " | 
|  | "shuffles."); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // See if we can use SSE4A Extraction / Insertion. | 
|  | if (Subtarget->hasSSE4A()) | 
|  | if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG)) | 
|  | return V; | 
|  |  | 
|  | // There are special ways we can lower some single-element blends. | 
|  | if (NumV2Inputs == 1) | 
|  | if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return V; | 
|  |  | 
|  | // We have different paths for blend lowering, but they all must use the | 
|  | // *exact* same predicate. | 
|  | bool IsBlendSupported = Subtarget->hasSSE41(); | 
|  | if (IsBlendSupported) | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | if (SDValue Masked = | 
|  | lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG)) | 
|  | return Masked; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 2, 10, 3, 11})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {4, 12, 5, 13, 6, 14, 7, 15})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2); | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | if (SDValue BitBlend = | 
|  | lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG)) | 
|  | return BitBlend; | 
|  |  | 
|  | if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, | 
|  | V2, Mask, DAG)) | 
|  | return Unpack; | 
|  |  | 
|  | // If we can't directly blend but can use PSHUFB, that will be better as it | 
|  | // can both shuffle and set up the inefficient blend. | 
|  | if (!IsBlendSupported && Subtarget->hasSSSE3()) { | 
|  | bool V1InUse, V2InUse; | 
|  | return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG, | 
|  | V1InUse, V2InUse); | 
|  | } | 
|  |  | 
|  | // We can always bit-blend if we have to so the fallback strategy is to | 
|  | // decompose into single-input permutes and blends. | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2, | 
|  | Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Check whether a compaction lowering can be done by dropping even | 
|  | /// elements and compute how many times even elements must be dropped. | 
|  | /// | 
|  | /// This handles shuffles which take every Nth element where N is a power of | 
|  | /// two. Example shuffle masks: | 
|  | /// | 
|  | ///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14 | 
|  | ///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 | 
|  | ///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12 | 
|  | ///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28 | 
|  | ///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8 | 
|  | ///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24 | 
|  | /// | 
|  | /// Any of these lanes can of course be undef. | 
|  | /// | 
|  | /// This routine only supports N <= 3. | 
|  | /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here | 
|  | /// for larger N. | 
|  | /// | 
|  | /// \returns N above, or the number of times even elements must be dropped if | 
|  | /// there is such a number. Otherwise returns zero. | 
|  | static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) { | 
|  | // Figure out whether we're looping over two inputs or just one. | 
|  | bool IsSingleInput = isSingleInputShuffleMask(Mask); | 
|  |  | 
|  | // The modulus for the shuffle vector entries is based on whether this is | 
|  | // a single input or not. | 
|  | int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); | 
|  | assert(isPowerOf2_32((uint32_t)ShuffleModulus) && | 
|  | "We should only be called with masks with a power-of-2 size!"); | 
|  |  | 
|  | uint64_t ModMask = (uint64_t)ShuffleModulus - 1; | 
|  |  | 
|  | // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, | 
|  | // and 2^3 simultaneously. This is because we may have ambiguity with | 
|  | // partially undef inputs. | 
|  | bool ViableForN[3] = {true, true, true}; | 
|  |  | 
|  | for (int i = 0, e = Mask.size(); i < e; ++i) { | 
|  | // Ignore undef lanes, we'll optimistically collapse them to the pattern we | 
|  | // want. | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  |  | 
|  | bool IsAnyViable = false; | 
|  | for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) | 
|  | if (ViableForN[j]) { | 
|  | uint64_t N = j + 1; | 
|  |  | 
|  | // The shuffle mask must be equal to (i * 2^N) % M. | 
|  | if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) | 
|  | IsAnyViable = true; | 
|  | else | 
|  | ViableForN[j] = false; | 
|  | } | 
|  | // Early exit if we exhaust the possible powers of two. | 
|  | if (!IsAnyViable) | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) | 
|  | if (ViableForN[j]) | 
|  | return j + 1; | 
|  |  | 
|  | // Return 0 as there is no viable power of two. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Generic lowering of v16i8 shuffles. | 
|  | /// | 
|  | /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to | 
|  | /// detect any complexity reducing interleaving. If that doesn't help, it uses | 
|  | /// UNPCK to spread the i8 elements across two i16-element vectors, and uses | 
|  | /// the existing lowering for v8i16 blends on each half, finally PACK-ing them | 
|  | /// back together. | 
|  | static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!"); | 
|  | assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | // Try to use a zext lowering. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( | 
|  | DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | // See if we can use SSE4A Extraction / Insertion. | 
|  | if (Subtarget->hasSSE4A()) | 
|  | if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG)) | 
|  | return V; | 
|  |  | 
|  | int NumV2Elements = | 
|  | std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; }); | 
|  |  | 
|  | // For single-input shuffles, there are some nicer lowering tricks we can use. | 
|  | if (NumV2Elements == 0) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Check whether we can widen this to an i16 shuffle by duplicating bytes. | 
|  | // Notably, this handles splat and partial-splat shuffles more efficiently. | 
|  | // However, it only makes sense if the pre-duplication shuffle simplifies | 
|  | // things significantly. Currently, this means we need to be able to | 
|  | // express the pre-duplication shuffle as an i16 shuffle. | 
|  | // | 
|  | // FIXME: We should check for other patterns which can be widened into an | 
|  | // i16 shuffle as well. | 
|  | auto canWidenViaDuplication = [](ArrayRef<int> Mask) { | 
|  | for (int i = 0; i < 16; i += 2) | 
|  | if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  | auto tryToWidenViaDuplication = [&]() -> SDValue { | 
|  | if (!canWidenViaDuplication(Mask)) | 
|  | return SDValue(); | 
|  | SmallVector<int, 4> LoInputs; | 
|  | std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs), | 
|  | [](int M) { return M >= 0 && M < 8; }); | 
|  | std::sort(LoInputs.begin(), LoInputs.end()); | 
|  | LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), | 
|  | LoInputs.end()); | 
|  | SmallVector<int, 4> HiInputs; | 
|  | std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs), | 
|  | [](int M) { return M >= 8; }); | 
|  | std::sort(HiInputs.begin(), HiInputs.end()); | 
|  | HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), | 
|  | HiInputs.end()); | 
|  |  | 
|  | bool TargetLo = LoInputs.size() >= HiInputs.size(); | 
|  | ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs; | 
|  | ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs; | 
|  |  | 
|  | int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; | 
|  | SmallDenseMap<int, int, 8> LaneMap; | 
|  | for (int I : InPlaceInputs) { | 
|  | PreDupI16Shuffle[I/2] = I/2; | 
|  | LaneMap[I] = I; | 
|  | } | 
|  | int j = TargetLo ? 0 : 4, je = j + 4; | 
|  | for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { | 
|  | // Check if j is already a shuffle of this input. This happens when | 
|  | // there are two adjacent bytes after we move the low one. | 
|  | if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { | 
|  | // If we haven't yet mapped the input, search for a slot into which | 
|  | // we can map it. | 
|  | while (j < je && PreDupI16Shuffle[j] != -1) | 
|  | ++j; | 
|  |  | 
|  | if (j == je) | 
|  | // We can't place the inputs into a single half with a simple i16 shuffle, so bail. | 
|  | return SDValue(); | 
|  |  | 
|  | // Map this input with the i16 shuffle. | 
|  | PreDupI16Shuffle[j] = MovingInputs[i] / 2; | 
|  | } | 
|  |  | 
|  | // Update the lane map based on the mapping we ended up with. | 
|  | LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; | 
|  | } | 
|  | V1 = DAG.getBitcast( | 
|  | MVT::v16i8, | 
|  | DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), | 
|  | DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); | 
|  |  | 
|  | // Unpack the bytes to form the i16s that will be shuffled into place. | 
|  | V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, | 
|  | MVT::v16i8, V1, V1); | 
|  |  | 
|  | int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; | 
|  | for (int i = 0; i < 16; ++i) | 
|  | if (Mask[i] != -1) { | 
|  | int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); | 
|  | assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); | 
|  | if (PostDupI16Shuffle[i / 2] == -1) | 
|  | PostDupI16Shuffle[i / 2] = MappedMask; | 
|  | else | 
|  | assert(PostDupI16Shuffle[i / 2] == MappedMask && | 
|  | "Conflicting entrties in the original shuffle!"); | 
|  | } | 
|  | return DAG.getBitcast( | 
|  | MVT::v16i8, | 
|  | DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), | 
|  | DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); | 
|  | }; | 
|  | if (SDValue V = tryToWidenViaDuplication()) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (SDValue Masked = | 
|  | lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG)) | 
|  | return Masked; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {// Low half. | 
|  | 0, 16, 1, 17, 2, 18, 3, 19, | 
|  | // High half. | 
|  | 4, 20, 5, 21, 6, 22, 7, 23})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {// Low half. | 
|  | 8, 24, 9, 25, 10, 26, 11, 27, | 
|  | // High half. | 
|  | 12, 28, 13, 29, 14, 30, 15, 31})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V1, V2); | 
|  |  | 
|  | // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly | 
|  | // with PSHUFB. It is important to do this before we attempt to generate any | 
|  | // blends but after all of the single-input lowerings. If the single input | 
|  | // lowerings can find an instruction sequence that is faster than a PSHUFB, we | 
|  | // want to preserve that and we can DAG combine any longer sequences into | 
|  | // a PSHUFB in the end. But once we start blending from multiple inputs, | 
|  | // the complexity of DAG combining bad patterns back into PSHUFB is too high, | 
|  | // and there are *very* few patterns that would actually be faster than the | 
|  | // PSHUFB approach because of its ability to zero lanes. | 
|  | // | 
|  | // FIXME: The only exceptions to the above are blends which are exact | 
|  | // interleavings with direct instructions supporting them. We currently don't | 
|  | // handle those well here. | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | bool V1InUse = false; | 
|  | bool V2InUse = false; | 
|  |  | 
|  | SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask, | 
|  | DAG, V1InUse, V2InUse); | 
|  |  | 
|  | // If both V1 and V2 are in use and we can use a direct blend or an unpack, | 
|  | // do so. This avoids using them to handle blends-with-zero which is | 
|  | // important as a single pshufb is significantly faster for that. | 
|  | if (V1InUse && V2InUse) { | 
|  | if (Subtarget->hasSSE41()) | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // We can use an unpack to do the blending rather than an or in some | 
|  | // cases. Even though the or may be (very minorly) more efficient, we | 
|  | // preference this lowering because there are common cases where part of | 
|  | // the complexity of the shuffles goes away when we do the final blend as | 
|  | // an unpack. | 
|  | // FIXME: It might be worth trying to detect if the unpack-feeding | 
|  | // shuffles will both be pshufb, in which case we shouldn't bother with | 
|  | // this. | 
|  | if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( | 
|  | DL, MVT::v16i8, V1, V2, Mask, DAG)) | 
|  | return Unpack; | 
|  | } | 
|  |  | 
|  | return PSHUFB; | 
|  | } | 
|  |  | 
|  | // There are special ways we can lower some single-element blends. | 
|  | if (NumV2Elements == 1) | 
|  | if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue BitBlend = | 
|  | lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG)) | 
|  | return BitBlend; | 
|  |  | 
|  | // Check whether a compaction lowering can be done. This handles shuffles | 
|  | // which take every Nth element for some even N. See the helper function for | 
|  | // details. | 
|  | // | 
|  | // We special case these as they can be particularly efficiently handled with | 
|  | // the PACKUSB instruction on x86 and they show up in common patterns of | 
|  | // rearranging bytes to truncate wide elements. | 
|  | if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) { | 
|  | // NumEvenDrops is the power of two stride of the elements. Another way of | 
|  | // thinking about it is that we need to drop the even elements this many | 
|  | // times to get the original input. | 
|  | bool IsSingleInput = isSingleInputShuffleMask(Mask); | 
|  |  | 
|  | // First we need to zero all the dropped bytes. | 
|  | assert(NumEvenDrops <= 3 && | 
|  | "No support for dropping even elements more than 3 times."); | 
|  | // We use the mask type to pick which bytes are preserved based on how many | 
|  | // elements are dropped. | 
|  | MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; | 
|  | SDValue ByteClearMask = DAG.getBitcast( | 
|  | MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1])); | 
|  | V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); | 
|  | if (!IsSingleInput) | 
|  | V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); | 
|  |  | 
|  | // Now pack things back together. | 
|  | V1 = DAG.getBitcast(MVT::v8i16, V1); | 
|  | V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2); | 
|  | SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); | 
|  | for (int i = 1; i < NumEvenDrops; ++i) { | 
|  | Result = DAG.getBitcast(MVT::v8i16, Result); | 
|  | Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Handle multi-input cases by blending single-input shuffles. | 
|  | if (NumV2Elements > 0) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | // The fallback path for single-input shuffles widens this into two v8i16 | 
|  | // vectors with unpacks, shuffles those, and then pulls them back together | 
|  | // with a pack. | 
|  | SDValue V = V1; | 
|  |  | 
|  | int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; | 
|  | int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; | 
|  | for (int i = 0; i < 16; ++i) | 
|  | if (Mask[i] >= 0) | 
|  | (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i]; | 
|  |  | 
|  | SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL); | 
|  |  | 
|  | SDValue VLoHalf, VHiHalf; | 
|  | // Check if any of the odd lanes in the v16i8 are used. If not, we can mask | 
|  | // them out and avoid using UNPCK{L,H} to extract the elements of V as | 
|  | // i16s. | 
|  | if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask), | 
|  | [](int M) { return M >= 0 && M % 2 == 1; }) && | 
|  | std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask), | 
|  | [](int M) { return M >= 0 && M % 2 == 1; })) { | 
|  | // Use a mask to drop the high bytes. | 
|  | VLoHalf = DAG.getBitcast(MVT::v8i16, V); | 
|  | VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf, | 
|  | DAG.getConstant(0x00FF, DL, MVT::v8i16)); | 
|  |  | 
|  | // This will be a single vector shuffle instead of a blend so nuke VHiHalf. | 
|  | VHiHalf = DAG.getUNDEF(MVT::v8i16); | 
|  |  | 
|  | // Squash the masks to point directly into VLoHalf. | 
|  | for (int &M : LoBlendMask) | 
|  | if (M >= 0) | 
|  | M /= 2; | 
|  | for (int &M : HiBlendMask) | 
|  | if (M >= 0) | 
|  | M /= 2; | 
|  | } else { | 
|  | // Otherwise just unpack the low half of V into VLoHalf and the high half into | 
|  | // VHiHalf so that we can blend them as i16s. | 
|  | VLoHalf = DAG.getBitcast( | 
|  | MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); | 
|  | VHiHalf = DAG.getBitcast( | 
|  | MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); | 
|  | } | 
|  |  | 
|  | SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask); | 
|  | SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask); | 
|  |  | 
|  | return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); | 
|  | } | 
|  |  | 
|  | /// \brief Dispatching routine to lower various 128-bit x86 vector shuffles. | 
|  | /// | 
|  | /// This routine breaks down the specific type of 128-bit shuffle and | 
|  | /// dispatches to the lowering routines accordingly. | 
|  | static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | MVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::v2i64: | 
|  | return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v2f64: | 
|  | return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v4i32: | 
|  | return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v4f32: | 
|  | return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v8i16: | 
|  | return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v16i8: | 
|  | return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Unimplemented!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Helper function to test whether a shuffle mask could be | 
|  | /// simplified by widening the elements being shuffled. | 
|  | /// | 
|  | /// Appends the mask for wider elements in WidenedMask if valid. Otherwise | 
|  | /// leaves it in an unspecified state. | 
|  | /// | 
|  | /// NOTE: This must handle normal vector shuffle masks and *target* vector | 
|  | /// shuffle masks. The latter have the special property of a '-2' representing | 
|  | /// a zero-ed lane of a vector. | 
|  | static bool canWidenShuffleElements(ArrayRef<int> Mask, | 
|  | SmallVectorImpl<int> &WidenedMask) { | 
|  | for (int i = 0, Size = Mask.size(); i < Size; i += 2) { | 
|  | // If both elements are undef, its trivial. | 
|  | if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) { | 
|  | WidenedMask.push_back(SM_SentinelUndef); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for an undef mask and a mask value properly aligned to fit with | 
|  | // a pair of values. If we find such a case, use the non-undef mask's value. | 
|  | if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) { | 
|  | WidenedMask.push_back(Mask[i + 1] / 2); | 
|  | continue; | 
|  | } | 
|  | if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) { | 
|  | WidenedMask.push_back(Mask[i] / 2); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // When zeroing, we need to spread the zeroing across both lanes to widen. | 
|  | if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) { | 
|  | if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) && | 
|  | (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) { | 
|  | WidenedMask.push_back(SM_SentinelZero); | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Finally check if the two mask values are adjacent and aligned with | 
|  | // a pair. | 
|  | if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) { | 
|  | WidenedMask.push_back(Mask[i] / 2); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we can't safely widen the elements used in this shuffle. | 
|  | return false; | 
|  | } | 
|  | assert(WidenedMask.size() == Mask.size() / 2 && | 
|  | "Incorrect size of mask after widening the elements!"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Generic routine to split vector shuffle into half-sized shuffles. | 
|  | /// | 
|  | /// This routine just extracts two subvectors, shuffles them independently, and | 
|  | /// then concatenates them back together. This should work effectively with all | 
|  | /// AVX vector shuffle types. | 
|  | static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | assert(VT.getSizeInBits() >= 256 && | 
|  | "Only for 256-bit or wider vector shuffles!"); | 
|  | assert(V1.getSimpleValueType() == VT && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == VT && "Bad operand type!"); | 
|  |  | 
|  | ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2); | 
|  | ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2); | 
|  |  | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | int SplitNumElements = NumElements / 2; | 
|  | MVT ScalarVT = VT.getScalarType(); | 
|  | MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); | 
|  |  | 
|  | // Rather than splitting build-vectors, just build two narrower build | 
|  | // vectors. This helps shuffling with splats and zeros. | 
|  | auto SplitVector = [&](SDValue V) { | 
|  | while (V.getOpcode() == ISD::BITCAST) | 
|  | V = V->getOperand(0); | 
|  |  | 
|  | MVT OrigVT = V.getSimpleValueType(); | 
|  | int OrigNumElements = OrigVT.getVectorNumElements(); | 
|  | int OrigSplitNumElements = OrigNumElements / 2; | 
|  | MVT OrigScalarVT = OrigVT.getScalarType(); | 
|  | MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2); | 
|  |  | 
|  | SDValue LoV, HiV; | 
|  |  | 
|  | auto *BV = dyn_cast<BuildVectorSDNode>(V); | 
|  | if (!BV) { | 
|  | LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, | 
|  | DAG.getIntPtrConstant(OrigSplitNumElements, DL)); | 
|  | } else { | 
|  |  | 
|  | SmallVector<SDValue, 16> LoOps, HiOps; | 
|  | for (int i = 0; i < OrigSplitNumElements; ++i) { | 
|  | LoOps.push_back(BV->getOperand(i)); | 
|  | HiOps.push_back(BV->getOperand(i + OrigSplitNumElements)); | 
|  | } | 
|  | LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps); | 
|  | HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps); | 
|  | } | 
|  | return std::make_pair(DAG.getBitcast(SplitVT, LoV), | 
|  | DAG.getBitcast(SplitVT, HiV)); | 
|  | }; | 
|  |  | 
|  | SDValue LoV1, HiV1, LoV2, HiV2; | 
|  | std::tie(LoV1, HiV1) = SplitVector(V1); | 
|  | std::tie(LoV2, HiV2) = SplitVector(V2); | 
|  |  | 
|  | // Now create two 4-way blends of these half-width vectors. | 
|  | auto HalfBlend = [&](ArrayRef<int> HalfMask) { | 
|  | bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; | 
|  | SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask; | 
|  | for (int i = 0; i < SplitNumElements; ++i) { | 
|  | int M = HalfMask[i]; | 
|  | if (M >= NumElements) { | 
|  | if (M >= NumElements + SplitNumElements) | 
|  | UseHiV2 = true; | 
|  | else | 
|  | UseLoV2 = true; | 
|  | V2BlendMask.push_back(M - NumElements); | 
|  | V1BlendMask.push_back(-1); | 
|  | BlendMask.push_back(SplitNumElements + i); | 
|  | } else if (M >= 0) { | 
|  | if (M >= SplitNumElements) | 
|  | UseHiV1 = true; | 
|  | else | 
|  | UseLoV1 = true; | 
|  | V2BlendMask.push_back(-1); | 
|  | V1BlendMask.push_back(M); | 
|  | BlendMask.push_back(i); | 
|  | } else { | 
|  | V2BlendMask.push_back(-1); | 
|  | V1BlendMask.push_back(-1); | 
|  | BlendMask.push_back(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Because the lowering happens after all combining takes place, we need to | 
|  | // manually combine these blend masks as much as possible so that we create | 
|  | // a minimal number of high-level vector shuffle nodes. | 
|  |  | 
|  | // First try just blending the halves of V1 or V2. | 
|  | if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) | 
|  | return DAG.getUNDEF(SplitVT); | 
|  | if (!UseLoV2 && !UseHiV2) | 
|  | return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); | 
|  | if (!UseLoV1 && !UseHiV1) | 
|  | return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); | 
|  |  | 
|  | SDValue V1Blend, V2Blend; | 
|  | if (UseLoV1 && UseHiV1) { | 
|  | V1Blend = | 
|  | DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); | 
|  | } else { | 
|  | // We only use half of V1 so map the usage down into the final blend mask. | 
|  | V1Blend = UseLoV1 ? LoV1 : HiV1; | 
|  | for (int i = 0; i < SplitNumElements; ++i) | 
|  | if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) | 
|  | BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); | 
|  | } | 
|  | if (UseLoV2 && UseHiV2) { | 
|  | V2Blend = | 
|  | DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); | 
|  | } else { | 
|  | // We only use half of V2 so map the usage down into the final blend mask. | 
|  | V2Blend = UseLoV2 ? LoV2 : HiV2; | 
|  | for (int i = 0; i < SplitNumElements; ++i) | 
|  | if (BlendMask[i] >= SplitNumElements) | 
|  | BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); | 
|  | } | 
|  | return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); | 
|  | }; | 
|  | SDValue Lo = HalfBlend(LoMask); | 
|  | SDValue Hi = HalfBlend(HiMask); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  | } | 
|  |  | 
|  | /// \brief Either split a vector in halves or decompose the shuffles and the | 
|  | /// blend. | 
|  | /// | 
|  | /// This is provided as a good fallback for many lowerings of non-single-input | 
|  | /// shuffles with more than one 128-bit lane. In those cases, we want to select | 
|  | /// between splitting the shuffle into 128-bit components and stitching those | 
|  | /// back together vs. extracting the single-input shuffles and blending those | 
|  | /// results. | 
|  | static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to " | 
|  | "lower single-input shuffles as it " | 
|  | "could then recurse on itself."); | 
|  | int Size = Mask.size(); | 
|  |  | 
|  | // If this can be modeled as a broadcast of two elements followed by a blend, | 
|  | // prefer that lowering. This is especially important because broadcasts can | 
|  | // often fold with memory operands. | 
|  | auto DoBothBroadcast = [&] { | 
|  | int V1BroadcastIdx = -1, V2BroadcastIdx = -1; | 
|  | for (int M : Mask) | 
|  | if (M >= Size) { | 
|  | if (V2BroadcastIdx == -1) | 
|  | V2BroadcastIdx = M - Size; | 
|  | else if (M - Size != V2BroadcastIdx) | 
|  | return false; | 
|  | } else if (M >= 0) { | 
|  | if (V1BroadcastIdx == -1) | 
|  | V1BroadcastIdx = M; | 
|  | else if (M != V1BroadcastIdx) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  | if (DoBothBroadcast()) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, | 
|  | DAG); | 
|  |  | 
|  | // If the inputs all stem from a single 128-bit lane of each input, then we | 
|  | // split them rather than blending because the split will decompose to | 
|  | // unusually few instructions. | 
|  | int LaneCount = VT.getSizeInBits() / 128; | 
|  | int LaneSize = Size / LaneCount; | 
|  | SmallBitVector LaneInputs[2]; | 
|  | LaneInputs[0].resize(LaneCount, false); | 
|  | LaneInputs[1].resize(LaneCount, false); | 
|  | for (int i = 0; i < Size; ++i) | 
|  | if (Mask[i] >= 0) | 
|  | LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; | 
|  | if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) | 
|  | return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); | 
|  |  | 
|  | // Otherwise, just fall back to decomposed shuffles and a blend. This requires | 
|  | // that the decomposed single-input shuffles don't end up here. | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Lower a vector shuffle crossing multiple 128-bit lanes as | 
|  | /// a permutation and blend of those lanes. | 
|  | /// | 
|  | /// This essentially blends the out-of-lane inputs to each lane into the lane | 
|  | /// from a permuted copy of the vector. This lowering strategy results in four | 
|  | /// instructions in the worst case for a single-input cross lane shuffle which | 
|  | /// is lower than any other fully general cross-lane shuffle strategy I'm aware | 
|  | /// of. Special cases for each particular shuffle pattern should be handled | 
|  | /// prior to trying this lowering. | 
|  | static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT, | 
|  | SDValue V1, SDValue V2, | 
|  | ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) { | 
|  | // FIXME: This should probably be generalized for 512-bit vectors as well. | 
|  | assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!"); | 
|  | int LaneSize = Mask.size() / 2; | 
|  |  | 
|  | // If there are only inputs from one 128-bit lane, splitting will in fact be | 
|  | // less expensive. The flags track whether the given lane contains an element | 
|  | // that crosses to another lane. | 
|  | bool LaneCrossing[2] = {false, false}; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) | 
|  | LaneCrossing[(Mask[i] % Size) / LaneSize] = true; | 
|  | if (!LaneCrossing[0] || !LaneCrossing[1]) | 
|  | return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | SmallVector<int, 32> FlippedBlendMask; | 
|  | for (int i = 0, Size = Mask.size(); i < Size; ++i) | 
|  | FlippedBlendMask.push_back( | 
|  | Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) | 
|  | ? Mask[i] | 
|  | : Mask[i] % LaneSize + | 
|  | (i / LaneSize) * LaneSize + Size)); | 
|  |  | 
|  | // Flip the vector, and blend the results which should now be in-lane. The | 
|  | // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and | 
|  | // 5 for the high source. The value 3 selects the high half of source 2 and | 
|  | // the value 2 selects the low half of source 2. We only use source 2 to | 
|  | // allow folding it into a memory operand. | 
|  | unsigned PERMMask = 3 | 2 << 4; | 
|  | SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT), | 
|  | V1, DAG.getConstant(PERMMask, DL, MVT::i8)); | 
|  | return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); | 
|  | } | 
|  |  | 
|  | // This now reduces to two single-input shuffles of V1 and V2 which at worst | 
|  | // will be handled by the above logic and a blend of the results, much like | 
|  | // other patterns in AVX. | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering 2-lane 128-bit shuffles. | 
|  | static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, | 
|  | SDValue V2, ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | // TODO: If minimizing size and one of the inputs is a zero vector and the | 
|  | // the zero vector has only one use, we could use a VPERM2X128 to save the | 
|  | // instruction bytes needed to explicitly generate the zero vector. | 
|  |  | 
|  | // Blends are faster and handle all the non-lane-crossing cases. | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode()); | 
|  | bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode()); | 
|  |  | 
|  | // If either input operand is a zero vector, use VPERM2X128 because its mask | 
|  | // allows us to replace the zero input with an implicit zero. | 
|  | if (!IsV1Zero && !IsV2Zero) { | 
|  | // Check for patterns which can be matched with a single insert of a 128-bit | 
|  | // subvector. | 
|  | bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}); | 
|  | if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) { | 
|  | MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), | 
|  | VT.getVectorNumElements() / 2); | 
|  | SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, | 
|  | OnlyUsesV1 ? V1 : V2, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise form a 128-bit permutation. After accounting for undefs, | 
|  | // convert the 64-bit shuffle mask selection values into 128-bit | 
|  | // selection bits by dividing the indexes by 2 and shifting into positions | 
|  | // defined by a vperm2*128 instruction's immediate control byte. | 
|  |  | 
|  | // The immediate permute control byte looks like this: | 
|  | //    [1:0] - select 128 bits from sources for low half of destination | 
|  | //    [2]   - ignore | 
|  | //    [3]   - zero low half of destination | 
|  | //    [5:4] - select 128 bits from sources for high half of destination | 
|  | //    [6]   - ignore | 
|  | //    [7]   - zero high half of destination | 
|  |  | 
|  | int MaskLO = Mask[0]; | 
|  | if (MaskLO == SM_SentinelUndef) | 
|  | MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1]; | 
|  |  | 
|  | int MaskHI = Mask[2]; | 
|  | if (MaskHI == SM_SentinelUndef) | 
|  | MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3]; | 
|  |  | 
|  | unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4; | 
|  |  | 
|  | // If either input is a zero vector, replace it with an undef input. | 
|  | // Shuffle mask values <  4 are selecting elements of V1. | 
|  | // Shuffle mask values >= 4 are selecting elements of V2. | 
|  | // Adjust each half of the permute mask by clearing the half that was | 
|  | // selecting the zero vector and setting the zero mask bit. | 
|  | if (IsV1Zero) { | 
|  | V1 = DAG.getUNDEF(VT); | 
|  | if (MaskLO < 4) | 
|  | PermMask = (PermMask & 0xf0) | 0x08; | 
|  | if (MaskHI < 4) | 
|  | PermMask = (PermMask & 0x0f) | 0x80; | 
|  | } | 
|  | if (IsV2Zero) { | 
|  | V2 = DAG.getUNDEF(VT); | 
|  | if (MaskLO >= 4) | 
|  | PermMask = (PermMask & 0xf0) | 0x08; | 
|  | if (MaskHI >= 4) | 
|  | PermMask = (PermMask & 0x0f) | 0x80; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, | 
|  | DAG.getConstant(PermMask, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | /// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then | 
|  | /// shuffling each lane. | 
|  | /// | 
|  | /// This will only succeed when the result of fixing the 128-bit lanes results | 
|  | /// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in | 
|  | /// each 128-bit lanes. This handles many cases where we can quickly blend away | 
|  | /// the lane crosses early and then use simpler shuffles within each lane. | 
|  | /// | 
|  | /// FIXME: It might be worthwhile at some point to support this without | 
|  | /// requiring the 128-bit lane-relative shuffles to be repeating, but currently | 
|  | /// in x86 only floating point has interesting non-repeating shuffles, and even | 
|  | /// those are still *marginally* more expensive. | 
|  | static SDValue lowerVectorShuffleByMerging128BitLanes( | 
|  | SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | assert(!isSingleInputShuffleMask(Mask) && | 
|  | "This is only useful with multiple inputs."); | 
|  |  | 
|  | int Size = Mask.size(); | 
|  | int LaneSize = 128 / VT.getScalarSizeInBits(); | 
|  | int NumLanes = Size / LaneSize; | 
|  | assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); | 
|  |  | 
|  | // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also | 
|  | // check whether the in-128-bit lane shuffles share a repeating pattern. | 
|  | SmallVector<int, 4> Lanes; | 
|  | Lanes.resize(NumLanes, -1); | 
|  | SmallVector<int, 4> InLaneMask; | 
|  | InLaneMask.resize(LaneSize, -1); | 
|  | for (int i = 0; i < Size; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  |  | 
|  | int j = i / LaneSize; | 
|  |  | 
|  | if (Lanes[j] < 0) { | 
|  | // First entry we've seen for this lane. | 
|  | Lanes[j] = Mask[i] / LaneSize; | 
|  | } else if (Lanes[j] != Mask[i] / LaneSize) { | 
|  | // This doesn't match the lane selected previously! | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check that within each lane we have a consistent shuffle mask. | 
|  | int k = i % LaneSize; | 
|  | if (InLaneMask[k] < 0) { | 
|  | InLaneMask[k] = Mask[i] % LaneSize; | 
|  | } else if (InLaneMask[k] != Mask[i] % LaneSize) { | 
|  | // This doesn't fit a repeating in-lane mask. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // First shuffle the lanes into place. | 
|  | MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, | 
|  | VT.getSizeInBits() / 64); | 
|  | SmallVector<int, 8> LaneMask; | 
|  | LaneMask.resize(NumLanes * 2, -1); | 
|  | for (int i = 0; i < NumLanes; ++i) | 
|  | if (Lanes[i] >= 0) { | 
|  | LaneMask[2 * i + 0] = 2*Lanes[i] + 0; | 
|  | LaneMask[2 * i + 1] = 2*Lanes[i] + 1; | 
|  | } | 
|  |  | 
|  | V1 = DAG.getBitcast(LaneVT, V1); | 
|  | V2 = DAG.getBitcast(LaneVT, V2); | 
|  | SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); | 
|  |  | 
|  | // Cast it back to the type we actually want. | 
|  | LaneShuffle = DAG.getBitcast(VT, LaneShuffle); | 
|  |  | 
|  | // Now do a simple shuffle that isn't lane crossing. | 
|  | SmallVector<int, 8> NewMask; | 
|  | NewMask.resize(Size, -1); | 
|  | for (int i = 0; i < Size; ++i) | 
|  | if (Mask[i] >= 0) | 
|  | NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; | 
|  | assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && | 
|  | "Must not introduce lane crosses at this point!"); | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); | 
|  | } | 
|  |  | 
|  | /// \brief Test whether the specified input (0 or 1) is in-place blended by the | 
|  | /// given mask. | 
|  | /// | 
|  | /// This returns true if the elements from a particular input are already in the | 
|  | /// slot required by the given mask and require no permutation. | 
|  | static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) { | 
|  | assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); | 
|  | int Size = Mask.size(); | 
|  | for (int i = 0; i < Size; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT, | 
|  | ArrayRef<int> Mask, SDValue V1, | 
|  | SDValue V2, SelectionDAG &DAG) { | 
|  |  | 
|  | // Mask for V8F64: 0/1,  8/9,  2/3,  10/11, 4/5, .. | 
|  | // Mask for V4F64; 0/1,  4/5,  2/3,  6/7.. | 
|  | assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD"); | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | bool ShufpdMask = true; | 
|  | bool CommutableMask = true; | 
|  | unsigned Immediate = 0; | 
|  | for (int i = 0; i < NumElts; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  | int Val = (i & 6) + NumElts * (i & 1); | 
|  | int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1); | 
|  | if (Mask[i] < Val ||  Mask[i] > Val + 1) | 
|  | ShufpdMask = false; | 
|  | if (Mask[i] < CommutVal ||  Mask[i] > CommutVal + 1) | 
|  | CommutableMask = false; | 
|  | Immediate |= (Mask[i] % 2) << i; | 
|  | } | 
|  | if (ShufpdMask) | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, | 
|  | DAG.getConstant(Immediate, DL, MVT::i8)); | 
|  | if (CommutableMask) | 
|  | return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, | 
|  | DAG.getConstant(Immediate, DL, MVT::i8)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 4-lane 64-bit floating point shuffles. | 
|  | /// | 
|  | /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 | 
|  | /// isn't available. | 
|  | static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); | 
|  |  | 
|  | SmallVector<int, 4> WidenedMask; | 
|  | if (canWidenShuffleElements(Mask, WidenedMask)) | 
|  | return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget, | 
|  | DAG); | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Use low duplicate instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) | 
|  | return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); | 
|  |  | 
|  | if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { | 
|  | // Non-half-crossing single input shuffles can be lowerid with an | 
|  | // interleaved permutation. | 
|  | unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | | 
|  | ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); | 
|  | return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, | 
|  | DAG.getConstant(VPERMILPMask, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // With AVX2 we have direct support for this permutation. | 
|  | if (Subtarget->hasAVX2()) | 
|  | return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  |  | 
|  | // Otherwise, fall back. | 
|  | return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | // X86 has dedicated unpack instructions that can handle specific blend | 
|  | // operations: UNPCKH and UNPCKL. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V2, V1); | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Check if the blend happens to exactly fit that of SHUFPD. | 
|  | if (SDValue Op = | 
|  | lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG)) | 
|  | return Op; | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. However, if we have AVX2 and either inputs are already in place, | 
|  | // we will be able to shuffle even across lanes the other input in a single | 
|  | // instruction so skip this pattern. | 
|  | if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || | 
|  | isShuffleMaskInputInPlace(1, Mask)))) | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // If we have AVX2 then we always want to lower with a blend because an v4 we | 
|  | // can fully permute the elements. | 
|  | if (Subtarget->hasAVX2()) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | // Otherwise fall back on generic lowering. | 
|  | return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 4-lane 64-bit integer shuffles. | 
|  | /// | 
|  | /// This routine is only called when we have AVX2 and thus a reasonable | 
|  | /// instruction set for v4i64 shuffling.. | 
|  | static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); | 
|  | assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!"); | 
|  |  | 
|  | SmallVector<int, 4> WidenedMask; | 
|  | if (canWidenShuffleElements(Mask, WidenedMask)) | 
|  | return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget, | 
|  | DAG); | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // When the shuffle is mirrored between the 128-bit lanes of the unit, we can | 
|  | // use lower latency instructions that will operate on both 128-bit lanes. | 
|  | SmallVector<int, 2> RepeatedMask; | 
|  | if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | int PSHUFDMask[] = {-1, -1, -1, -1}; | 
|  | for (int i = 0; i < 2; ++i) | 
|  | if (RepeatedMask[i] >= 0) { | 
|  | PSHUFDMask[2 * i] = 2 * RepeatedMask[i]; | 
|  | PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1; | 
|  | } | 
|  | return DAG.getBitcast( | 
|  | MVT::v4i64, | 
|  | DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, | 
|  | DAG.getBitcast(MVT::v8i32, V1), | 
|  | getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // AVX2 provides a direct instruction for permuting a single input across | 
|  | // lanes. | 
|  | if (isSingleInputShuffleMask(Mask)) | 
|  | return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V2, V1); | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. However, if we have AVX2 and either inputs are already in place, | 
|  | // we will be able to shuffle even across lanes the other input in a single | 
|  | // instruction so skip this pattern. | 
|  | if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || | 
|  | isShuffleMaskInputInPlace(1, Mask)))) | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise fall back on generic blend lowering. | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, | 
|  | Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 8-lane 32-bit floating point shuffles. | 
|  | /// | 
|  | /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 | 
|  | /// isn't available. | 
|  | static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // If the shuffle mask is repeated in each 128-bit lane, we have many more | 
|  | // options to efficiently lower the shuffle. | 
|  | SmallVector<int, 4> RepeatedMask; | 
|  | if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { | 
|  | assert(RepeatedMask.size() == 4 && | 
|  | "Repeated masks must be half the mask width!"); | 
|  |  | 
|  | // Use even/odd duplicate instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6})) | 
|  | return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7})) | 
|  | return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) | 
|  | return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, | 
|  | getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V2, V1); | 
|  |  | 
|  | // Otherwise, fall back to a SHUFPS sequence. Here it is important that we | 
|  | // have already handled any direct blends. We also need to squash the | 
|  | // repeated mask into a simulated v4f32 mask. | 
|  | for (int i = 0; i < 4; ++i) | 
|  | if (RepeatedMask[i] >= 8) | 
|  | RepeatedMask[i] -= 4; | 
|  | return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | // If we have a single input shuffle with different shuffle patterns in the | 
|  | // two 128-bit lanes use the variable mask to VPERMILPS. | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | SDValue VPermMask[8]; | 
|  | for (int i = 0; i < 8; ++i) | 
|  | VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) | 
|  | : DAG.getConstant(Mask[i], DL, MVT::i32); | 
|  | if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) | 
|  | return DAG.getNode( | 
|  | X86ISD::VPERMILPV, DL, MVT::v8f32, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask)); | 
|  |  | 
|  | if (Subtarget->hasAVX2()) | 
|  | return DAG.getNode( | 
|  | X86ISD::VPERMV, DL, MVT::v8f32, | 
|  | DAG.getBitcast(MVT::v8f32, DAG.getNode(ISD::BUILD_VECTOR, DL, | 
|  | MVT::v8i32, VPermMask)), | 
|  | V1); | 
|  |  | 
|  | // Otherwise, fall back. | 
|  | return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // If we have AVX2 then we always want to lower with a blend because at v8 we | 
|  | // can fully permute the elements. | 
|  | if (Subtarget->hasAVX2()) | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | // Otherwise fall back on generic lowering. | 
|  | return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 8-lane 32-bit integer shuffles. | 
|  | /// | 
|  | /// This routine is only called when we have AVX2 and thus a reasonable | 
|  | /// instruction set for v8i32 shuffling.. | 
|  | static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); | 
|  | assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!"); | 
|  |  | 
|  | // Whenever we can lower this as a zext, that instruction is strictly faster | 
|  | // than any alternative. It also allows us to fold memory operands into the | 
|  | // shuffle in many cases. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // If the shuffle mask is repeated in each 128-bit lane we can use more | 
|  | // efficient instructions that mirror the shuffles across the two 128-bit | 
|  | // lanes. | 
|  | SmallVector<int, 4> RepeatedMask; | 
|  | if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) { | 
|  | assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); | 
|  | if (isSingleInputShuffleMask(Mask)) | 
|  | return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, | 
|  | getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V2, V1); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V2, V1); | 
|  | } | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | // If the shuffle patterns aren't repeated but it is a single input, directly | 
|  | // generate a cross-lane VPERMD instruction. | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | SDValue VPermMask[8]; | 
|  | for (int i = 0; i < 8; ++i) | 
|  | VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) | 
|  | : DAG.getConstant(Mask[i], DL, MVT::i32); | 
|  | return DAG.getNode( | 
|  | X86ISD::VPERMV, DL, MVT::v8i32, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); | 
|  | } | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise fall back on generic blend lowering. | 
|  | return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, | 
|  | Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 16-lane 16-bit integer shuffles. | 
|  | /// | 
|  | /// This routine is only called when we have AVX2 and thus a reasonable | 
|  | /// instruction set for v16i16 shuffling.. | 
|  | static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); | 
|  | assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!"); | 
|  |  | 
|  | // Whenever we can lower this as a zext, that instruction is strictly faster | 
|  | // than any alternative. It also allows us to fold memory operands into the | 
|  | // shuffle in many cases. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | if (isShuffleEquivalent(V1, V2, Mask, | 
|  | {// First 128-bit lane: | 
|  | 0, 16, 1, 17, 2, 18, 3, 19, | 
|  | // Second 128-bit lane: | 
|  | 8, 24, 9, 25, 10, 26, 11, 27})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2); | 
|  | if (isShuffleEquivalent(V1, V2, Mask, | 
|  | {// First 128-bit lane: | 
|  | 4, 20, 5, 21, 6, 22, 7, 23, | 
|  | // Second 128-bit lane: | 
|  | 12, 28, 13, 29, 14, 30, 15, 31})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | // There are no generalized cross-lane shuffle operations available on i16 | 
|  | // element types. | 
|  | if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) | 
|  | return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | SmallVector<int, 8> RepeatedMask; | 
|  | if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { | 
|  | // As this is a single-input shuffle, the repeated mask should be | 
|  | // a strictly valid v8i16 mask that we can pass through to the v8i16 | 
|  | // lowering to handle even the v16 case. | 
|  | return lowerV8I16GeneralSingleInputVectorShuffle( | 
|  | DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | SDValue PSHUFBMask[32]; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | if (Mask[i] == -1) { | 
|  | PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int M = i < 8 ? Mask[i] : Mask[i] - 8; | 
|  | assert(M >= 0 && M < 8 && "Invalid single-input mask!"); | 
|  | PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8); | 
|  | PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8); | 
|  | } | 
|  | return DAG.getBitcast(MVT::v16i16, | 
|  | DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, | 
|  | DAG.getBitcast(MVT::v32i8, V1), | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, | 
|  | MVT::v32i8, PSHUFBMask))); | 
|  | } | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise fall back on generic lowering. | 
|  | return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 32-lane 8-bit integer shuffles. | 
|  | /// | 
|  | /// This routine is only called when we have AVX2 and thus a reasonable | 
|  | /// instruction set for v32i8 shuffling.. | 
|  | static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); | 
|  | assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!"); | 
|  |  | 
|  | // Whenever we can lower this as a zext, that instruction is strictly faster | 
|  | // than any alternative. It also allows us to fold memory operands into the | 
|  | // shuffle in many cases. | 
|  | if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2, | 
|  | Mask, Subtarget, DAG)) | 
|  | return ZExt; | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, | 
|  | Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, | 
|  | Subtarget, DAG)) | 
|  | return Blend; | 
|  |  | 
|  | // Use dedicated unpack instructions for masks that match their pattern. | 
|  | // Note that these are repeated 128-bit lane unpacks, not unpacks across all | 
|  | // 256-bit lanes. | 
|  | if (isShuffleEquivalent( | 
|  | V1, V2, Mask, | 
|  | {// First 128-bit lane: | 
|  | 0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, | 
|  | // Second 128-bit lane: | 
|  | 16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55})) | 
|  | return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2); | 
|  | if (isShuffleEquivalent( | 
|  | V1, V2, Mask, | 
|  | {// First 128-bit lane: | 
|  | 8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, | 
|  | // Second 128-bit lane: | 
|  | 24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63})) | 
|  | return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2); | 
|  |  | 
|  | // Try to use shift instructions. | 
|  | if (SDValue Shift = | 
|  | lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG)) | 
|  | return Shift; | 
|  |  | 
|  | // Try to use byte rotation instructions. | 
|  | if (SDValue Rotate = lowerVectorShuffleAsByteRotate( | 
|  | DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Rotate; | 
|  |  | 
|  | if (isSingleInputShuffleMask(Mask)) { | 
|  | // There are no generalized cross-lane shuffle operations available on i8 | 
|  | // element types. | 
|  | if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) | 
|  | return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, | 
|  | Mask, DAG); | 
|  |  | 
|  | SDValue PSHUFBMask[32]; | 
|  | for (int i = 0; i < 32; ++i) | 
|  | PSHUFBMask[i] = | 
|  | Mask[i] < 0 | 
|  | ? DAG.getUNDEF(MVT::i8) | 
|  | : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL, | 
|  | MVT::i8); | 
|  |  | 
|  | return DAG.getNode( | 
|  | X86ISD::PSHUFB, DL, MVT::v32i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)); | 
|  | } | 
|  |  | 
|  | // Try to simplify this by merging 128-bit lanes to enable a lane-based | 
|  | // shuffle. | 
|  | if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( | 
|  | DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Result; | 
|  |  | 
|  | // Otherwise fall back on generic lowering. | 
|  | return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief High-level routine to lower various 256-bit x86 vector shuffles. | 
|  | /// | 
|  | /// This routine either breaks down the specific type of a 256-bit x86 vector | 
|  | /// shuffle or splits it into two 128-bit shuffles and fuses the results back | 
|  | /// together based on the available instructions. | 
|  | static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | MVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  |  | 
|  | // If we have a single input to the zero element, insert that into V1 if we | 
|  | // can do so cheaply. | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) { | 
|  | return M >= NumElts; | 
|  | }); | 
|  |  | 
|  | if (NumV2Elements == 1 && Mask[0] >= NumElts) | 
|  | if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( | 
|  | DL, VT, V1, V2, Mask, Subtarget, DAG)) | 
|  | return Insertion; | 
|  |  | 
|  | // There is a really nice hard cut-over between AVX1 and AVX2 that means we | 
|  | // can check for those subtargets here and avoid much of the subtarget | 
|  | // querying in the per-vector-type lowering routines. With AVX1 we have | 
|  | // essentially *zero* ability to manipulate a 256-bit vector with integer | 
|  | // types. Since we'll use floating point types there eventually, just | 
|  | // immediately cast everything to a float and operate entirely in that domain. | 
|  | if (VT.isInteger() && !Subtarget->hasAVX2()) { | 
|  | int ElementBits = VT.getScalarSizeInBits(); | 
|  | if (ElementBits < 32) | 
|  | // No floating point type available, decompose into 128-bit vectors. | 
|  | return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); | 
|  |  | 
|  | MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), | 
|  | VT.getVectorNumElements()); | 
|  | V1 = DAG.getBitcast(FpVT, V1); | 
|  | V2 = DAG.getBitcast(FpVT, V2); | 
|  | return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); | 
|  | } | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::v4f64: | 
|  | return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v4i64: | 
|  | return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v8f32: | 
|  | return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v8i32: | 
|  | return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v16i16: | 
|  | return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v32i8: | 
|  | return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Not a valid 256-bit x86 vector type!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT, | 
|  | ArrayRef<int> Mask, SDValue V1, | 
|  | SDValue V2, SelectionDAG &DAG) { | 
|  |  | 
|  | assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV"); | 
|  |  | 
|  | MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); | 
|  | MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); | 
|  |  | 
|  | SmallVector<SDValue, 32>  VPermMask; | 
|  | for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) | 
|  | VPermMask.push_back(Mask[i] < 0 ? DAG.getUNDEF(MaskEltVT) : | 
|  | DAG.getConstant(Mask[i], DL, MaskEltVT)); | 
|  | SDValue MaskNode = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecVT, | 
|  | VPermMask); | 
|  | if (isSingleInputShuffleMask(Mask)) | 
|  | return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 8-lane 64-bit floating point shuffles. | 
|  | static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); | 
|  |  | 
|  | if (SDValue Unpck = | 
|  | lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG)) | 
|  | return Unpck; | 
|  |  | 
|  | return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 16-lane 32-bit floating point shuffles. | 
|  | static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); | 
|  |  | 
|  | if (SDValue Unpck = | 
|  | lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG)) | 
|  | return Unpck; | 
|  |  | 
|  | return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 8-lane 64-bit integer shuffles. | 
|  | static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); | 
|  |  | 
|  | if (SDValue Unpck = | 
|  | lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG)) | 
|  | return Unpck; | 
|  |  | 
|  | return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 16-lane 32-bit integer shuffles. | 
|  | static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); | 
|  |  | 
|  | if (SDValue Unpck = | 
|  | lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG)) | 
|  | return Unpck; | 
|  |  | 
|  | return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 32-lane 16-bit integer shuffles. | 
|  | static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); | 
|  | assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); | 
|  |  | 
|  | return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief Handle lowering of 64-lane 8-bit integer shuffles. | 
|  | static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); | 
|  | assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); | 
|  | assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); | 
|  |  | 
|  | // FIXME: Implement direct support for this type! | 
|  | return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | /// \brief High-level routine to lower various 512-bit x86 vector shuffles. | 
|  | /// | 
|  | /// This routine either breaks down the specific type of a 512-bit x86 vector | 
|  | /// shuffle or splits it into two 256-bit shuffles and fuses the results back | 
|  | /// together based on the available instructions. | 
|  | static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | MVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Subtarget->hasAVX512() && | 
|  | "Cannot lower 512-bit vectors w/ basic ISA!"); | 
|  |  | 
|  | // Check for being able to broadcast a single element. | 
|  | if (SDValue Broadcast = | 
|  | lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG)) | 
|  | return Broadcast; | 
|  |  | 
|  | // Dispatch to each element type for lowering. If we don't have supprot for | 
|  | // specific element type shuffles at 512 bits, immediately split them and | 
|  | // lower them. Each lowering routine of a given type is allowed to assume that | 
|  | // the requisite ISA extensions for that element type are available. | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::v8f64: | 
|  | return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v16f32: | 
|  | return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v8i64: | 
|  | return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v16i32: | 
|  | return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | case MVT::v32i16: | 
|  | if (Subtarget->hasBWI()) | 
|  | return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | break; | 
|  | case MVT::v64i8: | 
|  | if (Subtarget->hasBWI()) | 
|  | return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Not a valid 512-bit x86 vector type!"); | 
|  | } | 
|  |  | 
|  | // Otherwise fall back on splitting. | 
|  | return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); | 
|  | } | 
|  |  | 
|  | // Lower vXi1 vector shuffles. | 
|  | // There is no a dedicated instruction on AVX-512 that shuffles the masks. | 
|  | // The only way to shuffle bits is to sign-extend the mask vector to SIMD | 
|  | // vector, shuffle and then truncate it back. | 
|  | static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, | 
|  | MVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | assert(Subtarget->hasAVX512() && | 
|  | "Cannot lower 512-bit vectors w/o basic ISA!"); | 
|  | EVT ExtVT; | 
|  | switch (VT.SimpleTy) { | 
|  | default: | 
|  | assert(false && "Expected a vector of i1 elements"); | 
|  | break; | 
|  | case MVT::v2i1: | 
|  | ExtVT = MVT::v2i64; | 
|  | break; | 
|  | case MVT::v4i1: | 
|  | ExtVT = MVT::v4i32; | 
|  | break; | 
|  | case MVT::v8i1: | 
|  | ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL | 
|  | break; | 
|  | case MVT::v16i1: | 
|  | ExtVT = MVT::v16i32; | 
|  | break; | 
|  | case MVT::v32i1: | 
|  | ExtVT = MVT::v32i16; | 
|  | break; | 
|  | case MVT::v64i1: | 
|  | ExtVT = MVT::v64i8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | V1 = getZeroVector(ExtVT, Subtarget, DAG, DL); | 
|  | else if (ISD::isBuildVectorAllOnes(V1.getNode())) | 
|  | V1 = getOnesVector(ExtVT, Subtarget, DAG, DL); | 
|  | else | 
|  | V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1); | 
|  |  | 
|  | if (V2.isUndef()) | 
|  | V2 = DAG.getUNDEF(ExtVT); | 
|  | else if (ISD::isBuildVectorAllZeros(V2.getNode())) | 
|  | V2 = getZeroVector(ExtVT, Subtarget, DAG, DL); | 
|  | else if (ISD::isBuildVectorAllOnes(V2.getNode())) | 
|  | V2 = getOnesVector(ExtVT, Subtarget, DAG, DL); | 
|  | else | 
|  | V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, | 
|  | DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask)); | 
|  | } | 
|  | /// \brief Top-level lowering for x86 vector shuffles. | 
|  | /// | 
|  | /// This handles decomposition, canonicalization, and lowering of all x86 | 
|  | /// vector shuffles. Most of the specific lowering strategies are encapsulated | 
|  | /// above in helper routines. The canonicalization attempts to widen shuffles | 
|  | /// to involve fewer lanes of wider elements, consolidate symmetric patterns | 
|  | /// s.t. only one of the two inputs needs to be tested, etc. | 
|  | static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDLoc dl(Op); | 
|  | bool Is1BitVector = (VT.getScalarType() == MVT::i1); | 
|  |  | 
|  | assert((VT.getSizeInBits() != 64 || Is1BitVector) && | 
|  | "Can't lower MMX shuffles"); | 
|  |  | 
|  | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  | if (V1IsUndef && V2IsUndef) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // When we create a shuffle node we put the UNDEF node to second operand, | 
|  | // but in some cases the first operand may be transformed to UNDEF. | 
|  | // In this case we should just commute the node. | 
|  | if (V1IsUndef) | 
|  | return DAG.getCommutedVectorShuffle(*SVOp); | 
|  |  | 
|  | // Check for non-undef masks pointing at an undef vector and make the masks | 
|  | // undef as well. This makes it easier to match the shuffle based solely on | 
|  | // the mask. | 
|  | if (V2IsUndef) | 
|  | for (int M : Mask) | 
|  | if (M >= NumElements) { | 
|  | SmallVector<int, 8> NewMask(Mask.begin(), Mask.end()); | 
|  | for (int &M : NewMask) | 
|  | if (M >= NumElements) | 
|  | M = -1; | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask); | 
|  | } | 
|  |  | 
|  | // We actually see shuffles that are entirely re-arrangements of a set of | 
|  | // zero inputs. This mostly happens while decomposing complex shuffles into | 
|  | // simple ones. Directly lower these as a buildvector of zeros. | 
|  | SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); | 
|  | if (Zeroable.all()) | 
|  | return getZeroVector(VT, Subtarget, DAG, dl); | 
|  |  | 
|  | // Try to collapse shuffles into using a vector type with fewer elements but | 
|  | // wider element types. We cap this to not form integers or floating point | 
|  | // elements wider than 64 bits, but it might be interesting to form i128 | 
|  | // integers to handle flipping the low and high halves of AVX 256-bit vectors. | 
|  | SmallVector<int, 16> WidenedMask; | 
|  | if (VT.getScalarSizeInBits() < 64 && !Is1BitVector && | 
|  | canWidenShuffleElements(Mask, WidenedMask)) { | 
|  | MVT NewEltVT = VT.isFloatingPoint() | 
|  | ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) | 
|  | : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); | 
|  | MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); | 
|  | // Make sure that the new vector type is legal. For example, v2f64 isn't | 
|  | // legal on SSE1. | 
|  | if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { | 
|  | V1 = DAG.getBitcast(NewVT, V1); | 
|  | V2 = DAG.getBitcast(NewVT, V2); | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0; | 
|  | for (int M : SVOp->getMask()) | 
|  | if (M < 0) | 
|  | ++NumUndefElements; | 
|  | else if (M < NumElements) | 
|  | ++NumV1Elements; | 
|  | else | 
|  | ++NumV2Elements; | 
|  |  | 
|  | // Commute the shuffle as needed such that more elements come from V1 than | 
|  | // V2. This allows us to match the shuffle pattern strictly on how many | 
|  | // elements come from V1 without handling the symmetric cases. | 
|  | if (NumV2Elements > NumV1Elements) | 
|  | return DAG.getCommutedVectorShuffle(*SVOp); | 
|  |  | 
|  | // When the number of V1 and V2 elements are the same, try to minimize the | 
|  | // number of uses of V2 in the low half of the vector. When that is tied, | 
|  | // ensure that the sum of indices for V1 is equal to or lower than the sum | 
|  | // indices for V2. When those are equal, try to ensure that the number of odd | 
|  | // indices for V1 is lower than the number of odd indices for V2. | 
|  | if (NumV1Elements == NumV2Elements) { | 
|  | int LowV1Elements = 0, LowV2Elements = 0; | 
|  | for (int M : SVOp->getMask().slice(0, NumElements / 2)) | 
|  | if (M >= NumElements) | 
|  | ++LowV2Elements; | 
|  | else if (M >= 0) | 
|  | ++LowV1Elements; | 
|  | if (LowV2Elements > LowV1Elements) { | 
|  | return DAG.getCommutedVectorShuffle(*SVOp); | 
|  | } else if (LowV2Elements == LowV1Elements) { | 
|  | int SumV1Indices = 0, SumV2Indices = 0; | 
|  | for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) | 
|  | if (SVOp->getMask()[i] >= NumElements) | 
|  | SumV2Indices += i; | 
|  | else if (SVOp->getMask()[i] >= 0) | 
|  | SumV1Indices += i; | 
|  | if (SumV2Indices < SumV1Indices) { | 
|  | return DAG.getCommutedVectorShuffle(*SVOp); | 
|  | } else if (SumV2Indices == SumV1Indices) { | 
|  | int NumV1OddIndices = 0, NumV2OddIndices = 0; | 
|  | for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) | 
|  | if (SVOp->getMask()[i] >= NumElements) | 
|  | NumV2OddIndices += i % 2; | 
|  | else if (SVOp->getMask()[i] >= 0) | 
|  | NumV1OddIndices += i % 2; | 
|  | if (NumV2OddIndices < NumV1OddIndices) | 
|  | return DAG.getCommutedVectorShuffle(*SVOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each vector width, delegate to a specialized lowering routine. | 
|  | if (VT.getSizeInBits() == 128) | 
|  | return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); | 
|  |  | 
|  | if (VT.getSizeInBits() == 256) | 
|  | return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); | 
|  |  | 
|  | if (VT.getSizeInBits() == 512) | 
|  | return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); | 
|  |  | 
|  | if (Is1BitVector) | 
|  | return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); | 
|  | llvm_unreachable("Unimplemented!"); | 
|  | } | 
|  |  | 
|  | // This function assumes its argument is a BUILD_VECTOR of constants or | 
|  | // undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is | 
|  | // true. | 
|  | static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector, | 
|  | unsigned &MaskValue) { | 
|  | MaskValue = 0; | 
|  | unsigned NumElems = BuildVector->getNumOperands(); | 
|  | // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. | 
|  | unsigned NumLanes = (NumElems - 1) / 8 + 1; | 
|  | unsigned NumElemsInLane = NumElems / NumLanes; | 
|  |  | 
|  | // Blend for v16i16 should be symmetric for the both lanes. | 
|  | for (unsigned i = 0; i < NumElemsInLane; ++i) { | 
|  | SDValue EltCond = BuildVector->getOperand(i); | 
|  | SDValue SndLaneEltCond = | 
|  | (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond; | 
|  |  | 
|  | int Lane1Cond = -1, Lane2Cond = -1; | 
|  | if (isa<ConstantSDNode>(EltCond)) | 
|  | Lane1Cond = !isZero(EltCond); | 
|  | if (isa<ConstantSDNode>(SndLaneEltCond)) | 
|  | Lane2Cond = !isZero(SndLaneEltCond); | 
|  |  | 
|  | if (Lane1Cond == Lane2Cond || Lane2Cond < 0) | 
|  | // Lane1Cond != 0, means we want the first argument. | 
|  | // Lane1Cond == 0, means we want the second argument. | 
|  | // The encoding of this argument is 0 for the first argument, 1 | 
|  | // for the second. Therefore, invert the condition. | 
|  | MaskValue |= !Lane1Cond << i; | 
|  | else if (Lane1Cond < 0) | 
|  | MaskValue |= !Lane2Cond << i; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Try to lower a VSELECT instruction to a vector shuffle. | 
|  | static SDValue lowerVSELECTtoVectorShuffle(SDValue Op, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue Cond = Op.getOperand(0); | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) | 
|  | return SDValue(); | 
|  | auto *CondBV = cast<BuildVectorSDNode>(Cond); | 
|  |  | 
|  | // Only non-legal VSELECTs reach this lowering, convert those into generic | 
|  | // shuffles and re-use the shuffle lowering path for blends. | 
|  | SmallVector<int, 32> Mask; | 
|  | for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) { | 
|  | SDValue CondElt = CondBV->getOperand(i); | 
|  | Mask.push_back( | 
|  | isa<ConstantSDNode>(CondElt) ? i + (isZero(CondElt) ? Size : 0) : -1); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | // A vselect where all conditions and data are constants can be optimized into | 
|  | // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to lower this to a blend-style vector shuffle. This can handle all | 
|  | // constant condition cases. | 
|  | if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG)) | 
|  | return BlendOp; | 
|  |  | 
|  | // Variable blends are only legal from SSE4.1 onward. | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only some types will be legal on some subtargets. If we can emit a legal | 
|  | // VSELECT-matching blend, return Op, and but if we need to expand, return | 
|  | // a null value. | 
|  | switch (Op.getSimpleValueType().SimpleTy) { | 
|  | default: | 
|  | // Most of the vector types have blends past SSE4.1. | 
|  | return Op; | 
|  |  | 
|  | case MVT::v32i8: | 
|  | // The byte blends for AVX vectors were introduced only in AVX2. | 
|  | if (Subtarget->hasAVX2()) | 
|  | return Op; | 
|  |  | 
|  | return SDValue(); | 
|  |  | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i16: | 
|  | // AVX-512 BWI and VLX features support VSELECT with i16 elements. | 
|  | if (Subtarget->hasBWI() && Subtarget->hasVLX()) | 
|  | return Op; | 
|  |  | 
|  | // FIXME: We should custom lower this by fixing the condition and using i8 | 
|  | // blends. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.getSizeInBits() == 8) { | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | // If Idx is 0, it's cheaper to do a move instead of a pextrw. | 
|  | if (Idx == 0) | 
|  | return DAG.getNode( | 
|  | ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), | 
|  | Op.getOperand(1))); | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::f32) { | 
|  | // EXTRACTPS outputs to a GPR32 register which will require a movd to copy | 
|  | // the result back to FR32 register. It's only worth matching if the | 
|  | // result has a single use which is a store or a bitcast to i32.  And in | 
|  | // the case of a store, it's not worth it if the index is a constant 0, | 
|  | // because a MOVSSmr can be used instead, which is smaller and faster. | 
|  | if (!Op.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | if ((User->getOpcode() != ISD::STORE || | 
|  | (isa<ConstantSDNode>(Op.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && | 
|  | (User->getOpcode() != ISD::BITCAST || | 
|  | User->getValueType(0) != MVT::i32)) | 
|  | return SDValue(); | 
|  | SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getBitcast(MVT::f32, Extract); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i32 || VT == MVT::i64) { | 
|  | // ExtractPS/pextrq works with constant index. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Extract one bit from mask vector, like v16i1 or v8i1. | 
|  | /// AVX-512 feature. | 
|  | SDValue | 
|  | X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDLoc dl(Vec); | 
|  | MVT VecVT = Vec.getSimpleValueType(); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | MVT EltVT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector"); | 
|  | assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) && | 
|  | "Unexpected vector type in ExtractBitFromMaskVector"); | 
|  |  | 
|  | // variable index can't be handled in mask registers, | 
|  | // extend vector to VR512 | 
|  | if (!isa<ConstantSDNode>(Idx)) { | 
|  | MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32); | 
|  | SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | ExtVT.getVectorElementType(), Ext, Idx); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); | 
|  | } | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | const TargetRegisterClass* rc = getRegClassFor(VecVT); | 
|  | if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8)) | 
|  | rc = getRegClassFor(MVT::v16i1); | 
|  | unsigned MaxSift = rc->getSize()*8 - 1; | 
|  | Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec, | 
|  | DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8)); | 
|  | Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec, | 
|  | DAG.getConstant(MaxSift, dl, MVT::i8)); | 
|  | return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | MVT VecVT = Vec.getSimpleValueType(); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  |  | 
|  | if (Op.getSimpleValueType() == MVT::i1) | 
|  | return ExtractBitFromMaskVector(Op, DAG); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Idx)) { | 
|  | if (VecVT.is512BitVector() || | 
|  | (VecVT.is256BitVector() && Subtarget->hasInt256() && | 
|  | VecVT.getVectorElementType().getSizeInBits() == 32)) { | 
|  |  | 
|  | MVT MaskEltVT = | 
|  | MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits()); | 
|  | MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() / | 
|  | MaskEltVT.getSizeInBits()); | 
|  |  | 
|  | Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT, | 
|  | getZeroVector(MaskVT, Subtarget, DAG, dl), Idx, | 
|  | DAG.getConstant(0, dl, PtrVT)); | 
|  | SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm, | 
|  | DAG.getConstant(0, dl, PtrVT)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If this is a 256-bit vector result, first extract the 128-bit vector and | 
|  | // then extract the element from the 128-bit vector. | 
|  | if (VecVT.is256BitVector() || VecVT.is512BitVector()) { | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | // Get the 128-bit vector. | 
|  | Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); | 
|  | MVT EltVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); | 
|  |  | 
|  | //if (IdxVal >= NumElems/2) | 
|  | //  IdxVal -= NumElems/2; | 
|  | IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk; | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, | 
|  | DAG.getConstant(IdxVal, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | assert(VecVT.is128BitVector() && "Unexpected vector length"); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) | 
|  | if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) | 
|  | return Res; | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | // TODO: handle v16i8. | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getBitcast(MVT::v4i32, Vec), | 
|  | Op.getOperand(1))); | 
|  | // Transform it so it match pextrw which produces a 32-bit result. | 
|  | MVT EltVT = MVT::i32; | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 32) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // SHUFPS the element to the lowest double word, then movss. | 
|  | int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getSimpleValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 64) { | 
|  | // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b | 
|  | // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught | 
|  | //        to match extract_elt for f64. | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // UNPCKHPD the element to the lowest double word, then movsd. | 
|  | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored | 
|  | // to a f64mem, the whole operation is folded into a single MOVHPDmr. | 
|  | int Mask[2] = { 1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getSimpleValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Insert one bit to mask vector, like v16i1 or v8i1. | 
|  | /// AVX-512 feature. | 
|  | SDValue | 
|  | X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Elt = Op.getOperand(1); | 
|  | SDValue Idx = Op.getOperand(2); | 
|  | MVT VecVT = Vec.getSimpleValueType(); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Idx)) { | 
|  | // Non constant index. Extend source and destination, | 
|  | // insert element and then truncate the result. | 
|  | MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32); | 
|  | MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32); | 
|  | SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec), | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); | 
|  | } | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt); | 
|  | if (IdxVal) | 
|  | EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec, | 
|  | DAG.getConstant(IdxVal, dl, MVT::i8)); | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return EltInVec; | 
|  | return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | if (EltVT == MVT::i1) | 
|  | return InsertBitToMaskVector(Op, DAG); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  | if (!isa<ConstantSDNode>(N2)) | 
|  | return SDValue(); | 
|  | auto *N2C = cast<ConstantSDNode>(N2); | 
|  | unsigned IdxVal = N2C->getZExtValue(); | 
|  |  | 
|  | // If the vector is wider than 128 bits, extract the 128-bit subvector, insert | 
|  | // into that, and then insert the subvector back into the result. | 
|  | if (VT.is256BitVector() || VT.is512BitVector()) { | 
|  | // With a 256-bit vector, we can insert into the zero element efficiently | 
|  | // using a blend if we have AVX or AVX2 and the right data type. | 
|  | if (VT.is256BitVector() && IdxVal == 0) { | 
|  | // TODO: It is worthwhile to cast integer to floating point and back | 
|  | // and incur a domain crossing penalty if that's what we'll end up | 
|  | // doing anyway after extracting to a 128-bit vector. | 
|  | if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) || | 
|  | (Subtarget->hasAVX2() && EltVT == MVT::i32)) { | 
|  | SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1); | 
|  | N2 = DAG.getIntPtrConstant(1, dl); | 
|  | return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the desired 128-bit vector chunk. | 
|  | SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); | 
|  |  | 
|  | // Insert the element into the desired chunk. | 
|  | unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); | 
|  | unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128; | 
|  |  | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, | 
|  | DAG.getConstant(IdxIn128, dl, MVT::i32)); | 
|  |  | 
|  | // Insert the changed part back into the bigger vector | 
|  | return Insert128BitVector(N0, V, IdxVal, DAG, dl); | 
|  | } | 
|  | assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) { | 
|  | unsigned Opc; | 
|  | if (VT == MVT::v8i16) { | 
|  | Opc = X86ISD::PINSRW; | 
|  | } else { | 
|  | assert(VT == MVT::v16i8); | 
|  | Opc = X86ISD::PINSRB; | 
|  | } | 
|  |  | 
|  | // Transform it so it match pinsr{b,w} which expects a GR32 as its second | 
|  | // argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(IdxVal, dl); | 
|  | return DAG.getNode(Opc, dl, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if (EltVT == MVT::f32) { | 
|  | // Bits [7:6] of the constant are the source select. This will always be | 
|  | //   zero here. The DAG Combiner may combine an extract_elt index into | 
|  | //   these bits. For example (insert (extract, 3), 2) could be matched by | 
|  | //   putting the '3' into bits [7:6] of X86ISD::INSERTPS. | 
|  | // Bits [5:4] of the constant are the destination select. This is the | 
|  | //   value of the incoming immediate. | 
|  | // Bits [3:0] of the constant are the zero mask. The DAG Combiner may | 
|  | //   combine either bitwise AND or insert of float 0.0 to set these bits. | 
|  |  | 
|  | bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize(); | 
|  | if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) { | 
|  | // If this is an insertion of 32-bits into the low 32-bits of | 
|  | // a vector, we prefer to generate a blend with immediate rather | 
|  | // than an insertps. Blends are simpler operations in hardware and so | 
|  | // will always have equal or better performance than insertps. | 
|  | // But if optimizing for size and there's a load folding opportunity, | 
|  | // generate insertps because blendps does not have a 32-bit memory | 
|  | // operand form. | 
|  | N2 = DAG.getIntPtrConstant(1, dl); | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); | 
|  | return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2); | 
|  | } | 
|  | N2 = DAG.getIntPtrConstant(IdxVal << 4, dl); | 
|  | // Create this as a scalar to vector.. | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if (EltVT == MVT::i32 || EltVT == MVT::i64) { | 
|  | // PINSR* works with constant index. | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EltVT == MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | if (EltVT.getSizeInBits() == 16) { | 
|  | // Transform it so it match pinsrw which expects a 16-bit value in a GR32 | 
|  | // as its second argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(IdxVal, dl); | 
|  | return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT OpVT = Op.getSimpleValueType(); | 
|  |  | 
|  | // If this is a 256-bit vector result, first insert into a 128-bit | 
|  | // vector and then insert into the 256-bit vector. | 
|  | if (!OpVT.is128BitVector()) { | 
|  | // Insert into a 128-bit vector. | 
|  | unsigned SizeFactor = OpVT.getSizeInBits()/128; | 
|  | MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), | 
|  | OpVT.getVectorNumElements() / SizeFactor); | 
|  |  | 
|  | Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); | 
|  |  | 
|  | // Insert the 128-bit vector. | 
|  | return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); | 
|  | } | 
|  |  | 
|  | if (OpVT == MVT::v1i64 && | 
|  | Op.getOperand(0).getValueType() == MVT::i64) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); | 
|  |  | 
|  | SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); | 
|  | assert(OpVT.is128BitVector() && "Expected an SSE type!"); | 
|  | return DAG.getBitcast( | 
|  | OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt)); | 
|  | } | 
|  |  | 
|  | // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in | 
|  | // a simple subregister reference or explicit instructions to grab | 
|  | // upper bits of a vector. | 
|  | static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | SDValue In =  Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | MVT ResVT   = Op.getSimpleValueType(); | 
|  | MVT InVT    = In.getSimpleValueType(); | 
|  |  | 
|  | if (Subtarget->hasFp256()) { | 
|  | if (ResVT.is128BitVector() && | 
|  | (InVT.is256BitVector() || InVT.is512BitVector()) && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | return Extract128BitVector(In, IdxVal, DAG, dl); | 
|  | } | 
|  | if (ResVT.is256BitVector() && InVT.is512BitVector() && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | return Extract256BitVector(In, IdxVal, DAG, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a | 
|  | // simple superregister reference or explicit instructions to insert | 
|  | // the upper bits of a vector. | 
|  | static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (!Subtarget->hasAVX()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue SubVec = Op.getOperand(1); | 
|  | SDValue Idx = Op.getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | MVT OpVT = Op.getSimpleValueType(); | 
|  | MVT SubVecVT = SubVec.getSimpleValueType(); | 
|  |  | 
|  | // Fold two 16-byte subvector loads into one 32-byte load: | 
|  | // (insert_subvector (insert_subvector undef, (load addr), 0), | 
|  | //                   (load addr + 16), Elts/2) | 
|  | // --> load32 addr | 
|  | if ((IdxVal == OpVT.getVectorNumElements() / 2) && | 
|  | Vec.getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | OpVT.is256BitVector() && SubVecVT.is128BitVector()) { | 
|  | auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2)); | 
|  | if (Idx2 && Idx2->getZExtValue() == 0) { | 
|  | SDValue SubVec2 = Vec.getOperand(1); | 
|  | // If needed, look through a bitcast to get to the load. | 
|  | if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST) | 
|  | SubVec2 = SubVec2.getOperand(0); | 
|  |  | 
|  | if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) { | 
|  | bool Fast; | 
|  | unsigned Alignment = FirstLd->getAlignment(); | 
|  | unsigned AS = FirstLd->getAddressSpace(); | 
|  | const X86TargetLowering *TLI = Subtarget->getTargetLowering(); | 
|  | if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), | 
|  | OpVT, AS, Alignment, &Fast) && Fast) { | 
|  | SDValue Ops[] = { SubVec2, SubVec }; | 
|  | if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false)) | 
|  | return Ld; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((OpVT.is256BitVector() || OpVT.is512BitVector()) && | 
|  | SubVecVT.is128BitVector()) | 
|  | return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); | 
|  |  | 
|  | if (OpVT.is512BitVector() && SubVecVT.is256BitVector()) | 
|  | return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl); | 
|  |  | 
|  | if (OpVT.getVectorElementType() == MVT::i1) { | 
|  | if (IdxVal == 0  && Vec.getOpcode() == ISD::UNDEF) // the operation is legal | 
|  | return Op; | 
|  | SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); | 
|  | SDValue Undef = DAG.getUNDEF(OpVT); | 
|  | unsigned NumElems = OpVT.getVectorNumElements(); | 
|  | SDValue ShiftBits = DAG.getConstant(NumElems/2, dl, MVT::i8); | 
|  |  | 
|  | if (IdxVal == OpVT.getVectorNumElements() / 2) { | 
|  | // Zero upper bits of the Vec | 
|  | Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); | 
|  | Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); | 
|  |  | 
|  | SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, | 
|  | SubVec, ZeroIdx); | 
|  | Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits); | 
|  | return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2); | 
|  | } | 
|  | if (IdxVal == 0) { | 
|  | SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, | 
|  | SubVec, ZeroIdx); | 
|  | // Zero upper bits of the Vec2 | 
|  | Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits); | 
|  | Vec2 = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec2, ShiftBits); | 
|  | // Zero lower bits of the Vec | 
|  | Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); | 
|  | Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); | 
|  | // Merge them together | 
|  | return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
|  | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
|  | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
|  | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
|  | // be used to form addressing mode. These wrapped nodes will be selected | 
|  | // into MOV32ri. | 
|  | SDValue | 
|  | X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = DAG.getTarget().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getTargetConstantPool( | 
|  | CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag); | 
|  | SDLoc DL(CP); | 
|  | Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) { | 
|  | Result = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = DAG.getTarget().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); | 
|  | SDLoc DL(JT); | 
|  | Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) | 
|  | Result = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = DAG.getTarget().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) { | 
|  | if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) | 
|  | OpFlag = X86II::MO_GOTPCREL; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else if (Subtarget->isPICStyleGOT()) { | 
|  | OpFlag = X86II::MO_GOT; | 
|  | } else if (Subtarget->isPICStyleStubPIC()) { | 
|  | OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; | 
|  | } else if (Subtarget->isPICStyleStubNoDynamic()) { | 
|  | OpFlag = X86II::MO_DARWIN_NONLAZY; | 
|  | } | 
|  |  | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ && | 
|  | !Subtarget->is64Bit()) { | 
|  | Result = | 
|  | DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); | 
|  | } | 
|  |  | 
|  | // For symbols that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlag)) | 
|  | Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction()), | 
|  | false, false, false, 0); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Create the TargetBlockAddressAddress node. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyBlockAddressReference(); | 
|  | CodeModel::Model M = DAG.getTarget().getCodeModel(); | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); | 
|  | SDLoc dl(Op); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, | 
|  | int64_t Offset, SelectionDAG &DAG) const { | 
|  | // Create the TargetGlobalAddress node, folding in the constant | 
|  | // offset if it is legal. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()); | 
|  | CodeModel::Model M = DAG.getTarget().getCodeModel(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Result; | 
|  | if (OpFlags == X86II::MO_NO_FLAG && | 
|  | X86::isOffsetSuitableForCodeModel(Offset, M)) { | 
|  | // A direct static reference to a global. | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); | 
|  | Offset = 0; | 
|  | } else { | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); | 
|  | } | 
|  |  | 
|  | // For globals that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlags)) | 
|  | Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction()), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // If there was a non-zero offset that we didn't fold, create an explicit | 
|  | // addition for it. | 
|  | if (Offset != 0) | 
|  | Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, | 
|  | DAG.getConstant(Offset, dl, PtrVT)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
|  | return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, | 
|  | SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, | 
|  | unsigned char OperandFlags, bool LocalDynamic = false) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDLoc dl(GA); | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), | 
|  | OperandFlags); | 
|  |  | 
|  | X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR | 
|  | : X86ISD::TLSADDR; | 
|  |  | 
|  | if (InFlag) { | 
|  | SDValue Ops[] = { Chain,  TGA, *InFlag }; | 
|  | Chain = DAG.getNode(CallType, dl, NodeTys, Ops); | 
|  | } else { | 
|  | SDValue Ops[]  = { Chain, TGA }; | 
|  | Chain = DAG.getNode(CallType, dl, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MFI->setAdjustsStack(true); | 
|  | MFI->setHasCalls(true); | 
|  |  | 
|  | SDValue Flag = Chain.getValue(1); | 
|  | return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | SDValue InFlag; | 
|  | SDLoc dl(GA);  // ? function entry point might be better | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, | 
|  | X86::RAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG, | 
|  | const EVT PtrVT, | 
|  | bool is64Bit) { | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | // Get the start address of the TLS block for this module. | 
|  | X86MachineFunctionInfo* MFI = DAG.getMachineFunction() | 
|  | .getInfo<X86MachineFunctionInfo>(); | 
|  | MFI->incNumLocalDynamicTLSAccesses(); | 
|  |  | 
|  | SDValue Base; | 
|  | if (is64Bit) { | 
|  | Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, | 
|  | X86II::MO_TLSLD, /*LocalDynamic=*/true); | 
|  | } else { | 
|  | SDValue InFlag; | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, | 
|  | X86II::MO_TLSLDM, /*LocalDynamic=*/true); | 
|  | } | 
|  |  | 
|  | // Note: the CleanupLocalDynamicTLSPass will remove redundant computations | 
|  | // of Base. | 
|  |  | 
|  | // Build x@dtpoff. | 
|  | unsigned char OperandFlags = X86II::MO_DTPOFF; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | // Add x@dtpoff with the base. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. | 
|  | static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT, TLSModel::Model model, | 
|  | bool is64Bit, bool isPIC) { | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). | 
|  | Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), | 
|  | is64Bit ? 257 : 256)); | 
|  |  | 
|  | SDValue ThreadPointer = | 
|  | DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl), | 
|  | MachinePointerInfo(Ptr), false, false, false, 0); | 
|  |  | 
|  | unsigned char OperandFlags = 0; | 
|  | // Most TLS accesses are not RIP relative, even on x86-64.  One exception is | 
|  | // initialexec. | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | if (model == TLSModel::LocalExec) { | 
|  | OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; | 
|  | } else if (model == TLSModel::InitialExec) { | 
|  | if (is64Bit) { | 
|  | OperandFlags = X86II::MO_GOTTPOFF; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else { | 
|  | OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unexpected model"); | 
|  | } | 
|  |  | 
|  | // emit "addl x@ntpoff,%eax" (local exec) | 
|  | // or "addl x@indntpoff,%eax" (initial exec) | 
|  | // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) | 
|  | SDValue TGA = | 
|  | DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | if (model == TLSModel::InitialExec) { | 
|  | if (isPIC && !is64Bit) { | 
|  | Offset = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), | 
|  | Offset); | 
|  | } | 
|  |  | 
|  | Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction()), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | if (Subtarget->isTargetELF()) { | 
|  | if (DAG.getTarget().Options.EmulatedTLS) | 
|  | return LowerToTLSEmulatedModel(GA, DAG); | 
|  | TLSModel::Model model = DAG.getTarget().getTLSModel(GV); | 
|  | switch (model) { | 
|  | case TLSModel::GeneralDynamic: | 
|  | if (Subtarget->is64Bit()) | 
|  | return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT); | 
|  | return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT); | 
|  | case TLSModel::LocalDynamic: | 
|  | return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT, | 
|  | Subtarget->is64Bit()); | 
|  | case TLSModel::InitialExec: | 
|  | case TLSModel::LocalExec: | 
|  | return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget->is64Bit(), | 
|  | DAG.getTarget().getRelocationModel() == | 
|  | Reloc::PIC_); | 
|  | } | 
|  | llvm_unreachable("Unknown TLS model."); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin only has one model of TLS.  Lower to that. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? | 
|  | X86ISD::WrapperRIP : X86ISD::Wrapper; | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) && | 
|  | !Subtarget->is64Bit(); | 
|  | if (PIC32) | 
|  | OpFlag = X86II::MO_TLVP_PIC_BASE; | 
|  | else | 
|  | OpFlag = X86II::MO_TLVP; | 
|  | SDLoc DL(Op); | 
|  | SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OpFlag); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result); | 
|  |  | 
|  | // With PIC32, the address is actually $g + Offset. | 
|  | if (PIC32) | 
|  | Offset = DAG.getNode(ISD::ADD, DL, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), | 
|  | Offset); | 
|  |  | 
|  | // Lowering the machine isd will make sure everything is in the right | 
|  | // location. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Args[] = { Chain, Offset }; | 
|  | Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); | 
|  |  | 
|  | // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setAdjustsStack(true); | 
|  |  | 
|  | // And our return value (tls address) is in the standard call return value | 
|  | // location. | 
|  | unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1)); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetKnownWindowsMSVC() || | 
|  | Subtarget->isTargetWindowsGNU()) { | 
|  | // Just use the implicit TLS architecture | 
|  | // Need to generate someting similar to: | 
|  | //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage | 
|  | //                                  ; from TEB | 
|  | //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime) | 
|  | //   mov     rcx, qword [rdx+rcx*8] | 
|  | //   mov     eax, .tls$:tlsvar | 
|  | //   [rax+rcx] contains the address | 
|  | // Windows 64bit: gs:0x58 | 
|  | // Windows 32bit: fs:__tls_array | 
|  |  | 
|  | SDLoc dl(GA); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  |  | 
|  | // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or | 
|  | // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly | 
|  | // use its literal value of 0x2C. | 
|  | Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() | 
|  | ? Type::getInt8PtrTy(*DAG.getContext(), | 
|  | 256) | 
|  | : Type::getInt32PtrTy(*DAG.getContext(), | 
|  | 257)); | 
|  |  | 
|  | SDValue TlsArray = Subtarget->is64Bit() | 
|  | ? DAG.getIntPtrConstant(0x58, dl) | 
|  | : (Subtarget->isTargetWindowsGNU() | 
|  | ? DAG.getIntPtrConstant(0x2C, dl) | 
|  | : DAG.getExternalSymbol("_tls_array", PtrVT)); | 
|  |  | 
|  | SDValue ThreadPointer = | 
|  | DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, | 
|  | false, false, 0); | 
|  |  | 
|  | SDValue res; | 
|  | if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) { | 
|  | res = ThreadPointer; | 
|  | } else { | 
|  | // Load the _tls_index variable | 
|  | SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT); | 
|  | if (Subtarget->is64Bit()) | 
|  | IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX, | 
|  | MachinePointerInfo(), MVT::i32, false, false, | 
|  | false, 0); | 
|  | else | 
|  | IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false, | 
|  | false, false, 0); | 
|  |  | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | SDValue Scale = | 
|  | DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT); | 
|  | IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale); | 
|  |  | 
|  | res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX); | 
|  | } | 
|  |  | 
|  | res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false, | 
|  | false, 0); | 
|  |  | 
|  | // Get the offset of start of .tls section | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), X86II::MO_SECREL); | 
|  | SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA); | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("TLS not implemented for this target."); | 
|  | } | 
|  |  | 
|  | /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values | 
|  | /// and take a 2 x i32 value to shift plus a shift amount. | 
|  | static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt  = Op.getOperand(2); | 
|  | // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the | 
|  | // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away | 
|  | // during isel. | 
|  | SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits - 1, dl, MVT::i8)); | 
|  | SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, | 
|  | DAG.getConstant(VTBits - 1, dl, MVT::i8)) | 
|  | : DAG.getConstant(0, dl, VT); | 
|  |  | 
|  | SDValue Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); | 
|  | } | 
|  |  | 
|  | // If the shift amount is larger or equal than the width of a part we can't | 
|  | // rely on the results of shld/shrd. Insert a test and select the appropriate | 
|  | // values for large shift amounts. | 
|  | SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits, dl, MVT::i8)); | 
|  | SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | AndNode, DAG.getConstant(0, dl, MVT::i8)); | 
|  |  | 
|  | SDValue Hi, Lo; | 
|  | SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); | 
|  | SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; | 
|  | SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); | 
|  | } else { | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); | 
|  | } | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | MVT SrcVT = Src.getSimpleValueType(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (SrcVT.isVector()) { | 
|  | if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) { | 
|  | return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT, | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, | 
|  | DAG.getUNDEF(SrcVT))); | 
|  | } | 
|  | if (SrcVT.getVectorElementType() == MVT::i1) { | 
|  | MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | // These are really Legal; return the operand so the caller accepts it as | 
|  | // Legal. | 
|  | if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) | 
|  | return Op; | 
|  | if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && | 
|  | Subtarget->is64Bit()) { | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | unsigned Size = SrcVT.getSizeInBits()/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | SDValue Chain = DAG.getStore( | 
|  | DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false, | 
|  | false, 0); | 
|  | return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, | 
|  | SDValue StackSlot, | 
|  | SelectionDAG &DAG) const { | 
|  | // Build the FILD | 
|  | SDLoc DL(Op); | 
|  | SDVTList Tys; | 
|  | bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); | 
|  | if (useSSE) | 
|  | Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); | 
|  | else | 
|  | Tys = DAG.getVTList(Op.getValueType(), MVT::Other); | 
|  |  | 
|  | unsigned ByteSize = SrcVT.getSizeInBits()/8; | 
|  |  | 
|  | FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); | 
|  | MachineMemOperand *MMO; | 
|  | if (FI) { | 
|  | int SSFI = FI->getIndex(); | 
|  | MMO = DAG.getMachineFunction().getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), | 
|  | MachineMemOperand::MOLoad, ByteSize, ByteSize); | 
|  | } else { | 
|  | MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); | 
|  | StackSlot = StackSlot.getOperand(1); | 
|  | } | 
|  | SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; | 
|  | SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : | 
|  | X86ISD::FILD, DL, | 
|  | Tys, Ops, SrcVT, MMO); | 
|  |  | 
|  | if (useSSE) { | 
|  | Chain = Result.getValue(1); | 
|  | SDValue InFlag = Result.getValue(2); | 
|  |  | 
|  | // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned SSFISize = Op.getValueType().getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); | 
|  | auto PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | Tys = DAG.getVTList(MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag | 
|  | }; | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), | 
|  | MachineMemOperand::MOStore, SSFISize, SSFISize); | 
|  |  | 
|  | Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, | 
|  | Ops, Op.getValueType(), MMO); | 
|  | Result = DAG.getLoad( | 
|  | Op.getValueType(), DL, Chain, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // This algorithm is not obvious. Here it is what we're trying to output: | 
|  | /* | 
|  | movq       %rax,  %xmm0 | 
|  | punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } | 
|  | subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } | 
|  | #ifdef __SSE3__ | 
|  | haddpd   %xmm0, %xmm0 | 
|  | #else | 
|  | pshufd   $0x4e, %xmm0, %xmm1 | 
|  | addpd    %xmm1, %xmm0 | 
|  | #endif | 
|  | */ | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  |  | 
|  | // Build some magic constants. | 
|  | static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; | 
|  | Constant *C0 = ConstantDataVector::get(*Context, CV0); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16); | 
|  |  | 
|  | SmallVector<Constant*,2> CV1; | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, 0x4330000000000000ULL)))); | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, 0x4530000000000000ULL)))); | 
|  | Constant *C1 = ConstantVector::get(CV1); | 
|  | SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16); | 
|  |  | 
|  | // Load the 64-bit value into an XMM register. | 
|  | SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, | 
|  | Op.getOperand(0)); | 
|  | SDValue CLod0 = | 
|  | DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, 16); | 
|  | SDValue Unpck1 = | 
|  | getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0); | 
|  |  | 
|  | SDValue CLod1 = | 
|  | DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, 16); | 
|  | SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1); | 
|  | // TODO: Are there any fast-math-flags to propagate here? | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); | 
|  | SDValue Result; | 
|  |  | 
|  | if (Subtarget->hasSSE3()) { | 
|  | // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. | 
|  | Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); | 
|  | } else { | 
|  | SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub); | 
|  | SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, | 
|  | S2F, 0x4E, DAG); | 
|  | Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, | 
|  | DAG.getBitcast(MVT::v2f64, Shuffle), Sub); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | // FP constant to bias correct the final result. | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, | 
|  | MVT::f64); | 
|  |  | 
|  | // Load the 32-bit value into an XMM register. | 
|  | SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // Zero out the upper parts of the register. | 
|  | Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); | 
|  |  | 
|  | Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getBitcast(MVT::v2f64, Load), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  |  | 
|  | // Or the load with the bias. | 
|  | SDValue Or = DAG.getNode( | 
|  | ISD::OR, dl, MVT::v2i64, | 
|  | DAG.getBitcast(MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), | 
|  | DAG.getBitcast(MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); | 
|  | Or = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl)); | 
|  |  | 
|  | // Subtract the bias. | 
|  | // TODO: Are there any fast-math-flags to propagate here? | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); | 
|  |  | 
|  | // Handle final rounding. | 
|  | EVT DestVT = Op.getValueType(); | 
|  |  | 
|  | if (DestVT.bitsLT(MVT::f64)) | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | if (DestVT.bitsGT(MVT::f64)) | 
|  | return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  |  | 
|  | // Handle final rounding. | 
|  | return Sub; | 
|  | } | 
|  |  | 
|  | static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget &Subtarget) { | 
|  | // The algorithm is the following: | 
|  | // #ifdef __SSE4_1__ | 
|  | //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); | 
|  | //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), | 
|  | //                                 (uint4) 0x53000000, 0xaa); | 
|  | // #else | 
|  | //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; | 
|  | //     uint4 hi = (v >> 16) | (uint4) 0x53000000; | 
|  | // #endif | 
|  | //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); | 
|  | //     return (float4) lo + fhi; | 
|  |  | 
|  | // We shouldn't use it when unsafe-fp-math is enabled though: we might later | 
|  | // reassociate the two FADDs, and if we do that, the algorithm fails | 
|  | // spectacularly (PR24512). | 
|  | // FIXME: If we ever have some kind of Machine FMF, this should be marked | 
|  | // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because | 
|  | // there's also the MachineCombiner reassociations happening on Machine IR. | 
|  | if (DAG.getTarget().Options.UnsafeFPMath) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue V = Op->getOperand(0); | 
|  | EVT VecIntVT = V.getValueType(); | 
|  | bool Is128 = VecIntVT == MVT::v4i32; | 
|  | EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; | 
|  | // If we convert to something else than the supported type, e.g., to v4f64, | 
|  | // abort early. | 
|  | if (VecFloatVT != Op->getValueType(0)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NumElts = VecIntVT.getVectorNumElements(); | 
|  | assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && | 
|  | "Unsupported custom type"); | 
|  | assert(NumElts <= 8 && "The size of the constant array must be fixed"); | 
|  |  | 
|  | // In the #idef/#else code, we have in common: | 
|  | // - The vector of constants: | 
|  | // -- 0x4b000000 | 
|  | // -- 0x53000000 | 
|  | // - A shift: | 
|  | // -- v >> 16 | 
|  |  | 
|  | // Create the splat vector for 0x4b000000. | 
|  | SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32); | 
|  | SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow, | 
|  | CstLow, CstLow, CstLow, CstLow}; | 
|  | SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, | 
|  | makeArrayRef(&CstLowArray[0], NumElts)); | 
|  | // Create the splat vector for 0x53000000. | 
|  | SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32); | 
|  | SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh, | 
|  | CstHigh, CstHigh, CstHigh, CstHigh}; | 
|  | SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, | 
|  | makeArrayRef(&CstHighArray[0], NumElts)); | 
|  |  | 
|  | // Create the right shift. | 
|  | SDValue CstShift = DAG.getConstant(16, DL, MVT::i32); | 
|  | SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift, | 
|  | CstShift, CstShift, CstShift, CstShift}; | 
|  | SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, | 
|  | makeArrayRef(&CstShiftArray[0], NumElts)); | 
|  | SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); | 
|  |  | 
|  | SDValue Low, High; | 
|  | if (Subtarget.hasSSE41()) { | 
|  | EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; | 
|  | //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); | 
|  | SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow); | 
|  | SDValue VecBitcast = DAG.getBitcast(VecI16VT, V); | 
|  | // Low will be bitcasted right away, so do not bother bitcasting back to its | 
|  | // original type. | 
|  | Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, | 
|  | VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); | 
|  | //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), | 
|  | //                                 (uint4) 0x53000000, 0xaa); | 
|  | SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh); | 
|  | SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift); | 
|  | // High will be bitcasted right away, so do not bother bitcasting back to | 
|  | // its original type. | 
|  | High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, | 
|  | VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); | 
|  | } else { | 
|  | SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32); | 
|  | SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask, | 
|  | CstMask, CstMask, CstMask); | 
|  | //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; | 
|  | SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); | 
|  | Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); | 
|  |  | 
|  | //     uint4 hi = (v >> 16) | (uint4) 0x53000000; | 
|  | High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); | 
|  | } | 
|  |  | 
|  | // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). | 
|  | SDValue CstFAdd = DAG.getConstantFP( | 
|  | APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32); | 
|  | SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd, | 
|  | CstFAdd, CstFAdd, CstFAdd, CstFAdd}; | 
|  | SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT, | 
|  | makeArrayRef(&CstFAddArray[0], NumElts)); | 
|  |  | 
|  | //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); | 
|  | SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High); | 
|  | // TODO: Are there any fast-math-flags to propagate here? | 
|  | SDValue FHigh = | 
|  | DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); | 
|  | //     return (float4) lo + fhi; | 
|  | SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low); | 
|  | return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | MVT SVT = N0.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | switch (SVT.SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Custom UINT_TO_FP is not supported!"); | 
|  | case MVT::v4i8: | 
|  | case MVT::v4i16: | 
|  | case MVT::v8i8: | 
|  | case MVT::v8i16: { | 
|  | MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements()); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); | 
|  | } | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i32: | 
|  | return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget); | 
|  | case MVT::v16i8: | 
|  | case MVT::v16i16: | 
|  | if (Subtarget->hasAVX512()) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0)); | 
|  | } | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | if (Op.getValueType().isVector()) | 
|  | return lowerUINT_TO_FP_vec(Op, DAG); | 
|  |  | 
|  | // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't | 
|  | // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform | 
|  | // the optimization here. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); | 
|  |  | 
|  | MVT SrcVT = N0.getSimpleValueType(); | 
|  | MVT DstVT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (Subtarget->hasAVX512() && isScalarFPTypeInSSEReg(DstVT) && | 
|  | (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget->is64Bit()))) { | 
|  | // Conversions from unsigned i32 to f32/f64 are legal, | 
|  | // using VCVTUSI2SS/SD.  Same for i64 in 64-bit mode. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i64(Op, DAG); | 
|  | if (SrcVT == MVT::i32 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i32(Op, DAG); | 
|  | if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make a 64-bit buffer, and use it to build an FILD. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); | 
|  | if (SrcVT == MVT::i32) { | 
|  | SDValue WordOff = DAG.getConstant(4, dl, PtrVT); | 
|  | SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, WordOff); | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32), | 
|  | OffsetSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); | 
|  | return Fild; | 
|  | } | 
|  |  | 
|  | assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // For i64 source, we need to add the appropriate power of 2 if the input | 
|  | // was negative.  This is the same as the optimization in | 
|  | // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, | 
|  | // we must be careful to do the computation in x87 extended precision, not | 
|  | // in SSE. (The generic code can't know it's OK to do this, or how to.) | 
|  | int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), | 
|  | MachineMemOperand::MOLoad, 8, 8); | 
|  |  | 
|  | SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); | 
|  | SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; | 
|  | SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, | 
|  | MVT::i64, MMO); | 
|  |  | 
|  | APInt FF(32, 0x5F800000ULL); | 
|  |  | 
|  | // Check whether the sign bit is set. | 
|  | SDValue SignSet = DAG.getSetCC( | 
|  | dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), | 
|  | Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); | 
|  |  | 
|  | // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. | 
|  | SDValue FudgePtr = DAG.getConstantPool( | 
|  | ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT); | 
|  |  | 
|  | // Get a pointer to FF if the sign bit was set, or to 0 otherwise. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0, dl); | 
|  | SDValue Four = DAG.getIntPtrConstant(4, dl); | 
|  | SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, | 
|  | Zero, Four); | 
|  | FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset); | 
|  |  | 
|  | // Load the value out, extending it from f32 to f80. | 
|  | // FIXME: Avoid the extend by constructing the right constant pool? | 
|  | SDValue Fudge = DAG.getExtLoad( | 
|  | ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, | 
|  | false, false, false, 4); | 
|  | // Extend everything to 80 bits to force it to be done on x87. | 
|  | // TODO: Are there any fast-math-flags to propagate here? | 
|  | SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | // If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation | 
|  | // is legal, or has an f16 source (which needs to be promoted to f32), | 
|  | // just return an <SDValue(), SDValue()> pair. | 
|  | // Otherwise it is assumed to be a conversion from one of f32, f64 or f80 | 
|  | // to i16, i32 or i64, and we lower it to a legal sequence. | 
|  | // If lowered to the final integer result we return a <result, SDValue()> pair. | 
|  | // Otherwise we lower it to a sequence ending with a FIST, return a | 
|  | // <FIST, StackSlot> pair, and the caller is responsible for loading | 
|  | // the final integer result from StackSlot. | 
|  | std::pair<SDValue,SDValue> | 
|  | X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, | 
|  | bool IsSigned, bool IsReplace) const { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | EVT DstTy = Op.getValueType(); | 
|  | EVT TheVT = Op.getOperand(0).getValueType(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | if (TheVT == MVT::f16) | 
|  | // We need to promote the f16 to f32 before using the lowering | 
|  | // in this routine. | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  |  | 
|  | assert((TheVT == MVT::f32 || | 
|  | TheVT == MVT::f64 || | 
|  | TheVT == MVT::f80) && | 
|  | "Unexpected FP operand type in FP_TO_INTHelper"); | 
|  |  | 
|  | // If using FIST to compute an unsigned i64, we'll need some fixup | 
|  | // to handle values above the maximum signed i64.  A FIST is always | 
|  | // used for the 32-bit subtarget, but also for f80 on a 64-bit target. | 
|  | bool UnsignedFixup = !IsSigned && | 
|  | DstTy == MVT::i64 && | 
|  | (!Subtarget->is64Bit() || | 
|  | !isScalarFPTypeInSSEReg(TheVT)); | 
|  |  | 
|  | if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) { | 
|  | // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST. | 
|  | // The low 32 bits of the fist result will have the correct uint32 result. | 
|  | assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); | 
|  | DstTy = MVT::i64; | 
|  | } | 
|  |  | 
|  | assert(DstTy.getSimpleVT() <= MVT::i64 && | 
|  | DstTy.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown FP_TO_INT to lower!"); | 
|  |  | 
|  | // These are really Legal. | 
|  | if (DstTy == MVT::i32 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | if (Subtarget->is64Bit() && | 
|  | DstTy == MVT::i64 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  |  | 
|  | // We lower FP->int64 into FISTP64 followed by a load from a temporary | 
|  | // stack slot. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = DstTy.getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (DstTy.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue Value = Op.getOperand(0); | 
|  | SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment. | 
|  |  | 
|  | if (UnsignedFixup) { | 
|  | // | 
|  | // Conversion to unsigned i64 is implemented with a select, | 
|  | // depending on whether the source value fits in the range | 
|  | // of a signed i64.  Let Thresh be the FP equivalent of | 
|  | // 0x8000000000000000ULL. | 
|  | // | 
|  | //  Adjust i32 = (Value < Thresh) ? 0 : 0x80000000; | 
|  | //  FistSrc    = (Value < Thresh) ? Value : (Value - Thresh); | 
|  | //  Fist-to-mem64 FistSrc | 
|  | //  Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent | 
|  | //  to XOR'ing the high 32 bits with Adjust. | 
|  | // | 
|  | // Being a power of 2, Thresh is exactly representable in all FP formats. | 
|  | // For X87 we'd like to use the smallest FP type for this constant, but | 
|  | // for DAG type consistency we have to match the FP operand type. | 
|  |  | 
|  | APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000)); | 
|  | LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK; | 
|  | bool LosesInfo = false; | 
|  | if (TheVT == MVT::f64) | 
|  | // The rounding mode is irrelevant as the conversion should be exact. | 
|  | Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, | 
|  | &LosesInfo); | 
|  | else if (TheVT == MVT::f80) | 
|  | Status = Thresh.convert(APFloat::x87DoubleExtended, | 
|  | APFloat::rmNearestTiesToEven, &LosesInfo); | 
|  |  | 
|  | assert(Status == APFloat::opOK && !LosesInfo && | 
|  | "FP conversion should have been exact"); | 
|  |  | 
|  | SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT); | 
|  |  | 
|  | SDValue Cmp = DAG.getSetCC(DL, | 
|  | getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), TheVT), | 
|  | Value, ThreshVal, ISD::SETLT); | 
|  | Adjust = DAG.getSelect(DL, MVT::i32, Cmp, | 
|  | DAG.getConstant(0, DL, MVT::i32), | 
|  | DAG.getConstant(0x80000000, DL, MVT::i32)); | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal); | 
|  | Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), TheVT), | 
|  | Value, ThreshVal, ISD::SETLT); | 
|  | Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub); | 
|  | } | 
|  |  | 
|  | // FIXME This causes a redundant load/store if the SSE-class value is already | 
|  | // in memory, such as if it is on the callstack. | 
|  | if (isScalarFPTypeInSSEReg(TheVT)) { | 
|  | assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
|  | Chain = DAG.getStore(Chain, DL, Value, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(MF, SSFI), false, | 
|  | false, 0); | 
|  | SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, StackSlot, DAG.getValueType(TheVT) | 
|  | }; | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), | 
|  | MachineMemOperand::MOLoad, MemSize, MemSize); | 
|  | Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); | 
|  | Chain = Value.getValue(1); | 
|  | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | StackSlot = DAG.getFrameIndex(SSFI, PtrVT); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), | 
|  | MachineMemOperand::MOStore, MemSize, MemSize); | 
|  |  | 
|  | if (UnsignedFixup) { | 
|  |  | 
|  | // Insert the FIST, load its result as two i32's, | 
|  | // and XOR the high i32 with Adjust. | 
|  |  | 
|  | SDValue FistOps[] = { Chain, Value, StackSlot }; | 
|  | SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), | 
|  | FistOps, DstTy, MMO); | 
|  |  | 
|  | SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot, | 
|  | DAG.getConstant(4, DL, PtrVT)); | 
|  |  | 
|  | SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // Join High32 and Low32 into a 64-bit result. | 
|  | // (High32 << 32) | Low32 | 
|  | Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32); | 
|  | High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32); | 
|  | High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32, | 
|  | DAG.getConstant(32, DL, MVT::i8)); | 
|  | SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32); | 
|  | return std::make_pair(Result, SDValue()); | 
|  | } | 
|  |  | 
|  | SDValue ResultOps[] = { Low32, High32 }; | 
|  |  | 
|  | SDValue pair = IsReplace | 
|  | ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps) | 
|  | : DAG.getMergeValues(ResultOps, DL); | 
|  | return std::make_pair(pair, SDValue()); | 
|  | } else { | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | SDValue Ops[] = { Chain, Value, StackSlot }; | 
|  | SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), | 
|  | Ops, DstTy, MMO); | 
|  | return std::make_pair(FIST, StackSlot); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (VT.is512BitVector() || InVT.getScalarType() == MVT::i1) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In); | 
|  |  | 
|  | // Optimize vectors in AVX mode: | 
|  | // | 
|  | //   v8i16 -> v8i32 | 
|  | //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32. | 
|  | //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32. | 
|  | //   Concat upper and lower parts. | 
|  | // | 
|  | //   v4i32 -> v4i64 | 
|  | //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64. | 
|  | //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64. | 
|  | //   Concat upper and lower parts. | 
|  | // | 
|  |  | 
|  | if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) && | 
|  | ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && | 
|  | ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasInt256()) | 
|  | return DAG.getNode(X86ISD::VZEXT, dl, VT, In); | 
|  |  | 
|  | SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); | 
|  | SDValue Undef = DAG.getUNDEF(InVT); | 
|  | bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; | 
|  | SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); | 
|  | SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); | 
|  |  | 
|  | MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), | 
|  | VT.getVectorNumElements()/2); | 
|  |  | 
|  | OpLo = DAG.getBitcast(HVT, OpLo); | 
|  | OpHi = DAG.getBitcast(HVT, OpHi); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) | 
|  | return DAG.getNode(X86ISD::VZEXT, DL, VT, In); | 
|  |  | 
|  | assert(InVT.getVectorElementType() == MVT::i1); | 
|  | MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; | 
|  | SDValue One = | 
|  | DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT); | 
|  | SDValue Zero = | 
|  | DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT); | 
|  |  | 
|  | SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero); | 
|  | if (VT.is512BitVector()) | 
|  | return V; | 
|  | return DAG.getNode(X86ISD::VTRUNC, DL, VT, V); | 
|  | } | 
|  |  | 
|  | static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (Subtarget->hasFp256()) | 
|  | if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) | 
|  | return Res; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT SVT = In.getSimpleValueType(); | 
|  |  | 
|  | if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) | 
|  | return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG); | 
|  |  | 
|  | if (Subtarget->hasFp256()) | 
|  | if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) | 
|  | return Res; | 
|  |  | 
|  | assert(!VT.is256BitVector() || !SVT.is128BitVector() || | 
|  | VT.getVectorNumElements() != SVT.getVectorNumElements()); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  |  | 
|  | if (VT == MVT::i1) { | 
|  | assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) && | 
|  | "Invalid scalar TRUNCATE operation"); | 
|  | if (InVT.getSizeInBits() >= 32) | 
|  | return SDValue(); | 
|  | In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, In); | 
|  | } | 
|  | assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && | 
|  | "Invalid TRUNCATE operation"); | 
|  |  | 
|  | // move vector to mask - truncate solution for SKX | 
|  | if (VT.getVectorElementType() == MVT::i1) { | 
|  | if (InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 && | 
|  | Subtarget->hasBWI()) | 
|  | return Op; // legal, will go to VPMOVB2M, VPMOVW2M | 
|  | if ((InVT.is256BitVector() || InVT.is128BitVector()) | 
|  | && InVT.getScalarSizeInBits() <= 16 && | 
|  | Subtarget->hasBWI() && Subtarget->hasVLX()) | 
|  | return Op; // legal, will go to VPMOVB2M, VPMOVW2M | 
|  | if (InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 && | 
|  | Subtarget->hasDQI()) | 
|  | return Op; // legal, will go to VPMOVD2M, VPMOVQ2M | 
|  | if ((InVT.is256BitVector() || InVT.is128BitVector()) | 
|  | && InVT.getScalarSizeInBits() >= 32 && | 
|  | Subtarget->hasDQI() && Subtarget->hasVLX()) | 
|  | return Op; // legal, will go to VPMOVB2M, VPMOVQ2M | 
|  | } | 
|  |  | 
|  | if (VT.getVectorElementType() == MVT::i1) { | 
|  | assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); | 
|  | unsigned NumElts = InVT.getVectorNumElements(); | 
|  | assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type"); | 
|  | if (InVT.getSizeInBits() < 512) { | 
|  | MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64; | 
|  | In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); | 
|  | InVT = ExtVT; | 
|  | } | 
|  |  | 
|  | SDValue OneV = | 
|  | DAG.getConstant(APInt::getSignBit(InVT.getScalarSizeInBits()), DL, InVT); | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In); | 
|  | return DAG.getNode(X86ISD::TESTM, DL, VT, And, And); | 
|  | } | 
|  |  | 
|  | // vpmovqb/w/d, vpmovdb/w, vpmovwb | 
|  | if (((!InVT.is512BitVector() && Subtarget->hasVLX()) || InVT.is512BitVector()) && | 
|  | (InVT.getVectorElementType() != MVT::i16 || Subtarget->hasBWI())) | 
|  | return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); | 
|  |  | 
|  | if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { | 
|  | // On AVX2, v4i64 -> v4i32 becomes VPERMD. | 
|  | if (Subtarget->hasInt256()) { | 
|  | static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; | 
|  | In = DAG.getBitcast(MVT::v8i32, In); | 
|  | In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), | 
|  | ShufMask); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  |  | 
|  | SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(2, DL)); | 
|  | OpLo = DAG.getBitcast(MVT::v4i32, OpLo); | 
|  | OpHi = DAG.getBitcast(MVT::v4i32, OpHi); | 
|  | static const int ShufMask[] = {0, 2, 4, 6}; | 
|  | return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); | 
|  | } | 
|  |  | 
|  | if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { | 
|  | // On AVX2, v8i32 -> v8i16 becomed PSHUFB. | 
|  | if (Subtarget->hasInt256()) { | 
|  | In = DAG.getBitcast(MVT::v32i8, In); | 
|  |  | 
|  | SmallVector<SDValue,32> pshufbMask; | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8)); | 
|  | for (unsigned j = 0; j < 8; ++j) | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8)); | 
|  | } | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask); | 
|  | In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); | 
|  | In = DAG.getBitcast(MVT::v4i64, In); | 
|  |  | 
|  | static const int ShufMask[] = {0,  2,  -1,  -1}; | 
|  | In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64), | 
|  | &ShufMask[0]); | 
|  | In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | return DAG.getBitcast(VT, In); | 
|  | } | 
|  |  | 
|  | SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  |  | 
|  | SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, | 
|  | DAG.getIntPtrConstant(4, DL)); | 
|  |  | 
|  | OpLo = DAG.getBitcast(MVT::v16i8, OpLo); | 
|  | OpHi = DAG.getBitcast(MVT::v16i8, OpHi); | 
|  |  | 
|  | // The PSHUFB mask: | 
|  | static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1}; | 
|  |  | 
|  | SDValue Undef = DAG.getUNDEF(MVT::v16i8); | 
|  | OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); | 
|  | OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); | 
|  |  | 
|  | OpLo = DAG.getBitcast(MVT::v4i32, OpLo); | 
|  | OpHi = DAG.getBitcast(MVT::v4i32, OpHi); | 
|  |  | 
|  | // The MOVLHPS Mask: | 
|  | static const int ShufMask2[] = {0, 1, 4, 5}; | 
|  | SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); | 
|  | return DAG.getBitcast(MVT::v8i16, res); | 
|  | } | 
|  |  | 
|  | // Handle truncation of V256 to V128 using shuffles. | 
|  | if (!VT.is128BitVector() || !InVT.is256BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); | 
|  |  | 
|  | SmallVector<int, 16> MaskVec(NumElems * 2, -1); | 
|  | // Prepare truncation shuffle mask | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | MaskVec[i] = i * 2; | 
|  | SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In), | 
|  | DAG.getUNDEF(NVT), &MaskVec[0]); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(!Op.getSimpleValueType().isVector()); | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, | 
|  | /*IsSigned=*/ true, /*IsReplace=*/ false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. | 
|  | if (!FIST.getNode()) | 
|  | return Op; | 
|  |  | 
|  | if (StackSlot.getNode()) | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), SDLoc(Op), | 
|  | FIST, StackSlot, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // The node is the result. | 
|  | return FIST; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, | 
|  | /*IsSigned=*/ false, /*IsReplace=*/ false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. | 
|  | if (!FIST.getNode()) | 
|  | return Op; | 
|  |  | 
|  | if (StackSlot.getNode()) | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), SDLoc(Op), | 
|  | FIST, StackSlot, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // The node is the result. | 
|  | return FIST; | 
|  | } | 
|  |  | 
|  | static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT SVT = In.getSimpleValueType(); | 
|  |  | 
|  | assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VFPEXT, DL, VT, | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, | 
|  | In, DAG.getUNDEF(SVT))); | 
|  | } | 
|  |  | 
|  | /// The only differences between FABS and FNEG are the mask and the logic op. | 
|  | /// FNEG also has a folding opportunity for FNEG(FABS(x)). | 
|  | static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { | 
|  | assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && | 
|  | "Wrong opcode for lowering FABS or FNEG."); | 
|  |  | 
|  | bool IsFABS = (Op.getOpcode() == ISD::FABS); | 
|  |  | 
|  | // If this is a FABS and it has an FNEG user, bail out to fold the combination | 
|  | // into an FNABS. We'll lower the FABS after that if it is still in use. | 
|  | if (IsFABS) | 
|  | for (SDNode *User : Op->uses()) | 
|  | if (User->getOpcode() == ISD::FNEG) | 
|  | return Op; | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to | 
|  | // decide if we should generate a 16-byte constant mask when we only need 4 or | 
|  | // 8 bytes for the scalar case. | 
|  |  | 
|  | MVT LogicVT; | 
|  | MVT EltVT; | 
|  | unsigned NumElts; | 
|  |  | 
|  | if (VT.isVector()) { | 
|  | LogicVT = VT; | 
|  | EltVT = VT.getVectorElementType(); | 
|  | NumElts = VT.getVectorNumElements(); | 
|  | } else { | 
|  | // There are no scalar bitwise logical SSE/AVX instructions, so we | 
|  | // generate a 16-byte vector constant and logic op even for the scalar case. | 
|  | // Using a 16-byte mask allows folding the load of the mask with | 
|  | // the logic op, so it can save (~4 bytes) on code size. | 
|  | LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; | 
|  | EltVT = VT; | 
|  | NumElts = (VT == MVT::f64) ? 2 : 4; | 
|  | } | 
|  |  | 
|  | unsigned EltBits = EltVT.getSizeInBits(); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... | 
|  | APInt MaskElt = | 
|  | IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits); | 
|  | Constant *C = ConstantInt::get(*Context, MaskElt); | 
|  | C = ConstantVector::getSplat(NumElts, C); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | SDValue Mask = | 
|  | DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, Alignment); | 
|  |  | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); | 
|  | unsigned LogicOp = | 
|  | IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; | 
|  | SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; | 
|  |  | 
|  | if (VT.isVector()) | 
|  | return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); | 
|  |  | 
|  | // For the scalar case extend to a 128-bit vector, perform the logic op, | 
|  | // and extract the scalar result back out. | 
|  | Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand); | 
|  | SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT SrcVT = Op1.getSimpleValueType(); | 
|  |  | 
|  | // If second operand is smaller, extend it first. | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); | 
|  | SrcVT = VT; | 
|  | } | 
|  | // And if it is bigger, shrink it first. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl)); | 
|  | SrcVT = VT; | 
|  | } | 
|  |  | 
|  | // At this point the operands and the result should have the same | 
|  | // type, and that won't be f80 since that is not custom lowered. | 
|  |  | 
|  | const fltSemantics &Sem = | 
|  | VT == MVT::f64 ? APFloat::IEEEdouble : APFloat::IEEEsingle; | 
|  | const unsigned SizeInBits = VT.getSizeInBits(); | 
|  |  | 
|  | SmallVector<Constant *, 4> CV( | 
|  | VT == MVT::f64 ? 2 : 4, | 
|  | ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0)))); | 
|  |  | 
|  | // First, clear all bits but the sign bit from the second operand (sign). | 
|  | CV[0] = ConstantFP::get(*Context, | 
|  | APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1))); | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16); | 
|  |  | 
|  | // Perform all logic operations as 16-byte vectors because there are no | 
|  | // scalar FP logic instructions in SSE. This allows load folding of the | 
|  | // constants into the logic instructions. | 
|  | MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; | 
|  | SDValue Mask1 = | 
|  | DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, 16); | 
|  | Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1); | 
|  | SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1); | 
|  |  | 
|  | // Next, clear the sign bit from the first operand (magnitude). | 
|  | // If it's a constant, we can clear it here. | 
|  | if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) { | 
|  | APFloat APF = Op0CN->getValueAPF(); | 
|  | // If the magnitude is a positive zero, the sign bit alone is enough. | 
|  | if (APF.isPosZero()) | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | APF.clearSign(); | 
|  | CV[0] = ConstantFP::get(*Context, APF); | 
|  | } else { | 
|  | CV[0] = ConstantFP::get( | 
|  | *Context, | 
|  | APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1))); | 
|  | } | 
|  | C = ConstantVector::get(CV); | 
|  | CPIdx = DAG.getConstantPool(C, PtrVT, 16); | 
|  | SDValue Val = | 
|  | DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | false, false, false, 16); | 
|  | // If the magnitude operand wasn't a constant, we need to AND out the sign. | 
|  | if (!isa<ConstantFPSDNode>(Op0)) { | 
|  | Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0); | 
|  | Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val); | 
|  | } | 
|  | // OR the magnitude value with the sign bit. | 
|  | Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). | 
|  | SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT)); | 
|  | } | 
|  |  | 
|  | // Check whether an OR'd tree is PTEST-able. | 
|  | static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); | 
|  |  | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Op->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNode *N = Op.getNode(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | DenseMap<SDValue, unsigned> VecInMap; | 
|  | SmallVector<SDValue, 8> VecIns; | 
|  | EVT VT = MVT::Other; | 
|  |  | 
|  | // Recognize a special case where a vector is casted into wide integer to | 
|  | // test all 0s. | 
|  | Opnds.push_back(N->getOperand(0)); | 
|  | Opnds.push_back(N->getOperand(1)); | 
|  |  | 
|  | for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { | 
|  | SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; | 
|  | // BFS traverse all OR'd operands. | 
|  | if (I->getOpcode() == ISD::OR) { | 
|  | Opnds.push_back(I->getOperand(0)); | 
|  | Opnds.push_back(I->getOperand(1)); | 
|  | // Re-evaluate the number of nodes to be traversed. | 
|  | e += 2; // 2 more nodes (LHS and RHS) are pushed. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Quit if a non-EXTRACT_VECTOR_ELT | 
|  | if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Quit if without a constant index. | 
|  | SDValue Idx = I->getOperand(1); | 
|  | if (!isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ExtractedFromVec = I->getOperand(0); | 
|  | DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); | 
|  | if (M == VecInMap.end()) { | 
|  | VT = ExtractedFromVec.getValueType(); | 
|  | // Quit if not 128/256-bit vector. | 
|  | if (!VT.is128BitVector() && !VT.is256BitVector()) | 
|  | return SDValue(); | 
|  | // Quit if not the same type. | 
|  | if (VecInMap.begin() != VecInMap.end() && | 
|  | VT != VecInMap.begin()->first.getValueType()) | 
|  | return SDValue(); | 
|  | M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; | 
|  | VecIns.push_back(ExtractedFromVec); | 
|  | } | 
|  | M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Not extracted from 128-/256-bit vector."); | 
|  |  | 
|  | unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; | 
|  |  | 
|  | for (DenseMap<SDValue, unsigned>::const_iterator | 
|  | I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { | 
|  | // Quit if not all elements are used. | 
|  | if (I->second != FullMask) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; | 
|  |  | 
|  | // Cast all vectors into TestVT for PTEST. | 
|  | for (unsigned i = 0, e = VecIns.size(); i < e; ++i) | 
|  | VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]); | 
|  |  | 
|  | // If more than one full vectors are evaluated, OR them first before PTEST. | 
|  | for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { | 
|  | // Each iteration will OR 2 nodes and append the result until there is only | 
|  | // 1 node left, i.e. the final OR'd value of all vectors. | 
|  | SDValue LHS = VecIns[Slot]; | 
|  | SDValue RHS = VecIns[Slot + 1]; | 
|  | VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, | 
|  | VecIns.back(), VecIns.back()); | 
|  | } | 
|  |  | 
|  | /// \brief return true if \c Op has a use that doesn't just read flags. | 
|  | static bool hasNonFlagsUse(SDValue Op) { | 
|  | for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; | 
|  | ++UI) { | 
|  | SDNode *User = *UI; | 
|  | unsigned UOpNo = UI.getOperandNo(); | 
|  | if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { | 
|  | // Look pass truncate. | 
|  | UOpNo = User->use_begin().getOperandNo(); | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && | 
|  | !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "test Op0,Op0", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getValueType() == MVT::i1) { | 
|  | SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op); | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp, | 
|  | DAG.getConstant(0, dl, MVT::i8)); | 
|  | } | 
|  | // CF and OF aren't always set the way we want. Determine which | 
|  | // of these we need. | 
|  | bool NeedCF = false; | 
|  | bool NeedOF = false; | 
|  | switch (X86CC) { | 
|  | default: break; | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | NeedCF = true; | 
|  | break; | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: { | 
|  | // Check if we really need to set the | 
|  | // Overflow flag. If NoSignedWrap is present | 
|  | // that is not actually needed. | 
|  | switch (Op->getOpcode()) { | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::SHL: { | 
|  | const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode()); | 
|  | if (BinNode->Flags.hasNoSignedWrap()) | 
|  | break; | 
|  | } | 
|  | default: | 
|  | NeedOF = true; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // See if we can use the EFLAGS value from the operand instead of | 
|  | // doing a separate TEST. TEST always sets OF and CF to 0, so unless | 
|  | // we prove that the arithmetic won't overflow, we can't use OF or CF. | 
|  | if (Op.getResNo() != 0 || NeedOF || NeedCF) { | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | //if (Op.getValueType() == MVT::i1) | 
|  | //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op, | 
|  | //                     DAG.getConstant(0, MVT::i1)); | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, dl, Op.getValueType())); | 
|  | } | 
|  | unsigned Opcode = 0; | 
|  | unsigned NumOperands = 0; | 
|  |  | 
|  | // Truncate operations may prevent the merge of the SETCC instruction | 
|  | // and the arithmetic instruction before it. Attempt to truncate the operands | 
|  | // of the arithmetic instruction and use a reduced bit-width instruction. | 
|  | bool NeedTruncation = false; | 
|  | SDValue ArithOp = Op; | 
|  | if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { | 
|  | SDValue Arith = Op->getOperand(0); | 
|  | // Both the trunc and the arithmetic op need to have one user each. | 
|  | if (Arith->hasOneUse()) | 
|  | switch (Arith.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | NeedTruncation = true; | 
|  | ArithOp = Arith; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTICE: In the code below we use ArithOp to hold the arithmetic operation | 
|  | // which may be the result of a CAST.  We use the variable 'Op', which is the | 
|  | // non-casted variable when we check for possible users. | 
|  | switch (ArithOp.getOpcode()) { | 
|  | case ISD::ADD: | 
|  | // Due to an isel shortcoming, be conservative if this add is likely to be | 
|  | // selected as part of a load-modify-store instruction. When the root node | 
|  | // in a match is a store, isel doesn't know how to remap non-chain non-flag | 
|  | // uses of other nodes in the match, such as the ADD in this case. This | 
|  | // leads to the ADD being left around and reselected, with the result being | 
|  | // two adds in the output.  Alas, even if none our users are stores, that | 
|  | // doesn't prove we're O.K.  Ergo, if we have any parents that aren't | 
|  | // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require | 
|  | // climbing the DAG back to the root, and it doesn't seem to be worth the | 
|  | // effort. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() != ISD::CopyToReg && | 
|  | UI->getOpcode() != ISD::SETCC && | 
|  | UI->getOpcode() != ISD::STORE) | 
|  | goto default_case; | 
|  |  | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) { | 
|  | // An add of one will be selected as an INC. | 
|  | if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) { | 
|  | Opcode = X86ISD::INC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // An add of negative one (subtract of one) will be selected as a DEC. | 
|  | if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) { | 
|  | Opcode = X86ISD::DEC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting add. | 
|  | Opcode = X86ISD::ADD; | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | // If we have a constant logical shift that's only used in a comparison | 
|  | // against zero turn it into an equivalent AND. This allows turning it into | 
|  | // a TEST instruction later. | 
|  | if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() && | 
|  | isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | unsigned ShAmt = Op->getConstantOperandVal(1); | 
|  | if (ShAmt >= BitWidth) // Avoid undefined shifts. | 
|  | break; | 
|  | APInt Mask = ArithOp.getOpcode() == ISD::SRL | 
|  | ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) | 
|  | : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); | 
|  | if (!Mask.isSignedIntN(32)) // Avoid large immediates. | 
|  | break; | 
|  | SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), | 
|  | DAG.getConstant(Mask, dl, VT)); | 
|  | DAG.ReplaceAllUsesWith(Op, New); | 
|  | Op = New; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::AND: | 
|  | // If the primary and result isn't used, don't bother using X86ISD::AND, | 
|  | // because a TEST instruction will be better. | 
|  | if (!hasNonFlagsUse(Op)) | 
|  | break; | 
|  | // FALL THROUGH | 
|  | case ISD::SUB: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // Due to the ISEL shortcoming noted above, be conservative if this op is | 
|  | // likely to be selected as part of a load-modify-store instruction. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() == ISD::STORE) | 
|  | goto default_case; | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting instruction. | 
|  | switch (ArithOp.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected operator!"); | 
|  | case ISD::SUB: Opcode = X86ISD::SUB; break; | 
|  | case ISD::XOR: Opcode = X86ISD::XOR; break; | 
|  | case ISD::AND: Opcode = X86ISD::AND; break; | 
|  | case ISD::OR: { | 
|  | if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { | 
|  | SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG); | 
|  | if (EFLAGS.getNode()) | 
|  | return EFLAGS; | 
|  | } | 
|  | Opcode = X86ISD::OR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | return SDValue(Op.getNode(), 1); | 
|  | default: | 
|  | default_case: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we found that truncation is beneficial, perform the truncation and | 
|  | // update 'Op'. | 
|  | if (NeedTruncation) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue WideVal = Op->getOperand(0); | 
|  | EVT WideVT = WideVal.getValueType(); | 
|  | unsigned ConvertedOp = 0; | 
|  | // Use a target machine opcode to prevent further DAGCombine | 
|  | // optimizations that may separate the arithmetic operations | 
|  | // from the setcc node. | 
|  | switch (WideVal.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: ConvertedOp = X86ISD::ADD; break; | 
|  | case ISD::SUB: ConvertedOp = X86ISD::SUB; break; | 
|  | case ISD::AND: ConvertedOp = X86ISD::AND; break; | 
|  | case ISD::OR:  ConvertedOp = X86ISD::OR;  break; | 
|  | case ISD::XOR: ConvertedOp = X86ISD::XOR; break; | 
|  | } | 
|  |  | 
|  | if (ConvertedOp) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { | 
|  | SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); | 
|  | SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); | 
|  | Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode == 0) | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, dl, Op.getValueType())); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); | 
|  |  | 
|  | SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); | 
|  | DAG.ReplaceAllUsesWith(Op, New); | 
|  | return SDValue(New.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "cmp Op0,Op1", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | if (C->getAPIntValue() == 0) | 
|  | return EmitTest(Op0, X86CC, dl, DAG); | 
|  |  | 
|  | if (Op0.getValueType() == MVT::i1) | 
|  | llvm_unreachable("Unexpected comparison operation for MVT::i1 operands"); | 
|  | } | 
|  |  | 
|  | if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || | 
|  | Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { | 
|  | // Do the comparison at i32 if it's smaller, besides the Atom case. | 
|  | // This avoids subregister aliasing issues. Keep the smaller reference | 
|  | // if we're optimizing for size, however, as that'll allow better folding | 
|  | // of memory operations. | 
|  | if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 && | 
|  | !DAG.getMachineFunction().getFunction()->optForMinSize() && | 
|  | !Subtarget->isAtom()) { | 
|  | unsigned ExtendOp = | 
|  | isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; | 
|  | Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); | 
|  | Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); | 
|  | } | 
|  | // Use SUB instead of CMP to enable CSE between SUB and CMP. | 
|  | SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); | 
|  | SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, | 
|  | Op0, Op1); | 
|  | return SDValue(Sub.getNode(), 1); | 
|  | } | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); | 
|  | } | 
|  |  | 
|  | /// Convert a comparison if required by the subtarget. | 
|  | SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, | 
|  | SelectionDAG &DAG) const { | 
|  | // If the subtarget does not support the FUCOMI instruction, floating-point | 
|  | // comparisons have to be converted. | 
|  | if (Subtarget->hasCMov() || | 
|  | Cmp.getOpcode() != X86ISD::CMP || | 
|  | !Cmp.getOperand(0).getValueType().isFloatingPoint() || | 
|  | !Cmp.getOperand(1).getValueType().isFloatingPoint()) | 
|  | return Cmp; | 
|  |  | 
|  | // The instruction selector will select an FUCOM instruction instead of | 
|  | // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence | 
|  | // build an SDNode sequence that transfers the result from FPSW into EFLAGS: | 
|  | // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) | 
|  | SDLoc dl(Cmp); | 
|  | SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); | 
|  | SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, | 
|  | DAG.getConstant(8, dl, MVT::i8)); | 
|  | SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); | 
|  | return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); | 
|  | } | 
|  |  | 
|  | /// The minimum architected relative accuracy is 2^-12. We need one | 
|  | /// Newton-Raphson step to have a good float result (24 bits of precision). | 
|  | SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op, | 
|  | DAGCombinerInfo &DCI, | 
|  | unsigned &RefinementSteps, | 
|  | bool &UseOneConstNR) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | const char *RecipOp; | 
|  |  | 
|  | // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps. | 
|  | // TODO: Add support for AVX512 (v16f32). | 
|  | // It is likely not profitable to do this for f64 because a double-precision | 
|  | // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 | 
|  | // instructions: convert to single, rsqrtss, convert back to double, refine | 
|  | // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA | 
|  | // along with FMA, this could be a throughput win. | 
|  | if (VT == MVT::f32 && Subtarget->hasSSE1()) | 
|  | RecipOp = "sqrtf"; | 
|  | else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || | 
|  | (VT == MVT::v8f32 && Subtarget->hasAVX())) | 
|  | RecipOp = "vec-sqrtf"; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; | 
|  | if (!Recips.isEnabled(RecipOp)) | 
|  | return SDValue(); | 
|  |  | 
|  | RefinementSteps = Recips.getRefinementSteps(RecipOp); | 
|  | UseOneConstNR = false; | 
|  | return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op); | 
|  | } | 
|  |  | 
|  | /// The minimum architected relative accuracy is 2^-12. We need one | 
|  | /// Newton-Raphson step to have a good float result (24 bits of precision). | 
|  | SDValue X86TargetLowering::getRecipEstimate(SDValue Op, | 
|  | DAGCombinerInfo &DCI, | 
|  | unsigned &RefinementSteps) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | const char *RecipOp; | 
|  |  | 
|  | // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. | 
|  | // TODO: Add support for AVX512 (v16f32). | 
|  | // It is likely not profitable to do this for f64 because a double-precision | 
|  | // reciprocal estimate with refinement on x86 prior to FMA requires | 
|  | // 15 instructions: convert to single, rcpss, convert back to double, refine | 
|  | // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA | 
|  | // along with FMA, this could be a throughput win. | 
|  | if (VT == MVT::f32 && Subtarget->hasSSE1()) | 
|  | RecipOp = "divf"; | 
|  | else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || | 
|  | (VT == MVT::v8f32 && Subtarget->hasAVX())) | 
|  | RecipOp = "vec-divf"; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; | 
|  | if (!Recips.isEnabled(RecipOp)) | 
|  | return SDValue(); | 
|  |  | 
|  | RefinementSteps = Recips.getRefinementSteps(RecipOp); | 
|  | return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op); | 
|  | } | 
|  |  | 
|  | /// If we have at least two divisions that use the same divisor, convert to | 
|  | /// multplication by a reciprocal. This may need to be adjusted for a given | 
|  | /// CPU if a division's cost is not at least twice the cost of a multiplication. | 
|  | /// This is because we still need one division to calculate the reciprocal and | 
|  | /// then we need two multiplies by that reciprocal as replacements for the | 
|  | /// original divisions. | 
|  | unsigned X86TargetLowering::combineRepeatedFPDivisors() const { | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | static bool isAllOnes(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node | 
|  | /// if it's possible. | 
|  | SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  | SDValue Op0 = And.getOperand(0); | 
|  | SDValue Op1 = And.getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (Op1.getOpcode() == ISD::TRUNCATE) | 
|  | Op1 = Op1.getOperand(0); | 
|  |  | 
|  | SDValue LHS, RHS; | 
|  | if (Op1.getOpcode() == ISD::SHL) | 
|  | std::swap(Op0, Op1); | 
|  | if (Op0.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) | 
|  | if (And00C->getZExtValue() == 1) { | 
|  | // If we looked past a truncate, check that it's only truncating away | 
|  | // known zeros. | 
|  | unsigned BitWidth = Op0.getValueSizeInBits(); | 
|  | unsigned AndBitWidth = And.getValueSizeInBits(); | 
|  | if (BitWidth > AndBitWidth) { | 
|  | APInt Zeros, Ones; | 
|  | DAG.computeKnownBits(Op0, Zeros, Ones); | 
|  | if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) | 
|  | return SDValue(); | 
|  | } | 
|  | LHS = Op1; | 
|  | RHS = Op0.getOperand(1); | 
|  | } | 
|  | } else if (Op1.getOpcode() == ISD::Constant) { | 
|  | ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); | 
|  | uint64_t AndRHSVal = AndRHS->getZExtValue(); | 
|  | SDValue AndLHS = Op0; | 
|  |  | 
|  | if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { | 
|  | LHS = AndLHS.getOperand(0); | 
|  | RHS = AndLHS.getOperand(1); | 
|  | } | 
|  |  | 
|  | // Use BT if the immediate can't be encoded in a TEST instruction. | 
|  | if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { | 
|  | LHS = AndLHS; | 
|  | RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHS.getNode()) { | 
|  | // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT | 
|  | // instruction.  Since the shift amount is in-range-or-undefined, we know | 
|  | // that doing a bittest on the i32 value is ok.  We extend to i32 because | 
|  | // the encoding for the i16 version is larger than the i32 version. | 
|  | // Also promote i16 to i32 for performance / code size reason. | 
|  | if (LHS.getValueType() == MVT::i8 || | 
|  | LHS.getValueType() == MVT::i16) | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); | 
|  |  | 
|  | // If the operand types disagree, extend the shift amount to match.  Since | 
|  | // BT ignores high bits (like shifts) we can use anyextend. | 
|  | if (LHS.getValueType() != RHS.getValueType()) | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); | 
|  |  | 
|  | SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); | 
|  | X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(Cond, dl, MVT::i8), BT); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point | 
|  | /// mask CMPs. | 
|  | static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, | 
|  | SDValue &Op1) { | 
|  | unsigned SSECC; | 
|  | bool Swap = false; | 
|  |  | 
|  | // SSE Condition code mapping: | 
|  | //  0 - EQ | 
|  | //  1 - LT | 
|  | //  2 - LE | 
|  | //  3 - UNORD | 
|  | //  4 - NEQ | 
|  | //  5 - NLT | 
|  | //  6 - NLE | 
|  | //  7 - ORD | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  SSECC = 0; break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  Swap = true; // Fallthrough | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: SSECC = 1; break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:  Swap = true; // Fallthrough | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: SSECC = 2; break; | 
|  | case ISD::SETUO:  SSECC = 3; break; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETULE: Swap = true; // Fallthrough | 
|  | case ISD::SETUGE: SSECC = 5; break; | 
|  | case ISD::SETULT: Swap = true; // Fallthrough | 
|  | case ISD::SETUGT: SSECC = 6; break; | 
|  | case ISD::SETO:   SSECC = 7; break; | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETONE: SSECC = 8; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | return SSECC; | 
|  | } | 
|  |  | 
|  | // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 | 
|  | // ones, and then concatenate the result back. | 
|  | static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && | 
|  | "Unsupported value type for operation"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDLoc dl(Op); | 
|  | SDValue CC = Op.getOperand(2); | 
|  |  | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Extract the RHS vectors | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); | 
|  | SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Issue the operation on the smaller types and concatenate the result back | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert(Op0.getValueType().getVectorElementType() == MVT::i1 && | 
|  | "Unexpected type for boolean compare operation"); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0, | 
|  | DAG.getConstant(-1, dl, VT)); | 
|  | SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1, | 
|  | DAG.getConstant(-1, dl, VT)); | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETEQ: | 
|  | // (x == y) -> ~(x ^ y) | 
|  | return DAG.getNode(ISD::XOR, dl, VT, | 
|  | DAG.getNode(ISD::XOR, dl, VT, Op0, Op1), | 
|  | DAG.getConstant(-1, dl, VT)); | 
|  | case ISD::SETNE: | 
|  | // (x != y) -> (x ^ y) | 
|  | return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1); | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | // (x > y) -> (x & ~y) | 
|  | return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | // (x < y) -> (~x & y) | 
|  | return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1); | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | // (x <= y) -> (~x | y) | 
|  | return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1); | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: | 
|  | // (x >=y) -> (x | ~y) | 
|  | return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 && | 
|  | Op.getValueType().getScalarType() == MVT::i1 && | 
|  | "Cannot set masked compare for this operation"); | 
|  |  | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | unsigned  Opc = 0; | 
|  | bool Unsigned = false; | 
|  | bool Swap = false; | 
|  | unsigned SSECC; | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break; | 
|  | case ISD::SETUGT: SSECC = 6; Unsigned = true; break; | 
|  | case ISD::SETLT:  Swap = true; //fall-through | 
|  | case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break; | 
|  | case ISD::SETULT: SSECC = 1; Unsigned = true; break; | 
|  | case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT | 
|  | case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap | 
|  | case ISD::SETULE: Unsigned = true; //fall-through | 
|  | case ISD::SETLE:  SSECC = 2; break; | 
|  | } | 
|  |  | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  | if (Opc) | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  | Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(SSECC, dl, MVT::i8)); | 
|  | } | 
|  |  | 
|  | /// \brief Try to turn a VSETULT into a VSETULE by modifying its second | 
|  | /// operand \p Op1.  If non-trivial (for example because it's not constant) | 
|  | /// return an empty value. | 
|  | static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG) | 
|  | { | 
|  | BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); | 
|  | if (!BV) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = Op1.getSimpleValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | unsigned n = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> ULTOp1; | 
|  |  | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); | 
|  | if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid underflow. | 
|  | APInt Val = Elt->getAPIntValue(); | 
|  | if (Val == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (isFP) { | 
|  | #ifndef NDEBUG | 
|  | MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); | 
|  | assert(EltVT == MVT::f32 || EltVT == MVT::f64); | 
|  | #endif | 
|  |  | 
|  | unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); | 
|  | unsigned Opc = X86ISD::CMPP; | 
|  | if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) { | 
|  | assert(VT.getVectorNumElements() <= 16); | 
|  | Opc = X86ISD::CMPM; | 
|  | } | 
|  | // In the two special cases we can't handle, emit two comparisons. | 
|  | if (SSECC == 8) { | 
|  | unsigned CC0, CC1; | 
|  | unsigned CombineOpc; | 
|  | if (SetCCOpcode == ISD::SETUEQ) { | 
|  | CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; | 
|  | } else { | 
|  | assert(SetCCOpcode == ISD::SETONE); | 
|  | CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; | 
|  | } | 
|  |  | 
|  | SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(CC0, dl, MVT::i8)); | 
|  | SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(CC1, dl, MVT::i8)); | 
|  | return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); | 
|  | } | 
|  | // Handle all other FP comparisons here. | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(SSECC, dl, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Break 256-bit integer vector compare into smaller ones. | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256()) | 
|  | return Lower256IntVSETCC(Op, DAG); | 
|  |  | 
|  | EVT OpVT = Op1.getValueType(); | 
|  | if (OpVT.getVectorElementType() == MVT::i1) | 
|  | return LowerBoolVSETCC_AVX512(Op, DAG); | 
|  |  | 
|  | bool MaskResult = (VT.getVectorElementType() == MVT::i1); | 
|  | if (Subtarget->hasAVX512()) { | 
|  | if (Op1.getValueType().is512BitVector() || | 
|  | (Subtarget->hasBWI() && Subtarget->hasVLX()) || | 
|  | (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32)) | 
|  | return LowerIntVSETCC_AVX512(Op, DAG, Subtarget); | 
|  |  | 
|  | // In AVX-512 architecture setcc returns mask with i1 elements, | 
|  | // But there is no compare instruction for i8 and i16 elements in KNL. | 
|  | // We are not talking about 512-bit operands in this case, these | 
|  | // types are illegal. | 
|  | if (MaskResult && | 
|  | (OpVT.getVectorElementType().getSizeInBits() < 32 && | 
|  | OpVT.getVectorElementType().getSizeInBits() >= 8)) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); | 
|  | } | 
|  |  | 
|  | // We are handling one of the integer comparisons here.  Since SSE only has | 
|  | // GT and EQ comparisons for integer, swapping operands and multiple | 
|  | // operations may be required for some comparisons. | 
|  | unsigned Opc; | 
|  | bool Swap = false, Invert = false, FlipSigns = false, MinMax = false; | 
|  | bool Subus = false; | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE:  Invert = true; | 
|  | case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break; | 
|  | case ISD::SETLT:  Swap = true; | 
|  | case ISD::SETGT:  Opc = X86ISD::PCMPGT; break; | 
|  | case ISD::SETGE:  Swap = true; | 
|  | case ISD::SETLE:  Opc = X86ISD::PCMPGT; | 
|  | Invert = true; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: Opc = X86ISD::PCMPGT; | 
|  | FlipSigns = true; break; | 
|  | case ISD::SETUGE: Swap = true; | 
|  | case ISD::SETULE: Opc = X86ISD::PCMPGT; | 
|  | FlipSigns = true; Invert = true; break; | 
|  | } | 
|  |  | 
|  | // Special case: Use min/max operations for SETULE/SETUGE | 
|  | MVT VET = VT.getVectorElementType(); | 
|  | bool hasMinMax = | 
|  | (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32)) | 
|  | || (Subtarget->hasSSE2()  && (VET == MVT::i8)); | 
|  |  | 
|  | if (hasMinMax) { | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break; | 
|  | case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break; | 
|  | } | 
|  |  | 
|  | if (MinMax) { Swap = false; Invert = false; FlipSigns = false; } | 
|  | } | 
|  |  | 
|  | bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); | 
|  | if (!MinMax && hasSubus) { | 
|  | // As another special case, use PSUBUS[BW] when it's profitable. E.g. for | 
|  | // Op0 u<= Op1: | 
|  | //   t = psubus Op0, Op1 | 
|  | //   pcmpeq t, <0..0> | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETULT: { | 
|  | // If the comparison is against a constant we can turn this into a | 
|  | // setule.  With psubus, setule does not require a swap.  This is | 
|  | // beneficial because the constant in the register is no longer | 
|  | // destructed as the destination so it can be hoisted out of a loop. | 
|  | // Only do this pre-AVX since vpcmp* is no longer destructive. | 
|  | if (Subtarget->hasAVX()) | 
|  | break; | 
|  | SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG); | 
|  | if (ULEOp1.getNode()) { | 
|  | Op1 = ULEOp1; | 
|  | Subus = true; Invert = false; Swap = false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Psubus is better than flip-sign because it requires no inversion. | 
|  | case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break; | 
|  | case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; | 
|  | } | 
|  |  | 
|  | if (Subus) { | 
|  | Opc = X86ISD::SUBUS; | 
|  | FlipSigns = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // Check that the operation in question is available (most are plain SSE2, | 
|  | // but PCMPGTQ and PCMPEQQ have different requirements). | 
|  | if (VT == MVT::v2i64) { | 
|  | if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { | 
|  | assert(Subtarget->hasSSE2() && "Don't know how to lower!"); | 
|  |  | 
|  | // First cast everything to the right type. | 
|  | Op0 = DAG.getBitcast(MVT::v4i32, Op0); | 
|  | Op1 = DAG.getBitcast(MVT::v4i32, Op1); | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip the sign | 
|  | // bits of the inputs before performing those operations. The lower | 
|  | // compare is always unsigned. | 
|  | SDValue SB; | 
|  | if (FlipSigns) { | 
|  | SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32); | 
|  | } else { | 
|  | SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32); | 
|  | SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32); | 
|  | SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, | 
|  | Sign, Zero, Sign, Zero); | 
|  | } | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); | 
|  |  | 
|  | // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) | 
|  | SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); | 
|  | SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); | 
|  |  | 
|  | // Create masks for only the low parts/high parts of the 64 bit integers. | 
|  | static const int MaskHi[] = { 1, 1, 3, 3 }; | 
|  | static const int MaskLo[] = { 0, 0, 2, 2 }; | 
|  | SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); | 
|  | SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); | 
|  | SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); | 
|  |  | 
|  | SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); | 
|  | Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); | 
|  |  | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, MVT::v4i32); | 
|  |  | 
|  | return DAG.getBitcast(VT, Result); | 
|  | } | 
|  |  | 
|  | if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { | 
|  | // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with | 
|  | // pcmpeqd + pshufd + pand. | 
|  | assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); | 
|  |  | 
|  | // First cast everything to the right type. | 
|  | Op0 = DAG.getBitcast(MVT::v4i32, Op0); | 
|  | Op1 = DAG.getBitcast(MVT::v4i32, Op1); | 
|  |  | 
|  | // Do the compare. | 
|  | SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); | 
|  |  | 
|  | // Make sure the lower and upper halves are both all-ones. | 
|  | static const int Mask[] = { 1, 0, 3, 2 }; | 
|  | SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); | 
|  | Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); | 
|  |  | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, MVT::v4i32); | 
|  |  | 
|  | return DAG.getBitcast(VT, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip the sign | 
|  | // bits of the inputs before performing those operations. | 
|  | if (FlipSigns) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl, | 
|  | VT); | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  |  | 
|  | // If the logical-not of the result is required, perform that now. | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, VT); | 
|  |  | 
|  | if (MinMax) | 
|  | Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); | 
|  |  | 
|  | if (Subus) | 
|  | Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, | 
|  | getZeroVector(VT, Subtarget, DAG, dl)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); | 
|  |  | 
|  | assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1)) | 
|  | && "SetCC type must be 8-bit or 1-bit integer"); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // Optimize to BT if possible. | 
|  | // Lower (X & (1 << N)) == 0 to BT(X, N). | 
|  | // Lower ((X >>u N) & 1) != 0 to BT(X, N). | 
|  | // Lower ((X >>s N) & 1) != 0 to BT(X, N). | 
|  | if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && | 
|  | Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op1)->isNullValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC); | 
|  | return NewSetCC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of | 
|  | // these. | 
|  | if (Op1.getOpcode() == ISD::Constant && | 
|  | (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || | 
|  | cast<ConstantSDNode>(Op1)->isNullValue()) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  |  | 
|  | // If the input is a setcc, then reuse the input setcc or use a new one with | 
|  | // the inverted condition. | 
|  | if (Op0.getOpcode() == X86ISD::SETCC) { | 
|  | X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); | 
|  | bool Invert = (CC == ISD::SETNE) ^ | 
|  | cast<ConstantSDNode>(Op1)->isNullValue(); | 
|  | if (!Invert) | 
|  | return Op0; | 
|  |  | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(CCode, dl, MVT::i8), | 
|  | Op0.getOperand(1)); | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); | 
|  | return SetCC; | 
|  | } | 
|  | } | 
|  | if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) && | 
|  | (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  |  | 
|  | ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true); | 
|  | return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC); | 
|  | } | 
|  |  | 
|  | bool isFP = Op1.getSimpleValueType().isFloatingPoint(); | 
|  | unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG); | 
|  | if (X86CC == X86::COND_INVALID) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); | 
|  | EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS); | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); | 
|  | return SetCC; | 
|  | } | 
|  |  | 
|  | // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. | 
|  | static bool isX86LogicalCmp(SDValue Op) { | 
|  | unsigned Opc = Op.getNode()->getOpcode(); | 
|  | if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || | 
|  | Opc == X86ISD::SAHF) | 
|  | return true; | 
|  | if (Op.getResNo() == 1 && | 
|  | (Opc == X86ISD::ADD || | 
|  | Opc == X86ISD::SUB || | 
|  | Opc == X86ISD::ADC || | 
|  | Opc == X86ISD::SBB || | 
|  | Opc == X86ISD::SMUL || | 
|  | Opc == X86ISD::UMUL || | 
|  | Opc == X86ISD::INC || | 
|  | Opc == X86ISD::DEC || | 
|  | Opc == X86ISD::OR || | 
|  | Opc == X86ISD::XOR || | 
|  | Opc == X86ISD::AND)) | 
|  | return true; | 
|  |  | 
|  | if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { | 
|  | if (V.getOpcode() != ISD::TRUNCATE) | 
|  | return false; | 
|  |  | 
|  | SDValue VOp0 = V.getOperand(0); | 
|  | unsigned InBits = VOp0.getValueSizeInBits(); | 
|  | unsigned Bits = V.getValueSizeInBits(); | 
|  | return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Cond  = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op1.getValueType(); | 
|  | SDValue CC; | 
|  |  | 
|  | // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops | 
|  | // are available or VBLENDV if AVX is available. | 
|  | // Otherwise FP cmovs get lowered into a less efficient branch sequence later. | 
|  | if (Cond.getOpcode() == ISD::SETCC && | 
|  | ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || | 
|  | (Subtarget->hasSSE1() && VT == MVT::f32)) && | 
|  | VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) { | 
|  | SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); | 
|  | int SSECC = translateX86FSETCC( | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); | 
|  |  | 
|  | if (SSECC != 8) { | 
|  | if (Subtarget->hasAVX512()) { | 
|  | SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1, | 
|  | DAG.getConstant(SSECC, DL, MVT::i8)); | 
|  | return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2); | 
|  | } | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, | 
|  | DAG.getConstant(SSECC, DL, MVT::i8)); | 
|  |  | 
|  | // If we have AVX, we can use a variable vector select (VBLENDV) instead | 
|  | // of 3 logic instructions for size savings and potentially speed. | 
|  | // Unfortunately, there is no scalar form of VBLENDV. | 
|  |  | 
|  | // If either operand is a constant, don't try this. We can expect to | 
|  | // optimize away at least one of the logic instructions later in that | 
|  | // case, so that sequence would be faster than a variable blend. | 
|  |  | 
|  | // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly | 
|  | // uses XMM0 as the selection register. That may need just as many | 
|  | // instructions as the AND/ANDN/OR sequence due to register moves, so | 
|  | // don't bother. | 
|  |  | 
|  | if (Subtarget->hasAVX() && | 
|  | !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) { | 
|  |  | 
|  | // Convert to vectors, do a VSELECT, and convert back to scalar. | 
|  | // All of the conversions should be optimized away. | 
|  |  | 
|  | EVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64; | 
|  | SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1); | 
|  | SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2); | 
|  | SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp); | 
|  |  | 
|  | EVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64; | 
|  | VCmp = DAG.getBitcast(VCmpVT, VCmp); | 
|  |  | 
|  | SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2); | 
|  |  | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, | 
|  | VSel, DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  | SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); | 
|  | SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); | 
|  | return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT.isVector() && VT.getScalarType() == MVT::i1) { | 
|  | SDValue Op1Scalar; | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode())) | 
|  | Op1Scalar = ConvertI1VectorToInteger(Op1, DAG); | 
|  | else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0)) | 
|  | Op1Scalar = Op1.getOperand(0); | 
|  | SDValue Op2Scalar; | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode())) | 
|  | Op2Scalar = ConvertI1VectorToInteger(Op2, DAG); | 
|  | else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0)) | 
|  | Op2Scalar = Op2.getOperand(0); | 
|  | if (Op1Scalar.getNode() && Op2Scalar.getNode()) { | 
|  | SDValue newSelect = DAG.getNode(ISD::SELECT, DL, | 
|  | Op1Scalar.getValueType(), | 
|  | Cond, Op1Scalar, Op2Scalar); | 
|  | if (newSelect.getValueSizeInBits() == VT.getSizeInBits()) | 
|  | return DAG.getBitcast(VT, newSelect); | 
|  | SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v4i1 || VT == MVT::v2i1) { | 
|  | SDValue zeroConst = DAG.getIntPtrConstant(0, DL); | 
|  | Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, | 
|  | DAG.getUNDEF(MVT::v8i1), Op1, zeroConst); | 
|  | Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, | 
|  | DAG.getUNDEF(MVT::v8i1), Op2, zeroConst); | 
|  | SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1, | 
|  | Cond, Op1, Op2); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst); | 
|  | } | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  |  | 
|  | // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y | 
|  | // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y | 
|  | // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y | 
|  | // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y | 
|  | if (Cond.getOpcode() == X86ISD::SETCC && | 
|  | Cond.getOperand(1).getOpcode() == X86ISD::CMP && | 
|  | isZero(Cond.getOperand(1).getOperand(1))) { | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  |  | 
|  | unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | if ((isAllOnes(Op1) || isAllOnes(Op2)) && | 
|  | (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { | 
|  | SDValue Y = isAllOnes(Op2) ? Op1 : Op2; | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | // Apply further optimizations for special cases | 
|  | // (select (x != 0), -1, 0) -> neg & sbb | 
|  | // (select (x == 0), 0, -1) -> neg & sbb | 
|  | if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y)) | 
|  | if (YC->isNullValue() && | 
|  | (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { | 
|  | SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); | 
|  | SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, | 
|  | DAG.getConstant(0, DL, | 
|  | CmpOp0.getValueType()), | 
|  | CmpOp0); | 
|  | SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, DL, MVT::i8), | 
|  | SDValue(Neg.getNode(), 1)); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, | 
|  | CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  |  | 
|  | SDValue Res =   // Res = 0 or -1. | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp); | 
|  |  | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_E)) | 
|  | Res = DAG.getNOT(DL, Res, Res.getValueType()); | 
|  |  | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); | 
|  | if (!N2C || !N2C->isNullValue()) | 
|  | Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look past (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | unsigned CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == X86ISD::SETCC || | 
|  | CondOpcode == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | bool IllegalFPCMov = false; | 
|  | if (VT.isFloatingPoint() && !VT.isVector() && | 
|  | !isScalarFPTypeInSSEReg(VT))  // FPStack? | 
|  | IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); | 
|  |  | 
|  | if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || | 
|  | Opc == X86ISD::BT) { // FIXME | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || | 
|  | CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || | 
|  | ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && | 
|  | Cond.getOperand(0).getValueType() != MVT::i8)) { | 
|  | SDValue LHS = Cond.getOperand(0); | 
|  | SDValue RHS = Cond.getOperand(1); | 
|  | unsigned X86Opcode; | 
|  | unsigned X86Cond; | 
|  | SDVTList VTs; | 
|  | switch (CondOpcode) { | 
|  | case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; | 
|  | case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; | 
|  | case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; | 
|  | case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; | 
|  | case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; | 
|  | case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; | 
|  | default: llvm_unreachable("unexpected overflowing operator"); | 
|  | } | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), | 
|  | MVT::i32); | 
|  | else | 
|  | VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); | 
|  |  | 
|  | SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); | 
|  |  | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | Cond = X86Op.getValue(2); | 
|  | else | 
|  | Cond = X86Op.getValue(1); | 
|  |  | 
|  | CC = DAG.getConstant(X86Cond, DL, MVT::i8); | 
|  | addTest = false; | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look past the truncate if the high bits are known zero. | 
|  | if (isTruncWithZeroHighBitsInput(Cond, DAG)) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); | 
|  | } | 
|  |  | 
|  | // a <  b ? -1 :  0 -> RES = ~setcc_carry | 
|  | // a <  b ?  0 : -1 -> RES = setcc_carry | 
|  | // a >= b ? -1 :  0 -> RES = setcc_carry | 
|  | // a >= b ?  0 : -1 -> RES = ~setcc_carry | 
|  | if (Cond.getOpcode() == X86ISD::SUB) { | 
|  | Cond = ConvertCmpIfNecessary(Cond, DAG); | 
|  | unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); | 
|  |  | 
|  | if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && | 
|  | (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { | 
|  | SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, DL, MVT::i8), | 
|  | Cond); | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_B)) | 
|  | return DAG.getNOT(DL, Res, Res.getValueType()); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // X86 doesn't have an i8 cmov. If both operands are the result of a truncate | 
|  | // widen the cmov and push the truncate through. This avoids introducing a new | 
|  | // branch during isel and doesn't add any extensions. | 
|  | if (Op.getValueType() == MVT::i8 && | 
|  | Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); | 
|  | if (T1.getValueType() == T2.getValueType() && | 
|  | // Blacklist CopyFromReg to avoid partial register stalls. | 
|  | T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ | 
|  | SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); | 
|  | SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
|  | SDValue Ops[] = { Op2, Op1, CC, Cond }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | MVT VTElt = VT.getVectorElementType(); | 
|  | MVT InVTElt = InVT.getVectorElementType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // SKX processor | 
|  | if ((InVTElt == MVT::i1) && | 
|  | (((Subtarget->hasBWI() && Subtarget->hasVLX() && | 
|  | VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) || | 
|  |  | 
|  | ((Subtarget->hasBWI() && VT.is512BitVector() && | 
|  | VTElt.getSizeInBits() <= 16)) || | 
|  |  | 
|  | ((Subtarget->hasDQI() && Subtarget->hasVLX() && | 
|  | VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) || | 
|  |  | 
|  | ((Subtarget->hasDQI() && VT.is512BitVector() && | 
|  | VTElt.getSizeInBits() >= 32)))) | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  |  | 
|  | unsigned int NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) { | 
|  | if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT) | 
|  | return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0)); | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  | } | 
|  |  | 
|  | assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); | 
|  | MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; | 
|  | SDValue NegOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl, | 
|  | ExtVT); | 
|  | SDValue Zero = | 
|  | DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT); | 
|  |  | 
|  | SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero); | 
|  | if (VT.is512BitVector()) | 
|  | return V; | 
|  | return DAG.getNode(X86ISD::VTRUNC, dl, VT, V); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | assert(VT.getSizeInBits() == InVT.getSizeInBits()); | 
|  |  | 
|  | MVT InSVT = InVT.getScalarType(); | 
|  | assert(VT.getScalarType().getScalarSizeInBits() > InSVT.getScalarSizeInBits()); | 
|  |  | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) | 
|  | return SDValue(); | 
|  | if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // SSE41 targets can use the pmovsx* instructions directly. | 
|  | if (Subtarget->hasSSE41()) | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  |  | 
|  | // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI. | 
|  | SDValue Curr = In; | 
|  | MVT CurrVT = InVT; | 
|  |  | 
|  | // As SRAI is only available on i16/i32 types, we expand only up to i32 | 
|  | // and handle i64 separately. | 
|  | while (CurrVT != VT && CurrVT.getScalarType() != MVT::i32) { | 
|  | Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr); | 
|  | MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2); | 
|  | CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2); | 
|  | Curr = DAG.getBitcast(CurrVT, Curr); | 
|  | } | 
|  |  | 
|  | SDValue SignExt = Curr; | 
|  | if (CurrVT != InVT) { | 
|  | unsigned SignExtShift = | 
|  | CurrVT.getScalarSizeInBits() - InSVT.getScalarSizeInBits(); | 
|  | SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, | 
|  | DAG.getConstant(SignExtShift, dl, MVT::i8)); | 
|  | } | 
|  |  | 
|  | if (CurrVT == VT) | 
|  | return SignExt; | 
|  |  | 
|  | if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) { | 
|  | SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, | 
|  | DAG.getConstant(31, dl, MVT::i8)); | 
|  | SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5}); | 
|  | return DAG.getBitcast(VT, Ext); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) | 
|  | return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG); | 
|  |  | 
|  | if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && | 
|  | (VT != MVT::v8i32 || InVT != MVT::v8i16) && | 
|  | (VT != MVT::v16i16 || InVT != MVT::v16i8)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasInt256()) | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  |  | 
|  | // Optimize vectors in AVX mode | 
|  | // Sign extend  v8i16 to v8i32 and | 
|  | //              v4i32 to v4i64 | 
|  | // | 
|  | // Divide input vector into two parts | 
|  | // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} | 
|  | // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 | 
|  | // concat the vectors to original VT | 
|  |  | 
|  | unsigned NumElems = InVT.getVectorNumElements(); | 
|  | SDValue Undef = DAG.getUNDEF(InVT); | 
|  |  | 
|  | SmallVector<int,8> ShufMask1(NumElems, -1); | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | ShufMask1[i] = i; | 
|  |  | 
|  | SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); | 
|  |  | 
|  | SmallVector<int,8> ShufMask2(NumElems, -1); | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | ShufMask2[i] = i + NumElems/2; | 
|  |  | 
|  | SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); | 
|  |  | 
|  | MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), | 
|  | VT.getVectorNumElements()/2); | 
|  |  | 
|  | OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo); | 
|  | OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | // Lower vector extended loads using a shuffle. If SSSE3 is not available we | 
|  | // may emit an illegal shuffle but the expansion is still better than scalar | 
|  | // code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise | 
|  | // we'll emit a shuffle and a arithmetic shift. | 
|  | // FIXME: Is the expansion actually better than scalar code? It doesn't seem so. | 
|  | // TODO: It is possible to support ZExt by zeroing the undef values during | 
|  | // the shuffle phase or after the shuffle. | 
|  | static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT RegVT = Op.getSimpleValueType(); | 
|  | assert(RegVT.isVector() && "We only custom lower vector sext loads."); | 
|  | assert(RegVT.isInteger() && | 
|  | "We only custom lower integer vector sext loads."); | 
|  |  | 
|  | // Nothing useful we can do without SSE2 shuffles. | 
|  | assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2."); | 
|  |  | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); | 
|  | SDLoc dl(Ld); | 
|  | EVT MemVT = Ld->getMemoryVT(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned RegSz = RegVT.getSizeInBits(); | 
|  |  | 
|  | ISD::LoadExtType Ext = Ld->getExtensionType(); | 
|  |  | 
|  | assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) | 
|  | && "Only anyext and sext are currently implemented."); | 
|  | assert(MemVT != RegVT && "Cannot extend to the same type"); | 
|  | assert(MemVT.isVector() && "Must load a vector from memory"); | 
|  |  | 
|  | unsigned NumElems = RegVT.getVectorNumElements(); | 
|  | unsigned MemSz = MemVT.getSizeInBits(); | 
|  | assert(RegSz > MemSz && "Register size must be greater than the mem size"); | 
|  |  | 
|  | if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) { | 
|  | // The only way in which we have a legal 256-bit vector result but not the | 
|  | // integer 256-bit operations needed to directly lower a sextload is if we | 
|  | // have AVX1 but not AVX2. In that case, we can always emit a sextload to | 
|  | // a 128-bit vector and a normal sign_extend to 256-bits that should get | 
|  | // correctly legalized. We do this late to allow the canonical form of | 
|  | // sextload to persist throughout the rest of the DAG combiner -- it wants | 
|  | // to fold together any extensions it can, and so will fuse a sign_extend | 
|  | // of an sextload into a sextload targeting a wider value. | 
|  | SDValue Load; | 
|  | if (MemSz == 128) { | 
|  | // Just switch this to a normal load. | 
|  | assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " | 
|  | "it must be a legal 128-bit vector " | 
|  | "type!"); | 
|  | Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), Ld->getAlignment()); | 
|  | } else { | 
|  | assert(MemSz < 128 && | 
|  | "Can't extend a type wider than 128 bits to a 256 bit vector!"); | 
|  | // Do an sext load to a 128-bit vector type. We want to use the same | 
|  | // number of elements, but elements half as wide. This will end up being | 
|  | // recursively lowered by this routine, but will succeed as we definitely | 
|  | // have all the necessary features if we're using AVX1. | 
|  | EVT HalfEltVT = | 
|  | EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); | 
|  | EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); | 
|  | Load = | 
|  | DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), | 
|  | Ld->getPointerInfo(), MemVT, Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Ld->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Replace chain users with the new chain. | 
|  | assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); | 
|  |  | 
|  | // Finally, do a normal sign-extend to the desired register. | 
|  | return DAG.getSExtOrTrunc(Load, dl, RegVT); | 
|  | } | 
|  |  | 
|  | // All sizes must be a power of two. | 
|  | assert(isPowerOf2_32(RegSz * MemSz * NumElems) && | 
|  | "Non-power-of-two elements are not custom lowered!"); | 
|  |  | 
|  | // Attempt to load the original value using scalar loads. | 
|  | // Find the largest scalar type that divides the total loaded size. | 
|  | MVT SclrLoadTy = MVT::i8; | 
|  | for (MVT Tp : MVT::integer_valuetypes()) { | 
|  | if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { | 
|  | SclrLoadTy = Tp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. | 
|  | if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && | 
|  | (64 <= MemSz)) | 
|  | SclrLoadTy = MVT::f64; | 
|  |  | 
|  | // Calculate the number of scalar loads that we need to perform | 
|  | // in order to load our vector from memory. | 
|  | unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); | 
|  |  | 
|  | assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && | 
|  | "Can only lower sext loads with a single scalar load!"); | 
|  |  | 
|  | unsigned loadRegZize = RegSz; | 
|  | if (Ext == ISD::SEXTLOAD && RegSz >= 256) | 
|  | loadRegZize = 128; | 
|  |  | 
|  | // Represent our vector as a sequence of elements which are the | 
|  | // largest scalar that we can load. | 
|  | EVT LoadUnitVecVT = EVT::getVectorVT( | 
|  | *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); | 
|  |  | 
|  | // Represent the data using the same element type that is stored in | 
|  | // memory. In practice, we ''widen'' MemVT. | 
|  | EVT WideVecVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), | 
|  | loadRegZize / MemVT.getScalarType().getSizeInBits()); | 
|  |  | 
|  | assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && | 
|  | "Invalid vector type"); | 
|  |  | 
|  | // We can't shuffle using an illegal type. | 
|  | assert(TLI.isTypeLegal(WideVecVT) && | 
|  | "We only lower types that form legal widened vector types"); | 
|  |  | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Res = DAG.getUNDEF(LoadUnitVecVT); | 
|  |  | 
|  | for (unsigned i = 0; i < NumLoads; ++i) { | 
|  | // Perform a single load. | 
|  | SDValue ScalarLoad = | 
|  | DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Ld->getAlignment()); | 
|  | Chains.push_back(ScalarLoad.getValue(1)); | 
|  | // Create the first element type using SCALAR_TO_VECTOR in order to avoid | 
|  | // another round of DAGCombining. | 
|  | if (i == 0) | 
|  | Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); | 
|  | else | 
|  | Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, | 
|  | ScalarLoad, DAG.getIntPtrConstant(i, dl)); | 
|  |  | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | } | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); | 
|  |  | 
|  | // Bitcast the loaded value to a vector of the original element type, in | 
|  | // the size of the target vector type. | 
|  | SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res); | 
|  | unsigned SizeRatio = RegSz / MemSz; | 
|  |  | 
|  | if (Ext == ISD::SEXTLOAD) { | 
|  | // If we have SSE4.1, we can directly emit a VSEXT node. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); | 
|  | return Sext; | 
|  | } | 
|  |  | 
|  | // Otherwise we'll shuffle the small elements in the high bits of the | 
|  | // larger type and perform an arithmetic shift. If the shift is not legal | 
|  | // it's better to scalarize. | 
|  | assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) && | 
|  | "We can't implement a sext load without an arithmetic right shift!"); | 
|  |  | 
|  | // Redistribute the loaded elements into the different locations. | 
|  | SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i * SizeRatio + SizeRatio - 1] = i; | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle( | 
|  | WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); | 
|  |  | 
|  | Shuff = DAG.getBitcast(RegVT, Shuff); | 
|  |  | 
|  | // Build the arithmetic shift. | 
|  | unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - | 
|  | MemVT.getVectorElementType().getSizeInBits(); | 
|  | Shuff = | 
|  | DAG.getNode(ISD::SRA, dl, RegVT, Shuff, | 
|  | DAG.getConstant(Amt, dl, RegVT)); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); | 
|  | return Shuff; | 
|  | } | 
|  |  | 
|  | // Redistribute the loaded elements into the different locations. | 
|  | SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i * SizeRatio] = i; | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, | 
|  | DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); | 
|  |  | 
|  | // Bitcast to the requested type. | 
|  | Shuff = DAG.getBitcast(RegVT, Shuff); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); | 
|  | return Shuff; | 
|  | } | 
|  |  | 
|  | // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or | 
|  | // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart | 
|  | // from the AND / OR. | 
|  | static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { | 
|  | Opc = Op.getOpcode(); | 
|  | if (Opc != ISD::OR && Opc != ISD::AND) | 
|  | return false; | 
|  | return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse() && | 
|  | Op.getOperand(1).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(1).hasOneUse()); | 
|  | } | 
|  |  | 
|  | // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and | 
|  | // 1 and that the SETCC node has a single use. | 
|  | static bool isXor1OfSetCC(SDValue Op) { | 
|  | if (Op.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (N1C && N1C->getAPIntValue() == 1) { | 
|  | return Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Cond  = Op.getOperand(1); | 
|  | SDValue Dest  = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  | SDValue CC; | 
|  | bool Inverted = false; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | // Check for setcc([su]{add,sub,mul}o == 0). | 
|  | if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && | 
|  | isa<ConstantSDNode>(Cond.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() && | 
|  | Cond.getOperand(0).getResNo() == 1 && | 
|  | (Cond.getOperand(0).getOpcode() == ISD::SADDO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::UADDO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::SSUBO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::USUBO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::SMULO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::UMULO)) { | 
|  | Inverted = true; | 
|  | Cond = Cond.getOperand(0); | 
|  | } else { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  | } | 
|  | #if 0 | 
|  | // FIXME: LowerXALUO doesn't handle these!! | 
|  | else if (Cond.getOpcode() == X86ISD::ADD  || | 
|  | Cond.getOpcode() == X86ISD::SUB  || | 
|  | Cond.getOpcode() == X86ISD::SMUL || | 
|  | Cond.getOpcode() == X86ISD::UMUL) | 
|  | Cond = LowerXALUO(Cond, DAG); | 
|  | #endif | 
|  |  | 
|  | // Look pass (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | unsigned CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == X86ISD::SETCC || | 
|  | CondOpcode == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? | 
|  | if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } else { | 
|  | switch (cast<ConstantSDNode>(CC)->getZExtValue()) { | 
|  | default: break; | 
|  | case X86::COND_O: | 
|  | case X86::COND_B: | 
|  | // These can only come from an arithmetic instruction with overflow, | 
|  | // e.g. SADDO, UADDO. | 
|  | Cond = Cond.getNode()->getOperand(1); | 
|  | addTest = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || | 
|  | CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || | 
|  | ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && | 
|  | Cond.getOperand(0).getValueType() != MVT::i8)) { | 
|  | SDValue LHS = Cond.getOperand(0); | 
|  | SDValue RHS = Cond.getOperand(1); | 
|  | unsigned X86Opcode; | 
|  | unsigned X86Cond; | 
|  | SDVTList VTs; | 
|  | // Keep this in sync with LowerXALUO, otherwise we might create redundant | 
|  | // instructions that can't be removed afterwards (i.e. X86ISD::ADD and | 
|  | // X86ISD::INC). | 
|  | switch (CondOpcode) { | 
|  | case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; | 
|  | case ISD::SADDO: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; | 
|  | case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; | 
|  | case ISD::SSUBO: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; | 
|  | case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; | 
|  | case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; | 
|  | default: llvm_unreachable("unexpected overflowing operator"); | 
|  | } | 
|  | if (Inverted) | 
|  | X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), | 
|  | MVT::i32); | 
|  | else | 
|  | VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); | 
|  |  | 
|  | SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); | 
|  |  | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | Cond = X86Op.getValue(2); | 
|  | else | 
|  | Cond = X86Op.getValue(1); | 
|  |  | 
|  | CC = DAG.getConstant(X86Cond, dl, MVT::i8); | 
|  | addTest = false; | 
|  | } else { | 
|  | unsigned CondOpc; | 
|  | if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { | 
|  | SDValue Cmp = Cond.getOperand(0).getOperand(1); | 
|  | if (CondOpc == ISD::OR) { | 
|  | // Also, recognize the pattern generated by an FCMP_UNE. We can emit | 
|  | // two branches instead of an explicit OR instruction with a | 
|  | // separate test. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp)) { | 
|  | CC = Cond.getOperand(0).getOperand(0); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = Cond.getOperand(1).getOperand(0); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else { // ISD::AND | 
|  | // Also, recognize the pattern generated by an FCMP_OEQ. We can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp) && | 
|  | Op.getNode()->hasOneUse()) { | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, dl, MVT::i8); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  | Dest = FalseBB; | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, dl, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { | 
|  | // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. | 
|  | // It should be transformed during dag combiner except when the condition | 
|  | // is set by a arithmetics with overflow node. | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, dl, MVT::i8); | 
|  | Cond = Cond.getOperand(0).getOperand(1); | 
|  | addTest = false; | 
|  | } else if (Cond.getOpcode() == ISD::SETCC && | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { | 
|  | // For FCMP_OEQ, we can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Op.getNode()->hasOneUse()) { | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  | Dest = FalseBB; | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  | CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = DAG.getConstant(X86::COND_P, dl, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } else if (Cond.getOpcode() == ISD::SETCC && | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { | 
|  | // For FCMP_UNE, we can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Op.getNode()->hasOneUse()) { | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_UNE. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  | CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | Dest = FalseBB; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look pass the truncate if the high bits are known zero. | 
|  | if (isTruncWithZeroHighBitsInput(Cond, DAG)) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; | 
|  | CC = DAG.getConstant(X86Cond, dl, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86Cond, dl, DAG); | 
|  | } | 
|  | Cond = ConvertCmpIfNecessary(Cond, DAG); | 
|  | return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cond); | 
|  | } | 
|  |  | 
|  | // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. | 
|  | // Calls to _alloca are needed to probe the stack when allocating more than 4k | 
|  | // bytes in one go. Touching the stack at 4K increments is necessary to ensure | 
|  | // that the guard pages used by the OS virtual memory manager are allocated in | 
|  | // correct sequence. | 
|  | SDValue | 
|  | X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool SplitStack = MF.shouldSplitStack(); | 
|  | bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) || | 
|  | SplitStack; | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (!Lower) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDNode* Node = Op.getNode(); | 
|  |  | 
|  | unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" | 
|  | " not tell us which reg is the stack pointer!"); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Tmp1 = SDValue(Node, 0); | 
|  | SDValue Tmp2 = SDValue(Node, 1); | 
|  | SDValue Tmp3 = Node->getOperand(2); | 
|  | SDValue Chain = Tmp1.getOperand(0); | 
|  |  | 
|  | // Chain the dynamic stack allocation so that it doesn't modify the stack | 
|  | // pointer when other instructions are using the stack. | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), | 
|  | SDLoc(Node)); | 
|  |  | 
|  | SDValue Size = Tmp2.getOperand(1); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); | 
|  | Chain = SP.getValue(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); | 
|  | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); | 
|  | unsigned StackAlign = TFI.getStackAlignment(); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value | 
|  | if (Align > StackAlign) | 
|  | Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, | 
|  | DAG.getConstant(-(uint64_t)Align, dl, VT)); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain | 
|  |  | 
|  | Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), | 
|  | DAG.getIntPtrConstant(0, dl, true), SDValue(), | 
|  | SDLoc(Node)); | 
|  |  | 
|  | SDValue Ops[2] = { Tmp1, Tmp2 }; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
|  | EVT VT = Op.getNode()->getValueType(0); | 
|  |  | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | MVT SPTy = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | if (SplitStack) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | if (Is64Bit) { | 
|  | // The 64 bit implementation of segmented stacks needs to clobber both r10 | 
|  | // r11. This makes it impossible to use it along with nested parameters. | 
|  | const Function *F = MF.getFunction(); | 
|  |  | 
|  | for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I) | 
|  | if (I->hasNestAttr()) | 
|  | report_fatal_error("Cannot use segmented stacks with functions that " | 
|  | "have nested arguments."); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); | 
|  | unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); | 
|  | SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, | 
|  | DAG.getRegister(Vreg, SPTy)); | 
|  | SDValue Ops1[2] = { Value, Chain }; | 
|  | return DAG.getMergeValues(Ops1, dl); | 
|  | } else { | 
|  | SDValue Flag; | 
|  | const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned SPReg = RegInfo->getStackRegister(); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); | 
|  | Chain = SP.getValue(1); | 
|  |  | 
|  | if (Align) { | 
|  | SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), | 
|  | DAG.getConstant(-(uint64_t)Align, dl, VT)); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); | 
|  | } | 
|  |  | 
|  | SDValue Ops1[2] = { SP, Chain }; | 
|  | return DAG.getMergeValues(Ops1, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto PtrVT = getPointerTy(MF.getDataLayout()); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | if (!Subtarget->is64Bit() || | 
|  | Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), false, false, 0); | 
|  | } | 
|  |  | 
|  | // __va_list_tag: | 
|  | //   gp_offset         (0 - 6 * 8) | 
|  | //   fp_offset         (48 - 48 + 8 * 16) | 
|  | //   overflow_arg_area (point to parameters coming in memory). | 
|  | //   reg_save_area | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue FIN = Op.getOperand(1); | 
|  | // Store gp_offset | 
|  | SDValue Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsGPOffset(), | 
|  | DL, MVT::i32), | 
|  | FIN, MachinePointerInfo(SV), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store fp_offset | 
|  | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, | 
|  | MVT::i32), | 
|  | FIN, MachinePointerInfo(SV, 4), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to overflow_arg_area | 
|  | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); | 
|  | SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, | 
|  | MachinePointerInfo(SV, 8), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to reg_save_area. | 
|  | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant( | 
|  | Subtarget->isTarget64BitLP64() ? 8 : 4, DL)); | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo( | 
|  | SV, Subtarget->isTarget64BitLP64() ? 16 : 12), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Subtarget->is64Bit() && | 
|  | "LowerVAARG only handles 64-bit va_arg!"); | 
|  | assert(Op.getNode()->getNumOperands() == 4); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) | 
|  | // The Win64 ABI uses char* instead of a structure. | 
|  | return DAG.expandVAArg(Op.getNode()); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SrcPtr = Op.getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | unsigned Align = Op.getConstantOperandVal(3); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | EVT ArgVT = Op.getNode()->getValueType(0); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); | 
|  | uint8_t ArgMode; | 
|  |  | 
|  | // Decide which area this value should be read from. | 
|  | // TODO: Implement the AMD64 ABI in its entirety. This simple | 
|  | // selection mechanism works only for the basic types. | 
|  | if (ArgVT == MVT::f80) { | 
|  | llvm_unreachable("va_arg for f80 not yet implemented"); | 
|  | } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { | 
|  | ArgMode = 2;  // Argument passed in XMM register. Use fp_offset. | 
|  | } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { | 
|  | ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset. | 
|  | } else { | 
|  | llvm_unreachable("Unhandled argument type in LowerVAARG"); | 
|  | } | 
|  |  | 
|  | if (ArgMode == 2) { | 
|  | // Sanity Check: Make sure using fp_offset makes sense. | 
|  | assert(!Subtarget->useSoftFloat() && | 
|  | !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) && | 
|  | Subtarget->hasSSE1()); | 
|  | } | 
|  |  | 
|  | // Insert VAARG_64 node into the DAG | 
|  | // VAARG_64 returns two values: Variable Argument Address, Chain | 
|  | SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32), | 
|  | DAG.getConstant(ArgMode, dl, MVT::i8), | 
|  | DAG.getConstant(Align, dl, MVT::i32)}; | 
|  | SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other); | 
|  | SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, | 
|  | VTs, InstOps, MVT::i64, | 
|  | MachinePointerInfo(SV), | 
|  | /*Align=*/0, | 
|  | /*Volatile=*/false, | 
|  | /*ReadMem=*/true, | 
|  | /*WriteMem=*/true); | 
|  | Chain = VAARG.getValue(1); | 
|  |  | 
|  | // Load the next argument and return it | 
|  | return DAG.getLoad(ArgVT, dl, | 
|  | Chain, | 
|  | VAARG, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows, | 
|  | // where a va_list is still an i8*. | 
|  | assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); | 
|  | if (Subtarget->isCallingConvWin64( | 
|  | DAG.getMachineFunction().getFunction()->getCallingConv())) | 
|  | // Probably a Win64 va_copy. | 
|  | return DAG.expandVACopy(Op.getNode()); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue DstPtr = Op.getOperand(1); | 
|  | SDValue SrcPtr = Op.getOperand(2); | 
|  | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, | 
|  | DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false, | 
|  | false, false, | 
|  | MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); | 
|  | } | 
|  |  | 
|  | // getTargetVShiftByConstNode - Handle vector element shifts where the shift | 
|  | // amount is a constant. Takes immediate version of shift as input. | 
|  | static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT, | 
|  | SDValue SrcOp, uint64_t ShiftAmt, | 
|  | SelectionDAG &DAG) { | 
|  | MVT ElementType = VT.getVectorElementType(); | 
|  |  | 
|  | // Fold this packed shift into its first operand if ShiftAmt is 0. | 
|  | if (ShiftAmt == 0) | 
|  | return SrcOp; | 
|  |  | 
|  | // Check for ShiftAmt >= element width | 
|  | if (ShiftAmt >= ElementType.getSizeInBits()) { | 
|  | if (Opc == X86ISD::VSRAI) | 
|  | ShiftAmt = ElementType.getSizeInBits() - 1; | 
|  | else | 
|  | return DAG.getConstant(0, dl, VT); | 
|  | } | 
|  |  | 
|  | assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) | 
|  | && "Unknown target vector shift-by-constant node"); | 
|  |  | 
|  | // Fold this packed vector shift into a build vector if SrcOp is a | 
|  | // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT. | 
|  | if (VT == SrcOp.getSimpleValueType() && | 
|  | ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | unsigned NumElts = SrcOp->getNumOperands(); | 
|  | ConstantSDNode *ND; | 
|  |  | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable(nullptr); | 
|  | case X86ISD::VSHLI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType)); | 
|  | } | 
|  | break; | 
|  | case X86ISD::VSRLI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType)); | 
|  | } | 
|  | break; | 
|  | case X86ISD::VSRAI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opc, dl, VT, SrcOp, | 
|  | DAG.getConstant(ShiftAmt, dl, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // getTargetVShiftNode - Handle vector element shifts where the shift amount | 
|  | // may or may not be a constant. Takes immediate version of shift as input. | 
|  | static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT, | 
|  | SDValue SrcOp, SDValue ShAmt, | 
|  | SelectionDAG &DAG) { | 
|  | MVT SVT = ShAmt.getSimpleValueType(); | 
|  | assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); | 
|  |  | 
|  | // Catch shift-by-constant. | 
|  | if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) | 
|  | return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, | 
|  | CShAmt->getZExtValue(), DAG); | 
|  |  | 
|  | // Change opcode to non-immediate version | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unknown target vector shift node"); | 
|  | case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; | 
|  | case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; | 
|  | case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; | 
|  | } | 
|  |  | 
|  | const X86Subtarget &Subtarget = | 
|  | static_cast<const X86Subtarget &>(DAG.getSubtarget()); | 
|  | if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && | 
|  | ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { | 
|  | // Let the shuffle legalizer expand this shift amount node. | 
|  | SDValue Op0 = ShAmt.getOperand(0); | 
|  | Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0); | 
|  | ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG); | 
|  | } else { | 
|  | // Need to build a vector containing shift amount. | 
|  | // SSE/AVX packed shifts only use the lower 64-bit of the shift count. | 
|  | SmallVector<SDValue, 4> ShOps; | 
|  | ShOps.push_back(ShAmt); | 
|  | if (SVT == MVT::i32) { | 
|  | ShOps.push_back(DAG.getConstant(0, dl, SVT)); | 
|  | ShOps.push_back(DAG.getUNDEF(SVT)); | 
|  | } | 
|  | ShOps.push_back(DAG.getUNDEF(SVT)); | 
|  |  | 
|  | MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64; | 
|  | ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps); | 
|  | } | 
|  |  | 
|  | // The return type has to be a 128-bit type with the same element | 
|  | // type as the input type. | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); | 
|  |  | 
|  | ShAmt = DAG.getBitcast(ShVT, ShAmt); | 
|  | return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); | 
|  | } | 
|  |  | 
|  | /// \brief Return (and \p Op, \p Mask) for compare instructions or | 
|  | /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the | 
|  | /// necessary casting or extending for \p Mask when lowering masking intrinsics | 
|  | static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, | 
|  | SDValue PreservedSrc, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | MVT::i1, VT.getVectorNumElements()); | 
|  | SDValue VMask = SDValue(); | 
|  | unsigned OpcodeSelect = ISD::VSELECT; | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert(MaskVT.isSimple() && "invalid mask type"); | 
|  |  | 
|  | if (isAllOnes(Mask)) | 
|  | return Op; | 
|  |  | 
|  | if (MaskVT.bitsGT(Mask.getValueType())) { | 
|  | EVT newMaskVT =  EVT::getIntegerVT(*DAG.getContext(), | 
|  | MaskVT.getSizeInBits()); | 
|  | VMask = DAG.getBitcast(MaskVT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, newMaskVT, Mask)); | 
|  | } else { | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  | // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements | 
|  | // are extracted by EXTRACT_SUBVECTOR. | 
|  | VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, | 
|  | DAG.getBitcast(BitcastVT, Mask), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case X86ISD::PCMPEQM: | 
|  | case X86ISD::PCMPGTM: | 
|  | case X86ISD::CMPM: | 
|  | case X86ISD::CMPMU: | 
|  | return DAG.getNode(ISD::AND, dl, VT, Op, VMask); | 
|  | case X86ISD::VFPCLASS: | 
|  | return DAG.getNode(ISD::OR, dl, VT, Op, VMask); | 
|  | case X86ISD::VTRUNC: | 
|  | case X86ISD::VTRUNCS: | 
|  | case X86ISD::VTRUNCUS: | 
|  | // We can't use ISD::VSELECT here because it is not always "Legal" | 
|  | // for the destination type. For example vpmovqb require only AVX512 | 
|  | // and vselect that can operate on byte element type require BWI | 
|  | OpcodeSelect = X86ISD::SELECT; | 
|  | break; | 
|  | } | 
|  | if (PreservedSrc.getOpcode() == ISD::UNDEF) | 
|  | PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc); | 
|  | } | 
|  |  | 
|  | /// \brief Creates an SDNode for a predicated scalar operation. | 
|  | /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). | 
|  | /// The mask is coming as MVT::i8 and it should be truncated | 
|  | /// to MVT::i1 while lowering masking intrinsics. | 
|  | /// The main difference between ScalarMaskingNode and VectorMaskingNode is using | 
|  | /// "X86select" instead of "vselect". We just can't create the "vselect" node | 
|  | /// for a scalar instruction. | 
|  | static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, | 
|  | SDValue PreservedSrc, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (isAllOnes(Mask)) | 
|  | return Op; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | // The mask should be of type MVT::i1 | 
|  | SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask); | 
|  |  | 
|  | if (Op.getOpcode() == X86ISD::FSETCC) | 
|  | return DAG.getNode(ISD::AND, dl, VT, Op, IMask); | 
|  |  | 
|  | if (PreservedSrc.getOpcode() == ISD::UNDEF) | 
|  | PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc); | 
|  | } | 
|  |  | 
|  | static int getSEHRegistrationNodeSize(const Function *Fn) { | 
|  | if (!Fn->hasPersonalityFn()) | 
|  | report_fatal_error( | 
|  | "querying registration node size for function without personality"); | 
|  | // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See | 
|  | // WinEHStatePass for the full struct definition. | 
|  | switch (classifyEHPersonality(Fn->getPersonalityFn())) { | 
|  | case EHPersonality::MSVC_X86SEH: return 24; | 
|  | case EHPersonality::MSVC_CXX: return 16; | 
|  | default: break; | 
|  | } | 
|  | report_fatal_error("can only recover FP for MSVC EH personality functions"); | 
|  | } | 
|  |  | 
|  | /// When the 32-bit MSVC runtime transfers control to us, either to an outlined | 
|  | /// function or when returning to a parent frame after catching an exception, we | 
|  | /// recover the parent frame pointer by doing arithmetic on the incoming EBP. | 
|  | /// Here's the math: | 
|  | ///   RegNodeBase = EntryEBP - RegNodeSize | 
|  | ///   ParentFP = RegNodeBase - RegNodeFrameOffset | 
|  | /// Subtracting RegNodeSize takes us to the offset of the registration node, and | 
|  | /// subtracting the offset (negative on x86) takes us back to the parent FP. | 
|  | static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, | 
|  | SDValue EntryEBP) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDLoc dl; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // It's possible that the parent function no longer has a personality function | 
|  | // if the exceptional code was optimized away, in which case we just return | 
|  | // the incoming EBP. | 
|  | if (!Fn->hasPersonalityFn()) | 
|  | return EntryEBP; | 
|  |  | 
|  | int RegNodeSize = getSEHRegistrationNodeSize(Fn); | 
|  |  | 
|  | // Get an MCSymbol that will ultimately resolve to the frame offset of the EH | 
|  | // registration. | 
|  | MCSymbol *OffsetSym = | 
|  | MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( | 
|  | GlobalValue::getRealLinkageName(Fn->getName())); | 
|  | SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); | 
|  | SDValue RegNodeFrameOffset = | 
|  | DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal); | 
|  |  | 
|  | // RegNodeBase = EntryEBP - RegNodeSize | 
|  | // ParentFP = RegNodeBase - RegNodeFrameOffset | 
|  | SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, | 
|  | DAG.getConstant(RegNodeSize, dl, PtrVT)); | 
|  | return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, RegNodeFrameOffset); | 
|  | } | 
|  |  | 
|  | static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | EVT VT = Op.getValueType(); | 
|  | const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); | 
|  | if (IntrData) { | 
|  | switch(IntrData->Type) { | 
|  | case INTR_TYPE_1OP: | 
|  | return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); | 
|  | case INTR_TYPE_2OP: | 
|  | return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(2)); | 
|  | case INTR_TYPE_2OP_IMM8: | 
|  | return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), | 
|  | DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2))); | 
|  | case INTR_TYPE_3OP: | 
|  | return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3)); | 
|  | case INTR_TYPE_4OP: | 
|  | return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); | 
|  | case INTR_TYPE_1OP_MASK_RM: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | SDValue PassThru = Op.getOperand(2); | 
|  | SDValue Mask = Op.getOperand(3); | 
|  | SDValue RoundingMode; | 
|  | // We allways add rounding mode to the Node. | 
|  | // If the rounding mode is not specified, we add the | 
|  | // "current direction" mode. | 
|  | if (Op.getNumOperands() == 4) | 
|  | RoundingMode = | 
|  | DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); | 
|  | else | 
|  | RoundingMode = Op.getOperand(4); | 
|  | unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; | 
|  | if (IntrWithRoundingModeOpcode != 0) | 
|  | if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() != | 
|  | X86::STATIC_ROUNDING::CUR_DIRECTION) | 
|  | return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, | 
|  | dl, Op.getValueType(), Src, RoundingMode), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, | 
|  | RoundingMode), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_1OP_MASK: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | SDValue PassThru = Op.getOperand(2); | 
|  | SDValue Mask = Op.getOperand(3); | 
|  | // We add rounding mode to the Node when | 
|  | //   - RM Opcode is specified and | 
|  | //   - RM is not "current direction". | 
|  | unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; | 
|  | if (IntrWithRoundingModeOpcode != 0) { | 
|  | SDValue Rnd = Op.getOperand(4); | 
|  | unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); | 
|  | if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { | 
|  | return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, | 
|  | dl, Op.getValueType(), | 
|  | Src, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | } | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_SCALAR_MASK: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue passThru = Op.getOperand(3); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2), | 
|  | Mask, passThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_SCALAR_MASK_RM: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue Src0 = Op.getOperand(3); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | // There are 2 kinds of intrinsics in this group: | 
|  | // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands | 
|  | // (2) With rounding mode and sae - 7 operands. | 
|  | if (Op.getNumOperands() == 6) { | 
|  | SDValue Sae  = Op.getOperand(5); | 
|  | unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0; | 
|  | return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, | 
|  | Sae), | 
|  | Mask, Src0, Subtarget, DAG); | 
|  | } | 
|  | assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form"); | 
|  | SDValue RoundingMode  = Op.getOperand(5); | 
|  | SDValue Sae  = Op.getOperand(6); | 
|  | return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, | 
|  | RoundingMode, Sae), | 
|  | Mask, Src0, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_2OP_MASK: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue PassThru = Op.getOperand(3); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | // We specify 2 possible opcodes for intrinsics with rounding modes. | 
|  | // First, we check if the intrinsic may have non-default rounding mode, | 
|  | // (IntrData->Opc1 != 0), then we check the rounding mode operand. | 
|  | unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; | 
|  | if (IntrWithRoundingModeOpcode != 0) { | 
|  | SDValue Rnd = Op.getOperand(5); | 
|  | unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); | 
|  | if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { | 
|  | return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, | 
|  | dl, Op.getValueType(), | 
|  | Src1, Src2, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | } | 
|  | // TODO: Intrinsics should have fast-math-flags to propagate. | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_2OP_MASK_RM: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue PassThru = Op.getOperand(3); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | // We specify 2 possible modes for intrinsics, with/without rounding | 
|  | // modes. | 
|  | // First, we check if the intrinsic have rounding mode (6 operands), | 
|  | // if not, we set rounding mode to "current". | 
|  | SDValue Rnd; | 
|  | if (Op.getNumOperands() == 6) | 
|  | Rnd = Op.getOperand(5); | 
|  | else | 
|  | Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, | 
|  | Src1, Src2, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_3OP_SCALAR_MASK_RM: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue Src3 = Op.getOperand(3); | 
|  | SDValue PassThru = Op.getOperand(4); | 
|  | SDValue Mask = Op.getOperand(5); | 
|  | SDValue Sae  = Op.getOperand(6); | 
|  |  | 
|  | return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, | 
|  | Src2, Src3, Sae), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_3OP_MASK_RM: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue Imm = Op.getOperand(3); | 
|  | SDValue PassThru = Op.getOperand(4); | 
|  | SDValue Mask = Op.getOperand(5); | 
|  | // We specify 2 possible modes for intrinsics, with/without rounding | 
|  | // modes. | 
|  | // First, we check if the intrinsic have rounding mode (7 operands), | 
|  | // if not, we set rounding mode to "current". | 
|  | SDValue Rnd; | 
|  | if (Op.getNumOperands() == 7) | 
|  | Rnd = Op.getOperand(6); | 
|  | else | 
|  | Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, | 
|  | Src1, Src2, Imm, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case INTR_TYPE_3OP_IMM8_MASK: | 
|  | case INTR_TYPE_3OP_MASK: | 
|  | case INSERT_SUBVEC: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue Src3 = Op.getOperand(3); | 
|  | SDValue PassThru = Op.getOperand(4); | 
|  | SDValue Mask = Op.getOperand(5); | 
|  |  | 
|  | if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK) | 
|  | Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3); | 
|  | else if (IntrData->Type == INSERT_SUBVEC) { | 
|  | // imm should be adapted to ISD::INSERT_SUBVECTOR behavior | 
|  | assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!"); | 
|  | unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue(); | 
|  | Imm *= Src2.getValueType().getVectorNumElements(); | 
|  | Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | // We specify 2 possible opcodes for intrinsics with rounding modes. | 
|  | // First, we check if the intrinsic may have non-default rounding mode, | 
|  | // (IntrData->Opc1 != 0), then we check the rounding mode operand. | 
|  | unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; | 
|  | if (IntrWithRoundingModeOpcode != 0) { | 
|  | SDValue Rnd = Op.getOperand(6); | 
|  | unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); | 
|  | if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { | 
|  | return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, | 
|  | dl, Op.getValueType(), | 
|  | Src1, Src2, Src3, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | } | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, | 
|  | Src1, Src2, Src3), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case VPERM_3OP_MASKZ: | 
|  | case VPERM_3OP_MASK: | 
|  | case FMA_OP_MASK3: | 
|  | case FMA_OP_MASKZ: | 
|  | case FMA_OP_MASK: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue Src3 = Op.getOperand(3); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue PassThru = SDValue(); | 
|  |  | 
|  | // set PassThru element | 
|  | if (IntrData->Type == VPERM_3OP_MASKZ || IntrData->Type == FMA_OP_MASKZ) | 
|  | PassThru = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | else if (IntrData->Type == FMA_OP_MASK3) | 
|  | PassThru = Src3; | 
|  | else | 
|  | PassThru = Src1; | 
|  |  | 
|  | // We specify 2 possible opcodes for intrinsics with rounding modes. | 
|  | // First, we check if the intrinsic may have non-default rounding mode, | 
|  | // (IntrData->Opc1 != 0), then we check the rounding mode operand. | 
|  | unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; | 
|  | if (IntrWithRoundingModeOpcode != 0) { | 
|  | SDValue Rnd = Op.getOperand(5); | 
|  | if (cast<ConstantSDNode>(Rnd)->getZExtValue() != | 
|  | X86::STATIC_ROUNDING::CUR_DIRECTION) | 
|  | return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, | 
|  | dl, Op.getValueType(), | 
|  | Src1, Src2, Src3, Rnd), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, | 
|  | dl, Op.getValueType(), | 
|  | Src1, Src2, Src3), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case FPCLASS: { | 
|  | // FPclass intrinsics with mask | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | EVT VT = Src1.getValueType(); | 
|  | EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | VT.getVectorNumElements()); | 
|  | SDValue Imm = Op.getOperand(2); | 
|  | SDValue Mask = Op.getOperand(3); | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  | SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm); | 
|  | SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask, | 
|  | DAG.getTargetConstant(0, dl, MaskVT), | 
|  | Subtarget, DAG); | 
|  | SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, | 
|  | DAG.getUNDEF(BitcastVT), FPclassMask, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | return DAG.getBitcast(Op.getValueType(), Res); | 
|  | } | 
|  | case CMP_MASK: | 
|  | case CMP_MASK_CC: { | 
|  | // Comparison intrinsics with masks. | 
|  | // Example of transformation: | 
|  | // (i8 (int_x86_avx512_mask_pcmpeq_q_128 | 
|  | //             (v2i64 %a), (v2i64 %b), (i8 %mask))) -> | 
|  | // (i8 (bitcast | 
|  | //   (v8i1 (insert_subvector undef, | 
|  | //           (v2i1 (and (PCMPEQM %a, %b), | 
|  | //                      (extract_subvector | 
|  | //                         (v8i1 (bitcast %mask)), 0))), 0)))) | 
|  | EVT VT = Op.getOperand(1).getValueType(); | 
|  | EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | VT.getVectorNumElements()); | 
|  | SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  | SDValue Cmp; | 
|  | if (IntrData->Type == CMP_MASK_CC) { | 
|  | SDValue CC = Op.getOperand(3); | 
|  | CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC); | 
|  | // We specify 2 possible opcodes for intrinsics with rounding modes. | 
|  | // First, we check if the intrinsic may have non-default rounding mode, | 
|  | // (IntrData->Opc1 != 0), then we check the rounding mode operand. | 
|  | if (IntrData->Opc1 != 0) { | 
|  | SDValue Rnd = Op.getOperand(5); | 
|  | if (cast<ConstantSDNode>(Rnd)->getZExtValue() != | 
|  | X86::STATIC_ROUNDING::CUR_DIRECTION) | 
|  | Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1), | 
|  | Op.getOperand(2), CC, Rnd); | 
|  | } | 
|  | //default rounding mode | 
|  | if(!Cmp.getNode()) | 
|  | Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), | 
|  | Op.getOperand(2), CC); | 
|  |  | 
|  | } else { | 
|  | assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!"); | 
|  | Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), | 
|  | Op.getOperand(2)); | 
|  | } | 
|  | SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, | 
|  | DAG.getTargetConstant(0, dl, | 
|  | MaskVT), | 
|  | Subtarget, DAG); | 
|  | SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, | 
|  | DAG.getUNDEF(BitcastVT), CmpMask, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | return DAG.getBitcast(Op.getValueType(), Res); | 
|  | } | 
|  | case CMP_MASK_SCALAR_CC: { | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  | SDValue Src2 = Op.getOperand(2); | 
|  | SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3)); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  |  | 
|  | SDValue Cmp; | 
|  | if (IntrData->Opc1 != 0) { | 
|  | SDValue Rnd = Op.getOperand(5); | 
|  | if (cast<ConstantSDNode>(Rnd)->getZExtValue() != | 
|  | X86::STATIC_ROUNDING::CUR_DIRECTION) | 
|  | Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd); | 
|  | } | 
|  | //default rounding mode | 
|  | if(!Cmp.getNode()) | 
|  | Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC); | 
|  |  | 
|  | SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, | 
|  | DAG.getTargetConstant(0, dl, | 
|  | MVT::i1), | 
|  | Subtarget, DAG); | 
|  |  | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i8, | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, CmpMask), | 
|  | DAG.getValueType(MVT::i1)); | 
|  | } | 
|  | case COMI: { // Comparison intrinsics | 
|  | ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG); | 
|  | assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); | 
|  | SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, dl, MVT::i8), Cond); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  | case VSHIFT: | 
|  | return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), DAG); | 
|  | case VSHIFT_MASK: | 
|  | return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl, | 
|  | Op.getSimpleValueType(), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(2), DAG), | 
|  | Op.getOperand(4), Op.getOperand(3), Subtarget, | 
|  | DAG); | 
|  | case COMPRESS_EXPAND_IN_REG: { | 
|  | SDValue Mask = Op.getOperand(3); | 
|  | SDValue DataToCompress = Op.getOperand(1); | 
|  | SDValue PassThru = Op.getOperand(2); | 
|  | if (isAllOnes(Mask)) // return data as is | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, | 
|  | DataToCompress), | 
|  | Mask, PassThru, Subtarget, DAG); | 
|  | } | 
|  | case BLEND: { | 
|  | SDValue Mask = Op.getOperand(3); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | VT.getVectorNumElements()); | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  | SDLoc dl(Op); | 
|  | SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, | 
|  | DAG.getBitcast(BitcastVT, Mask), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1), | 
|  | Op.getOperand(2)); | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  |  | 
|  | case Intrinsic::x86_avx2_permd: | 
|  | case Intrinsic::x86_avx2_permps: | 
|  | // Operands intentionally swapped. Mask is last operand to intrinsic, | 
|  | // but second operand for node/instruction. | 
|  | return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), | 
|  | Op.getOperand(2), Op.getOperand(1)); | 
|  |  | 
|  | // ptest and testp intrinsics. The intrinsic these come from are designed to | 
|  | // return an integer value, not just an instruction so lower it to the ptest | 
|  | // or testp pattern and a setcc for the result. | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: { | 
|  | bool IsTestPacked = false; | 
|  | unsigned X86CC; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | // ZF = 1 | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | // CF = 1 | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | // ZF and CF = 0 | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; | 
|  | SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  | case Intrinsic::x86_avx512_kortestz_w: | 
|  | case Intrinsic::x86_avx512_kortestc_w: { | 
|  | unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B; | 
|  | SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); | 
|  | SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); | 
|  | SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); | 
|  | SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse42_pcmpistria128: | 
|  | case Intrinsic::x86_sse42_pcmpestria128: | 
|  | case Intrinsic::x86_sse42_pcmpistric128: | 
|  | case Intrinsic::x86_sse42_pcmpestric128: | 
|  | case Intrinsic::x86_sse42_pcmpistrio128: | 
|  | case Intrinsic::x86_sse42_pcmpestrio128: | 
|  | case Intrinsic::x86_sse42_pcmpistris128: | 
|  | case Intrinsic::x86_sse42_pcmpestris128: | 
|  | case Intrinsic::x86_sse42_pcmpistriz128: | 
|  | case Intrinsic::x86_sse42_pcmpestriz128: { | 
|  | unsigned Opcode; | 
|  | unsigned X86CC; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse42_pcmpistria128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestria128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistric128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestric128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistrio128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_O; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestrio128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_O; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistris128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_S; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestris128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_S; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistriz128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestriz128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | } | 
|  | SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, dl, MVT::i8), | 
|  | SDValue(PCMP.getNode(), 1)); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse42_pcmpistri128: | 
|  | case Intrinsic::x86_sse42_pcmpestri128: { | 
|  | unsigned Opcode; | 
|  | if (IntNo == Intrinsic::x86_sse42_pcmpistri128) | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | else | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  |  | 
|  | SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | return DAG.getNode(Opcode, dl, VTs, NewOps); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_seh_lsda: { | 
|  | // Compute the symbol for the LSDA. We know it'll get emitted later. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); | 
|  | MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( | 
|  | GlobalValue::getRealLinkageName(Fn->getName())); | 
|  |  | 
|  | // Generate a simple absolute symbol reference. This intrinsic is only | 
|  | // supported on 32-bit Windows, which isn't PIC. | 
|  | SDValue Result = DAG.getMCSymbol(LSDASym, VT); | 
|  | return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_seh_recoverfp: { | 
|  | SDValue FnOp = Op.getOperand(1); | 
|  | SDValue IncomingFPOp = Op.getOperand(2); | 
|  | GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); | 
|  | auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); | 
|  | if (!Fn) | 
|  | report_fatal_error( | 
|  | "llvm.x86.seh.recoverfp must take a function as the first argument"); | 
|  | return recoverFramePointer(DAG, Fn, IncomingFPOp); | 
|  | } | 
|  |  | 
|  | case Intrinsic::localaddress: { | 
|  | // Returns one of the stack, base, or frame pointer registers, depending on | 
|  | // which is used to reference local variables. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned Reg; | 
|  | if (RegInfo->hasBasePointer(MF)) | 
|  | Reg = RegInfo->getBaseRegister(); | 
|  | else // This function handles the SP or FP case. | 
|  | Reg = RegInfo->getPtrSizedFrameRegister(MF); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Src, SDValue Mask, SDValue Base, | 
|  | SDValue Index, SDValue ScaleOp, SDValue Chain, | 
|  | const X86Subtarget * Subtarget) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | if (!C) | 
|  | llvm_unreachable("Invalid scale type"); | 
|  | unsigned ScaleVal = C->getZExtValue(); | 
|  | if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8) | 
|  | llvm_unreachable("Valid scale values are 1, 2, 4, 8"); | 
|  |  | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg; | 
|  | ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); | 
|  | if (MaskC) | 
|  | MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); | 
|  | else { | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  |  | 
|  | // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements | 
|  | // are extracted by EXTRACT_SUBVECTOR. | 
|  | MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, | 
|  | DAG.getBitcast(BitcastVT, Mask), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); | 
|  | SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | if (Src.getOpcode() == ISD::UNDEF) | 
|  | Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl); | 
|  | SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; | 
|  | return DAG.getMergeValues(RetOps, dl); | 
|  | } | 
|  |  | 
|  | static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Src, SDValue Mask, SDValue Base, | 
|  | SDValue Index, SDValue ScaleOp, SDValue Chain) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | if (!C) | 
|  | llvm_unreachable("Invalid scale type"); | 
|  | unsigned ScaleVal = C->getZExtValue(); | 
|  | if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8) | 
|  | llvm_unreachable("Valid scale values are 1, 2, 4, 8"); | 
|  |  | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); | 
|  | SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg; | 
|  | ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); | 
|  | if (MaskC) | 
|  | MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); | 
|  | else { | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  |  | 
|  | // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements | 
|  | // are extracted by EXTRACT_SUBVECTOR. | 
|  | MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, | 
|  | DAG.getBitcast(BitcastVT, Mask), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  | SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); | 
|  | SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | return SDValue(Res, 1); | 
|  | } | 
|  |  | 
|  | static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Mask, SDValue Base, SDValue Index, | 
|  | SDValue ScaleOp, SDValue Chain) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | assert(C && "Invalid scale type"); | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); | 
|  | SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | EVT MaskVT = | 
|  | MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg; | 
|  | ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); | 
|  | if (MaskC) | 
|  | MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); | 
|  | else | 
|  | MaskInReg = DAG.getBitcast(MaskVT, Mask); | 
|  | //SDVTList VTs = DAG.getVTList(MVT::Other); | 
|  | SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); | 
|  | return SDValue(Res, 0); | 
|  | } | 
|  |  | 
|  | // getReadPerformanceCounter - Handles the lowering of builtin intrinsics that | 
|  | // read performance monitor counters (x86_rdpmc). | 
|  | static void getReadPerformanceCounter(SDNode *N, SDLoc DL, | 
|  | SelectionDAG &DAG, const X86Subtarget *Subtarget, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue LO, HI; | 
|  |  | 
|  | // The ECX register is used to select the index of the performance counter | 
|  | // to read. | 
|  | SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, | 
|  | N->getOperand(2)); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); | 
|  |  | 
|  | // Reads the content of a 64-bit performance counter and returns it in the | 
|  | // registers EDX:EAX. | 
|  | if (Subtarget->is64Bit()) { | 
|  | LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); | 
|  | HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, | 
|  | LO.getValue(2)); | 
|  | } else { | 
|  | LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); | 
|  | HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, | 
|  | LO.getValue(2)); | 
|  | } | 
|  | Chain = HI.getValue(1); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // The EAX register is loaded with the low-order 32 bits. The EDX register | 
|  | // is loaded with the supported high-order bits of the counter. | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, | 
|  | DAG.getConstant(32, DL, MVT::i8)); | 
|  | Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); | 
|  | Results.push_back(Chain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Use a buildpair to merge the two 32-bit values into a 64-bit one. | 
|  | SDValue Ops[] = { LO, HI }; | 
|  | SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); | 
|  | Results.push_back(Pair); | 
|  | Results.push_back(Chain); | 
|  | } | 
|  |  | 
|  | // getReadTimeStampCounter - Handles the lowering of builtin intrinsics that | 
|  | // read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is | 
|  | // also used to custom lower READCYCLECOUNTER nodes. | 
|  | static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode, | 
|  | SelectionDAG &DAG, const X86Subtarget *Subtarget, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); | 
|  | SDValue LO, HI; | 
|  |  | 
|  | // The processor's time-stamp counter (a 64-bit MSR) is stored into the | 
|  | // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR | 
|  | // and the EAX register is loaded with the low-order 32 bits. | 
|  | if (Subtarget->is64Bit()) { | 
|  | LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); | 
|  | HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, | 
|  | LO.getValue(2)); | 
|  | } else { | 
|  | LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); | 
|  | HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, | 
|  | LO.getValue(2)); | 
|  | } | 
|  | SDValue Chain = HI.getValue(1); | 
|  |  | 
|  | if (Opcode == X86ISD::RDTSCP_DAG) { | 
|  | assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); | 
|  |  | 
|  | // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into | 
|  | // the ECX register. Add 'ecx' explicitly to the chain. | 
|  | SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, | 
|  | HI.getValue(2)); | 
|  | // Explicitly store the content of ECX at the location passed in input | 
|  | // to the 'rdtscp' intrinsic. | 
|  | Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // The EDX register is loaded with the high-order 32 bits of the MSR, and | 
|  | // the EAX register is loaded with the low-order 32 bits. | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, | 
|  | DAG.getConstant(32, DL, MVT::i8)); | 
|  | Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); | 
|  | Results.push_back(Chain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Use a buildpair to merge the two 32-bit values into a 64-bit one. | 
|  | SDValue Ops[] = { LO, HI }; | 
|  | SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); | 
|  | Results.push_back(Pair); | 
|  | Results.push_back(Chain); | 
|  | } | 
|  |  | 
|  | static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | SDLoc DL(Op); | 
|  | getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, | 
|  | Results); | 
|  | return DAG.getMergeValues(Results, DL); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSEHRESTOREFRAME(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *Fn = MF.getFunction(); | 
|  | SDLoc dl(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | assert(Subtarget->getFrameLowering()->hasFP(MF) && | 
|  | "using llvm.x86.seh.restoreframe requires a frame pointer"); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT VT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned FrameReg = | 
|  | RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); | 
|  | unsigned SPReg = RegInfo->getStackRegister(); | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  |  | 
|  | // Get incoming EBP. | 
|  | SDValue IncomingEBP = | 
|  | DAG.getCopyFromReg(Chain, dl, FrameReg, VT); | 
|  |  | 
|  | // SP is saved in the first field of every registration node, so load | 
|  | // [EBP-RegNodeSize] into SP. | 
|  | int RegNodeSize = getSEHRegistrationNodeSize(Fn); | 
|  | SDValue SPAddr = DAG.getNode(ISD::ADD, dl, VT, IncomingEBP, | 
|  | DAG.getConstant(-RegNodeSize, dl, VT)); | 
|  | SDValue NewSP = | 
|  | DAG.getLoad(VT, dl, Chain, SPAddr, MachinePointerInfo(), false, false, | 
|  | false, VT.getScalarSizeInBits() / 8); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, NewSP); | 
|  |  | 
|  | if (!RegInfo->needsStackRealignment(MF)) { | 
|  | // Adjust EBP to point back to the original frame position. | 
|  | SDValue NewFP = recoverFramePointer(DAG, Fn, IncomingEBP); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, FrameReg, NewFP); | 
|  | } else { | 
|  | assert(RegInfo->hasBasePointer(MF) && | 
|  | "functions with Win32 EH must use frame or base pointer register"); | 
|  |  | 
|  | // Reload the base pointer (ESI) with the adjusted incoming EBP. | 
|  | SDValue NewBP = recoverFramePointer(DAG, Fn, IncomingEBP); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegInfo->getBaseRegister(), NewBP); | 
|  |  | 
|  | // Reload the spilled EBP value, now that the stack and base pointers are | 
|  | // set up. | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | X86FI->setHasSEHFramePtrSave(true); | 
|  | int FI = MF.getFrameInfo()->CreateSpillStackObject(SlotSize, SlotSize); | 
|  | X86FI->setSEHFramePtrSaveIndex(FI); | 
|  | SDValue NewFP = DAG.getLoad(VT, dl, Chain, DAG.getFrameIndex(FI, VT), | 
|  | MachinePointerInfo(), false, false, false, | 
|  | VT.getScalarSizeInBits() / 8); | 
|  | Chain = DAG.getCopyToReg(NewFP, dl, FrameReg, NewFP); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// \brief Lower intrinsics for TRUNCATE_TO_MEM case | 
|  | /// return truncate Store/MaskedStore Node | 
|  | static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op, | 
|  | SelectionDAG &DAG, | 
|  | MVT ElementType) { | 
|  | SDLoc dl(Op); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | SDValue DataToTruncate = Op.getOperand(3); | 
|  | SDValue Addr = Op.getOperand(2); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | EVT VT  = DataToTruncate.getValueType(); | 
|  | EVT SVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ElementType, VT.getVectorNumElements()); | 
|  |  | 
|  | if (isAllOnes(Mask)) // return just a truncate store | 
|  | return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, | 
|  | MachinePointerInfo(), SVT, false, false, | 
|  | SVT.getScalarSizeInBits()/8); | 
|  |  | 
|  | EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | MVT::i1, VT.getVectorNumElements()); | 
|  | EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, | 
|  | Mask.getValueType().getSizeInBits()); | 
|  | // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements | 
|  | // are extracted by EXTRACT_SUBVECTOR. | 
|  | SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, | 
|  | DAG.getBitcast(BitcastVT, Mask), | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(), | 
|  | MachineMemOperand::MOStore, SVT.getStoreSize(), | 
|  | SVT.getScalarSizeInBits()/8); | 
|  |  | 
|  | return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, | 
|  | VMask, SVT, MMO, true); | 
|  | } | 
|  |  | 
|  | static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  |  | 
|  | const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo); | 
|  | if (!IntrData) { | 
|  | if (IntNo == llvm::Intrinsic::x86_seh_restoreframe) | 
|  | return LowerSEHRESTOREFRAME(Op, Subtarget, DAG); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | switch(IntrData->Type) { | 
|  | default: | 
|  | llvm_unreachable("Unknown Intrinsic Type"); | 
|  | break; | 
|  | case RDSEED: | 
|  | case RDRAND: { | 
|  | // Emit the node with the right value type. | 
|  | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); | 
|  | SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); | 
|  |  | 
|  | // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. | 
|  | // Otherwise return the value from Rand, which is always 0, casted to i32. | 
|  | SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), | 
|  | DAG.getConstant(1, dl, Op->getValueType(1)), | 
|  | DAG.getConstant(X86::COND_B, dl, MVT::i32), | 
|  | SDValue(Result.getNode(), 1) }; | 
|  | SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, | 
|  | DAG.getVTList(Op->getValueType(1), MVT::Glue), | 
|  | Ops); | 
|  |  | 
|  | // Return { result, isValid, chain }. | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, | 
|  | SDValue(Result.getNode(), 2)); | 
|  | } | 
|  | case GATHER: { | 
|  | //gather(v1, mask, index, base, scale); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Src   = Op.getOperand(2); | 
|  | SDValue Base  = Op.getOperand(3); | 
|  | SDValue Index = Op.getOperand(4); | 
|  | SDValue Mask  = Op.getOperand(5); | 
|  | SDValue Scale = Op.getOperand(6); | 
|  | return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, | 
|  | Chain, Subtarget); | 
|  | } | 
|  | case SCATTER: { | 
|  | //scatter(base, mask, index, v1, scale); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Base  = Op.getOperand(2); | 
|  | SDValue Mask  = Op.getOperand(3); | 
|  | SDValue Index = Op.getOperand(4); | 
|  | SDValue Src   = Op.getOperand(5); | 
|  | SDValue Scale = Op.getOperand(6); | 
|  | return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, | 
|  | Scale, Chain); | 
|  | } | 
|  | case PREFETCH: { | 
|  | SDValue Hint = Op.getOperand(6); | 
|  | unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue(); | 
|  | assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1"); | 
|  | unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Mask  = Op.getOperand(2); | 
|  | SDValue Index = Op.getOperand(3); | 
|  | SDValue Base  = Op.getOperand(4); | 
|  | SDValue Scale = Op.getOperand(5); | 
|  | return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain); | 
|  | } | 
|  | // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). | 
|  | case RDTSC: { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, | 
|  | Results); | 
|  | return DAG.getMergeValues(Results, dl); | 
|  | } | 
|  | // Read Performance Monitoring Counters. | 
|  | case RDPMC: { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); | 
|  | return DAG.getMergeValues(Results, dl); | 
|  | } | 
|  | // XTEST intrinsics. | 
|  | case XTEST: { | 
|  | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); | 
|  | SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86::COND_NE, dl, MVT::i8), | 
|  | InTrans); | 
|  | SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), | 
|  | Ret, SDValue(InTrans.getNode(), 1)); | 
|  | } | 
|  | // ADC/ADCX/SBB | 
|  | case ADX: { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other); | 
|  | SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other); | 
|  | SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), | 
|  | DAG.getConstant(-1, dl, MVT::i8)); | 
|  | SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), | 
|  | Op.getOperand(4), GenCF.getValue(1)); | 
|  | SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), | 
|  | Op.getOperand(5), MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86::COND_B, dl, MVT::i8), | 
|  | Res.getValue(1)); | 
|  | Results.push_back(SetCC); | 
|  | Results.push_back(Store); | 
|  | return DAG.getMergeValues(Results, dl); | 
|  | } | 
|  | case COMPRESS_TO_MEM: { | 
|  | SDLoc dl(Op); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | SDValue DataToCompress = Op.getOperand(3); | 
|  | SDValue Addr = Op.getOperand(2); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | EVT VT = DataToCompress.getValueType(); | 
|  | if (isAllOnes(Mask)) // return just a store | 
|  | return DAG.getStore(Chain, dl, DataToCompress, Addr, | 
|  | MachinePointerInfo(), false, false, | 
|  | VT.getScalarSizeInBits()/8); | 
|  |  | 
|  | SDValue Compressed = | 
|  | getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress), | 
|  | Mask, DAG.getUNDEF(VT), Subtarget, DAG); | 
|  | return DAG.getStore(Chain, dl, Compressed, Addr, | 
|  | MachinePointerInfo(), false, false, | 
|  | VT.getScalarSizeInBits()/8); | 
|  | } | 
|  | case TRUNCATE_TO_MEM_VI8: | 
|  | return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8); | 
|  | case TRUNCATE_TO_MEM_VI16: | 
|  | return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16); | 
|  | case TRUNCATE_TO_MEM_VI32: | 
|  | return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32); | 
|  | case EXPAND_FROM_MEM: { | 
|  | SDLoc dl(Op); | 
|  | SDValue Mask = Op.getOperand(4); | 
|  | SDValue PassThru = Op.getOperand(3); | 
|  | SDValue Addr = Op.getOperand(2); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (isAllOnes(Mask)) // return just a load | 
|  | return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, | 
|  | false, VT.getScalarSizeInBits()/8); | 
|  |  | 
|  | SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), | 
|  | false, false, false, | 
|  | VT.getScalarSizeInBits()/8); | 
|  |  | 
|  | SDValue Results[] = { | 
|  | getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand), | 
|  | Mask, PassThru, Subtarget, DAG), Chain}; | 
|  | return DAG.getMergeValues(Results, dl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setReturnAddressIsTaken(true); | 
|  |  | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | SDLoc dl(Op); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | if (Depth > 0) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT); | 
|  | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | FrameAddr, Offset), | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // Just load the return address. | 
|  | SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
|  | RetAddrFI, MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  |  | 
|  | if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { | 
|  | // Depth > 0 makes no sense on targets which use Windows unwind codes.  It | 
|  | // is not possible to crawl up the stack without looking at the unwind codes | 
|  | // simultaneously. | 
|  | int FrameAddrIndex = FuncInfo->getFAIndex(); | 
|  | if (!FrameAddrIndex) { | 
|  | // Set up a frame object for the return address. | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  | FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject( | 
|  | SlotSize, /*Offset=*/0, /*IsImmutable=*/false); | 
|  | FuncInfo->setFAIndex(FrameAddrIndex); | 
|  | } | 
|  | return DAG.getFrameIndex(FrameAddrIndex, VT); | 
|  | } | 
|  |  | 
|  | unsigned FrameReg = | 
|  | RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); | 
|  | SDLoc dl(Op);  // FIXME probably not meaningful | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | assert(((FrameReg == X86::RBP && VT == MVT::i64) || | 
|  | (FrameReg == X86::EBP && VT == MVT::i32)) && | 
|  | "Invalid Frame Register!"); | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | // FIXME? Maybe this could be a TableGen attribute on some registers and | 
|  | // this table could be generated automatically from RegInfo. | 
|  | unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("esp", X86::ESP) | 
|  | .Case("rsp", X86::RSP) | 
|  | .Case("ebp", X86::EBP) | 
|  | .Case("rbp", X86::RBP) | 
|  | .Default(0); | 
|  |  | 
|  | if (Reg == X86::EBP || Reg == X86::RBP) { | 
|  | if (!TFI.hasFP(MF)) | 
|  | report_fatal_error("register " + StringRef(RegName) + | 
|  | " is allocatable: function has no frame pointer"); | 
|  | #ifndef NDEBUG | 
|  | else { | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned FrameReg = | 
|  | RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); | 
|  | assert((FrameReg == X86::EBP || FrameReg == X86::RBP) && | 
|  | "Invalid Frame Register!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (Reg) | 
|  | return Reg; | 
|  |  | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | SDLoc dl      (Op); | 
|  |  | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); | 
|  | assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || | 
|  | (FrameReg == X86::EBP && PtrVT == MVT::i32)) && | 
|  | "Invalid Frame Register!"); | 
|  | SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); | 
|  | unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; | 
|  |  | 
|  | SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, | 
|  | DAG.getIntPtrConstant(RegInfo->getSlotSize(), | 
|  | dl)); | 
|  | StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); | 
|  | Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); | 
|  |  | 
|  | return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, | 
|  | DAG.getRegister(StoreAddrReg, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { | 
|  | return Op.getOperand(0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Root = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | SDLoc dl (Op); | 
|  |  | 
|  | const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | SDValue OutChains[6]; | 
|  |  | 
|  | // Large code-model. | 
|  | const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode. | 
|  | const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. | 
|  |  | 
|  | const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; | 
|  | const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; | 
|  |  | 
|  | const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix | 
|  |  | 
|  | // Load the pointer to the nested function into R11. | 
|  | unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 | 
|  | SDValue Addr = Trmp; | 
|  | OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(2, dl, MVT::i64)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 2), | 
|  | false, false, 2); | 
|  |  | 
|  | // Load the 'nest' parameter value into R10. | 
|  | // R10 is specified in X86CallingConv.td | 
|  | OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(10, dl, MVT::i64)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 10), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(12, dl, MVT::i64)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 12), | 
|  | false, false, 2); | 
|  |  | 
|  | // Jump to the nested function. | 
|  | OpCode = (JMP64r << 8) | REX_WB; // jmpq *... | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(20, dl, MVT::i64)); | 
|  | OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 20), | 
|  | false, false, 0); | 
|  |  | 
|  | unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(22, dl, MVT::i64)); | 
|  | OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 22), | 
|  | false, false, 0); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); | 
|  | } else { | 
|  | const Function *Func = | 
|  | cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); | 
|  | CallingConv::ID CC = Func->getCallingConv(); | 
|  | unsigned NestReg; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention"); | 
|  | case CallingConv::C: | 
|  | case CallingConv::X86_StdCall: { | 
|  | // Pass 'nest' parameter in ECX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::ECX; | 
|  |  | 
|  | // Check that ECX wasn't needed by an 'inreg' parameter. | 
|  | FunctionType *FTy = Func->getFunctionType(); | 
|  | const AttributeSet &Attrs = Func->getAttributes(); | 
|  |  | 
|  | if (!Attrs.isEmpty() && !Func->isVarArg()) { | 
|  | unsigned InRegCount = 0; | 
|  | unsigned Idx = 1; | 
|  |  | 
|  | for (FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); I != E; ++I, ++Idx) | 
|  | if (Attrs.hasAttribute(Idx, Attribute::InReg)) { | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | // FIXME: should only count parameters that are lowered to integers. | 
|  | InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32; | 
|  | } | 
|  |  | 
|  | if (InRegCount > 2) { | 
|  | report_fatal_error("Nest register in use - reduce number of inreg" | 
|  | " parameters!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::X86_ThisCall: | 
|  | case CallingConv::Fast: | 
|  | // Pass 'nest' parameter in EAX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::EAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue OutChains[4]; | 
|  | SDValue Addr, Disp; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(10, dl, MVT::i32)); | 
|  | Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); | 
|  |  | 
|  | // This is storing the opcode for MOV32ri. | 
|  | const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. | 
|  | const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; | 
|  | OutChains[0] = DAG.getStore(Root, dl, | 
|  | DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8), | 
|  | Trmp, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(1, dl, MVT::i32)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 1), | 
|  | false, false, 1); | 
|  |  | 
|  | const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(5, dl, MVT::i32)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 5), | 
|  | false, false, 1); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(6, dl, MVT::i32)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 6), | 
|  | false, false, 1); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | /* | 
|  | The rounding mode is in bits 11:10 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to -inf | 
|  | 10 Round to +inf | 
|  | 11 Round to 0 | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Save FP Control Word to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); | 
|  | SDValue StackSlot = | 
|  | DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), | 
|  | MachineMemOperand::MOStore, 2, 2); | 
|  |  | 
|  | SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; | 
|  | SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, | 
|  | DAG.getVTList(MVT::Other), | 
|  | Ops, MVT::i16, MMO); | 
|  |  | 
|  | // Load FP Control Word from stack slot | 
|  | SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x800, DL, MVT::i16)), | 
|  | DAG.getConstant(11, DL, MVT::i8)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x400, DL, MVT::i16)), | 
|  | DAG.getConstant(9, DL, MVT::i8)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | DAG.getNode(ISD::ADD, DL, MVT::i16, | 
|  | DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), | 
|  | DAG.getConstant(1, DL, MVT::i16)), | 
|  | DAG.getConstant(3, DL, MVT::i16)); | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsr sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits + NumBits - 1, dl, OpVT), | 
|  | DAG.getConstant(X86::COND_E, dl, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); | 
|  |  | 
|  | // Finally xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, | 
|  | DAG.getConstant(NumBits - 1, dl, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse). | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // And xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, | 
|  | DAG.getConstant(NumBits - 1, dl, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned NumBits = VT.getScalarSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (VT.isVector()) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  |  | 
|  | // lsb(x) = (x & -x) | 
|  | SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0, | 
|  | DAG.getNode(ISD::SUB, dl, VT, Zero, N0)); | 
|  |  | 
|  | // cttz_undef(x) = (width - 1) - ctlz(lsb) | 
|  | if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF && | 
|  | TLI.isOperationLegal(ISD::CTLZ, VT)) { | 
|  | SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT); | 
|  | return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne, | 
|  | DAG.getNode(ISD::CTLZ, dl, VT, LSB)); | 
|  | } | 
|  |  | 
|  | // cttz(x) = ctpop(lsb - 1) | 
|  | SDValue One = DAG.getConstant(1, dl, VT); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, | 
|  | DAG.getNode(ISD::SUB, dl, VT, LSB, One)); | 
|  | } | 
|  |  | 
|  | assert(Op.getOpcode() == ISD::CTTZ && | 
|  | "Only scalar CTTZ requires custom lowering"); | 
|  |  | 
|  | // Issue a bsf (scan bits forward) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0)); | 
|  |  | 
|  | // If src is zero (i.e. bsf sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits, dl, VT), | 
|  | DAG.getConstant(X86::COND_E, dl, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit | 
|  | // ones, and then concatenate the result back. | 
|  | static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert(VT.is256BitVector() && VT.isInteger() && | 
|  | "Unsupported value type for operation"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Extract the RHS vectors | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); | 
|  | SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { | 
|  | if (Op.getValueType() == MVT::i1) | 
|  | return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | assert(Op.getSimpleValueType().is256BitVector() && | 
|  | Op.getSimpleValueType().isInteger() && | 
|  | "Only handle AVX 256-bit vector integer operation"); | 
|  | return Lower256IntArith(Op, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { | 
|  | if (Op.getValueType() == MVT::i1) | 
|  | return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | assert(Op.getSimpleValueType().is256BitVector() && | 
|  | Op.getSimpleValueType().isInteger() && | 
|  | "Only handle AVX 256-bit vector integer operation"); | 
|  | return Lower256IntArith(Op, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getSimpleValueType().is256BitVector() && | 
|  | Op.getSimpleValueType().isInteger() && | 
|  | "Only handle AVX 256-bit vector integer operation"); | 
|  | return Lower256IntArith(Op, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1)); | 
|  |  | 
|  | // Decompose 256-bit ops into smaller 128-bit ops. | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256()) | 
|  | return Lower256IntArith(Op, DAG); | 
|  |  | 
|  | SDValue A = Op.getOperand(0); | 
|  | SDValue B = Op.getOperand(1); | 
|  |  | 
|  | // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector | 
|  | // pairs, multiply and truncate. | 
|  | if (VT == MVT::v16i8 || VT == MVT::v32i8) { | 
|  | if (Subtarget->hasInt256()) { | 
|  | if (VT == MVT::v32i8) { | 
|  | MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2); | 
|  | SDValue Lo = DAG.getIntPtrConstant(0, dl); | 
|  | SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl); | 
|  | SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo); | 
|  | SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo); | 
|  | SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi); | 
|  | SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | 
|  | DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo), | 
|  | DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi)); | 
|  | } | 
|  |  | 
|  | MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements()); | 
|  | return DAG.getNode( | 
|  | ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::MUL, dl, ExVT, | 
|  | DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A), | 
|  | DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B))); | 
|  | } | 
|  |  | 
|  | assert(VT == MVT::v16i8 && | 
|  | "Pre-AVX2 support only supports v16i8 multiplication"); | 
|  | MVT ExVT = MVT::v8i16; | 
|  |  | 
|  | // Extract the lo parts and sign extend to i16 | 
|  | SDValue ALo, BLo; | 
|  | if (Subtarget->hasSSE41()) { | 
|  | ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A); | 
|  | BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B); | 
|  | } else { | 
|  | const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, | 
|  | -1, 4, -1, 5, -1, 6, -1, 7}; | 
|  | ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); | 
|  | BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); | 
|  | ALo = DAG.getBitcast(ExVT, ALo); | 
|  | BLo = DAG.getBitcast(ExVT, BLo); | 
|  | ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); | 
|  | BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); | 
|  | } | 
|  |  | 
|  | // Extract the hi parts and sign extend to i16 | 
|  | SDValue AHi, BHi; | 
|  | if (Subtarget->hasSSE41()) { | 
|  | const int ShufMask[] = {8,  9,  10, 11, 12, 13, 14, 15, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1}; | 
|  | AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); | 
|  | BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); | 
|  | AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi); | 
|  | BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi); | 
|  | } else { | 
|  | const int ShufMask[] = {-1, 8,  -1, 9,  -1, 10, -1, 11, | 
|  | -1, 12, -1, 13, -1, 14, -1, 15}; | 
|  | AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); | 
|  | BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); | 
|  | AHi = DAG.getBitcast(ExVT, AHi); | 
|  | BHi = DAG.getBitcast(ExVT, BHi); | 
|  | AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); | 
|  | BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); | 
|  | } | 
|  |  | 
|  | // Multiply, mask the lower 8bits of the lo/hi results and pack | 
|  | SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); | 
|  | SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); | 
|  | RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT)); | 
|  | RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT)); | 
|  | return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); | 
|  | } | 
|  |  | 
|  | // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. | 
|  | if (VT == MVT::v4i32) { | 
|  | assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && | 
|  | "Should not custom lower when pmuldq is available!"); | 
|  |  | 
|  | // Extract the odd parts. | 
|  | static const int UnpackMask[] = { 1, -1, 3, -1 }; | 
|  | SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); | 
|  | SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); | 
|  |  | 
|  | // Multiply the even parts. | 
|  | SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); | 
|  | // Now multiply odd parts. | 
|  | SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); | 
|  |  | 
|  | Evens = DAG.getBitcast(VT, Evens); | 
|  | Odds = DAG.getBitcast(VT, Odds); | 
|  |  | 
|  | // Merge the two vectors back together with a shuffle. This expands into 2 | 
|  | // shuffles. | 
|  | static const int ShufMask[] = { 0, 4, 2, 6 }; | 
|  | return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); | 
|  | } | 
|  |  | 
|  | assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && | 
|  | "Only know how to lower V2I64/V4I64/V8I64 multiply"); | 
|  |  | 
|  | //  Ahi = psrlqi(a, 32); | 
|  | //  Bhi = psrlqi(b, 32); | 
|  | // | 
|  | //  AloBlo = pmuludq(a, b); | 
|  | //  AloBhi = pmuludq(a, Bhi); | 
|  | //  AhiBlo = pmuludq(Ahi, b); | 
|  |  | 
|  | //  AloBhi = psllqi(AloBhi, 32); | 
|  | //  AhiBlo = psllqi(AhiBlo, 32); | 
|  | //  return AloBlo + AloBhi + AhiBlo; | 
|  |  | 
|  | SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); | 
|  | SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); | 
|  |  | 
|  | SDValue AhiBlo = Ahi; | 
|  | SDValue AloBhi = Bhi; | 
|  | // Bit cast to 32-bit vectors for MULUDQ | 
|  | EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : | 
|  | (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32; | 
|  | A = DAG.getBitcast(MulVT, A); | 
|  | B = DAG.getBitcast(MulVT, B); | 
|  | Ahi = DAG.getBitcast(MulVT, Ahi); | 
|  | Bhi = DAG.getBitcast(MulVT, Bhi); | 
|  |  | 
|  | SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); | 
|  | // After shifting right const values the result may be all-zero. | 
|  | if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) { | 
|  | AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); | 
|  | AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG); | 
|  | } | 
|  | if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) { | 
|  | AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); | 
|  | AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Subtarget->isTargetWin64() && "Unexpected target"); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT.isInteger() && VT.getSizeInBits() == 128 && | 
|  | "Unexpected return type for lowering"); | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | bool isSigned; | 
|  | switch (Op->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break; | 
|  | case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break; | 
|  | case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break; | 
|  | case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break; | 
|  | case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break; | 
|  | case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { | 
|  | EVT ArgVT = Op->getOperand(i).getValueType(); | 
|  | assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && | 
|  | "Unexpected argument type for lowering"); | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); | 
|  | Entry.Node = StackPtr; | 
|  | InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(), | 
|  | false, false, 16); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Ty = PointerType::get(ArgTy,0); | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(InChain) | 
|  | .setCallee(getLibcallCallingConv(LC), | 
|  | static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), | 
|  | Callee, std::move(Args), 0) | 
|  | .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); | 
|  | return DAG.getBitcast(VT, CallInfo.first); | 
|  | } | 
|  |  | 
|  | static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); | 
|  | EVT VT = Op0.getValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) || | 
|  | (VT == MVT::v8i32 && Subtarget->hasInt256())); | 
|  |  | 
|  | // PMULxD operations multiply each even value (starting at 0) of LHS with | 
|  | // the related value of RHS and produce a widen result. | 
|  | // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> | 
|  | // => <2 x i64> <ae|cg> | 
|  | // | 
|  | // In other word, to have all the results, we need to perform two PMULxD: | 
|  | // 1. one with the even values. | 
|  | // 2. one with the odd values. | 
|  | // To achieve #2, with need to place the odd values at an even position. | 
|  | // | 
|  | // Place the odd value at an even position (basically, shift all values 1 | 
|  | // step to the left): | 
|  | const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1}; | 
|  | // <a|b|c|d> => <b|undef|d|undef> | 
|  | SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask); | 
|  | // <e|f|g|h> => <f|undef|h|undef> | 
|  | SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask); | 
|  |  | 
|  | // Emit two multiplies, one for the lower 2 ints and one for the higher 2 | 
|  | // ints. | 
|  | MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64; | 
|  | bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; | 
|  | unsigned Opcode = | 
|  | (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; | 
|  | // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> | 
|  | // => <2 x i64> <ae|cg> | 
|  | SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1)); | 
|  | // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef> | 
|  | // => <2 x i64> <bf|dh> | 
|  | SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1)); | 
|  |  | 
|  | // Shuffle it back into the right order. | 
|  | SDValue Highs, Lows; | 
|  | if (VT == MVT::v8i32) { | 
|  | const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15}; | 
|  | Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); | 
|  | const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14}; | 
|  | Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); | 
|  | } else { | 
|  | const int HighMask[] = {1, 5, 3, 7}; | 
|  | Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); | 
|  | const int LowMask[] = {0, 4, 2, 6}; | 
|  | Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); | 
|  | } | 
|  |  | 
|  | // If we have a signed multiply but no PMULDQ fix up the high parts of a | 
|  | // unsigned multiply. | 
|  | if (IsSigned && !Subtarget->hasSSE41()) { | 
|  | SDValue ShAmt = DAG.getConstant( | 
|  | 31, dl, | 
|  | DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout())); | 
|  | SDValue T1 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); | 
|  | SDValue T2 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); | 
|  |  | 
|  | SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); | 
|  | Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); | 
|  | } | 
|  |  | 
|  | // The first result of MUL_LOHI is actually the low value, followed by the | 
|  | // high value. | 
|  | SDValue Ops[] = {Lows, Highs}; | 
|  | return DAG.getMergeValues(Ops, dl); | 
|  | } | 
|  |  | 
|  | // Return true if the required (according to Opcode) shift-imm form is natively | 
|  | // supported by the Subtarget | 
|  | static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget, | 
|  | unsigned Opcode) { | 
|  | if (VT.getScalarSizeInBits() < 16) | 
|  | return false; | 
|  |  | 
|  | if (VT.is512BitVector() && | 
|  | (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI())) | 
|  | return true; | 
|  |  | 
|  | bool LShift = VT.is128BitVector() || | 
|  | (VT.is256BitVector() && Subtarget->hasInt256()); | 
|  |  | 
|  | bool AShift = LShift && (Subtarget->hasVLX() || | 
|  | (VT != MVT::v2i64 && VT != MVT::v4i64)); | 
|  | return (Opcode == ISD::SRA) ? AShift : LShift; | 
|  | } | 
|  |  | 
|  | // The shift amount is a variable, but it is the same for all vector lanes. | 
|  | // These instructions are defined together with shift-immediate. | 
|  | static | 
|  | bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget, | 
|  | unsigned Opcode) { | 
|  | return SupportedVectorShiftWithImm(VT, Subtarget, Opcode); | 
|  | } | 
|  |  | 
|  | // Return true if the required (according to Opcode) variable-shift form is | 
|  | // natively supported by the Subtarget | 
|  | static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget, | 
|  | unsigned Opcode) { | 
|  |  | 
|  | if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16) | 
|  | return false; | 
|  |  | 
|  | // vXi16 supported only on AVX-512, BWI | 
|  | if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI()) | 
|  | return false; | 
|  |  | 
|  | if (VT.is512BitVector() || Subtarget->hasVLX()) | 
|  | return true; | 
|  |  | 
|  | bool LShift = VT.is128BitVector() || VT.is256BitVector(); | 
|  | bool AShift = LShift &&  VT != MVT::v2i64 && VT != MVT::v4i64; | 
|  | return (Opcode == ISD::SRA) ? AShift : LShift; | 
|  | } | 
|  |  | 
|  | static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  |  | 
|  | unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : | 
|  | (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; | 
|  |  | 
|  | auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) { | 
|  | assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type"); | 
|  | MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2); | 
|  | SDValue Ex = DAG.getBitcast(ExVT, R); | 
|  |  | 
|  | if (ShiftAmt >= 32) { | 
|  | // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32. | 
|  | SDValue Upper = | 
|  | getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG); | 
|  | SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, | 
|  | ShiftAmt - 32, DAG); | 
|  | if (VT == MVT::v2i64) | 
|  | Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3}); | 
|  | if (VT == MVT::v4i64) | 
|  | Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, | 
|  | {9, 1, 11, 3, 13, 5, 15, 7}); | 
|  | } else { | 
|  | // SRA upper i32, SHL whole i64 and select lower i32. | 
|  | SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, | 
|  | ShiftAmt, DAG); | 
|  | SDValue Lower = | 
|  | getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); | 
|  | Lower = DAG.getBitcast(ExVT, Lower); | 
|  | if (VT == MVT::v2i64) | 
|  | Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3}); | 
|  | if (VT == MVT::v4i64) | 
|  | Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, | 
|  | {8, 1, 10, 3, 12, 5, 14, 7}); | 
|  | } | 
|  | return DAG.getBitcast(VT, Ex); | 
|  | }; | 
|  |  | 
|  | // Optimize shl/srl/sra with constant shift amount. | 
|  | if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { | 
|  | if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { | 
|  | uint64_t ShiftAmt = ShiftConst->getZExtValue(); | 
|  |  | 
|  | if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) | 
|  | return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); | 
|  |  | 
|  | // i64 SRA needs to be performed as partial shifts. | 
|  | if ((VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && | 
|  | Op.getOpcode() == ISD::SRA && !Subtarget->hasXOP()) | 
|  | return ArithmeticShiftRight64(ShiftAmt); | 
|  |  | 
|  | if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2); | 
|  |  | 
|  | // Simple i8 add case | 
|  | if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1) | 
|  | return DAG.getNode(ISD::ADD, dl, VT, R, R); | 
|  |  | 
|  | // ashr(R, 7)  === cmp_slt(R, 0) | 
|  | if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) { | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); | 
|  | } | 
|  |  | 
|  | // XOP can shift v16i8 directly instead of as shift v8i16 + mask. | 
|  | if (VT == MVT::v16i8 && Subtarget->hasXOP()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SHL) { | 
|  | // Make a large shift. | 
|  | SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, | 
|  | R, ShiftAmt, DAG); | 
|  | SHL = DAG.getBitcast(VT, SHL); | 
|  | // Zero out the rightmost bits. | 
|  | SmallVector<SDValue, 32> V( | 
|  | NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SHL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRL) { | 
|  | // Make a large shift. | 
|  | SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, | 
|  | R, ShiftAmt, DAG); | 
|  | SRL = DAG.getBitcast(VT, SRL); | 
|  | // Zero out the leftmost bits. | 
|  | SmallVector<SDValue, 32> V( | 
|  | NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SRL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRA) { | 
|  | // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask) | 
|  | SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); | 
|  | SmallVector<SDValue, 32> V(NumElts, | 
|  | DAG.getConstant(128 >> ShiftAmt, dl, | 
|  | MVT::i8)); | 
|  | SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V); | 
|  | Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); | 
|  | Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); | 
|  | return Res; | 
|  | } | 
|  | llvm_unreachable("Unknown shift opcode."); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case in 32-bit mode, where i64 is expanded into high and low parts. | 
|  | if (!Subtarget->is64Bit() && !Subtarget->hasXOP() && | 
|  | (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) { | 
|  |  | 
|  | // Peek through any splat that was introduced for i64 shift vectorization. | 
|  | int SplatIndex = -1; | 
|  | if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode())) | 
|  | if (SVN->isSplat()) { | 
|  | SplatIndex = SVN->getSplatIndex(); | 
|  | Amt = Amt.getOperand(0); | 
|  | assert(SplatIndex < (int)VT.getVectorNumElements() && | 
|  | "Splat shuffle referencing second operand"); | 
|  | } | 
|  |  | 
|  | if (Amt.getOpcode() != ISD::BITCAST || | 
|  | Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | Amt = Amt.getOperand(0); | 
|  | unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / | 
|  | VT.getVectorNumElements(); | 
|  | unsigned RatioInLog2 = Log2_32_Ceil(Ratio); | 
|  | uint64_t ShiftAmt = 0; | 
|  | unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio); | 
|  | for (unsigned i = 0; i != Ratio; ++i) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | // 6 == Log2(64) | 
|  | ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); | 
|  | } | 
|  |  | 
|  | // Check remaining shift amounts (if not a splat). | 
|  | if (SplatIndex < 0) { | 
|  | for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { | 
|  | uint64_t ShAmt = 0; | 
|  | for (unsigned j = 0; j != Ratio; ++j) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | // 6 == Log2(64) | 
|  | ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); | 
|  | } | 
|  | if (ShAmt != ShiftAmt) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) | 
|  | return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SRA) | 
|  | return ArithmeticShiftRight64(ShiftAmt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  |  | 
|  | unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : | 
|  | (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; | 
|  |  | 
|  | unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL : | 
|  | (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA; | 
|  |  | 
|  | if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) { | 
|  | SDValue BaseShAmt; | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) { | 
|  | // Check if this build_vector node is doing a splat. | 
|  | // If so, then set BaseShAmt equal to the splat value. | 
|  | BaseShAmt = BV->getSplatValue(); | 
|  | if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF) | 
|  | BaseShAmt = SDValue(); | 
|  | } else { | 
|  | if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) | 
|  | Amt = Amt.getOperand(0); | 
|  |  | 
|  | ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt); | 
|  | if (SVN && SVN->isSplat()) { | 
|  | unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); | 
|  | SDValue InVec = Amt.getOperand(0); | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | assert((SplatIdx < InVec.getValueType().getVectorNumElements()) && | 
|  | "Unexpected shuffle index found!"); | 
|  | BaseShAmt = InVec.getOperand(SplatIdx); | 
|  | } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { | 
|  | if (C->getZExtValue() == SplatIdx) | 
|  | BaseShAmt = InVec.getOperand(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BaseShAmt) | 
|  | // Avoid introducing an extract element from a shuffle. | 
|  | BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec, | 
|  | DAG.getIntPtrConstant(SplatIdx, dl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseShAmt.getNode()) { | 
|  | assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); | 
|  | if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); | 
|  | else if (EltVT.bitsLT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); | 
|  |  | 
|  | return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case in 32-bit mode, where i64 is expanded into high and low parts. | 
|  | if (!Subtarget->is64Bit() && VT == MVT::v2i64  && | 
|  | Amt.getOpcode() == ISD::BITCAST && | 
|  | Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { | 
|  | Amt = Amt.getOperand(0); | 
|  | unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / | 
|  | VT.getVectorNumElements(); | 
|  | std::vector<SDValue> Vals(Ratio); | 
|  | for (unsigned i = 0; i != Ratio; ++i) | 
|  | Vals[i] = Amt.getOperand(i); | 
|  | for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { | 
|  | for (unsigned j = 0; j != Ratio; ++j) | 
|  | if (Vals[j] != Amt.getOperand(i + j)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) | 
|  | return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  |  | 
|  | assert(VT.isVector() && "Custom lowering only for vector shifts!"); | 
|  | assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!"); | 
|  |  | 
|  | if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget)) | 
|  | return V; | 
|  |  | 
|  | if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode())) | 
|  | return Op; | 
|  |  | 
|  | // XOP has 128-bit variable logical/arithmetic shifts. | 
|  | // +ve/-ve Amt = shift left/right. | 
|  | if (Subtarget->hasXOP() && | 
|  | (VT == MVT::v2i64 || VT == MVT::v4i32 || | 
|  | VT == MVT::v8i16 || VT == MVT::v16i8)) { | 
|  | if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) { | 
|  | SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL) | 
|  | return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt); | 
|  | if (Op.getOpcode() == ISD::SRA) | 
|  | return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt); | 
|  | } | 
|  |  | 
|  | // 2i64 vector logical shifts can efficiently avoid scalarization - do the | 
|  | // shifts per-lane and then shuffle the partial results back together. | 
|  | if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) { | 
|  | // Splat the shift amounts so the scalar shifts above will catch it. | 
|  | SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0}); | 
|  | SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1}); | 
|  | SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0); | 
|  | SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1); | 
|  | return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3}); | 
|  | } | 
|  |  | 
|  | // i64 vector arithmetic shift can be emulated with the transform: | 
|  | // M = lshr(SIGN_BIT, Amt) | 
|  | // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M) | 
|  | if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) && | 
|  | Op.getOpcode() == ISD::SRA) { | 
|  | SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT); | 
|  | SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt); | 
|  | R = DAG.getNode(ISD::SRL, dl, VT, R, Amt); | 
|  | R = DAG.getNode(ISD::XOR, dl, VT, R, M); | 
|  | R = DAG.getNode(ISD::SUB, dl, VT, R, M); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // If possible, lower this packed shift into a vector multiply instead of | 
|  | // expanding it into a sequence of scalar shifts. | 
|  | // Do this only if the vector shift count is a constant build_vector. | 
|  | if (Op.getOpcode() == ISD::SHL && | 
|  | (VT == MVT::v8i16 || VT == MVT::v4i32 || | 
|  | (Subtarget->hasInt256() && VT == MVT::v16i16)) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | EVT SVT = VT.getScalarType(); | 
|  | unsigned SVTBits = SVT.getSizeInBits(); | 
|  | const APInt &One = APInt(SVTBits, 1); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | for (unsigned i=0; i !=NumElems; ++i) { | 
|  | SDValue Op = Amt->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(Op); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ConstantSDNode *ND = cast<ConstantSDNode>(Op); | 
|  | const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue()); | 
|  | uint64_t ShAmt = C.getZExtValue(); | 
|  | if (ShAmt >= SVTBits) { | 
|  | Elts.push_back(DAG.getUNDEF(SVT)); | 
|  | continue; | 
|  | } | 
|  | Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT)); | 
|  | } | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); | 
|  | return DAG.getNode(ISD::MUL, dl, VT, R, BV); | 
|  | } | 
|  |  | 
|  | // Lower SHL with variable shift amount. | 
|  | if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { | 
|  | Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT)); | 
|  |  | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, | 
|  | DAG.getConstant(0x3f800000U, dl, VT)); | 
|  | Op = DAG.getBitcast(MVT::v4f32, Op); | 
|  | Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); | 
|  | return DAG.getNode(ISD::MUL, dl, VT, Op, R); | 
|  | } | 
|  |  | 
|  | // If possible, lower this shift as a sequence of two shifts by | 
|  | // constant plus a MOVSS/MOVSD instead of scalarizing it. | 
|  | // Example: | 
|  | //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) | 
|  | // | 
|  | // Could be rewritten as: | 
|  | //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>))) | 
|  | // | 
|  | // The advantage is that the two shifts from the example would be | 
|  | // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing | 
|  | // the vector shift into four scalar shifts plus four pairs of vector | 
|  | // insert/extract. | 
|  | if ((VT == MVT::v8i16 || VT == MVT::v4i32) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { | 
|  | unsigned TargetOpcode = X86ISD::MOVSS; | 
|  | bool CanBeSimplified; | 
|  | // The splat value for the first packed shift (the 'X' from the example). | 
|  | SDValue Amt1 = Amt->getOperand(0); | 
|  | // The splat value for the second packed shift (the 'Y' from the example). | 
|  | SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : | 
|  | Amt->getOperand(2); | 
|  |  | 
|  | // See if it is possible to replace this node with a sequence of | 
|  | // two shifts followed by a MOVSS/MOVSD | 
|  | if (VT == MVT::v4i32) { | 
|  | // Check if it is legal to use a MOVSS. | 
|  | CanBeSimplified = Amt2 == Amt->getOperand(2) && | 
|  | Amt2 == Amt->getOperand(3); | 
|  | if (!CanBeSimplified) { | 
|  | // Otherwise, check if we can still simplify this node using a MOVSD. | 
|  | CanBeSimplified = Amt1 == Amt->getOperand(1) && | 
|  | Amt->getOperand(2) == Amt->getOperand(3); | 
|  | TargetOpcode = X86ISD::MOVSD; | 
|  | Amt2 = Amt->getOperand(2); | 
|  | } | 
|  | } else { | 
|  | // Do similar checks for the case where the machine value type | 
|  | // is MVT::v8i16. | 
|  | CanBeSimplified = Amt1 == Amt->getOperand(1); | 
|  | for (unsigned i=3; i != 8 && CanBeSimplified; ++i) | 
|  | CanBeSimplified = Amt2 == Amt->getOperand(i); | 
|  |  | 
|  | if (!CanBeSimplified) { | 
|  | TargetOpcode = X86ISD::MOVSD; | 
|  | CanBeSimplified = true; | 
|  | Amt2 = Amt->getOperand(4); | 
|  | for (unsigned i=0; i != 4 && CanBeSimplified; ++i) | 
|  | CanBeSimplified = Amt1 == Amt->getOperand(i); | 
|  | for (unsigned j=4; j != 8 && CanBeSimplified; ++j) | 
|  | CanBeSimplified = Amt2 == Amt->getOperand(j); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CanBeSimplified && isa<ConstantSDNode>(Amt1) && | 
|  | isa<ConstantSDNode>(Amt2)) { | 
|  | // Replace this node with two shifts followed by a MOVSS/MOVSD. | 
|  | EVT CastVT = MVT::v4i32; | 
|  | SDValue Splat1 = | 
|  | DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT); | 
|  | SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); | 
|  | SDValue Splat2 = | 
|  | DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT); | 
|  | SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); | 
|  | if (TargetOpcode == X86ISD::MOVSD) | 
|  | CastVT = MVT::v2i64; | 
|  | SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1); | 
|  | SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2); | 
|  | SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2, | 
|  | BitCast1, DAG); | 
|  | return DAG.getBitcast(VT, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // v4i32 Non Uniform Shifts. | 
|  | // If the shift amount is constant we can shift each lane using the SSE2 | 
|  | // immediate shifts, else we need to zero-extend each lane to the lower i64 | 
|  | // and shift using the SSE2 variable shifts. | 
|  | // The separate results can then be blended together. | 
|  | if (VT == MVT::v4i32) { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | SDValue Amt0, Amt1, Amt2, Amt3; | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { | 
|  | Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0}); | 
|  | Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1}); | 
|  | Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2}); | 
|  | Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3}); | 
|  | } else { | 
|  | // ISD::SHL is handled above but we include it here for completeness. | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unknown target vector shift node"); | 
|  | case ISD::SHL: | 
|  | Opc = X86ISD::VSHL; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | Opc = X86ISD::VSRL; | 
|  | break; | 
|  | case ISD::SRA: | 
|  | Opc = X86ISD::VSRA; | 
|  | break; | 
|  | } | 
|  | // The SSE2 shifts use the lower i64 as the same shift amount for | 
|  | // all lanes and the upper i64 is ignored. These shuffle masks | 
|  | // optimally zero-extend each lanes on SSE2/SSE41/AVX targets. | 
|  | SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1}); | 
|  | Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1}); | 
|  | Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1}); | 
|  | Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1}); | 
|  | } | 
|  |  | 
|  | SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0); | 
|  | SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1); | 
|  | SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2); | 
|  | SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3); | 
|  | SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1}); | 
|  | SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7}); | 
|  | return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7}); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8 || | 
|  | (VT == MVT::v32i8 && Subtarget->hasInt256() && !Subtarget->hasXOP())) { | 
|  | MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); | 
|  | unsigned ShiftOpcode = Op->getOpcode(); | 
|  |  | 
|  | auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { | 
|  | // On SSE41 targets we make use of the fact that VSELECT lowers | 
|  | // to PBLENDVB which selects bytes based just on the sign bit. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | V0 = DAG.getBitcast(VT, V0); | 
|  | V1 = DAG.getBitcast(VT, V1); | 
|  | Sel = DAG.getBitcast(VT, Sel); | 
|  | return DAG.getBitcast(SelVT, | 
|  | DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1)); | 
|  | } | 
|  | // On pre-SSE41 targets we test for the sign bit by comparing to | 
|  | // zero - a negative value will set all bits of the lanes to true | 
|  | // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. | 
|  | SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl); | 
|  | SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel); | 
|  | return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1); | 
|  | }; | 
|  |  | 
|  | // Turn 'a' into a mask suitable for VSELECT: a = a << 5; | 
|  | // We can safely do this using i16 shifts as we're only interested in | 
|  | // the 3 lower bits of each byte. | 
|  | Amt = DAG.getBitcast(ExtVT, Amt); | 
|  | Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT)); | 
|  | Amt = DAG.getBitcast(VT, Amt); | 
|  |  | 
|  | if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) { | 
|  | // r = VSELECT(r, shift(r, 4), a); | 
|  | SDValue M = | 
|  | DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); | 
|  | R = SignBitSelect(VT, Amt, M, R); | 
|  |  | 
|  | // a += a | 
|  | Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 2), a); | 
|  | M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); | 
|  | R = SignBitSelect(VT, Amt, M, R); | 
|  |  | 
|  | // a += a | 
|  | Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); | 
|  |  | 
|  | // return VSELECT(r, shift(r, 1), a); | 
|  | M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); | 
|  | R = SignBitSelect(VT, Amt, M, R); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (Op->getOpcode() == ISD::SRA) { | 
|  | // For SRA we need to unpack each byte to the higher byte of a i16 vector | 
|  | // so we can correctly sign extend. We don't care what happens to the | 
|  | // lower byte. | 
|  | SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt); | 
|  | SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt); | 
|  | SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R); | 
|  | SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R); | 
|  | ALo = DAG.getBitcast(ExtVT, ALo); | 
|  | AHi = DAG.getBitcast(ExtVT, AHi); | 
|  | RLo = DAG.getBitcast(ExtVT, RLo); | 
|  | RHi = DAG.getBitcast(ExtVT, RHi); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 4), a); | 
|  | SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, | 
|  | DAG.getConstant(4, dl, ExtVT)); | 
|  | SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, | 
|  | DAG.getConstant(4, dl, ExtVT)); | 
|  | RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); | 
|  | RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); | 
|  |  | 
|  | // a += a | 
|  | ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); | 
|  | AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 2), a); | 
|  | MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, | 
|  | DAG.getConstant(2, dl, ExtVT)); | 
|  | MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, | 
|  | DAG.getConstant(2, dl, ExtVT)); | 
|  | RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); | 
|  | RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); | 
|  |  | 
|  | // a += a | 
|  | ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); | 
|  | AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 1), a); | 
|  | MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, | 
|  | DAG.getConstant(1, dl, ExtVT)); | 
|  | MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, | 
|  | DAG.getConstant(1, dl, ExtVT)); | 
|  | RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); | 
|  | RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); | 
|  |  | 
|  | // Logical shift the result back to the lower byte, leaving a zero upper | 
|  | // byte | 
|  | // meaning that we can safely pack with PACKUSWB. | 
|  | RLo = | 
|  | DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT)); | 
|  | RHi = | 
|  | DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT)); | 
|  | return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); | 
|  | } | 
|  | } | 
|  |  | 
|  | // It's worth extending once and using the v8i32 shifts for 16-bit types, but | 
|  | // the extra overheads to get from v16i8 to v8i32 make the existing SSE | 
|  | // solution better. | 
|  | if (Subtarget->hasInt256() && VT == MVT::v8i16) { | 
|  | MVT ExtVT = MVT::v8i32; | 
|  | unsigned ExtOpc = | 
|  | Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | R = DAG.getNode(ExtOpc, dl, ExtVT, R); | 
|  | Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt)); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasInt256() && !Subtarget->hasXOP() && VT == MVT::v16i16) { | 
|  | MVT ExtVT = MVT::v8i32; | 
|  | SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z); | 
|  | SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z); | 
|  | SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R); | 
|  | SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R); | 
|  | ALo = DAG.getBitcast(ExtVT, ALo); | 
|  | AHi = DAG.getBitcast(ExtVT, AHi); | 
|  | RLo = DAG.getBitcast(ExtVT, RLo); | 
|  | RHi = DAG.getBitcast(ExtVT, RHi); | 
|  | SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo); | 
|  | SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi); | 
|  | Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT)); | 
|  | Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT)); | 
|  | return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v8i16) { | 
|  | unsigned ShiftOpcode = Op->getOpcode(); | 
|  |  | 
|  | auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) { | 
|  | // On SSE41 targets we make use of the fact that VSELECT lowers | 
|  | // to PBLENDVB which selects bytes based just on the sign bit. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); | 
|  | V0 = DAG.getBitcast(ExtVT, V0); | 
|  | V1 = DAG.getBitcast(ExtVT, V1); | 
|  | Sel = DAG.getBitcast(ExtVT, Sel); | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1)); | 
|  | } | 
|  | // On pre-SSE41 targets we splat the sign bit - a negative value will | 
|  | // set all bits of the lanes to true and VSELECT uses that in | 
|  | // its OR(AND(V0,C),AND(V1,~C)) lowering. | 
|  | SDValue C = | 
|  | DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT)); | 
|  | return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1); | 
|  | }; | 
|  |  | 
|  | // Turn 'a' into a mask suitable for VSELECT: a = a << 12; | 
|  | if (Subtarget->hasSSE41()) { | 
|  | // On SSE41 targets we need to replicate the shift mask in both | 
|  | // bytes for PBLENDVB. | 
|  | Amt = DAG.getNode( | 
|  | ISD::OR, dl, VT, | 
|  | DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)), | 
|  | DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT))); | 
|  | } else { | 
|  | Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)); | 
|  | } | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 8), a); | 
|  | SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT)); | 
|  | R = SignBitSelect(Amt, M, R); | 
|  |  | 
|  | // a += a | 
|  | Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 4), a); | 
|  | M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); | 
|  | R = SignBitSelect(Amt, M, R); | 
|  |  | 
|  | // a += a | 
|  | Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); | 
|  |  | 
|  | // r = VSELECT(r, shift(r, 2), a); | 
|  | M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); | 
|  | R = SignBitSelect(Amt, M, R); | 
|  |  | 
|  | // a += a | 
|  | Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); | 
|  |  | 
|  | // return VSELECT(r, shift(r, 1), a); | 
|  | M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); | 
|  | R = SignBitSelect(Amt, M, R); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // Decompose 256-bit shifts into smaller 128-bit shifts. | 
|  | if (VT.is256BitVector()) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  |  | 
|  | // Extract the two vectors | 
|  | SDValue V1 = Extract128BitVector(R, 0, DAG, dl); | 
|  | SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Recreate the shift amount vectors | 
|  | SDValue Amt1, Amt2; | 
|  | if (Amt.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // Constant shift amount | 
|  | SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems); | 
|  | ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2); | 
|  | ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2); | 
|  |  | 
|  | Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts); | 
|  | Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts); | 
|  | } else { | 
|  | // Variable shift amount | 
|  | Amt1 = Extract128BitVector(Amt, 0, DAG, dl); | 
|  | Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Issue new vector shifts for the smaller types | 
|  | V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); | 
|  | V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); | 
|  |  | 
|  | // Concatenate the result back | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { | 
|  | // Lower the "add/sub/mul with overflow" instruction into a regular ins plus | 
|  | // a "setcc" instruction that checks the overflow flag. The "brcond" lowering | 
|  | // looks for this combo and may remove the "setcc" instruction if the "setcc" | 
|  | // has only one use. | 
|  | SDNode *N = Op.getNode(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned Cond = 0; | 
|  | SDLoc DL(Op); | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown ovf instruction!"); | 
|  | case ISD::SADDO: | 
|  | // A subtract of one will be selected as a INC. Note that INC doesn't | 
|  | // set CF, so we can't do this for UADDO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | BaseOp = X86ISD::INC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | // A subtract of one will be selected as a DEC. Note that DEC doesn't | 
|  | // set CF, so we can't do this for USUBO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | BaseOp = X86ISD::DEC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SMULO: | 
|  | BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs | 
|  | if (N->getValueType(0) == MVT::i8) { | 
|  | BaseOp = X86ISD::UMUL8; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), | 
|  | MVT::i32); | 
|  | SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_O, DL, MVT::i32), | 
|  | SDValue(Sum.getNode(), 2)); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); | 
|  | SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), | 
|  | DAG.getConstant(Cond, DL, MVT::i32), | 
|  | SDValue(Sum.getNode(), 1)); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); | 
|  | } | 
|  |  | 
|  | /// Returns true if the operand type is exactly twice the native width, and | 
|  | /// the corresponding cmpxchg8b or cmpxchg16b instruction is available. | 
|  | /// Used to know whether to use cmpxchg8/16b when expanding atomic operations | 
|  | /// (otherwise we leave them alone to become __sync_fetch_and_... calls). | 
|  | bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const { | 
|  | unsigned OpWidth = MemType->getPrimitiveSizeInBits(); | 
|  |  | 
|  | if (OpWidth == 64) | 
|  | return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b | 
|  | else if (OpWidth == 128) | 
|  | return Subtarget->hasCmpxchg16b(); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { | 
|  | return needsCmpXchgNb(SI->getValueOperand()->getType()); | 
|  | } | 
|  |  | 
|  | // Note: this turns large loads into lock cmpxchg8b/16b. | 
|  | // FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. | 
|  | TargetLowering::AtomicExpansionKind | 
|  | X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { | 
|  | auto PTy = cast<PointerType>(LI->getPointerOperand()->getType()); | 
|  | return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg | 
|  | : AtomicExpansionKind::None; | 
|  | } | 
|  |  | 
|  | TargetLowering::AtomicExpansionKind | 
|  | X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { | 
|  | unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; | 
|  | Type *MemType = AI->getType(); | 
|  |  | 
|  | // If the operand is too big, we must see if cmpxchg8/16b is available | 
|  | // and default to library calls otherwise. | 
|  | if (MemType->getPrimitiveSizeInBits() > NativeWidth) { | 
|  | return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg | 
|  | : AtomicExpansionKind::None; | 
|  | } | 
|  |  | 
|  | AtomicRMWInst::BinOp Op = AI->getOperation(); | 
|  | switch (Op) { | 
|  | default: | 
|  | llvm_unreachable("Unknown atomic operation"); | 
|  | case AtomicRMWInst::Xchg: | 
|  | case AtomicRMWInst::Add: | 
|  | case AtomicRMWInst::Sub: | 
|  | // It's better to use xadd, xsub or xchg for these in all cases. | 
|  | return AtomicExpansionKind::None; | 
|  | case AtomicRMWInst::Or: | 
|  | case AtomicRMWInst::And: | 
|  | case AtomicRMWInst::Xor: | 
|  | // If the atomicrmw's result isn't actually used, we can just add a "lock" | 
|  | // prefix to a normal instruction for these operations. | 
|  | return !AI->use_empty() ? AtomicExpansionKind::CmpXChg | 
|  | : AtomicExpansionKind::None; | 
|  | case AtomicRMWInst::Nand: | 
|  | case AtomicRMWInst::Max: | 
|  | case AtomicRMWInst::Min: | 
|  | case AtomicRMWInst::UMax: | 
|  | case AtomicRMWInst::UMin: | 
|  | // These always require a non-trivial set of data operations on x86. We must | 
|  | // use a cmpxchg loop. | 
|  | return AtomicExpansionKind::CmpXChg; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool hasMFENCE(const X86Subtarget& Subtarget) { | 
|  | // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for | 
|  | // no-sse2). There isn't any reason to disable it if the target processor | 
|  | // supports it. | 
|  | return Subtarget.hasSSE2() || Subtarget.is64Bit(); | 
|  | } | 
|  |  | 
|  | LoadInst * | 
|  | X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { | 
|  | unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; | 
|  | Type *MemType = AI->getType(); | 
|  | // Accesses larger than the native width are turned into cmpxchg/libcalls, so | 
|  | // there is no benefit in turning such RMWs into loads, and it is actually | 
|  | // harmful as it introduces a mfence. | 
|  | if (MemType->getPrimitiveSizeInBits() > NativeWidth) | 
|  | return nullptr; | 
|  |  | 
|  | auto Builder = IRBuilder<>(AI); | 
|  | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | 
|  | auto SynchScope = AI->getSynchScope(); | 
|  | // We must restrict the ordering to avoid generating loads with Release or | 
|  | // ReleaseAcquire orderings. | 
|  | auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); | 
|  | auto Ptr = AI->getPointerOperand(); | 
|  |  | 
|  | // Before the load we need a fence. Here is an example lifted from | 
|  | // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence | 
|  | // is required: | 
|  | // Thread 0: | 
|  | //   x.store(1, relaxed); | 
|  | //   r1 = y.fetch_add(0, release); | 
|  | // Thread 1: | 
|  | //   y.fetch_add(42, acquire); | 
|  | //   r2 = x.load(relaxed); | 
|  | // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is | 
|  | // lowered to just a load without a fence. A mfence flushes the store buffer, | 
|  | // making the optimization clearly correct. | 
|  | // FIXME: it is required if isAtLeastRelease(Order) but it is not clear | 
|  | // otherwise, we might be able to be more aggressive on relaxed idempotent | 
|  | // rmw. In practice, they do not look useful, so we don't try to be | 
|  | // especially clever. | 
|  | if (SynchScope == SingleThread) | 
|  | // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at | 
|  | // the IR level, so we must wrap it in an intrinsic. | 
|  | return nullptr; | 
|  |  | 
|  | if (!hasMFENCE(*Subtarget)) | 
|  | // FIXME: it might make sense to use a locked operation here but on a | 
|  | // different cache-line to prevent cache-line bouncing. In practice it | 
|  | // is probably a small win, and x86 processors without mfence are rare | 
|  | // enough that we do not bother. | 
|  | return nullptr; | 
|  |  | 
|  | Function *MFence = | 
|  | llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); | 
|  | Builder.CreateCall(MFence, {}); | 
|  |  | 
|  | // Finally we can emit the atomic load. | 
|  | LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, | 
|  | AI->getType()->getPrimitiveSizeInBits()); | 
|  | Loaded->setAtomic(Order, SynchScope); | 
|  | AI->replaceAllUsesWith(Loaded); | 
|  | AI->eraseFromParent(); | 
|  | return Loaded; | 
|  | } | 
|  |  | 
|  | static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); | 
|  | SynchronizationScope FenceScope = static_cast<SynchronizationScope>( | 
|  | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); | 
|  |  | 
|  | // The only fence that needs an instruction is a sequentially-consistent | 
|  | // cross-thread fence. | 
|  | if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { | 
|  | if (hasMFENCE(*Subtarget)) | 
|  | return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Zero = DAG.getConstant(0, dl, MVT::i32); | 
|  | SDValue Ops[] = { | 
|  | DAG.getRegister(X86::ESP, MVT::i32),     // Base | 
|  | DAG.getTargetConstant(1, dl, MVT::i8),   // Scale | 
|  | DAG.getRegister(0, MVT::i32),            // Index | 
|  | DAG.getTargetConstant(0, dl, MVT::i32),  // Disp | 
|  | DAG.getRegister(0, MVT::i32),            // Segment. | 
|  | Zero, | 
|  | Chain | 
|  | }; | 
|  | SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); | 
|  | return SDValue(Res, 0); | 
|  | } | 
|  |  | 
|  | // MEMBARRIER is a compiler barrier; it codegens to a no-op. | 
|  | return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT T = Op.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned Reg = 0; | 
|  | unsigned size = 0; | 
|  | switch(T.SimpleTy) { | 
|  | default: llvm_unreachable("Invalid value type!"); | 
|  | case MVT::i8:  Reg = X86::AL;  size = 1; break; | 
|  | case MVT::i16: Reg = X86::AX;  size = 2; break; | 
|  | case MVT::i32: Reg = X86::EAX; size = 4; break; | 
|  | case MVT::i64: | 
|  | assert(Subtarget->is64Bit() && "Node not type legal!"); | 
|  | Reg = X86::RAX; size = 8; | 
|  | break; | 
|  | } | 
|  | SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, | 
|  | Op.getOperand(2), SDValue()); | 
|  | SDValue Ops[] = { cpIn.getValue(0), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(3), | 
|  | DAG.getTargetConstant(size, DL, MVT::i8), | 
|  | cpIn.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); | 
|  | SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, | 
|  | Ops, T, MMO); | 
|  |  | 
|  | SDValue cpOut = | 
|  | DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); | 
|  | SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, | 
|  | MVT::i32, cpOut.getValue(2)); | 
|  | SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1), | 
|  | DAG.getConstant(X86::COND_E, DL, MVT::i8), | 
|  | EFLAGS); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT SrcVT = Op.getOperand(0).getSimpleValueType(); | 
|  | MVT DstVT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) { | 
|  | assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); | 
|  | if (DstVT != MVT::f64) | 
|  | // This conversion needs to be expanded. | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue InVec = Op->getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | unsigned NumElts = SrcVT.getVectorNumElements(); | 
|  | EVT SVT = SrcVT.getVectorElementType(); | 
|  |  | 
|  | // Widen the vector in input in the case of MVT::v2i32. | 
|  | // Example: from MVT::v2i32 to MVT::v4i32. | 
|  | SmallVector<SDValue, 16> Elts; | 
|  | for (unsigned i = 0, e = NumElts; i != e; ++i) | 
|  | Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec, | 
|  | DAG.getIntPtrConstant(i, dl))); | 
|  |  | 
|  | // Explicitly mark the extra elements as Undef. | 
|  | Elts.append(NumElts, DAG.getUNDEF(SVT)); | 
|  |  | 
|  | EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts); | 
|  | SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && | 
|  | Subtarget->hasMMX() && "Unexpected custom BITCAST"); | 
|  | assert((DstVT == MVT::i64 || | 
|  | (DstVT.isVector() && DstVT.getSizeInBits()==64)) && | 
|  | "Unexpected custom BITCAST"); | 
|  | // i64 <=> MMX conversions are Legal. | 
|  | if (SrcVT==MVT::i64 && DstVT.isVector()) | 
|  | return Op; | 
|  | if (DstVT==MVT::i64 && SrcVT.isVector()) | 
|  | return Op; | 
|  | // MMX <=> MMX conversions are Legal. | 
|  | if (SrcVT.isVector() && DstVT.isVector()) | 
|  | return Op; | 
|  | // All other conversions need to be expanded. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Compute the horizontal sum of bytes in V for the elements of VT. | 
|  | /// | 
|  | /// Requires V to be a byte vector and VT to be an integer vector type with | 
|  | /// wider elements than V's type. The width of the elements of VT determines | 
|  | /// how many bytes of V are summed horizontally to produce each element of the | 
|  | /// result. | 
|  | static SDValue LowerHorizontalByteSum(SDValue V, MVT VT, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(V); | 
|  | MVT ByteVecVT = V.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | assert(ByteVecVT.getVectorElementType() == MVT::i8 && | 
|  | "Expected value to have byte element type."); | 
|  | assert(EltVT != MVT::i8 && | 
|  | "Horizontal byte sum only makes sense for wider elements!"); | 
|  | unsigned VecSize = VT.getSizeInBits(); | 
|  | assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!"); | 
|  |  | 
|  | // PSADBW instruction horizontally add all bytes and leave the result in i64 | 
|  | // chunks, thus directly computes the pop count for v2i64 and v4i64. | 
|  | if (EltVT == MVT::i64) { | 
|  | SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); | 
|  | V = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT, V, Zeros); | 
|  | return DAG.getBitcast(VT, V); | 
|  | } | 
|  |  | 
|  | if (EltVT == MVT::i32) { | 
|  | // We unpack the low half and high half into i32s interleaved with zeros so | 
|  | // that we can use PSADBW to horizontally sum them. The most useful part of | 
|  | // this is that it lines up the results of two PSADBW instructions to be | 
|  | // two v2i64 vectors which concatenated are the 4 population counts. We can | 
|  | // then use PACKUSWB to shrink and concatenate them into a v4i32 again. | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL); | 
|  | SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros); | 
|  | SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros); | 
|  |  | 
|  | // Do the horizontal sums into two v2i64s. | 
|  | Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); | 
|  | Low = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT, | 
|  | DAG.getBitcast(ByteVecVT, Low), Zeros); | 
|  | High = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT, | 
|  | DAG.getBitcast(ByteVecVT, High), Zeros); | 
|  |  | 
|  | // Merge them together. | 
|  | MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16); | 
|  | V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT, | 
|  | DAG.getBitcast(ShortVecVT, Low), | 
|  | DAG.getBitcast(ShortVecVT, High)); | 
|  |  | 
|  | return DAG.getBitcast(VT, V); | 
|  | } | 
|  |  | 
|  | // The only element type left is i16. | 
|  | assert(EltVT == MVT::i16 && "Unknown how to handle type"); | 
|  |  | 
|  | // To obtain pop count for each i16 element starting from the pop count for | 
|  | // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s | 
|  | // right by 8. It is important to shift as i16s as i8 vector shift isn't | 
|  | // directly supported. | 
|  | SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT)); | 
|  | SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter); | 
|  | V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl), | 
|  | DAG.getBitcast(ByteVecVT, V)); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned VecSize = VT.getSizeInBits(); | 
|  |  | 
|  | // Implement a lookup table in register by using an algorithm based on: | 
|  | // http://wm.ite.pl/articles/sse-popcount.html | 
|  | // | 
|  | // The general idea is that every lower byte nibble in the input vector is an | 
|  | // index into a in-register pre-computed pop count table. We then split up the | 
|  | // input vector in two new ones: (1) a vector with only the shifted-right | 
|  | // higher nibbles for each byte and (2) a vector with the lower nibbles (and | 
|  | // masked out higher ones) for each byte. PSHUB is used separately with both | 
|  | // to index the in-register table. Next, both are added and the result is a | 
|  | // i8 vector where each element contains the pop count for input byte. | 
|  | // | 
|  | // To obtain the pop count for elements != i8, we follow up with the same | 
|  | // approach and use additional tricks as described below. | 
|  | // | 
|  | const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2, | 
|  | /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3, | 
|  | /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3, | 
|  | /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4}; | 
|  |  | 
|  | int NumByteElts = VecSize / 8; | 
|  | MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts); | 
|  | SDValue In = DAG.getBitcast(ByteVecVT, Op); | 
|  | SmallVector<SDValue, 16> LUTVec; | 
|  | for (int i = 0; i < NumByteElts; ++i) | 
|  | LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); | 
|  | SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec); | 
|  | SmallVector<SDValue, 16> Mask0F(NumByteElts, | 
|  | DAG.getConstant(0x0F, DL, MVT::i8)); | 
|  | SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F); | 
|  |  | 
|  | // High nibbles | 
|  | SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8)); | 
|  | SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four); | 
|  | SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV); | 
|  |  | 
|  | // Low nibbles | 
|  | SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F); | 
|  |  | 
|  | // The input vector is used as the shuffle mask that index elements into the | 
|  | // LUT. After counting low and high nibbles, add the vector to obtain the | 
|  | // final pop count per i8 element. | 
|  | SDValue HighPopCnt = | 
|  | DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles); | 
|  | SDValue LowPopCnt = | 
|  | DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles); | 
|  | SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt); | 
|  |  | 
|  | if (EltVT == MVT::i8) | 
|  | return PopCnt; | 
|  |  | 
|  | return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | assert(VT.is128BitVector() && | 
|  | "Only 128-bit vector bitmath lowering supported."); | 
|  |  | 
|  | int VecSize = VT.getSizeInBits(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | int Len = EltVT.getSizeInBits(); | 
|  |  | 
|  | // This is the vectorized version of the "best" algorithm from | 
|  | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
|  | // with a minor tweak to use a series of adds + shifts instead of vector | 
|  | // multiplications. Implemented for all integer vector types. We only use | 
|  | // this when we don't have SSSE3 which allows a LUT-based lowering that is | 
|  | // much faster, even faster than using native popcnt instructions. | 
|  |  | 
|  | auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) { | 
|  | MVT VT = V.getSimpleValueType(); | 
|  | SmallVector<SDValue, 32> Shifters( | 
|  | VT.getVectorNumElements(), | 
|  | DAG.getConstant(Shifter, DL, VT.getVectorElementType())); | 
|  | return DAG.getNode(OpCode, DL, VT, V, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters)); | 
|  | }; | 
|  | auto GetMask = [&](SDValue V, APInt Mask) { | 
|  | MVT VT = V.getSimpleValueType(); | 
|  | SmallVector<SDValue, 32> Masks( | 
|  | VT.getVectorNumElements(), | 
|  | DAG.getConstant(Mask, DL, VT.getVectorElementType())); | 
|  | return DAG.getNode(ISD::AND, DL, VT, V, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks)); | 
|  | }; | 
|  |  | 
|  | // We don't want to incur the implicit masks required to SRL vNi8 vectors on | 
|  | // x86, so set the SRL type to have elements at least i16 wide. This is | 
|  | // correct because all of our SRLs are followed immediately by a mask anyways | 
|  | // that handles any bits that sneak into the high bits of the byte elements. | 
|  | MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16); | 
|  |  | 
|  | SDValue V = Op; | 
|  |  | 
|  | // v = v - ((v >> 1) & 0x55555555...) | 
|  | SDValue Srl = | 
|  | DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1)); | 
|  | SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55))); | 
|  | V = DAG.getNode(ISD::SUB, DL, VT, V, And); | 
|  |  | 
|  | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) | 
|  | SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33))); | 
|  | Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2)); | 
|  | SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33))); | 
|  | V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS); | 
|  |  | 
|  | // v = (v + (v >> 4)) & 0x0F0F0F0F... | 
|  | Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4)); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl); | 
|  | V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F))); | 
|  |  | 
|  | // At this point, V contains the byte-wise population count, and we are | 
|  | // merely doing a horizontal sum if necessary to get the wider element | 
|  | // counts. | 
|  | if (EltVT == MVT::i8) | 
|  | return V; | 
|  |  | 
|  | return LowerHorizontalByteSum( | 
|  | DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget, | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | // FIXME: Need to add AVX-512 support here! | 
|  | assert((VT.is256BitVector() || VT.is128BitVector()) && | 
|  | "Unknown CTPOP type to handle"); | 
|  | SDLoc DL(Op.getNode()); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  |  | 
|  | if (!Subtarget->hasSSSE3()) { | 
|  | // We can't use the fast LUT approach, so fall back on vectorized bitmath. | 
|  | assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!"); | 
|  | return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256()) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // Extract each 128-bit vector, compute pop count and concat the result. | 
|  | SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL); | 
|  | SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, | 
|  | LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG), | 
|  | LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG)); | 
|  | } | 
|  |  | 
|  | return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getValueType().isVector() && | 
|  | "We only do custom lowering for vector population count."); | 
|  | return LowerVectorCTPOP(Op, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { | 
|  | SDNode *Node = Op.getNode(); | 
|  | SDLoc dl(Node); | 
|  | EVT T = Node->getValueType(0); | 
|  | SDValue negOp = DAG.getNode(ISD::SUB, dl, T, | 
|  | DAG.getConstant(0, dl, T), Node->getOperand(2)); | 
|  | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), negOp, | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | } | 
|  |  | 
|  | static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { | 
|  | SDNode *Node = Op.getNode(); | 
|  | SDLoc dl(Node); | 
|  | EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); | 
|  |  | 
|  | // Convert seq_cst store -> xchg | 
|  | // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) | 
|  | // FIXME: On 32-bit, store -> fist or movq would be more efficient | 
|  | //        (The only way to get a 16-byte store is cmpxchg16b) | 
|  | // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. | 
|  | if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || | 
|  | !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2), | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | return Swap.getValue(1); | 
|  | } | 
|  | // Other atomic stores have a simple pattern. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getNode()->getSimpleValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  |  | 
|  | unsigned Opc; | 
|  | bool ExtraOp = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid code"); | 
|  | case ISD::ADDC: Opc = X86ISD::ADD; break; | 
|  | case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; | 
|  | case ISD::SUBC: Opc = X86ISD::SUB; break; | 
|  | case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; | 
|  | } | 
|  |  | 
|  | if (!ExtraOp) | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); | 
|  |  | 
|  | // For MacOSX, we want to call an alternative entry point: __sincos_stret, | 
|  | // which returns the values as { float, float } (in XMM0) or | 
|  | // { double, double } (which is returned in XMM0, XMM1). | 
|  | SDLoc dl(Op); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | EVT ArgVT = Arg.getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | Entry.Node = Arg; | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | bool isF64 = ArgVT == MVT::f64; | 
|  | // Only optimize x86_64 for now. i386 is a bit messy. For f32, | 
|  | // the small struct {f32, f32} is returned in (eax, edx). For f64, | 
|  | // the results are returned via SRet in memory. | 
|  | const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret"; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Callee = | 
|  | DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = isF64 | 
|  | ? (Type*)StructType::get(ArgTy, ArgTy, nullptr) | 
|  | : (Type*)VectorType::get(ArgTy, 4); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) | 
|  | .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | if (isF64) | 
|  | // Returned in xmm0 and xmm1. | 
|  | return CallResult.first; | 
|  |  | 
|  | // Returned in bits 0:31 and 32:64 xmm0. | 
|  | SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, | 
|  | CallResult.first, DAG.getIntPtrConstant(0, dl)); | 
|  | SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, | 
|  | CallResult.first, DAG.getIntPtrConstant(1, dl)); | 
|  | SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); | 
|  | } | 
|  |  | 
|  | static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->hasAVX512() && | 
|  | "MGATHER/MSCATTER are supported on AVX-512 arch only"); | 
|  |  | 
|  | MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode()); | 
|  | EVT VT = N->getValue().getValueType(); | 
|  | assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op"); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // X86 scatter kills mask register, so its type should be added to | 
|  | // the list of return values | 
|  | if (N->getNumValues() == 1) { | 
|  | SDValue Index = N->getIndex(); | 
|  | if (!Subtarget->hasVLX() && !VT.is512BitVector() && | 
|  | !Index.getValueType().is512BitVector()) | 
|  | Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(N->getMask().getValueType(), MVT::Other); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2), | 
|  | N->getOperand(3), Index }; | 
|  |  | 
|  | SDValue NewScatter = DAG.getMaskedScatter(VTs, VT, dl, Ops, N->getMemOperand()); | 
|  | DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); | 
|  | return SDValue(NewScatter.getNode(), 0); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->hasAVX512() && | 
|  | "MGATHER/MSCATTER are supported on AVX-512 arch only"); | 
|  |  | 
|  | MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode()); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op"); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue Index = N->getIndex(); | 
|  | if (!Subtarget->hasVLX() && !VT.is512BitVector() && | 
|  | !Index.getValueType().is512BitVector()) { | 
|  | Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2), | 
|  | N->getOperand(3), Index }; | 
|  | DAG.UpdateNodeOperands(N, Ops); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // TODO: Eventually, the lowering of these nodes should be informed by or | 
|  | // deferred to the GC strategy for the function in which they appear. For | 
|  | // now, however, they must be lowered to something. Since they are logically | 
|  | // no-ops in the case of a null GC strategy (or a GC strategy which does not | 
|  | // require special handling for these nodes), lower them as literal NOOPs for | 
|  | // the time being. | 
|  | SmallVector<SDValue, 2> Ops; | 
|  |  | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | if (Op->getGluedNode()) | 
|  | Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); | 
|  |  | 
|  | SDLoc OpDL(Op); | 
|  | SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); | 
|  |  | 
|  | return NOOP; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // TODO: Eventually, the lowering of these nodes should be informed by or | 
|  | // deferred to the GC strategy for the function in which they appear. For | 
|  | // now, however, they must be lowered to something. Since they are logically | 
|  | // no-ops in the case of a null GC strategy (or a GC strategy which does not | 
|  | // require special handling for these nodes), lower them as literal NOOPs for | 
|  | // the time being. | 
|  | SmallVector<SDValue, 2> Ops; | 
|  |  | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | if (Op->getGluedNode()) | 
|  | Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); | 
|  |  | 
|  | SDLoc OpDL(Op); | 
|  | SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); | 
|  |  | 
|  | return NOOP; | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Should not custom lower this!"); | 
|  | case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG); | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: | 
|  | return LowerCMP_SWAP(Op, Subtarget, DAG); | 
|  | case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG); | 
|  | case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG); | 
|  | case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG); | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG); | 
|  | case ISD::VSELECT:            return LowerVSELECT(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); | 
|  | case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG); | 
|  | case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG); | 
|  | case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG); | 
|  | case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG); | 
|  | case ISD::LOAD:               return LowerExtendedLoad(Op, Subtarget, DAG); | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG); | 
|  | case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::SELECT:             return LowerSELECT(Op, DAG); | 
|  | case ISD::BRCOND:             return LowerBRCOND(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG); | 
|  | case ISD::VAARG:              return LowerVAARG(Op, DAG); | 
|  | case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG); | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG); | 
|  | case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG); | 
|  | case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG); | 
|  | case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG); | 
|  | case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  | case ISD::CTLZ:               return LowerCTLZ(Op, DAG); | 
|  | case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG); | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF:    return LowerCTTZ(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG); | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG); | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::SHL:                return LowerShift(Op, Subtarget, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO:              return LowerXALUO(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); | 
|  | case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG); | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); | 
|  | case ISD::ADD:                return LowerADD(Op, DAG); | 
|  | case ISD::SUB:                return LowerSUB(Op, DAG); | 
|  | case ISD::SMAX: | 
|  | case ISD::SMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::UMIN:               return LowerMINMAX(Op, DAG); | 
|  | case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG); | 
|  | case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG); | 
|  | case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG); | 
|  | case ISD::GC_TRANSITION_START: | 
|  | return LowerGC_TRANSITION_START(Op, DAG); | 
|  | case ISD::GC_TRANSITION_END:  return LowerGC_TRANSITION_END(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReplaceNodeResults - Replace a node with an illegal result type | 
|  | /// with a new node built out of custom code. | 
|  | void X86TargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(N); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Do not know how to custom type legalize this operation!"); | 
|  | // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. | 
|  | case X86ISD::FMINC: | 
|  | case X86ISD::FMIN: | 
|  | case X86ISD::FMAXC: | 
|  | case X86ISD::FMAX: { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::v2f32) | 
|  | llvm_unreachable("Unexpected type (!= v2f32) on FMIN/FMAX."); | 
|  | SDValue UNDEF = DAG.getUNDEF(VT); | 
|  | SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, | 
|  | N->getOperand(0), UNDEF); | 
|  | SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, | 
|  | N->getOperand(1), UNDEF); | 
|  | Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); | 
|  | return; | 
|  | } | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: | 
|  | // We don't want to expand or promote these. | 
|  | return; | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: { | 
|  | SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); | 
|  | Results.push_back(V); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: { | 
|  | bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = | 
|  | FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | if (FIST.getNode()) { | 
|  | EVT VT = N->getValueType(0); | 
|  | // Return a load from the stack slot. | 
|  | if (StackSlot.getNode()) | 
|  | Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0)); | 
|  | else | 
|  | Results.push_back(FIST); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case ISD::UINT_TO_FP: { | 
|  | assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); | 
|  | if (N->getOperand(0).getValueType() != MVT::v2i32 || | 
|  | N->getValueType(0) != MVT::v2f32) | 
|  | return; | 
|  | SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, | 
|  | N->getOperand(0)); | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, | 
|  | MVT::f64); | 
|  | SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, | 
|  | DAG.getBitcast(MVT::v2i64, VBias)); | 
|  | Or = DAG.getBitcast(MVT::v2f64, Or); | 
|  | // TODO: Are there any fast-math-flags to propagate here? | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); | 
|  | Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_ROUND: { | 
|  | if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) | 
|  | return; | 
|  | SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); | 
|  | Results.push_back(V); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_EXTEND: { | 
|  | // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND. | 
|  | // No other ValueType for FP_EXTEND should reach this point. | 
|  | assert(N->getValueType(0) == MVT::v2f32 && | 
|  | "Do not know how to legalize this Node"); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default : llvm_unreachable("Do not know how to custom type " | 
|  | "legalize this intrinsic operation!"); | 
|  | case Intrinsic::x86_rdtsc: | 
|  | return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, | 
|  | Results); | 
|  | case Intrinsic::x86_rdtscp: | 
|  | return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, | 
|  | Results); | 
|  | case Intrinsic::x86_rdpmc: | 
|  | return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); | 
|  | } | 
|  | } | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, | 
|  | Results); | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { | 
|  | EVT T = N->getValueType(0); | 
|  | assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); | 
|  | bool Regs64bit = T == MVT::i128; | 
|  | EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; | 
|  | SDValue cpInL, cpInH; | 
|  | cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), | 
|  | DAG.getConstant(0, dl, HalfT)); | 
|  | cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), | 
|  | DAG.getConstant(1, dl, HalfT)); | 
|  | cpInL = DAG.getCopyToReg(N->getOperand(0), dl, | 
|  | Regs64bit ? X86::RAX : X86::EAX, | 
|  | cpInL, SDValue()); | 
|  | cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, | 
|  | Regs64bit ? X86::RDX : X86::EDX, | 
|  | cpInH, cpInL.getValue(1)); | 
|  | SDValue swapInL, swapInH; | 
|  | swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), | 
|  | DAG.getConstant(0, dl, HalfT)); | 
|  | swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), | 
|  | DAG.getConstant(1, dl, HalfT)); | 
|  | swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, | 
|  | Regs64bit ? X86::RBX : X86::EBX, | 
|  | swapInL, cpInH.getValue(1)); | 
|  | swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, | 
|  | Regs64bit ? X86::RCX : X86::ECX, | 
|  | swapInH, swapInL.getValue(1)); | 
|  | SDValue Ops[] = { swapInH.getValue(0), | 
|  | N->getOperand(1), | 
|  | swapInH.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : | 
|  | X86ISD::LCMPXCHG8_DAG; | 
|  | SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); | 
|  | SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, | 
|  | Regs64bit ? X86::RAX : X86::EAX, | 
|  | HalfT, Result.getValue(1)); | 
|  | SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, | 
|  | Regs64bit ? X86::RDX : X86::EDX, | 
|  | HalfT, cpOutL.getValue(2)); | 
|  | SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; | 
|  |  | 
|  | SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, | 
|  | MVT::i32, cpOutH.getValue(2)); | 
|  | SDValue Success = | 
|  | DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS); | 
|  | Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); | 
|  |  | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); | 
|  | Results.push_back(Success); | 
|  | Results.push_back(EFLAGS.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_LOAD: { | 
|  | // Delegate to generic TypeLegalization. Situations we can really handle | 
|  | // should have already been dealt with by AtomicExpandPass.cpp. | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: { | 
|  | assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); | 
|  | EVT DstVT = N->getValueType(0); | 
|  | EVT SrcVT = N->getOperand(0)->getValueType(0); | 
|  |  | 
|  | if (SrcVT != MVT::f64 || | 
|  | (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) | 
|  | return; | 
|  |  | 
|  | unsigned NumElts = DstVT.getVectorNumElements(); | 
|  | EVT SVT = DstVT.getVectorElementType(); | 
|  | EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); | 
|  | SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, N->getOperand(0)); | 
|  | SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded); | 
|  |  | 
|  | if (ExperimentalVectorWideningLegalization) { | 
|  | // If we are legalizing vectors by widening, we already have the desired | 
|  | // legal vector type, just return it. | 
|  | Results.push_back(ToVecInt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | for (unsigned i = 0, e = NumElts; i != e; ++i) | 
|  | Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, | 
|  | ToVecInt, DAG.getIntPtrConstant(i, dl))); | 
|  |  | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch ((X86ISD::NodeType)Opcode) { | 
|  | case X86ISD::FIRST_NUMBER:       break; | 
|  | case X86ISD::BSF:                return "X86ISD::BSF"; | 
|  | case X86ISD::BSR:                return "X86ISD::BSR"; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FAND:               return "X86ISD::FAND"; | 
|  | case X86ISD::FANDN:              return "X86ISD::FANDN"; | 
|  | case X86ISD::FOR:                return "X86ISD::FOR"; | 
|  | case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG"; | 
|  | case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG"; | 
|  | case X86ISD::BT:                 return "X86ISD::BT"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::COMI:               return "X86ISD::COMI"; | 
|  | case X86ISD::UCOMI:              return "X86ISD::UCOMI"; | 
|  | case X86ISD::CMPM:               return "X86ISD::CMPM"; | 
|  | case X86ISD::CMPMU:              return "X86ISD::CMPMU"; | 
|  | case X86ISD::CMPM_RND:           return "X86ISD::CMPM_RND"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY"; | 
|  | case X86ISD::FSETCC:             return "X86ISD::FSETCC"; | 
|  | case X86ISD::FGETSIGNx86:        return "X86ISD::FGETSIGNx86"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::REP_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS"; | 
|  | case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
|  | case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
|  | case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP"; | 
|  | case X86ISD::MOVDQ2Q:            return "X86ISD::MOVDQ2Q"; | 
|  | case X86ISD::MMX_MOVD2W:         return "X86ISD::MMX_MOVD2W"; | 
|  | case X86ISD::MMX_MOVW2D:         return "X86ISD::MMX_MOVW2D"; | 
|  | case X86ISD::PEXTRB:             return "X86ISD::PEXTRB"; | 
|  | case X86ISD::PEXTRW:             return "X86ISD::PEXTRW"; | 
|  | case X86ISD::INSERTPS:           return "X86ISD::INSERTPS"; | 
|  | case X86ISD::PINSRB:             return "X86ISD::PINSRB"; | 
|  | case X86ISD::PINSRW:             return "X86ISD::PINSRW"; | 
|  | case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW"; | 
|  | case X86ISD::PSHUFB:             return "X86ISD::PSHUFB"; | 
|  | case X86ISD::ANDNP:              return "X86ISD::ANDNP"; | 
|  | case X86ISD::PSIGN:              return "X86ISD::PSIGN"; | 
|  | case X86ISD::BLENDI:             return "X86ISD::BLENDI"; | 
|  | case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND"; | 
|  | case X86ISD::ADDUS:              return "X86ISD::ADDUS"; | 
|  | case X86ISD::SUBUS:              return "X86ISD::SUBUS"; | 
|  | case X86ISD::HADD:               return "X86ISD::HADD"; | 
|  | case X86ISD::HSUB:               return "X86ISD::HSUB"; | 
|  | case X86ISD::FHADD:              return "X86ISD::FHADD"; | 
|  | case X86ISD::FHSUB:              return "X86ISD::FHSUB"; | 
|  | case X86ISD::ABS:                return "X86ISD::ABS"; | 
|  | case X86ISD::CONFLICT:           return "X86ISD::CONFLICT"; | 
|  | case X86ISD::FMAX:               return "X86ISD::FMAX"; | 
|  | case X86ISD::FMAX_RND:           return "X86ISD::FMAX_RND"; | 
|  | case X86ISD::FMIN:               return "X86ISD::FMIN"; | 
|  | case X86ISD::FMIN_RND:           return "X86ISD::FMIN_RND"; | 
|  | case X86ISD::FMAXC:              return "X86ISD::FMAXC"; | 
|  | case X86ISD::FMINC:              return "X86ISD::FMINC"; | 
|  | case X86ISD::FRSQRT:             return "X86ISD::FRSQRT"; | 
|  | case X86ISD::FRCP:               return "X86ISD::FRCP"; | 
|  | case X86ISD::EXTRQI:             return "X86ISD::EXTRQI"; | 
|  | case X86ISD::INSERTQI:           return "X86ISD::INSERTQI"; | 
|  | case X86ISD::TLSADDR:            return "X86ISD::TLSADDR"; | 
|  | case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR"; | 
|  | case X86ISD::TLSCALL:            return "X86ISD::TLSCALL"; | 
|  | case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP"; | 
|  | case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP"; | 
|  | case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN"; | 
|  | case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN"; | 
|  | case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m"; | 
|  | case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r"; | 
|  | case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG"; | 
|  | case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG"; | 
|  | case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG"; | 
|  | case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL"; | 
|  | case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD"; | 
|  | case X86ISD::VZEXT:              return "X86ISD::VZEXT"; | 
|  | case X86ISD::VSEXT:              return "X86ISD::VSEXT"; | 
|  | case X86ISD::VTRUNC:             return "X86ISD::VTRUNC"; | 
|  | case X86ISD::VTRUNCS:            return "X86ISD::VTRUNCS"; | 
|  | case X86ISD::VTRUNCUS:           return "X86ISD::VTRUNCUS"; | 
|  | case X86ISD::VINSERT:            return "X86ISD::VINSERT"; | 
|  | case X86ISD::VFPEXT:             return "X86ISD::VFPEXT"; | 
|  | case X86ISD::VFPROUND:           return "X86ISD::VFPROUND"; | 
|  | case X86ISD::CVTDQ2PD:           return "X86ISD::CVTDQ2PD"; | 
|  | case X86ISD::CVTUDQ2PD:          return "X86ISD::CVTUDQ2PD"; | 
|  | case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ"; | 
|  | case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ"; | 
|  | case X86ISD::VSHL:               return "X86ISD::VSHL"; | 
|  | case X86ISD::VSRL:               return "X86ISD::VSRL"; | 
|  | case X86ISD::VSRA:               return "X86ISD::VSRA"; | 
|  | case X86ISD::VSHLI:              return "X86ISD::VSHLI"; | 
|  | case X86ISD::VSRLI:              return "X86ISD::VSRLI"; | 
|  | case X86ISD::VSRAI:              return "X86ISD::VSRAI"; | 
|  | case X86ISD::CMPP:               return "X86ISD::CMPP"; | 
|  | case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ"; | 
|  | case X86ISD::PCMPGT:             return "X86ISD::PCMPGT"; | 
|  | case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM"; | 
|  | case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM"; | 
|  | case X86ISD::ADD:                return "X86ISD::ADD"; | 
|  | case X86ISD::SUB:                return "X86ISD::SUB"; | 
|  | case X86ISD::ADC:                return "X86ISD::ADC"; | 
|  | case X86ISD::SBB:                return "X86ISD::SBB"; | 
|  | case X86ISD::SMUL:               return "X86ISD::SMUL"; | 
|  | case X86ISD::UMUL:               return "X86ISD::UMUL"; | 
|  | case X86ISD::SMUL8:              return "X86ISD::SMUL8"; | 
|  | case X86ISD::UMUL8:              return "X86ISD::UMUL8"; | 
|  | case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; | 
|  | case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; | 
|  | case X86ISD::INC:                return "X86ISD::INC"; | 
|  | case X86ISD::DEC:                return "X86ISD::DEC"; | 
|  | case X86ISD::OR:                 return "X86ISD::OR"; | 
|  | case X86ISD::XOR:                return "X86ISD::XOR"; | 
|  | case X86ISD::AND:                return "X86ISD::AND"; | 
|  | case X86ISD::BEXTR:              return "X86ISD::BEXTR"; | 
|  | case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM"; | 
|  | case X86ISD::PTEST:              return "X86ISD::PTEST"; | 
|  | case X86ISD::TESTP:              return "X86ISD::TESTP"; | 
|  | case X86ISD::TESTM:              return "X86ISD::TESTM"; | 
|  | case X86ISD::TESTNM:             return "X86ISD::TESTNM"; | 
|  | case X86ISD::KORTEST:            return "X86ISD::KORTEST"; | 
|  | case X86ISD::KTEST:              return "X86ISD::KTEST"; | 
|  | case X86ISD::PACKSS:             return "X86ISD::PACKSS"; | 
|  | case X86ISD::PACKUS:             return "X86ISD::PACKUS"; | 
|  | case X86ISD::PALIGNR:            return "X86ISD::PALIGNR"; | 
|  | case X86ISD::VALIGN:             return "X86ISD::VALIGN"; | 
|  | case X86ISD::PSHUFD:             return "X86ISD::PSHUFD"; | 
|  | case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW"; | 
|  | case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW"; | 
|  | case X86ISD::SHUFP:              return "X86ISD::SHUFP"; | 
|  | case X86ISD::SHUF128:            return "X86ISD::SHUF128"; | 
|  | case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS"; | 
|  | case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD"; | 
|  | case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS"; | 
|  | case X86ISD::MOVLPS:             return "X86ISD::MOVLPS"; | 
|  | case X86ISD::MOVLPD:             return "X86ISD::MOVLPD"; | 
|  | case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP"; | 
|  | case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP"; | 
|  | case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP"; | 
|  | case X86ISD::MOVSD:              return "X86ISD::MOVSD"; | 
|  | case X86ISD::MOVSS:              return "X86ISD::MOVSS"; | 
|  | case X86ISD::UNPCKL:             return "X86ISD::UNPCKL"; | 
|  | case X86ISD::UNPCKH:             return "X86ISD::UNPCKH"; | 
|  | case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST"; | 
|  | case X86ISD::SUBV_BROADCAST:     return "X86ISD::SUBV_BROADCAST"; | 
|  | case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT"; | 
|  | case X86ISD::VPERMILPV:          return "X86ISD::VPERMILPV"; | 
|  | case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI"; | 
|  | case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128"; | 
|  | case X86ISD::VPERMV:             return "X86ISD::VPERMV"; | 
|  | case X86ISD::VPERMV3:            return "X86ISD::VPERMV3"; | 
|  | case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3"; | 
|  | case X86ISD::VPERMI:             return "X86ISD::VPERMI"; | 
|  | case X86ISD::VFIXUPIMM:          return "X86ISD::VFIXUPIMM"; | 
|  | case X86ISD::VRANGE:             return "X86ISD::VRANGE"; | 
|  | case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ"; | 
|  | case X86ISD::PMULDQ:             return "X86ISD::PMULDQ"; | 
|  | case X86ISD::PSADBW:             return "X86ISD::PSADBW"; | 
|  | case X86ISD::DBPSADBW:           return "X86ISD::DBPSADBW"; | 
|  | case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; | 
|  | case X86ISD::VAARG_64:           return "X86ISD::VAARG_64"; | 
|  | case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA"; | 
|  | case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER"; | 
|  | case X86ISD::MFENCE:             return "X86ISD::MFENCE"; | 
|  | case X86ISD::SFENCE:             return "X86ISD::SFENCE"; | 
|  | case X86ISD::LFENCE:             return "X86ISD::LFENCE"; | 
|  | case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA"; | 
|  | case X86ISD::SAHF:               return "X86ISD::SAHF"; | 
|  | case X86ISD::RDRAND:             return "X86ISD::RDRAND"; | 
|  | case X86ISD::RDSEED:             return "X86ISD::RDSEED"; | 
|  | case X86ISD::VPMADDUBSW:         return "X86ISD::VPMADDUBSW"; | 
|  | case X86ISD::VPMADDWD:           return "X86ISD::VPMADDWD"; | 
|  | case X86ISD::VPSHA:              return "X86ISD::VPSHA"; | 
|  | case X86ISD::VPSHL:              return "X86ISD::VPSHL"; | 
|  | case X86ISD::FMADD:              return "X86ISD::FMADD"; | 
|  | case X86ISD::FMSUB:              return "X86ISD::FMSUB"; | 
|  | case X86ISD::FNMADD:             return "X86ISD::FNMADD"; | 
|  | case X86ISD::FNMSUB:             return "X86ISD::FNMSUB"; | 
|  | case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB"; | 
|  | case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD"; | 
|  | case X86ISD::FMADD_RND:          return "X86ISD::FMADD_RND"; | 
|  | case X86ISD::FNMADD_RND:         return "X86ISD::FNMADD_RND"; | 
|  | case X86ISD::FMSUB_RND:          return "X86ISD::FMSUB_RND"; | 
|  | case X86ISD::FNMSUB_RND:         return "X86ISD::FNMSUB_RND"; | 
|  | case X86ISD::FMADDSUB_RND:       return "X86ISD::FMADDSUB_RND"; | 
|  | case X86ISD::FMSUBADD_RND:       return "X86ISD::FMSUBADD_RND"; | 
|  | case X86ISD::VRNDSCALE:          return "X86ISD::VRNDSCALE"; | 
|  | case X86ISD::VREDUCE:            return "X86ISD::VREDUCE"; | 
|  | case X86ISD::VGETMANT:           return "X86ISD::VGETMANT"; | 
|  | case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI"; | 
|  | case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI"; | 
|  | case X86ISD::XTEST:              return "X86ISD::XTEST"; | 
|  | case X86ISD::COMPRESS:           return "X86ISD::COMPRESS"; | 
|  | case X86ISD::EXPAND:             return "X86ISD::EXPAND"; | 
|  | case X86ISD::SELECT:             return "X86ISD::SELECT"; | 
|  | case X86ISD::ADDSUB:             return "X86ISD::ADDSUB"; | 
|  | case X86ISD::RCP28:              return "X86ISD::RCP28"; | 
|  | case X86ISD::EXP2:               return "X86ISD::EXP2"; | 
|  | case X86ISD::RSQRT28:            return "X86ISD::RSQRT28"; | 
|  | case X86ISD::FADD_RND:           return "X86ISD::FADD_RND"; | 
|  | case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND"; | 
|  | case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND"; | 
|  | case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND"; | 
|  | case X86ISD::FSQRT_RND:          return "X86ISD::FSQRT_RND"; | 
|  | case X86ISD::FGETEXP_RND:        return "X86ISD::FGETEXP_RND"; | 
|  | case X86ISD::SCALEF:             return "X86ISD::SCALEF"; | 
|  | case X86ISD::ADDS:               return "X86ISD::ADDS"; | 
|  | case X86ISD::SUBS:               return "X86ISD::SUBS"; | 
|  | case X86ISD::AVG:                return "X86ISD::AVG"; | 
|  | case X86ISD::MULHRS:             return "X86ISD::MULHRS"; | 
|  | case X86ISD::SINT_TO_FP_RND:     return "X86ISD::SINT_TO_FP_RND"; | 
|  | case X86ISD::UINT_TO_FP_RND:     return "X86ISD::UINT_TO_FP_RND"; | 
|  | case X86ISD::FP_TO_SINT_RND:     return "X86ISD::FP_TO_SINT_RND"; | 
|  | case X86ISD::FP_TO_UINT_RND:     return "X86ISD::FP_TO_UINT_RND"; | 
|  | case X86ISD::VFPCLASS:           return "X86ISD::VFPCLASS"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | // X86 supports extremely general addressing modes. | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | Reloc::Model R = getTargetMachine().getRelocationModel(); | 
|  |  | 
|  | // X86 allows a sign-extended 32-bit immediate field as a displacement. | 
|  | if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) | 
|  | return false; | 
|  |  | 
|  | if (AM.BaseGV) { | 
|  | unsigned GVFlags = | 
|  | Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); | 
|  |  | 
|  | // If a reference to this global requires an extra load, we can't fold it. | 
|  | if (isGlobalStubReference(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If BaseGV requires a register for the PIC base, we cannot also have a | 
|  | // BaseReg specified. | 
|  | if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If lower 4G is not available, then we must use rip-relative addressing. | 
|  | if ((M != CodeModel::Small || R != Reloc::Static) && | 
|  | Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | // These scales always work. | 
|  | break; | 
|  | case 3: | 
|  | case 5: | 
|  | case 9: | 
|  | // These scales are formed with basereg+scalereg.  Only accept if there is | 
|  | // no basereg yet. | 
|  | if (AM.HasBaseReg) | 
|  | return false; | 
|  | break; | 
|  | default:  // Other stuff never works. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { | 
|  | unsigned Bits = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | // 8-bit shifts are always expensive, but versions with a scalar amount aren't | 
|  | // particularly cheaper than those without. | 
|  | if (Bits == 8) | 
|  | return false; | 
|  |  | 
|  | // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make | 
|  | // variable shifts just as cheap as scalar ones. | 
|  | if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, it's significantly cheaper to shift by a scalar amount than by a | 
|  | // fully general vector. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | if (!isTypeLegal(EVT::getEVT(Ty1))) | 
|  | return false; | 
|  |  | 
|  | assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); | 
|  |  | 
|  | // Assuming the caller doesn't have a zeroext or signext return parameter, | 
|  | // truncation all the way down to i1 is valid. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
|  | return isInt<32>(Imm); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { | 
|  | // Can also use sub to handle negated immediates. | 
|  | return isInt<32>(Imm); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (!VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | 
|  | EVT VT1 = Val.getValueType(); | 
|  | if (isZExtFree(VT1, VT2)) | 
|  | return true; | 
|  |  | 
|  | if (Val.getOpcode() != ISD::LOAD) | 
|  | return false; | 
|  |  | 
|  | if (!VT1.isSimple() || !VT1.isInteger() || | 
|  | !VT2.isSimple() || !VT2.isInteger()) | 
|  | return false; | 
|  |  | 
|  | switch (VT1.getSimpleVT().SimpleTy) { | 
|  | default: break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | // X86 has 8, 16, and 32-bit zero-extending loads. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | if (!(Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512())) | 
|  | return false; | 
|  |  | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { | 
|  | // i16 instructions are longer (0x66 prefix) and potentially slower. | 
|  | return !(VT1 == MVT::i32 && VT2 == MVT::i16); | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
|  | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
|  | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
|  | /// are assumed to be legal. | 
|  | bool | 
|  | X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
|  | EVT VT) const { | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | // Not for i1 vectors | 
|  | if (VT.getScalarType() == MVT::i1) | 
|  | return false; | 
|  |  | 
|  | // Very little shuffling can be done for 64-bit vectors right now. | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return false; | 
|  |  | 
|  | // We only care that the types being shuffled are legal. The lowering can | 
|  | // handle any possible shuffle mask that results. | 
|  | return isTypeLegal(VT.getSimpleVT()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, | 
|  | EVT VT) const { | 
|  | // Just delegate to the generic legality, clear masks aren't special. | 
|  | return isShuffleMaskLegal(Mask, VT); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Scheduler Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Utility function to emit xbegin specifying the start of an RTM region. | 
|  | static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | const TargetInstrInfo *TII) { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | // For the v = xbegin(), we generate | 
|  | // | 
|  | // thisMBB: | 
|  | //  xbegin sinkMBB | 
|  | // | 
|  | // mainMBB: | 
|  | //  eax = -1 | 
|  | // | 
|  | // sinkMBB: | 
|  | //  v = eax | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | //  xbegin sinkMBB | 
|  | //  # fallthrough to mainMBB | 
|  | //  # abortion to sinkMBB | 
|  | BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  | thisMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | //  EAX = -1 | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | // EAX is live into the sinkMBB | 
|  | sinkMBB->addLiveIn(X86::EAX); | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::EAX); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 | 
|  | // or XMM0_V32I8 in AVX all of this code can be replaced with that | 
|  | // in the .td file. | 
|  | static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const TargetInstrInfo *TII) { | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break; | 
|  | case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; | 
|  | case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break; | 
|  | case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; | 
|  | case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break; | 
|  | case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; | 
|  | case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break; | 
|  | case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); | 
|  |  | 
|  | unsigned NumArgs = MI->getNumOperands(); | 
|  | for (unsigned i = 1; i < NumArgs; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!(Op.isReg() && Op.isImplicit())) | 
|  | MIB.addOperand(Op); | 
|  | } | 
|  | if (MI->hasOneMemOperand()) | 
|  | MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | BuildMI(*BB, MI, dl, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::XMM0); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // FIXME: Custom handling because TableGen doesn't support multiple implicit | 
|  | // defs in an instruction pattern | 
|  | static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const TargetInstrInfo *TII) { | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break; | 
|  | case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; | 
|  | case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break; | 
|  | case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; | 
|  | case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break; | 
|  | case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; | 
|  | case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break; | 
|  | case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); | 
|  |  | 
|  | unsigned NumArgs = MI->getNumOperands(); // remove the results | 
|  | for (unsigned i = 1; i < NumArgs; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!(Op.isReg() && Op.isImplicit())) | 
|  | MIB.addOperand(Op); | 
|  | } | 
|  | if (MI->hasOneMemOperand()) | 
|  | MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | BuildMI(*BB, MI, dl, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::ECX); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const X86Subtarget *Subtarget) { | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | // Address into RAX/EAX, other two args into ECX, EDX. | 
|  | unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; | 
|  | unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); | 
|  | for (int i = 0; i < X86::AddrNumOperands; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | unsigned ValOps = X86::AddrNumOperands; | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) | 
|  | .addReg(MI->getOperand(ValOps).getReg()); | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) | 
|  | .addReg(MI->getOperand(ValOps+1).getReg()); | 
|  |  | 
|  | // The instruction doesn't actually take any operands though. | 
|  | BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit va_arg instruction on X86-64. | 
|  |  | 
|  | // Operands to this pseudo-instruction: | 
|  | // 0  ) Output        : destination address (reg) | 
|  | // 1-5) Input         : va_list address (addr, i64mem) | 
|  | // 6  ) ArgSize       : Size (in bytes) of vararg type | 
|  | // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset | 
|  | // 8  ) Align         : Alignment of type | 
|  | // 9  ) EFLAGS (implicit-def) | 
|  |  | 
|  | assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); | 
|  | static_assert(X86::AddrNumOperands == 5, | 
|  | "VAARG_64 assumes 5 address operands"); | 
|  |  | 
|  | unsigned DestReg = MI->getOperand(0).getReg(); | 
|  | MachineOperand &Base = MI->getOperand(1); | 
|  | MachineOperand &Scale = MI->getOperand(2); | 
|  | MachineOperand &Index = MI->getOperand(3); | 
|  | MachineOperand &Disp = MI->getOperand(4); | 
|  | MachineOperand &Segment = MI->getOperand(5); | 
|  | unsigned ArgSize = MI->getOperand(6).getImm(); | 
|  | unsigned ArgMode = MI->getOperand(7).getImm(); | 
|  | unsigned Align = MI->getOperand(8).getImm(); | 
|  |  | 
|  | // Memory Reference | 
|  | assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | // Machine Information | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); | 
|  | const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // struct va_list { | 
|  | //   i32   gp_offset | 
|  | //   i32   fp_offset | 
|  | //   i64   overflow_area (address) | 
|  | //   i64   reg_save_area (address) | 
|  | // } | 
|  | // sizeof(va_list) = 24 | 
|  | // alignment(va_list) = 8 | 
|  |  | 
|  | unsigned TotalNumIntRegs = 6; | 
|  | unsigned TotalNumXMMRegs = 8; | 
|  | bool UseGPOffset = (ArgMode == 1); | 
|  | bool UseFPOffset = (ArgMode == 2); | 
|  | unsigned MaxOffset = TotalNumIntRegs * 8 + | 
|  | (UseFPOffset ? TotalNumXMMRegs * 16 : 0); | 
|  |  | 
|  | /* Align ArgSize to a multiple of 8 */ | 
|  | unsigned ArgSizeA8 = (ArgSize + 7) & ~7; | 
|  | bool NeedsAlign = (Align > 8); | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *overflowMBB; | 
|  | MachineBasicBlock *offsetMBB; | 
|  | MachineBasicBlock *endMBB; | 
|  |  | 
|  | unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB | 
|  | unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB | 
|  | unsigned OffsetReg = 0; | 
|  |  | 
|  | if (!UseGPOffset && !UseFPOffset) { | 
|  | // If we only pull from the overflow region, we don't create a branch. | 
|  | // We don't need to alter control flow. | 
|  | OffsetDestReg = 0; // unused | 
|  | OverflowDestReg = DestReg; | 
|  |  | 
|  | offsetMBB = nullptr; | 
|  | overflowMBB = thisMBB; | 
|  | endMBB = thisMBB; | 
|  | } else { | 
|  | // First emit code to check if gp_offset (or fp_offset) is below the bound. | 
|  | // If so, pull the argument from reg_save_area. (branch to offsetMBB) | 
|  | // If not, pull from overflow_area. (branch to overflowMBB) | 
|  | // | 
|  | //       thisMBB | 
|  | //         |     . | 
|  | //         |        . | 
|  | //     offsetMBB   overflowMBB | 
|  | //         |        . | 
|  | //         |     . | 
|  | //        endMBB | 
|  |  | 
|  | // Registers for the PHI in endMBB | 
|  | OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | endMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | // Insert the new basic blocks | 
|  | MF->insert(MBBIter, offsetMBB); | 
|  | MF->insert(MBBIter, overflowMBB); | 
|  | MF->insert(MBBIter, endMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to endMBB. | 
|  | endMBB->splice(endMBB->begin(), thisMBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); | 
|  | endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Make offsetMBB and overflowMBB successors of thisMBB | 
|  | thisMBB->addSuccessor(offsetMBB); | 
|  | thisMBB->addSuccessor(overflowMBB); | 
|  |  | 
|  | // endMBB is a successor of both offsetMBB and overflowMBB | 
|  | offsetMBB->addSuccessor(endMBB); | 
|  | overflowMBB->addSuccessor(endMBB); | 
|  |  | 
|  | // Load the offset value into a register | 
|  | OffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Check if there is enough room left to pull this argument. | 
|  | BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(MaxOffset + 8 - ArgSizeA8); | 
|  |  | 
|  | // Branch to "overflowMBB" if offset >= max | 
|  | // Fall through to "offsetMBB" otherwise | 
|  | BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) | 
|  | .addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // In offsetMBB, emit code to use the reg_save_area. | 
|  | if (offsetMBB) { | 
|  | assert(OffsetReg != 0); | 
|  |  | 
|  | // Read the reg_save_area address. | 
|  | unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 16) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Zero-extend the offset | 
|  | unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) | 
|  | .addImm(0) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(X86::sub_32bit); | 
|  |  | 
|  | // Add the offset to the reg_save_area to get the final address. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) | 
|  | .addReg(OffsetReg64) | 
|  | .addReg(RegSaveReg); | 
|  |  | 
|  | // Compute the offset for the next argument | 
|  | unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(UseFPOffset ? 16 : 8); | 
|  |  | 
|  | // Store it back into the va_list. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextOffsetReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Jump to endMBB | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) | 
|  | .addMBB(endMBB); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Emit code to use overflow area | 
|  | // | 
|  |  | 
|  | // Load the overflow_area address into a register. | 
|  | unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we need to align it, do so. Otherwise, just copy the address | 
|  | // to OverflowDestReg. | 
|  | if (NeedsAlign) { | 
|  | // Align the overflow address | 
|  | assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); | 
|  | unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | // aligned_addr = (addr + (align-1)) & ~(align-1) | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) | 
|  | .addReg(OverflowAddrReg) | 
|  | .addImm(Align-1); | 
|  |  | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) | 
|  | .addReg(TmpReg) | 
|  | .addImm(~(uint64_t)(Align-1)); | 
|  | } else { | 
|  | BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) | 
|  | .addReg(OverflowAddrReg); | 
|  | } | 
|  |  | 
|  | // Compute the next overflow address after this argument. | 
|  | // (the overflow address should be kept 8-byte aligned) | 
|  | unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) | 
|  | .addReg(OverflowDestReg) | 
|  | .addImm(ArgSizeA8); | 
|  |  | 
|  | // Store the new overflow address. | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextAddrReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we branched, emit the PHI to the front of endMBB. | 
|  | if (offsetMBB) { | 
|  | BuildMI(*endMBB, endMBB->begin(), DL, | 
|  | TII->get(X86::PHI), DestReg) | 
|  | .addReg(OffsetDestReg).addMBB(offsetMBB) | 
|  | .addReg(OverflowDestReg).addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // Erase the pseudo instruction | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | return endMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( | 
|  | MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit code to save XMM registers to the stack. The ABI says that the | 
|  | // number of registers to save is given in %al, so it's theoretically | 
|  | // possible to do an indirect jump trick to avoid saving all of them, | 
|  | // however this code takes a simpler approach and just executes all | 
|  | // of the stores if %al is non-zero. It's less code, and it's probably | 
|  | // easier on the hardware branch predictor, and stores aren't all that | 
|  | // expensive anyway. | 
|  |  | 
|  | // Create the new basic blocks. One block contains all the XMM stores, | 
|  | // and one block is the final destination regardless of whether any | 
|  | // stores were performed. | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  | MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, XMMSaveMBB); | 
|  | F->insert(MBBIter, EndMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to EndMBB. | 
|  | EndMBB->splice(EndMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | EndMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // The original block will now fall through to the XMM save block. | 
|  | MBB->addSuccessor(XMMSaveMBB); | 
|  | // The XMMSaveMBB will fall through to the end block. | 
|  | XMMSaveMBB->addSuccessor(EndMBB); | 
|  |  | 
|  | // Now add the instructions. | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | unsigned CountReg = MI->getOperand(0).getReg(); | 
|  | int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); | 
|  | int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); | 
|  |  | 
|  | if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) { | 
|  | // If %al is 0, branch around the XMM save block. | 
|  | BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); | 
|  | BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); | 
|  | MBB->addSuccessor(EndMBB); | 
|  | } | 
|  |  | 
|  | // Make sure the last operand is EFLAGS, which gets clobbered by the branch | 
|  | // that was just emitted, but clearly shouldn't be "saved". | 
|  | assert((MI->getNumOperands() <= 3 || | 
|  | !MI->getOperand(MI->getNumOperands() - 1).isReg() || | 
|  | MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS) | 
|  | && "Expected last argument to be EFLAGS"); | 
|  | unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; | 
|  | // In the XMM save block, save all the XMM argument registers. | 
|  | for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) { | 
|  | int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; | 
|  | MachineMemOperand *MMO = F->getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset), | 
|  | MachineMemOperand::MOStore, | 
|  | /*Size=*/16, /*Align=*/16); | 
|  | BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) | 
|  | .addFrameIndex(RegSaveFrameIndex) | 
|  | .addImm(/*Scale=*/1) | 
|  | .addReg(/*IndexReg=*/0) | 
|  | .addImm(/*Disp=*/Offset) | 
|  | .addReg(/*Segment=*/0) | 
|  | .addReg(MI->getOperand(i).getReg()) | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  |  | 
|  | return EndMBB; | 
|  | } | 
|  |  | 
|  | // The EFLAGS operand of SelectItr might be missing a kill marker | 
|  | // because there were multiple uses of EFLAGS, and ISel didn't know | 
|  | // which to mark. Figure out whether SelectItr should have had a | 
|  | // kill marker, and set it if it should. Returns the correct kill | 
|  | // marker value. | 
|  | static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, | 
|  | MachineBasicBlock* BB, | 
|  | const TargetRegisterInfo* TRI) { | 
|  | // Scan forward through BB for a use/def of EFLAGS. | 
|  | MachineBasicBlock::iterator miI(std::next(SelectItr)); | 
|  | for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { | 
|  | const MachineInstr& mi = *miI; | 
|  | if (mi.readsRegister(X86::EFLAGS)) | 
|  | return false; | 
|  | if (mi.definesRegister(X86::EFLAGS)) | 
|  | break; // Should have kill-flag - update below. | 
|  | } | 
|  |  | 
|  | // If we hit the end of the block, check whether EFLAGS is live into a | 
|  | // successor. | 
|  | if (miI == BB->end()) { | 
|  | for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), | 
|  | sEnd = BB->succ_end(); | 
|  | sItr != sEnd; ++sItr) { | 
|  | MachineBasicBlock* succ = *sItr; | 
|  | if (succ->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found a def, or hit the end of the basic block and EFLAGS wasn't live | 
|  | // out. SelectMI should have a kill flag on EFLAGS. | 
|  | SelectItr->addRegisterKilled(X86::EFLAGS, TRI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return true if it is OK for this CMOV pseudo-opcode to be cascaded | 
|  | // together with other CMOV pseudo-opcodes into a single basic-block with | 
|  | // conditional jump around it. | 
|  | static bool isCMOVPseudo(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_GR8: | 
|  | case X86::CMOV_GR16: | 
|  | case X86::CMOV_GR32: | 
|  | case X86::CMOV_RFP32: | 
|  | case X86::CMOV_RFP64: | 
|  | case X86::CMOV_RFP80: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V4F64: | 
|  | case X86::CMOV_V4I64: | 
|  | case X86::CMOV_V16F32: | 
|  | case X86::CMOV_V8F32: | 
|  | case X86::CMOV_V8F64: | 
|  | case X86::CMOV_V8I64: | 
|  | case X86::CMOV_V8I1: | 
|  | case X86::CMOV_V16I1: | 
|  | case X86::CMOV_V32I1: | 
|  | case X86::CMOV_V64I1: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  |  | 
|  | // This code lowers all pseudo-CMOV instructions. Generally it lowers these | 
|  | // as described above, by inserting a BB, and then making a PHI at the join | 
|  | // point to select the true and false operands of the CMOV in the PHI. | 
|  | // | 
|  | // The code also handles two different cases of multiple CMOV opcodes | 
|  | // in a row. | 
|  | // | 
|  | // Case 1: | 
|  | // In this case, there are multiple CMOVs in a row, all which are based on | 
|  | // the same condition setting (or the exact opposite condition setting). | 
|  | // In this case we can lower all the CMOVs using a single inserted BB, and | 
|  | // then make a number of PHIs at the join point to model the CMOVs. The only | 
|  | // trickiness here, is that in a case like: | 
|  | // | 
|  | // t2 = CMOV cond1 t1, f1 | 
|  | // t3 = CMOV cond1 t2, f2 | 
|  | // | 
|  | // when rewriting this into PHIs, we have to perform some renaming on the | 
|  | // temps since you cannot have a PHI operand refer to a PHI result earlier | 
|  | // in the same block.  The "simple" but wrong lowering would be: | 
|  | // | 
|  | // t2 = PHI t1(BB1), f1(BB2) | 
|  | // t3 = PHI t2(BB1), f2(BB2) | 
|  | // | 
|  | // but clearly t2 is not defined in BB1, so that is incorrect. The proper | 
|  | // renaming is to note that on the path through BB1, t2 is really just a | 
|  | // copy of t1, and do that renaming, properly generating: | 
|  | // | 
|  | // t2 = PHI t1(BB1), f1(BB2) | 
|  | // t3 = PHI t1(BB1), f2(BB2) | 
|  | // | 
|  | // Case 2, we lower cascaded CMOVs such as | 
|  | // | 
|  | //   (CMOV (CMOV F, T, cc1), T, cc2) | 
|  | // | 
|  | // to two successives branches.  For that, we look for another CMOV as the | 
|  | // following instruction. | 
|  | // | 
|  | // Without this, we would add a PHI between the two jumps, which ends up | 
|  | // creating a few copies all around. For instance, for | 
|  | // | 
|  | //    (sitofp (zext (fcmp une))) | 
|  | // | 
|  | // we would generate: | 
|  | // | 
|  | //         ucomiss %xmm1, %xmm0 | 
|  | //         movss  <1.0f>, %xmm0 | 
|  | //         movaps  %xmm0, %xmm1 | 
|  | //         jne     .LBB5_2 | 
|  | //         xorps   %xmm1, %xmm1 | 
|  | // .LBB5_2: | 
|  | //         jp      .LBB5_4 | 
|  | //         movaps  %xmm1, %xmm0 | 
|  | // .LBB5_4: | 
|  | //         retq | 
|  | // | 
|  | // because this custom-inserter would have generated: | 
|  | // | 
|  | //   A | 
|  | //   | \ | 
|  | //   |  B | 
|  | //   | / | 
|  | //   C | 
|  | //   | \ | 
|  | //   |  D | 
|  | //   | / | 
|  | //   E | 
|  | // | 
|  | // A: X = ...; Y = ... | 
|  | // B: empty | 
|  | // C: Z = PHI [X, A], [Y, B] | 
|  | // D: empty | 
|  | // E: PHI [X, C], [Z, D] | 
|  | // | 
|  | // If we lower both CMOVs in a single step, we can instead generate: | 
|  | // | 
|  | //   A | 
|  | //   | \ | 
|  | //   |  C | 
|  | //   | /| | 
|  | //   |/ | | 
|  | //   |  | | 
|  | //   |  D | 
|  | //   | / | 
|  | //   E | 
|  | // | 
|  | // A: X = ...; Y = ... | 
|  | // D: empty | 
|  | // E: PHI [X, A], [X, C], [Y, D] | 
|  | // | 
|  | // Which, in our sitofp/fcmp example, gives us something like: | 
|  | // | 
|  | //         ucomiss %xmm1, %xmm0 | 
|  | //         movss  <1.0f>, %xmm0 | 
|  | //         jne     .LBB5_4 | 
|  | //         jp      .LBB5_4 | 
|  | //         xorps   %xmm0, %xmm0 | 
|  | // .LBB5_4: | 
|  | //         retq | 
|  | // | 
|  | MachineInstr *CascadedCMOV = nullptr; | 
|  | MachineInstr *LastCMOV = MI; | 
|  | X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm()); | 
|  | X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); | 
|  | MachineBasicBlock::iterator NextMIIt = | 
|  | std::next(MachineBasicBlock::iterator(MI)); | 
|  |  | 
|  | // Check for case 1, where there are multiple CMOVs with the same condition | 
|  | // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the | 
|  | // number of jumps the most. | 
|  |  | 
|  | if (isCMOVPseudo(MI)) { | 
|  | // See if we have a string of CMOVS with the same condition. | 
|  | while (NextMIIt != BB->end() && | 
|  | isCMOVPseudo(NextMIIt) && | 
|  | (NextMIIt->getOperand(3).getImm() == CC || | 
|  | NextMIIt->getOperand(3).getImm() == OppCC)) { | 
|  | LastCMOV = &*NextMIIt; | 
|  | ++NextMIIt; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This checks for case 2, but only do this if we didn't already find | 
|  | // case 1, as indicated by LastCMOV == MI. | 
|  | if (LastCMOV == MI && | 
|  | NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() && | 
|  | NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() && | 
|  | NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) { | 
|  | CascadedCMOV = &*NextMIIt; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *jcc1MBB = nullptr; | 
|  |  | 
|  | // If we have a cascaded CMOV, we lower it to two successive branches to | 
|  | // the same block.  EFLAGS is used by both, so mark it as live in the second. | 
|  | if (CascadedCMOV) { | 
|  | jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, jcc1MBB); | 
|  | jcc1MBB->addLiveIn(X86::EFLAGS); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // If the EFLAGS register isn't dead in the terminator, then claim that it's | 
|  | // live into the sink and copy blocks. | 
|  | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  |  | 
|  | MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV; | 
|  | if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) && | 
|  | !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) { | 
|  | copy0MBB->addLiveIn(X86::EFLAGS); | 
|  | sinkMBB->addLiveIn(X86::EFLAGS); | 
|  | } | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add the true and fallthrough blocks as its successors. | 
|  | if (CascadedCMOV) { | 
|  | // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV. | 
|  | BB->addSuccessor(jcc1MBB); | 
|  |  | 
|  | // In that case, jcc1MBB will itself fallthrough the copy0MBB, and | 
|  | // jump to the sinkMBB. | 
|  | jcc1MBB->addSuccessor(copy0MBB); | 
|  | jcc1MBB->addSuccessor(sinkMBB); | 
|  | } else { | 
|  | BB->addSuccessor(copy0MBB); | 
|  | } | 
|  |  | 
|  | // The true block target of the first (or only) branch is always sinkMBB. | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // Create the conditional branch instruction. | 
|  | unsigned Opc = X86::GetCondBranchFromCond(CC); | 
|  | BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); | 
|  |  | 
|  | if (CascadedCMOV) { | 
|  | unsigned Opc2 = X86::GetCondBranchFromCond( | 
|  | (X86::CondCode)CascadedCMOV->getOperand(3).getImm()); | 
|  | BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB); | 
|  | } | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | copy0MBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); | 
|  | MachineBasicBlock::iterator MIItEnd = | 
|  | std::next(MachineBasicBlock::iterator(LastCMOV)); | 
|  | MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin(); | 
|  | DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // As we are creating the PHIs, we have to be careful if there is more than | 
|  | // one.  Later CMOVs may reference the results of earlier CMOVs, but later | 
|  | // PHIs have to reference the individual true/false inputs from earlier PHIs. | 
|  | // That also means that PHI construction must work forward from earlier to | 
|  | // later, and that the code must maintain a mapping from earlier PHI's | 
|  | // destination registers, and the registers that went into the PHI. | 
|  |  | 
|  | for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { | 
|  | unsigned DestReg = MIIt->getOperand(0).getReg(); | 
|  | unsigned Op1Reg = MIIt->getOperand(1).getReg(); | 
|  | unsigned Op2Reg = MIIt->getOperand(2).getReg(); | 
|  |  | 
|  | // If this CMOV we are generating is the opposite condition from | 
|  | // the jump we generated, then we have to swap the operands for the | 
|  | // PHI that is going to be generated. | 
|  | if (MIIt->getOperand(3).getImm() == OppCC) | 
|  | std::swap(Op1Reg, Op2Reg); | 
|  |  | 
|  | if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) | 
|  | Op1Reg = RegRewriteTable[Op1Reg].first; | 
|  |  | 
|  | if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) | 
|  | Op2Reg = RegRewriteTable[Op2Reg].second; | 
|  |  | 
|  | MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL, | 
|  | TII->get(X86::PHI), DestReg) | 
|  | .addReg(Op1Reg).addMBB(copy0MBB) | 
|  | .addReg(Op2Reg).addMBB(thisMBB); | 
|  |  | 
|  | // Add this PHI to the rewrite table. | 
|  | RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); | 
|  | } | 
|  |  | 
|  | // If we have a cascaded CMOV, the second Jcc provides the same incoming | 
|  | // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes). | 
|  | if (CascadedCMOV) { | 
|  | MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB); | 
|  | // Copy the PHI result to the register defined by the second CMOV. | 
|  | BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), | 
|  | DL, TII->get(TargetOpcode::COPY), | 
|  | CascadedCMOV->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(0).getReg()); | 
|  | CascadedCMOV->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Now remove the CMOV(s). | 
|  | for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ) | 
|  | (MIIt++)->eraseFromParent(); | 
|  |  | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | // Combine the following atomic floating-point modification pattern: | 
|  | //   a.store(reg OP a.load(acquire), release) | 
|  | // Transform them into: | 
|  | //   OPss (%gpr), %xmm | 
|  | //   movss %xmm, (%gpr) | 
|  | // Or sd equivalent for 64-bit operations. | 
|  | unsigned MOp, FOp; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP"); | 
|  | case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break; | 
|  | case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break; | 
|  | } | 
|  | const X86InstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  | unsigned MSrc = MI->getOperand(0).getReg(); | 
|  | unsigned VSrc = MI->getOperand(5).getReg(); | 
|  | MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp)) | 
|  | .addReg(/*Base=*/MSrc) | 
|  | .addImm(/*Scale=*/1) | 
|  | .addReg(/*Index=*/0) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp), | 
|  | MRI.createVirtualRegister(MRI.getRegClass(VSrc))) | 
|  | .addReg(VSrc) | 
|  | .addReg(/*Base=*/MSrc) | 
|  | .addImm(/*Scale=*/1) | 
|  | .addReg(/*Index=*/0) | 
|  | .addImm(/*Disp=*/0) | 
|  | .addReg(/*Segment=*/0); | 
|  | MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill); | 
|  | MI->eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  |  | 
|  | assert(MF->shouldSplitStack()); | 
|  |  | 
|  | const bool Is64Bit = Subtarget->is64Bit(); | 
|  | const bool IsLP64 = Subtarget->isTarget64BitLP64(); | 
|  |  | 
|  | const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; | 
|  | const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; | 
|  |  | 
|  | // BB: | 
|  | //  ... [Till the alloca] | 
|  | // If stacklet is not large enough, jump to mallocMBB | 
|  | // | 
|  | // bumpMBB: | 
|  | //  Allocate by subtracting from RSP | 
|  | //  Jump to continueMBB | 
|  | // | 
|  | // mallocMBB: | 
|  | //  Allocate by call to runtime | 
|  | // | 
|  | // continueMBB: | 
|  | //  ... | 
|  | //  [rest of original BB] | 
|  | // | 
|  |  | 
|  | MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetRegisterClass *AddrRegClass = | 
|  | getRegClassFor(getPointerTy(MF->getDataLayout())); | 
|  |  | 
|  | unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | sizeVReg = MI->getOperand(1).getReg(), | 
|  | physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP; | 
|  |  | 
|  | MachineFunction::iterator MBBIter = BB; | 
|  | ++MBBIter; | 
|  |  | 
|  | MF->insert(MBBIter, bumpMBB); | 
|  | MF->insert(MBBIter, mallocMBB); | 
|  | MF->insert(MBBIter, continueMBB); | 
|  |  | 
|  | continueMBB->splice(continueMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | continueMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add code to the main basic block to check if the stack limit has been hit, | 
|  | // and if so, jump to mallocMBB otherwise to bumpMBB. | 
|  | BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); | 
|  | BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) | 
|  | .addReg(tmpSPVReg).addReg(sizeVReg); | 
|  | BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) | 
|  | .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); | 
|  |  | 
|  | // bumpMBB simply decreases the stack pointer, since we know the current | 
|  | // stacklet has enough space. | 
|  | BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); | 
|  |  | 
|  | // Calls into a routine in libgcc to allocate more space from the heap. | 
|  | const uint32_t *RegMask = | 
|  | Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C); | 
|  | if (IsLP64) { | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) | 
|  | .addReg(sizeVReg); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) | 
|  | .addExternalSymbol("__morestack_allocate_stack_space") | 
|  | .addRegMask(RegMask) | 
|  | .addReg(X86::RDI, RegState::Implicit) | 
|  | .addReg(X86::RAX, RegState::ImplicitDefine); | 
|  | } else if (Is64Bit) { | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) | 
|  | .addReg(sizeVReg); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) | 
|  | .addExternalSymbol("__morestack_allocate_stack_space") | 
|  | .addRegMask(RegMask) | 
|  | .addReg(X86::EDI, RegState::Implicit) | 
|  | .addReg(X86::EAX, RegState::ImplicitDefine); | 
|  | } else { | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) | 
|  | .addImm(12); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol("__morestack_allocate_stack_space") | 
|  | .addRegMask(RegMask) | 
|  | .addReg(X86::EAX, RegState::ImplicitDefine); | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) | 
|  | .addImm(16); | 
|  |  | 
|  | BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) | 
|  | .addReg(IsLP64 ? X86::RAX : X86::EAX); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); | 
|  |  | 
|  | // Set up the CFG correctly. | 
|  | BB->addSuccessor(bumpMBB); | 
|  | BB->addSuccessor(mallocMBB); | 
|  | mallocMBB->addSuccessor(continueMBB); | 
|  | bumpMBB->addSuccessor(continueMBB); | 
|  |  | 
|  | // Take care of the PHI nodes. | 
|  | BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), | 
|  | MI->getOperand(0).getReg()) | 
|  | .addReg(mallocPtrVReg).addMBB(mallocMBB) | 
|  | .addReg(bumpSPPtrVReg).addMBB(bumpMBB); | 
|  |  | 
|  | // Delete the original pseudo instruction. | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | // And we're done. | 
|  | return continueMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | assert(!Subtarget->isTargetMachO()); | 
|  |  | 
|  | Subtarget->getFrameLowering()->emitStackProbeCall(*BB->getParent(), *BB, MI, | 
|  | DL); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | // This is pretty easy.  We're taking the value that we received from | 
|  | // our load from the relocation, sticking it in either RDI (x86-64) | 
|  | // or EAX and doing an indirect call.  The return value will then | 
|  | // be in the normal return register. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | const X86InstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); | 
|  | assert(MI->getOperand(3).isGlobal() && "This should be a global"); | 
|  |  | 
|  | // Get a register mask for the lowered call. | 
|  | // FIXME: The 32-bit calls have non-standard calling conventions. Use a | 
|  | // proper register mask. | 
|  | const uint32_t *RegMask = | 
|  | Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C); | 
|  | if (Subtarget->is64Bit()) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV64rm), X86::RDI) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); | 
|  | addDirectMem(MIB, X86::RDI); | 
|  | MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(0) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(TII->getGlobalBaseReg(F)) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | unsigned DstReg; | 
|  | unsigned MemOpndSlot = 0; | 
|  |  | 
|  | unsigned CurOp = 0; | 
|  |  | 
|  | DstReg = MI->getOperand(CurOp++).getReg(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(DstReg); | 
|  | assert(RC->hasType(MVT::i32) && "Invalid destination!"); | 
|  | unsigned mainDstReg = MRI.createVirtualRegister(RC); | 
|  | unsigned restoreDstReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MemOpndSlot = CurOp; | 
|  |  | 
|  | MVT PVT = getPointerTy(MF->getDataLayout()); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  |  | 
|  | // For v = setjmp(buf), we generate | 
|  | // | 
|  | // thisMBB: | 
|  | //  buf[LabelOffset] = restoreMBB | 
|  | //  SjLjSetup restoreMBB | 
|  | // | 
|  | // mainMBB: | 
|  | //  v_main = 0 | 
|  | // | 
|  | // sinkMBB: | 
|  | //  v = phi(main, restore) | 
|  | // | 
|  | // restoreMBB: | 
|  | //  if base pointer being used, load it from frame | 
|  | //  v_restore = 1 | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  | MF->push_back(restoreMBB); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | unsigned PtrStoreOpc = 0; | 
|  | unsigned LabelReg = 0; | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | Reloc::Model RM = MF->getTarget().getRelocationModel(); | 
|  | bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && | 
|  | (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); | 
|  |  | 
|  | // Prepare IP either in reg or imm. | 
|  | if (!UseImmLabel) { | 
|  | PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; | 
|  | const TargetRegisterClass *PtrRC = getRegClassFor(PVT); | 
|  | LabelReg = MRI.createVirtualRegister(PtrRC); | 
|  | if (Subtarget->is64Bit()) { | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addMBB(restoreMBB) | 
|  | .addReg(0); | 
|  | } else { | 
|  | const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) | 
|  | .addReg(XII->getGlobalBaseReg(MF)) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) | 
|  | .addReg(0); | 
|  | } | 
|  | } else | 
|  | PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; | 
|  | // Store IP | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(MemOpndSlot + i)); | 
|  | } | 
|  | if (!UseImmLabel) | 
|  | MIB.addReg(LabelReg); | 
|  | else | 
|  | MIB.addMBB(restoreMBB); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Setup | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) | 
|  | .addMBB(restoreMBB); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | MIB.addRegMask(RegInfo->getNoPreservedMask()); | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  | thisMBB->addSuccessor(restoreMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | //  EAX = 0 | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(X86::PHI), DstReg) | 
|  | .addReg(mainDstReg).addMBB(mainMBB) | 
|  | .addReg(restoreDstReg).addMBB(restoreMBB); | 
|  |  | 
|  | // restoreMBB: | 
|  | if (RegInfo->hasBasePointer(*MF)) { | 
|  | const bool Uses64BitFramePtr = | 
|  | Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64(); | 
|  | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | X86FI->setRestoreBasePointer(MF); | 
|  | unsigned FramePtr = RegInfo->getFrameRegister(*MF); | 
|  | unsigned BasePtr = RegInfo->getBaseRegister(); | 
|  | unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; | 
|  | addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), | 
|  | FramePtr, true, X86FI->getRestoreBasePointerOffset()) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); | 
|  | BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); | 
|  | restoreMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | MVT PVT = getPointerTy(MF->getDataLayout()); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  |  | 
|  | const TargetRegisterClass *RC = | 
|  | (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | unsigned Tmp = MRI.createVirtualRegister(RC); | 
|  | // Since FP is only updated here but NOT referenced, it's treated as GPR. | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; | 
|  | unsigned SP = RegInfo->getStackRegister(); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | const int64_t SPOffset = 2 * PVT.getStoreSize(); | 
|  |  | 
|  | unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; | 
|  | unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; | 
|  |  | 
|  | // Reload FP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Reload IP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(i), LabelOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Reload SP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(i), SPOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Jump | 
|  | BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | // Replace 213-type (isel default) FMA3 instructions with 231-type for | 
|  | // accumulator loops. Writing back to the accumulator allows the coalescer | 
|  | // to remove extra copies in the loop. | 
|  | // FIXME: Do this on AVX512.  We don't support 231 variants yet (PR23937). | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitFMA3Instr(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineOperand &AddendOp = MI->getOperand(3); | 
|  |  | 
|  | // Bail out early if the addend isn't a register - we can't switch these. | 
|  | if (!AddendOp.isReg()) | 
|  | return MBB; | 
|  |  | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Check whether the addend is defined by a PHI: | 
|  | assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?"); | 
|  | MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg()); | 
|  | if (!AddendDef.isPHI()) | 
|  | return MBB; | 
|  |  | 
|  | // Look for the following pattern: | 
|  | // loop: | 
|  | //   %addend = phi [%entry, 0], [%loop, %result] | 
|  | //   ... | 
|  | //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend | 
|  |  | 
|  | // Replace with: | 
|  | //   loop: | 
|  | //   %addend = phi [%entry, 0], [%loop, %result] | 
|  | //   ... | 
|  | //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2 | 
|  |  | 
|  | for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) { | 
|  | assert(AddendDef.getOperand(i).isReg()); | 
|  | MachineOperand PHISrcOp = AddendDef.getOperand(i); | 
|  | MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg()); | 
|  | if (&PHISrcInst == MI) { | 
|  | // Found a matching instruction. | 
|  | unsigned NewFMAOpc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break; | 
|  | case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break; | 
|  | case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break; | 
|  | case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break; | 
|  | case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break; | 
|  | case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break; | 
|  | case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break; | 
|  | case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break; | 
|  | case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break; | 
|  | case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break; | 
|  | case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break; | 
|  | case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break; | 
|  | case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break; | 
|  | case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break; | 
|  | case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break; | 
|  | case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break; | 
|  | case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break; | 
|  | case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break; | 
|  | case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break; | 
|  | case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break; | 
|  |  | 
|  | case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break; | 
|  | case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break; | 
|  | case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break; | 
|  | case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break; | 
|  | case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break; | 
|  | case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break; | 
|  | case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break; | 
|  | case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break; | 
|  | case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break; | 
|  | case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break; | 
|  | case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break; | 
|  | case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break; | 
|  | default: llvm_unreachable("Unrecognized FMA variant."); | 
|  | } | 
|  |  | 
|  | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc)) | 
|  | .addOperand(MI->getOperand(0)) | 
|  | .addOperand(MI->getOperand(3)) | 
|  | .addOperand(MI->getOperand(2)) | 
|  | .addOperand(MI->getOperand(1)); | 
|  | MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected instr type to insert"); | 
|  | case X86::TAILJMPd64: | 
|  | case X86::TAILJMPr64: | 
|  | case X86::TAILJMPm64: | 
|  | case X86::TAILJMPd64_REX: | 
|  | case X86::TAILJMPr64_REX: | 
|  | case X86::TAILJMPm64_REX: | 
|  | llvm_unreachable("TAILJMP64 would not be touched here."); | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNmi64: | 
|  | return BB; | 
|  | case X86::WIN_ALLOCA: | 
|  | return EmitLoweredWinAlloca(MI, BB); | 
|  | case X86::SEG_ALLOCA_32: | 
|  | case X86::SEG_ALLOCA_64: | 
|  | return EmitLoweredSegAlloca(MI, BB); | 
|  | case X86::TLSCall_32: | 
|  | case X86::TLSCall_64: | 
|  | return EmitLoweredTLSCall(MI, BB); | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_GR8: | 
|  | case X86::CMOV_GR16: | 
|  | case X86::CMOV_GR32: | 
|  | case X86::CMOV_RFP32: | 
|  | case X86::CMOV_RFP64: | 
|  | case X86::CMOV_RFP80: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V4F64: | 
|  | case X86::CMOV_V4I64: | 
|  | case X86::CMOV_V16F32: | 
|  | case X86::CMOV_V8F32: | 
|  | case X86::CMOV_V8F64: | 
|  | case X86::CMOV_V8I64: | 
|  | case X86::CMOV_V8I1: | 
|  | case X86::CMOV_V16I1: | 
|  | case X86::CMOV_V32I1: | 
|  | case X86::CMOV_V64I1: | 
|  | return EmitLoweredSelect(MI, BB); | 
|  |  | 
|  | case X86::RELEASE_FADD32mr: | 
|  | case X86::RELEASE_FADD64mr: | 
|  | return EmitLoweredAtomicFP(MI, BB); | 
|  |  | 
|  | case X86::FP32_TO_INT16_IN_MEM: | 
|  | case X86::FP32_TO_INT32_IN_MEM: | 
|  | case X86::FP32_TO_INT64_IN_MEM: | 
|  | case X86::FP64_TO_INT16_IN_MEM: | 
|  | case X86::FP64_TO_INT32_IN_MEM: | 
|  | case X86::FP64_TO_INT64_IN_MEM: | 
|  | case X86::FP80_TO_INT16_IN_MEM: | 
|  | case X86::FP80_TO_INT32_IN_MEM: | 
|  | case X86::FP80_TO_INT64_IN_MEM: { | 
|  | MachineFunction *F = BB->getParent(); | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FNSTCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), | 
|  | CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) | 
|  | .addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) | 
|  | .addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; | 
|  | case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; | 
|  | case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; | 
|  | case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; | 
|  | case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; | 
|  | case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; | 
|  | case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; | 
|  | case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; | 
|  | case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isReg()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImm()) | 
|  | AM.Scale = Op.getImm(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImm()) | 
|  | AM.IndexReg = Op.getImm(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobal()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImm(); | 
|  | } | 
|  | addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) | 
|  | .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | // String/text processing lowering. | 
|  | case X86::PCMPISTRM128REG: | 
|  | case X86::VPCMPISTRM128REG: | 
|  | case X86::PCMPISTRM128MEM: | 
|  | case X86::VPCMPISTRM128MEM: | 
|  | case X86::PCMPESTRM128REG: | 
|  | case X86::VPCMPESTRM128REG: | 
|  | case X86::PCMPESTRM128MEM: | 
|  | case X86::VPCMPESTRM128MEM: | 
|  | assert(Subtarget->hasSSE42() && | 
|  | "Target must have SSE4.2 or AVX features enabled"); | 
|  | return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo()); | 
|  |  | 
|  | // String/text processing lowering. | 
|  | case X86::PCMPISTRIREG: | 
|  | case X86::VPCMPISTRIREG: | 
|  | case X86::PCMPISTRIMEM: | 
|  | case X86::VPCMPISTRIMEM: | 
|  | case X86::PCMPESTRIREG: | 
|  | case X86::VPCMPESTRIREG: | 
|  | case X86::PCMPESTRIMEM: | 
|  | case X86::VPCMPESTRIMEM: | 
|  | assert(Subtarget->hasSSE42() && | 
|  | "Target must have SSE4.2 or AVX features enabled"); | 
|  | return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo()); | 
|  |  | 
|  | // Thread synchronization. | 
|  | case X86::MONITOR: | 
|  | return EmitMonitor(MI, BB, Subtarget); | 
|  |  | 
|  | // xbegin | 
|  | case X86::XBEGIN: | 
|  | return EmitXBegin(MI, BB, Subtarget->getInstrInfo()); | 
|  |  | 
|  | case X86::VASTART_SAVE_XMM_REGS: | 
|  | return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); | 
|  |  | 
|  | case X86::VAARG_64: | 
|  | return EmitVAARG64WithCustomInserter(MI, BB); | 
|  |  | 
|  | case X86::EH_SjLj_SetJmp32: | 
|  | case X86::EH_SjLj_SetJmp64: | 
|  | return emitEHSjLjSetJmp(MI, BB); | 
|  |  | 
|  | case X86::EH_SjLj_LongJmp32: | 
|  | case X86::EH_SjLj_LongJmp64: | 
|  | return emitEHSjLjLongJmp(MI, BB); | 
|  |  | 
|  | case TargetOpcode::STATEPOINT: | 
|  | // As an implementation detail, STATEPOINT shares the STACKMAP format at | 
|  | // this point in the process.  We diverge later. | 
|  | return emitPatchPoint(MI, BB); | 
|  |  | 
|  | case TargetOpcode::STACKMAP: | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | return emitPatchPoint(MI, BB); | 
|  |  | 
|  | case X86::VFMADDPDr213r: | 
|  | case X86::VFMADDPSr213r: | 
|  | case X86::VFMADDSDr213r: | 
|  | case X86::VFMADDSSr213r: | 
|  | case X86::VFMSUBPDr213r: | 
|  | case X86::VFMSUBPSr213r: | 
|  | case X86::VFMSUBSDr213r: | 
|  | case X86::VFMSUBSSr213r: | 
|  | case X86::VFNMADDPDr213r: | 
|  | case X86::VFNMADDPSr213r: | 
|  | case X86::VFNMADDSDr213r: | 
|  | case X86::VFNMADDSSr213r: | 
|  | case X86::VFNMSUBPDr213r: | 
|  | case X86::VFNMSUBPSr213r: | 
|  | case X86::VFNMSUBSDr213r: | 
|  | case X86::VFNMSUBSSr213r: | 
|  | case X86::VFMADDSUBPDr213r: | 
|  | case X86::VFMADDSUBPSr213r: | 
|  | case X86::VFMSUBADDPDr213r: | 
|  | case X86::VFMSUBADDPSr213r: | 
|  | case X86::VFMADDPDr213rY: | 
|  | case X86::VFMADDPSr213rY: | 
|  | case X86::VFMSUBPDr213rY: | 
|  | case X86::VFMSUBPSr213rY: | 
|  | case X86::VFNMADDPDr213rY: | 
|  | case X86::VFNMADDPSr213rY: | 
|  | case X86::VFNMSUBPDr213rY: | 
|  | case X86::VFNMSUBPSr213rY: | 
|  | case X86::VFMADDSUBPDr213rY: | 
|  | case X86::VFMADDSUBPSr213rY: | 
|  | case X86::VFMSUBADDPDr213rY: | 
|  | case X86::VFMSUBADDPSr213rY: | 
|  | return emitFMA3Instr(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | unsigned BitWidth = KnownZero.getBitWidth(); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert((Opc >= ISD::BUILTIN_OP_END || | 
|  | Opc == ISD::INTRINSIC_WO_CHAIN || | 
|  | Opc == ISD::INTRINSIC_W_CHAIN || | 
|  | Opc == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  |  | 
|  | KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::ADC: | 
|  | case X86ISD::SBB: | 
|  | case X86ISD::SMUL: | 
|  | case X86ISD::UMUL: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | // These nodes' second result is a boolean. | 
|  | if (Op.getResNo() == 0) | 
|  | break; | 
|  | // Fallthrough | 
|  | case X86ISD::SETCC: | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | unsigned NumLoBits = 0; | 
|  | switch (IntId) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_movmsk_ps: | 
|  | case Intrinsic::x86_avx_movmsk_ps_256: | 
|  | case Intrinsic::x86_sse2_movmsk_pd: | 
|  | case Intrinsic::x86_avx_movmsk_pd_256: | 
|  | case Intrinsic::x86_mmx_pmovmskb: | 
|  | case Intrinsic::x86_sse2_pmovmskb_128: | 
|  | case Intrinsic::x86_avx2_pmovmskb: { | 
|  | // High bits of movmskp{s|d}, pmovmskb are known zero. | 
|  | switch (IntId) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break; | 
|  | case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break; | 
|  | case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break; | 
|  | case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break; | 
|  | case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break; | 
|  | case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break; | 
|  | case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break; | 
|  | } | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( | 
|  | SDValue Op, | 
|  | const SelectionDAG &, | 
|  | unsigned Depth) const { | 
|  | // SETCC_CARRY sets the dest to ~0 for true or 0 for false. | 
|  | if (Op.getOpcode() == X86ISD::SETCC_CARRY) | 
|  | return Op.getValueType().getScalarType().getSizeInBits(); | 
|  |  | 
|  | // Fallback case. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the | 
|  | /// node is a GlobalAddress + offset. | 
|  | bool X86TargetLowering::isGAPlusOffset(SDNode *N, | 
|  | const GlobalValue* &GA, | 
|  | int64_t &Offset) const { | 
|  | if (N->getOpcode() == X86ISD::Wrapper) { | 
|  | if (isa<GlobalAddressSDNode>(N->getOperand(0))) { | 
|  | GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); | 
|  | Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return TargetLowering::isGAPlusOffset(N, GA, Offset); | 
|  | } | 
|  |  | 
|  | /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the | 
|  | /// same as extracting the high 128-bit part of 256-bit vector and then | 
|  | /// inserting the result into the low part of a new 256-bit vector | 
|  | static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> | 
|  | for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || | 
|  | SVOp->getMaskElt(j) >= 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the | 
|  | /// same as extracting the low 128-bit part of 256-bit vector and then | 
|  | /// inserting the result into the high part of a new 256-bit vector | 
|  | static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> | 
|  | for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || | 
|  | SVOp->getMaskElt(j) >= 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. | 
|  | static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget* Subtarget) { | 
|  | SDLoc dl(N); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (V1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | V2.getOpcode() == ISD::CONCAT_VECTORS) { | 
|  | // | 
|  | //                   0,0,0,... | 
|  | //                      | | 
|  | //    V      UNDEF    BUILD_VECTOR    UNDEF | 
|  | //     \      /           \           / | 
|  | //  CONCAT_VECTOR         CONCAT_VECTOR | 
|  | //         \                  / | 
|  | //          \                / | 
|  | //          RESULT: V + zero extended | 
|  | // | 
|  | if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || | 
|  | V2.getOperand(1).getOpcode() != ISD::UNDEF || | 
|  | V1.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // To match the shuffle mask, the first half of the mask should | 
|  | // be exactly the first vector, and all the rest a splat with the | 
|  | // first element of the second one. | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || | 
|  | !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { | 
|  | if (Ld->hasNUsesOfValue(1, 0)) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); | 
|  | SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; | 
|  | SDValue ResNode = | 
|  | DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, | 
|  | Ld->getMemoryVT(), | 
|  | Ld->getPointerInfo(), | 
|  | Ld->getAlignment(), | 
|  | false/*isVolatile*/, true/*ReadMem*/, | 
|  | false/*WriteMem*/); | 
|  |  | 
|  | // Make sure the newly-created LOAD is in the same position as Ld in | 
|  | // terms of dependency. We create a TokenFactor for Ld and ResNode, | 
|  | // and update uses of Ld's output chain to use the TokenFactor. | 
|  | if (Ld->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), | 
|  | SDValue(ResNode.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return DAG.getBitcast(VT, ResNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit a zeroed vector and insert the desired subvector on its | 
|  | // first half. | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Combine some shuffles into subvector extracts and inserts: | 
|  | // | 
|  |  | 
|  | // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> | 
|  | if (isShuffleHigh128VectorInsertLow(SVOp)) { | 
|  | SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> | 
|  | if (isShuffleLow128VectorInsertHigh(SVOp)) { | 
|  | SDValue V = Extract128BitVector(V1, 0, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Combine an arbitrary chain of shuffles into a single instruction if | 
|  | /// possible. | 
|  | /// | 
|  | /// This is the leaf of the recursive combinine below. When we have found some | 
|  | /// chain of single-use x86 shuffle instructions and accumulated the combined | 
|  | /// shuffle mask represented by them, this will try to pattern match that mask | 
|  | /// into either a single instruction if there is a special purpose instruction | 
|  | /// for this operation, or into a PSHUFB instruction which is a fully general | 
|  | /// instruction but should only be used to replace chains over a certain depth. | 
|  | static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask, | 
|  | int Depth, bool HasPSHUFB, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | assert(!Mask.empty() && "Cannot combine an empty shuffle mask!"); | 
|  |  | 
|  | // Find the operand that enters the chain. Note that multiple uses are OK | 
|  | // here, we're not going to remove the operand we find. | 
|  | SDValue Input = Op.getOperand(0); | 
|  | while (Input.getOpcode() == ISD::BITCAST) | 
|  | Input = Input.getOperand(0); | 
|  |  | 
|  | MVT VT = Input.getSimpleValueType(); | 
|  | MVT RootVT = Root.getSimpleValueType(); | 
|  | SDLoc DL(Root); | 
|  |  | 
|  | // Just remove no-op shuffle masks. | 
|  | if (Mask.size() == 1) { | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Use the float domain if the operand type is a floating point type. | 
|  | bool FloatDomain = VT.isFloatingPoint(); | 
|  |  | 
|  | // For floating point shuffles, we don't have free copies in the shuffle | 
|  | // instructions or the ability to load as part of the instruction, so | 
|  | // canonicalize their shuffles to UNPCK or MOV variants. | 
|  | // | 
|  | // Note that even with AVX we prefer the PSHUFD form of shuffle for integer | 
|  | // vectors because it can have a load folded into it that UNPCK cannot. This | 
|  | // doesn't preclude something switching to the shorter encoding post-RA. | 
|  | // | 
|  | // FIXME: Should teach these routines about AVX vector widths. | 
|  | if (FloatDomain && VT.getSizeInBits() == 128) { | 
|  | if (Mask.equals({0, 0}) || Mask.equals({1, 1})) { | 
|  | bool Lo = Mask.equals({0, 0}); | 
|  | unsigned Shuffle; | 
|  | MVT ShuffleVT; | 
|  | // Check if we have SSE3 which will let us use MOVDDUP. That instruction | 
|  | // is no slower than UNPCKLPD but has the option to fold the input operand | 
|  | // into even an unaligned memory load. | 
|  | if (Lo && Subtarget->hasSSE3()) { | 
|  | Shuffle = X86ISD::MOVDDUP; | 
|  | ShuffleVT = MVT::v2f64; | 
|  | } else { | 
|  | // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller | 
|  | // than the UNPCK variants. | 
|  | Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS; | 
|  | ShuffleVT = MVT::v4f32; | 
|  | } | 
|  | if (Depth == 1 && Root->getOpcode() == Shuffle) | 
|  | return false; // Nothing to do! | 
|  | Op = DAG.getBitcast(ShuffleVT, Input); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | if (Shuffle == X86ISD::MOVDDUP) | 
|  | Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); | 
|  | else | 
|  | Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  | if (Subtarget->hasSSE3() && | 
|  | (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) { | 
|  | bool Lo = Mask.equals({0, 0, 2, 2}); | 
|  | unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP; | 
|  | MVT ShuffleVT = MVT::v4f32; | 
|  | if (Depth == 1 && Root->getOpcode() == Shuffle) | 
|  | return false; // Nothing to do! | 
|  | Op = DAG.getBitcast(ShuffleVT, Input); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  | if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) { | 
|  | bool Lo = Mask.equals({0, 0, 1, 1}); | 
|  | unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; | 
|  | MVT ShuffleVT = MVT::v4f32; | 
|  | if (Depth == 1 && Root->getOpcode() == Shuffle) | 
|  | return false; // Nothing to do! | 
|  | Op = DAG.getBitcast(ShuffleVT, Input); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK | 
|  | // variants as none of these have single-instruction variants that are | 
|  | // superior to the UNPCK formulation. | 
|  | if (!FloatDomain && VT.getSizeInBits() == 128 && | 
|  | (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) || | 
|  | Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) || | 
|  | Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) || | 
|  | Mask.equals( | 
|  | {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) { | 
|  | bool Lo = Mask[0] == 0; | 
|  | unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; | 
|  | if (Depth == 1 && Root->getOpcode() == Shuffle) | 
|  | return false; // Nothing to do! | 
|  | MVT ShuffleVT; | 
|  | switch (Mask.size()) { | 
|  | case 8: | 
|  | ShuffleVT = MVT::v8i16; | 
|  | break; | 
|  | case 16: | 
|  | ShuffleVT = MVT::v16i8; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Impossible mask size!"); | 
|  | }; | 
|  | Op = DAG.getBitcast(ShuffleVT, Input); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Don't try to re-form single instruction chains under any circumstances now | 
|  | // that we've done encoding canonicalization for them. | 
|  | if (Depth < 2) | 
|  | return false; | 
|  |  | 
|  | // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we | 
|  | // can replace them with a single PSHUFB instruction profitably. Intel's | 
|  | // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but | 
|  | // in practice PSHUFB tends to be *very* fast so we're more aggressive. | 
|  | if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) { | 
|  | SmallVector<SDValue, 16> PSHUFBMask; | 
|  | int NumBytes = VT.getSizeInBits() / 8; | 
|  | int Ratio = NumBytes / Mask.size(); | 
|  | for (int i = 0; i < NumBytes; ++i) { | 
|  | if (Mask[i / Ratio] == SM_SentinelUndef) { | 
|  | PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | int M = Mask[i / Ratio] != SM_SentinelZero | 
|  | ? Ratio * Mask[i / Ratio] + i % Ratio | 
|  | : 255; | 
|  | PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8)); | 
|  | } | 
|  | MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes); | 
|  | Op = DAG.getBitcast(ByteVT, Input); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | SDValue PSHUFBMaskOp = | 
|  | DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask); | 
|  | DCI.AddToWorklist(PSHUFBMaskOp.getNode()); | 
|  | Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp); | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), | 
|  | /*AddTo*/ true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Failed to find any combines. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Fully generic combining of x86 shuffle instructions. | 
|  | /// | 
|  | /// This should be the last combine run over the x86 shuffle instructions. Once | 
|  | /// they have been fully optimized, this will recursively consider all chains | 
|  | /// of single-use shuffle instructions, build a generic model of the cumulative | 
|  | /// shuffle operation, and check for simpler instructions which implement this | 
|  | /// operation. We use this primarily for two purposes: | 
|  | /// | 
|  | /// 1) Collapse generic shuffles to specialized single instructions when | 
|  | ///    equivalent. In most cases, this is just an encoding size win, but | 
|  | ///    sometimes we will collapse multiple generic shuffles into a single | 
|  | ///    special-purpose shuffle. | 
|  | /// 2) Look for sequences of shuffle instructions with 3 or more total | 
|  | ///    instructions, and replace them with the slightly more expensive SSSE3 | 
|  | ///    PSHUFB instruction if available. We do this as the last combining step | 
|  | ///    to ensure we avoid using PSHUFB if we can implement the shuffle with | 
|  | ///    a suitable short sequence of other instructions. The PHUFB will either | 
|  | ///    use a register or have to read from memory and so is slightly (but only | 
|  | ///    slightly) more expensive than the other shuffle instructions. | 
|  | /// | 
|  | /// Because this is inherently a quadratic operation (for each shuffle in | 
|  | /// a chain, we recurse up the chain), the depth is limited to 8 instructions. | 
|  | /// This should never be an issue in practice as the shuffle lowering doesn't | 
|  | /// produce sequences of more than 8 instructions. | 
|  | /// | 
|  | /// FIXME: We will currently miss some cases where the redundant shuffling | 
|  | /// would simplify under the threshold for PSHUFB formation because of | 
|  | /// combine-ordering. To fix this, we should do the redundant instruction | 
|  | /// combining in this recursive walk. | 
|  | static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root, | 
|  | ArrayRef<int> RootMask, | 
|  | int Depth, bool HasPSHUFB, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // Bound the depth of our recursive combine because this is ultimately | 
|  | // quadratic in nature. | 
|  | if (Depth > 8) | 
|  | return false; | 
|  |  | 
|  | // Directly rip through bitcasts to find the underlying operand. | 
|  | while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse()) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | if (!VT.isVector()) | 
|  | return false; // Bail if we hit a non-vector. | 
|  |  | 
|  | assert(Root.getSimpleValueType().isVector() && | 
|  | "Shuffles operate on vector types!"); | 
|  | assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && | 
|  | "Can only combine shuffles of the same vector register size."); | 
|  |  | 
|  | if (!isTargetShuffle(Op.getOpcode())) | 
|  | return false; | 
|  | SmallVector<int, 16> OpMask; | 
|  | bool IsUnary; | 
|  | bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary); | 
|  | // We only can combine unary shuffles which we can decode the mask for. | 
|  | if (!HaveMask || !IsUnary) | 
|  | return false; | 
|  |  | 
|  | assert(VT.getVectorNumElements() == OpMask.size() && | 
|  | "Different mask size from vector size!"); | 
|  | assert(((RootMask.size() > OpMask.size() && | 
|  | RootMask.size() % OpMask.size() == 0) || | 
|  | (OpMask.size() > RootMask.size() && | 
|  | OpMask.size() % RootMask.size() == 0) || | 
|  | OpMask.size() == RootMask.size()) && | 
|  | "The smaller number of elements must divide the larger."); | 
|  | int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size()); | 
|  | int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size()); | 
|  | assert(((RootRatio == 1 && OpRatio == 1) || | 
|  | (RootRatio == 1) != (OpRatio == 1)) && | 
|  | "Must not have a ratio for both incoming and op masks!"); | 
|  |  | 
|  | SmallVector<int, 16> Mask; | 
|  | Mask.reserve(std::max(OpMask.size(), RootMask.size())); | 
|  |  | 
|  | // Merge this shuffle operation's mask into our accumulated mask. Note that | 
|  | // this shuffle's mask will be the first applied to the input, followed by the | 
|  | // root mask to get us all the way to the root value arrangement. The reason | 
|  | // for this order is that we are recursing up the operation chain. | 
|  | for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) { | 
|  | int RootIdx = i / RootRatio; | 
|  | if (RootMask[RootIdx] < 0) { | 
|  | // This is a zero or undef lane, we're done. | 
|  | Mask.push_back(RootMask[RootIdx]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio; | 
|  | int OpIdx = RootMaskedIdx / OpRatio; | 
|  | if (OpMask[OpIdx] < 0) { | 
|  | // The incoming lanes are zero or undef, it doesn't matter which ones we | 
|  | // are using. | 
|  | Mask.push_back(OpMask[OpIdx]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ok, we have non-zero lanes, map them through. | 
|  | Mask.push_back(OpMask[OpIdx] * OpRatio + | 
|  | RootMaskedIdx % OpRatio); | 
|  | } | 
|  |  | 
|  | // See if we can recurse into the operand to combine more things. | 
|  | switch (Op.getOpcode()) { | 
|  | case X86ISD::PSHUFB: | 
|  | HasPSHUFB = true; | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | if (Op.getOperand(0).hasOneUse() && | 
|  | combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, | 
|  | HasPSHUFB, DAG, DCI, Subtarget)) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | assert(Op.getOperand(0) == Op.getOperand(1) && | 
|  | "We only combine unary shuffles!"); | 
|  | // We can't check for single use, we have to check that this shuffle is the | 
|  | // only user. | 
|  | if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) && | 
|  | combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, | 
|  | HasPSHUFB, DAG, DCI, Subtarget)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Minor canonicalization of the accumulated shuffle mask to make it easier | 
|  | // to match below. All this does is detect masks with squential pairs of | 
|  | // elements, and shrink them to the half-width mask. It does this in a loop | 
|  | // so it will reduce the size of the mask to the minimal width mask which | 
|  | // performs an equivalent shuffle. | 
|  | SmallVector<int, 16> WidenedMask; | 
|  | while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { | 
|  | Mask = std::move(WidenedMask); | 
|  | WidenedMask.clear(); | 
|  | } | 
|  |  | 
|  | return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI, | 
|  | Subtarget); | 
|  | } | 
|  |  | 
|  | /// \brief Get the PSHUF-style mask from PSHUF node. | 
|  | /// | 
|  | /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 | 
|  | /// PSHUF-style masks that can be reused with such instructions. | 
|  | static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) { | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SmallVector<int, 4> Mask; | 
|  | bool IsUnary; | 
|  | bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary); | 
|  | (void)HaveMask; | 
|  | assert(HaveMask); | 
|  |  | 
|  | // If we have more than 128-bits, only the low 128-bits of shuffle mask | 
|  | // matter. Check that the upper masks are repeats and remove them. | 
|  | if (VT.getSizeInBits() > 128) { | 
|  | int LaneElts = 128 / VT.getScalarSizeInBits(); | 
|  | #ifndef NDEBUG | 
|  | for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i) | 
|  | for (int j = 0; j < LaneElts; ++j) | 
|  | assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) && | 
|  | "Mask doesn't repeat in high 128-bit lanes!"); | 
|  | #endif | 
|  | Mask.resize(LaneElts); | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | case X86ISD::PSHUFD: | 
|  | return Mask; | 
|  | case X86ISD::PSHUFLW: | 
|  | Mask.resize(4); | 
|  | return Mask; | 
|  | case X86ISD::PSHUFHW: | 
|  | Mask.erase(Mask.begin(), Mask.begin() + 4); | 
|  | for (int &M : Mask) | 
|  | M -= 4; | 
|  | return Mask; | 
|  | default: | 
|  | llvm_unreachable("No valid shuffle instruction found!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Search for a combinable shuffle across a chain ending in pshufd. | 
|  | /// | 
|  | /// We walk up the chain and look for a combinable shuffle, skipping over | 
|  | /// shuffles that we could hoist this shuffle's transformation past without | 
|  | /// altering anything. | 
|  | static SDValue | 
|  | combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | assert(N.getOpcode() == X86ISD::PSHUFD && | 
|  | "Called with something other than an x86 128-bit half shuffle!"); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Walk up a single-use chain looking for a combinable shuffle. Keep a stack | 
|  | // of the shuffles in the chain so that we can form a fresh chain to replace | 
|  | // this one. | 
|  | SmallVector<SDValue, 8> Chain; | 
|  | SDValue V = N.getOperand(0); | 
|  | for (; V.hasOneUse(); V = V.getOperand(0)) { | 
|  | switch (V.getOpcode()) { | 
|  | default: | 
|  | return SDValue(); // Nothing combined! | 
|  |  | 
|  | case ISD::BITCAST: | 
|  | // Skip bitcasts as we always know the type for the target specific | 
|  | // instructions. | 
|  | continue; | 
|  |  | 
|  | case X86ISD::PSHUFD: | 
|  | // Found another dword shuffle. | 
|  | break; | 
|  |  | 
|  | case X86ISD::PSHUFLW: | 
|  | // Check that the low words (being shuffled) are the identity in the | 
|  | // dword shuffle, and the high words are self-contained. | 
|  | if (Mask[0] != 0 || Mask[1] != 1 || | 
|  | !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) | 
|  | return SDValue(); | 
|  |  | 
|  | Chain.push_back(V); | 
|  | continue; | 
|  |  | 
|  | case X86ISD::PSHUFHW: | 
|  | // Check that the high words (being shuffled) are the identity in the | 
|  | // dword shuffle, and the low words are self-contained. | 
|  | if (Mask[2] != 2 || Mask[3] != 3 || | 
|  | !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) | 
|  | return SDValue(); | 
|  |  | 
|  | Chain.push_back(V); | 
|  | continue; | 
|  |  | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword | 
|  | // shuffle into a preceding word shuffle. | 
|  | if (V.getSimpleValueType().getScalarType() != MVT::i8 && | 
|  | V.getSimpleValueType().getScalarType() != MVT::i16) | 
|  | return SDValue(); | 
|  |  | 
|  | // Search for a half-shuffle which we can combine with. | 
|  | unsigned CombineOp = | 
|  | V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; | 
|  | if (V.getOperand(0) != V.getOperand(1) || | 
|  | !V->isOnlyUserOf(V.getOperand(0).getNode())) | 
|  | return SDValue(); | 
|  | Chain.push_back(V); | 
|  | V = V.getOperand(0); | 
|  | do { | 
|  | switch (V.getOpcode()) { | 
|  | default: | 
|  | return SDValue(); // Nothing to combine. | 
|  |  | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::PSHUFHW: | 
|  | if (V.getOpcode() == CombineOp) | 
|  | break; | 
|  |  | 
|  | Chain.push_back(V); | 
|  |  | 
|  | // Fallthrough! | 
|  | case ISD::BITCAST: | 
|  | V = V.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } while (V.hasOneUse()); | 
|  | break; | 
|  | } | 
|  | // Break out of the loop if we break out of the switch. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!V.hasOneUse()) | 
|  | // We fell out of the loop without finding a viable combining instruction. | 
|  | return SDValue(); | 
|  |  | 
|  | // Merge this node's mask and our incoming mask. | 
|  | SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); | 
|  | for (int &M : Mask) | 
|  | M = VMask[M]; | 
|  | V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  |  | 
|  | // Rebuild the chain around this new shuffle. | 
|  | while (!Chain.empty()) { | 
|  | SDValue W = Chain.pop_back_val(); | 
|  |  | 
|  | if (V.getValueType() != W.getOperand(0).getValueType()) | 
|  | V = DAG.getBitcast(W.getOperand(0).getValueType(), V); | 
|  |  | 
|  | switch (W.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); | 
|  |  | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); | 
|  | break; | 
|  |  | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::PSHUFHW: | 
|  | V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (V.getValueType() != N.getValueType()) | 
|  | V = DAG.getBitcast(N.getValueType(), V); | 
|  |  | 
|  | // Return the new chain to replace N. | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// \brief Search for a combinable shuffle across a chain ending in pshuflw or | 
|  | /// pshufhw. | 
|  | /// | 
|  | /// We walk up the chain, skipping shuffles of the other half and looking | 
|  | /// through shuffles which switch halves trying to find a shuffle of the same | 
|  | /// pair of dwords. | 
|  | static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | assert( | 
|  | (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && | 
|  | "Called with something other than an x86 128-bit half shuffle!"); | 
|  | SDLoc DL(N); | 
|  | unsigned CombineOpcode = N.getOpcode(); | 
|  |  | 
|  | // Walk up a single-use chain looking for a combinable shuffle. | 
|  | SDValue V = N.getOperand(0); | 
|  | for (; V.hasOneUse(); V = V.getOperand(0)) { | 
|  | switch (V.getOpcode()) { | 
|  | default: | 
|  | return false; // Nothing combined! | 
|  |  | 
|  | case ISD::BITCAST: | 
|  | // Skip bitcasts as we always know the type for the target specific | 
|  | // instructions. | 
|  | continue; | 
|  |  | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::PSHUFHW: | 
|  | if (V.getOpcode() == CombineOpcode) | 
|  | break; | 
|  |  | 
|  | // Other-half shuffles are no-ops. | 
|  | continue; | 
|  | } | 
|  | // Break out of the loop if we break out of the switch. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!V.hasOneUse()) | 
|  | // We fell out of the loop without finding a viable combining instruction. | 
|  | return false; | 
|  |  | 
|  | // Combine away the bottom node as its shuffle will be accumulated into | 
|  | // a preceding shuffle. | 
|  | DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); | 
|  |  | 
|  | // Record the old value. | 
|  | SDValue Old = V; | 
|  |  | 
|  | // Merge this node's mask and our incoming mask (adjusted to account for all | 
|  | // the pshufd instructions encountered). | 
|  | SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); | 
|  | for (int &M : Mask) | 
|  | M = VMask[M]; | 
|  | V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), | 
|  | getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); | 
|  |  | 
|  | // Check that the shuffles didn't cancel each other out. If not, we need to | 
|  | // combine to the new one. | 
|  | if (Old != V) | 
|  | // Replace the combinable shuffle with the combined one, updating all users | 
|  | // so that we re-evaluate the chain here. | 
|  | DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Try to combine x86 target specific shuffles. | 
|  | static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SmallVector<int, 4> Mask; | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::PSHUFHW: | 
|  | Mask = getPSHUFShuffleMask(N); | 
|  | assert(Mask.size() == 4); | 
|  | break; | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Nuke no-op shuffles that show up after combining. | 
|  | if (isNoopShuffleMask(Mask)) | 
|  | return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); | 
|  |  | 
|  | // Look for simplifications involving one or two shuffle instructions. | 
|  | SDValue V = N.getOperand(0); | 
|  | switch (N.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::PSHUFHW: | 
|  | assert(VT.getScalarType() == MVT::i16 && "Bad word shuffle type!"); | 
|  |  | 
|  | if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) | 
|  | return SDValue(); // We combined away this shuffle, so we're done. | 
|  |  | 
|  | // See if this reduces to a PSHUFD which is no more expensive and can | 
|  | // combine with more operations. Note that it has to at least flip the | 
|  | // dwords as otherwise it would have been removed as a no-op. | 
|  | if (makeArrayRef(Mask).equals({2, 3, 0, 1})) { | 
|  | int DMask[] = {0, 1, 2, 3}; | 
|  | int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; | 
|  | DMask[DOffset + 0] = DOffset + 1; | 
|  | DMask[DOffset + 1] = DOffset + 0; | 
|  | MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); | 
|  | V = DAG.getBitcast(DVT, V); | 
|  | DCI.AddToWorklist(V.getNode()); | 
|  | V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V, | 
|  | getV4X86ShuffleImm8ForMask(DMask, DL, DAG)); | 
|  | DCI.AddToWorklist(V.getNode()); | 
|  | return DAG.getBitcast(VT, V); | 
|  | } | 
|  |  | 
|  | // Look for shuffle patterns which can be implemented as a single unpack. | 
|  | // FIXME: This doesn't handle the location of the PSHUFD generically, and | 
|  | // only works when we have a PSHUFD followed by two half-shuffles. | 
|  | if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && | 
|  | (V.getOpcode() == X86ISD::PSHUFLW || | 
|  | V.getOpcode() == X86ISD::PSHUFHW) && | 
|  | V.getOpcode() != N.getOpcode() && | 
|  | V.hasOneUse()) { | 
|  | SDValue D = V.getOperand(0); | 
|  | while (D.getOpcode() == ISD::BITCAST && D.hasOneUse()) | 
|  | D = D.getOperand(0); | 
|  | if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { | 
|  | SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); | 
|  | SmallVector<int, 4> DMask = getPSHUFShuffleMask(D); | 
|  | int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; | 
|  | int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; | 
|  | int WordMask[8]; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | WordMask[i + NOffset] = Mask[i] + NOffset; | 
|  | WordMask[i + VOffset] = VMask[i] + VOffset; | 
|  | } | 
|  | // Map the word mask through the DWord mask. | 
|  | int MappedMask[8]; | 
|  | for (int i = 0; i < 8; ++i) | 
|  | MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; | 
|  | if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) || | 
|  | makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) { | 
|  | // We can replace all three shuffles with an unpack. | 
|  | V = DAG.getBitcast(VT, D.getOperand(0)); | 
|  | DCI.AddToWorklist(V.getNode()); | 
|  | return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL | 
|  | : X86ISD::UNPCKH, | 
|  | DL, VT, V, V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case X86ISD::PSHUFD: | 
|  | if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI)) | 
|  | return NewN; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Try to combine a shuffle into a target-specific add-sub node. | 
|  | /// | 
|  | /// We combine this directly on the abstract vector shuffle nodes so it is | 
|  | /// easier to generically match. We also insert dummy vector shuffle nodes for | 
|  | /// the operands which explicitly discard the lanes which are unused by this | 
|  | /// operation to try to flow through the rest of the combiner the fact that | 
|  | /// they're unused. | 
|  | static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // We only handle target-independent shuffles. | 
|  | // FIXME: It would be easy and harmless to use the target shuffle mask | 
|  | // extraction tool to support more. | 
|  | if (N->getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *SVN = cast<ShuffleVectorSDNode>(N); | 
|  | ArrayRef<int> Mask = SVN->getMask(); | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  |  | 
|  | // We require the first shuffle operand to be the SUB node, and the second to | 
|  | // be the ADD node. | 
|  | // FIXME: We should support the commuted patterns. | 
|  | if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD) | 
|  | return SDValue(); | 
|  |  | 
|  | // If there are other uses of these operations we can't fold them. | 
|  | if (!V1->hasOneUse() || !V2->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ensure that both operations have the same operands. Note that we can | 
|  | // commute the FADD operands. | 
|  | SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1); | 
|  | if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && | 
|  | (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) | 
|  | return SDValue(); | 
|  |  | 
|  | // We're looking for blends between FADD and FSUB nodes. We insist on these | 
|  | // nodes being lined up in a specific expected pattern. | 
|  | if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) || | 
|  | isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) || | 
|  | isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only specific types are legal at this point, assert so we notice if and | 
|  | // when these change. | 
|  | assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 || | 
|  | VT == MVT::v4f64) && | 
|  | "Unknown vector type encountered!"); | 
|  |  | 
|  | return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine - Performs several different shuffle combines. | 
|  | static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc dl(N); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Don't create instructions with illegal types after legalize types has run. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we have legalized the vector types, look for blends of FADD and FSUB | 
|  | // nodes that we can fuse into an ADDSUB node. | 
|  | if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3()) | 
|  | if (SDValue AddSub = combineShuffleToAddSub(N, DAG)) | 
|  | return AddSub; | 
|  |  | 
|  | // Combine 256-bit vector shuffles. This is only profitable when in AVX mode | 
|  | if (Subtarget->hasFp256() && VT.is256BitVector() && | 
|  | N->getOpcode() == ISD::VECTOR_SHUFFLE) | 
|  | return PerformShuffleCombine256(N, DAG, DCI, Subtarget); | 
|  |  | 
|  | // During Type Legalization, when promoting illegal vector types, | 
|  | // the backend might introduce new shuffle dag nodes and bitcasts. | 
|  | // | 
|  | // This code performs the following transformation: | 
|  | // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) -> | 
|  | //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>) | 
|  | // | 
|  | // We do this only if both the bitcast and the BINOP dag nodes have | 
|  | // one use. Also, perform this transformation only if the new binary | 
|  | // operation is legal. This is to avoid introducing dag nodes that | 
|  | // potentially need to be further expanded (or custom lowered) into a | 
|  | // less optimal sequence of dag nodes. | 
|  | if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && | 
|  | N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() && | 
|  | N0.getOpcode() == ISD::BITCAST) { | 
|  | SDValue BC0 = N0.getOperand(0); | 
|  | EVT SVT = BC0.getValueType(); | 
|  | unsigned Opcode = BC0.getOpcode(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (BC0.hasOneUse() && SVT.isVector() && | 
|  | SVT.getVectorNumElements() * 2 == NumElts && | 
|  | TLI.isOperationLegal(Opcode, VT)) { | 
|  | bool CanFold = false; | 
|  | switch (Opcode) { | 
|  | default : break; | 
|  | case ISD::ADD : | 
|  | case ISD::FADD : | 
|  | case ISD::SUB : | 
|  | case ISD::FSUB : | 
|  | case ISD::MUL : | 
|  | case ISD::FMUL : | 
|  | CanFold = true; | 
|  | } | 
|  |  | 
|  | unsigned SVTNumElts = SVT.getVectorNumElements(); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) | 
|  | CanFold = SVOp->getMaskElt(i) == (int)(i * 2); | 
|  | for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) | 
|  | CanFold = SVOp->getMaskElt(i) < 0; | 
|  |  | 
|  | if (CanFold) { | 
|  | SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0)); | 
|  | SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1)); | 
|  | SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); | 
|  | return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, | 
|  | // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are | 
|  | // consecutive, non-overlapping, and in the right order. | 
|  | SmallVector<SDValue, 16> Elts; | 
|  | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) | 
|  | Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); | 
|  |  | 
|  | if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true)) | 
|  | return LD; | 
|  |  | 
|  | if (isTargetShuffle(N->getOpcode())) { | 
|  | SDValue Shuffle = | 
|  | PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget); | 
|  | if (Shuffle.getNode()) | 
|  | return Shuffle; | 
|  |  | 
|  | // Try recursively combining arbitrary sequences of x86 shuffle | 
|  | // instructions into higher-order shuffles. We do this after combining | 
|  | // specific PSHUF instruction sequences into their minimal form so that we | 
|  | // can evaluate how many specialized shuffle instructions are involved in | 
|  | // a particular chain. | 
|  | SmallVector<int, 1> NonceMask; // Just a placeholder. | 
|  | NonceMask.push_back(0); | 
|  | if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask, | 
|  | /*Depth*/ 1, /*HasPSHUFB*/ false, DAG, | 
|  | DCI, Subtarget)) | 
|  | return SDValue(); // This routine will use CombineTo to replace N. | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target | 
|  | /// specific shuffle of a load can be folded into a single element load. | 
|  | /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but | 
|  | /// shuffles have been custom lowered so we need to handle those here. | 
|  | static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue EltNo = N->getOperand(1); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(EltNo)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT OriginalVT = InVec.getValueType(); | 
|  |  | 
|  | if (InVec.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  | EVT BCVT = InVec.getOperand(0).getValueType(); | 
|  | if (!BCVT.isVector() || | 
|  | BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) | 
|  | return SDValue(); | 
|  | InVec = InVec.getOperand(0); | 
|  | } | 
|  |  | 
|  | EVT CurrentVT = InVec.getValueType(); | 
|  |  | 
|  | if (!isTargetShuffle(InVec.getOpcode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | bool UnaryShuffle; | 
|  | if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), | 
|  | ShuffleMask, UnaryShuffle)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | unsigned NumElems = CurrentVT.getVectorNumElements(); | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; | 
|  | SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) | 
|  | : InVec.getOperand(1); | 
|  |  | 
|  | // If inputs to shuffle are the same for both ops, then allow 2 uses | 
|  | unsigned AllowedUses = InVec.getNumOperands() > 1 && | 
|  | InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; | 
|  |  | 
|  | if (LdNode.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | AllowedUses = 1; // only allow 1 load use if we have a bitcast | 
|  | LdNode = LdNode.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (!ISD::isNormalLoad(LdNode.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); | 
|  |  | 
|  | if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT EltVT = N->getValueType(0); | 
|  | // If there's a bitcast before the shuffle, check if the load type and | 
|  | // alignment is valid. | 
|  | unsigned Align = LN0->getAlignment(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | 
|  | EltVT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // All checks match so transform back to vector_shuffle so that DAG combiner | 
|  | // can finish the job | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Create shuffle node taking into account the case that its a unary shuffle | 
|  | SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) | 
|  | : InVec.getOperand(1); | 
|  | Shuffle = DAG.getVectorShuffle(CurrentVT, dl, | 
|  | InVec.getOperand(0), Shuffle, | 
|  | &ShuffleMask[0]); | 
|  | Shuffle = DAG.getBitcast(OriginalVT, Shuffle); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, | 
|  | EltNo); | 
|  | } | 
|  |  | 
|  | /// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are | 
|  | /// special and don't usually play with other vector types, it's better to | 
|  | /// handle them early to be sure we emit efficient code by avoiding | 
|  | /// store-load conversions. | 
|  | static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | if (N->getValueType(0) != MVT::x86mmx || | 
|  | N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR || | 
|  | N->getOperand(0)->getValueType(0) != MVT::v2i32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue V = N->getOperand(0); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); | 
|  | if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32) | 
|  | return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(V.getOperand(0)), | 
|  | N->getValueType(0), V.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index | 
|  | /// generation and convert it from being a bunch of shuffles and extracts | 
|  | /// into a somewhat faster sequence. For i686, the best sequence is apparently | 
|  | /// storing the value and loading scalars back, while for x64 we should | 
|  | /// use 64-bit extracts and shifts. | 
|  | static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) | 
|  | return NewOp; | 
|  |  | 
|  | SDValue InputVector = N->getOperand(0); | 
|  | SDLoc dl(InputVector); | 
|  | // Detect mmx to i32 conversion through a v2i32 elt extract. | 
|  | if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && | 
|  | N->getValueType(0) == MVT::i32 && | 
|  | InputVector.getValueType() == MVT::v2i32) { | 
|  |  | 
|  | // The bitcast source is a direct mmx result. | 
|  | SDValue MMXSrc = InputVector.getNode()->getOperand(0); | 
|  | if (MMXSrc.getValueType() == MVT::x86mmx) | 
|  | return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), | 
|  | N->getValueType(0), | 
|  | InputVector.getNode()->getOperand(0)); | 
|  |  | 
|  | // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))). | 
|  | SDValue MMXSrcOp = MMXSrc.getOperand(0); | 
|  | if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() && | 
|  | MMXSrc.getValueType() == MVT::i64 && MMXSrcOp.hasOneUse() && | 
|  | MMXSrcOp.getOpcode() == ISD::BITCAST && | 
|  | MMXSrcOp.getValueType() == MVT::v1i64 && | 
|  | MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx) | 
|  | return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), | 
|  | N->getValueType(0), | 
|  | MMXSrcOp.getOperand(0)); | 
|  | } | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT == MVT::i1 && dyn_cast<ConstantSDNode>(N->getOperand(1)) && | 
|  | InputVector.getOpcode() == ISD::BITCAST && | 
|  | dyn_cast<ConstantSDNode>(InputVector.getOperand(0))) { | 
|  | uint64_t ExtractedElt = | 
|  | cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | uint64_t InputValue = | 
|  | cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue(); | 
|  | uint64_t Res = (InputValue >> ExtractedElt) & 1; | 
|  | return DAG.getConstant(Res, dl, MVT::i1); | 
|  | } | 
|  | // Only operate on vectors of 4 elements, where the alternative shuffling | 
|  | // gets to be more expensive. | 
|  | if (InputVector.getValueType() != MVT::v4i32) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a | 
|  | // single use which is a sign-extend or zero-extend, and all elements are | 
|  | // used. | 
|  | SmallVector<SDNode *, 4> Uses; | 
|  | unsigned ExtractedElements = 0; | 
|  | for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), | 
|  | UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { | 
|  | if (UI.getUse().getResNo() != InputVector.getResNo()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNode *Extract = *UI; | 
|  | if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Extract->getValueType(0) != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!Extract->hasOneUse()) | 
|  | return SDValue(); | 
|  | if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && | 
|  | Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) | 
|  | return SDValue(); | 
|  | if (!isa<ConstantSDNode>(Extract->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Record which element was extracted. | 
|  | ExtractedElements |= | 
|  | 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | Uses.push_back(Extract); | 
|  | } | 
|  |  | 
|  | // If not all the elements were used, this may not be worthwhile. | 
|  | if (ExtractedElements != 15) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok, we've now decided to do the transformation. | 
|  | // If 64-bit shifts are legal, use the extract-shift sequence, | 
|  | // otherwise bounce the vector off the cache. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Vals[4]; | 
|  |  | 
|  | if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) { | 
|  | SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL); | 
|  | SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, | 
|  | DAG.getConstant(0, dl, VecIdxTy)); | 
|  | SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, | 
|  | DAG.getConstant(1, dl, VecIdxTy)); | 
|  |  | 
|  | SDValue ShAmt = DAG.getConstant( | 
|  | 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL)); | 
|  | Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf); | 
|  | Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, | 
|  | DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt)); | 
|  | Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf); | 
|  | Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, | 
|  | DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt)); | 
|  | } else { | 
|  | // Store the value to a temporary stack slot. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | EVT ElementType = InputVector.getValueType().getVectorElementType(); | 
|  | unsigned EltSize = ElementType.getSizeInBits() / 8; | 
|  |  | 
|  | // Replace each use (extract) with a load of the appropriate element. | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | uint64_t Offset = EltSize * i; | 
|  | auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT); | 
|  |  | 
|  | SDValue ScalarAddr = | 
|  | DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal); | 
|  |  | 
|  | // Load the scalar. | 
|  | Vals[i] = DAG.getLoad(ElementType, dl, Ch, | 
|  | ScalarAddr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the extracts | 
|  | for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), | 
|  | UE = Uses.end(); UI != UE; ++UI) { | 
|  | SDNode *Extract = *UI; | 
|  |  | 
|  | SDValue Idx = Extract->getOperand(1); | 
|  | uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]); | 
|  | } | 
|  |  | 
|  | // The replacement was made in place; don't return anything. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc dl(N); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SIGN_EXTEND) { | 
|  | SDValue CondSrc = Cond->getOperand(0); | 
|  | if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG) | 
|  | Cond = CondSrc->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // A vselect where all conditions and data are constants can be optimized into | 
|  | // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). | 
|  | if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned MaskValue = 0; | 
|  | if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue)) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> ShuffleMask(NumElems, -1); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | // Be sure we emit undef where we can. | 
|  | if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF) | 
|  | ShuffleMask[i] = -1; | 
|  | else | 
|  | ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1); | 
|  | } | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!TLI.isShuffleMaskLegal(ShuffleMask, VT)) | 
|  | return SDValue(); | 
|  | return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]); | 
|  | } | 
|  |  | 
|  | /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT | 
|  | /// nodes. | 
|  | static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | // Get the LHS/RHS of the select. | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  | EVT VT = LHS.getValueType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // If we have SSE[12] support, try to form min/max nodes. SSE min/max | 
|  | // instructions match the semantics of the common C idiom x<y?x:y but not | 
|  | // x<=y?x:y, because of how they handle negative zero (which can be | 
|  | // ignored in unsafe-math mode). | 
|  | // We also try to create v2f32 min/max nodes, which we later widen to v4f32. | 
|  | if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && | 
|  | VT != MVT::f80 && (TLI.isTypeLegal(VT) || VT == MVT::v2f32) && | 
|  | (Subtarget->hasSSE2() || | 
|  | (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | unsigned Opcode = 0; | 
|  | // Check for x CC y ? x : y. | 
|  | if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETULT: | 
|  | // Converting this to a min would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a max would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | // Check for x CC y ? y : x -- a min/max with reversed arms. | 
|  | } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(0))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a min would handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETULT: | 
|  | // Converting this to a max would handle NaNs incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode) | 
|  | return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); | 
|  | } | 
|  |  | 
|  | EVT CondVT = Cond.getValueType(); | 
|  | if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() && | 
|  | CondVT.getVectorElementType() == MVT::i1) { | 
|  | // v16i8 (select v16i1, v16i8, v16i8) does not have a proper | 
|  | // lowering on KNL. In this case we convert it to | 
|  | // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. | 
|  | // The same situation for all 128 and 256-bit vectors of i8 and i16. | 
|  | // Since SKX these selects have a proper lowering. | 
|  | EVT OpVT = LHS.getValueType(); | 
|  | if ((OpVT.is128BitVector() || OpVT.is256BitVector()) && | 
|  | (OpVT.getVectorElementType() == MVT::i8 || | 
|  | OpVT.getVectorElementType() == MVT::i16) && | 
|  | !(Subtarget->hasBWI() && Subtarget->hasVLX())) { | 
|  | Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond); | 
|  | DCI.AddToWorklist(Cond.getNode()); | 
|  | return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) | 
|  | // Don't do this for crazy integer types. | 
|  | if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { | 
|  | // If this is efficiently invertible, canonicalize the LHSC/RHSC values | 
|  | // so that TrueC (the true value) is larger than FalseC. | 
|  | bool NeedsCondInvert = false; | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && | 
|  | // Efficiently invertible. | 
|  | (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible. | 
|  | (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible. | 
|  | isa<ConstantSDNode>(Cond.getOperand(1))))) { | 
|  | NeedsCondInvert = true; | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0. | 
|  | if (FalseC->getAPIntValue() == 0 && | 
|  | TrueC->getAPIntValue().isPowerOf2()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, DL, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, DL, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, DL, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, DL, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, DL, | 
|  | Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize max and min: | 
|  | // (x > y) ? x : y -> (x >= y) ? x : y | 
|  | // (x < y) ? x : y -> (x <= y) ? x : y | 
|  | // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates | 
|  | // the need for an extra compare | 
|  | // against zero. e.g. | 
|  | // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 | 
|  | // subl   %esi, %edi | 
|  | // testl  %edi, %edi | 
|  | // movl   $0, %eax | 
|  | // cmovgl %edi, %eax | 
|  | // => | 
|  | // xorl   %eax, %eax | 
|  | // subl   %esi, $edi | 
|  | // cmovsl %eax, %edi | 
|  | if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && | 
|  | DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETGT: { | 
|  | ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; | 
|  | Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), | 
|  | Cond.getOperand(0), Cond.getOperand(1), NewCC); | 
|  | return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early exit check | 
|  | if (!TLI.isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match VSELECTs into subs with unsigned saturation. | 
|  | if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && | 
|  | // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. | 
|  | ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || | 
|  | (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | // Check if one of the arms of the VSELECT is a zero vector. If it's on the | 
|  | // left side invert the predicate to simplify logic below. | 
|  | SDValue Other; | 
|  | if (ISD::isBuildVectorAllZeros(LHS.getNode())) { | 
|  | Other = RHS; | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { | 
|  | Other = LHS; | 
|  | } | 
|  |  | 
|  | if (Other.getNode() && Other->getNumOperands() == 2 && | 
|  | DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { | 
|  | SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); | 
|  | SDValue CondRHS = Cond->getOperand(1); | 
|  |  | 
|  | // Look for a general sub with unsigned saturation first. | 
|  | // x >= y ? x-y : 0 --> subus x, y | 
|  | // x >  y ? x-y : 0 --> subus x, y | 
|  | if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && | 
|  | Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) | 
|  | return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); | 
|  |  | 
|  | if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) | 
|  | if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { | 
|  | if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS)) | 
|  | if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode()) | 
|  | // If the RHS is a constant we have to reverse the const | 
|  | // canonicalization. | 
|  | // x > C-1 ? x+-C : 0 --> subus x, C | 
|  | if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && | 
|  | CondRHSConst->getAPIntValue() == | 
|  | (-OpRHSConst->getAPIntValue() - 1)) | 
|  | return DAG.getNode( | 
|  | X86ISD::SUBUS, DL, VT, OpLHS, | 
|  | DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT)); | 
|  |  | 
|  | // Another special case: If C was a sign bit, the sub has been | 
|  | // canonicalized into a xor. | 
|  | // FIXME: Would it be better to use computeKnownBits to determine | 
|  | //        whether it's safe to decanonicalize the xor? | 
|  | // x s< 0 ? x^C : 0 --> subus x, C | 
|  | if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && | 
|  | ISD::isBuildVectorAllZeros(CondRHS.getNode()) && | 
|  | OpRHSConst->getAPIntValue().isSignBit()) | 
|  | // Note that we have to rebuild the RHS constant here to ensure we | 
|  | // don't rely on particular values of undef lanes. | 
|  | return DAG.getNode( | 
|  | X86ISD::SUBUS, DL, VT, OpLHS, | 
|  | DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify vector selection if condition value type matches vselect | 
|  | // operand type | 
|  | if (N->getOpcode() == ISD::VSELECT && CondVT == VT) { | 
|  | assert(Cond.getValueType().isVector() && | 
|  | "vector select expects a vector selector!"); | 
|  |  | 
|  | bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); | 
|  | bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | // Try invert the condition if true value is not all 1s and false value | 
|  | // is not all 0s. | 
|  | if (!TValIsAllOnes && !FValIsAllZeros && | 
|  | // Check if the selector will be produced by CMPP*/PCMP* | 
|  | Cond.getOpcode() == ISD::SETCC && | 
|  | // Check if SETCC has already been promoted | 
|  | TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) == | 
|  | CondVT) { | 
|  | bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); | 
|  | bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); | 
|  |  | 
|  | if (TValIsAllZeros || FValIsAllOnes) { | 
|  | SDValue CC = Cond.getOperand(2); | 
|  | ISD::CondCode NewCC = | 
|  | ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | Cond.getOperand(0).getValueType().isInteger()); | 
|  | Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); | 
|  | std::swap(LHS, RHS); | 
|  | TValIsAllOnes = FValIsAllOnes; | 
|  | FValIsAllZeros = TValIsAllZeros; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TValIsAllOnes || FValIsAllZeros) { | 
|  | SDValue Ret; | 
|  |  | 
|  | if (TValIsAllOnes && FValIsAllZeros) | 
|  | Ret = Cond; | 
|  | else if (TValIsAllOnes) | 
|  | Ret = | 
|  | DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS)); | 
|  | else if (FValIsAllZeros) | 
|  | Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, | 
|  | DAG.getBitcast(CondVT, LHS)); | 
|  |  | 
|  | return DAG.getBitcast(VT, Ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We should generate an X86ISD::BLENDI from a vselect if its argument | 
|  | // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of | 
|  | // constants. This specific pattern gets generated when we split a | 
|  | // selector for a 512 bit vector in a machine without AVX512 (but with | 
|  | // 256-bit vectors), during legalization: | 
|  | // | 
|  | // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS) | 
|  | // | 
|  | // Iff we find this pattern and the build_vectors are built from | 
|  | // constants, we translate the vselect into a shuffle_vector that we | 
|  | // know will be matched by LowerVECTOR_SHUFFLEtoBlend. | 
|  | if ((N->getOpcode() == ISD::VSELECT || | 
|  | N->getOpcode() == X86ISD::SHRUNKBLEND) && | 
|  | !DCI.isBeforeLegalize() && !VT.is512BitVector()) { | 
|  | SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget); | 
|  | if (Shuffle.getNode()) | 
|  | return Shuffle; | 
|  | } | 
|  |  | 
|  | // If this is a *dynamic* select (non-constant condition) and we can match | 
|  | // this node with one of the variable blend instructions, restructure the | 
|  | // condition so that the blends can use the high bit of each element and use | 
|  | // SimplifyDemandedBits to simplify the condition operand. | 
|  | if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && | 
|  | !DCI.isBeforeLegalize() && | 
|  | !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) { | 
|  | unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); | 
|  |  | 
|  | // Don't optimize vector selects that map to mask-registers. | 
|  | if (BitWidth == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can only handle the cases where VSELECT is directly legal on the | 
|  | // subtarget. We custom lower VSELECT nodes with constant conditions and | 
|  | // this makes it hard to see whether a dynamic VSELECT will correctly | 
|  | // lower, so we both check the operation's status and explicitly handle the | 
|  | // cases where a *dynamic* blend will fail even though a constant-condition | 
|  | // blend could be custom lowered. | 
|  | // FIXME: We should find a better way to handle this class of problems. | 
|  | // Potentially, we should combine constant-condition vselect nodes | 
|  | // pre-legalization into shuffles and not mark as many types as custom | 
|  | // lowered. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) | 
|  | return SDValue(); | 
|  | // FIXME: We don't support i16-element blends currently. We could and | 
|  | // should support them by making *all* the bits in the condition be set | 
|  | // rather than just the high bit and using an i8-element blend. | 
|  | if (VT.getScalarType() == MVT::i16) | 
|  | return SDValue(); | 
|  | // Dynamic blending was only available from SSE4.1 onward. | 
|  | if (VT.getSizeInBits() == 128 && !Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  | // Byte blends are only available in AVX2 | 
|  | if (VT.getSizeInBits() == 256 && VT.getScalarType() == MVT::i8 && | 
|  | !Subtarget->hasAVX2()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); | 
|  | APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); | 
|  |  | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), | 
|  | DCI.isBeforeLegalizeOps()); | 
|  | if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, | 
|  | TLO)) { | 
|  | // If we changed the computation somewhere in the DAG, this change | 
|  | // will affect all users of Cond. | 
|  | // Make sure it is fine and update all the nodes so that we do not | 
|  | // use the generic VSELECT anymore. Otherwise, we may perform | 
|  | // wrong optimizations as we messed up with the actual expectation | 
|  | // for the vector boolean values. | 
|  | if (Cond != TLO.Old) { | 
|  | // Check all uses of that condition operand to check whether it will be | 
|  | // consumed by non-BLEND instructions, which may depend on all bits are | 
|  | // set properly. | 
|  | for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); | 
|  | I != E; ++I) | 
|  | if (I->getOpcode() != ISD::VSELECT) | 
|  | // TODO: Add other opcodes eventually lowered into BLEND. | 
|  | return SDValue(); | 
|  |  | 
|  | // Update all the users of the condition, before committing the change, | 
|  | // so that the VSELECT optimizations that expect the correct vector | 
|  | // boolean value will not be triggered. | 
|  | for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); | 
|  | I != E; ++I) | 
|  | DAG.ReplaceAllUsesOfValueWith( | 
|  | SDValue(*I, 0), | 
|  | DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0), | 
|  | Cond, I->getOperand(1), I->getOperand(2))); | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | return SDValue(); | 
|  | } | 
|  | // At this point, only Cond is changed. Change the condition | 
|  | // just for N to keep the opportunity to optimize all other | 
|  | // users their own way. | 
|  | DAG.ReplaceAllUsesOfValueWith( | 
|  | SDValue(N, 0), | 
|  | DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0), | 
|  | TLO.New, N->getOperand(1), N->getOperand(2))); | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check whether a boolean test is testing a boolean value generated by | 
|  | // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition | 
|  | // code. | 
|  | // | 
|  | // Simplify the following patterns: | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) | 
|  | // to (Op EFLAGS Cond) | 
|  | // | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) | 
|  | // to (Op EFLAGS !Cond) | 
|  | // | 
|  | // where Op could be BRCOND or CMOV. | 
|  | // | 
|  | static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { | 
|  | // Quit if not CMP and SUB with its value result used. | 
|  | if (Cmp.getOpcode() != X86ISD::CMP && | 
|  | (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Quit if not used as a boolean value. | 
|  | if (CC != X86::COND_E && CC != X86::COND_NE) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check CMP operands. One of them should be 0 or 1 and the other should be | 
|  | // an SetCC or extended from it. | 
|  | SDValue Op1 = Cmp.getOperand(0); | 
|  | SDValue Op2 = Cmp.getOperand(1); | 
|  |  | 
|  | SDValue SetCC; | 
|  | const ConstantSDNode* C = nullptr; | 
|  | bool needOppositeCond = (CC == X86::COND_E); | 
|  | bool checkAgainstTrue = false; // Is it a comparison against 1? | 
|  |  | 
|  | if ((C = dyn_cast<ConstantSDNode>(Op1))) | 
|  | SetCC = Op2; | 
|  | else if ((C = dyn_cast<ConstantSDNode>(Op2))) | 
|  | SetCC = Op1; | 
|  | else // Quit if all operands are not constants. | 
|  | return SDValue(); | 
|  |  | 
|  | if (C->getZExtValue() == 1) { | 
|  | needOppositeCond = !needOppositeCond; | 
|  | checkAgainstTrue = true; | 
|  | } else if (C->getZExtValue() != 0) | 
|  | // Quit if the constant is neither 0 or 1. | 
|  | return SDValue(); | 
|  |  | 
|  | bool truncatedToBoolWithAnd = false; | 
|  | // Skip (zext $x), (trunc $x), or (and $x, 1) node. | 
|  | while (SetCC.getOpcode() == ISD::ZERO_EXTEND || | 
|  | SetCC.getOpcode() == ISD::TRUNCATE || | 
|  | SetCC.getOpcode() == ISD::AND) { | 
|  | if (SetCC.getOpcode() == ISD::AND) { | 
|  | int OpIdx = -1; | 
|  | ConstantSDNode *CS; | 
|  | if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) && | 
|  | CS->getZExtValue() == 1) | 
|  | OpIdx = 1; | 
|  | if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) && | 
|  | CS->getZExtValue() == 1) | 
|  | OpIdx = 0; | 
|  | if (OpIdx == -1) | 
|  | break; | 
|  | SetCC = SetCC.getOperand(OpIdx); | 
|  | truncatedToBoolWithAnd = true; | 
|  | } else | 
|  | SetCC = SetCC.getOperand(0); | 
|  | } | 
|  |  | 
|  | switch (SetCC.getOpcode()) { | 
|  | case X86ISD::SETCC_CARRY: | 
|  | // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to | 
|  | // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, | 
|  | // i.e. it's a comparison against true but the result of SETCC_CARRY is not | 
|  | // truncated to i1 using 'and'. | 
|  | if (checkAgainstTrue && !truncatedToBoolWithAnd) | 
|  | break; | 
|  | assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && | 
|  | "Invalid use of SETCC_CARRY!"); | 
|  | // FALL THROUGH | 
|  | case X86ISD::SETCC: | 
|  | // Set the condition code or opposite one if necessary. | 
|  | CC = X86::CondCode(SetCC.getConstantOperandVal(0)); | 
|  | if (needOppositeCond) | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | return SetCC.getOperand(1); | 
|  | case X86ISD::CMOV: { | 
|  | // Check whether false/true value has canonical one, i.e. 0 or 1. | 
|  | ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); | 
|  | ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); | 
|  | // Quit if true value is not a constant. | 
|  | if (!TVal) | 
|  | return SDValue(); | 
|  | // Quit if false value is not a constant. | 
|  | if (!FVal) { | 
|  | SDValue Op = SetCC.getOperand(0); | 
|  | // Skip 'zext' or 'trunc' node. | 
|  | if (Op.getOpcode() == ISD::ZERO_EXTEND || | 
|  | Op.getOpcode() == ISD::TRUNCATE) | 
|  | Op = Op.getOperand(0); | 
|  | // A special case for rdrand/rdseed, where 0 is set if false cond is | 
|  | // found. | 
|  | if ((Op.getOpcode() != X86ISD::RDRAND && | 
|  | Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) | 
|  | return SDValue(); | 
|  | } | 
|  | // Quit if false value is not the constant 0 or 1. | 
|  | bool FValIsFalse = true; | 
|  | if (FVal && FVal->getZExtValue() != 0) { | 
|  | if (FVal->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | // If FVal is 1, opposite cond is needed. | 
|  | needOppositeCond = !needOppositeCond; | 
|  | FValIsFalse = false; | 
|  | } | 
|  | // Quit if TVal is not the constant opposite of FVal. | 
|  | if (FValIsFalse && TVal->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | if (!FValIsFalse && TVal->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  | CC = X86::CondCode(SetCC.getConstantOperandVal(2)); | 
|  | if (needOppositeCond) | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | return SetCC.getOperand(3); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS. | 
|  | /// Match: | 
|  | ///   (X86or (X86setcc) (X86setcc)) | 
|  | ///   (X86cmp (and (X86setcc) (X86setcc)), 0) | 
|  | static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0, | 
|  | X86::CondCode &CC1, SDValue &Flags, | 
|  | bool &isAnd) { | 
|  | if (Cond->getOpcode() == X86ISD::CMP) { | 
|  | ConstantSDNode *CondOp1C = dyn_cast<ConstantSDNode>(Cond->getOperand(1)); | 
|  | if (!CondOp1C || !CondOp1C->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | Cond = Cond->getOperand(0); | 
|  | } | 
|  |  | 
|  | isAnd = false; | 
|  |  | 
|  | SDValue SetCC0, SetCC1; | 
|  | switch (Cond->getOpcode()) { | 
|  | default: return false; | 
|  | case ISD::AND: | 
|  | case X86ISD::AND: | 
|  | isAnd = true; | 
|  | // fallthru | 
|  | case ISD::OR: | 
|  | case X86ISD::OR: | 
|  | SetCC0 = Cond->getOperand(0); | 
|  | SetCC1 = Cond->getOperand(1); | 
|  | break; | 
|  | }; | 
|  |  | 
|  | // Make sure we have SETCC nodes, using the same flags value. | 
|  | if (SetCC0.getOpcode() != X86ISD::SETCC || | 
|  | SetCC1.getOpcode() != X86ISD::SETCC || | 
|  | SetCC0->getOperand(1) != SetCC1->getOperand(1)) | 
|  | return false; | 
|  |  | 
|  | CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0); | 
|  | CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0); | 
|  | Flags = SetCC0->getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] | 
|  | static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag operand isn't dead, don't touch this CMOV. | 
|  | if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue FalseOp = N->getOperand(0); | 
|  | SDValue TrueOp = N->getOperand(1); | 
|  | X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); | 
|  | SDValue Cond = N->getOperand(3); | 
|  |  | 
|  | if (CC == X86::COND_E || CC == X86::COND_NE) { | 
|  | switch (Cond.getOpcode()) { | 
|  | default: break; | 
|  | case X86ISD::BSR: | 
|  | case X86ISD::BSF: | 
|  | // If operand of BSR / BSF are proven never zero, then ZF cannot be set. | 
|  | if (DAG.isKnownNeverZero(Cond.getOperand(0))) | 
|  | return (CC == X86::COND_E) ? FalseOp : TrueOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Flags; | 
|  |  | 
|  | Flags = checkBoolTestSetCCCombine(Cond, CC); | 
|  | if (Flags.getNode() && | 
|  | // Extra check as FCMOV only supports a subset of X86 cond. | 
|  | (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { | 
|  | SDValue Ops[] = { FalseOp, TrueOp, | 
|  | DAG.getConstant(CC, DL, MVT::i8), Flags }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations.  Note that the operands are ordered the opposite of SELECT | 
|  | // operands. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { | 
|  | // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is | 
|  | // larger than FalseC (the false value). | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueC, FalseC); | 
|  | std::swap(TrueOp, FalseOp); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0. | 
|  | // This is efficient for any integer data type (including i8/i16) and | 
|  | // shift amount. | 
|  | if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, DL, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, DL, MVT::i8)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient | 
|  | // for any integer data type, including i8/i16. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, DL, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  |  | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, DL, MVT::i8), Cond); | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, DL, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle these cases: | 
|  | //   (select (x != c), e, c) -> select (x != c), e, x), | 
|  | //   (select (x == c), c, e) -> select (x == c), x, e) | 
|  | // where the c is an integer constant, and the "select" is the combination | 
|  | // of CMOV and CMP. | 
|  | // | 
|  | // The rationale for this change is that the conditional-move from a constant | 
|  | // needs two instructions, however, conditional-move from a register needs | 
|  | // only one instruction. | 
|  | // | 
|  | // CAVEAT: By replacing a constant with a symbolic value, it may obscure | 
|  | //  some instruction-combining opportunities. This opt needs to be | 
|  | //  postponed as late as possible. | 
|  | // | 
|  | if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { | 
|  | // the DCI.xxxx conditions are provided to postpone the optimization as | 
|  | // late as possible. | 
|  |  | 
|  | ConstantSDNode *CmpAgainst = nullptr; | 
|  | if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && | 
|  | (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && | 
|  | !isa<ConstantSDNode>(Cond.getOperand(0))) { | 
|  |  | 
|  | if (CC == X86::COND_NE && | 
|  | CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueOp, FalseOp); | 
|  | } | 
|  |  | 
|  | if (CC == X86::COND_E && | 
|  | CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { | 
|  | SDValue Ops[] = { FalseOp, Cond.getOperand(0), | 
|  | DAG.getConstant(CC, DL, MVT::i8), Cond }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold and/or of setcc's to double CMOV: | 
|  | //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2) | 
|  | //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2) | 
|  | // | 
|  | // This combine lets us generate: | 
|  | //   cmovcc1 (jcc1 if we don't have CMOV) | 
|  | //   cmovcc2 (same) | 
|  | // instead of: | 
|  | //   setcc1 | 
|  | //   setcc2 | 
|  | //   and/or | 
|  | //   cmovne (jne if we don't have CMOV) | 
|  | // When we can't use the CMOV instruction, it might increase branch | 
|  | // mispredicts. | 
|  | // When we can use CMOV, or when there is no mispredict, this improves | 
|  | // throughput and reduces register pressure. | 
|  | // | 
|  | if (CC == X86::COND_NE) { | 
|  | SDValue Flags; | 
|  | X86::CondCode CC0, CC1; | 
|  | bool isAndSetCC; | 
|  | if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) { | 
|  | if (isAndSetCC) { | 
|  | std::swap(FalseOp, TrueOp); | 
|  | CC0 = X86::GetOppositeBranchCondition(CC0); | 
|  | CC1 = X86::GetOppositeBranchCondition(CC1); | 
|  | } | 
|  |  | 
|  | SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8), | 
|  | Flags}; | 
|  | SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps); | 
|  | SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags}; | 
|  | SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1)); | 
|  | return CMOV; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformMulCombine - Optimize a single multiply with constant into two | 
|  | /// in order to implement it with two cheaper instructions, e.g. | 
|  | /// LEA + SHL, LEA + LEA. | 
|  | static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // An imul is usually smaller than the alternative sequence. | 
|  | if (DAG.getMachineFunction().getFunction()->optForMinSize()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64 && VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | uint64_t MulAmt = C->getZExtValue(); | 
|  | if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) | 
|  | return SDValue(); | 
|  |  | 
|  | uint64_t MulAmt1 = 0; | 
|  | uint64_t MulAmt2 = 0; | 
|  | if ((MulAmt % 9) == 0) { | 
|  | MulAmt1 = 9; | 
|  | MulAmt2 = MulAmt / 9; | 
|  | } else if ((MulAmt % 5) == 0) { | 
|  | MulAmt1 = 5; | 
|  | MulAmt2 = MulAmt / 5; | 
|  | } else if ((MulAmt % 3) == 0) { | 
|  | MulAmt1 = 3; | 
|  | MulAmt2 = MulAmt / 3; | 
|  | } | 
|  | if (MulAmt2 && | 
|  | (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2) && | 
|  | !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) | 
|  | // If second multiplifer is pow2, issue it first. We want the multiply by | 
|  | // 3, 5, or 9 to be folded into the addressing mode unless the lone use | 
|  | // is an add. | 
|  | std::swap(MulAmt1, MulAmt2); | 
|  |  | 
|  | SDValue NewMul; | 
|  | if (isPowerOf2_64(MulAmt1)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(MulAmt1, DL, VT)); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, | 
|  | DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, | 
|  | DAG.getConstant(MulAmt2, DL, VT)); | 
|  |  | 
|  | // Do not add new nodes to DAG combiner worklist. | 
|  | DCI.CombineTo(N, NewMul, false); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) | 
|  | // since the result of setcc_c is all zero's or all ones. | 
|  | if (VT.isInteger() && !VT.isVector() && | 
|  | N1C && N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | APInt ShAmt = N1C->getAPIntValue(); | 
|  | Mask = Mask.shl(ShAmt); | 
|  | bool MaskOK = false; | 
|  | // We can handle cases concerning bit-widening nodes containing setcc_c if | 
|  | // we carefully interrogate the mask to make sure we are semantics | 
|  | // preserving. | 
|  | // The transform is not safe if the result of C1 << C2 exceeds the bitwidth | 
|  | // of the underlying setcc_c operation if the setcc_c was zero extended. | 
|  | // Consider the following example: | 
|  | //   zext(setcc_c)                 -> i32 0x0000FFFF | 
|  | //   c1                            -> i32 0x0000FFFF | 
|  | //   c2                            -> i32 0x00000001 | 
|  | //   (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE | 
|  | //   (and setcc_c, (c1 << c2))     -> i32 0x0000FFFE | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | MaskOK = true; | 
|  | } else if (N00.getOpcode() == ISD::SIGN_EXTEND && | 
|  | N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | MaskOK = true; | 
|  | } else if ((N00.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N00.getOpcode() == ISD::ANY_EXTEND) && | 
|  | N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits()); | 
|  | } | 
|  | if (MaskOK && Mask != 0) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Hardware support for vector shifts is sparse which makes us scalarize the | 
|  | // vector operations in many cases. Also, on sandybridge ADD is faster than | 
|  | // shl. | 
|  | // (shl V, 1) -> add V,V | 
|  | if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) | 
|  | if (auto *N1SplatC = N1BV->getConstantSplatNode()) { | 
|  | assert(N0.getValueType().isVector() && "Invalid vector shift type"); | 
|  | // We shift all of the values by one. In many cases we do not have | 
|  | // hardware support for this operation. This is better expressed as an ADD | 
|  | // of two values. | 
|  | if (N1SplatC->getAPIntValue() == 1) | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Returns a vector of 0s if the node in input is a vector logical | 
|  | /// shift by a constant amount which is known to be bigger than or equal | 
|  | /// to the vector element size in bits. | 
|  | static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && | 
|  | (!Subtarget->hasInt256() || | 
|  | (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Amt = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt)) | 
|  | if (auto *AmtSplat = AmtBV->getConstantSplatNode()) { | 
|  | APInt ShiftAmt = AmtSplat->getAPIntValue(); | 
|  | unsigned MaxAmount = VT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // SSE2/AVX2 logical shifts always return a vector of 0s | 
|  | // if the shift amount is bigger than or equal to | 
|  | // the element size. The constant shift amount will be | 
|  | // encoded as a 8-bit immediate. | 
|  | if (ShiftAmt.trunc(8).uge(MaxAmount)) | 
|  | return getZeroVector(VT, Subtarget, DAG, DL); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformShiftCombine - Combine shifts. | 
|  | static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (N->getOpcode() == ISD::SHL) | 
|  | if (SDValue V = PerformSHLCombine(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // Try to fold this logical shift into a zero vector. | 
|  | if (N->getOpcode() != ISD::SRA) | 
|  | if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget)) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..)) | 
|  | // where both setccs reference the same FP CMP, and rewrite for CMPEQSS | 
|  | // and friends.  Likewise for OR -> CMPNEQSS. | 
|  | static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | unsigned opcode; | 
|  |  | 
|  | // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but | 
|  | // we're requiring SSE2 for both. | 
|  | if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CMP0 = N0->getOperand(1); | 
|  | SDValue CMP1 = N1->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // The SETCCs should both refer to the same CMP. | 
|  | if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CMP00 = CMP0->getOperand(0); | 
|  | SDValue CMP01 = CMP0->getOperand(1); | 
|  | EVT     VT    = CMP00.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32 || VT == MVT::f64) { | 
|  | bool ExpectingFlags = false; | 
|  | // Check for any users that want flags: | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | !ExpectingFlags && UI != UE; ++UI) | 
|  | switch (UI->getOpcode()) { | 
|  | default: | 
|  | case ISD::BR_CC: | 
|  | case ISD::BRCOND: | 
|  | case ISD::SELECT: | 
|  | ExpectingFlags = true; | 
|  | break; | 
|  | case ISD::CopyToReg: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ExpectingFlags) { | 
|  | enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); | 
|  | enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); | 
|  |  | 
|  | if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { | 
|  | X86::CondCode tmp = cc0; | 
|  | cc0 = cc1; | 
|  | cc1 = tmp; | 
|  | } | 
|  |  | 
|  | if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) || | 
|  | (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { | 
|  | // FIXME: need symbolic constants for these magic numbers. | 
|  | // See X86ATTInstPrinter.cpp:printSSECC(). | 
|  | unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; | 
|  | if (Subtarget->hasAVX512()) { | 
|  | SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00, | 
|  | CMP01, | 
|  | DAG.getConstant(x86cc, DL, MVT::i8)); | 
|  | if (N->getValueType(0) != MVT::i1) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), | 
|  | FSetCC); | 
|  | return FSetCC; | 
|  | } | 
|  | SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, | 
|  | CMP00.getValueType(), CMP00, CMP01, | 
|  | DAG.getConstant(x86cc, DL, | 
|  | MVT::i8)); | 
|  |  | 
|  | bool is64BitFP = (CMP00.getValueType() == MVT::f64); | 
|  | MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | if (is64BitFP && !Subtarget->is64Bit()) { | 
|  | // On a 32-bit target, we cannot bitcast the 64-bit float to a | 
|  | // 64-bit integer, since that's not a legal type. Since | 
|  | // OnesOrZeroesF is all ones of all zeroes, we don't need all the | 
|  | // bits, but can do this little dance to extract the lowest 32 bits | 
|  | // and work with those going forward. | 
|  | SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, | 
|  | OnesOrZeroesF); | 
|  | SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64); | 
|  | OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, | 
|  | Vector32, DAG.getIntPtrConstant(0, DL)); | 
|  | IntVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF); | 
|  | SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, | 
|  | DAG.getConstant(1, DL, IntVT)); | 
|  | SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, | 
|  | ANDed); | 
|  | return OneBitOfTruth; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector | 
|  | /// so it can be folded inside ANDNP. | 
|  | static bool CanFoldXORWithAllOnes(const SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Match direct AllOnes for 128 and 256-bit vectors | 
|  | if (ISD::isBuildVectorAllOnes(N)) | 
|  | return true; | 
|  |  | 
|  | // Look through a bit convert. | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0).getNode(); | 
|  |  | 
|  | // Sometimes the operand may come from a insert_subvector building a 256-bit | 
|  | // allones vector | 
|  | if (VT.is256BitVector() && | 
|  | N->getOpcode() == ISD::INSERT_SUBVECTOR) { | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  |  | 
|  | if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | V1.getOperand(0).getOpcode() == ISD::UNDEF && | 
|  | ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && | 
|  | ISD::isBuildVectorAllOnes(V2.getNode())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized | 
|  | // register. In most cases we actually compare or select YMM-sized registers | 
|  | // and mixing the two types creates horrible code. This method optimizes | 
|  | // some of the transition sequences. | 
|  | static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.is256BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert((N->getOpcode() == ISD::ANY_EXTEND || | 
|  | N->getOpcode() == ISD::ZERO_EXTEND || | 
|  | N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); | 
|  |  | 
|  | SDValue Narrow = N->getOperand(0); | 
|  | EVT NarrowVT = Narrow->getValueType(0); | 
|  | if (!NarrowVT.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Narrow->getOpcode() != ISD::XOR && | 
|  | Narrow->getOpcode() != ISD::AND && | 
|  | Narrow->getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0  = Narrow->getOperand(0); | 
|  | SDValue N1  = Narrow->getOperand(1); | 
|  | SDLoc DL(Narrow); | 
|  |  | 
|  | // The Left side has to be a trunc. | 
|  | if (N0.getOpcode() != ISD::TRUNCATE) | 
|  | return SDValue(); | 
|  |  | 
|  | // The type of the truncated inputs. | 
|  | EVT WideVT = N0->getOperand(0)->getValueType(0); | 
|  | if (WideVT != VT) | 
|  | return SDValue(); | 
|  |  | 
|  | // The right side has to be a 'trunc' or a constant vector. | 
|  | bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; | 
|  | ConstantSDNode *RHSConstSplat = nullptr; | 
|  | if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1)) | 
|  | RHSConstSplat = RHSBV->getConstantSplatNode(); | 
|  | if (!RHSTrunc && !RHSConstSplat) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Set N0 and N1 to hold the inputs to the new wide operation. | 
|  | N0 = N0->getOperand(0); | 
|  | if (RHSConstSplat) { | 
|  | N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), | 
|  | SDValue(RHSConstSplat, 0)); | 
|  | SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); | 
|  | N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C); | 
|  | } else if (RHSTrunc) { | 
|  | N1 = N1->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Generate the wide operation. | 
|  | SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::ANY_EXTEND: | 
|  | return Op; | 
|  | case ISD::ZERO_EXTEND: { | 
|  | unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); | 
|  | APInt Mask = APInt::getAllOnesValue(InBits); | 
|  | Mask = Mask.zext(VT.getScalarType().getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | Op, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, | 
|  | Op, DAG.getValueType(NarrowVT)); | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // A vector zext_in_reg may be represented as a shuffle, | 
|  | // feeding into a bitcast (this represents anyext) feeding into | 
|  | // an and with a mask. | 
|  | // We'd like to try to combine that into a shuffle with zero | 
|  | // plus a bitcast, removing the and. | 
|  | if (N0.getOpcode() != ISD::BITCAST || | 
|  | N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return SDValue(); | 
|  |  | 
|  | // The other side of the AND should be a splat of 2^C, where C | 
|  | // is the number of bits in the source type. | 
|  | if (N1.getOpcode() == ISD::BITCAST) | 
|  | N1 = N1.getOperand(0); | 
|  | if (N1.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return SDValue(); | 
|  | BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1); | 
|  |  | 
|  | ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0)); | 
|  | EVT SrcType = Shuffle->getValueType(0); | 
|  |  | 
|  | // We expect a single-source shuffle | 
|  | if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned SrcSize = SrcType.getScalarSizeInBits(); | 
|  |  | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (!Vector->isConstantSplat(SplatValue, SplatUndef, | 
|  | SplatBitSize, HasAnyUndefs)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ResSize = N1.getValueType().getScalarSizeInBits(); | 
|  | // Make sure the splat matches the mask we expect | 
|  | if (SplatBitSize > ResSize || | 
|  | (SplatValue + 1).exactLogBase2() != (int)SrcSize) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure the input and output size make sense | 
|  | if (SrcSize >= ResSize || ResSize % SrcSize) | 
|  | return SDValue(); | 
|  |  | 
|  | // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...> | 
|  | // The number of u's between each two values depends on the ratio between | 
|  | // the source and dest type. | 
|  | unsigned ZextRatio = ResSize / SrcSize; | 
|  | bool IsZext = true; | 
|  | for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) { | 
|  | if (i % ZextRatio) { | 
|  | if (Shuffle->getMaskElt(i) > 0) { | 
|  | // Expected undef | 
|  | IsZext = false; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) { | 
|  | // Expected element number | 
|  | IsZext = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IsZext) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok, perform the transformation - replace the shuffle with | 
|  | // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero | 
|  | // (instead of undef) where the k elements come from the zero vector. | 
|  | SmallVector<int, 8> Mask; | 
|  | unsigned NumElems = SrcType.getVectorNumElements(); | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | if (i % ZextRatio) | 
|  | Mask.push_back(NumElems); | 
|  | else | 
|  | Mask.push_back(i / ZextRatio); | 
|  |  | 
|  | SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL, | 
|  | Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask); | 
|  | return DAG.getBitcast(N0.getValueType(), NewShuffle); | 
|  | } | 
|  |  | 
|  | /// If both input operands of a logic op are being cast from floating point | 
|  | /// types, try to convert this into a floating point logic node to avoid | 
|  | /// unnecessary moves from SSE to integer registers. | 
|  | static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | unsigned FPOpcode = ISD::DELETED_NODE; | 
|  | if (N->getOpcode() == ISD::AND) | 
|  | FPOpcode = X86ISD::FAND; | 
|  | else if (N->getOpcode() == ISD::OR) | 
|  | FPOpcode = X86ISD::FOR; | 
|  | else if (N->getOpcode() == ISD::XOR) | 
|  | FPOpcode = X86ISD::FXOR; | 
|  |  | 
|  | assert(FPOpcode != ISD::DELETED_NODE && | 
|  | "Unexpected input node for FP logic conversion"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST && | 
|  | ((Subtarget->hasSSE1() && VT == MVT::i32) || | 
|  | (Subtarget->hasSSE2() && VT == MVT::i64))) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | EVT N00Type = N00.getValueType(); | 
|  | EVT N10Type = N10.getValueType(); | 
|  | if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) { | 
|  | SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10); | 
|  | return DAG.getBitcast(VT, FPLogic); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget)) | 
|  | return Zext; | 
|  |  | 
|  | if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) | 
|  | return R; | 
|  |  | 
|  | if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) | 
|  | return FPLogic; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Create BEXTR instructions | 
|  | // BEXTR is ((X >> imm) & (2**size-1)) | 
|  | if (VT == MVT::i32 || VT == MVT::i64) { | 
|  | // Check for BEXTR. | 
|  | if ((Subtarget->hasBMI() || Subtarget->hasTBM()) && | 
|  | (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) { | 
|  | ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (MaskNode && ShiftNode) { | 
|  | uint64_t Mask = MaskNode->getZExtValue(); | 
|  | uint64_t Shift = ShiftNode->getZExtValue(); | 
|  | if (isMask_64(Mask)) { | 
|  | uint64_t MaskSize = countPopulation(Mask); | 
|  | if (Shift + MaskSize <= VT.getSizeInBits()) | 
|  | return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(Shift | (MaskSize << 8), DL, | 
|  | VT)); | 
|  | } | 
|  | } | 
|  | } // BEXTR | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Want to form ANDNP nodes: | 
|  | // 1) In the hopes of then easily combining them with OR and AND nodes | 
|  | //    to form PBLEND/PSIGN. | 
|  | // 2) To match ANDN packed intrinsics | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check LHS for vnot | 
|  | if (N0.getOpcode() == ISD::XOR && | 
|  | //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) | 
|  | CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // Check RHS for vnot | 
|  | if (N1.getOpcode() == ISD::XOR && | 
|  | //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) | 
|  | CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) | 
|  | return R; | 
|  |  | 
|  | if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) | 
|  | return FPLogic; | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // look for psign/blend | 
|  | if (VT == MVT::v2i64 || VT == MVT::v4i64) { | 
|  | if (!Subtarget->hasSSSE3() || | 
|  | (VT == MVT::v4i64 && !Subtarget->hasInt256())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Canonicalize pandn to RHS | 
|  | if (N0.getOpcode() == X86ISD::ANDNP) | 
|  | std::swap(N0, N1); | 
|  | // or (and (m, y), (pandn m, x)) | 
|  | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { | 
|  | SDValue Mask = N1.getOperand(0); | 
|  | SDValue X    = N1.getOperand(1); | 
|  | SDValue Y; | 
|  | if (N0.getOperand(0) == Mask) | 
|  | Y = N0.getOperand(1); | 
|  | if (N0.getOperand(1) == Mask) | 
|  | Y = N0.getOperand(0); | 
|  |  | 
|  | // Check to see if the mask appeared in both the AND and ANDNP and | 
|  | if (!Y.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. | 
|  | // Look through mask bitcast. | 
|  | if (Mask.getOpcode() == ISD::BITCAST) | 
|  | Mask = Mask.getOperand(0); | 
|  | if (X.getOpcode() == ISD::BITCAST) | 
|  | X = X.getOperand(0); | 
|  | if (Y.getOpcode() == ISD::BITCAST) | 
|  | Y = Y.getOperand(0); | 
|  |  | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  |  | 
|  | // Validate that the Mask operand is a vector sra node. | 
|  | // FIXME: what to do for bytes, since there is a psignb/pblendvb, but | 
|  | // there is no psrai.b | 
|  | unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); | 
|  | unsigned SraAmt = ~0; | 
|  | if (Mask.getOpcode() == ISD::SRA) { | 
|  | if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1))) | 
|  | if (auto *AmtConst = AmtBV->getConstantSplatNode()) | 
|  | SraAmt = AmtConst->getZExtValue(); | 
|  | } else if (Mask.getOpcode() == X86ISD::VSRAI) { | 
|  | SDValue SraC = Mask.getOperand(1); | 
|  | SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue(); | 
|  | } | 
|  | if ((SraAmt + 1) != EltBits) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Now we know we at least have a plendvb with the mask val.  See if | 
|  | // we can form a psignb/w/d. | 
|  | // psign = x.type == y.type == mask.type && y = sub(0, x); | 
|  | if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && | 
|  | ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && | 
|  | X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { | 
|  | assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && | 
|  | "Unsupported VT for PSIGN"); | 
|  | Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); | 
|  | return DAG.getBitcast(VT, Mask); | 
|  | } | 
|  | // PBLENDVB only available on SSE 4.1 | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; | 
|  |  | 
|  | X = DAG.getBitcast(BlendVT, X); | 
|  | Y = DAG.getBitcast(BlendVT, Y); | 
|  | Mask = DAG.getBitcast(BlendVT, Mask); | 
|  | Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); | 
|  | return DAG.getBitcast(VT, Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) | 
|  | bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); | 
|  |  | 
|  | // SHLD/SHRD instructions have lower register pressure, but on some | 
|  | // platforms they have higher latency than the equivalent | 
|  | // series of shifts/or that would otherwise be generated. | 
|  | // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions | 
|  | // have higher latencies and we are not optimizing for size. | 
|  | if (!OptForSize && Subtarget->isSHLDSlow()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShAmt0 = N0.getOperand(1); | 
|  | if (ShAmt0.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | SDValue ShAmt1 = N1.getOperand(1); | 
|  | if (ShAmt1.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | if (ShAmt0.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt0 = ShAmt0.getOperand(0); | 
|  | if (ShAmt1.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1 = ShAmt1.getOperand(0); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | unsigned Opc = X86ISD::SHLD; | 
|  | SDValue Op0 = N0.getOperand(0); | 
|  | SDValue Op1 = N1.getOperand(0); | 
|  | if (ShAmt0.getOpcode() == ISD::SUB) { | 
|  | Opc = X86ISD::SHRD; | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(ShAmt0, ShAmt1); | 
|  | } | 
|  |  | 
|  | unsigned Bits = VT.getSizeInBits(); | 
|  | if (ShAmt1.getOpcode() == ISD::SUB) { | 
|  | SDValue Sum = ShAmt1.getOperand(0); | 
|  | if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { | 
|  | SDValue ShAmt1Op1 = ShAmt1.getOperand(1); | 
|  | if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1Op1 = ShAmt1Op1.getOperand(0); | 
|  | if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | Op0, Op1, | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  | } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { | 
|  | ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); | 
|  | if (ShAmt0C && | 
|  | ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | N0.getOperand(0), N1.getOperand(0), | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Generate NEG and CMOV for integer abs. | 
|  | static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Since X86 does not have CMOV for 8-bit integer, we don't convert | 
|  | // 8-bit integer abs to NEG and CMOV. | 
|  | if (VT.isInteger() && VT.getSizeInBits() == 8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) | 
|  | // and change it to SUB and CMOV. | 
|  | if (VT.isInteger() && N->getOpcode() == ISD::XOR && | 
|  | N0.getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1) == N1 && | 
|  | N1.getOpcode() == ISD::SRA && | 
|  | N1.getOperand(0) == N0.getOperand(0)) | 
|  | if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) | 
|  | if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { | 
|  | // Generate SUB & CMOV. | 
|  | SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), | 
|  | DAG.getConstant(0, DL, VT), N0.getOperand(0)); | 
|  |  | 
|  | SDValue Ops[] = { N0.getOperand(0), Neg, | 
|  | DAG.getConstant(X86::COND_GE, DL, MVT::i8), | 
|  | SDValue(Neg.getNode(), 1) }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Try to turn tests against the signbit in the form of: | 
|  | //   XOR(TRUNCATE(SRL(X, size(X)-1)), 1) | 
|  | // into: | 
|  | //   SETGT(X, -1) | 
|  | static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) { | 
|  | // This is only worth doing if the output type is i8. | 
|  | if (N->getValueType(0) != MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // We should be performing an xor against a truncated shift. | 
|  | if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure we are performing an xor against one. | 
|  | if (!isa<ConstantSDNode>(N1) || !cast<ConstantSDNode>(N1)->isOne()) | 
|  | return SDValue(); | 
|  |  | 
|  | // SetCC on x86 zero extends so only act on this if it's a logical shift. | 
|  | SDValue Shift = N0.getOperand(0); | 
|  | if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure we are truncating from one of i16, i32 or i64. | 
|  | EVT ShiftTy = Shift.getValueType(); | 
|  | if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure the shift amount extracts the sign bit. | 
|  | if (!isa<ConstantSDNode>(Shift.getOperand(1)) || | 
|  | Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Create a greater-than comparison against -1. | 
|  | // N.B. Using SETGE against 0 works but we want a canonical looking | 
|  | // comparison, using SETGT matches up with what TranslateX86CC. | 
|  | SDLoc DL(N); | 
|  | SDValue ShiftOp = Shift.getOperand(0); | 
|  | EVT ShiftOpTy = ShiftOp.getValueType(); | 
|  | SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp, | 
|  | DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG)) | 
|  | return RV; | 
|  |  | 
|  | if (Subtarget->hasCMov()) | 
|  | if (SDValue RV = performIntegerAbsCombine(N, DAG)) | 
|  | return RV; | 
|  |  | 
|  | if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) | 
|  | return FPLogic; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. | 
|  | static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(N); | 
|  | EVT RegVT = Ld->getValueType(0); | 
|  | EVT MemVT = Ld->getMemoryVT(); | 
|  | SDLoc dl(Ld); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // For chips with slow 32-byte unaligned loads, break the 32-byte operation | 
|  | // into two 16-byte operations. | 
|  | ISD::LoadExtType Ext = Ld->getExtensionType(); | 
|  | bool Fast; | 
|  | unsigned AddressSpace = Ld->getAddressSpace(); | 
|  | unsigned Alignment = Ld->getAlignment(); | 
|  | if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() && | 
|  | Ext == ISD::NON_EXTLOAD && | 
|  | TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT, | 
|  | AddressSpace, Alignment, &Fast) && !Fast) { | 
|  | unsigned NumElems = RegVT.getVectorNumElements(); | 
|  | if (NumElems < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | SDValue Increment = | 
|  | DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), | 
|  | NumElems/2); | 
|  | SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | std::min(16U, Alignment)); | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | Load1.getValue(1), | 
|  | Load2.getValue(1)); | 
|  |  | 
|  | SDValue NewVec = DAG.getUNDEF(RegVT); | 
|  | NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); | 
|  | NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); | 
|  | return DCI.CombineTo(N, NewVec, TF, true); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformMLOADCombine - Resolve extending loads | 
|  | static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N); | 
|  | if (Mld->getExtensionType() != ISD::SEXTLOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Mld->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | EVT LdVT = Mld->getMemoryVT(); | 
|  | SDLoc dl(Mld); | 
|  |  | 
|  | assert(LdVT != VT && "Cannot extend to the same type"); | 
|  | unsigned ToSz = VT.getVectorElementType().getSizeInBits(); | 
|  | unsigned FromSz = LdVT.getVectorElementType().getSizeInBits(); | 
|  | // From, To sizes and ElemCount must be pow of two | 
|  | assert (isPowerOf2_32(NumElems * FromSz * ToSz) && | 
|  | "Unexpected size for extending masked load"); | 
|  |  | 
|  | unsigned SizeRatio  = ToSz / FromSz; | 
|  | assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); | 
|  |  | 
|  | // Create a type on which we perform the shuffle | 
|  | EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | LdVT.getScalarType(), NumElems*SizeRatio); | 
|  | assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  |  | 
|  | // Convert Src0 value | 
|  | SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0()); | 
|  | if (Mld->getSrc0().getOpcode() != ISD::UNDEF) { | 
|  | SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  |  | 
|  | // Can't shuffle using an illegal type. | 
|  | assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && | 
|  | "WideVecVT should be legal"); | 
|  | WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, | 
|  | DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); | 
|  | } | 
|  | // Prepare the new mask | 
|  | SDValue NewMask; | 
|  | SDValue Mask = Mld->getMask(); | 
|  | if (Mask.getValueType() == VT) { | 
|  | // Mask and original value have the same type | 
|  | NewMask = DAG.getBitcast(WideVecVT, Mask); | 
|  | SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  | for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) | 
|  | ShuffleVec[i] = NumElems*SizeRatio; | 
|  | NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, | 
|  | DAG.getConstant(0, dl, WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  | } | 
|  | else { | 
|  | assert(Mask.getValueType().getVectorElementType() == MVT::i1); | 
|  | unsigned WidenNumElts = NumElems*SizeRatio; | 
|  | unsigned MaskNumElts = VT.getVectorNumElements(); | 
|  | EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1, | 
|  | WidenNumElts); | 
|  |  | 
|  | unsigned NumConcat = WidenNumElts / MaskNumElts; | 
|  | SmallVector<SDValue, 16> Ops(NumConcat); | 
|  | SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); | 
|  | Ops[0] = Mask; | 
|  | for (unsigned i = 1; i != NumConcat; ++i) | 
|  | Ops[i] = ZeroVal; | 
|  |  | 
|  | NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); | 
|  | } | 
|  |  | 
|  | SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), | 
|  | Mld->getBasePtr(), NewMask, WideSrc0, | 
|  | Mld->getMemoryVT(), Mld->getMemOperand(), | 
|  | ISD::NON_EXTLOAD); | 
|  | SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd); | 
|  | return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); | 
|  | } | 
|  | /// PerformMSTORECombine - Resolve truncating stores | 
|  | static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N); | 
|  | if (!Mst->isTruncatingStore()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Mst->getValue().getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | EVT StVT = Mst->getMemoryVT(); | 
|  | SDLoc dl(Mst); | 
|  |  | 
|  | assert(StVT != VT && "Cannot truncate to the same type"); | 
|  | unsigned FromSz = VT.getVectorElementType().getSizeInBits(); | 
|  | unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // The truncating store is legal in some cases. For example | 
|  | // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw | 
|  | // are designated for truncate store. | 
|  | // In this case we don't need any further transformations. | 
|  | if (TLI.isTruncStoreLegal(VT, StVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // From, To sizes and ElemCount must be pow of two | 
|  | assert (isPowerOf2_32(NumElems * FromSz * ToSz) && | 
|  | "Unexpected size for truncating masked store"); | 
|  | // We are going to use the original vector elt for storing. | 
|  | // Accumulated smaller vector elements must be a multiple of the store size. | 
|  | assert (((NumElems * FromSz) % ToSz) == 0 && | 
|  | "Unexpected ratio for truncating masked store"); | 
|  |  | 
|  | unsigned SizeRatio  = FromSz / ToSz; | 
|  | assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); | 
|  |  | 
|  | // Create a type on which we perform the shuffle | 
|  | EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | StVT.getScalarType(), NumElems*SizeRatio); | 
|  |  | 
|  | assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  |  | 
|  | SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue()); | 
|  | SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  |  | 
|  | // Can't shuffle using an illegal type. | 
|  | assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && | 
|  | "WideVecVT should be legal"); | 
|  |  | 
|  | SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, | 
|  | DAG.getUNDEF(WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  |  | 
|  | SDValue NewMask; | 
|  | SDValue Mask = Mst->getMask(); | 
|  | if (Mask.getValueType() == VT) { | 
|  | // Mask and original value have the same type | 
|  | NewMask = DAG.getBitcast(WideVecVT, Mask); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  | for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) | 
|  | ShuffleVec[i] = NumElems*SizeRatio; | 
|  | NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, | 
|  | DAG.getConstant(0, dl, WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  | } | 
|  | else { | 
|  | assert(Mask.getValueType().getVectorElementType() == MVT::i1); | 
|  | unsigned WidenNumElts = NumElems*SizeRatio; | 
|  | unsigned MaskNumElts = VT.getVectorNumElements(); | 
|  | EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1, | 
|  | WidenNumElts); | 
|  |  | 
|  | unsigned NumConcat = WidenNumElts / MaskNumElts; | 
|  | SmallVector<SDValue, 16> Ops(NumConcat); | 
|  | SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); | 
|  | Ops[0] = Mask; | 
|  | for (unsigned i = 1; i != NumConcat; ++i) | 
|  | Ops[i] = ZeroVal; | 
|  |  | 
|  | NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); | 
|  | } | 
|  |  | 
|  | return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, Mst->getBasePtr(), | 
|  | NewMask, StVT, Mst->getMemOperand(), false); | 
|  | } | 
|  | /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. | 
|  | static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(N); | 
|  | EVT VT = St->getValue().getValueType(); | 
|  | EVT StVT = St->getMemoryVT(); | 
|  | SDLoc dl(St); | 
|  | SDValue StoredVal = St->getOperand(1); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // If we are saving a concatenation of two XMM registers and 32-byte stores | 
|  | // are slow, such as on Sandy Bridge, perform two 16-byte stores. | 
|  | bool Fast; | 
|  | unsigned AddressSpace = St->getAddressSpace(); | 
|  | unsigned Alignment = St->getAlignment(); | 
|  | if (VT.is256BitVector() && StVT == VT && | 
|  | TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
|  | AddressSpace, Alignment, &Fast) && !Fast) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); | 
|  | SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); | 
|  |  | 
|  | SDValue Stride = | 
|  | DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Ptr0 = St->getBasePtr(); | 
|  | SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); | 
|  |  | 
|  | SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), Alignment); | 
|  | SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), | 
|  | std::min(16U, Alignment)); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); | 
|  | } | 
|  |  | 
|  | // Optimize trunc store (of multiple scalars) to shuffle and store. | 
|  | // First, pack all of the elements in one place. Next, store to memory | 
|  | // in fewer chunks. | 
|  | if (St->isTruncatingStore() && VT.isVector()) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | assert(StVT != VT && "Cannot truncate to the same type"); | 
|  | unsigned FromSz = VT.getVectorElementType().getSizeInBits(); | 
|  | unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // The truncating store is legal in some cases. For example | 
|  | // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw | 
|  | // are designated for truncate store. | 
|  | // In this case we don't need any further transformations. | 
|  | if (TLI.isTruncStoreLegal(VT, StVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // From, To sizes and ElemCount must be pow of two | 
|  | if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); | 
|  | // We are going to use the original vector elt for storing. | 
|  | // Accumulated smaller vector elements must be a multiple of the store size. | 
|  | if (0 != (NumElems * FromSz) % ToSz) return SDValue(); | 
|  |  | 
|  | unsigned SizeRatio  = FromSz / ToSz; | 
|  |  | 
|  | assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); | 
|  |  | 
|  | // Create a type on which we perform the shuffle | 
|  | EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | StVT.getScalarType(), NumElems*SizeRatio); | 
|  |  | 
|  | assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  |  | 
|  | SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue()); | 
|  | SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  |  | 
|  | // Can't shuffle using an illegal type. | 
|  | if (!TLI.isTypeLegal(WideVecVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, | 
|  | DAG.getUNDEF(WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  | // At this point all of the data is stored at the bottom of the | 
|  | // register. We now need to save it to mem. | 
|  |  | 
|  | // Find the largest store unit | 
|  | MVT StoreType = MVT::i8; | 
|  | for (MVT Tp : MVT::integer_valuetypes()) { | 
|  | if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) | 
|  | StoreType = Tp; | 
|  | } | 
|  |  | 
|  | // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. | 
|  | if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && | 
|  | (64 <= NumElems * ToSz)) | 
|  | StoreType = MVT::f64; | 
|  |  | 
|  | // Bitcast the original vector into a vector of store-size units | 
|  | EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); | 
|  | assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  | SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff); | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Ptr = St->getBasePtr(); | 
|  |  | 
|  | // Perform one or more big stores into memory. | 
|  | for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { | 
|  | SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | StoreType, ShuffWide, | 
|  | DAG.getIntPtrConstant(i, dl)); | 
|  | SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), St->getAlignment()); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | Chains.push_back(Ch); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering | 
|  | // the FP state in cases where an emms may be missing. | 
|  | // A preferable solution to the general problem is to figure out the right | 
|  | // places to insert EMMS.  This qualifies as a quick hack. | 
|  |  | 
|  | // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. | 
|  | if (VT.getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat); | 
|  | bool F64IsLegal = | 
|  | !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2(); | 
|  | if ((VT.isVector() || | 
|  | (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && | 
|  | isa<LoadSDNode>(St->getValue()) && | 
|  | !cast<LoadSDNode>(St->getValue())->isVolatile() && | 
|  | St->getChain().hasOneUse() && !St->isVolatile()) { | 
|  | SDNode* LdVal = St->getValue().getNode(); | 
|  | LoadSDNode *Ld = nullptr; | 
|  | int TokenFactorIndex = -1; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDNode* ChainVal = St->getChain().getNode(); | 
|  | // Must be a store of a load.  We currently handle two cases:  the load | 
|  | // is a direct child, and it's under an intervening TokenFactor.  It is | 
|  | // possible to dig deeper under nested TokenFactors. | 
|  | if (ChainVal == LdVal) | 
|  | Ld = cast<LoadSDNode>(St->getChain()); | 
|  | else if (St->getValue().hasOneUse() && | 
|  | ChainVal->getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { | 
|  | if (ChainVal->getOperand(i).getNode() == LdVal) { | 
|  | TokenFactorIndex = i; | 
|  | Ld = cast<LoadSDNode>(St->getValue()); | 
|  | } else | 
|  | Ops.push_back(ChainVal->getOperand(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Ld || !ISD::isNormalLoad(Ld)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is not the MMX case, i.e. we are just turning i64 load/store | 
|  | // into f64 load/store, avoid the transformation if there are multiple | 
|  | // uses of the loaded value. | 
|  | if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc LdDL(Ld); | 
|  | SDLoc StDL(N); | 
|  | // If we are a 64-bit capable x86, lower to a single movq load/store pair. | 
|  | // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store | 
|  | // pair instead. | 
|  | if (Subtarget->is64Bit() || F64IsLegal) { | 
|  | EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; | 
|  | SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Ld->getAlignment()); | 
|  | SDValue NewChain = NewLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(NewChain); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); | 
|  | } | 
|  | return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Otherwise, lower to two pairs of 32-bit loads / stores. | 
|  | SDValue LoAddr = Ld->getBasePtr(); | 
|  | SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, LdDL, MVT::i32)); | 
|  |  | 
|  | SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, | 
|  | Ld->getPointerInfo(), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), Ld->getAlignment()); | 
|  | SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, | 
|  | Ld->getPointerInfo().getWithOffset(4), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), | 
|  | MinAlign(Ld->getAlignment(), 4)); | 
|  |  | 
|  | SDValue NewChain = LoLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(LoLd); | 
|  | Ops.push_back(HiLd); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | LoAddr = St->getBasePtr(); | 
|  | HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, StDL, MVT::i32)); | 
|  |  | 
|  | SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, | 
|  | St->getPointerInfo().getWithOffset(4), | 
|  | St->isVolatile(), | 
|  | St->isNonTemporal(), | 
|  | MinAlign(St->getAlignment(), 4)); | 
|  | return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); | 
|  | } | 
|  |  | 
|  | // This is similar to the above case, but here we handle a scalar 64-bit | 
|  | // integer store that is extracted from a vector on a 32-bit target. | 
|  | // If we have SSE2, then we can treat it like a floating-point double | 
|  | // to get past legalization. The execution dependencies fixup pass will | 
|  | // choose the optimal machine instruction for the store if this really is | 
|  | // an integer or v2f32 rather than an f64. | 
|  | if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() && | 
|  | St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | SDValue OldExtract = St->getOperand(1); | 
|  | SDValue ExtOp0 = OldExtract.getOperand(0); | 
|  | unsigned VecSize = ExtOp0.getValueSizeInBits(); | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64); | 
|  | SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0); | 
|  | SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | BitCast, OldExtract.getOperand(1)); | 
|  | return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(), | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), St->getAlignment()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return 'true' if this vector operation is "horizontal" | 
|  | /// and return the operands for the horizontal operation in LHS and RHS.  A | 
|  | /// horizontal operation performs the binary operation on successive elements | 
|  | /// of its first operand, then on successive elements of its second operand, | 
|  | /// returning the resulting values in a vector.  For example, if | 
|  | ///   A = < float a0, float a1, float a2, float a3 > | 
|  | /// and | 
|  | ///   B = < float b0, float b1, float b2, float b3 > | 
|  | /// then the result of doing a horizontal operation on A and B is | 
|  | ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. | 
|  | /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form | 
|  | /// A horizontal-op B, for some already available A and B, and if so then LHS is | 
|  | /// set to A, RHS to B, and the routine returns 'true'. | 
|  | /// Note that the binary operation should have the property that if one of the | 
|  | /// operands is UNDEF then the result is UNDEF. | 
|  | static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { | 
|  | // Look for the following pattern: if | 
|  | //   A = < float a0, float a1, float a2, float a3 > | 
|  | //   B = < float b0, float b1, float b2, float b3 > | 
|  | // and | 
|  | //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> | 
|  | //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> | 
|  | // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > | 
|  | // which is A horizontal-op B. | 
|  |  | 
|  | // At least one of the operands should be a vector shuffle. | 
|  | if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && | 
|  | RHS.getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return false; | 
|  |  | 
|  | MVT VT = LHS.getSimpleValueType(); | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Unsupported vector type for horizontal add/sub"); | 
|  |  | 
|  | // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to | 
|  | // operate independently on 128-bit lanes. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts / NumLanes; | 
|  | assert((NumLaneElts % 2 == 0) && | 
|  | "Vector type should have an even number of elements in each lane"); | 
|  | unsigned HalfLaneElts = NumLaneElts/2; | 
|  |  | 
|  | // View LHS in the form | 
|  | //   LHS = VECTOR_SHUFFLE A, B, LMask | 
|  | // If LHS is not a shuffle then pretend it is the shuffle | 
|  | //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> | 
|  | // NOTE: in what follows a default initialized SDValue represents an UNDEF of | 
|  | // type VT. | 
|  | SDValue A, B; | 
|  | SmallVector<int, 16> LMask(NumElts); | 
|  | if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | A = LHS.getOperand(0); | 
|  | if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | B = LHS.getOperand(1); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); | 
|  | std::copy(Mask.begin(), Mask.end(), LMask.begin()); | 
|  | } else { | 
|  | if (LHS.getOpcode() != ISD::UNDEF) | 
|  | A = LHS; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | LMask[i] = i; | 
|  | } | 
|  |  | 
|  | // Likewise, view RHS in the form | 
|  | //   RHS = VECTOR_SHUFFLE C, D, RMask | 
|  | SDValue C, D; | 
|  | SmallVector<int, 16> RMask(NumElts); | 
|  | if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | C = RHS.getOperand(0); | 
|  | if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | D = RHS.getOperand(1); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); | 
|  | std::copy(Mask.begin(), Mask.end(), RMask.begin()); | 
|  | } else { | 
|  | if (RHS.getOpcode() != ISD::UNDEF) | 
|  | C = RHS; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | RMask[i] = i; | 
|  | } | 
|  |  | 
|  | // Check that the shuffles are both shuffling the same vectors. | 
|  | if (!(A == C && B == D) && !(A == D && B == C)) | 
|  | return false; | 
|  |  | 
|  | // If everything is UNDEF then bail out: it would be better to fold to UNDEF. | 
|  | if (!A.getNode() && !B.getNode()) | 
|  | return false; | 
|  |  | 
|  | // If A and B occur in reverse order in RHS, then "swap" them (which means | 
|  | // rewriting the mask). | 
|  | if (A != C) | 
|  | ShuffleVectorSDNode::commuteMask(RMask); | 
|  |  | 
|  | // At this point LHS and RHS are equivalent to | 
|  | //   LHS = VECTOR_SHUFFLE A, B, LMask | 
|  | //   RHS = VECTOR_SHUFFLE A, B, RMask | 
|  | // Check that the masks correspond to performing a horizontal operation. | 
|  | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | 
|  | for (unsigned i = 0; i != NumLaneElts; ++i) { | 
|  | int LIdx = LMask[i+l], RIdx = RMask[i+l]; | 
|  |  | 
|  | // Ignore any UNDEF components. | 
|  | if (LIdx < 0 || RIdx < 0 || | 
|  | (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || | 
|  | (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) | 
|  | continue; | 
|  |  | 
|  | // Check that successive elements are being operated on.  If not, this is | 
|  | // not a horizontal operation. | 
|  | unsigned Src = (i/HalfLaneElts); // each lane is split between srcs | 
|  | int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; | 
|  | if (!(LIdx == Index && RIdx == Index + 1) && | 
|  | !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. | 
|  | RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on floating point adds. | 
|  | static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || | 
|  | (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && | 
|  | isHorizontalBinOp(LHS, RHS, true)) | 
|  | return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on floating point subs. | 
|  | static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal subs from subs of shuffles. | 
|  | if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || | 
|  | (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && | 
|  | isHorizontalBinOp(LHS, RHS, false)) | 
|  | return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. | 
|  | static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); | 
|  |  | 
|  | // F[X]OR(0.0, x) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  |  | 
|  | // F[X]OR(x, 0.0) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT.is512BitVector() && !Subtarget->hasDQI()) { | 
|  | SDLoc dl(N); | 
|  | MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits()); | 
|  | MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements()); | 
|  |  | 
|  | SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(0)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(1)); | 
|  | unsigned IntOpcode = (N->getOpcode() == X86ISD::FOR) ? ISD::OR : ISD::XOR; | 
|  | SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1); | 
|  | return  DAG.getNode(ISD::BITCAST, dl, VT, IntOp); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. | 
|  | static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); | 
|  |  | 
|  | // Only perform optimizations if UnsafeMath is used. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes | 
|  | // into FMINC and FMAXC, which are Commutative operations. | 
|  | unsigned NewOp = 0; | 
|  | switch (N->getOpcode()) { | 
|  | default: llvm_unreachable("unknown opcode"); | 
|  | case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break; | 
|  | case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), N->getOperand(1)); | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on X86ISD::FAND nodes. | 
|  | static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FAND(0.0, x) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // FAND(x, 0.0) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Do target-specific dag combines on X86ISD::FANDN nodes | 
|  | static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FANDN(0.0, x) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  |  | 
|  | // FANDN(x, 0.0) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformBTCombine(SDNode *N, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // BT ignores high bits in the bit index operand. | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op1.hasOneUse()) { | 
|  | unsigned BitWidth = Op1.getValueSizeInBits(); | 
|  | APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  | EVT VT = N->getValueType(0), OpVT = Op.getValueType(); | 
|  | if (Op.getOpcode() == X86ISD::VZEXT_LOAD && | 
|  | VT.getVectorElementType().getSizeInBits() == | 
|  | OpVT.getVectorElementType().getSizeInBits()) { | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the | 
|  | // both SSE and AVX2 since there is no sign-extended shift right | 
|  | // operation on a vector with 64-bit elements. | 
|  | //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> | 
|  | // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) | 
|  | if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND)) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  |  | 
|  | // EXTLOAD has a better solution on AVX2, | 
|  | // it may be replaced with X86ISD::VSEXT node. | 
|  | if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) | 
|  | if (!ISD::isNormalLoad(N00.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { | 
|  | SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, | 
|  | N00, N1); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT InVT = N0.getValueType(); | 
|  | EVT InSVT = InVT.getScalarType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // (i8,i32 sext (sdivrem (i8 x, i8 y)) -> | 
|  | // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y) | 
|  | // This exposes the sext to the sdivrem lowering, so that it directly extends | 
|  | // from AH (which we otherwise need to do contortions to access). | 
|  | if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 && | 
|  | InVT == MVT::i8 && VT == MVT::i32) { | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); | 
|  | SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys, | 
|  | N0.getOperand(0), N0.getOperand(1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); | 
|  | return R.getValue(1); | 
|  | } | 
|  |  | 
|  | if (!DCI.isBeforeLegalizeOps()) { | 
|  | if (InVT == MVT::i1) { | 
|  | SDValue Zero = DAG.getConstant(0, DL, VT); | 
|  | SDValue AllOnes = | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); | 
|  | return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (VT.isVector() && Subtarget->hasSSE2()) { | 
|  | auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) { | 
|  | EVT InVT = N.getValueType(); | 
|  | EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), | 
|  | Size / InVT.getScalarSizeInBits()); | 
|  | SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), | 
|  | DAG.getUNDEF(InVT)); | 
|  | Opnds[0] = N; | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); | 
|  | }; | 
|  |  | 
|  | // If target-size is less than 128-bits, extend to a type that would extend | 
|  | // to 128 bits, extend that and extract the original target vector. | 
|  | if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) && | 
|  | (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && | 
|  | (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { | 
|  | unsigned Scale = 128 / VT.getSizeInBits(); | 
|  | EVT ExVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); | 
|  | SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); | 
|  | SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  |  | 
|  | // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG | 
|  | // which ensures lowering to X86ISD::VSEXT (pmovsx*). | 
|  | if (VT.getSizeInBits() == 128 && | 
|  | (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && | 
|  | (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { | 
|  | SDValue ExOp = ExtendVecSize(DL, N0, 128); | 
|  | return DAG.getSignExtendVectorInReg(ExOp, DL, VT); | 
|  | } | 
|  |  | 
|  | // On pre-AVX2 targets, split into 128-bit nodes of | 
|  | // ISD::SIGN_EXTEND_VECTOR_INREG. | 
|  | if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) && | 
|  | (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && | 
|  | (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { | 
|  | unsigned NumVecs = VT.getSizeInBits() / 128; | 
|  | unsigned NumSubElts = 128 / SVT.getSizeInBits(); | 
|  | EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts); | 
|  | EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0, Offset = 0; i != NumVecs; | 
|  | ++i, Offset += NumSubElts) { | 
|  | SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, | 
|  | DAG.getIntPtrConstant(Offset, DL)); | 
|  | SrcVec = ExtendVecSize(DL, SrcVec, 128); | 
|  | SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT); | 
|  | Opnds.push_back(SrcVec); | 
|  | } | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasFp256()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.isVector() && VT.getSizeInBits() == 256) | 
|  | if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) | 
|  | return R; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || | 
|  | (!Subtarget->hasFMA() && !Subtarget->hasFMA4() && | 
|  | !Subtarget->hasAVX512())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue A = N->getOperand(0); | 
|  | SDValue B = N->getOperand(1); | 
|  | SDValue C = N->getOperand(2); | 
|  |  | 
|  | bool NegA = (A.getOpcode() == ISD::FNEG); | 
|  | bool NegB = (B.getOpcode() == ISD::FNEG); | 
|  | bool NegC = (C.getOpcode() == ISD::FNEG); | 
|  |  | 
|  | // Negative multiplication when NegA xor NegB | 
|  | bool NegMul = (NegA != NegB); | 
|  | if (NegA) | 
|  | A = A.getOperand(0); | 
|  | if (NegB) | 
|  | B = B.getOperand(0); | 
|  | if (NegC) | 
|  | C = C.getOperand(0); | 
|  |  | 
|  | unsigned Opcode; | 
|  | if (!NegMul) | 
|  | Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; | 
|  | else | 
|  | Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; | 
|  |  | 
|  | return DAG.getNode(Opcode, dl, VT, A, B, C); | 
|  | } | 
|  |  | 
|  | static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // (i32 zext (and (i8  x86isd::setcc_carry), 1)) -> | 
|  | //           (and (i32 x86isd::setcc_carry), 1) | 
|  | // This eliminates the zext. This transformation is necessary because | 
|  | // ISD::SETCC is always legalized to i8. | 
|  | SDLoc dl(N); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.hasOneUse() && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, | 
|  | N00.getOperand(0), N00.getOperand(1)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | N0.hasOneUse() && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | return DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, | 
|  | N00.getOperand(0), N00.getOperand(1)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT.is256BitVector()) | 
|  | if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) | 
|  | return R; | 
|  |  | 
|  | // (i8,i32 zext (udivrem (i8 x, i8 y)) -> | 
|  | // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y) | 
|  | // This exposes the zext to the udivrem lowering, so that it directly extends | 
|  | // from AH (which we otherwise need to do contortions to access). | 
|  | if (N0.getOpcode() == ISD::UDIVREM && | 
|  | N0.getResNo() == 1 && N0.getValueType() == MVT::i8 && | 
|  | (VT == MVT::i32 || VT == MVT::i64)) { | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); | 
|  | SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys, | 
|  | N0.getOperand(0), N0.getOperand(1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); | 
|  | return R.getValue(1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize x == -y --> x+y == 0 | 
|  | //          x != -y --> x+y != 0 | 
|  | static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0))) | 
|  | if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { | 
|  | SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS, | 
|  | LHS.getOperand(1)); | 
|  | return DAG.getSetCC(DL, N->getValueType(0), addV, | 
|  | DAG.getConstant(0, DL, addV.getValueType()), CC); | 
|  | } | 
|  | if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0))) | 
|  | if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { | 
|  | SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS, | 
|  | RHS.getOperand(1)); | 
|  | return DAG.getSetCC(DL, N->getValueType(0), addV, | 
|  | DAG.getConstant(0, DL, addV.getValueType()), CC); | 
|  | } | 
|  |  | 
|  | if (VT.getScalarType() == MVT::i1 && | 
|  | (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) { | 
|  | bool IsSEXT0 = | 
|  | (LHS.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); | 
|  | bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | if (!IsSEXT0 || !IsVZero1) { | 
|  | // Swap the operands and update the condition code. | 
|  | std::swap(LHS, RHS); | 
|  | CC = ISD::getSetCCSwappedOperands(CC); | 
|  |  | 
|  | IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); | 
|  | IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  | } | 
|  |  | 
|  | if (IsSEXT0 && IsVZero1) { | 
|  | assert(VT == LHS.getOperand(0).getValueType() && | 
|  | "Uexpected operand type"); | 
|  | if (CC == ISD::SETGT) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | if (CC == ISD::SETLE) | 
|  | return DAG.getConstant(1, DL, VT); | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETGE) | 
|  | return DAG.getNOT(DL, LHS.getOperand(0), VT); | 
|  |  | 
|  | assert((CC == ISD::SETNE || CC == ISD::SETLT) && | 
|  | "Unexpected condition code!"); | 
|  | return LHS.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Load); | 
|  | MVT VT = Load->getSimpleValueType(0); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | SDValue Addr = Load->getOperand(1); | 
|  | SDValue NewAddr = DAG.getNode( | 
|  | ISD::ADD, dl, Addr.getSimpleValueType(), Addr, | 
|  | DAG.getConstant(Index * EVT.getStoreSize(), dl, | 
|  | Addr.getSimpleValueType())); | 
|  |  | 
|  | SDValue NewLoad = | 
|  | DAG.getLoad(EVT, dl, Load->getChain(), NewAddr, | 
|  | DAG.getMachineFunction().getMachineMemOperand( | 
|  | Load->getMemOperand(), 0, EVT.getStoreSize())); | 
|  | return NewLoad; | 
|  | } | 
|  |  | 
|  | static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc dl(N); | 
|  | MVT VT = N->getOperand(1)->getSimpleValueType(0); | 
|  | assert((VT == MVT::v4f32 || VT == MVT::v4i32) && | 
|  | "X86insertps is only defined for v4x32"); | 
|  |  | 
|  | SDValue Ld = N->getOperand(1); | 
|  | if (MayFoldLoad(Ld)) { | 
|  | // Extract the countS bits from the immediate so we can get the proper | 
|  | // address when narrowing the vector load to a specific element. | 
|  | // When the second source op is a memory address, insertps doesn't use | 
|  | // countS and just gets an f32 from that address. | 
|  | unsigned DestIndex = | 
|  | cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6; | 
|  |  | 
|  | Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG); | 
|  |  | 
|  | // Create this as a scalar to vector to match the instruction pattern. | 
|  | SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld); | 
|  | // countS bits are ignored when loading from memory on insertps, which | 
|  | // means we don't need to explicitly set them to 0. | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0), | 
|  | LoadScalarToVector, N->getOperand(2)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue V0 = N->getOperand(0); | 
|  | SDValue V1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector | 
|  | // operands and changing the mask to 1. This saves us a bunch of | 
|  | // pattern-matching possibilities related to scalar math ops in SSE/AVX. | 
|  | // x86InstrInfo knows how to commute this back after instruction selection | 
|  | // if it would help register allocation. | 
|  |  | 
|  | // TODO: If optimizing for size or a processor that doesn't suffer from | 
|  | // partial register update stalls, this should be transformed into a MOVSD | 
|  | // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD. | 
|  |  | 
|  | if (VT == MVT::v2f64) | 
|  | if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) { | 
|  | SDValue NewMask = DAG.getConstant(1, DL, MVT::i8); | 
|  | return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Helper function of PerformSETCCCombine. It is to materialize "setb reg" | 
|  | // as "sbb reg,reg", since it can be extended without zext and produces | 
|  | // an all-ones bit which is more useful than 0/1 in some cases. | 
|  | static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG, | 
|  | MVT VT) { | 
|  | if (VT == MVT::i8) | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_B, DL, MVT::i8), | 
|  | EFLAGS), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | assert (VT == MVT::i1 && "Unexpected type for SECCC node"); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_B, DL, MVT::i8), | 
|  | EFLAGS)); | 
|  | } | 
|  |  | 
|  | // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT | 
|  | static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); | 
|  | SDValue EFLAGS = N->getOperand(1); | 
|  |  | 
|  | if (CC == X86::COND_A) { | 
|  | // Try to convert COND_A into COND_B in an attempt to facilitate | 
|  | // materializing "setb reg". | 
|  | // | 
|  | // Do not flip "e > c", where "c" is a constant, because Cmp instruction | 
|  | // cannot take an immediate as its first operand. | 
|  | // | 
|  | if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && | 
|  | EFLAGS.getValueType().isInteger() && | 
|  | !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { | 
|  | SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), | 
|  | EFLAGS.getNode()->getVTList(), | 
|  | EFLAGS.getOperand(1), EFLAGS.getOperand(0)); | 
|  | SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); | 
|  | return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Materialize "setb reg" as "sbb reg,reg", since it can be extended without | 
|  | // a zext and produces an all-ones bit which is more useful than 0/1 in some | 
|  | // cases. | 
|  | if (CC == X86::COND_B) | 
|  | return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); | 
|  |  | 
|  | if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { | 
|  | SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); | 
|  | return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize branch condition evaluation. | 
|  | // | 
|  | static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Dest = N->getOperand(1); | 
|  | SDValue EFLAGS = N->getOperand(3); | 
|  | X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); | 
|  |  | 
|  | if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { | 
|  | SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); | 
|  | return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, | 
|  | Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, | 
|  | SelectionDAG &DAG) { | 
|  | // Take advantage of vector comparisons producing 0 or -1 in each lane to | 
|  | // optimize away operation when it's from a constant. | 
|  | // | 
|  | // The general transformation is: | 
|  | //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> | 
|  | //       AND(VECTOR_CMP(x,y), constant2) | 
|  | //    constant2 = UNARYOP(constant) | 
|  |  | 
|  | // Early exit if this isn't a vector operation, the operand of the | 
|  | // unary operation isn't a bitwise AND, or if the sizes of the operations | 
|  | // aren't the same. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || | 
|  | N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || | 
|  | VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Now check that the other operand of the AND is a constant. We could | 
|  | // make the transformation for non-constant splats as well, but it's unclear | 
|  | // that would be a benefit as it would not eliminate any operations, just | 
|  | // perform one more step in scalar code before moving to the vector unit. | 
|  | if (BuildVectorSDNode *BV = | 
|  | dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { | 
|  | // Bail out if the vector isn't a constant. | 
|  | if (!BV->isConstant()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Everything checks out. Build up the new and improved node. | 
|  | SDLoc DL(N); | 
|  | EVT IntVT = BV->getValueType(0); | 
|  | // Create a new constant of the appropriate type for the transformed | 
|  | // DAG. | 
|  | SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); | 
|  | // The AND node needs bitcasts to/from an integer vector type around it. | 
|  | SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, | 
|  | N->getOperand(0)->getOperand(0), MaskConst); | 
|  | SDValue Res = DAG.getBitcast(VT, NewAnd); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT InVT = Op0.getValueType(); | 
|  | EVT InSVT = InVT.getScalarType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32)) | 
|  | // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32)) | 
|  | if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { | 
|  | SDLoc dl(N); | 
|  | EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, | 
|  | InVT.getVectorNumElements()); | 
|  | SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); | 
|  |  | 
|  | if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT)) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P); | 
|  |  | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // First try to optimize away the conversion entirely when it's | 
|  | // conditionally from a constant. Vectors only. | 
|  | if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) | 
|  | return Res; | 
|  |  | 
|  | // Now move on to more general possibilities. | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT InVT = Op0.getValueType(); | 
|  | EVT InSVT = InVT.getScalarType(); | 
|  |  | 
|  | // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) | 
|  | // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) | 
|  | if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { | 
|  | SDLoc dl(N); | 
|  | EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, | 
|  | InVT.getVectorNumElements()); | 
|  | SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); | 
|  | } | 
|  |  | 
|  | // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have | 
|  | // a 32-bit target where SSE doesn't support i64->FP operations. | 
|  | if (Op0.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); | 
|  | EVT LdVT = Ld->getValueType(0); | 
|  |  | 
|  | // This transformation is not supported if the result type is f16 | 
|  | if (VT == MVT::f16) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Ld->isVolatile() && !VT.isVector() && | 
|  | ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && | 
|  | !Subtarget->is64Bit() && LdVT == MVT::i64) { | 
|  | SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD( | 
|  | SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); | 
|  | return FILDChain; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS | 
|  | static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | X86TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // If the LHS and RHS of the ADC node are zero, then it can't overflow and | 
|  | // the result is either zero or one (depending on the input carry bit). | 
|  | // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. | 
|  | if (X86::isZeroNode(N->getOperand(0)) && | 
|  | X86::isZeroNode(N->getOperand(1)) && | 
|  | // We don't have a good way to replace an EFLAGS use, so only do this when | 
|  | // dead right now. | 
|  | SDValue(N, 1).use_empty()) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1)); | 
|  | SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, | 
|  | DAG.getConstant(X86::COND_B, DL, | 
|  | MVT::i8), | 
|  | N->getOperand(2)), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | return DCI.CombineTo(N, Res1, CarryOut); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // fold (add Y, (sete  X, 0)) -> adc  0, Y | 
|  | //      (add Y, (setne X, 0)) -> sbb -1, Y | 
|  | //      (sub (sete  X, 0), Y) -> sbb  0, Y | 
|  | //      (sub (setne X, 0), Y) -> adc -1, Y | 
|  | static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Look through ZExts. | 
|  | SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); | 
|  | if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SetCC = Ext.getOperand(0); | 
|  | if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); | 
|  | if (CC != X86::COND_E && CC != X86::COND_NE) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Cmp = SetCC.getOperand(1); | 
|  | if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || | 
|  | !X86::isZeroNode(Cmp.getOperand(1)) || | 
|  | !Cmp.getOperand(0).getValueType().isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, | 
|  | DAG.getConstant(1, DL, CmpOp0.getValueType())); | 
|  |  | 
|  | SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); | 
|  | if (CC == X86::COND_NE) | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(-1ULL, DL, OtherVal.getValueType()), | 
|  | NewCmp); | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp); | 
|  | } | 
|  |  | 
|  | /// PerformADDCombine - Do target-specific dag combines on integer adds. | 
|  | static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || | 
|  | (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && | 
|  | isHorizontalBinOp(Op0, Op1, true)) | 
|  | return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); | 
|  |  | 
|  | return OptimizeConditionalInDecrement(N, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // X86 can't encode an immediate LHS of a sub. See if we can push the | 
|  | // negation into a preceding instruction. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { | 
|  | // If the RHS of the sub is a XOR with one use and a constant, invert the | 
|  | // immediate. Then add one to the LHS of the sub so we can turn | 
|  | // X-Y -> X+~Y+1, saving one register. | 
|  | if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && | 
|  | isa<ConstantSDNode>(Op1.getOperand(1))) { | 
|  | APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); | 
|  | EVT VT = Op0.getValueType(); | 
|  | SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, | 
|  | Op1.getOperand(0), | 
|  | DAG.getConstant(~XorC, SDLoc(Op1), VT)); | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, | 
|  | DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || | 
|  | (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && | 
|  | isHorizontalBinOp(Op0, Op1, true)) | 
|  | return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); | 
|  |  | 
|  | return OptimizeConditionalInDecrement(N, DAG); | 
|  | } | 
|  |  | 
|  | /// performVZEXTCombine - Performs build vector combines | 
|  | static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | SDValue Op = N->getOperand(0); | 
|  | MVT OpVT = Op.getSimpleValueType(); | 
|  | MVT OpEltVT = OpVT.getVectorElementType(); | 
|  | unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements(); | 
|  |  | 
|  | // (vzext (bitcast (vzext (x)) -> (vzext x) | 
|  | SDValue V = Op; | 
|  | while (V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | if (V != Op && V.getOpcode() == X86ISD::VZEXT) { | 
|  | MVT InnerVT = V.getSimpleValueType(); | 
|  | MVT InnerEltVT = InnerVT.getVectorElementType(); | 
|  |  | 
|  | // If the element sizes match exactly, we can just do one larger vzext. This | 
|  | // is always an exact type match as vzext operates on integer types. | 
|  | if (OpEltVT == InnerEltVT) { | 
|  | assert(OpVT == InnerVT && "Types must match for vzext!"); | 
|  | return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // The only other way we can combine them is if only a single element of the | 
|  | // inner vzext is used in the input to the outer vzext. | 
|  | if (InnerEltVT.getSizeInBits() < InputBits) | 
|  | return SDValue(); | 
|  |  | 
|  | // In this case, the inner vzext is completely dead because we're going to | 
|  | // only look at bits inside of the low element. Just do the outer vzext on | 
|  | // a bitcast of the input to the inner. | 
|  | return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V)); | 
|  | } | 
|  |  | 
|  | // Check if we can bypass extracting and re-inserting an element of an input | 
|  | // vector. Essentially: | 
|  | // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) | 
|  | if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { | 
|  | SDValue ExtractedV = V.getOperand(0); | 
|  | SDValue OrigV = ExtractedV.getOperand(0); | 
|  | if (auto *ExtractIdx = dyn_cast<ConstantSDNode>(ExtractedV.getOperand(1))) | 
|  | if (ExtractIdx->getZExtValue() == 0) { | 
|  | MVT OrigVT = OrigV.getSimpleValueType(); | 
|  | // Extract a subvector if necessary... | 
|  | if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { | 
|  | int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); | 
|  | OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), | 
|  | OrigVT.getVectorNumElements() / Ratio); | 
|  | OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, | 
|  | DAG.getIntPtrConstant(0, DL)); | 
|  | } | 
|  | Op = DAG.getBitcast(OpVT, OrigV); | 
|  | return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); | 
|  | case ISD::VSELECT: | 
|  | case ISD::SELECT: | 
|  | case X86ISD::SHRUNKBLEND: | 
|  | return PerformSELECTCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG); | 
|  | case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget); | 
|  | case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget); | 
|  | case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI); | 
|  | case ISD::MUL:            return PerformMulCombine(N, DAG, DCI); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::MLOAD:          return PerformMLOADCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget); | 
|  | case ISD::MSTORE:         return PerformMSTORECombine(N, DAG, Subtarget); | 
|  | case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, Subtarget); | 
|  | case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG, Subtarget); | 
|  | case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget); | 
|  | case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget); | 
|  | case X86ISD::FXOR: | 
|  | case X86ISD::FOR:         return PerformFORCombine(N, DAG, Subtarget); | 
|  | case X86ISD::FMIN: | 
|  | case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG); | 
|  | case X86ISD::FAND:        return PerformFANDCombine(N, DAG); | 
|  | case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG); | 
|  | case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI); | 
|  | case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG); | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); | 
|  | case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget); | 
|  | case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::SHUFP:       // Handle all target specific shuffles | 
|  | case X86ISD::PALIGNR: | 
|  | case X86ISD::UNPCKH: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::PSHUFB: | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::VPERMILPI: | 
|  | case X86ISD::VPERM2X128: | 
|  | case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); | 
|  | case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget); | 
|  | case X86ISD::INSERTPS: { | 
|  | if (getTargetMachine().getOptLevel() > CodeGenOpt::None) | 
|  | return PerformINSERTPSCombine(N, DAG, Subtarget); | 
|  | break; | 
|  | } | 
|  | case X86ISD::BLENDI:    return PerformBLENDICombine(N, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// isTypeDesirableForOp - Return true if the target has native support for | 
|  | /// the specified value type and it is 'desirable' to use the type for the | 
|  | /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 | 
|  | /// instruction encodings are longer and some i16 instructions are slow. | 
|  | bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { | 
|  | if (!isTypeLegal(VT)) | 
|  | return false; | 
|  | if (VT != MVT::i16) | 
|  | return true; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | return true; | 
|  | case ISD::LOAD: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SUB: | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsDesirableToPromoteOp - This method query the target whether it is | 
|  | /// beneficial for dag combiner to promote the specified node. If true, it | 
|  | /// should return the desired promotion type by reference. | 
|  | bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT != MVT::i16) | 
|  | return false; | 
|  |  | 
|  | bool Promote = false; | 
|  | bool Commute = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | // If the non-extending load has a single use and it's not live out, then it | 
|  | // might be folded. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& | 
|  | Op.hasOneUse()*/) { | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) { | 
|  | // The only case where we'd want to promote LOAD (rather then it being | 
|  | // promoted as an operand is when it's only use is liveout. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | Promote = true; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | // Look out for (store (shl (load), x)). | 
|  | if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) | 
|  | return false; | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | Commute = true; | 
|  | // fallthrough | 
|  | case ISD::SUB: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | if (!Commute && MayFoldLoad(N1)) | 
|  | return false; | 
|  | // Avoid disabling potential load folding opportunities. | 
|  | if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | Promote = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | PVT = MVT::i32; | 
|  | return Promote; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Helper to match a string separated by whitespace. | 
|  | static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) { | 
|  | S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace. | 
|  |  | 
|  | for (StringRef Piece : Pieces) { | 
|  | if (!S.startswith(Piece)) // Check if the piece matches. | 
|  | return false; | 
|  |  | 
|  | S = S.substr(Piece.size()); | 
|  | StringRef::size_type Pos = S.find_first_not_of(" \t"); | 
|  | if (Pos == 0) // We matched a prefix. | 
|  | return false; | 
|  |  | 
|  | S = S.substr(Pos); | 
|  | } | 
|  |  | 
|  | return S.empty(); | 
|  | } | 
|  |  | 
|  | static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { | 
|  |  | 
|  | if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { | 
|  | if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && | 
|  | std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && | 
|  | std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { | 
|  |  | 
|  | if (AsmPieces.size() == 3) | 
|  | return true; | 
|  | else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { | 
|  | InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); | 
|  |  | 
|  | std::string AsmStr = IA->getAsmString(); | 
|  |  | 
|  | IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  |  | 
|  | // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" | 
|  | SmallVector<StringRef, 4> AsmPieces; | 
|  | SplitString(AsmStr, AsmPieces, ";\n"); | 
|  |  | 
|  | switch (AsmPieces.size()) { | 
|  | default: return false; | 
|  | case 1: | 
|  | // FIXME: this should verify that we are targeting a 486 or better.  If not, | 
|  | // we will turn this bswap into something that will be lowered to logical | 
|  | // ops instead of emitting the bswap asm.  For now, we don't support 486 or | 
|  | // lower so don't worry about this. | 
|  | // bswap $0 | 
|  | if (matchAsm(AsmPieces[0], {"bswap", "$0"}) || | 
|  | matchAsm(AsmPieces[0], {"bswapl", "$0"}) || | 
|  | matchAsm(AsmPieces[0], {"bswapq", "$0"}) || | 
|  | matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) || | 
|  | matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) || | 
|  | matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) { | 
|  | // No need to check constraints, nothing other than the equivalent of | 
|  | // "=r,0" would be valid here. | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  |  | 
|  | // rorw $$8, ${0:w}  -->  llvm.bswap.i16 | 
|  | if (CI->getType()->isIntegerTy(16) && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && | 
|  | (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) || | 
|  | matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) { | 
|  | AsmPieces.clear(); | 
|  | StringRef ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | array_pod_sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (clobbersFlagRegisters(AsmPieces)) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (CI->getType()->isIntegerTy(32) && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && | 
|  | matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) && | 
|  | matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) && | 
|  | matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) { | 
|  | AsmPieces.clear(); | 
|  | StringRef ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | array_pod_sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (clobbersFlagRegisters(AsmPieces)) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  |  | 
|  | if (CI->getType()->isIntegerTy(64)) { | 
|  | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); | 
|  | if (Constraints.size() >= 2 && | 
|  | Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && | 
|  | Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { | 
|  | // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64 | 
|  | if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) && | 
|  | matchAsm(AsmPieces[1], {"bswap", "%edx"}) && | 
|  | matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"})) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | X86TargetLowering::ConstraintType | 
|  | X86TargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | case 'y': | 
|  | case 'x': | 
|  | case 'Y': | 
|  | case 'l': | 
|  | return C_RegisterClass; | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | return C_Register; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'G': | 
|  | case 'C': | 
|  | case 'e': | 
|  | case 'Z': | 
|  | return C_Other; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | X86TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | if (type->isFloatingPointTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'y': | 
|  | if (type->isX86_MMXTy() && Subtarget->hasMMX()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'x': | 
|  | case 'Y': | 
|  | if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || | 
|  | ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'I': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 31) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 63) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'L': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'M': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 3) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'N': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'G': | 
|  | case 'C': | 
|  | if (isa<ConstantFP>(CallOperandVal)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'e': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80000000LL) && | 
|  | (C->getSExtValue() <= 0x7fffffffLL)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'Z': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xffffffff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// LowerXConstraint - try to replace an X constraint, which matches anything, | 
|  | /// with another that has more specific requirements based on the type of the | 
|  | /// corresponding operand. | 
|  | const char *X86TargetLowering:: | 
|  | LowerXConstraint(EVT ConstraintVT) const { | 
|  | // FP X constraints get lowered to SSE1/2 registers if available, otherwise | 
|  | // 'f' like normal targets. | 
|  | if (ConstraintVT.isFloatingPoint()) { | 
|  | if (Subtarget->hasSSE2()) | 
|  | return "Y"; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return "x"; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerXConstraint(ConstraintVT); | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result; | 
|  |  | 
|  | // Only support length 1 constraints for now. | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 31) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'J': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 63) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'K': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (isInt<8>(C->getSExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'L': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || | 
|  | (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) { | 
|  | Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'M': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 3) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'N': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 255) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'O': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 127) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'e': { | 
|  | // 32-bit signed value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getSExtValue())) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64); | 
|  | break; | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | } | 
|  | return; | 
|  | } | 
|  | case 'Z': { | 
|  | // 32-bit unsigned value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getZExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), | 
|  | Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | return; | 
|  | } | 
|  | case 'i': { | 
|  | // Literal immediates are always ok. | 
|  | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In any sort of PIC mode addresses need to be computed at runtime by | 
|  | // adding in a register or some sort of table lookup.  These can't | 
|  | // be used as immediates. | 
|  | if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) | 
|  | return; | 
|  |  | 
|  | // If we are in non-pic codegen mode, we allow the address of a global (with | 
|  | // an optional displacement) to be used with 'i'. | 
|  | GlobalAddressSDNode *GA = nullptr; | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | // Match either (GA), (GA+C), (GA+C1+C2), etc. | 
|  | while (1) { | 
|  | if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { | 
|  | Offset += GA->getOffset(); | 
|  | break; | 
|  | } else if (Op.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::SUB) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += -C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this isn't something we can handle, reject it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | // If we require an extra load to get this address, as in PIC mode, we | 
|  | // can't accept it. | 
|  | if (isGlobalStubReference( | 
|  | Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()))) | 
|  | return; | 
|  |  | 
|  | Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), | 
|  | GA->getValueType(0), Offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | // First, see if this is a constraint that directly corresponds to an LLVM | 
|  | // register class. | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | // TODO: Slight differences here in allocation order and leaving | 
|  | // RIP in the class. Do they matter any more here than they do | 
|  | // in the normal allocation? | 
|  | case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (VT == MVT::i32 || VT == MVT::f32) | 
|  | return std::make_pair(0U, &X86::GR32RegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16RegClass); | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8RegClass); | 
|  | if (VT == MVT::i64 || VT == MVT::f64) | 
|  | return std::make_pair(0U, &X86::GR64RegClass); | 
|  | break; | 
|  | } | 
|  | // 32-bit fallthrough | 
|  | case 'Q':   // Q_REGS | 
|  | if (VT == MVT::i32 || VT == MVT::f32) | 
|  | return std::make_pair(0U, &X86::GR32_ABCDRegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16_ABCDRegClass); | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); | 
|  | if (VT == MVT::i64) | 
|  | return std::make_pair(0U, &X86::GR64_ABCDRegClass); | 
|  | break; | 
|  | case 'r':   // GENERAL_REGS | 
|  | case 'l':   // INDEX_REGS | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8RegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16RegClass); | 
|  | if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, &X86::GR32RegClass); | 
|  | return std::make_pair(0U, &X86::GR64RegClass); | 
|  | case 'R':   // LEGACY_REGS | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8_NOREXRegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16_NOREXRegClass); | 
|  | if (VT == MVT::i32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, &X86::GR32_NOREXRegClass); | 
|  | return std::make_pair(0U, &X86::GR64_NOREXRegClass); | 
|  | case 'f':  // FP Stack registers. | 
|  | // If SSE is enabled for this VT, use f80 to ensure the isel moves the | 
|  | // value to the correct fpstack register class. | 
|  | if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, &X86::RFP32RegClass); | 
|  | if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, &X86::RFP64RegClass); | 
|  | return std::make_pair(0U, &X86::RFP80RegClass); | 
|  | case 'y':   // MMX_REGS if MMX allowed. | 
|  | if (!Subtarget->hasMMX()) break; | 
|  | return std::make_pair(0U, &X86::VR64RegClass); | 
|  | case 'Y':   // SSE_REGS if SSE2 allowed | 
|  | if (!Subtarget->hasSSE2()) break; | 
|  | // FALL THROUGH. | 
|  | case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed | 
|  | if (!Subtarget->hasSSE1()) break; | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | default: break; | 
|  | // Scalar SSE types. | 
|  | case MVT::f32: | 
|  | case MVT::i32: | 
|  | return std::make_pair(0U, &X86::FR32RegClass); | 
|  | case MVT::f64: | 
|  | case MVT::i64: | 
|  | return std::make_pair(0U, &X86::FR64RegClass); | 
|  | // Vector types. | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2f64: | 
|  | return std::make_pair(0U, &X86::VR128RegClass); | 
|  | // AVX types. | 
|  | case MVT::v32i8: | 
|  | case MVT::v16i16: | 
|  | case MVT::v8i32: | 
|  | case MVT::v4i64: | 
|  | case MVT::v8f32: | 
|  | case MVT::v4f64: | 
|  | return std::make_pair(0U, &X86::VR256RegClass); | 
|  | case MVT::v8f64: | 
|  | case MVT::v16f32: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | return std::make_pair(0U, &X86::VR512RegClass); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the default implementation in TargetLowering to convert the register | 
|  | // constraint into a member of a register class. | 
|  | std::pair<unsigned, const TargetRegisterClass*> Res; | 
|  | Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  |  | 
|  | // Not found as a standard register? | 
|  | if (!Res.second) { | 
|  | // Map st(0) -> st(7) -> ST0 | 
|  | if (Constraint.size() == 7 && Constraint[0] == '{' && | 
|  | tolower(Constraint[1]) == 's' && | 
|  | tolower(Constraint[2]) == 't' && | 
|  | Constraint[3] == '(' && | 
|  | (Constraint[4] >= '0' && Constraint[4] <= '7') && | 
|  | Constraint[5] == ')' && | 
|  | Constraint[6] == '}') { | 
|  |  | 
|  | Res.first = X86::FP0+Constraint[4]-'0'; | 
|  | Res.second = &X86::RFP80RegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // GCC allows "st(0)" to be called just plain "st". | 
|  | if (StringRef("{st}").equals_lower(Constraint)) { | 
|  | Res.first = X86::FP0; | 
|  | Res.second = &X86::RFP80RegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // flags -> EFLAGS | 
|  | if (StringRef("{flags}").equals_lower(Constraint)) { | 
|  | Res.first = X86::EFLAGS; | 
|  | Res.second = &X86::CCRRegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // 'A' means EAX + EDX. | 
|  | if (Constraint == "A") { | 
|  | Res.first = X86::EAX; | 
|  | Res.second = &X86::GR32_ADRegClass; | 
|  | return Res; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if this is a register class of the wrong value | 
|  | // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to | 
|  | // turn into {ax},{dx}. | 
|  | // MVT::Other is used to specify clobber names. | 
|  | if (Res.second->hasType(VT) || VT == MVT::Other) | 
|  | return Res;   // Correct type already, nothing to do. | 
|  |  | 
|  | // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should | 
|  | // return "eax". This should even work for things like getting 64bit integer | 
|  | // registers when given an f64 type. | 
|  | const TargetRegisterClass *Class = Res.second; | 
|  | if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass || | 
|  | Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) { | 
|  | unsigned Size = VT.getSizeInBits(); | 
|  | MVT::SimpleValueType SimpleTy = Size == 1 || Size == 8 ? MVT::i8 | 
|  | : Size == 16 ? MVT::i16 | 
|  | : Size == 32 ? MVT::i32 | 
|  | : Size == 64 ? MVT::i64 | 
|  | : MVT::Other; | 
|  | unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, SimpleTy); | 
|  | if (DestReg > 0) { | 
|  | Res.first = DestReg; | 
|  | Res.second = SimpleTy == MVT::i8 ? &X86::GR8RegClass | 
|  | : SimpleTy == MVT::i16 ? &X86::GR16RegClass | 
|  | : SimpleTy == MVT::i32 ? &X86::GR32RegClass | 
|  | : &X86::GR64RegClass; | 
|  | assert(Res.second->contains(Res.first) && "Register in register class"); | 
|  | } else { | 
|  | // No register found/type mismatch. | 
|  | Res.first = 0; | 
|  | Res.second = nullptr; | 
|  | } | 
|  | } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass || | 
|  | Class == &X86::VR128RegClass || Class == &X86::VR256RegClass || | 
|  | Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass || | 
|  | Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass || | 
|  | Class == &X86::VR512RegClass) { | 
|  | // Handle references to XMM physical registers that got mapped into the | 
|  | // wrong class.  This can happen with constraints like {xmm0} where the | 
|  | // target independent register mapper will just pick the first match it can | 
|  | // find, ignoring the required type. | 
|  |  | 
|  | if (VT == MVT::f32 || VT == MVT::i32) | 
|  | Res.second = &X86::FR32RegClass; | 
|  | else if (VT == MVT::f64 || VT == MVT::i64) | 
|  | Res.second = &X86::FR64RegClass; | 
|  | else if (X86::VR128RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR128RegClass; | 
|  | else if (X86::VR256RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR256RegClass; | 
|  | else if (X86::VR512RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR512RegClass; | 
|  | else { | 
|  | // Type mismatch and not a clobber: Return an error; | 
|  | Res.first = 0; | 
|  | Res.second = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | int X86TargetLowering::getScalingFactorCost(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | // Scaling factors are not free at all. | 
|  | // An indexed folded instruction, i.e., inst (reg1, reg2, scale), | 
|  | // will take 2 allocations in the out of order engine instead of 1 | 
|  | // for plain addressing mode, i.e. inst (reg1). | 
|  | // E.g., | 
|  | // vaddps (%rsi,%drx), %ymm0, %ymm1 | 
|  | // Requires two allocations (one for the load, one for the computation) | 
|  | // whereas: | 
|  | // vaddps (%rsi), %ymm0, %ymm1 | 
|  | // Requires just 1 allocation, i.e., freeing allocations for other operations | 
|  | // and having less micro operations to execute. | 
|  | // | 
|  | // For some X86 architectures, this is even worse because for instance for | 
|  | // stores, the complex addressing mode forces the instruction to use the | 
|  | // "load" ports instead of the dedicated "store" port. | 
|  | // E.g., on Haswell: | 
|  | // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. | 
|  | // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. | 
|  | if (isLegalAddressingMode(DL, AM, Ty, AS)) | 
|  | // Scale represents reg2 * scale, thus account for 1 | 
|  | // as soon as we use a second register. | 
|  | return AM.Scale != 0; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const { | 
|  | // Integer division on x86 is expensive. However, when aggressively optimizing | 
|  | // for code size, we prefer to use a div instruction, as it is usually smaller | 
|  | // than the alternative sequence. | 
|  | // The exception to this is vector division. Since x86 doesn't have vector | 
|  | // integer division, leaving the division as-is is a loss even in terms of | 
|  | // size, because it will have to be scalarized, while the alternative code | 
|  | // sequence can be performed in vector form. | 
|  | bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::MinSize); | 
|  | return OptSize && !VT.isVector(); | 
|  | } |