|  | //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the LiveRangeCalc class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  | #include "LiveRangeCalc.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | void LiveRangeCalc::reset(const MachineFunction *mf, | 
|  | SlotIndexes *SI, | 
|  | MachineDominatorTree *MDT, | 
|  | VNInfo::Allocator *VNIA) { | 
|  | MF = mf; | 
|  | MRI = &MF->getRegInfo(); | 
|  | Indexes = SI; | 
|  | DomTree = MDT; | 
|  | Alloc = VNIA; | 
|  |  | 
|  | unsigned N = MF->getNumBlockIDs(); | 
|  | Seen.clear(); | 
|  | Seen.resize(N); | 
|  | LiveOut.resize(N); | 
|  | LiveIn.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { | 
|  | assert(MRI && Indexes && "call reset() first"); | 
|  |  | 
|  | // Visit all def operands. If the same instruction has multiple defs of Reg, | 
|  | // LR.createDeadDef() will deduplicate. | 
|  | for (MachineRegisterInfo::def_iterator | 
|  | I = MRI->def_begin(Reg), E = MRI->def_end(); I != E; ++I) { | 
|  | const MachineInstr *MI = &*I; | 
|  | // Find the corresponding slot index. | 
|  | SlotIndex Idx; | 
|  | if (MI->isPHI()) | 
|  | // PHI defs begin at the basic block start index. | 
|  | Idx = Indexes->getMBBStartIdx(MI->getParent()); | 
|  | else | 
|  | // Instructions are either normal 'r', or early clobber 'e'. | 
|  | Idx = Indexes->getInstructionIndex(MI) | 
|  | .getRegSlot(I.getOperand().isEarlyClobber()); | 
|  |  | 
|  | // Create the def in LR. This may find an existing def. | 
|  | LR.createDeadDef(Idx, *Alloc); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) { | 
|  | assert(MRI && Indexes && "call reset() first"); | 
|  |  | 
|  | // Visit all operands that read Reg. This may include partial defs. | 
|  | for (MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(Reg), | 
|  | E = MRI->reg_nodbg_end(); I != E; ++I) { | 
|  | MachineOperand &MO = I.getOperand(); | 
|  | // Clear all kill flags. They will be reinserted after register allocation | 
|  | // by LiveIntervalAnalysis::addKillFlags(). | 
|  | if (MO.isUse()) | 
|  | MO.setIsKill(false); | 
|  | if (!MO.readsReg()) | 
|  | continue; | 
|  | // MI is reading Reg. We may have visited MI before if it happens to be | 
|  | // reading Reg multiple times. That is OK, extend() is idempotent. | 
|  | const MachineInstr *MI = &*I; | 
|  |  | 
|  | // Find the SlotIndex being read. | 
|  | SlotIndex Idx; | 
|  | if (MI->isPHI()) { | 
|  | assert(!MO.isDef() && "Cannot handle PHI def of partial register."); | 
|  | // PHI operands are paired: (Reg, PredMBB). | 
|  | // Extend the live range to be live-out from PredMBB. | 
|  | Idx = Indexes->getMBBEndIdx(MI->getOperand(I.getOperandNo()+1).getMBB()); | 
|  | } else { | 
|  | // This is a normal instruction. | 
|  | Idx = Indexes->getInstructionIndex(MI).getRegSlot(); | 
|  | // Check for early-clobber redefs. | 
|  | unsigned DefIdx; | 
|  | if (MO.isDef()) { | 
|  | if (MO.isEarlyClobber()) | 
|  | Idx = Idx.getRegSlot(true); | 
|  | } else if (MI->isRegTiedToDefOperand(I.getOperandNo(), &DefIdx)) { | 
|  | // FIXME: This would be a lot easier if tied early-clobber uses also | 
|  | // had an early-clobber flag. | 
|  | if (MI->getOperand(DefIdx).isEarlyClobber()) | 
|  | Idx = Idx.getRegSlot(true); | 
|  | } | 
|  | } | 
|  | extend(LR, Idx, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Transfer information from the LiveIn vector to the live ranges. | 
|  | void LiveRangeCalc::updateLiveIns() { | 
|  | LiveRangeUpdater Updater; | 
|  | for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(), | 
|  | E = LiveIn.end(); I != E; ++I) { | 
|  | if (!I->DomNode) | 
|  | continue; | 
|  | MachineBasicBlock *MBB = I->DomNode->getBlock(); | 
|  | assert(I->Value && "No live-in value found"); | 
|  | SlotIndex Start, End; | 
|  | tie(Start, End) = Indexes->getMBBRange(MBB); | 
|  |  | 
|  | if (I->Kill.isValid()) | 
|  | // Value is killed inside this block. | 
|  | End = I->Kill; | 
|  | else { | 
|  | // The value is live-through, update LiveOut as well. | 
|  | // Defer the Domtree lookup until it is needed. | 
|  | assert(Seen.test(MBB->getNumber())); | 
|  | LiveOut[MBB] = LiveOutPair(I->Value, (MachineDomTreeNode *)0); | 
|  | } | 
|  | Updater.setDest(&I->LR); | 
|  | Updater.add(Start, End, I->Value); | 
|  | } | 
|  | LiveIn.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) { | 
|  | assert(Kill.isValid() && "Invalid SlotIndex"); | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  |  | 
|  | MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot()); | 
|  | assert(KillMBB && "No MBB at Kill"); | 
|  |  | 
|  | // Is there a def in the same MBB we can extend? | 
|  | if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill)) | 
|  | return; | 
|  |  | 
|  | // Find the single reaching def, or determine if Kill is jointly dominated by | 
|  | // multiple values, and we may need to create even more phi-defs to preserve | 
|  | // VNInfo SSA form.  Perform a search for all predecessor blocks where we | 
|  | // know the dominating VNInfo. | 
|  | if (findReachingDefs(LR, *KillMBB, Kill, PhysReg)) | 
|  | return; | 
|  |  | 
|  | // When there were multiple different values, we may need new PHIs. | 
|  | calculateValues(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // This function is called by a client after using the low-level API to add | 
|  | // live-out and live-in blocks.  The unique value optimization is not | 
|  | // available, SplitEditor::transferValues handles that case directly anyway. | 
|  | void LiveRangeCalc::calculateValues() { | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  | updateSSA(); | 
|  | updateLiveIns(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB, | 
|  | SlotIndex Kill, unsigned PhysReg) { | 
|  | unsigned KillMBBNum = KillMBB.getNumber(); | 
|  |  | 
|  | // Block numbers where LR should be live-in. | 
|  | SmallVector<unsigned, 16> WorkList(1, KillMBBNum); | 
|  |  | 
|  | // Remember if we have seen more than one value. | 
|  | bool UniqueVNI = true; | 
|  | VNInfo *TheVNI = 0; | 
|  |  | 
|  | // Using Seen as a visited set, perform a BFS for all reaching defs. | 
|  | for (unsigned i = 0; i != WorkList.size(); ++i) { | 
|  | MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (MBB->pred_empty()) { | 
|  | MBB->getParent()->verify(); | 
|  | llvm_unreachable("Use not jointly dominated by defs."); | 
|  | } | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && | 
|  | !MBB->isLiveIn(PhysReg)) { | 
|  | MBB->getParent()->verify(); | 
|  | errs() << "The register needs to be live in to BB#" << MBB->getNumber() | 
|  | << ", but is missing from the live-in list.\n"; | 
|  | llvm_unreachable("Invalid global physical register"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) { | 
|  | MachineBasicBlock *Pred = *PI; | 
|  |  | 
|  | // Is this a known live-out block? | 
|  | if (Seen.test(Pred->getNumber())) { | 
|  | if (VNInfo *VNI = LiveOut[Pred].first) { | 
|  | if (TheVNI && TheVNI != VNI) | 
|  | UniqueVNI = false; | 
|  | TheVNI = VNI; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SlotIndex Start, End; | 
|  | tie(Start, End) = Indexes->getMBBRange(Pred); | 
|  |  | 
|  | // First time we see Pred.  Try to determine the live-out value, but set | 
|  | // it as null if Pred is live-through with an unknown value. | 
|  | VNInfo *VNI = LR.extendInBlock(Start, End); | 
|  | setLiveOutValue(Pred, VNI); | 
|  | if (VNI) { | 
|  | if (TheVNI && TheVNI != VNI) | 
|  | UniqueVNI = false; | 
|  | TheVNI = VNI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // No, we need a live-in value for Pred as well | 
|  | if (Pred != &KillMBB) | 
|  | WorkList.push_back(Pred->getNumber()); | 
|  | else | 
|  | // Loopback to KillMBB, so value is really live through. | 
|  | Kill = SlotIndex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LiveIn.clear(); | 
|  |  | 
|  | // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but | 
|  | // neither require it. Skip the sorting overhead for small updates. | 
|  | if (WorkList.size() > 4) | 
|  | array_pod_sort(WorkList.begin(), WorkList.end()); | 
|  |  | 
|  | // If a unique reaching def was found, blit in the live ranges immediately. | 
|  | if (UniqueVNI) { | 
|  | LiveRangeUpdater Updater(&LR); | 
|  | for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), | 
|  | E = WorkList.end(); I != E; ++I) { | 
|  | SlotIndex Start, End; | 
|  | tie(Start, End) = Indexes->getMBBRange(*I); | 
|  | // Trim the live range in KillMBB. | 
|  | if (*I == KillMBBNum && Kill.isValid()) | 
|  | End = Kill; | 
|  | else | 
|  | LiveOut[MF->getBlockNumbered(*I)] = | 
|  | LiveOutPair(TheVNI, (MachineDomTreeNode *)0); | 
|  | Updater.add(Start, End, TheVNI); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Multiple values were found, so transfer the work list to the LiveIn array | 
|  | // where UpdateSSA will use it as a work list. | 
|  | LiveIn.reserve(WorkList.size()); | 
|  | for (SmallVectorImpl<unsigned>::const_iterator | 
|  | I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { | 
|  | MachineBasicBlock *MBB = MF->getBlockNumbered(*I); | 
|  | addLiveInBlock(LR, DomTree->getNode(MBB)); | 
|  | if (MBB == &KillMBB) | 
|  | LiveIn.back().Kill = Kill; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This is essentially the same iterative algorithm that SSAUpdater uses, | 
|  | // except we already have a dominator tree, so we don't have to recompute it. | 
|  | void LiveRangeCalc::updateSSA() { | 
|  | assert(Indexes && "Missing SlotIndexes"); | 
|  | assert(DomTree && "Missing dominator tree"); | 
|  |  | 
|  | // Interate until convergence. | 
|  | unsigned Changes; | 
|  | do { | 
|  | Changes = 0; | 
|  | // Propagate live-out values down the dominator tree, inserting phi-defs | 
|  | // when necessary. | 
|  | for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(), | 
|  | E = LiveIn.end(); I != E; ++I) { | 
|  | MachineDomTreeNode *Node = I->DomNode; | 
|  | // Skip block if the live-in value has already been determined. | 
|  | if (!Node) | 
|  | continue; | 
|  | MachineBasicBlock *MBB = Node->getBlock(); | 
|  | MachineDomTreeNode *IDom = Node->getIDom(); | 
|  | LiveOutPair IDomValue; | 
|  |  | 
|  | // We need a live-in value to a block with no immediate dominator? | 
|  | // This is probably an unreachable block that has survived somehow. | 
|  | bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); | 
|  |  | 
|  | // IDom dominates all of our predecessors, but it may not be their | 
|  | // immediate dominator. Check if any of them have live-out values that are | 
|  | // properly dominated by IDom. If so, we need a phi-def here. | 
|  | if (!needPHI) { | 
|  | IDomValue = LiveOut[IDom->getBlock()]; | 
|  |  | 
|  | // Cache the DomTree node that defined the value. | 
|  | if (IDomValue.first && !IDomValue.second) | 
|  | LiveOut[IDom->getBlock()].second = IDomValue.second = | 
|  | DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); | 
|  |  | 
|  | for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) { | 
|  | LiveOutPair &Value = LiveOut[*PI]; | 
|  | if (!Value.first || Value.first == IDomValue.first) | 
|  | continue; | 
|  |  | 
|  | // Cache the DomTree node that defined the value. | 
|  | if (!Value.second) | 
|  | Value.second = | 
|  | DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); | 
|  |  | 
|  | // This predecessor is carrying something other than IDomValue. | 
|  | // It could be because IDomValue hasn't propagated yet, or it could be | 
|  | // because MBB is in the dominance frontier of that value. | 
|  | if (DomTree->dominates(IDom, Value.second)) { | 
|  | needPHI = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The value may be live-through even if Kill is set, as can happen when | 
|  | // we are called from extendRange. In that case LiveOutSeen is true, and | 
|  | // LiveOut indicates a foreign or missing value. | 
|  | LiveOutPair &LOP = LiveOut[MBB]; | 
|  |  | 
|  | // Create a phi-def if required. | 
|  | if (needPHI) { | 
|  | ++Changes; | 
|  | assert(Alloc && "Need VNInfo allocator to create PHI-defs"); | 
|  | SlotIndex Start, End; | 
|  | tie(Start, End) = Indexes->getMBBRange(MBB); | 
|  | LiveRange &LR = I->LR; | 
|  | VNInfo *VNI = LR.getNextValue(Start, *Alloc); | 
|  | I->Value = VNI; | 
|  | // This block is done, we know the final value. | 
|  | I->DomNode = 0; | 
|  |  | 
|  | // Add liveness since updateLiveIns now skips this node. | 
|  | if (I->Kill.isValid()) | 
|  | LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI)); | 
|  | else { | 
|  | LR.addSegment(LiveInterval::Segment(Start, End, VNI)); | 
|  | LOP = LiveOutPair(VNI, Node); | 
|  | } | 
|  | } else if (IDomValue.first) { | 
|  | // No phi-def here. Remember incoming value. | 
|  | I->Value = IDomValue.first; | 
|  |  | 
|  | // If the IDomValue is killed in the block, don't propagate through. | 
|  | if (I->Kill.isValid()) | 
|  | continue; | 
|  |  | 
|  | // Propagate IDomValue if it isn't killed: | 
|  | // MBB is live-out and doesn't define its own value. | 
|  | if (LOP.first == IDomValue.first) | 
|  | continue; | 
|  | ++Changes; | 
|  | LOP = IDomValue; | 
|  | } | 
|  | } | 
|  | } while (Changes); | 
|  | } |