|  | //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This transformation analyzes and transforms the induction variables (and | 
|  | // computations derived from them) into forms suitable for efficient execution | 
|  | // on the target. | 
|  | // | 
|  | // This pass performs a strength reduction on array references inside loops that | 
|  | // have as one or more of their components the loop induction variable, it | 
|  | // rewrites expressions to take advantage of scaled-index addressing modes | 
|  | // available on the target, and it performs a variety of other optimizations | 
|  | // related to loop induction variables. | 
|  | // | 
|  | // Terminology note: this code has a lot of handling for "post-increment" or | 
|  | // "post-inc" users. This is not talking about post-increment addressing modes; | 
|  | // it is instead talking about code like this: | 
|  | // | 
|  | //   %i = phi [ 0, %entry ], [ %i.next, %latch ] | 
|  | //   ... | 
|  | //   %i.next = add %i, 1 | 
|  | //   %c = icmp eq %i.next, %n | 
|  | // | 
|  | // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however | 
|  | // it's useful to think about these as the same register, with some uses using | 
|  | // the value of the register before the add and some using it after. In this | 
|  | // example, the icmp is a post-increment user, since it uses %i.next, which is | 
|  | // the value of the induction variable after the increment. The other common | 
|  | // case of post-increment users is users outside the loop. | 
|  | // | 
|  | // TODO: More sophistication in the way Formulae are generated and filtered. | 
|  | // | 
|  | // TODO: Handle multiple loops at a time. | 
|  | // | 
|  | // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead | 
|  | //       of a GlobalValue? | 
|  | // | 
|  | // TODO: When truncation is free, truncate ICmp users' operands to make it a | 
|  | //       smaller encoding (on x86 at least). | 
|  | // | 
|  | // TODO: When a negated register is used by an add (such as in a list of | 
|  | //       multiple base registers, or as the increment expression in an addrec), | 
|  | //       we may not actually need both reg and (-1 * reg) in registers; the | 
|  | //       negation can be implemented by using a sub instead of an add. The | 
|  | //       lack of support for taking this into consideration when making | 
|  | //       register pressure decisions is partly worked around by the "Special" | 
|  | //       use kind. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/IVUsers.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionNormalization.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/OperandTraits.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <numeric> | 
|  | #include <map> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-reduce" | 
|  |  | 
|  | /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for | 
|  | /// bail out. This threshold is far beyond the number of users that LSR can | 
|  | /// conceivably solve, so it should not affect generated code, but catches the | 
|  | /// worst cases before LSR burns too much compile time and stack space. | 
|  | static const unsigned MaxIVUsers = 200; | 
|  |  | 
|  | // Temporary flag to cleanup congruent phis after LSR phi expansion. | 
|  | // It's currently disabled until we can determine whether it's truly useful or | 
|  | // not. The flag should be removed after the v3.0 release. | 
|  | // This is now needed for ivchains. | 
|  | static cl::opt<bool> EnablePhiElim( | 
|  | "enable-lsr-phielim", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable LSR phi elimination")); | 
|  |  | 
|  | // The flag adds instruction count to solutions cost comparision. | 
|  | static cl::opt<bool> InsnsCost( | 
|  | "lsr-insns-cost", cl::Hidden, cl::init(true), | 
|  | cl::desc("Add instruction count to a LSR cost model")); | 
|  |  | 
|  | // Flag to choose how to narrow complex lsr solution | 
|  | static cl::opt<bool> LSRExpNarrow( | 
|  | "lsr-exp-narrow", cl::Hidden, cl::init(false), | 
|  | cl::desc("Narrow LSR complex solution using" | 
|  | " expectation of registers number")); | 
|  |  | 
|  | // Flag to narrow search space by filtering non-optimal formulae with | 
|  | // the same ScaledReg and Scale. | 
|  | static cl::opt<bool> FilterSameScaledReg( | 
|  | "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), | 
|  | cl::desc("Narrow LSR search space by filtering non-optimal formulae" | 
|  | " with the same ScaledReg and Scale")); | 
|  |  | 
|  | static cl::opt<bool> EnableBackedgeIndexing( | 
|  | "lsr-backedge-indexing", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable the generation of cross iteration indexed memops")); | 
|  |  | 
|  | static cl::opt<unsigned> ComplexityLimit( | 
|  | "lsr-complexity-limit", cl::Hidden, | 
|  | cl::init(std::numeric_limits<uint16_t>::max()), | 
|  | cl::desc("LSR search space complexity limit")); | 
|  |  | 
|  | static cl::opt<unsigned> SetupCostDepthLimit( | 
|  | "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), | 
|  | cl::desc("The limit on recursion depth for LSRs setup cost")); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Stress test IV chain generation. | 
|  | static cl::opt<bool> StressIVChain( | 
|  | "stress-ivchain", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test LSR IV chains")); | 
|  | #else | 
|  | static bool StressIVChain = false; | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct MemAccessTy { | 
|  | /// Used in situations where the accessed memory type is unknown. | 
|  | static const unsigned UnknownAddressSpace = | 
|  | std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | Type *MemTy = nullptr; | 
|  | unsigned AddrSpace = UnknownAddressSpace; | 
|  |  | 
|  | MemAccessTy() = default; | 
|  | MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} | 
|  |  | 
|  | bool operator==(MemAccessTy Other) const { | 
|  | return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; | 
|  | } | 
|  |  | 
|  | bool operator!=(MemAccessTy Other) const { return !(*this == Other); } | 
|  |  | 
|  | static MemAccessTy getUnknown(LLVMContext &Ctx, | 
|  | unsigned AS = UnknownAddressSpace) { | 
|  | return MemAccessTy(Type::getVoidTy(Ctx), AS); | 
|  | } | 
|  |  | 
|  | Type *getType() { return MemTy; } | 
|  | }; | 
|  |  | 
|  | /// This class holds data which is used to order reuse candidates. | 
|  | class RegSortData { | 
|  | public: | 
|  | /// This represents the set of LSRUse indices which reference | 
|  | /// a particular register. | 
|  | SmallBitVector UsedByIndices; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void RegSortData::print(raw_ostream &OS) const { | 
|  | OS << "[NumUses=" << UsedByIndices.count() << ']'; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void RegSortData::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Map register candidates to information about how they are used. | 
|  | class RegUseTracker { | 
|  | using RegUsesTy = DenseMap<const SCEV *, RegSortData>; | 
|  |  | 
|  | RegUsesTy RegUsesMap; | 
|  | SmallVector<const SCEV *, 16> RegSequence; | 
|  |  | 
|  | public: | 
|  | void countRegister(const SCEV *Reg, size_t LUIdx); | 
|  | void dropRegister(const SCEV *Reg, size_t LUIdx); | 
|  | void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); | 
|  |  | 
|  | bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; | 
|  |  | 
|  | const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; | 
|  |  | 
|  | void clear(); | 
|  |  | 
|  | using iterator = SmallVectorImpl<const SCEV *>::iterator; | 
|  | using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; | 
|  |  | 
|  | iterator begin() { return RegSequence.begin(); } | 
|  | iterator end()   { return RegSequence.end(); } | 
|  | const_iterator begin() const { return RegSequence.begin(); } | 
|  | const_iterator end() const   { return RegSequence.end(); } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void | 
|  | RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { | 
|  | std::pair<RegUsesTy::iterator, bool> Pair = | 
|  | RegUsesMap.insert(std::make_pair(Reg, RegSortData())); | 
|  | RegSortData &RSD = Pair.first->second; | 
|  | if (Pair.second) | 
|  | RegSequence.push_back(Reg); | 
|  | RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); | 
|  | RSD.UsedByIndices.set(LUIdx); | 
|  | } | 
|  |  | 
|  | void | 
|  | RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { | 
|  | RegUsesTy::iterator It = RegUsesMap.find(Reg); | 
|  | assert(It != RegUsesMap.end()); | 
|  | RegSortData &RSD = It->second; | 
|  | assert(RSD.UsedByIndices.size() > LUIdx); | 
|  | RSD.UsedByIndices.reset(LUIdx); | 
|  | } | 
|  |  | 
|  | void | 
|  | RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { | 
|  | assert(LUIdx <= LastLUIdx); | 
|  |  | 
|  | // Update RegUses. The data structure is not optimized for this purpose; | 
|  | // we must iterate through it and update each of the bit vectors. | 
|  | for (auto &Pair : RegUsesMap) { | 
|  | SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; | 
|  | if (LUIdx < UsedByIndices.size()) | 
|  | UsedByIndices[LUIdx] = | 
|  | LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; | 
|  | UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { | 
|  | RegUsesTy::const_iterator I = RegUsesMap.find(Reg); | 
|  | if (I == RegUsesMap.end()) | 
|  | return false; | 
|  | const SmallBitVector &UsedByIndices = I->second.UsedByIndices; | 
|  | int i = UsedByIndices.find_first(); | 
|  | if (i == -1) return false; | 
|  | if ((size_t)i != LUIdx) return true; | 
|  | return UsedByIndices.find_next(i) != -1; | 
|  | } | 
|  |  | 
|  | const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { | 
|  | RegUsesTy::const_iterator I = RegUsesMap.find(Reg); | 
|  | assert(I != RegUsesMap.end() && "Unknown register!"); | 
|  | return I->second.UsedByIndices; | 
|  | } | 
|  |  | 
|  | void RegUseTracker::clear() { | 
|  | RegUsesMap.clear(); | 
|  | RegSequence.clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class holds information that describes a formula for computing | 
|  | /// satisfying a use. It may include broken-out immediates and scaled registers. | 
|  | struct Formula { | 
|  | /// Global base address used for complex addressing. | 
|  | GlobalValue *BaseGV = nullptr; | 
|  |  | 
|  | /// Base offset for complex addressing. | 
|  | int64_t BaseOffset = 0; | 
|  |  | 
|  | /// Whether any complex addressing has a base register. | 
|  | bool HasBaseReg = false; | 
|  |  | 
|  | /// The scale of any complex addressing. | 
|  | int64_t Scale = 0; | 
|  |  | 
|  | /// The list of "base" registers for this use. When this is non-empty. The | 
|  | /// canonical representation of a formula is | 
|  | /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and | 
|  | /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). | 
|  | /// 3. The reg containing recurrent expr related with currect loop in the | 
|  | /// formula should be put in the ScaledReg. | 
|  | /// #1 enforces that the scaled register is always used when at least two | 
|  | /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. | 
|  | /// #2 enforces that 1 * reg is reg. | 
|  | /// #3 ensures invariant regs with respect to current loop can be combined | 
|  | /// together in LSR codegen. | 
|  | /// This invariant can be temporarily broken while building a formula. | 
|  | /// However, every formula inserted into the LSRInstance must be in canonical | 
|  | /// form. | 
|  | SmallVector<const SCEV *, 4> BaseRegs; | 
|  |  | 
|  | /// The 'scaled' register for this use. This should be non-null when Scale is | 
|  | /// not zero. | 
|  | const SCEV *ScaledReg = nullptr; | 
|  |  | 
|  | /// An additional constant offset which added near the use. This requires a | 
|  | /// temporary register, but the offset itself can live in an add immediate | 
|  | /// field rather than a register. | 
|  | int64_t UnfoldedOffset = 0; | 
|  |  | 
|  | Formula() = default; | 
|  |  | 
|  | void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); | 
|  |  | 
|  | bool isCanonical(const Loop &L) const; | 
|  |  | 
|  | void canonicalize(const Loop &L); | 
|  |  | 
|  | bool unscale(); | 
|  |  | 
|  | bool hasZeroEnd() const; | 
|  |  | 
|  | size_t getNumRegs() const; | 
|  | Type *getType() const; | 
|  |  | 
|  | void deleteBaseReg(const SCEV *&S); | 
|  |  | 
|  | bool referencesReg(const SCEV *S) const; | 
|  | bool hasRegsUsedByUsesOtherThan(size_t LUIdx, | 
|  | const RegUseTracker &RegUses) const; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Recursion helper for initialMatch. | 
|  | static void DoInitialMatch(const SCEV *S, Loop *L, | 
|  | SmallVectorImpl<const SCEV *> &Good, | 
|  | SmallVectorImpl<const SCEV *> &Bad, | 
|  | ScalarEvolution &SE) { | 
|  | // Collect expressions which properly dominate the loop header. | 
|  | if (SE.properlyDominates(S, L->getHeader())) { | 
|  | Good.push_back(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look at add operands. | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | for (const SCEV *S : Add->operands()) | 
|  | DoInitialMatch(S, L, Good, Bad, SE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look at addrec operands. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | if (!AR->getStart()->isZero() && AR->isAffine()) { | 
|  | DoInitialMatch(AR->getStart(), L, Good, Bad, SE); | 
|  | DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), | 
|  | AR->getStepRecurrence(SE), | 
|  | // FIXME: AR->getNoWrapFlags() | 
|  | AR->getLoop(), SCEV::FlagAnyWrap), | 
|  | L, Good, Bad, SE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multiplication by -1 (negation) if it didn't fold. | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) | 
|  | if (Mul->getOperand(0)->isAllOnesValue()) { | 
|  | SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); | 
|  | const SCEV *NewMul = SE.getMulExpr(Ops); | 
|  |  | 
|  | SmallVector<const SCEV *, 4> MyGood; | 
|  | SmallVector<const SCEV *, 4> MyBad; | 
|  | DoInitialMatch(NewMul, L, MyGood, MyBad, SE); | 
|  | const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( | 
|  | SE.getEffectiveSCEVType(NewMul->getType()))); | 
|  | for (const SCEV *S : MyGood) | 
|  | Good.push_back(SE.getMulExpr(NegOne, S)); | 
|  | for (const SCEV *S : MyBad) | 
|  | Bad.push_back(SE.getMulExpr(NegOne, S)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ok, we can't do anything interesting. Just stuff the whole thing into a | 
|  | // register and hope for the best. | 
|  | Bad.push_back(S); | 
|  | } | 
|  |  | 
|  | /// Incorporate loop-variant parts of S into this Formula, attempting to keep | 
|  | /// all loop-invariant and loop-computable values in a single base register. | 
|  | void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { | 
|  | SmallVector<const SCEV *, 4> Good; | 
|  | SmallVector<const SCEV *, 4> Bad; | 
|  | DoInitialMatch(S, L, Good, Bad, SE); | 
|  | if (!Good.empty()) { | 
|  | const SCEV *Sum = SE.getAddExpr(Good); | 
|  | if (!Sum->isZero()) | 
|  | BaseRegs.push_back(Sum); | 
|  | HasBaseReg = true; | 
|  | } | 
|  | if (!Bad.empty()) { | 
|  | const SCEV *Sum = SE.getAddExpr(Bad); | 
|  | if (!Sum->isZero()) | 
|  | BaseRegs.push_back(Sum); | 
|  | HasBaseReg = true; | 
|  | } | 
|  | canonicalize(*L); | 
|  | } | 
|  |  | 
|  | /// Check whether or not this formula satisfies the canonical | 
|  | /// representation. | 
|  | /// \see Formula::BaseRegs. | 
|  | bool Formula::isCanonical(const Loop &L) const { | 
|  | if (!ScaledReg) | 
|  | return BaseRegs.size() <= 1; | 
|  |  | 
|  | if (Scale != 1) | 
|  | return true; | 
|  |  | 
|  | if (Scale == 1 && BaseRegs.empty()) | 
|  | return false; | 
|  |  | 
|  | const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); | 
|  | if (SAR && SAR->getLoop() == &L) | 
|  | return true; | 
|  |  | 
|  | // If ScaledReg is not a recurrent expr, or it is but its loop is not current | 
|  | // loop, meanwhile BaseRegs contains a recurrent expr reg related with current | 
|  | // loop, we want to swap the reg in BaseRegs with ScaledReg. | 
|  | auto I = | 
|  | find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { | 
|  | return isa<const SCEVAddRecExpr>(S) && | 
|  | (cast<SCEVAddRecExpr>(S)->getLoop() == &L); | 
|  | }); | 
|  | return I == BaseRegs.end(); | 
|  | } | 
|  |  | 
|  | /// Helper method to morph a formula into its canonical representation. | 
|  | /// \see Formula::BaseRegs. | 
|  | /// Every formula having more than one base register, must use the ScaledReg | 
|  | /// field. Otherwise, we would have to do special cases everywhere in LSR | 
|  | /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... | 
|  | /// On the other hand, 1*reg should be canonicalized into reg. | 
|  | void Formula::canonicalize(const Loop &L) { | 
|  | if (isCanonical(L)) | 
|  | return; | 
|  | // So far we did not need this case. This is easy to implement but it is | 
|  | // useless to maintain dead code. Beside it could hurt compile time. | 
|  | assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); | 
|  |  | 
|  | // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. | 
|  | if (!ScaledReg) { | 
|  | ScaledReg = BaseRegs.back(); | 
|  | BaseRegs.pop_back(); | 
|  | Scale = 1; | 
|  | } | 
|  |  | 
|  | // If ScaledReg is an invariant with respect to L, find the reg from | 
|  | // BaseRegs containing the recurrent expr related with Loop L. Swap the | 
|  | // reg with ScaledReg. | 
|  | const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); | 
|  | if (!SAR || SAR->getLoop() != &L) { | 
|  | auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), | 
|  | [&](const SCEV *S) { | 
|  | return isa<const SCEVAddRecExpr>(S) && | 
|  | (cast<SCEVAddRecExpr>(S)->getLoop() == &L); | 
|  | }); | 
|  | if (I != BaseRegs.end()) | 
|  | std::swap(ScaledReg, *I); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get rid of the scale in the formula. | 
|  | /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. | 
|  | /// \return true if it was possible to get rid of the scale, false otherwise. | 
|  | /// \note After this operation the formula may not be in the canonical form. | 
|  | bool Formula::unscale() { | 
|  | if (Scale != 1) | 
|  | return false; | 
|  | Scale = 0; | 
|  | BaseRegs.push_back(ScaledReg); | 
|  | ScaledReg = nullptr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Formula::hasZeroEnd() const { | 
|  | if (UnfoldedOffset || BaseOffset) | 
|  | return false; | 
|  | if (BaseRegs.size() != 1 || ScaledReg) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the total number of register operands used by this formula. This does | 
|  | /// not include register uses implied by non-constant addrec strides. | 
|  | size_t Formula::getNumRegs() const { | 
|  | return !!ScaledReg + BaseRegs.size(); | 
|  | } | 
|  |  | 
|  | /// Return the type of this formula, if it has one, or null otherwise. This type | 
|  | /// is meaningless except for the bit size. | 
|  | Type *Formula::getType() const { | 
|  | return !BaseRegs.empty() ? BaseRegs.front()->getType() : | 
|  | ScaledReg ? ScaledReg->getType() : | 
|  | BaseGV ? BaseGV->getType() : | 
|  | nullptr; | 
|  | } | 
|  |  | 
|  | /// Delete the given base reg from the BaseRegs list. | 
|  | void Formula::deleteBaseReg(const SCEV *&S) { | 
|  | if (&S != &BaseRegs.back()) | 
|  | std::swap(S, BaseRegs.back()); | 
|  | BaseRegs.pop_back(); | 
|  | } | 
|  |  | 
|  | /// Test if this formula references the given register. | 
|  | bool Formula::referencesReg(const SCEV *S) const { | 
|  | return S == ScaledReg || is_contained(BaseRegs, S); | 
|  | } | 
|  |  | 
|  | /// Test whether this formula uses registers which are used by uses other than | 
|  | /// the use with the given index. | 
|  | bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, | 
|  | const RegUseTracker &RegUses) const { | 
|  | if (ScaledReg) | 
|  | if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) | 
|  | return true; | 
|  | for (const SCEV *BaseReg : BaseRegs) | 
|  | if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void Formula::print(raw_ostream &OS) const { | 
|  | bool First = true; | 
|  | if (BaseGV) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | BaseGV->printAsOperand(OS, /*PrintType=*/false); | 
|  | } | 
|  | if (BaseOffset != 0) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << BaseOffset; | 
|  | } | 
|  | for (const SCEV *BaseReg : BaseRegs) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "reg(" << *BaseReg << ')'; | 
|  | } | 
|  | if (HasBaseReg && BaseRegs.empty()) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "**error: HasBaseReg**"; | 
|  | } else if (!HasBaseReg && !BaseRegs.empty()) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "**error: !HasBaseReg**"; | 
|  | } | 
|  | if (Scale != 0) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << Scale << "*reg("; | 
|  | if (ScaledReg) | 
|  | OS << *ScaledReg; | 
|  | else | 
|  | OS << "<unknown>"; | 
|  | OS << ')'; | 
|  | } | 
|  | if (UnfoldedOffset != 0) { | 
|  | if (!First) OS << " + "; | 
|  | OS << "imm(" << UnfoldedOffset << ')'; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void Formula::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Return true if the given addrec can be sign-extended without changing its | 
|  | /// value. | 
|  | static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); | 
|  | return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); | 
|  | } | 
|  |  | 
|  | /// Return true if the given add can be sign-extended without changing its | 
|  | /// value. | 
|  | static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); | 
|  | return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); | 
|  | } | 
|  |  | 
|  | /// Return true if the given mul can be sign-extended without changing its | 
|  | /// value. | 
|  | static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), | 
|  | SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); | 
|  | return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); | 
|  | } | 
|  |  | 
|  | /// Return an expression for LHS /s RHS, if it can be determined and if the | 
|  | /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits | 
|  | /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that | 
|  | /// the multiplication may overflow, which is useful when the result will be | 
|  | /// used in a context where the most significant bits are ignored. | 
|  | static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, | 
|  | ScalarEvolution &SE, | 
|  | bool IgnoreSignificantBits = false) { | 
|  | // Handle the trivial case, which works for any SCEV type. | 
|  | if (LHS == RHS) | 
|  | return SE.getConstant(LHS->getType(), 1); | 
|  |  | 
|  | // Handle a few RHS special cases. | 
|  | const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); | 
|  | if (RC) { | 
|  | const APInt &RA = RC->getAPInt(); | 
|  | // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do | 
|  | // some folding. | 
|  | if (RA.isAllOnesValue()) | 
|  | return SE.getMulExpr(LHS, RC); | 
|  | // Handle x /s 1 as x. | 
|  | if (RA == 1) | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | // Check for a division of a constant by a constant. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { | 
|  | if (!RC) | 
|  | return nullptr; | 
|  | const APInt &LA = C->getAPInt(); | 
|  | const APInt &RA = RC->getAPInt(); | 
|  | if (LA.srem(RA) != 0) | 
|  | return nullptr; | 
|  | return SE.getConstant(LA.sdiv(RA)); | 
|  | } | 
|  |  | 
|  | // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { | 
|  | if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { | 
|  | const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, | 
|  | IgnoreSignificantBits); | 
|  | if (!Step) return nullptr; | 
|  | const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, | 
|  | IgnoreSignificantBits); | 
|  | if (!Start) return nullptr; | 
|  | // FlagNW is independent of the start value, step direction, and is | 
|  | // preserved with smaller magnitude steps. | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Distribute the sdiv over add operands, if the add doesn't overflow. | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { | 
|  | if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  | for (const SCEV *S : Add->operands()) { | 
|  | const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); | 
|  | if (!Op) return nullptr; | 
|  | Ops.push_back(Op); | 
|  | } | 
|  | return SE.getAddExpr(Ops); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check for a multiply operand that we can pull RHS out of. | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { | 
|  | if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | bool Found = false; | 
|  | for (const SCEV *S : Mul->operands()) { | 
|  | if (!Found) | 
|  | if (const SCEV *Q = getExactSDiv(S, RHS, SE, | 
|  | IgnoreSignificantBits)) { | 
|  | S = Q; | 
|  | Found = true; | 
|  | } | 
|  | Ops.push_back(S); | 
|  | } | 
|  | return Found ? SE.getMulExpr(Ops) : nullptr; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Otherwise we don't know. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If S involves the addition of a constant integer value, return that integer | 
|  | /// value, and mutate S to point to a new SCEV with that value excluded. | 
|  | static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { | 
|  | if (C->getAPInt().getMinSignedBits() <= 64) { | 
|  | S = SE.getConstant(C->getType(), 0); | 
|  | return C->getValue()->getSExtValue(); | 
|  | } | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); | 
|  | int64_t Result = ExtractImmediate(NewOps.front(), SE); | 
|  | if (Result != 0) | 
|  | S = SE.getAddExpr(NewOps); | 
|  | return Result; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); | 
|  | int64_t Result = ExtractImmediate(NewOps.front(), SE); | 
|  | if (Result != 0) | 
|  | S = SE.getAddRecExpr(NewOps, AR->getLoop(), | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap); | 
|  | return Result; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// If S involves the addition of a GlobalValue address, return that symbol, and | 
|  | /// mutate S to point to a new SCEV with that value excluded. | 
|  | static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { | 
|  | S = SE.getConstant(GV->getType(), 0); | 
|  | return GV; | 
|  | } | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); | 
|  | GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); | 
|  | if (Result) | 
|  | S = SE.getAddExpr(NewOps); | 
|  | return Result; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); | 
|  | GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); | 
|  | if (Result) | 
|  | S = SE.getAddRecExpr(NewOps, AR->getLoop(), | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap); | 
|  | return Result; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns true if the specified instruction is using the specified value as an | 
|  | /// address. | 
|  | static bool isAddressUse(const TargetTransformInfo &TTI, | 
|  | Instruction *Inst, Value *OperandVal) { | 
|  | bool isAddress = isa<LoadInst>(Inst); | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | if (SI->getPointerOperand() == OperandVal) | 
|  | isAddress = true; | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | // Addressing modes can also be folded into prefetches and a variety | 
|  | // of intrinsics. | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::prefetch: | 
|  | if (II->getArgOperand(0) == OperandVal) | 
|  | isAddress = true; | 
|  | break; | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | if (II->getArgOperand(0) == OperandVal || | 
|  | II->getArgOperand(1) == OperandVal) | 
|  | isAddress = true; | 
|  | break; | 
|  | default: { | 
|  | MemIntrinsicInfo IntrInfo; | 
|  | if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { | 
|  | if (IntrInfo.PtrVal == OperandVal) | 
|  | isAddress = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { | 
|  | if (RMW->getPointerOperand() == OperandVal) | 
|  | isAddress = true; | 
|  | } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { | 
|  | if (CmpX->getPointerOperand() == OperandVal) | 
|  | isAddress = true; | 
|  | } | 
|  | return isAddress; | 
|  | } | 
|  |  | 
|  | /// Return the type of the memory being accessed. | 
|  | static MemAccessTy getAccessType(const TargetTransformInfo &TTI, | 
|  | Instruction *Inst, Value *OperandVal) { | 
|  | MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); | 
|  | if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | AccessTy.MemTy = SI->getOperand(0)->getType(); | 
|  | AccessTy.AddrSpace = SI->getPointerAddressSpace(); | 
|  | } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { | 
|  | AccessTy.AddrSpace = LI->getPointerAddressSpace(); | 
|  | } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { | 
|  | AccessTy.AddrSpace = RMW->getPointerAddressSpace(); | 
|  | } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { | 
|  | AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::prefetch: | 
|  | case Intrinsic::memset: | 
|  | AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); | 
|  | AccessTy.MemTy = OperandVal->getType(); | 
|  | break; | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); | 
|  | AccessTy.MemTy = OperandVal->getType(); | 
|  | break; | 
|  | default: { | 
|  | MemIntrinsicInfo IntrInfo; | 
|  | if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { | 
|  | AccessTy.AddrSpace | 
|  | = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // All pointers have the same requirements, so canonicalize them to an | 
|  | // arbitrary pointer type to minimize variation. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) | 
|  | AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), | 
|  | PTy->getAddressSpace()); | 
|  |  | 
|  | return AccessTy; | 
|  | } | 
|  |  | 
|  | /// Return true if this AddRec is already a phi in its loop. | 
|  | static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { | 
|  | for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { | 
|  | if (SE.isSCEVable(PN.getType()) && | 
|  | (SE.getEffectiveSCEVType(PN.getType()) == | 
|  | SE.getEffectiveSCEVType(AR->getType())) && | 
|  | SE.getSCEV(&PN) == AR) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if expanding this expression is likely to incur significant cost. This | 
|  | /// is tricky because SCEV doesn't track which expressions are actually computed | 
|  | /// by the current IR. | 
|  | /// | 
|  | /// We currently allow expansion of IV increments that involve adds, | 
|  | /// multiplication by constants, and AddRecs from existing phis. | 
|  | /// | 
|  | /// TODO: Allow UDivExpr if we can find an existing IV increment that is an | 
|  | /// obvious multiple of the UDivExpr. | 
|  | static bool isHighCostExpansion(const SCEV *S, | 
|  | SmallPtrSetImpl<const SCEV*> &Processed, | 
|  | ScalarEvolution &SE) { | 
|  | // Zero/One operand expressions | 
|  | switch (S->getSCEVType()) { | 
|  | case scUnknown: | 
|  | case scConstant: | 
|  | return false; | 
|  | case scTruncate: | 
|  | return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), | 
|  | Processed, SE); | 
|  | case scZeroExtend: | 
|  | return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), | 
|  | Processed, SE); | 
|  | case scSignExtend: | 
|  | return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), | 
|  | Processed, SE); | 
|  | } | 
|  |  | 
|  | if (!Processed.insert(S).second) | 
|  | return false; | 
|  |  | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | for (const SCEV *S : Add->operands()) { | 
|  | if (isHighCostExpansion(S, Processed, SE)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { | 
|  | if (Mul->getNumOperands() == 2) { | 
|  | // Multiplication by a constant is ok | 
|  | if (isa<SCEVConstant>(Mul->getOperand(0))) | 
|  | return isHighCostExpansion(Mul->getOperand(1), Processed, SE); | 
|  |  | 
|  | // If we have the value of one operand, check if an existing | 
|  | // multiplication already generates this expression. | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { | 
|  | Value *UVal = U->getValue(); | 
|  | for (User *UR : UVal->users()) { | 
|  | // If U is a constant, it may be used by a ConstantExpr. | 
|  | Instruction *UI = dyn_cast<Instruction>(UR); | 
|  | if (UI && UI->getOpcode() == Instruction::Mul && | 
|  | SE.isSCEVable(UI->getType())) { | 
|  | return SE.getSCEV(UI) == Mul; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | if (isExistingPhi(AR, SE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Fow now, consider any other type of expression (div/mul/min/max) high cost. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If any of the instructions in the specified set are trivially dead, delete | 
|  | /// them and see if this makes any of their operands subsequently dead. | 
|  | static bool | 
|  | DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { | 
|  | bool Changed = false; | 
|  |  | 
|  | while (!DeadInsts.empty()) { | 
|  | Value *V = DeadInsts.pop_back_val(); | 
|  | Instruction *I = dyn_cast_or_null<Instruction>(V); | 
|  |  | 
|  | if (!I || !isInstructionTriviallyDead(I)) | 
|  | continue; | 
|  |  | 
|  | for (Use &O : I->operands()) | 
|  | if (Instruction *U = dyn_cast<Instruction>(O)) { | 
|  | O = nullptr; | 
|  | if (U->use_empty()) | 
|  | DeadInsts.emplace_back(U); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LSRUse; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Check if the addressing mode defined by \p F is completely | 
|  | /// folded in \p LU at isel time. | 
|  | /// This includes address-mode folding and special icmp tricks. | 
|  | /// This function returns true if \p LU can accommodate what \p F | 
|  | /// defines and up to 1 base + 1 scaled + offset. | 
|  | /// In other words, if \p F has several base registers, this function may | 
|  | /// still return true. Therefore, users still need to account for | 
|  | /// additional base registers and/or unfolded offsets to derive an | 
|  | /// accurate cost model. | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | const LSRUse &LU, const Formula &F); | 
|  |  | 
|  | // Get the cost of the scaling factor used in F for LU. | 
|  | static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, | 
|  | const LSRUse &LU, const Formula &F, | 
|  | const Loop &L); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// This class is used to measure and compare candidate formulae. | 
|  | class Cost { | 
|  | const Loop *L = nullptr; | 
|  | ScalarEvolution *SE = nullptr; | 
|  | const TargetTransformInfo *TTI = nullptr; | 
|  | TargetTransformInfo::LSRCost C; | 
|  |  | 
|  | public: | 
|  | Cost() = delete; | 
|  | Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : | 
|  | L(L), SE(&SE), TTI(&TTI) { | 
|  | C.Insns = 0; | 
|  | C.NumRegs = 0; | 
|  | C.AddRecCost = 0; | 
|  | C.NumIVMuls = 0; | 
|  | C.NumBaseAdds = 0; | 
|  | C.ImmCost = 0; | 
|  | C.SetupCost = 0; | 
|  | C.ScaleCost = 0; | 
|  | } | 
|  |  | 
|  | bool isLess(Cost &Other); | 
|  |  | 
|  | void Lose(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Once any of the metrics loses, they must all remain losers. | 
|  | bool isValid() { | 
|  | return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds | 
|  | | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) | 
|  | || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds | 
|  | & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool isLoser() { | 
|  | assert(isValid() && "invalid cost"); | 
|  | return C.NumRegs == ~0u; | 
|  | } | 
|  |  | 
|  | void RateFormula(const Formula &F, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs, | 
|  | const DenseSet<const SCEV *> &VisitedRegs, | 
|  | const LSRUse &LU, | 
|  | SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | private: | 
|  | void RateRegister(const Formula &F, const SCEV *Reg, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs); | 
|  | void RatePrimaryRegister(const Formula &F, const SCEV *Reg, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs, | 
|  | SmallPtrSetImpl<const SCEV *> *LoserRegs); | 
|  | }; | 
|  |  | 
|  | /// An operand value in an instruction which is to be replaced with some | 
|  | /// equivalent, possibly strength-reduced, replacement. | 
|  | struct LSRFixup { | 
|  | /// The instruction which will be updated. | 
|  | Instruction *UserInst = nullptr; | 
|  |  | 
|  | /// The operand of the instruction which will be replaced. The operand may be | 
|  | /// used more than once; every instance will be replaced. | 
|  | Value *OperandValToReplace = nullptr; | 
|  |  | 
|  | /// If this user is to use the post-incremented value of an induction | 
|  | /// variable, this set is non-empty and holds the loops associated with the | 
|  | /// induction variable. | 
|  | PostIncLoopSet PostIncLoops; | 
|  |  | 
|  | /// A constant offset to be added to the LSRUse expression.  This allows | 
|  | /// multiple fixups to share the same LSRUse with different offsets, for | 
|  | /// example in an unrolled loop. | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | LSRFixup() = default; | 
|  |  | 
|  | bool isUseFullyOutsideLoop(const Loop *L) const; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted | 
|  | /// SmallVectors of const SCEV*. | 
|  | struct UniquifierDenseMapInfo { | 
|  | static SmallVector<const SCEV *, 4> getEmptyKey() { | 
|  | SmallVector<const SCEV *, 4>  V; | 
|  | V.push_back(reinterpret_cast<const SCEV *>(-1)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | static SmallVector<const SCEV *, 4> getTombstoneKey() { | 
|  | SmallVector<const SCEV *, 4> V; | 
|  | V.push_back(reinterpret_cast<const SCEV *>(-2)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { | 
|  | return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); | 
|  | } | 
|  |  | 
|  | static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, | 
|  | const SmallVector<const SCEV *, 4> &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This class holds the state that LSR keeps for each use in IVUsers, as well | 
|  | /// as uses invented by LSR itself. It includes information about what kinds of | 
|  | /// things can be folded into the user, information about the user itself, and | 
|  | /// information about how the use may be satisfied.  TODO: Represent multiple | 
|  | /// users of the same expression in common? | 
|  | class LSRUse { | 
|  | DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; | 
|  |  | 
|  | public: | 
|  | /// An enum for a kind of use, indicating what types of scaled and immediate | 
|  | /// operands it might support. | 
|  | enum KindType { | 
|  | Basic,   ///< A normal use, with no folding. | 
|  | Special, ///< A special case of basic, allowing -1 scales. | 
|  | Address, ///< An address use; folding according to TargetLowering | 
|  | ICmpZero ///< An equality icmp with both operands folded into one. | 
|  | // TODO: Add a generic icmp too? | 
|  | }; | 
|  |  | 
|  | using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; | 
|  |  | 
|  | KindType Kind; | 
|  | MemAccessTy AccessTy; | 
|  |  | 
|  | /// The list of operands which are to be replaced. | 
|  | SmallVector<LSRFixup, 8> Fixups; | 
|  |  | 
|  | /// Keep track of the min and max offsets of the fixups. | 
|  | int64_t MinOffset = std::numeric_limits<int64_t>::max(); | 
|  | int64_t MaxOffset = std::numeric_limits<int64_t>::min(); | 
|  |  | 
|  | /// This records whether all of the fixups using this LSRUse are outside of | 
|  | /// the loop, in which case some special-case heuristics may be used. | 
|  | bool AllFixupsOutsideLoop = true; | 
|  |  | 
|  | /// RigidFormula is set to true to guarantee that this use will be associated | 
|  | /// with a single formula--the one that initially matched. Some SCEV | 
|  | /// expressions cannot be expanded. This allows LSR to consider the registers | 
|  | /// used by those expressions without the need to expand them later after | 
|  | /// changing the formula. | 
|  | bool RigidFormula = false; | 
|  |  | 
|  | /// This records the widest use type for any fixup using this | 
|  | /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max | 
|  | /// fixup widths to be equivalent, because the narrower one may be relying on | 
|  | /// the implicit truncation to truncate away bogus bits. | 
|  | Type *WidestFixupType = nullptr; | 
|  |  | 
|  | /// A list of ways to build a value that can satisfy this user.  After the | 
|  | /// list is populated, one of these is selected heuristically and used to | 
|  | /// formulate a replacement for OperandValToReplace in UserInst. | 
|  | SmallVector<Formula, 12> Formulae; | 
|  |  | 
|  | /// The set of register candidates used by all formulae in this LSRUse. | 
|  | SmallPtrSet<const SCEV *, 4> Regs; | 
|  |  | 
|  | LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} | 
|  |  | 
|  | LSRFixup &getNewFixup() { | 
|  | Fixups.push_back(LSRFixup()); | 
|  | return Fixups.back(); | 
|  | } | 
|  |  | 
|  | void pushFixup(LSRFixup &f) { | 
|  | Fixups.push_back(f); | 
|  | if (f.Offset > MaxOffset) | 
|  | MaxOffset = f.Offset; | 
|  | if (f.Offset < MinOffset) | 
|  | MinOffset = f.Offset; | 
|  | } | 
|  |  | 
|  | bool HasFormulaWithSameRegs(const Formula &F) const; | 
|  | float getNotSelectedProbability(const SCEV *Reg) const; | 
|  | bool InsertFormula(const Formula &F, const Loop &L); | 
|  | void DeleteFormula(Formula &F); | 
|  | void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy, | 
|  | GlobalValue *BaseGV, int64_t BaseOffset, | 
|  | bool HasBaseReg, int64_t Scale, | 
|  | Instruction *Fixup = nullptr); | 
|  |  | 
|  | static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { | 
|  | if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) | 
|  | return 1; | 
|  | if (Depth == 0) | 
|  | return 0; | 
|  | if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) | 
|  | return getSetupCost(S->getStart(), Depth - 1); | 
|  | if (auto S = dyn_cast<SCEVCastExpr>(Reg)) | 
|  | return getSetupCost(S->getOperand(), Depth - 1); | 
|  | if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) | 
|  | return std::accumulate(S->op_begin(), S->op_end(), 0, | 
|  | [&](unsigned i, const SCEV *Reg) { | 
|  | return i + getSetupCost(Reg, Depth - 1); | 
|  | }); | 
|  | if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) | 
|  | return getSetupCost(S->getLHS(), Depth - 1) + | 
|  | getSetupCost(S->getRHS(), Depth - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Tally up interesting quantities from the given register. | 
|  | void Cost::RateRegister(const Formula &F, const SCEV *Reg, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs) { | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { | 
|  | // If this is an addrec for another loop, it should be an invariant | 
|  | // with respect to L since L is the innermost loop (at least | 
|  | // for now LSR only handles innermost loops). | 
|  | if (AR->getLoop() != L) { | 
|  | // If the AddRec exists, consider it's register free and leave it alone. | 
|  | if (isExistingPhi(AR, *SE)) | 
|  | return; | 
|  |  | 
|  | // It is bad to allow LSR for current loop to add induction variables | 
|  | // for its sibling loops. | 
|  | if (!AR->getLoop()->contains(L)) { | 
|  | Lose(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, it will be an invariant with respect to Loop L. | 
|  | ++C.NumRegs; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned LoopCost = 1; | 
|  | if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || | 
|  | TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { | 
|  |  | 
|  | // If the step size matches the base offset, we could use pre-indexed | 
|  | // addressing. | 
|  | if (TTI->shouldFavorBackedgeIndex(L)) { | 
|  | if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) | 
|  | if (Step->getAPInt() == F.BaseOffset) | 
|  | LoopCost = 0; | 
|  | } | 
|  |  | 
|  | if (TTI->shouldFavorPostInc()) { | 
|  | const SCEV *LoopStep = AR->getStepRecurrence(*SE); | 
|  | if (isa<SCEVConstant>(LoopStep)) { | 
|  | const SCEV *LoopStart = AR->getStart(); | 
|  | if (!isa<SCEVConstant>(LoopStart) && | 
|  | SE->isLoopInvariant(LoopStart, L)) | 
|  | LoopCost = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | C.AddRecCost += LoopCost; | 
|  |  | 
|  | // Add the step value register, if it needs one. | 
|  | // TODO: The non-affine case isn't precisely modeled here. | 
|  | if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { | 
|  | if (!Regs.count(AR->getOperand(1))) { | 
|  | RateRegister(F, AR->getOperand(1), Regs); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | ++C.NumRegs; | 
|  |  | 
|  | // Rough heuristic; favor registers which don't require extra setup | 
|  | // instructions in the preheader. | 
|  | C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); | 
|  | // Ensure we don't, even with the recusion limit, produce invalid costs. | 
|  | C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); | 
|  |  | 
|  | C.NumIVMuls += isa<SCEVMulExpr>(Reg) && | 
|  | SE->hasComputableLoopEvolution(Reg, L); | 
|  | } | 
|  |  | 
|  | /// Record this register in the set. If we haven't seen it before, rate | 
|  | /// it. Optional LoserRegs provides a way to declare any formula that refers to | 
|  | /// one of those regs an instant loser. | 
|  | void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs, | 
|  | SmallPtrSetImpl<const SCEV *> *LoserRegs) { | 
|  | if (LoserRegs && LoserRegs->count(Reg)) { | 
|  | Lose(); | 
|  | return; | 
|  | } | 
|  | if (Regs.insert(Reg).second) { | 
|  | RateRegister(F, Reg, Regs); | 
|  | if (LoserRegs && isLoser()) | 
|  | LoserRegs->insert(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Cost::RateFormula(const Formula &F, | 
|  | SmallPtrSetImpl<const SCEV *> &Regs, | 
|  | const DenseSet<const SCEV *> &VisitedRegs, | 
|  | const LSRUse &LU, | 
|  | SmallPtrSetImpl<const SCEV *> *LoserRegs) { | 
|  | assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); | 
|  | // Tally up the registers. | 
|  | unsigned PrevAddRecCost = C.AddRecCost; | 
|  | unsigned PrevNumRegs = C.NumRegs; | 
|  | unsigned PrevNumBaseAdds = C.NumBaseAdds; | 
|  | if (const SCEV *ScaledReg = F.ScaledReg) { | 
|  | if (VisitedRegs.count(ScaledReg)) { | 
|  | Lose(); | 
|  | return; | 
|  | } | 
|  | RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  | for (const SCEV *BaseReg : F.BaseRegs) { | 
|  | if (VisitedRegs.count(BaseReg)) { | 
|  | Lose(); | 
|  | return; | 
|  | } | 
|  | RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine how many (unfolded) adds we'll need inside the loop. | 
|  | size_t NumBaseParts = F.getNumRegs(); | 
|  | if (NumBaseParts > 1) | 
|  | // Do not count the base and a possible second register if the target | 
|  | // allows to fold 2 registers. | 
|  | C.NumBaseAdds += | 
|  | NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); | 
|  | C.NumBaseAdds += (F.UnfoldedOffset != 0); | 
|  |  | 
|  | // Accumulate non-free scaling amounts. | 
|  | C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); | 
|  |  | 
|  | // Tally up the non-zero immediates. | 
|  | for (const LSRFixup &Fixup : LU.Fixups) { | 
|  | int64_t O = Fixup.Offset; | 
|  | int64_t Offset = (uint64_t)O + F.BaseOffset; | 
|  | if (F.BaseGV) | 
|  | C.ImmCost += 64; // Handle symbolic values conservatively. | 
|  | // TODO: This should probably be the pointer size. | 
|  | else if (Offset != 0) | 
|  | C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); | 
|  |  | 
|  | // Check with target if this offset with this instruction is | 
|  | // specifically not supported. | 
|  | if (LU.Kind == LSRUse::Address && Offset != 0 && | 
|  | !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, | 
|  | Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) | 
|  | C.NumBaseAdds++; | 
|  | } | 
|  |  | 
|  | // If we don't count instruction cost exit here. | 
|  | if (!InsnsCost) { | 
|  | assert(isValid() && "invalid cost"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as | 
|  | // additional instruction (at least fill). | 
|  | unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1; | 
|  | if (C.NumRegs > TTIRegNum) { | 
|  | // Cost already exceeded TTIRegNum, then only newly added register can add | 
|  | // new instructions. | 
|  | if (PrevNumRegs > TTIRegNum) | 
|  | C.Insns += (C.NumRegs - PrevNumRegs); | 
|  | else | 
|  | C.Insns += (C.NumRegs - TTIRegNum); | 
|  | } | 
|  |  | 
|  | // If ICmpZero formula ends with not 0, it could not be replaced by | 
|  | // just add or sub. We'll need to compare final result of AddRec. | 
|  | // That means we'll need an additional instruction. But if the target can | 
|  | // macro-fuse a compare with a branch, don't count this extra instruction. | 
|  | // For -10 + {0, +, 1}: | 
|  | // i = i + 1; | 
|  | // cmp i, 10 | 
|  | // | 
|  | // For {-10, +, 1}: | 
|  | // i = i + 1; | 
|  | if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && | 
|  | !TTI->canMacroFuseCmp()) | 
|  | C.Insns++; | 
|  | // Each new AddRec adds 1 instruction to calculation. | 
|  | C.Insns += (C.AddRecCost - PrevAddRecCost); | 
|  |  | 
|  | // BaseAdds adds instructions for unfolded registers. | 
|  | if (LU.Kind != LSRUse::ICmpZero) | 
|  | C.Insns += C.NumBaseAdds - PrevNumBaseAdds; | 
|  | assert(isValid() && "invalid cost"); | 
|  | } | 
|  |  | 
|  | /// Set this cost to a losing value. | 
|  | void Cost::Lose() { | 
|  | C.Insns = std::numeric_limits<unsigned>::max(); | 
|  | C.NumRegs = std::numeric_limits<unsigned>::max(); | 
|  | C.AddRecCost = std::numeric_limits<unsigned>::max(); | 
|  | C.NumIVMuls = std::numeric_limits<unsigned>::max(); | 
|  | C.NumBaseAdds = std::numeric_limits<unsigned>::max(); | 
|  | C.ImmCost = std::numeric_limits<unsigned>::max(); | 
|  | C.SetupCost = std::numeric_limits<unsigned>::max(); | 
|  | C.ScaleCost = std::numeric_limits<unsigned>::max(); | 
|  | } | 
|  |  | 
|  | /// Choose the lower cost. | 
|  | bool Cost::isLess(Cost &Other) { | 
|  | if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && | 
|  | C.Insns != Other.C.Insns) | 
|  | return C.Insns < Other.C.Insns; | 
|  | return TTI->isLSRCostLess(C, Other.C); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void Cost::print(raw_ostream &OS) const { | 
|  | if (InsnsCost) | 
|  | OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); | 
|  | OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); | 
|  | if (C.AddRecCost != 0) | 
|  | OS << ", with addrec cost " << C.AddRecCost; | 
|  | if (C.NumIVMuls != 0) | 
|  | OS << ", plus " << C.NumIVMuls << " IV mul" | 
|  | << (C.NumIVMuls == 1 ? "" : "s"); | 
|  | if (C.NumBaseAdds != 0) | 
|  | OS << ", plus " << C.NumBaseAdds << " base add" | 
|  | << (C.NumBaseAdds == 1 ? "" : "s"); | 
|  | if (C.ScaleCost != 0) | 
|  | OS << ", plus " << C.ScaleCost << " scale cost"; | 
|  | if (C.ImmCost != 0) | 
|  | OS << ", plus " << C.ImmCost << " imm cost"; | 
|  | if (C.SetupCost != 0) | 
|  | OS << ", plus " << C.SetupCost << " setup cost"; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void Cost::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Test whether this fixup always uses its value outside of the given loop. | 
|  | bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { | 
|  | // PHI nodes use their value in their incoming blocks. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == OperandValToReplace && | 
|  | L->contains(PN->getIncomingBlock(i))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return !L->contains(UserInst); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LSRFixup::print(raw_ostream &OS) const { | 
|  | OS << "UserInst="; | 
|  | // Store is common and interesting enough to be worth special-casing. | 
|  | if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { | 
|  | OS << "store "; | 
|  | Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); | 
|  | } else if (UserInst->getType()->isVoidTy()) | 
|  | OS << UserInst->getOpcodeName(); | 
|  | else | 
|  | UserInst->printAsOperand(OS, /*PrintType=*/false); | 
|  |  | 
|  | OS << ", OperandValToReplace="; | 
|  | OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); | 
|  |  | 
|  | for (const Loop *PIL : PostIncLoops) { | 
|  | OS << ", PostIncLoop="; | 
|  | PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | } | 
|  |  | 
|  | if (Offset != 0) | 
|  | OS << ", Offset=" << Offset; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LSRFixup::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Test whether this use as a formula which has the same registers as the given | 
|  | /// formula. | 
|  | bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { | 
|  | SmallVector<const SCEV *, 4> Key = F.BaseRegs; | 
|  | if (F.ScaledReg) Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for uniquifying. | 
|  | llvm::sort(Key); | 
|  | return Uniquifier.count(Key); | 
|  | } | 
|  |  | 
|  | /// The function returns a probability of selecting formula without Reg. | 
|  | float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { | 
|  | unsigned FNum = 0; | 
|  | for (const Formula &F : Formulae) | 
|  | if (F.referencesReg(Reg)) | 
|  | FNum++; | 
|  | return ((float)(Formulae.size() - FNum)) / Formulae.size(); | 
|  | } | 
|  |  | 
|  | /// If the given formula has not yet been inserted, add it to the list, and | 
|  | /// return true. Return false otherwise.  The formula must be in canonical form. | 
|  | bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { | 
|  | assert(F.isCanonical(L) && "Invalid canonical representation"); | 
|  |  | 
|  | if (!Formulae.empty() && RigidFormula) | 
|  | return false; | 
|  |  | 
|  | SmallVector<const SCEV *, 4> Key = F.BaseRegs; | 
|  | if (F.ScaledReg) Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for uniquifying. | 
|  | llvm::sort(Key); | 
|  |  | 
|  | if (!Uniquifier.insert(Key).second) | 
|  | return false; | 
|  |  | 
|  | // Using a register to hold the value of 0 is not profitable. | 
|  | assert((!F.ScaledReg || !F.ScaledReg->isZero()) && | 
|  | "Zero allocated in a scaled register!"); | 
|  | #ifndef NDEBUG | 
|  | for (const SCEV *BaseReg : F.BaseRegs) | 
|  | assert(!BaseReg->isZero() && "Zero allocated in a base register!"); | 
|  | #endif | 
|  |  | 
|  | // Add the formula to the list. | 
|  | Formulae.push_back(F); | 
|  |  | 
|  | // Record registers now being used by this use. | 
|  | Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); | 
|  | if (F.ScaledReg) | 
|  | Regs.insert(F.ScaledReg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Remove the given formula from this use's list. | 
|  | void LSRUse::DeleteFormula(Formula &F) { | 
|  | if (&F != &Formulae.back()) | 
|  | std::swap(F, Formulae.back()); | 
|  | Formulae.pop_back(); | 
|  | } | 
|  |  | 
|  | /// Recompute the Regs field, and update RegUses. | 
|  | void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { | 
|  | // Now that we've filtered out some formulae, recompute the Regs set. | 
|  | SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); | 
|  | Regs.clear(); | 
|  | for (const Formula &F : Formulae) { | 
|  | if (F.ScaledReg) Regs.insert(F.ScaledReg); | 
|  | Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); | 
|  | } | 
|  |  | 
|  | // Update the RegTracker. | 
|  | for (const SCEV *S : OldRegs) | 
|  | if (!Regs.count(S)) | 
|  | RegUses.dropRegister(S, LUIdx); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LSRUse::print(raw_ostream &OS) const { | 
|  | OS << "LSR Use: Kind="; | 
|  | switch (Kind) { | 
|  | case Basic:    OS << "Basic"; break; | 
|  | case Special:  OS << "Special"; break; | 
|  | case ICmpZero: OS << "ICmpZero"; break; | 
|  | case Address: | 
|  | OS << "Address of "; | 
|  | if (AccessTy.MemTy->isPointerTy()) | 
|  | OS << "pointer"; // the full pointer type could be really verbose | 
|  | else { | 
|  | OS << *AccessTy.MemTy; | 
|  | } | 
|  |  | 
|  | OS << " in addrspace(" << AccessTy.AddrSpace << ')'; | 
|  | } | 
|  |  | 
|  | OS << ", Offsets={"; | 
|  | bool NeedComma = false; | 
|  | for (const LSRFixup &Fixup : Fixups) { | 
|  | if (NeedComma) OS << ','; | 
|  | OS << Fixup.Offset; | 
|  | NeedComma = true; | 
|  | } | 
|  | OS << '}'; | 
|  |  | 
|  | if (AllFixupsOutsideLoop) | 
|  | OS << ", all-fixups-outside-loop"; | 
|  |  | 
|  | if (WidestFixupType) | 
|  | OS << ", widest fixup type: " << *WidestFixupType; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LSRUse::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy, | 
|  | GlobalValue *BaseGV, int64_t BaseOffset, | 
|  | bool HasBaseReg, int64_t Scale, | 
|  | Instruction *Fixup/*= nullptr*/) { | 
|  | switch (Kind) { | 
|  | case LSRUse::Address: | 
|  | return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, | 
|  | HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); | 
|  |  | 
|  | case LSRUse::ICmpZero: | 
|  | // There's not even a target hook for querying whether it would be legal to | 
|  | // fold a GV into an ICmp. | 
|  | if (BaseGV) | 
|  | return false; | 
|  |  | 
|  | // ICmp only has two operands; don't allow more than two non-trivial parts. | 
|  | if (Scale != 0 && HasBaseReg && BaseOffset != 0) | 
|  | return false; | 
|  |  | 
|  | // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by | 
|  | // putting the scaled register in the other operand of the icmp. | 
|  | if (Scale != 0 && Scale != -1) | 
|  | return false; | 
|  |  | 
|  | // If we have low-level target information, ask the target if it can fold an | 
|  | // integer immediate on an icmp. | 
|  | if (BaseOffset != 0) { | 
|  | // We have one of: | 
|  | // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset | 
|  | // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset | 
|  | // Offs is the ICmp immediate. | 
|  | if (Scale == 0) | 
|  | // The cast does the right thing with | 
|  | // std::numeric_limits<int64_t>::min(). | 
|  | BaseOffset = -(uint64_t)BaseOffset; | 
|  | return TTI.isLegalICmpImmediate(BaseOffset); | 
|  | } | 
|  |  | 
|  | // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg | 
|  | return true; | 
|  |  | 
|  | case LSRUse::Basic: | 
|  | // Only handle single-register values. | 
|  | return !BaseGV && Scale == 0 && BaseOffset == 0; | 
|  |  | 
|  | case LSRUse::Special: | 
|  | // Special case Basic to handle -1 scales. | 
|  | return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid LSRUse Kind!"); | 
|  | } | 
|  |  | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | int64_t MinOffset, int64_t MaxOffset, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy, | 
|  | GlobalValue *BaseGV, int64_t BaseOffset, | 
|  | bool HasBaseReg, int64_t Scale) { | 
|  | // Check for overflow. | 
|  | if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != | 
|  | (MinOffset > 0)) | 
|  | return false; | 
|  | MinOffset = (uint64_t)BaseOffset + MinOffset; | 
|  | if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != | 
|  | (MaxOffset > 0)) | 
|  | return false; | 
|  | MaxOffset = (uint64_t)BaseOffset + MaxOffset; | 
|  |  | 
|  | return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, | 
|  | HasBaseReg, Scale) && | 
|  | isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, | 
|  | HasBaseReg, Scale); | 
|  | } | 
|  |  | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | int64_t MinOffset, int64_t MaxOffset, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy, | 
|  | const Formula &F, const Loop &L) { | 
|  | // For the purpose of isAMCompletelyFolded either having a canonical formula | 
|  | // or a scale not equal to zero is correct. | 
|  | // Problems may arise from non canonical formulae having a scale == 0. | 
|  | // Strictly speaking it would best to just rely on canonical formulae. | 
|  | // However, when we generate the scaled formulae, we first check that the | 
|  | // scaling factor is profitable before computing the actual ScaledReg for | 
|  | // compile time sake. | 
|  | assert((F.isCanonical(L) || F.Scale != 0)); | 
|  | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, | 
|  | F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); | 
|  | } | 
|  |  | 
|  | /// Test whether we know how to expand the current formula. | 
|  | static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, | 
|  | int64_t MaxOffset, LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy, GlobalValue *BaseGV, | 
|  | int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { | 
|  | // We know how to expand completely foldable formulae. | 
|  | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, | 
|  | BaseOffset, HasBaseReg, Scale) || | 
|  | // Or formulae that use a base register produced by a sum of base | 
|  | // registers. | 
|  | (Scale == 1 && | 
|  | isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, | 
|  | BaseGV, BaseOffset, true, 0)); | 
|  | } | 
|  |  | 
|  | static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, | 
|  | int64_t MaxOffset, LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy, const Formula &F) { | 
|  | return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, | 
|  | F.BaseOffset, F.HasBaseReg, F.Scale); | 
|  | } | 
|  |  | 
|  | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, | 
|  | const LSRUse &LU, const Formula &F) { | 
|  | // Target may want to look at the user instructions. | 
|  | if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { | 
|  | for (const LSRFixup &Fixup : LU.Fixups) | 
|  | if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, | 
|  | (F.BaseOffset + Fixup.Offset), F.HasBaseReg, | 
|  | F.Scale, Fixup.UserInst)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, | 
|  | LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, | 
|  | F.Scale); | 
|  | } | 
|  |  | 
|  | static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, | 
|  | const LSRUse &LU, const Formula &F, | 
|  | const Loop &L) { | 
|  | if (!F.Scale) | 
|  | return 0; | 
|  |  | 
|  | // If the use is not completely folded in that instruction, we will have to | 
|  | // pay an extra cost only for scale != 1. | 
|  | if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, | 
|  | LU.AccessTy, F, L)) | 
|  | return F.Scale != 1; | 
|  |  | 
|  | switch (LU.Kind) { | 
|  | case LSRUse::Address: { | 
|  | // Check the scaling factor cost with both the min and max offsets. | 
|  | int ScaleCostMinOffset = TTI.getScalingFactorCost( | 
|  | LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, | 
|  | F.Scale, LU.AccessTy.AddrSpace); | 
|  | int ScaleCostMaxOffset = TTI.getScalingFactorCost( | 
|  | LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, | 
|  | F.Scale, LU.AccessTy.AddrSpace); | 
|  |  | 
|  | assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && | 
|  | "Legal addressing mode has an illegal cost!"); | 
|  | return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); | 
|  | } | 
|  | case LSRUse::ICmpZero: | 
|  | case LSRUse::Basic: | 
|  | case LSRUse::Special: | 
|  | // The use is completely folded, i.e., everything is folded into the | 
|  | // instruction. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid LSRUse Kind!"); | 
|  | } | 
|  |  | 
|  | static bool isAlwaysFoldable(const TargetTransformInfo &TTI, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy, | 
|  | GlobalValue *BaseGV, int64_t BaseOffset, | 
|  | bool HasBaseReg) { | 
|  | // Fast-path: zero is always foldable. | 
|  | if (BaseOffset == 0 && !BaseGV) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; | 
|  |  | 
|  | // Canonicalize a scale of 1 to a base register if the formula doesn't | 
|  | // already have a base register. | 
|  | if (!HasBaseReg && Scale == 1) { | 
|  | Scale = 0; | 
|  | HasBaseReg = true; | 
|  | } | 
|  |  | 
|  | return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, | 
|  | HasBaseReg, Scale); | 
|  | } | 
|  |  | 
|  | static bool isAlwaysFoldable(const TargetTransformInfo &TTI, | 
|  | ScalarEvolution &SE, int64_t MinOffset, | 
|  | int64_t MaxOffset, LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy, const SCEV *S, | 
|  | bool HasBaseReg) { | 
|  | // Fast-path: zero is always foldable. | 
|  | if (S->isZero()) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | int64_t BaseOffset = ExtractImmediate(S, SE); | 
|  | GlobalValue *BaseGV = ExtractSymbol(S, SE); | 
|  |  | 
|  | // If there's anything else involved, it's not foldable. | 
|  | if (!S->isZero()) return false; | 
|  |  | 
|  | // Fast-path: zero is always foldable. | 
|  | if (BaseOffset == 0 && !BaseGV) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; | 
|  |  | 
|  | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, | 
|  | BaseOffset, HasBaseReg, Scale); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// An individual increment in a Chain of IV increments.  Relate an IV user to | 
|  | /// an expression that computes the IV it uses from the IV used by the previous | 
|  | /// link in the Chain. | 
|  | /// | 
|  | /// For the head of a chain, IncExpr holds the absolute SCEV expression for the | 
|  | /// original IVOperand. The head of the chain's IVOperand is only valid during | 
|  | /// chain collection, before LSR replaces IV users. During chain generation, | 
|  | /// IncExpr can be used to find the new IVOperand that computes the same | 
|  | /// expression. | 
|  | struct IVInc { | 
|  | Instruction *UserInst; | 
|  | Value* IVOperand; | 
|  | const SCEV *IncExpr; | 
|  |  | 
|  | IVInc(Instruction *U, Value *O, const SCEV *E) | 
|  | : UserInst(U), IVOperand(O), IncExpr(E) {} | 
|  | }; | 
|  |  | 
|  | // The list of IV increments in program order.  We typically add the head of a | 
|  | // chain without finding subsequent links. | 
|  | struct IVChain { | 
|  | SmallVector<IVInc, 1> Incs; | 
|  | const SCEV *ExprBase = nullptr; | 
|  |  | 
|  | IVChain() = default; | 
|  | IVChain(const IVInc &Head, const SCEV *Base) | 
|  | : Incs(1, Head), ExprBase(Base) {} | 
|  |  | 
|  | using const_iterator = SmallVectorImpl<IVInc>::const_iterator; | 
|  |  | 
|  | // Return the first increment in the chain. | 
|  | const_iterator begin() const { | 
|  | assert(!Incs.empty()); | 
|  | return std::next(Incs.begin()); | 
|  | } | 
|  | const_iterator end() const { | 
|  | return Incs.end(); | 
|  | } | 
|  |  | 
|  | // Returns true if this chain contains any increments. | 
|  | bool hasIncs() const { return Incs.size() >= 2; } | 
|  |  | 
|  | // Add an IVInc to the end of this chain. | 
|  | void add(const IVInc &X) { Incs.push_back(X); } | 
|  |  | 
|  | // Returns the last UserInst in the chain. | 
|  | Instruction *tailUserInst() const { return Incs.back().UserInst; } | 
|  |  | 
|  | // Returns true if IncExpr can be profitably added to this chain. | 
|  | bool isProfitableIncrement(const SCEV *OperExpr, | 
|  | const SCEV *IncExpr, | 
|  | ScalarEvolution&); | 
|  | }; | 
|  |  | 
|  | /// Helper for CollectChains to track multiple IV increment uses.  Distinguish | 
|  | /// between FarUsers that definitely cross IV increments and NearUsers that may | 
|  | /// be used between IV increments. | 
|  | struct ChainUsers { | 
|  | SmallPtrSet<Instruction*, 4> FarUsers; | 
|  | SmallPtrSet<Instruction*, 4> NearUsers; | 
|  | }; | 
|  |  | 
|  | /// This class holds state for the main loop strength reduction logic. | 
|  | class LSRInstance { | 
|  | IVUsers &IU; | 
|  | ScalarEvolution &SE; | 
|  | DominatorTree &DT; | 
|  | LoopInfo &LI; | 
|  | const TargetTransformInfo &TTI; | 
|  | Loop *const L; | 
|  | bool FavorBackedgeIndex = false; | 
|  | bool Changed = false; | 
|  |  | 
|  | /// This is the insert position that the current loop's induction variable | 
|  | /// increment should be placed. In simple loops, this is the latch block's | 
|  | /// terminator. But in more complicated cases, this is a position which will | 
|  | /// dominate all the in-loop post-increment users. | 
|  | Instruction *IVIncInsertPos = nullptr; | 
|  |  | 
|  | /// Interesting factors between use strides. | 
|  | /// | 
|  | /// We explicitly use a SetVector which contains a SmallSet, instead of the | 
|  | /// default, a SmallDenseSet, because we need to use the full range of | 
|  | /// int64_ts, and there's currently no good way of doing that with | 
|  | /// SmallDenseSet. | 
|  | SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; | 
|  |  | 
|  | /// Interesting use types, to facilitate truncation reuse. | 
|  | SmallSetVector<Type *, 4> Types; | 
|  |  | 
|  | /// The list of interesting uses. | 
|  | mutable SmallVector<LSRUse, 16> Uses; | 
|  |  | 
|  | /// Track which uses use which register candidates. | 
|  | RegUseTracker RegUses; | 
|  |  | 
|  | // Limit the number of chains to avoid quadratic behavior. We don't expect to | 
|  | // have more than a few IV increment chains in a loop. Missing a Chain falls | 
|  | // back to normal LSR behavior for those uses. | 
|  | static const unsigned MaxChains = 8; | 
|  |  | 
|  | /// IV users can form a chain of IV increments. | 
|  | SmallVector<IVChain, MaxChains> IVChainVec; | 
|  |  | 
|  | /// IV users that belong to profitable IVChains. | 
|  | SmallPtrSet<Use*, MaxChains> IVIncSet; | 
|  |  | 
|  | void OptimizeShadowIV(); | 
|  | bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); | 
|  | ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); | 
|  | void OptimizeLoopTermCond(); | 
|  |  | 
|  | void ChainInstruction(Instruction *UserInst, Instruction *IVOper, | 
|  | SmallVectorImpl<ChainUsers> &ChainUsersVec); | 
|  | void FinalizeChain(IVChain &Chain); | 
|  | void CollectChains(); | 
|  | void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts); | 
|  |  | 
|  | void CollectInterestingTypesAndFactors(); | 
|  | void CollectFixupsAndInitialFormulae(); | 
|  |  | 
|  | // Support for sharing of LSRUses between LSRFixups. | 
|  | using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; | 
|  | UseMapTy UseMap; | 
|  |  | 
|  | bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, | 
|  | LSRUse::KindType Kind, MemAccessTy AccessTy); | 
|  |  | 
|  | std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy); | 
|  |  | 
|  | void DeleteUse(LSRUse &LU, size_t LUIdx); | 
|  |  | 
|  | LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); | 
|  |  | 
|  | void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); | 
|  | void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); | 
|  | void CountRegisters(const Formula &F, size_t LUIdx); | 
|  | bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); | 
|  |  | 
|  | void CollectLoopInvariantFixupsAndFormulae(); | 
|  |  | 
|  | void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, | 
|  | unsigned Depth = 0); | 
|  |  | 
|  | void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, | 
|  | const Formula &Base, unsigned Depth, | 
|  | size_t Idx, bool IsScaledReg = false); | 
|  | void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, | 
|  | const Formula &Base, size_t Idx, | 
|  | bool IsScaledReg = false); | 
|  | void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, | 
|  | const Formula &Base, | 
|  | const SmallVectorImpl<int64_t> &Worklist, | 
|  | size_t Idx, bool IsScaledReg = false); | 
|  | void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateCrossUseConstantOffsets(); | 
|  | void GenerateAllReuseFormulae(); | 
|  |  | 
|  | void FilterOutUndesirableDedicatedRegisters(); | 
|  |  | 
|  | size_t EstimateSearchSpaceComplexity() const; | 
|  | void NarrowSearchSpaceByDetectingSupersets(); | 
|  | void NarrowSearchSpaceByCollapsingUnrolledCode(); | 
|  | void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); | 
|  | void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); | 
|  | void NarrowSearchSpaceByDeletingCostlyFormulas(); | 
|  | void NarrowSearchSpaceByPickingWinnerRegs(); | 
|  | void NarrowSearchSpaceUsingHeuristics(); | 
|  |  | 
|  | void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, | 
|  | Cost &SolutionCost, | 
|  | SmallVectorImpl<const Formula *> &Workspace, | 
|  | const Cost &CurCost, | 
|  | const SmallPtrSet<const SCEV *, 16> &CurRegs, | 
|  | DenseSet<const SCEV *> &VisitedRegs) const; | 
|  | void Solve(SmallVectorImpl<const Formula *> &Solution) const; | 
|  |  | 
|  | BasicBlock::iterator | 
|  | HoistInsertPosition(BasicBlock::iterator IP, | 
|  | const SmallVectorImpl<Instruction *> &Inputs) const; | 
|  | BasicBlock::iterator | 
|  | AdjustInsertPositionForExpand(BasicBlock::iterator IP, | 
|  | const LSRFixup &LF, | 
|  | const LSRUse &LU, | 
|  | SCEVExpander &Rewriter) const; | 
|  |  | 
|  | Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, | 
|  | BasicBlock::iterator IP, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; | 
|  | void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, | 
|  | const Formula &F, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; | 
|  | void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; | 
|  | void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); | 
|  |  | 
|  | public: | 
|  | LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, | 
|  | LoopInfo &LI, const TargetTransformInfo &TTI); | 
|  |  | 
|  | bool getChanged() const { return Changed; } | 
|  |  | 
|  | void print_factors_and_types(raw_ostream &OS) const; | 
|  | void print_fixups(raw_ostream &OS) const; | 
|  | void print_uses(raw_ostream &OS) const; | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// If IV is used in a int-to-float cast inside the loop then try to eliminate | 
|  | /// the cast operation. | 
|  | void LSRInstance::OptimizeShadowIV() { | 
|  | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) | 
|  | return; | 
|  |  | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); | 
|  | UI != E; /* empty */) { | 
|  | IVUsers::const_iterator CandidateUI = UI; | 
|  | ++UI; | 
|  | Instruction *ShadowUse = CandidateUI->getUser(); | 
|  | Type *DestTy = nullptr; | 
|  | bool IsSigned = false; | 
|  |  | 
|  | /* If shadow use is a int->float cast then insert a second IV | 
|  | to eliminate this cast. | 
|  |  | 
|  | for (unsigned i = 0; i < n; ++i) | 
|  | foo((double)i); | 
|  |  | 
|  | is transformed into | 
|  |  | 
|  | double d = 0.0; | 
|  | for (unsigned i = 0; i < n; ++i, ++d) | 
|  | foo(d); | 
|  | */ | 
|  | if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { | 
|  | IsSigned = false; | 
|  | DestTy = UCast->getDestTy(); | 
|  | } | 
|  | else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { | 
|  | IsSigned = true; | 
|  | DestTy = SCast->getDestTy(); | 
|  | } | 
|  | if (!DestTy) continue; | 
|  |  | 
|  | // If target does not support DestTy natively then do not apply | 
|  | // this transformation. | 
|  | if (!TTI.isTypeLegal(DestTy)) continue; | 
|  |  | 
|  | PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); | 
|  | if (!PH) continue; | 
|  | if (PH->getNumIncomingValues() != 2) continue; | 
|  |  | 
|  | // If the calculation in integers overflows, the result in FP type will | 
|  | // differ. So we only can do this transformation if we are guaranteed to not | 
|  | // deal with overflowing values | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); | 
|  | if (!AR) continue; | 
|  | if (IsSigned && !AR->hasNoSignedWrap()) continue; | 
|  | if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; | 
|  |  | 
|  | Type *SrcTy = PH->getType(); | 
|  | int Mantissa = DestTy->getFPMantissaWidth(); | 
|  | if (Mantissa == -1) continue; | 
|  | if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) | 
|  | continue; | 
|  |  | 
|  | unsigned Entry, Latch; | 
|  | if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { | 
|  | Entry = 0; | 
|  | Latch = 1; | 
|  | } else { | 
|  | Entry = 1; | 
|  | Latch = 0; | 
|  | } | 
|  |  | 
|  | ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); | 
|  | if (!Init) continue; | 
|  | Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? | 
|  | (double)Init->getSExtValue() : | 
|  | (double)Init->getZExtValue()); | 
|  |  | 
|  | BinaryOperator *Incr = | 
|  | dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); | 
|  | if (!Incr) continue; | 
|  | if (Incr->getOpcode() != Instruction::Add | 
|  | && Incr->getOpcode() != Instruction::Sub) | 
|  | continue; | 
|  |  | 
|  | /* Initialize new IV, double d = 0.0 in above example. */ | 
|  | ConstantInt *C = nullptr; | 
|  | if (Incr->getOperand(0) == PH) | 
|  | C = dyn_cast<ConstantInt>(Incr->getOperand(1)); | 
|  | else if (Incr->getOperand(1) == PH) | 
|  | C = dyn_cast<ConstantInt>(Incr->getOperand(0)); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!C) continue; | 
|  |  | 
|  | // Ignore negative constants, as the code below doesn't handle them | 
|  | // correctly. TODO: Remove this restriction. | 
|  | if (!C->getValue().isStrictlyPositive()) continue; | 
|  |  | 
|  | /* Add new PHINode. */ | 
|  | PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); | 
|  |  | 
|  | /* create new increment. '++d' in above example. */ | 
|  | Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); | 
|  | BinaryOperator *NewIncr = | 
|  | BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? | 
|  | Instruction::FAdd : Instruction::FSub, | 
|  | NewPH, CFP, "IV.S.next.", Incr); | 
|  |  | 
|  | NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); | 
|  | NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); | 
|  |  | 
|  | /* Remove cast operation */ | 
|  | ShadowUse->replaceAllUsesWith(NewPH); | 
|  | ShadowUse->eraseFromParent(); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If Cond has an operand that is an expression of an IV, set the IV user and | 
|  | /// stride information and return true, otherwise return false. | 
|  | bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { | 
|  | for (IVStrideUse &U : IU) | 
|  | if (U.getUser() == Cond) { | 
|  | // NOTE: we could handle setcc instructions with multiple uses here, but | 
|  | // InstCombine does it as well for simple uses, it's not clear that it | 
|  | // occurs enough in real life to handle. | 
|  | CondUse = &U; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Rewrite the loop's terminating condition if it uses a max computation. | 
|  | /// | 
|  | /// This is a narrow solution to a specific, but acute, problem. For loops | 
|  | /// like this: | 
|  | /// | 
|  | ///   i = 0; | 
|  | ///   do { | 
|  | ///     p[i] = 0.0; | 
|  | ///   } while (++i < n); | 
|  | /// | 
|  | /// the trip count isn't just 'n', because 'n' might not be positive. And | 
|  | /// unfortunately this can come up even for loops where the user didn't use | 
|  | /// a C do-while loop. For example, seemingly well-behaved top-test loops | 
|  | /// will commonly be lowered like this: | 
|  | /// | 
|  | ///   if (n > 0) { | 
|  | ///     i = 0; | 
|  | ///     do { | 
|  | ///       p[i] = 0.0; | 
|  | ///     } while (++i < n); | 
|  | ///   } | 
|  | /// | 
|  | /// and then it's possible for subsequent optimization to obscure the if | 
|  | /// test in such a way that indvars can't find it. | 
|  | /// | 
|  | /// When indvars can't find the if test in loops like this, it creates a | 
|  | /// max expression, which allows it to give the loop a canonical | 
|  | /// induction variable: | 
|  | /// | 
|  | ///   i = 0; | 
|  | ///   max = n < 1 ? 1 : n; | 
|  | ///   do { | 
|  | ///     p[i] = 0.0; | 
|  | ///   } while (++i != max); | 
|  | /// | 
|  | /// Canonical induction variables are necessary because the loop passes | 
|  | /// are designed around them. The most obvious example of this is the | 
|  | /// LoopInfo analysis, which doesn't remember trip count values. It | 
|  | /// expects to be able to rediscover the trip count each time it is | 
|  | /// needed, and it does this using a simple analysis that only succeeds if | 
|  | /// the loop has a canonical induction variable. | 
|  | /// | 
|  | /// However, when it comes time to generate code, the maximum operation | 
|  | /// can be quite costly, especially if it's inside of an outer loop. | 
|  | /// | 
|  | /// This function solves this problem by detecting this type of loop and | 
|  | /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting | 
|  | /// the instructions for the maximum computation. | 
|  | ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { | 
|  | // Check that the loop matches the pattern we're looking for. | 
|  | if (Cond->getPredicate() != CmpInst::ICMP_EQ && | 
|  | Cond->getPredicate() != CmpInst::ICMP_NE) | 
|  | return Cond; | 
|  |  | 
|  | SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); | 
|  | if (!Sel || !Sel->hasOneUse()) return Cond; | 
|  |  | 
|  | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) | 
|  | return Cond; | 
|  | const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); | 
|  |  | 
|  | // Add one to the backedge-taken count to get the trip count. | 
|  | const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); | 
|  | if (IterationCount != SE.getSCEV(Sel)) return Cond; | 
|  |  | 
|  | // Check for a max calculation that matches the pattern. There's no check | 
|  | // for ICMP_ULE here because the comparison would be with zero, which | 
|  | // isn't interesting. | 
|  | CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | const SCEVNAryExpr *Max = nullptr; | 
|  | if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { | 
|  | Pred = ICmpInst::ICMP_SLE; | 
|  | Max = S; | 
|  | } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | Max = S; | 
|  | } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { | 
|  | Pred = ICmpInst::ICMP_ULT; | 
|  | Max = U; | 
|  | } else { | 
|  | // No match; bail. | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // To handle a max with more than two operands, this optimization would | 
|  | // require additional checking and setup. | 
|  | if (Max->getNumOperands() != 2) | 
|  | return Cond; | 
|  |  | 
|  | const SCEV *MaxLHS = Max->getOperand(0); | 
|  | const SCEV *MaxRHS = Max->getOperand(1); | 
|  |  | 
|  | // ScalarEvolution canonicalizes constants to the left. For < and >, look | 
|  | // for a comparison with 1. For <= and >=, a comparison with zero. | 
|  | if (!MaxLHS || | 
|  | (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) | 
|  | return Cond; | 
|  |  | 
|  | // Check the relevant induction variable for conformance to | 
|  | // the pattern. | 
|  | const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); | 
|  | if (!AR || !AR->isAffine() || | 
|  | AR->getStart() != One || | 
|  | AR->getStepRecurrence(SE) != One) | 
|  | return Cond; | 
|  |  | 
|  | assert(AR->getLoop() == L && | 
|  | "Loop condition operand is an addrec in a different loop!"); | 
|  |  | 
|  | // Check the right operand of the select, and remember it, as it will | 
|  | // be used in the new comparison instruction. | 
|  | Value *NewRHS = nullptr; | 
|  | if (ICmpInst::isTrueWhenEqual(Pred)) { | 
|  | // Look for n+1, and grab n. | 
|  | if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) | 
|  | if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) | 
|  | if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) | 
|  | NewRHS = BO->getOperand(0); | 
|  | if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) | 
|  | if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) | 
|  | if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) | 
|  | NewRHS = BO->getOperand(0); | 
|  | if (!NewRHS) | 
|  | return Cond; | 
|  | } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) | 
|  | NewRHS = Sel->getOperand(1); | 
|  | else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) | 
|  | NewRHS = Sel->getOperand(2); | 
|  | else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) | 
|  | NewRHS = SU->getValue(); | 
|  | else | 
|  | // Max doesn't match expected pattern. | 
|  | return Cond; | 
|  |  | 
|  | // Determine the new comparison opcode. It may be signed or unsigned, | 
|  | // and the original comparison may be either equality or inequality. | 
|  | if (Cond->getPredicate() == CmpInst::ICMP_EQ) | 
|  | Pred = CmpInst::getInversePredicate(Pred); | 
|  |  | 
|  | // Ok, everything looks ok to change the condition into an SLT or SGE and | 
|  | // delete the max calculation. | 
|  | ICmpInst *NewCond = | 
|  | new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); | 
|  |  | 
|  | // Delete the max calculation instructions. | 
|  | Cond->replaceAllUsesWith(NewCond); | 
|  | CondUse->setUser(NewCond); | 
|  | Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); | 
|  | Cond->eraseFromParent(); | 
|  | Sel->eraseFromParent(); | 
|  | if (Cmp->use_empty()) | 
|  | Cmp->eraseFromParent(); | 
|  | return NewCond; | 
|  | } | 
|  |  | 
|  | /// Change loop terminating condition to use the postinc iv when possible. | 
|  | void | 
|  | LSRInstance::OptimizeLoopTermCond() { | 
|  | SmallPtrSet<Instruction *, 4> PostIncs; | 
|  |  | 
|  | // We need a different set of heuristics for rotated and non-rotated loops. | 
|  | // If a loop is rotated then the latch is also the backedge, so inserting | 
|  | // post-inc expressions just before the latch is ideal. To reduce live ranges | 
|  | // it also makes sense to rewrite terminating conditions to use post-inc | 
|  | // expressions. | 
|  | // | 
|  | // If the loop is not rotated then the latch is not a backedge; the latch | 
|  | // check is done in the loop head. Adding post-inc expressions before the | 
|  | // latch will cause overlapping live-ranges of pre-inc and post-inc expressions | 
|  | // in the loop body. In this case we do *not* want to use post-inc expressions | 
|  | // in the latch check, and we want to insert post-inc expressions before | 
|  | // the backedge. | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | SmallVector<BasicBlock*, 8> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { | 
|  | return LatchBlock != BB; | 
|  | })) { | 
|  | // The backedge doesn't exit the loop; treat this as a head-tested loop. | 
|  | IVIncInsertPos = LatchBlock->getTerminator(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise treat this as a rotated loop. | 
|  | for (BasicBlock *ExitingBlock : ExitingBlocks) { | 
|  | // Get the terminating condition for the loop if possible.  If we | 
|  | // can, we want to change it to use a post-incremented version of its | 
|  | // induction variable, to allow coalescing the live ranges for the IV into | 
|  | // one register value. | 
|  |  | 
|  | BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); | 
|  | if (!TermBr) | 
|  | continue; | 
|  | // FIXME: Overly conservative, termination condition could be an 'or' etc.. | 
|  | if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) | 
|  | continue; | 
|  |  | 
|  | // Search IVUsesByStride to find Cond's IVUse if there is one. | 
|  | IVStrideUse *CondUse = nullptr; | 
|  | ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); | 
|  | if (!FindIVUserForCond(Cond, CondUse)) | 
|  | continue; | 
|  |  | 
|  | // If the trip count is computed in terms of a max (due to ScalarEvolution | 
|  | // being unable to find a sufficient guard, for example), change the loop | 
|  | // comparison to use SLT or ULT instead of NE. | 
|  | // One consequence of doing this now is that it disrupts the count-down | 
|  | // optimization. That's not always a bad thing though, because in such | 
|  | // cases it may still be worthwhile to avoid a max. | 
|  | Cond = OptimizeMax(Cond, CondUse); | 
|  |  | 
|  | // If this exiting block dominates the latch block, it may also use | 
|  | // the post-inc value if it won't be shared with other uses. | 
|  | // Check for dominance. | 
|  | if (!DT.dominates(ExitingBlock, LatchBlock)) | 
|  | continue; | 
|  |  | 
|  | // Conservatively avoid trying to use the post-inc value in non-latch | 
|  | // exits if there may be pre-inc users in intervening blocks. | 
|  | if (LatchBlock != ExitingBlock) | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) | 
|  | // Test if the use is reachable from the exiting block. This dominator | 
|  | // query is a conservative approximation of reachability. | 
|  | if (&*UI != CondUse && | 
|  | !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { | 
|  | // Conservatively assume there may be reuse if the quotient of their | 
|  | // strides could be a legal scale. | 
|  | const SCEV *A = IU.getStride(*CondUse, L); | 
|  | const SCEV *B = IU.getStride(*UI, L); | 
|  | if (!A || !B) continue; | 
|  | if (SE.getTypeSizeInBits(A->getType()) != | 
|  | SE.getTypeSizeInBits(B->getType())) { | 
|  | if (SE.getTypeSizeInBits(A->getType()) > | 
|  | SE.getTypeSizeInBits(B->getType())) | 
|  | B = SE.getSignExtendExpr(B, A->getType()); | 
|  | else | 
|  | A = SE.getSignExtendExpr(A, B->getType()); | 
|  | } | 
|  | if (const SCEVConstant *D = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { | 
|  | const ConstantInt *C = D->getValue(); | 
|  | // Stride of one or negative one can have reuse with non-addresses. | 
|  | if (C->isOne() || C->isMinusOne()) | 
|  | goto decline_post_inc; | 
|  | // Avoid weird situations. | 
|  | if (C->getValue().getMinSignedBits() >= 64 || | 
|  | C->getValue().isMinSignedValue()) | 
|  | goto decline_post_inc; | 
|  | // Check for possible scaled-address reuse. | 
|  | if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { | 
|  | MemAccessTy AccessTy = getAccessType( | 
|  | TTI, UI->getUser(), UI->getOperandValToReplace()); | 
|  | int64_t Scale = C->getSExtValue(); | 
|  | if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, | 
|  | /*BaseOffset=*/0, | 
|  | /*HasBaseReg=*/false, Scale, | 
|  | AccessTy.AddrSpace)) | 
|  | goto decline_post_inc; | 
|  | Scale = -Scale; | 
|  | if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, | 
|  | /*BaseOffset=*/0, | 
|  | /*HasBaseReg=*/false, Scale, | 
|  | AccessTy.AddrSpace)) | 
|  | goto decline_post_inc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: " | 
|  | << *Cond << '\n'); | 
|  |  | 
|  | // It's possible for the setcc instruction to be anywhere in the loop, and | 
|  | // possible for it to have multiple users.  If it is not immediately before | 
|  | // the exiting block branch, move it. | 
|  | if (&*++BasicBlock::iterator(Cond) != TermBr) { | 
|  | if (Cond->hasOneUse()) { | 
|  | Cond->moveBefore(TermBr); | 
|  | } else { | 
|  | // Clone the terminating condition and insert into the loopend. | 
|  | ICmpInst *OldCond = Cond; | 
|  | Cond = cast<ICmpInst>(Cond->clone()); | 
|  | Cond->setName(L->getHeader()->getName() + ".termcond"); | 
|  | ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); | 
|  |  | 
|  | // Clone the IVUse, as the old use still exists! | 
|  | CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); | 
|  | TermBr->replaceUsesOfWith(OldCond, Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we get to here, we know that we can transform the setcc instruction to | 
|  | // use the post-incremented version of the IV, allowing us to coalesce the | 
|  | // live ranges for the IV correctly. | 
|  | CondUse->transformToPostInc(L); | 
|  | Changed = true; | 
|  |  | 
|  | PostIncs.insert(Cond); | 
|  | decline_post_inc:; | 
|  | } | 
|  |  | 
|  | // Determine an insertion point for the loop induction variable increment. It | 
|  | // must dominate all the post-inc comparisons we just set up, and it must | 
|  | // dominate the loop latch edge. | 
|  | IVIncInsertPos = L->getLoopLatch()->getTerminator(); | 
|  | for (Instruction *Inst : PostIncs) { | 
|  | BasicBlock *BB = | 
|  | DT.findNearestCommonDominator(IVIncInsertPos->getParent(), | 
|  | Inst->getParent()); | 
|  | if (BB == Inst->getParent()) | 
|  | IVIncInsertPos = Inst; | 
|  | else if (BB != IVIncInsertPos->getParent()) | 
|  | IVIncInsertPos = BB->getTerminator(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine if the given use can accommodate a fixup at the given offset and | 
|  | /// other details. If so, update the use and return true. | 
|  | bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, | 
|  | bool HasBaseReg, LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy) { | 
|  | int64_t NewMinOffset = LU.MinOffset; | 
|  | int64_t NewMaxOffset = LU.MaxOffset; | 
|  | MemAccessTy NewAccessTy = AccessTy; | 
|  |  | 
|  | // Check for a mismatched kind. It's tempting to collapse mismatched kinds to | 
|  | // something conservative, however this can pessimize in the case that one of | 
|  | // the uses will have all its uses outside the loop, for example. | 
|  | if (LU.Kind != Kind) | 
|  | return false; | 
|  |  | 
|  | // Check for a mismatched access type, and fall back conservatively as needed. | 
|  | // TODO: Be less conservative when the type is similar and can use the same | 
|  | // addressing modes. | 
|  | if (Kind == LSRUse::Address) { | 
|  | if (AccessTy.MemTy != LU.AccessTy.MemTy) { | 
|  | NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), | 
|  | AccessTy.AddrSpace); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Conservatively assume HasBaseReg is true for now. | 
|  | if (NewOffset < LU.MinOffset) { | 
|  | if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, | 
|  | LU.MaxOffset - NewOffset, HasBaseReg)) | 
|  | return false; | 
|  | NewMinOffset = NewOffset; | 
|  | } else if (NewOffset > LU.MaxOffset) { | 
|  | if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, | 
|  | NewOffset - LU.MinOffset, HasBaseReg)) | 
|  | return false; | 
|  | NewMaxOffset = NewOffset; | 
|  | } | 
|  |  | 
|  | // Update the use. | 
|  | LU.MinOffset = NewMinOffset; | 
|  | LU.MaxOffset = NewMaxOffset; | 
|  | LU.AccessTy = NewAccessTy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return an LSRUse index and an offset value for a fixup which needs the given | 
|  | /// expression, with the given kind and optional access type.  Either reuse an | 
|  | /// existing use or create a new one, as needed. | 
|  | std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, | 
|  | LSRUse::KindType Kind, | 
|  | MemAccessTy AccessTy) { | 
|  | const SCEV *Copy = Expr; | 
|  | int64_t Offset = ExtractImmediate(Expr, SE); | 
|  |  | 
|  | // Basic uses can't accept any offset, for example. | 
|  | if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, | 
|  | Offset, /*HasBaseReg=*/ true)) { | 
|  | Expr = Copy; | 
|  | Offset = 0; | 
|  | } | 
|  |  | 
|  | std::pair<UseMapTy::iterator, bool> P = | 
|  | UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); | 
|  | if (!P.second) { | 
|  | // A use already existed with this base. | 
|  | size_t LUIdx = P.first->second; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) | 
|  | // Reuse this use. | 
|  | return std::make_pair(LUIdx, Offset); | 
|  | } | 
|  |  | 
|  | // Create a new use. | 
|  | size_t LUIdx = Uses.size(); | 
|  | P.first->second = LUIdx; | 
|  | Uses.push_back(LSRUse(Kind, AccessTy)); | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  |  | 
|  | LU.MinOffset = Offset; | 
|  | LU.MaxOffset = Offset; | 
|  | return std::make_pair(LUIdx, Offset); | 
|  | } | 
|  |  | 
|  | /// Delete the given use from the Uses list. | 
|  | void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { | 
|  | if (&LU != &Uses.back()) | 
|  | std::swap(LU, Uses.back()); | 
|  | Uses.pop_back(); | 
|  |  | 
|  | // Update RegUses. | 
|  | RegUses.swapAndDropUse(LUIdx, Uses.size()); | 
|  | } | 
|  |  | 
|  | /// Look for a use distinct from OrigLU which is has a formula that has the same | 
|  | /// registers as the given formula. | 
|  | LSRUse * | 
|  | LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, | 
|  | const LSRUse &OrigLU) { | 
|  | // Search all uses for the formula. This could be more clever. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | // Check whether this use is close enough to OrigLU, to see whether it's | 
|  | // worthwhile looking through its formulae. | 
|  | // Ignore ICmpZero uses because they may contain formulae generated by | 
|  | // GenerateICmpZeroScales, in which case adding fixup offsets may | 
|  | // be invalid. | 
|  | if (&LU != &OrigLU && | 
|  | LU.Kind != LSRUse::ICmpZero && | 
|  | LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && | 
|  | LU.WidestFixupType == OrigLU.WidestFixupType && | 
|  | LU.HasFormulaWithSameRegs(OrigF)) { | 
|  | // Scan through this use's formulae. | 
|  | for (const Formula &F : LU.Formulae) { | 
|  | // Check to see if this formula has the same registers and symbols | 
|  | // as OrigF. | 
|  | if (F.BaseRegs == OrigF.BaseRegs && | 
|  | F.ScaledReg == OrigF.ScaledReg && | 
|  | F.BaseGV == OrigF.BaseGV && | 
|  | F.Scale == OrigF.Scale && | 
|  | F.UnfoldedOffset == OrigF.UnfoldedOffset) { | 
|  | if (F.BaseOffset == 0) | 
|  | return &LU; | 
|  | // This is the formula where all the registers and symbols matched; | 
|  | // there aren't going to be any others. Since we declined it, we | 
|  | // can skip the rest of the formulae and proceed to the next LSRUse. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing looked good. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void LSRInstance::CollectInterestingTypesAndFactors() { | 
|  | SmallSetVector<const SCEV *, 4> Strides; | 
|  |  | 
|  | // Collect interesting types and strides. | 
|  | SmallVector<const SCEV *, 4> Worklist; | 
|  | for (const IVStrideUse &U : IU) { | 
|  | const SCEV *Expr = IU.getExpr(U); | 
|  |  | 
|  | // Collect interesting types. | 
|  | Types.insert(SE.getEffectiveSCEVType(Expr->getType())); | 
|  |  | 
|  | // Add strides for mentioned loops. | 
|  | Worklist.push_back(Expr); | 
|  | do { | 
|  | const SCEV *S = Worklist.pop_back_val(); | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | if (AR->getLoop() == L) | 
|  | Strides.insert(AR->getStepRecurrence(SE)); | 
|  | Worklist.push_back(AR->getStart()); | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | Worklist.append(Add->op_begin(), Add->op_end()); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | // Compute interesting factors from the set of interesting strides. | 
|  | for (SmallSetVector<const SCEV *, 4>::const_iterator | 
|  | I = Strides.begin(), E = Strides.end(); I != E; ++I) | 
|  | for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = | 
|  | std::next(I); NewStrideIter != E; ++NewStrideIter) { | 
|  | const SCEV *OldStride = *I; | 
|  | const SCEV *NewStride = *NewStrideIter; | 
|  |  | 
|  | if (SE.getTypeSizeInBits(OldStride->getType()) != | 
|  | SE.getTypeSizeInBits(NewStride->getType())) { | 
|  | if (SE.getTypeSizeInBits(OldStride->getType()) > | 
|  | SE.getTypeSizeInBits(NewStride->getType())) | 
|  | NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); | 
|  | else | 
|  | OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); | 
|  | } | 
|  | if (const SCEVConstant *Factor = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, | 
|  | SE, true))) { | 
|  | if (Factor->getAPInt().getMinSignedBits() <= 64) | 
|  | Factors.insert(Factor->getAPInt().getSExtValue()); | 
|  | } else if (const SCEVConstant *Factor = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, | 
|  | NewStride, | 
|  | SE, true))) { | 
|  | if (Factor->getAPInt().getMinSignedBits() <= 64) | 
|  | Factors.insert(Factor->getAPInt().getSExtValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all uses use the same type, don't bother looking for truncation-based | 
|  | // reuse. | 
|  | if (Types.size() == 1) | 
|  | Types.clear(); | 
|  |  | 
|  | LLVM_DEBUG(print_factors_and_types(dbgs())); | 
|  | } | 
|  |  | 
|  | /// Helper for CollectChains that finds an IV operand (computed by an AddRec in | 
|  | /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to | 
|  | /// IVStrideUses, we could partially skip this. | 
|  | static User::op_iterator | 
|  | findIVOperand(User::op_iterator OI, User::op_iterator OE, | 
|  | Loop *L, ScalarEvolution &SE) { | 
|  | for(; OI != OE; ++OI) { | 
|  | if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { | 
|  | if (!SE.isSCEVable(Oper->getType())) | 
|  | continue; | 
|  |  | 
|  | if (const SCEVAddRecExpr *AR = | 
|  | dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { | 
|  | if (AR->getLoop() == L) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return OI; | 
|  | } | 
|  |  | 
|  | /// IVChain logic must consistently peek base TruncInst operands, so wrap it in | 
|  | /// a convenient helper. | 
|  | static Value *getWideOperand(Value *Oper) { | 
|  | if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) | 
|  | return Trunc->getOperand(0); | 
|  | return Oper; | 
|  | } | 
|  |  | 
|  | /// Return true if we allow an IV chain to include both types. | 
|  | static bool isCompatibleIVType(Value *LVal, Value *RVal) { | 
|  | Type *LType = LVal->getType(); | 
|  | Type *RType = RVal->getType(); | 
|  | return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && | 
|  | // Different address spaces means (possibly) | 
|  | // different types of the pointer implementation, | 
|  | // e.g. i16 vs i32 so disallow that. | 
|  | (LType->getPointerAddressSpace() == | 
|  | RType->getPointerAddressSpace())); | 
|  | } | 
|  |  | 
|  | /// Return an approximation of this SCEV expression's "base", or NULL for any | 
|  | /// constant. Returning the expression itself is conservative. Returning a | 
|  | /// deeper subexpression is more precise and valid as long as it isn't less | 
|  | /// complex than another subexpression. For expressions involving multiple | 
|  | /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids | 
|  | /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], | 
|  | /// IVInc==b-a. | 
|  | /// | 
|  | /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost | 
|  | /// SCEVUnknown, we simply return the rightmost SCEV operand. | 
|  | static const SCEV *getExprBase(const SCEV *S) { | 
|  | switch (S->getSCEVType()) { | 
|  | default: // uncluding scUnknown. | 
|  | return S; | 
|  | case scConstant: | 
|  | return nullptr; | 
|  | case scTruncate: | 
|  | return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); | 
|  | case scZeroExtend: | 
|  | return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); | 
|  | case scSignExtend: | 
|  | return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); | 
|  | case scAddExpr: { | 
|  | // Skip over scaled operands (scMulExpr) to follow add operands as long as | 
|  | // there's nothing more complex. | 
|  | // FIXME: not sure if we want to recognize negation. | 
|  | const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); | 
|  | for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), | 
|  | E(Add->op_begin()); I != E; ++I) { | 
|  | const SCEV *SubExpr = *I; | 
|  | if (SubExpr->getSCEVType() == scAddExpr) | 
|  | return getExprBase(SubExpr); | 
|  |  | 
|  | if (SubExpr->getSCEVType() != scMulExpr) | 
|  | return SubExpr; | 
|  | } | 
|  | return S; // all operands are scaled, be conservative. | 
|  | } | 
|  | case scAddRecExpr: | 
|  | return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the chain increment is profitable to expand into a loop | 
|  | /// invariant value, which may require its own register. A profitable chain | 
|  | /// increment will be an offset relative to the same base. We allow such offsets | 
|  | /// to potentially be used as chain increment as long as it's not obviously | 
|  | /// expensive to expand using real instructions. | 
|  | bool IVChain::isProfitableIncrement(const SCEV *OperExpr, | 
|  | const SCEV *IncExpr, | 
|  | ScalarEvolution &SE) { | 
|  | // Aggressively form chains when -stress-ivchain. | 
|  | if (StressIVChain) | 
|  | return true; | 
|  |  | 
|  | // Do not replace a constant offset from IV head with a nonconstant IV | 
|  | // increment. | 
|  | if (!isa<SCEVConstant>(IncExpr)) { | 
|  | const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); | 
|  | if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<const SCEV*, 8> Processed; | 
|  | return !isHighCostExpansion(IncExpr, Processed, SE); | 
|  | } | 
|  |  | 
|  | /// Return true if the number of registers needed for the chain is estimated to | 
|  | /// be less than the number required for the individual IV users. First prohibit | 
|  | /// any IV users that keep the IV live across increments (the Users set should | 
|  | /// be empty). Next count the number and type of increments in the chain. | 
|  | /// | 
|  | /// Chaining IVs can lead to considerable code bloat if ISEL doesn't | 
|  | /// effectively use postinc addressing modes. Only consider it profitable it the | 
|  | /// increments can be computed in fewer registers when chained. | 
|  | /// | 
|  | /// TODO: Consider IVInc free if it's already used in another chains. | 
|  | static bool | 
|  | isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, | 
|  | ScalarEvolution &SE) { | 
|  | if (StressIVChain) | 
|  | return true; | 
|  |  | 
|  | if (!Chain.hasIncs()) | 
|  | return false; | 
|  |  | 
|  | if (!Users.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; | 
|  | for (Instruction *Inst | 
|  | : Users) { dbgs() << "  " << *Inst << "\n"; }); | 
|  | return false; | 
|  | } | 
|  | assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); | 
|  |  | 
|  | // The chain itself may require a register, so intialize cost to 1. | 
|  | int cost = 1; | 
|  |  | 
|  | // A complete chain likely eliminates the need for keeping the original IV in | 
|  | // a register. LSR does not currently know how to form a complete chain unless | 
|  | // the header phi already exists. | 
|  | if (isa<PHINode>(Chain.tailUserInst()) | 
|  | && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { | 
|  | --cost; | 
|  | } | 
|  | const SCEV *LastIncExpr = nullptr; | 
|  | unsigned NumConstIncrements = 0; | 
|  | unsigned NumVarIncrements = 0; | 
|  | unsigned NumReusedIncrements = 0; | 
|  | for (const IVInc &Inc : Chain) { | 
|  | if (Inc.IncExpr->isZero()) | 
|  | continue; | 
|  |  | 
|  | // Incrementing by zero or some constant is neutral. We assume constants can | 
|  | // be folded into an addressing mode or an add's immediate operand. | 
|  | if (isa<SCEVConstant>(Inc.IncExpr)) { | 
|  | ++NumConstIncrements; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Inc.IncExpr == LastIncExpr) | 
|  | ++NumReusedIncrements; | 
|  | else | 
|  | ++NumVarIncrements; | 
|  |  | 
|  | LastIncExpr = Inc.IncExpr; | 
|  | } | 
|  | // An IV chain with a single increment is handled by LSR's postinc | 
|  | // uses. However, a chain with multiple increments requires keeping the IV's | 
|  | // value live longer than it needs to be if chained. | 
|  | if (NumConstIncrements > 1) | 
|  | --cost; | 
|  |  | 
|  | // Materializing increment expressions in the preheader that didn't exist in | 
|  | // the original code may cost a register. For example, sign-extended array | 
|  | // indices can produce ridiculous increments like this: | 
|  | // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) | 
|  | cost += NumVarIncrements; | 
|  |  | 
|  | // Reusing variable increments likely saves a register to hold the multiple of | 
|  | // the stride. | 
|  | cost -= NumReusedIncrements; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost | 
|  | << "\n"); | 
|  |  | 
|  | return cost < 0; | 
|  | } | 
|  |  | 
|  | /// Add this IV user to an existing chain or make it the head of a new chain. | 
|  | void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, | 
|  | SmallVectorImpl<ChainUsers> &ChainUsersVec) { | 
|  | // When IVs are used as types of varying widths, they are generally converted | 
|  | // to a wider type with some uses remaining narrow under a (free) trunc. | 
|  | Value *const NextIV = getWideOperand(IVOper); | 
|  | const SCEV *const OperExpr = SE.getSCEV(NextIV); | 
|  | const SCEV *const OperExprBase = getExprBase(OperExpr); | 
|  |  | 
|  | // Visit all existing chains. Check if its IVOper can be computed as a | 
|  | // profitable loop invariant increment from the last link in the Chain. | 
|  | unsigned ChainIdx = 0, NChains = IVChainVec.size(); | 
|  | const SCEV *LastIncExpr = nullptr; | 
|  | for (; ChainIdx < NChains; ++ChainIdx) { | 
|  | IVChain &Chain = IVChainVec[ChainIdx]; | 
|  |  | 
|  | // Prune the solution space aggressively by checking that both IV operands | 
|  | // are expressions that operate on the same unscaled SCEVUnknown. This | 
|  | // "base" will be canceled by the subsequent getMinusSCEV call. Checking | 
|  | // first avoids creating extra SCEV expressions. | 
|  | if (!StressIVChain && Chain.ExprBase != OperExprBase) | 
|  | continue; | 
|  |  | 
|  | Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); | 
|  | if (!isCompatibleIVType(PrevIV, NextIV)) | 
|  | continue; | 
|  |  | 
|  | // A phi node terminates a chain. | 
|  | if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) | 
|  | continue; | 
|  |  | 
|  | // The increment must be loop-invariant so it can be kept in a register. | 
|  | const SCEV *PrevExpr = SE.getSCEV(PrevIV); | 
|  | const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); | 
|  | if (!SE.isLoopInvariant(IncExpr, L)) | 
|  | continue; | 
|  |  | 
|  | if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { | 
|  | LastIncExpr = IncExpr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we haven't found a chain, create a new one, unless we hit the max. Don't | 
|  | // bother for phi nodes, because they must be last in the chain. | 
|  | if (ChainIdx == NChains) { | 
|  | if (isa<PHINode>(UserInst)) | 
|  | return; | 
|  | if (NChains >= MaxChains && !StressIVChain) { | 
|  | LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); | 
|  | return; | 
|  | } | 
|  | LastIncExpr = OperExpr; | 
|  | // IVUsers may have skipped over sign/zero extensions. We don't currently | 
|  | // attempt to form chains involving extensions unless they can be hoisted | 
|  | // into this loop's AddRec. | 
|  | if (!isa<SCEVAddRecExpr>(LastIncExpr)) | 
|  | return; | 
|  | ++NChains; | 
|  | IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), | 
|  | OperExprBase)); | 
|  | ChainUsersVec.resize(NChains); | 
|  | LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst | 
|  | << ") IV=" << *LastIncExpr << "\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst | 
|  | << ") IV+" << *LastIncExpr << "\n"); | 
|  | // Add this IV user to the end of the chain. | 
|  | IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); | 
|  | } | 
|  | IVChain &Chain = IVChainVec[ChainIdx]; | 
|  |  | 
|  | SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; | 
|  | // This chain's NearUsers become FarUsers. | 
|  | if (!LastIncExpr->isZero()) { | 
|  | ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), | 
|  | NearUsers.end()); | 
|  | NearUsers.clear(); | 
|  | } | 
|  |  | 
|  | // All other uses of IVOperand become near uses of the chain. | 
|  | // We currently ignore intermediate values within SCEV expressions, assuming | 
|  | // they will eventually be used be the current chain, or can be computed | 
|  | // from one of the chain increments. To be more precise we could | 
|  | // transitively follow its user and only add leaf IV users to the set. | 
|  | for (User *U : IVOper->users()) { | 
|  | Instruction *OtherUse = dyn_cast<Instruction>(U); | 
|  | if (!OtherUse) | 
|  | continue; | 
|  | // Uses in the chain will no longer be uses if the chain is formed. | 
|  | // Include the head of the chain in this iteration (not Chain.begin()). | 
|  | IVChain::const_iterator IncIter = Chain.Incs.begin(); | 
|  | IVChain::const_iterator IncEnd = Chain.Incs.end(); | 
|  | for( ; IncIter != IncEnd; ++IncIter) { | 
|  | if (IncIter->UserInst == OtherUse) | 
|  | break; | 
|  | } | 
|  | if (IncIter != IncEnd) | 
|  | continue; | 
|  |  | 
|  | if (SE.isSCEVable(OtherUse->getType()) | 
|  | && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) | 
|  | && IU.isIVUserOrOperand(OtherUse)) { | 
|  | continue; | 
|  | } | 
|  | NearUsers.insert(OtherUse); | 
|  | } | 
|  |  | 
|  | // Since this user is part of the chain, it's no longer considered a use | 
|  | // of the chain. | 
|  | ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); | 
|  | } | 
|  |  | 
|  | /// Populate the vector of Chains. | 
|  | /// | 
|  | /// This decreases ILP at the architecture level. Targets with ample registers, | 
|  | /// multiple memory ports, and no register renaming probably don't want | 
|  | /// this. However, such targets should probably disable LSR altogether. | 
|  | /// | 
|  | /// The job of LSR is to make a reasonable choice of induction variables across | 
|  | /// the loop. Subsequent passes can easily "unchain" computation exposing more | 
|  | /// ILP *within the loop* if the target wants it. | 
|  | /// | 
|  | /// Finding the best IV chain is potentially a scheduling problem. Since LSR | 
|  | /// will not reorder memory operations, it will recognize this as a chain, but | 
|  | /// will generate redundant IV increments. Ideally this would be corrected later | 
|  | /// by a smart scheduler: | 
|  | ///        = A[i] | 
|  | ///        = A[i+x] | 
|  | /// A[i]   = | 
|  | /// A[i+x] = | 
|  | /// | 
|  | /// TODO: Walk the entire domtree within this loop, not just the path to the | 
|  | /// loop latch. This will discover chains on side paths, but requires | 
|  | /// maintaining multiple copies of the Chains state. | 
|  | void LSRInstance::CollectChains() { | 
|  | LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); | 
|  | SmallVector<ChainUsers, 8> ChainUsersVec; | 
|  |  | 
|  | SmallVector<BasicBlock *,8> LatchPath; | 
|  | BasicBlock *LoopHeader = L->getHeader(); | 
|  | for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); | 
|  | Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { | 
|  | LatchPath.push_back(Rung->getBlock()); | 
|  | } | 
|  | LatchPath.push_back(LoopHeader); | 
|  |  | 
|  | // Walk the instruction stream from the loop header to the loop latch. | 
|  | for (BasicBlock *BB : reverse(LatchPath)) { | 
|  | for (Instruction &I : *BB) { | 
|  | // Skip instructions that weren't seen by IVUsers analysis. | 
|  | if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) | 
|  | continue; | 
|  |  | 
|  | // Ignore users that are part of a SCEV expression. This way we only | 
|  | // consider leaf IV Users. This effectively rediscovers a portion of | 
|  | // IVUsers analysis but in program order this time. | 
|  | if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) | 
|  | continue; | 
|  |  | 
|  | // Remove this instruction from any NearUsers set it may be in. | 
|  | for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); | 
|  | ChainIdx < NChains; ++ChainIdx) { | 
|  | ChainUsersVec[ChainIdx].NearUsers.erase(&I); | 
|  | } | 
|  | // Search for operands that can be chained. | 
|  | SmallPtrSet<Instruction*, 4> UniqueOperands; | 
|  | User::op_iterator IVOpEnd = I.op_end(); | 
|  | User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); | 
|  | while (IVOpIter != IVOpEnd) { | 
|  | Instruction *IVOpInst = cast<Instruction>(*IVOpIter); | 
|  | if (UniqueOperands.insert(IVOpInst).second) | 
|  | ChainInstruction(&I, IVOpInst, ChainUsersVec); | 
|  | IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); | 
|  | } | 
|  | } // Continue walking down the instructions. | 
|  | } // Continue walking down the domtree. | 
|  | // Visit phi backedges to determine if the chain can generate the IV postinc. | 
|  | for (PHINode &PN : L->getHeader()->phis()) { | 
|  | if (!SE.isSCEVable(PN.getType())) | 
|  | continue; | 
|  |  | 
|  | Instruction *IncV = | 
|  | dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); | 
|  | if (IncV) | 
|  | ChainInstruction(&PN, IncV, ChainUsersVec); | 
|  | } | 
|  | // Remove any unprofitable chains. | 
|  | unsigned ChainIdx = 0; | 
|  | for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); | 
|  | UsersIdx < NChains; ++UsersIdx) { | 
|  | if (!isProfitableChain(IVChainVec[UsersIdx], | 
|  | ChainUsersVec[UsersIdx].FarUsers, SE)) | 
|  | continue; | 
|  | // Preserve the chain at UsesIdx. | 
|  | if (ChainIdx != UsersIdx) | 
|  | IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; | 
|  | FinalizeChain(IVChainVec[ChainIdx]); | 
|  | ++ChainIdx; | 
|  | } | 
|  | IVChainVec.resize(ChainIdx); | 
|  | } | 
|  |  | 
|  | void LSRInstance::FinalizeChain(IVChain &Chain) { | 
|  | assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); | 
|  | LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); | 
|  |  | 
|  | for (const IVInc &Inc : Chain) { | 
|  | LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n"); | 
|  | auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); | 
|  | assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); | 
|  | IVIncSet.insert(UseI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the IVInc can be folded into an addressing mode. | 
|  | static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, | 
|  | Value *Operand, const TargetTransformInfo &TTI) { | 
|  | const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); | 
|  | if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) | 
|  | return false; | 
|  |  | 
|  | if (IncConst->getAPInt().getMinSignedBits() > 64) | 
|  | return false; | 
|  |  | 
|  | MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); | 
|  | int64_t IncOffset = IncConst->getValue()->getSExtValue(); | 
|  | if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, | 
|  | IncOffset, /*HaseBaseReg=*/false)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Generate an add or subtract for each IVInc in a chain to materialize the IV | 
|  | /// user's operand from the previous IV user's operand. | 
|  | void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { | 
|  | // Find the new IVOperand for the head of the chain. It may have been replaced | 
|  | // by LSR. | 
|  | const IVInc &Head = Chain.Incs[0]; | 
|  | User::op_iterator IVOpEnd = Head.UserInst->op_end(); | 
|  | // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. | 
|  | User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), | 
|  | IVOpEnd, L, SE); | 
|  | Value *IVSrc = nullptr; | 
|  | while (IVOpIter != IVOpEnd) { | 
|  | IVSrc = getWideOperand(*IVOpIter); | 
|  |  | 
|  | // If this operand computes the expression that the chain needs, we may use | 
|  | // it. (Check this after setting IVSrc which is used below.) | 
|  | // | 
|  | // Note that if Head.IncExpr is wider than IVSrc, then this phi is too | 
|  | // narrow for the chain, so we can no longer use it. We do allow using a | 
|  | // wider phi, assuming the LSR checked for free truncation. In that case we | 
|  | // should already have a truncate on this operand such that | 
|  | // getSCEV(IVSrc) == IncExpr. | 
|  | if (SE.getSCEV(*IVOpIter) == Head.IncExpr | 
|  | || SE.getSCEV(IVSrc) == Head.IncExpr) { | 
|  | break; | 
|  | } | 
|  | IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); | 
|  | } | 
|  | if (IVOpIter == IVOpEnd) { | 
|  | // Gracefully give up on this chain. | 
|  | LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); | 
|  | Type *IVTy = IVSrc->getType(); | 
|  | Type *IntTy = SE.getEffectiveSCEVType(IVTy); | 
|  | const SCEV *LeftOverExpr = nullptr; | 
|  | for (const IVInc &Inc : Chain) { | 
|  | Instruction *InsertPt = Inc.UserInst; | 
|  | if (isa<PHINode>(InsertPt)) | 
|  | InsertPt = L->getLoopLatch()->getTerminator(); | 
|  |  | 
|  | // IVOper will replace the current IV User's operand. IVSrc is the IV | 
|  | // value currently held in a register. | 
|  | Value *IVOper = IVSrc; | 
|  | if (!Inc.IncExpr->isZero()) { | 
|  | // IncExpr was the result of subtraction of two narrow values, so must | 
|  | // be signed. | 
|  | const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); | 
|  | LeftOverExpr = LeftOverExpr ? | 
|  | SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; | 
|  | } | 
|  | if (LeftOverExpr && !LeftOverExpr->isZero()) { | 
|  | // Expand the IV increment. | 
|  | Rewriter.clearPostInc(); | 
|  | Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); | 
|  | const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), | 
|  | SE.getUnknown(IncV)); | 
|  | IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); | 
|  |  | 
|  | // If an IV increment can't be folded, use it as the next IV value. | 
|  | if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { | 
|  | assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); | 
|  | IVSrc = IVOper; | 
|  | LeftOverExpr = nullptr; | 
|  | } | 
|  | } | 
|  | Type *OperTy = Inc.IVOperand->getType(); | 
|  | if (IVTy != OperTy) { | 
|  | assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && | 
|  | "cannot extend a chained IV"); | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); | 
|  | } | 
|  | Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); | 
|  | DeadInsts.emplace_back(Inc.IVOperand); | 
|  | } | 
|  | // If LSR created a new, wider phi, we may also replace its postinc. We only | 
|  | // do this if we also found a wide value for the head of the chain. | 
|  | if (isa<PHINode>(Chain.tailUserInst())) { | 
|  | for (PHINode &Phi : L->getHeader()->phis()) { | 
|  | if (!isCompatibleIVType(&Phi, IVSrc)) | 
|  | continue; | 
|  | Instruction *PostIncV = dyn_cast<Instruction>( | 
|  | Phi.getIncomingValueForBlock(L->getLoopLatch())); | 
|  | if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) | 
|  | continue; | 
|  | Value *IVOper = IVSrc; | 
|  | Type *PostIncTy = PostIncV->getType(); | 
|  | if (IVTy != PostIncTy) { | 
|  | assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); | 
|  | IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); | 
|  | Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); | 
|  | IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); | 
|  | } | 
|  | Phi.replaceUsesOfWith(PostIncV, IVOper); | 
|  | DeadInsts.emplace_back(PostIncV); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::CollectFixupsAndInitialFormulae() { | 
|  | for (const IVStrideUse &U : IU) { | 
|  | Instruction *UserInst = U.getUser(); | 
|  | // Skip IV users that are part of profitable IV Chains. | 
|  | User::op_iterator UseI = | 
|  | find(UserInst->operands(), U.getOperandValToReplace()); | 
|  | assert(UseI != UserInst->op_end() && "cannot find IV operand"); | 
|  | if (IVIncSet.count(UseI)) { | 
|  | LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LSRUse::KindType Kind = LSRUse::Basic; | 
|  | MemAccessTy AccessTy; | 
|  | if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { | 
|  | Kind = LSRUse::Address; | 
|  | AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); | 
|  | } | 
|  |  | 
|  | const SCEV *S = IU.getExpr(U); | 
|  | PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); | 
|  |  | 
|  | // Equality (== and !=) ICmps are special. We can rewrite (i == N) as | 
|  | // (N - i == 0), and this allows (N - i) to be the expression that we work | 
|  | // with rather than just N or i, so we can consider the register | 
|  | // requirements for both N and i at the same time. Limiting this code to | 
|  | // equality icmps is not a problem because all interesting loops use | 
|  | // equality icmps, thanks to IndVarSimplify. | 
|  | if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) | 
|  | if (CI->isEquality()) { | 
|  | // Swap the operands if needed to put the OperandValToReplace on the | 
|  | // left, for consistency. | 
|  | Value *NV = CI->getOperand(1); | 
|  | if (NV == U.getOperandValToReplace()) { | 
|  | CI->setOperand(1, CI->getOperand(0)); | 
|  | CI->setOperand(0, NV); | 
|  | NV = CI->getOperand(1); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // x == y  -->  x - y == 0 | 
|  | const SCEV *N = SE.getSCEV(NV); | 
|  | if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { | 
|  | // S is normalized, so normalize N before folding it into S | 
|  | // to keep the result normalized. | 
|  | N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); | 
|  | Kind = LSRUse::ICmpZero; | 
|  | S = SE.getMinusSCEV(N, S); | 
|  | } | 
|  |  | 
|  | // -1 and the negations of all interesting strides (except the negation | 
|  | // of -1) are now also interesting. | 
|  | for (size_t i = 0, e = Factors.size(); i != e; ++i) | 
|  | if (Factors[i] != -1) | 
|  | Factors.insert(-(uint64_t)Factors[i]); | 
|  | Factors.insert(-1); | 
|  | } | 
|  |  | 
|  | // Get or create an LSRUse. | 
|  | std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); | 
|  | size_t LUIdx = P.first; | 
|  | int64_t Offset = P.second; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  |  | 
|  | // Record the fixup. | 
|  | LSRFixup &LF = LU.getNewFixup(); | 
|  | LF.UserInst = UserInst; | 
|  | LF.OperandValToReplace = U.getOperandValToReplace(); | 
|  | LF.PostIncLoops = TmpPostIncLoops; | 
|  | LF.Offset = Offset; | 
|  | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); | 
|  |  | 
|  | if (!LU.WidestFixupType || | 
|  | SE.getTypeSizeInBits(LU.WidestFixupType) < | 
|  | SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) | 
|  | LU.WidestFixupType = LF.OperandValToReplace->getType(); | 
|  |  | 
|  | // If this is the first use of this LSRUse, give it a formula. | 
|  | if (LU.Formulae.empty()) { | 
|  | InsertInitialFormula(S, LU, LUIdx); | 
|  | CountRegisters(LU.Formulae.back(), LUIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(print_fixups(dbgs())); | 
|  | } | 
|  |  | 
|  | /// Insert a formula for the given expression into the given use, separating out | 
|  | /// loop-variant portions from loop-invariant and loop-computable portions. | 
|  | void | 
|  | LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { | 
|  | // Mark uses whose expressions cannot be expanded. | 
|  | if (!isSafeToExpand(S, SE)) | 
|  | LU.RigidFormula = true; | 
|  |  | 
|  | Formula F; | 
|  | F.initialMatch(S, L, SE); | 
|  | bool Inserted = InsertFormula(LU, LUIdx, F); | 
|  | assert(Inserted && "Initial formula already exists!"); (void)Inserted; | 
|  | } | 
|  |  | 
|  | /// Insert a simple single-register formula for the given expression into the | 
|  | /// given use. | 
|  | void | 
|  | LSRInstance::InsertSupplementalFormula(const SCEV *S, | 
|  | LSRUse &LU, size_t LUIdx) { | 
|  | Formula F; | 
|  | F.BaseRegs.push_back(S); | 
|  | F.HasBaseReg = true; | 
|  | bool Inserted = InsertFormula(LU, LUIdx, F); | 
|  | assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; | 
|  | } | 
|  |  | 
|  | /// Note which registers are used by the given formula, updating RegUses. | 
|  | void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { | 
|  | if (F.ScaledReg) | 
|  | RegUses.countRegister(F.ScaledReg, LUIdx); | 
|  | for (const SCEV *BaseReg : F.BaseRegs) | 
|  | RegUses.countRegister(BaseReg, LUIdx); | 
|  | } | 
|  |  | 
|  | /// If the given formula has not yet been inserted, add it to the list, and | 
|  | /// return true. Return false otherwise. | 
|  | bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { | 
|  | // Do not insert formula that we will not be able to expand. | 
|  | assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && | 
|  | "Formula is illegal"); | 
|  |  | 
|  | if (!LU.InsertFormula(F, *L)) | 
|  | return false; | 
|  |  | 
|  | CountRegisters(F, LUIdx); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check for other uses of loop-invariant values which we're tracking. These | 
|  | /// other uses will pin these values in registers, making them less profitable | 
|  | /// for elimination. | 
|  | /// TODO: This currently misses non-constant addrec step registers. | 
|  | /// TODO: Should this give more weight to users inside the loop? | 
|  | void | 
|  | LSRInstance::CollectLoopInvariantFixupsAndFormulae() { | 
|  | SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); | 
|  | SmallPtrSet<const SCEV *, 32> Visited; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const SCEV *S = Worklist.pop_back_val(); | 
|  |  | 
|  | // Don't process the same SCEV twice | 
|  | if (!Visited.insert(S).second) | 
|  | continue; | 
|  |  | 
|  | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) | 
|  | Worklist.append(N->op_begin(), N->op_end()); | 
|  | else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) | 
|  | Worklist.push_back(C->getOperand()); | 
|  | else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | Worklist.push_back(D->getLHS()); | 
|  | Worklist.push_back(D->getRHS()); | 
|  | } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { | 
|  | const Value *V = US->getValue(); | 
|  | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | // Look for instructions defined outside the loop. | 
|  | if (L->contains(Inst)) continue; | 
|  | } else if (isa<UndefValue>(V)) | 
|  | // Undef doesn't have a live range, so it doesn't matter. | 
|  | continue; | 
|  | for (const Use &U : V->uses()) { | 
|  | const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); | 
|  | // Ignore non-instructions. | 
|  | if (!UserInst) | 
|  | continue; | 
|  | // Ignore instructions in other functions (as can happen with | 
|  | // Constants). | 
|  | if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) | 
|  | continue; | 
|  | // Ignore instructions not dominated by the loop. | 
|  | const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? | 
|  | UserInst->getParent() : | 
|  | cast<PHINode>(UserInst)->getIncomingBlock( | 
|  | PHINode::getIncomingValueNumForOperand(U.getOperandNo())); | 
|  | if (!DT.dominates(L->getHeader(), UseBB)) | 
|  | continue; | 
|  | // Don't bother if the instruction is in a BB which ends in an EHPad. | 
|  | if (UseBB->getTerminator()->isEHPad()) | 
|  | continue; | 
|  | // Don't bother rewriting PHIs in catchswitch blocks. | 
|  | if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) | 
|  | continue; | 
|  | // Ignore uses which are part of other SCEV expressions, to avoid | 
|  | // analyzing them multiple times. | 
|  | if (SE.isSCEVable(UserInst->getType())) { | 
|  | const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); | 
|  | // If the user is a no-op, look through to its uses. | 
|  | if (!isa<SCEVUnknown>(UserS)) | 
|  | continue; | 
|  | if (UserS == US) { | 
|  | Worklist.push_back( | 
|  | SE.getUnknown(const_cast<Instruction *>(UserInst))); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Ignore icmp instructions which are already being analyzed. | 
|  | if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { | 
|  | unsigned OtherIdx = !U.getOperandNo(); | 
|  | Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); | 
|  | if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | std::pair<size_t, int64_t> P = getUse( | 
|  | S, LSRUse::Basic, MemAccessTy()); | 
|  | size_t LUIdx = P.first; | 
|  | int64_t Offset = P.second; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | LSRFixup &LF = LU.getNewFixup(); | 
|  | LF.UserInst = const_cast<Instruction *>(UserInst); | 
|  | LF.OperandValToReplace = U; | 
|  | LF.Offset = Offset; | 
|  | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); | 
|  | if (!LU.WidestFixupType || | 
|  | SE.getTypeSizeInBits(LU.WidestFixupType) < | 
|  | SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) | 
|  | LU.WidestFixupType = LF.OperandValToReplace->getType(); | 
|  | InsertSupplementalFormula(US, LU, LUIdx); | 
|  | CountRegisters(LU.Formulae.back(), Uses.size() - 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Split S into subexpressions which can be pulled out into separate | 
|  | /// registers. If C is non-null, multiply each subexpression by C. | 
|  | /// | 
|  | /// Return remainder expression after factoring the subexpressions captured by | 
|  | /// Ops. If Ops is complete, return NULL. | 
|  | static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, | 
|  | SmallVectorImpl<const SCEV *> &Ops, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE, | 
|  | unsigned Depth = 0) { | 
|  | // Arbitrarily cap recursion to protect compile time. | 
|  | if (Depth >= 3) | 
|  | return S; | 
|  |  | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | // Break out add operands. | 
|  | for (const SCEV *S : Add->operands()) { | 
|  | const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); | 
|  | if (Remainder) | 
|  | Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); | 
|  | } | 
|  | return nullptr; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | // Split a non-zero base out of an addrec. | 
|  | if (AR->getStart()->isZero() || !AR->isAffine()) | 
|  | return S; | 
|  |  | 
|  | const SCEV *Remainder = CollectSubexprs(AR->getStart(), | 
|  | C, Ops, L, SE, Depth+1); | 
|  | // Split the non-zero AddRec unless it is part of a nested recurrence that | 
|  | // does not pertain to this loop. | 
|  | if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { | 
|  | Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); | 
|  | Remainder = nullptr; | 
|  | } | 
|  | if (Remainder != AR->getStart()) { | 
|  | if (!Remainder) | 
|  | Remainder = SE.getConstant(AR->getType(), 0); | 
|  | return SE.getAddRecExpr(Remainder, | 
|  | AR->getStepRecurrence(SE), | 
|  | AR->getLoop(), | 
|  | //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap); | 
|  | } | 
|  | } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { | 
|  | // Break (C * (a + b + c)) into C*a + C*b + C*c. | 
|  | if (Mul->getNumOperands() != 2) | 
|  | return S; | 
|  | if (const SCEVConstant *Op0 = | 
|  | dyn_cast<SCEVConstant>(Mul->getOperand(0))) { | 
|  | C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; | 
|  | const SCEV *Remainder = | 
|  | CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); | 
|  | if (Remainder) | 
|  | Ops.push_back(SE.getMulExpr(C, Remainder)); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// Return true if the SCEV represents a value that may end up as a | 
|  | /// post-increment operation. | 
|  | static bool mayUsePostIncMode(const TargetTransformInfo &TTI, | 
|  | LSRUse &LU, const SCEV *S, const Loop *L, | 
|  | ScalarEvolution &SE) { | 
|  | if (LU.Kind != LSRUse::Address || | 
|  | !LU.AccessTy.getType()->isIntOrIntVectorTy()) | 
|  | return false; | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); | 
|  | if (!AR) | 
|  | return false; | 
|  | const SCEV *LoopStep = AR->getStepRecurrence(SE); | 
|  | if (!isa<SCEVConstant>(LoopStep)) | 
|  | return false; | 
|  | if (LU.AccessTy.getType()->getScalarSizeInBits() != | 
|  | LoopStep->getType()->getScalarSizeInBits()) | 
|  | return false; | 
|  | // Check if a post-indexed load/store can be used. | 
|  | if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || | 
|  | TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { | 
|  | const SCEV *LoopStart = AR->getStart(); | 
|  | if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Helper function for LSRInstance::GenerateReassociations. | 
|  | void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, | 
|  | const Formula &Base, | 
|  | unsigned Depth, size_t Idx, | 
|  | bool IsScaledReg) { | 
|  | const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; | 
|  | // Don't generate reassociations for the base register of a value that | 
|  | // may generate a post-increment operator. The reason is that the | 
|  | // reassociations cause extra base+register formula to be created, | 
|  | // and possibly chosen, but the post-increment is more efficient. | 
|  | if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) | 
|  | return; | 
|  | SmallVector<const SCEV *, 8> AddOps; | 
|  | const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); | 
|  | if (Remainder) | 
|  | AddOps.push_back(Remainder); | 
|  |  | 
|  | if (AddOps.size() == 1) | 
|  | return; | 
|  |  | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), | 
|  | JE = AddOps.end(); | 
|  | J != JE; ++J) { | 
|  | // Loop-variant "unknown" values are uninteresting; we won't be able to | 
|  | // do anything meaningful with them. | 
|  | if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) | 
|  | continue; | 
|  |  | 
|  | // Don't pull a constant into a register if the constant could be folded | 
|  | // into an immediate field. | 
|  | if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, | 
|  | LU.AccessTy, *J, Base.getNumRegs() > 1)) | 
|  | continue; | 
|  |  | 
|  | // Collect all operands except *J. | 
|  | SmallVector<const SCEV *, 8> InnerAddOps( | 
|  | ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); | 
|  | InnerAddOps.append(std::next(J), | 
|  | ((const SmallVector<const SCEV *, 8> &)AddOps).end()); | 
|  |  | 
|  | // Don't leave just a constant behind in a register if the constant could | 
|  | // be folded into an immediate field. | 
|  | if (InnerAddOps.size() == 1 && | 
|  | isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, | 
|  | LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) | 
|  | continue; | 
|  |  | 
|  | const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); | 
|  | if (InnerSum->isZero()) | 
|  | continue; | 
|  | Formula F = Base; | 
|  |  | 
|  | // Add the remaining pieces of the add back into the new formula. | 
|  | const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); | 
|  | if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && | 
|  | TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + | 
|  | InnerSumSC->getValue()->getZExtValue())) { | 
|  | F.UnfoldedOffset = | 
|  | (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); | 
|  | if (IsScaledReg) | 
|  | F.ScaledReg = nullptr; | 
|  | else | 
|  | F.BaseRegs.erase(F.BaseRegs.begin() + Idx); | 
|  | } else if (IsScaledReg) | 
|  | F.ScaledReg = InnerSum; | 
|  | else | 
|  | F.BaseRegs[Idx] = InnerSum; | 
|  |  | 
|  | // Add J as its own register, or an unfolded immediate. | 
|  | const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); | 
|  | if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && | 
|  | TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + | 
|  | SC->getValue()->getZExtValue())) | 
|  | F.UnfoldedOffset = | 
|  | (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); | 
|  | else | 
|  | F.BaseRegs.push_back(*J); | 
|  | // We may have changed the number of register in base regs, adjust the | 
|  | // formula accordingly. | 
|  | F.canonicalize(*L); | 
|  |  | 
|  | if (InsertFormula(LU, LUIdx, F)) | 
|  | // If that formula hadn't been seen before, recurse to find more like | 
|  | // it. | 
|  | // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) | 
|  | // Because just Depth is not enough to bound compile time. | 
|  | // This means that every time AddOps.size() is greater 16^x we will add | 
|  | // x to Depth. | 
|  | GenerateReassociations(LU, LUIdx, LU.Formulae.back(), | 
|  | Depth + 1 + (Log2_32(AddOps.size()) >> 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Split out subexpressions from adds and the bases of addrecs. | 
|  | void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base, unsigned Depth) { | 
|  | assert(Base.isCanonical(*L) && "Input must be in the canonical form"); | 
|  | // Arbitrarily cap recursion to protect compile time. | 
|  | if (Depth >= 3) | 
|  | return; | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) | 
|  | GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); | 
|  |  | 
|  | if (Base.Scale == 1) | 
|  | GenerateReassociationsImpl(LU, LUIdx, Base, Depth, | 
|  | /* Idx */ -1, /* IsScaledReg */ true); | 
|  | } | 
|  |  | 
|  | ///  Generate a formula consisting of all of the loop-dominating registers added | 
|  | /// into a single register. | 
|  | void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // This method is only interesting on a plurality of registers. | 
|  | if (Base.BaseRegs.size() + (Base.Scale == 1) + | 
|  | (Base.UnfoldedOffset != 0) <= 1) | 
|  | return; | 
|  |  | 
|  | // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before | 
|  | // processing the formula. | 
|  | Base.unscale(); | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | Formula NewBase = Base; | 
|  | NewBase.BaseRegs.clear(); | 
|  | Type *CombinedIntegerType = nullptr; | 
|  | for (const SCEV *BaseReg : Base.BaseRegs) { | 
|  | if (SE.properlyDominates(BaseReg, L->getHeader()) && | 
|  | !SE.hasComputableLoopEvolution(BaseReg, L)) { | 
|  | if (!CombinedIntegerType) | 
|  | CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); | 
|  | Ops.push_back(BaseReg); | 
|  | } | 
|  | else | 
|  | NewBase.BaseRegs.push_back(BaseReg); | 
|  | } | 
|  |  | 
|  | // If no register is relevant, we're done. | 
|  | if (Ops.size() == 0) | 
|  | return; | 
|  |  | 
|  | // Utility function for generating the required variants of the combined | 
|  | // registers. | 
|  | auto GenerateFormula = [&](const SCEV *Sum) { | 
|  | Formula F = NewBase; | 
|  |  | 
|  | // TODO: If Sum is zero, it probably means ScalarEvolution missed an | 
|  | // opportunity to fold something. For now, just ignore such cases | 
|  | // rather than proceed with zero in a register. | 
|  | if (Sum->isZero()) | 
|  | return; | 
|  |  | 
|  | F.BaseRegs.push_back(Sum); | 
|  | F.canonicalize(*L); | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | }; | 
|  |  | 
|  | // If we collected at least two registers, generate a formula combining them. | 
|  | if (Ops.size() > 1) { | 
|  | SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. | 
|  | GenerateFormula(SE.getAddExpr(OpsCopy)); | 
|  | } | 
|  |  | 
|  | // If we have an unfolded offset, generate a formula combining it with the | 
|  | // registers collected. | 
|  | if (NewBase.UnfoldedOffset) { | 
|  | assert(CombinedIntegerType && "Missing a type for the unfolded offset"); | 
|  | Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, | 
|  | true)); | 
|  | NewBase.UnfoldedOffset = 0; | 
|  | GenerateFormula(SE.getAddExpr(Ops)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helper function for LSRInstance::GenerateSymbolicOffsets. | 
|  | void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, | 
|  | const Formula &Base, size_t Idx, | 
|  | bool IsScaledReg) { | 
|  | const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; | 
|  | GlobalValue *GV = ExtractSymbol(G, SE); | 
|  | if (G->isZero() || !GV) | 
|  | return; | 
|  | Formula F = Base; | 
|  | F.BaseGV = GV; | 
|  | if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) | 
|  | return; | 
|  | if (IsScaledReg) | 
|  | F.ScaledReg = G; | 
|  | else | 
|  | F.BaseRegs[Idx] = G; | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  |  | 
|  | /// Generate reuse formulae using symbolic offsets. | 
|  | void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // We can't add a symbolic offset if the address already contains one. | 
|  | if (Base.BaseGV) return; | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) | 
|  | GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); | 
|  | if (Base.Scale == 1) | 
|  | GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, | 
|  | /* IsScaledReg */ true); | 
|  | } | 
|  |  | 
|  | /// Helper function for LSRInstance::GenerateConstantOffsets. | 
|  | void LSRInstance::GenerateConstantOffsetsImpl( | 
|  | LSRUse &LU, unsigned LUIdx, const Formula &Base, | 
|  | const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { | 
|  |  | 
|  | auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { | 
|  | Formula F = Base; | 
|  | F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; | 
|  |  | 
|  | if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, | 
|  | LU.AccessTy, F)) { | 
|  | // Add the offset to the base register. | 
|  | const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); | 
|  | // If it cancelled out, drop the base register, otherwise update it. | 
|  | if (NewG->isZero()) { | 
|  | if (IsScaledReg) { | 
|  | F.Scale = 0; | 
|  | F.ScaledReg = nullptr; | 
|  | } else | 
|  | F.deleteBaseReg(F.BaseRegs[Idx]); | 
|  | F.canonicalize(*L); | 
|  | } else if (IsScaledReg) | 
|  | F.ScaledReg = NewG; | 
|  | else | 
|  | F.BaseRegs[Idx] = NewG; | 
|  |  | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | }; | 
|  |  | 
|  | const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; | 
|  |  | 
|  | // With constant offsets and constant steps, we can generate pre-inc | 
|  | // accesses by having the offset equal the step. So, for access #0 with a | 
|  | // step of 8, we generate a G - 8 base which would require the first access | 
|  | // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer | 
|  | // for itself and hopefully becomes the base for other accesses. This means | 
|  | // means that a single pre-indexed access can be generated to become the new | 
|  | // base pointer for each iteration of the loop, resulting in no extra add/sub | 
|  | // instructions for pointer updating. | 
|  | if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { | 
|  | if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { | 
|  | if (auto *StepRec = | 
|  | dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { | 
|  | const APInt &StepInt = StepRec->getAPInt(); | 
|  | int64_t Step = StepInt.isNegative() ? | 
|  | StepInt.getSExtValue() : StepInt.getZExtValue(); | 
|  |  | 
|  | for (int64_t Offset : Worklist) { | 
|  | Offset -= Step; | 
|  | GenerateOffset(G, Offset); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int64_t Offset : Worklist) | 
|  | GenerateOffset(G, Offset); | 
|  |  | 
|  | int64_t Imm = ExtractImmediate(G, SE); | 
|  | if (G->isZero() || Imm == 0) | 
|  | return; | 
|  | Formula F = Base; | 
|  | F.BaseOffset = (uint64_t)F.BaseOffset + Imm; | 
|  | if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) | 
|  | return; | 
|  | if (IsScaledReg) | 
|  | F.ScaledReg = G; | 
|  | else | 
|  | F.BaseRegs[Idx] = G; | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  |  | 
|  | /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. | 
|  | void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // TODO: For now, just add the min and max offset, because it usually isn't | 
|  | // worthwhile looking at everything inbetween. | 
|  | SmallVector<int64_t, 2> Worklist; | 
|  | Worklist.push_back(LU.MinOffset); | 
|  | if (LU.MaxOffset != LU.MinOffset) | 
|  | Worklist.push_back(LU.MaxOffset); | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) | 
|  | GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); | 
|  | if (Base.Scale == 1) | 
|  | GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, | 
|  | /* IsScaledReg */ true); | 
|  | } | 
|  |  | 
|  | /// For ICmpZero, check to see if we can scale up the comparison. For example, x | 
|  | /// == y -> x*c == y*c. | 
|  | void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | if (LU.Kind != LSRUse::ICmpZero) return; | 
|  |  | 
|  | // Determine the integer type for the base formula. | 
|  | Type *IntTy = Base.getType(); | 
|  | if (!IntTy) return; | 
|  | if (SE.getTypeSizeInBits(IntTy) > 64) return; | 
|  |  | 
|  | // Don't do this if there is more than one offset. | 
|  | if (LU.MinOffset != LU.MaxOffset) return; | 
|  |  | 
|  | // Check if transformation is valid. It is illegal to multiply pointer. | 
|  | if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) | 
|  | return; | 
|  | for (const SCEV *BaseReg : Base.BaseRegs) | 
|  | if (BaseReg->getType()->isPointerTy()) | 
|  | return; | 
|  | assert(!Base.BaseGV && "ICmpZero use is not legal!"); | 
|  |  | 
|  | // Check each interesting stride. | 
|  | for (int64_t Factor : Factors) { | 
|  | // Check that the multiplication doesn't overflow. | 
|  | if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) | 
|  | continue; | 
|  | int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; | 
|  | if (NewBaseOffset / Factor != Base.BaseOffset) | 
|  | continue; | 
|  | // If the offset will be truncated at this use, check that it is in bounds. | 
|  | if (!IntTy->isPointerTy() && | 
|  | !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) | 
|  | continue; | 
|  |  | 
|  | // Check that multiplying with the use offset doesn't overflow. | 
|  | int64_t Offset = LU.MinOffset; | 
|  | if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) | 
|  | continue; | 
|  | Offset = (uint64_t)Offset * Factor; | 
|  | if (Offset / Factor != LU.MinOffset) | 
|  | continue; | 
|  | // If the offset will be truncated at this use, check that it is in bounds. | 
|  | if (!IntTy->isPointerTy() && | 
|  | !ConstantInt::isValueValidForType(IntTy, Offset)) | 
|  | continue; | 
|  |  | 
|  | Formula F = Base; | 
|  | F.BaseOffset = NewBaseOffset; | 
|  |  | 
|  | // Check that this scale is legal. | 
|  | if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) | 
|  | continue; | 
|  |  | 
|  | // Compensate for the use having MinOffset built into it. | 
|  | F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; | 
|  |  | 
|  | const SCEV *FactorS = SE.getConstant(IntTy, Factor); | 
|  |  | 
|  | // Check that multiplying with each base register doesn't overflow. | 
|  | for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { | 
|  | F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); | 
|  | if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | // Check that multiplying with the scaled register doesn't overflow. | 
|  | if (F.ScaledReg) { | 
|  | F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); | 
|  | if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check that multiplying with the unfolded offset doesn't overflow. | 
|  | if (F.UnfoldedOffset != 0) { | 
|  | if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && | 
|  | Factor == -1) | 
|  | continue; | 
|  | F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; | 
|  | if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) | 
|  | continue; | 
|  | // If the offset will be truncated, check that it is in bounds. | 
|  | if (!IntTy->isPointerTy() && | 
|  | !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we make it here and it's legal, add it. | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | next:; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate stride factor reuse formulae by making use of scaled-offset address | 
|  | /// modes, for example. | 
|  | void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { | 
|  | // Determine the integer type for the base formula. | 
|  | Type *IntTy = Base.getType(); | 
|  | if (!IntTy) return; | 
|  |  | 
|  | // If this Formula already has a scaled register, we can't add another one. | 
|  | // Try to unscale the formula to generate a better scale. | 
|  | if (Base.Scale != 0 && !Base.unscale()) | 
|  | return; | 
|  |  | 
|  | assert(Base.Scale == 0 && "unscale did not did its job!"); | 
|  |  | 
|  | // Check each interesting stride. | 
|  | for (int64_t Factor : Factors) { | 
|  | Base.Scale = Factor; | 
|  | Base.HasBaseReg = Base.BaseRegs.size() > 1; | 
|  | // Check whether this scale is going to be legal. | 
|  | if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, | 
|  | Base)) { | 
|  | // As a special-case, handle special out-of-loop Basic users specially. | 
|  | // TODO: Reconsider this special case. | 
|  | if (LU.Kind == LSRUse::Basic && | 
|  | isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, | 
|  | LU.AccessTy, Base) && | 
|  | LU.AllFixupsOutsideLoop) | 
|  | LU.Kind = LSRUse::Special; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | // For an ICmpZero, negating a solitary base register won't lead to | 
|  | // new solutions. | 
|  | if (LU.Kind == LSRUse::ICmpZero && | 
|  | !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) | 
|  | continue; | 
|  | // For each addrec base reg, if its loop is current loop, apply the scale. | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); | 
|  | if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { | 
|  | const SCEV *FactorS = SE.getConstant(IntTy, Factor); | 
|  | if (FactorS->isZero()) | 
|  | continue; | 
|  | // Divide out the factor, ignoring high bits, since we'll be | 
|  | // scaling the value back up in the end. | 
|  | if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { | 
|  | // TODO: This could be optimized to avoid all the copying. | 
|  | Formula F = Base; | 
|  | F.ScaledReg = Quotient; | 
|  | F.deleteBaseReg(F.BaseRegs[i]); | 
|  | // The canonical representation of 1*reg is reg, which is already in | 
|  | // Base. In that case, do not try to insert the formula, it will be | 
|  | // rejected anyway. | 
|  | if (F.Scale == 1 && (F.BaseRegs.empty() || | 
|  | (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) | 
|  | continue; | 
|  | // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate | 
|  | // non canonical Formula with ScaledReg's loop not being L. | 
|  | if (F.Scale == 1 && LU.AllFixupsOutsideLoop) | 
|  | F.canonicalize(*L); | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate reuse formulae from different IV types. | 
|  | void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { | 
|  | // Don't bother truncating symbolic values. | 
|  | if (Base.BaseGV) return; | 
|  |  | 
|  | // Determine the integer type for the base formula. | 
|  | Type *DstTy = Base.getType(); | 
|  | if (!DstTy) return; | 
|  | DstTy = SE.getEffectiveSCEVType(DstTy); | 
|  |  | 
|  | for (Type *SrcTy : Types) { | 
|  | if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { | 
|  | Formula F = Base; | 
|  |  | 
|  | // Sometimes SCEV is able to prove zero during ext transform. It may | 
|  | // happen if SCEV did not do all possible transforms while creating the | 
|  | // initial node (maybe due to depth limitations), but it can do them while | 
|  | // taking ext. | 
|  | if (F.ScaledReg) { | 
|  | const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); | 
|  | if (NewScaledReg->isZero()) | 
|  | continue; | 
|  | F.ScaledReg = NewScaledReg; | 
|  | } | 
|  | bool HasZeroBaseReg = false; | 
|  | for (const SCEV *&BaseReg : F.BaseRegs) { | 
|  | const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); | 
|  | if (NewBaseReg->isZero()) { | 
|  | HasZeroBaseReg = true; | 
|  | break; | 
|  | } | 
|  | BaseReg = NewBaseReg; | 
|  | } | 
|  | if (HasZeroBaseReg) | 
|  | continue; | 
|  |  | 
|  | // TODO: This assumes we've done basic processing on all uses and | 
|  | // have an idea what the register usage is. | 
|  | if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) | 
|  | continue; | 
|  |  | 
|  | F.canonicalize(*L); | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer | 
|  | /// modifications so that the search phase doesn't have to worry about the data | 
|  | /// structures moving underneath it. | 
|  | struct WorkItem { | 
|  | size_t LUIdx; | 
|  | int64_t Imm; | 
|  | const SCEV *OrigReg; | 
|  |  | 
|  | WorkItem(size_t LI, int64_t I, const SCEV *R) | 
|  | : LUIdx(LI), Imm(I), OrigReg(R) {} | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void WorkItem::print(raw_ostream &OS) const { | 
|  | OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx | 
|  | << " , add offset " << Imm; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void WorkItem::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Look for registers which are a constant distance apart and try to form reuse | 
|  | /// opportunities between them. | 
|  | void LSRInstance::GenerateCrossUseConstantOffsets() { | 
|  | // Group the registers by their value without any added constant offset. | 
|  | using ImmMapTy = std::map<int64_t, const SCEV *>; | 
|  |  | 
|  | DenseMap<const SCEV *, ImmMapTy> Map; | 
|  | DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; | 
|  | SmallVector<const SCEV *, 8> Sequence; | 
|  | for (const SCEV *Use : RegUses) { | 
|  | const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. | 
|  | int64_t Imm = ExtractImmediate(Reg, SE); | 
|  | auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); | 
|  | if (Pair.second) | 
|  | Sequence.push_back(Reg); | 
|  | Pair.first->second.insert(std::make_pair(Imm, Use)); | 
|  | UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); | 
|  | } | 
|  |  | 
|  | // Now examine each set of registers with the same base value. Build up | 
|  | // a list of work to do and do the work in a separate step so that we're | 
|  | // not adding formulae and register counts while we're searching. | 
|  | SmallVector<WorkItem, 32> WorkItems; | 
|  | SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; | 
|  | for (const SCEV *Reg : Sequence) { | 
|  | const ImmMapTy &Imms = Map.find(Reg)->second; | 
|  |  | 
|  | // It's not worthwhile looking for reuse if there's only one offset. | 
|  | if (Imms.size() == 1) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; | 
|  | for (const auto &Entry | 
|  | : Imms) dbgs() | 
|  | << ' ' << Entry.first; | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // Examine each offset. | 
|  | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); | 
|  | J != JE; ++J) { | 
|  | const SCEV *OrigReg = J->second; | 
|  |  | 
|  | int64_t JImm = J->first; | 
|  | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); | 
|  |  | 
|  | if (!isa<SCEVConstant>(OrigReg) && | 
|  | UsedByIndicesMap[Reg].count() == 1) { | 
|  | LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg | 
|  | << '\n'); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Conservatively examine offsets between this orig reg a few selected | 
|  | // other orig regs. | 
|  | int64_t First = Imms.begin()->first; | 
|  | int64_t Last = std::prev(Imms.end())->first; | 
|  | // Compute (First + Last)  / 2 without overflow using the fact that | 
|  | // First + Last = 2 * (First + Last) + (First ^ Last). | 
|  | int64_t Avg = (First & Last) + ((First ^ Last) >> 1); | 
|  | // If the result is negative and First is odd and Last even (or vice versa), | 
|  | // we rounded towards -inf. Add 1 in that case, to round towards 0. | 
|  | Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); | 
|  | ImmMapTy::const_iterator OtherImms[] = { | 
|  | Imms.begin(), std::prev(Imms.end()), | 
|  | Imms.lower_bound(Avg)}; | 
|  | for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { | 
|  | ImmMapTy::const_iterator M = OtherImms[i]; | 
|  | if (M == J || M == JE) continue; | 
|  |  | 
|  | // Compute the difference between the two. | 
|  | int64_t Imm = (uint64_t)JImm - M->first; | 
|  | for (unsigned LUIdx : UsedByIndices.set_bits()) | 
|  | // Make a memo of this use, offset, and register tuple. | 
|  | if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) | 
|  | WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Map.clear(); | 
|  | Sequence.clear(); | 
|  | UsedByIndicesMap.clear(); | 
|  | UniqueItems.clear(); | 
|  |  | 
|  | // Now iterate through the worklist and add new formulae. | 
|  | for (const WorkItem &WI : WorkItems) { | 
|  | size_t LUIdx = WI.LUIdx; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | int64_t Imm = WI.Imm; | 
|  | const SCEV *OrigReg = WI.OrigReg; | 
|  |  | 
|  | Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); | 
|  | const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); | 
|  | unsigned BitWidth = SE.getTypeSizeInBits(IntTy); | 
|  |  | 
|  | // TODO: Use a more targeted data structure. | 
|  | for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { | 
|  | Formula F = LU.Formulae[L]; | 
|  | // FIXME: The code for the scaled and unscaled registers looks | 
|  | // very similar but slightly different. Investigate if they | 
|  | // could be merged. That way, we would not have to unscale the | 
|  | // Formula. | 
|  | F.unscale(); | 
|  | // Use the immediate in the scaled register. | 
|  | if (F.ScaledReg == OrigReg) { | 
|  | int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; | 
|  | // Don't create 50 + reg(-50). | 
|  | if (F.referencesReg(SE.getSCEV( | 
|  | ConstantInt::get(IntTy, -(uint64_t)Offset)))) | 
|  | continue; | 
|  | Formula NewF = F; | 
|  | NewF.BaseOffset = Offset; | 
|  | if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, | 
|  | NewF)) | 
|  | continue; | 
|  | NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); | 
|  |  | 
|  | // If the new scale is a constant in a register, and adding the constant | 
|  | // value to the immediate would produce a value closer to zero than the | 
|  | // immediate itself, then the formula isn't worthwhile. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) | 
|  | if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && | 
|  | (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) | 
|  | .ule(std::abs(NewF.BaseOffset))) | 
|  | continue; | 
|  |  | 
|  | // OK, looks good. | 
|  | NewF.canonicalize(*this->L); | 
|  | (void)InsertFormula(LU, LUIdx, NewF); | 
|  | } else { | 
|  | // Use the immediate in a base register. | 
|  | for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { | 
|  | const SCEV *BaseReg = F.BaseRegs[N]; | 
|  | if (BaseReg != OrigReg) | 
|  | continue; | 
|  | Formula NewF = F; | 
|  | NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; | 
|  | if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, NewF)) { | 
|  | if (TTI.shouldFavorPostInc() && | 
|  | mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) | 
|  | continue; | 
|  | if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) | 
|  | continue; | 
|  | NewF = F; | 
|  | NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; | 
|  | } | 
|  | NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); | 
|  |  | 
|  | // If the new formula has a constant in a register, and adding the | 
|  | // constant value to the immediate would produce a value closer to | 
|  | // zero than the immediate itself, then the formula isn't worthwhile. | 
|  | for (const SCEV *NewReg : NewF.BaseRegs) | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) | 
|  | if ((C->getAPInt() + NewF.BaseOffset) | 
|  | .abs() | 
|  | .slt(std::abs(NewF.BaseOffset)) && | 
|  | (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= | 
|  | countTrailingZeros<uint64_t>(NewF.BaseOffset)) | 
|  | goto skip_formula; | 
|  |  | 
|  | // Ok, looks good. | 
|  | NewF.canonicalize(*this->L); | 
|  | (void)InsertFormula(LU, LUIdx, NewF); | 
|  | break; | 
|  | skip_formula:; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate formulae for each use. | 
|  | void | 
|  | LSRInstance::GenerateAllReuseFormulae() { | 
|  | // This is split into multiple loops so that hasRegsUsedByUsesOtherThan | 
|  | // queries are more precise. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateReassociations(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateCombinations(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateScales(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateTruncates(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  |  | 
|  | GenerateCrossUseConstantOffsets(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n" | 
|  | "After generating reuse formulae:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  |  | 
|  | /// If there are multiple formulae with the same set of registers used | 
|  | /// by other uses, pick the best one and delete the others. | 
|  | void LSRInstance::FilterOutUndesirableDedicatedRegisters() { | 
|  | DenseSet<const SCEV *> VisitedRegs; | 
|  | SmallPtrSet<const SCEV *, 16> Regs; | 
|  | SmallPtrSet<const SCEV *, 16> LoserRegs; | 
|  | #ifndef NDEBUG | 
|  | bool ChangedFormulae = false; | 
|  | #endif | 
|  |  | 
|  | // Collect the best formula for each unique set of shared registers. This | 
|  | // is reset for each use. | 
|  | using BestFormulaeTy = | 
|  | DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; | 
|  |  | 
|  | BestFormulaeTy BestFormulae; | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | bool Any = false; | 
|  | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); | 
|  | FIdx != NumForms; ++FIdx) { | 
|  | Formula &F = LU.Formulae[FIdx]; | 
|  |  | 
|  | // Some formulas are instant losers. For example, they may depend on | 
|  | // nonexistent AddRecs from other loops. These need to be filtered | 
|  | // immediately, otherwise heuristics could choose them over others leading | 
|  | // to an unsatisfactory solution. Passing LoserRegs into RateFormula here | 
|  | // avoids the need to recompute this information across formulae using the | 
|  | // same bad AddRec. Passing LoserRegs is also essential unless we remove | 
|  | // the corresponding bad register from the Regs set. | 
|  | Cost CostF(L, SE, TTI); | 
|  | Regs.clear(); | 
|  | CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); | 
|  | if (CostF.isLoser()) { | 
|  | // During initial formula generation, undesirable formulae are generated | 
|  | // by uses within other loops that have some non-trivial address mode or | 
|  | // use the postinc form of the IV. LSR needs to provide these formulae | 
|  | // as the basis of rediscovering the desired formula that uses an AddRec | 
|  | // corresponding to the existing phi. Once all formulae have been | 
|  | // generated, these initial losers may be pruned. | 
|  | LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs()); | 
|  | dbgs() << "\n"); | 
|  | } | 
|  | else { | 
|  | SmallVector<const SCEV *, 4> Key; | 
|  | for (const SCEV *Reg : F.BaseRegs) { | 
|  | if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) | 
|  | Key.push_back(Reg); | 
|  | } | 
|  | if (F.ScaledReg && | 
|  | RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) | 
|  | Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for | 
|  | // uniquifying. | 
|  | llvm::sort(Key); | 
|  |  | 
|  | std::pair<BestFormulaeTy::const_iterator, bool> P = | 
|  | BestFormulae.insert(std::make_pair(Key, FIdx)); | 
|  | if (P.second) | 
|  | continue; | 
|  |  | 
|  | Formula &Best = LU.Formulae[P.first->second]; | 
|  |  | 
|  | Cost CostBest(L, SE, TTI); | 
|  | Regs.clear(); | 
|  | CostBest.RateFormula(Best, Regs, VisitedRegs, LU); | 
|  | if (CostF.isLess(CostBest)) | 
|  | std::swap(F, Best); | 
|  | LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs()); | 
|  | dbgs() << "\n" | 
|  | "    in favor of formula "; | 
|  | Best.print(dbgs()); dbgs() << '\n'); | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | ChangedFormulae = true; | 
|  | #endif | 
|  | LU.DeleteFormula(F); | 
|  | --FIdx; | 
|  | --NumForms; | 
|  | Any = true; | 
|  | } | 
|  |  | 
|  | // Now that we've filtered out some formulae, recompute the Regs set. | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  |  | 
|  | // Reset this to prepare for the next use. | 
|  | BestFormulae.clear(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(if (ChangedFormulae) { | 
|  | dbgs() << "\n" | 
|  | "After filtering out undesirable candidates:\n"; | 
|  | print_uses(dbgs()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Estimate the worst-case number of solutions the solver might have to | 
|  | /// consider. It almost never considers this many solutions because it prune the | 
|  | /// search space, but the pruning isn't always sufficient. | 
|  | size_t LSRInstance::EstimateSearchSpaceComplexity() const { | 
|  | size_t Power = 1; | 
|  | for (const LSRUse &LU : Uses) { | 
|  | size_t FSize = LU.Formulae.size(); | 
|  | if (FSize >= ComplexityLimit) { | 
|  | Power = ComplexityLimit; | 
|  | break; | 
|  | } | 
|  | Power *= FSize; | 
|  | if (Power >= ComplexityLimit) | 
|  | break; | 
|  | } | 
|  | return Power; | 
|  | } | 
|  |  | 
|  | /// When one formula uses a superset of the registers of another formula, it | 
|  | /// won't help reduce register pressure (though it may not necessarily hurt | 
|  | /// register pressure); remove it to simplify the system. | 
|  | void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { | 
|  | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " | 
|  | "which use a superset of registers used by other " | 
|  | "formulae.\n"); | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LU.Formulae[i]; | 
|  | // Look for a formula with a constant or GV in a register. If the use | 
|  | // also has a formula with that same value in an immediate field, | 
|  | // delete the one that uses a register. | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator | 
|  | I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { | 
|  | Formula NewF = F; | 
|  | //FIXME: Formulas should store bitwidth to do wrapping properly. | 
|  | //       See PR41034. | 
|  | NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); | 
|  | NewF.BaseRegs.erase(NewF.BaseRegs.begin() + | 
|  | (I - F.BaseRegs.begin())); | 
|  | if (LU.HasFormulaWithSameRegs(NewF)) { | 
|  | LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | break; | 
|  | } | 
|  | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) | 
|  | if (!F.BaseGV) { | 
|  | Formula NewF = F; | 
|  | NewF.BaseGV = GV; | 
|  | NewF.BaseRegs.erase(NewF.BaseRegs.begin() + | 
|  | (I - F.BaseRegs.begin())); | 
|  | if (LU.HasFormulaWithSameRegs(NewF)) { | 
|  | LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When there are many registers for expressions like A, A+1, A+2, etc., | 
|  | /// allocate a single register for them. | 
|  | void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { | 
|  | if (EstimateSearchSpaceComplexity() < ComplexityLimit) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "The search space is too complex.\n" | 
|  | "Narrowing the search space by assuming that uses separated " | 
|  | "by a constant offset will use the same registers.\n"); | 
|  |  | 
|  | // This is especially useful for unrolled loops. | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (const Formula &F : LU.Formulae) { | 
|  | if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) | 
|  | continue; | 
|  |  | 
|  | LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); | 
|  | if (!LUThatHas) | 
|  | continue; | 
|  |  | 
|  | if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, | 
|  | LU.Kind, LU.AccessTy)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n'); | 
|  |  | 
|  | LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; | 
|  |  | 
|  | // Transfer the fixups of LU to LUThatHas. | 
|  | for (LSRFixup &Fixup : LU.Fixups) { | 
|  | Fixup.Offset += F.BaseOffset; | 
|  | LUThatHas->pushFixup(Fixup); | 
|  | LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); | 
|  | } | 
|  |  | 
|  | // Delete formulae from the new use which are no longer legal. | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LUThatHas->Formulae[i]; | 
|  | if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, | 
|  | LUThatHas->Kind, LUThatHas->AccessTy, F)) { | 
|  | LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); | 
|  | LUThatHas->DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Any) | 
|  | LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); | 
|  |  | 
|  | // Delete the old use. | 
|  | DeleteUse(LU, LUIdx); | 
|  | --LUIdx; | 
|  | --NumUses; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); | 
|  | } | 
|  |  | 
|  | /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that | 
|  | /// we've done more filtering, as it may be able to find more formulae to | 
|  | /// eliminate. | 
|  | void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ | 
|  | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " | 
|  | "undesirable dedicated registers.\n"); | 
|  |  | 
|  | FilterOutUndesirableDedicatedRegisters(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. | 
|  | /// Pick the best one and delete the others. | 
|  | /// This narrowing heuristic is to keep as many formulae with different | 
|  | /// Scale and ScaledReg pair as possible while narrowing the search space. | 
|  | /// The benefit is that it is more likely to find out a better solution | 
|  | /// from a formulae set with more Scale and ScaledReg variations than | 
|  | /// a formulae set with the same Scale and ScaledReg. The picking winner | 
|  | /// reg heuristic will often keep the formulae with the same Scale and | 
|  | /// ScaledReg and filter others, and we want to avoid that if possible. | 
|  | void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { | 
|  | if (EstimateSearchSpaceComplexity() < ComplexityLimit) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "The search space is too complex.\n" | 
|  | "Narrowing the search space by choosing the best Formula " | 
|  | "from the Formulae with the same Scale and ScaledReg.\n"); | 
|  |  | 
|  | // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. | 
|  | using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; | 
|  |  | 
|  | BestFormulaeTy BestFormulae; | 
|  | #ifndef NDEBUG | 
|  | bool ChangedFormulae = false; | 
|  | #endif | 
|  | DenseSet<const SCEV *> VisitedRegs; | 
|  | SmallPtrSet<const SCEV *, 16> Regs; | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // Return true if Formula FA is better than Formula FB. | 
|  | auto IsBetterThan = [&](Formula &FA, Formula &FB) { | 
|  | // First we will try to choose the Formula with fewer new registers. | 
|  | // For a register used by current Formula, the more the register is | 
|  | // shared among LSRUses, the less we increase the register number | 
|  | // counter of the formula. | 
|  | size_t FARegNum = 0; | 
|  | for (const SCEV *Reg : FA.BaseRegs) { | 
|  | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); | 
|  | FARegNum += (NumUses - UsedByIndices.count() + 1); | 
|  | } | 
|  | size_t FBRegNum = 0; | 
|  | for (const SCEV *Reg : FB.BaseRegs) { | 
|  | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); | 
|  | FBRegNum += (NumUses - UsedByIndices.count() + 1); | 
|  | } | 
|  | if (FARegNum != FBRegNum) | 
|  | return FARegNum < FBRegNum; | 
|  |  | 
|  | // If the new register numbers are the same, choose the Formula with | 
|  | // less Cost. | 
|  | Cost CostFA(L, SE, TTI); | 
|  | Cost CostFB(L, SE, TTI); | 
|  | Regs.clear(); | 
|  | CostFA.RateFormula(FA, Regs, VisitedRegs, LU); | 
|  | Regs.clear(); | 
|  | CostFB.RateFormula(FB, Regs, VisitedRegs, LU); | 
|  | return CostFA.isLess(CostFB); | 
|  | }; | 
|  |  | 
|  | bool Any = false; | 
|  | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; | 
|  | ++FIdx) { | 
|  | Formula &F = LU.Formulae[FIdx]; | 
|  | if (!F.ScaledReg) | 
|  | continue; | 
|  | auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); | 
|  | if (P.second) | 
|  | continue; | 
|  |  | 
|  | Formula &Best = LU.Formulae[P.first->second]; | 
|  | if (IsBetterThan(F, Best)) | 
|  | std::swap(F, Best); | 
|  | LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs()); | 
|  | dbgs() << "\n" | 
|  | "    in favor of formula "; | 
|  | Best.print(dbgs()); dbgs() << '\n'); | 
|  | #ifndef NDEBUG | 
|  | ChangedFormulae = true; | 
|  | #endif | 
|  | LU.DeleteFormula(F); | 
|  | --FIdx; | 
|  | --NumForms; | 
|  | Any = true; | 
|  | } | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  |  | 
|  | // Reset this to prepare for the next use. | 
|  | BestFormulae.clear(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(if (ChangedFormulae) { | 
|  | dbgs() << "\n" | 
|  | "After filtering out undesirable candidates:\n"; | 
|  | print_uses(dbgs()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// The function delete formulas with high registers number expectation. | 
|  | /// Assuming we don't know the value of each formula (already delete | 
|  | /// all inefficient), generate probability of not selecting for each | 
|  | /// register. | 
|  | /// For example, | 
|  | /// Use1: | 
|  | ///  reg(a) + reg({0,+,1}) | 
|  | ///  reg(a) + reg({-1,+,1}) + 1 | 
|  | ///  reg({a,+,1}) | 
|  | /// Use2: | 
|  | ///  reg(b) + reg({0,+,1}) | 
|  | ///  reg(b) + reg({-1,+,1}) + 1 | 
|  | ///  reg({b,+,1}) | 
|  | /// Use3: | 
|  | ///  reg(c) + reg(b) + reg({0,+,1}) | 
|  | ///  reg(c) + reg({b,+,1}) | 
|  | /// | 
|  | /// Probability of not selecting | 
|  | ///                 Use1   Use2    Use3 | 
|  | /// reg(a)         (1/3) *   1   *   1 | 
|  | /// reg(b)           1   * (1/3) * (1/2) | 
|  | /// reg({0,+,1})   (2/3) * (2/3) * (1/2) | 
|  | /// reg({-1,+,1})  (2/3) * (2/3) *   1 | 
|  | /// reg({a,+,1})   (2/3) *   1   *   1 | 
|  | /// reg({b,+,1})     1   * (2/3) * (2/3) | 
|  | /// reg(c)           1   *   1   *   0 | 
|  | /// | 
|  | /// Now count registers number mathematical expectation for each formula: | 
|  | /// Note that for each use we exclude probability if not selecting for the use. | 
|  | /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding | 
|  | /// probabilty 1/3 of not selecting for Use1). | 
|  | /// Use1: | 
|  | ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted | 
|  | ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted | 
|  | ///  reg({a,+,1})                   1 | 
|  | /// Use2: | 
|  | ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted | 
|  | ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted | 
|  | ///  reg({b,+,1})                   2/3 | 
|  | /// Use3: | 
|  | ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted | 
|  | ///  reg(c) + reg({b,+,1})          1 + 2/3 | 
|  | void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { | 
|  | if (EstimateSearchSpaceComplexity() < ComplexityLimit) | 
|  | return; | 
|  | // Ok, we have too many of formulae on our hands to conveniently handle. | 
|  | // Use a rough heuristic to thin out the list. | 
|  |  | 
|  | // Set of Regs wich will be 100% used in final solution. | 
|  | // Used in each formula of a solution (in example above this is reg(c)). | 
|  | // We can skip them in calculations. | 
|  | SmallPtrSet<const SCEV *, 4> UniqRegs; | 
|  | LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | // Map each register to probability of not selecting | 
|  | DenseMap <const SCEV *, float> RegNumMap; | 
|  | for (const SCEV *Reg : RegUses) { | 
|  | if (UniqRegs.count(Reg)) | 
|  | continue; | 
|  | float PNotSel = 1; | 
|  | for (const LSRUse &LU : Uses) { | 
|  | if (!LU.Regs.count(Reg)) | 
|  | continue; | 
|  | float P = LU.getNotSelectedProbability(Reg); | 
|  | if (P != 0.0) | 
|  | PNotSel *= P; | 
|  | else | 
|  | UniqRegs.insert(Reg); | 
|  | } | 
|  | RegNumMap.insert(std::make_pair(Reg, PNotSel)); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Narrowing the search space by deleting costly formulas\n"); | 
|  |  | 
|  | // Delete formulas where registers number expectation is high. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | // If nothing to delete - continue. | 
|  | if (LU.Formulae.size() < 2) | 
|  | continue; | 
|  | // This is temporary solution to test performance. Float should be | 
|  | // replaced with round independent type (based on integers) to avoid | 
|  | // different results for different target builds. | 
|  | float FMinRegNum = LU.Formulae[0].getNumRegs(); | 
|  | float FMinARegNum = LU.Formulae[0].getNumRegs(); | 
|  | size_t MinIdx = 0; | 
|  | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LU.Formulae[i]; | 
|  | float FRegNum = 0; | 
|  | float FARegNum = 0; | 
|  | for (const SCEV *BaseReg : F.BaseRegs) { | 
|  | if (UniqRegs.count(BaseReg)) | 
|  | continue; | 
|  | FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); | 
|  | if (isa<SCEVAddRecExpr>(BaseReg)) | 
|  | FARegNum += | 
|  | RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); | 
|  | } | 
|  | if (const SCEV *ScaledReg = F.ScaledReg) { | 
|  | if (!UniqRegs.count(ScaledReg)) { | 
|  | FRegNum += | 
|  | RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); | 
|  | if (isa<SCEVAddRecExpr>(ScaledReg)) | 
|  | FARegNum += | 
|  | RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); | 
|  | } | 
|  | } | 
|  | if (FMinRegNum > FRegNum || | 
|  | (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { | 
|  | FMinRegNum = FRegNum; | 
|  | FMinARegNum = FARegNum; | 
|  | MinIdx = i; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs()); | 
|  | dbgs() << " with min reg num " << FMinRegNum << '\n'); | 
|  | if (MinIdx != 0) | 
|  | std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); | 
|  | while (LU.Formulae.size() != 1) { | 
|  | LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | LU.Formulae.pop_back(); | 
|  | } | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  | assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); | 
|  | Formula &F = LU.Formulae[0]; | 
|  | LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n'); | 
|  | // When we choose the formula, the regs become unique. | 
|  | UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); | 
|  | if (F.ScaledReg) | 
|  | UniqRegs.insert(F.ScaledReg); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); | 
|  | } | 
|  |  | 
|  | /// Pick a register which seems likely to be profitable, and then in any use | 
|  | /// which has any reference to that register, delete all formulae which do not | 
|  | /// reference that register. | 
|  | void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { | 
|  | // With all other options exhausted, loop until the system is simple | 
|  | // enough to handle. | 
|  | SmallPtrSet<const SCEV *, 4> Taken; | 
|  | while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | // Ok, we have too many of formulae on our hands to conveniently handle. | 
|  | // Use a rough heuristic to thin out the list. | 
|  | LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | // Pick the register which is used by the most LSRUses, which is likely | 
|  | // to be a good reuse register candidate. | 
|  | const SCEV *Best = nullptr; | 
|  | unsigned BestNum = 0; | 
|  | for (const SCEV *Reg : RegUses) { | 
|  | if (Taken.count(Reg)) | 
|  | continue; | 
|  | if (!Best) { | 
|  | Best = Reg; | 
|  | BestNum = RegUses.getUsedByIndices(Reg).count(); | 
|  | } else { | 
|  | unsigned Count = RegUses.getUsedByIndices(Reg).count(); | 
|  | if (Count > BestNum) { | 
|  | Best = Reg; | 
|  | BestNum = Count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best | 
|  | << " will yield profitable reuse.\n"); | 
|  | Taken.insert(Best); | 
|  |  | 
|  | // In any use with formulae which references this register, delete formulae | 
|  | // which don't reference it. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | if (!LU.Regs.count(Best)) continue; | 
|  |  | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LU.Formulae[i]; | 
|  | if (!F.referencesReg(Best)) { | 
|  | LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --e; | 
|  | --i; | 
|  | Any = true; | 
|  | assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If there are an extraordinary number of formulae to choose from, use some | 
|  | /// rough heuristics to prune down the number of formulae. This keeps the main | 
|  | /// solver from taking an extraordinary amount of time in some worst-case | 
|  | /// scenarios. | 
|  | void LSRInstance::NarrowSearchSpaceUsingHeuristics() { | 
|  | NarrowSearchSpaceByDetectingSupersets(); | 
|  | NarrowSearchSpaceByCollapsingUnrolledCode(); | 
|  | NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); | 
|  | if (FilterSameScaledReg) | 
|  | NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); | 
|  | if (LSRExpNarrow) | 
|  | NarrowSearchSpaceByDeletingCostlyFormulas(); | 
|  | else | 
|  | NarrowSearchSpaceByPickingWinnerRegs(); | 
|  | } | 
|  |  | 
|  | /// This is the recursive solver. | 
|  | void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, | 
|  | Cost &SolutionCost, | 
|  | SmallVectorImpl<const Formula *> &Workspace, | 
|  | const Cost &CurCost, | 
|  | const SmallPtrSet<const SCEV *, 16> &CurRegs, | 
|  | DenseSet<const SCEV *> &VisitedRegs) const { | 
|  | // Some ideas: | 
|  | //  - prune more: | 
|  | //    - use more aggressive filtering | 
|  | //    - sort the formula so that the most profitable solutions are found first | 
|  | //    - sort the uses too | 
|  | //  - search faster: | 
|  | //    - don't compute a cost, and then compare. compare while computing a cost | 
|  | //      and bail early. | 
|  | //    - track register sets with SmallBitVector | 
|  |  | 
|  | const LSRUse &LU = Uses[Workspace.size()]; | 
|  |  | 
|  | // If this use references any register that's already a part of the | 
|  | // in-progress solution, consider it a requirement that a formula must | 
|  | // reference that register in order to be considered. This prunes out | 
|  | // unprofitable searching. | 
|  | SmallSetVector<const SCEV *, 4> ReqRegs; | 
|  | for (const SCEV *S : CurRegs) | 
|  | if (LU.Regs.count(S)) | 
|  | ReqRegs.insert(S); | 
|  |  | 
|  | SmallPtrSet<const SCEV *, 16> NewRegs; | 
|  | Cost NewCost(L, SE, TTI); | 
|  | for (const Formula &F : LU.Formulae) { | 
|  | // Ignore formulae which may not be ideal in terms of register reuse of | 
|  | // ReqRegs.  The formula should use all required registers before | 
|  | // introducing new ones. | 
|  | int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); | 
|  | for (const SCEV *Reg : ReqRegs) { | 
|  | if ((F.ScaledReg && F.ScaledReg == Reg) || | 
|  | is_contained(F.BaseRegs, Reg)) { | 
|  | --NumReqRegsToFind; | 
|  | if (NumReqRegsToFind == 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (NumReqRegsToFind != 0) { | 
|  | // If none of the formulae satisfied the required registers, then we could | 
|  | // clear ReqRegs and try again. Currently, we simply give up in this case. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Evaluate the cost of the current formula. If it's already worse than | 
|  | // the current best, prune the search at that point. | 
|  | NewCost = CurCost; | 
|  | NewRegs = CurRegs; | 
|  | NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); | 
|  | if (NewCost.isLess(SolutionCost)) { | 
|  | Workspace.push_back(&F); | 
|  | if (Workspace.size() != Uses.size()) { | 
|  | SolveRecurse(Solution, SolutionCost, Workspace, NewCost, | 
|  | NewRegs, VisitedRegs); | 
|  | if (F.getNumRegs() == 1 && Workspace.size() == 1) | 
|  | VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); | 
|  | dbgs() << ".\nRegs:\n"; | 
|  | for (const SCEV *S : NewRegs) dbgs() | 
|  | << "- " << *S << "\n"; | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | SolutionCost = NewCost; | 
|  | Solution = Workspace; | 
|  | } | 
|  | Workspace.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Choose one formula from each use. Return the results in the given Solution | 
|  | /// vector. | 
|  | void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { | 
|  | SmallVector<const Formula *, 8> Workspace; | 
|  | Cost SolutionCost(L, SE, TTI); | 
|  | SolutionCost.Lose(); | 
|  | Cost CurCost(L, SE, TTI); | 
|  | SmallPtrSet<const SCEV *, 16> CurRegs; | 
|  | DenseSet<const SCEV *> VisitedRegs; | 
|  | Workspace.reserve(Uses.size()); | 
|  |  | 
|  | // SolveRecurse does all the work. | 
|  | SolveRecurse(Solution, SolutionCost, Workspace, CurCost, | 
|  | CurRegs, VisitedRegs); | 
|  | if (Solution.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ok, we've now made all our decisions. | 
|  | LLVM_DEBUG(dbgs() << "\n" | 
|  | "The chosen solution requires "; | 
|  | SolutionCost.print(dbgs()); dbgs() << ":\n"; | 
|  | for (size_t i = 0, e = Uses.size(); i != e; ++i) { | 
|  | dbgs() << "  "; | 
|  | Uses[i].print(dbgs()); | 
|  | dbgs() << "\n" | 
|  | "    "; | 
|  | Solution[i]->print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | assert(Solution.size() == Uses.size() && "Malformed solution!"); | 
|  | } | 
|  |  | 
|  | /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as | 
|  | /// we can go while still being dominated by the input positions. This helps | 
|  | /// canonicalize the insert position, which encourages sharing. | 
|  | BasicBlock::iterator | 
|  | LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, | 
|  | const SmallVectorImpl<Instruction *> &Inputs) | 
|  | const { | 
|  | Instruction *Tentative = &*IP; | 
|  | while (true) { | 
|  | bool AllDominate = true; | 
|  | Instruction *BetterPos = nullptr; | 
|  | // Don't bother attempting to insert before a catchswitch, their basic block | 
|  | // cannot have other non-PHI instructions. | 
|  | if (isa<CatchSwitchInst>(Tentative)) | 
|  | return IP; | 
|  |  | 
|  | for (Instruction *Inst : Inputs) { | 
|  | if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { | 
|  | AllDominate = false; | 
|  | break; | 
|  | } | 
|  | // Attempt to find an insert position in the middle of the block, | 
|  | // instead of at the end, so that it can be used for other expansions. | 
|  | if (Tentative->getParent() == Inst->getParent() && | 
|  | (!BetterPos || !DT.dominates(Inst, BetterPos))) | 
|  | BetterPos = &*std::next(BasicBlock::iterator(Inst)); | 
|  | } | 
|  | if (!AllDominate) | 
|  | break; | 
|  | if (BetterPos) | 
|  | IP = BetterPos->getIterator(); | 
|  | else | 
|  | IP = Tentative->getIterator(); | 
|  |  | 
|  | const Loop *IPLoop = LI.getLoopFor(IP->getParent()); | 
|  | unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; | 
|  |  | 
|  | BasicBlock *IDom; | 
|  | for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { | 
|  | if (!Rung) return IP; | 
|  | Rung = Rung->getIDom(); | 
|  | if (!Rung) return IP; | 
|  | IDom = Rung->getBlock(); | 
|  |  | 
|  | // Don't climb into a loop though. | 
|  | const Loop *IDomLoop = LI.getLoopFor(IDom); | 
|  | unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; | 
|  | if (IDomDepth <= IPLoopDepth && | 
|  | (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | Tentative = IDom->getTerminator(); | 
|  | } | 
|  |  | 
|  | return IP; | 
|  | } | 
|  |  | 
|  | /// Determine an input position which will be dominated by the operands and | 
|  | /// which will dominate the result. | 
|  | BasicBlock::iterator | 
|  | LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, | 
|  | const LSRFixup &LF, | 
|  | const LSRUse &LU, | 
|  | SCEVExpander &Rewriter) const { | 
|  | // Collect some instructions which must be dominated by the | 
|  | // expanding replacement. These must be dominated by any operands that | 
|  | // will be required in the expansion. | 
|  | SmallVector<Instruction *, 4> Inputs; | 
|  | if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) | 
|  | Inputs.push_back(I); | 
|  | if (LU.Kind == LSRUse::ICmpZero) | 
|  | if (Instruction *I = | 
|  | dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) | 
|  | Inputs.push_back(I); | 
|  | if (LF.PostIncLoops.count(L)) { | 
|  | if (LF.isUseFullyOutsideLoop(L)) | 
|  | Inputs.push_back(L->getLoopLatch()->getTerminator()); | 
|  | else | 
|  | Inputs.push_back(IVIncInsertPos); | 
|  | } | 
|  | // The expansion must also be dominated by the increment positions of any | 
|  | // loops it for which it is using post-inc mode. | 
|  | for (const Loop *PIL : LF.PostIncLoops) { | 
|  | if (PIL == L) continue; | 
|  |  | 
|  | // Be dominated by the loop exit. | 
|  | SmallVector<BasicBlock *, 4> ExitingBlocks; | 
|  | PIL->getExitingBlocks(ExitingBlocks); | 
|  | if (!ExitingBlocks.empty()) { | 
|  | BasicBlock *BB = ExitingBlocks[0]; | 
|  | for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) | 
|  | BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); | 
|  | Inputs.push_back(BB->getTerminator()); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() | 
|  | && !isa<DbgInfoIntrinsic>(LowestIP) && | 
|  | "Insertion point must be a normal instruction"); | 
|  |  | 
|  | // Then, climb up the immediate dominator tree as far as we can go while | 
|  | // still being dominated by the input positions. | 
|  | BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); | 
|  |  | 
|  | // Don't insert instructions before PHI nodes. | 
|  | while (isa<PHINode>(IP)) ++IP; | 
|  |  | 
|  | // Ignore landingpad instructions. | 
|  | while (IP->isEHPad()) ++IP; | 
|  |  | 
|  | // Ignore debug intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(IP)) ++IP; | 
|  |  | 
|  | // Set IP below instructions recently inserted by SCEVExpander. This keeps the | 
|  | // IP consistent across expansions and allows the previously inserted | 
|  | // instructions to be reused by subsequent expansion. | 
|  | while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) | 
|  | ++IP; | 
|  |  | 
|  | return IP; | 
|  | } | 
|  |  | 
|  | /// Emit instructions for the leading candidate expression for this LSRUse (this | 
|  | /// is called "expanding"). | 
|  | Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, | 
|  | const Formula &F, BasicBlock::iterator IP, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { | 
|  | if (LU.RigidFormula) | 
|  | return LF.OperandValToReplace; | 
|  |  | 
|  | // Determine an input position which will be dominated by the operands and | 
|  | // which will dominate the result. | 
|  | IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); | 
|  | Rewriter.setInsertPoint(&*IP); | 
|  |  | 
|  | // Inform the Rewriter if we have a post-increment use, so that it can | 
|  | // perform an advantageous expansion. | 
|  | Rewriter.setPostInc(LF.PostIncLoops); | 
|  |  | 
|  | // This is the type that the user actually needs. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | // This will be the type that we'll initially expand to. | 
|  | Type *Ty = F.getType(); | 
|  | if (!Ty) | 
|  | // No type known; just expand directly to the ultimate type. | 
|  | Ty = OpTy; | 
|  | else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) | 
|  | // Expand directly to the ultimate type if it's the right size. | 
|  | Ty = OpTy; | 
|  | // This is the type to do integer arithmetic in. | 
|  | Type *IntTy = SE.getEffectiveSCEVType(Ty); | 
|  |  | 
|  | // Build up a list of operands to add together to form the full base. | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  |  | 
|  | // Expand the BaseRegs portion. | 
|  | for (const SCEV *Reg : F.BaseRegs) { | 
|  | assert(!Reg->isZero() && "Zero allocated in a base register!"); | 
|  |  | 
|  | // If we're expanding for a post-inc user, make the post-inc adjustment. | 
|  | Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); | 
|  | Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); | 
|  | } | 
|  |  | 
|  | // Expand the ScaledReg portion. | 
|  | Value *ICmpScaledV = nullptr; | 
|  | if (F.Scale != 0) { | 
|  | const SCEV *ScaledS = F.ScaledReg; | 
|  |  | 
|  | // If we're expanding for a post-inc user, make the post-inc adjustment. | 
|  | PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); | 
|  | ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); | 
|  |  | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | // Expand ScaleReg as if it was part of the base regs. | 
|  | if (F.Scale == 1) | 
|  | Ops.push_back( | 
|  | SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); | 
|  | else { | 
|  | // An interesting way of "folding" with an icmp is to use a negated | 
|  | // scale, which we'll implement by inserting it into the other operand | 
|  | // of the icmp. | 
|  | assert(F.Scale == -1 && | 
|  | "The only scale supported by ICmpZero uses is -1!"); | 
|  | ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); | 
|  | } | 
|  | } else { | 
|  | // Otherwise just expand the scaled register and an explicit scale, | 
|  | // which is expected to be matched as part of the address. | 
|  |  | 
|  | // Flush the operand list to suppress SCEVExpander hoisting address modes. | 
|  | // Unless the addressing mode will not be folded. | 
|  | if (!Ops.empty() && LU.Kind == LSRUse::Address && | 
|  | isAMCompletelyFolded(TTI, LU, F)) { | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  | ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); | 
|  | if (F.Scale != 1) | 
|  | ScaledS = | 
|  | SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); | 
|  | Ops.push_back(ScaledS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the GV portion. | 
|  | if (F.BaseGV) { | 
|  | // Flush the operand list to suppress SCEVExpander hoisting. | 
|  | if (!Ops.empty()) { | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  | Ops.push_back(SE.getUnknown(F.BaseGV)); | 
|  | } | 
|  |  | 
|  | // Flush the operand list to suppress SCEVExpander hoisting of both folded and | 
|  | // unfolded offsets. LSR assumes they both live next to their uses. | 
|  | if (!Ops.empty()) { | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  |  | 
|  | // Expand the immediate portion. | 
|  | int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; | 
|  | if (Offset != 0) { | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | // The other interesting way of "folding" with an ICmpZero is to use a | 
|  | // negated immediate. | 
|  | if (!ICmpScaledV) | 
|  | ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); | 
|  | else { | 
|  | Ops.push_back(SE.getUnknown(ICmpScaledV)); | 
|  | ICmpScaledV = ConstantInt::get(IntTy, Offset); | 
|  | } | 
|  | } else { | 
|  | // Just add the immediate values. These again are expected to be matched | 
|  | // as part of the address. | 
|  | Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the unfolded offset portion. | 
|  | int64_t UnfoldedOffset = F.UnfoldedOffset; | 
|  | if (UnfoldedOffset != 0) { | 
|  | // Just add the immediate values. | 
|  | Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, | 
|  | UnfoldedOffset))); | 
|  | } | 
|  |  | 
|  | // Emit instructions summing all the operands. | 
|  | const SCEV *FullS = Ops.empty() ? | 
|  | SE.getConstant(IntTy, 0) : | 
|  | SE.getAddExpr(Ops); | 
|  | Value *FullV = Rewriter.expandCodeFor(FullS, Ty); | 
|  |  | 
|  | // We're done expanding now, so reset the rewriter. | 
|  | Rewriter.clearPostInc(); | 
|  |  | 
|  | // An ICmpZero Formula represents an ICmp which we're handling as a | 
|  | // comparison against zero. Now that we've expanded an expression for that | 
|  | // form, update the ICmp's other operand. | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | ICmpInst *CI = cast<ICmpInst>(LF.UserInst); | 
|  | DeadInsts.emplace_back(CI->getOperand(1)); | 
|  | assert(!F.BaseGV && "ICmp does not support folding a global value and " | 
|  | "a scale at the same time!"); | 
|  | if (F.Scale == -1) { | 
|  | if (ICmpScaledV->getType() != OpTy) { | 
|  | Instruction *Cast = | 
|  | CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, | 
|  | OpTy, false), | 
|  | ICmpScaledV, OpTy, "tmp", CI); | 
|  | ICmpScaledV = Cast; | 
|  | } | 
|  | CI->setOperand(1, ICmpScaledV); | 
|  | } else { | 
|  | // A scale of 1 means that the scale has been expanded as part of the | 
|  | // base regs. | 
|  | assert((F.Scale == 0 || F.Scale == 1) && | 
|  | "ICmp does not support folding a global value and " | 
|  | "a scale at the same time!"); | 
|  | Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), | 
|  | -(uint64_t)Offset); | 
|  | if (C->getType() != OpTy) | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | OpTy, false), | 
|  | C, OpTy); | 
|  |  | 
|  | CI->setOperand(1, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | return FullV; | 
|  | } | 
|  |  | 
|  | /// Helper for Rewrite. PHI nodes are special because the use of their operands | 
|  | /// effectively happens in their predecessor blocks, so the expression may need | 
|  | /// to be expanded in multiple places. | 
|  | void LSRInstance::RewriteForPHI( | 
|  | PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, | 
|  | SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { | 
|  | DenseMap<BasicBlock *, Value *> Inserted; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == LF.OperandValToReplace) { | 
|  | bool needUpdateFixups = false; | 
|  | BasicBlock *BB = PN->getIncomingBlock(i); | 
|  |  | 
|  | // If this is a critical edge, split the edge so that we do not insert | 
|  | // the code on all predecessor/successor paths.  We do this unless this | 
|  | // is the canonical backedge for this loop, which complicates post-inc | 
|  | // users. | 
|  | if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && | 
|  | !isa<IndirectBrInst>(BB->getTerminator()) && | 
|  | !isa<CatchSwitchInst>(BB->getTerminator())) { | 
|  | BasicBlock *Parent = PN->getParent(); | 
|  | Loop *PNLoop = LI.getLoopFor(Parent); | 
|  | if (!PNLoop || Parent != PNLoop->getHeader()) { | 
|  | // Split the critical edge. | 
|  | BasicBlock *NewBB = nullptr; | 
|  | if (!Parent->isLandingPad()) { | 
|  | NewBB = SplitCriticalEdge(BB, Parent, | 
|  | CriticalEdgeSplittingOptions(&DT, &LI) | 
|  | .setMergeIdenticalEdges() | 
|  | .setKeepOneInputPHIs()); | 
|  | } else { | 
|  | SmallVector<BasicBlock*, 2> NewBBs; | 
|  | SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); | 
|  | NewBB = NewBBs[0]; | 
|  | } | 
|  | // If NewBB==NULL, then SplitCriticalEdge refused to split because all | 
|  | // phi predecessors are identical. The simple thing to do is skip | 
|  | // splitting in this case rather than complicate the API. | 
|  | if (NewBB) { | 
|  | // If PN is outside of the loop and BB is in the loop, we want to | 
|  | // move the block to be immediately before the PHI block, not | 
|  | // immediately after BB. | 
|  | if (L->contains(BB) && !L->contains(PN)) | 
|  | NewBB->moveBefore(PN->getParent()); | 
|  |  | 
|  | // Splitting the edge can reduce the number of PHI entries we have. | 
|  | e = PN->getNumIncomingValues(); | 
|  | BB = NewBB; | 
|  | i = PN->getBasicBlockIndex(BB); | 
|  |  | 
|  | needUpdateFixups = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = | 
|  | Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); | 
|  | if (!Pair.second) | 
|  | PN->setIncomingValue(i, Pair.first->second); | 
|  | else { | 
|  | Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), | 
|  | Rewriter, DeadInsts); | 
|  |  | 
|  | // If this is reuse-by-noop-cast, insert the noop cast. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | if (FullV->getType() != OpTy) | 
|  | FullV = | 
|  | CastInst::Create(CastInst::getCastOpcode(FullV, false, | 
|  | OpTy, false), | 
|  | FullV, LF.OperandValToReplace->getType(), | 
|  | "tmp", BB->getTerminator()); | 
|  |  | 
|  | PN->setIncomingValue(i, FullV); | 
|  | Pair.first->second = FullV; | 
|  | } | 
|  |  | 
|  | // If LSR splits critical edge and phi node has other pending | 
|  | // fixup operands, we need to update those pending fixups. Otherwise | 
|  | // formulae will not be implemented completely and some instructions | 
|  | // will not be eliminated. | 
|  | if (needUpdateFixups) { | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) | 
|  | for (LSRFixup &Fixup : Uses[LUIdx].Fixups) | 
|  | // If fixup is supposed to rewrite some operand in the phi | 
|  | // that was just updated, it may be already moved to | 
|  | // another phi node. Such fixup requires update. | 
|  | if (Fixup.UserInst == PN) { | 
|  | // Check if the operand we try to replace still exists in the | 
|  | // original phi. | 
|  | bool foundInOriginalPHI = false; | 
|  | for (const auto &val : PN->incoming_values()) | 
|  | if (val == Fixup.OperandValToReplace) { | 
|  | foundInOriginalPHI = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If fixup operand found in original PHI - nothing to do. | 
|  | if (foundInOriginalPHI) | 
|  | continue; | 
|  |  | 
|  | // Otherwise it might be moved to another PHI and requires update. | 
|  | // If fixup operand not found in any of the incoming blocks that | 
|  | // means we have already rewritten it - nothing to do. | 
|  | for (const auto &Block : PN->blocks()) | 
|  | for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); | 
|  | ++I) { | 
|  | PHINode *NewPN = cast<PHINode>(I); | 
|  | for (const auto &val : NewPN->incoming_values()) | 
|  | if (val == Fixup.OperandValToReplace) | 
|  | Fixup.UserInst = NewPN; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Emit instructions for the leading candidate expression for this LSRUse (this | 
|  | /// is called "expanding"), and update the UserInst to reference the newly | 
|  | /// expanded value. | 
|  | void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, | 
|  | const Formula &F, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { | 
|  | // First, find an insertion point that dominates UserInst. For PHI nodes, | 
|  | // find the nearest block which dominates all the relevant uses. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { | 
|  | RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); | 
|  | } else { | 
|  | Value *FullV = | 
|  | Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); | 
|  |  | 
|  | // If this is reuse-by-noop-cast, insert the noop cast. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | if (FullV->getType() != OpTy) { | 
|  | Instruction *Cast = | 
|  | CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), | 
|  | FullV, OpTy, "tmp", LF.UserInst); | 
|  | FullV = Cast; | 
|  | } | 
|  |  | 
|  | // Update the user. ICmpZero is handled specially here (for now) because | 
|  | // Expand may have updated one of the operands of the icmp already, and | 
|  | // its new value may happen to be equal to LF.OperandValToReplace, in | 
|  | // which case doing replaceUsesOfWith leads to replacing both operands | 
|  | // with the same value. TODO: Reorganize this. | 
|  | if (LU.Kind == LSRUse::ICmpZero) | 
|  | LF.UserInst->setOperand(0, FullV); | 
|  | else | 
|  | LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); | 
|  | } | 
|  |  | 
|  | DeadInsts.emplace_back(LF.OperandValToReplace); | 
|  | } | 
|  |  | 
|  | /// Rewrite all the fixup locations with new values, following the chosen | 
|  | /// solution. | 
|  | void LSRInstance::ImplementSolution( | 
|  | const SmallVectorImpl<const Formula *> &Solution) { | 
|  | // Keep track of instructions we may have made dead, so that | 
|  | // we can remove them after we are done working. | 
|  | SmallVector<WeakTrackingVH, 16> DeadInsts; | 
|  |  | 
|  | SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), | 
|  | "lsr"); | 
|  | #ifndef NDEBUG | 
|  | Rewriter.setDebugType(DEBUG_TYPE); | 
|  | #endif | 
|  | Rewriter.disableCanonicalMode(); | 
|  | Rewriter.enableLSRMode(); | 
|  | Rewriter.setIVIncInsertPos(L, IVIncInsertPos); | 
|  |  | 
|  | // Mark phi nodes that terminate chains so the expander tries to reuse them. | 
|  | for (const IVChain &Chain : IVChainVec) { | 
|  | if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) | 
|  | Rewriter.setChainedPhi(PN); | 
|  | } | 
|  |  | 
|  | // Expand the new value definitions and update the users. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) | 
|  | for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { | 
|  | Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | for (const IVChain &Chain : IVChainVec) { | 
|  | GenerateIVChain(Chain, Rewriter, DeadInsts); | 
|  | Changed = true; | 
|  | } | 
|  | // Clean up after ourselves. This must be done before deleting any | 
|  | // instructions. | 
|  | Rewriter.clear(); | 
|  |  | 
|  | Changed |= DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | } | 
|  |  | 
|  | LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, | 
|  | DominatorTree &DT, LoopInfo &LI, | 
|  | const TargetTransformInfo &TTI) | 
|  | : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), | 
|  | FavorBackedgeIndex(EnableBackedgeIndexing && | 
|  | TTI.shouldFavorBackedgeIndex(L)) { | 
|  | // If LoopSimplify form is not available, stay out of trouble. | 
|  | if (!L->isLoopSimplifyForm()) | 
|  | return; | 
|  |  | 
|  | // If there's no interesting work to be done, bail early. | 
|  | if (IU.empty()) return; | 
|  |  | 
|  | // If there's too much analysis to be done, bail early. We won't be able to | 
|  | // model the problem anyway. | 
|  | unsigned NumUsers = 0; | 
|  | for (const IVStrideUse &U : IU) { | 
|  | if (++NumUsers > MaxIVUsers) { | 
|  | (void)U; | 
|  | LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U | 
|  | << "\n"); | 
|  | return; | 
|  | } | 
|  | // Bail out if we have a PHI on an EHPad that gets a value from a | 
|  | // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is | 
|  | // no good place to stick any instructions. | 
|  | if (auto *PN = dyn_cast<PHINode>(U.getUser())) { | 
|  | auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); | 
|  | if (isa<FuncletPadInst>(FirstNonPHI) || | 
|  | isa<CatchSwitchInst>(FirstNonPHI)) | 
|  | for (BasicBlock *PredBB : PN->blocks()) | 
|  | if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // All dominating loops must have preheaders, or SCEVExpander may not be able | 
|  | // to materialize an AddRecExpr whose Start is an outer AddRecExpr. | 
|  | // | 
|  | // IVUsers analysis should only create users that are dominated by simple loop | 
|  | // headers. Since this loop should dominate all of its users, its user list | 
|  | // should be empty if this loop itself is not within a simple loop nest. | 
|  | for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); | 
|  | Rung; Rung = Rung->getIDom()) { | 
|  | BasicBlock *BB = Rung->getBlock(); | 
|  | const Loop *DomLoop = LI.getLoopFor(BB); | 
|  | if (DomLoop && DomLoop->getHeader() == BB) { | 
|  | assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); | 
|  | } | 
|  | } | 
|  | #endif // DEBUG | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nLSR on loop "; | 
|  | L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); | 
|  | dbgs() << ":\n"); | 
|  |  | 
|  | // First, perform some low-level loop optimizations. | 
|  | OptimizeShadowIV(); | 
|  | OptimizeLoopTermCond(); | 
|  |  | 
|  | // If loop preparation eliminates all interesting IV users, bail. | 
|  | if (IU.empty()) return; | 
|  |  | 
|  | // Skip nested loops until we can model them better with formulae. | 
|  | if (!L->empty()) { | 
|  | LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Start collecting data and preparing for the solver. | 
|  | CollectChains(); | 
|  | CollectInterestingTypesAndFactors(); | 
|  | CollectFixupsAndInitialFormulae(); | 
|  | CollectLoopInvariantFixupsAndFormulae(); | 
|  |  | 
|  | if (Uses.empty()) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; | 
|  | print_uses(dbgs())); | 
|  |  | 
|  | // Now use the reuse data to generate a bunch of interesting ways | 
|  | // to formulate the values needed for the uses. | 
|  | GenerateAllReuseFormulae(); | 
|  |  | 
|  | FilterOutUndesirableDedicatedRegisters(); | 
|  | NarrowSearchSpaceUsingHeuristics(); | 
|  |  | 
|  | SmallVector<const Formula *, 8> Solution; | 
|  | Solve(Solution); | 
|  |  | 
|  | // Release memory that is no longer needed. | 
|  | Factors.clear(); | 
|  | Types.clear(); | 
|  | RegUses.clear(); | 
|  |  | 
|  | if (Solution.empty()) | 
|  | return; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Formulae should be legal. | 
|  | for (const LSRUse &LU : Uses) { | 
|  | for (const Formula &F : LU.Formulae) | 
|  | assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, | 
|  | F) && "Illegal formula generated!"); | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | // Now that we've decided what we want, make it so. | 
|  | ImplementSolution(Solution); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LSRInstance::print_factors_and_types(raw_ostream &OS) const { | 
|  | if (Factors.empty() && Types.empty()) return; | 
|  |  | 
|  | OS << "LSR has identified the following interesting factors and types: "; | 
|  | bool First = true; | 
|  |  | 
|  | for (int64_t Factor : Factors) { | 
|  | if (!First) OS << ", "; | 
|  | First = false; | 
|  | OS << '*' << Factor; | 
|  | } | 
|  |  | 
|  | for (Type *Ty : Types) { | 
|  | if (!First) OS << ", "; | 
|  | First = false; | 
|  | OS << '(' << *Ty << ')'; | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | void LSRInstance::print_fixups(raw_ostream &OS) const { | 
|  | OS << "LSR is examining the following fixup sites:\n"; | 
|  | for (const LSRUse &LU : Uses) | 
|  | for (const LSRFixup &LF : LU.Fixups) { | 
|  | dbgs() << "  "; | 
|  | LF.print(OS); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::print_uses(raw_ostream &OS) const { | 
|  | OS << "LSR is examining the following uses:\n"; | 
|  | for (const LSRUse &LU : Uses) { | 
|  | dbgs() << "  "; | 
|  | LU.print(OS); | 
|  | OS << '\n'; | 
|  | for (const Formula &F : LU.Formulae) { | 
|  | OS << "    "; | 
|  | F.print(OS); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::print(raw_ostream &OS) const { | 
|  | print_factors_and_types(OS); | 
|  | print_fixups(OS); | 
|  | print_uses(OS); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LSRInstance::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LoopStrengthReduce : public LoopPass { | 
|  | public: | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  |  | 
|  | LoopStrengthReduce(); | 
|  |  | 
|  | private: | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override; | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { | 
|  | initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | // We split critical edges, so we change the CFG.  However, we do update | 
|  | // many analyses if they are around. | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  |  | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.addPreserved<ScalarEvolutionWrapperPass>(); | 
|  | // Requiring LoopSimplify a second time here prevents IVUsers from running | 
|  | // twice, since LoopSimplify was invalidated by running ScalarEvolution. | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<IVUsersWrapperPass>(); | 
|  | AU.addPreserved<IVUsersWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, | 
|  | DominatorTree &DT, LoopInfo &LI, | 
|  | const TargetTransformInfo &TTI) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Run the main LSR transformation. | 
|  | Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); | 
|  |  | 
|  | // Remove any extra phis created by processing inner loops. | 
|  | Changed |= DeleteDeadPHIs(L->getHeader()); | 
|  | if (EnablePhiElim && L->isLoopSimplifyForm()) { | 
|  | SmallVector<WeakTrackingVH, 16> DeadInsts; | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  | SCEVExpander Rewriter(SE, DL, "lsr"); | 
|  | #ifndef NDEBUG | 
|  | Rewriter.setDebugType(DEBUG_TYPE); | 
|  | #endif | 
|  | unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); | 
|  | if (numFolded) { | 
|  | Changed = true; | 
|  | DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | DeleteDeadPHIs(L->getHeader()); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); | 
|  | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | 
|  | *L->getHeader()->getParent()); | 
|  | return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &) { | 
|  | if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, | 
|  | AR.DT, AR.LI, AR.TTI)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | return getLoopPassPreservedAnalyses(); | 
|  | } | 
|  |  | 
|  | char LoopStrengthReduce::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", | 
|  | "Loop Strength Reduction", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) | 
|  | INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", | 
|  | "Loop Strength Reduction", false, false) | 
|  |  | 
|  | Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } |