|  | //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This is the LLVM vectorization plan. It represents a candidate for | 
|  | /// vectorization, allowing to plan and optimize how to vectorize a given loop | 
|  | /// before generating LLVM-IR. | 
|  | /// The vectorizer uses vectorization plans to estimate the costs of potential | 
|  | /// candidates and if profitable to execute the desired plan, generating vector | 
|  | /// LLVM-IR code. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "VPlan.h" | 
|  | #include "VPlanDominatorTree.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GenericDomTreeConstruction.h" | 
|  | #include "llvm/Support/GraphWriter.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | extern cl::opt<bool> EnableVPlanNativePath; | 
|  |  | 
|  | #define DEBUG_TYPE "vplan" | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { | 
|  | const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); | 
|  | VPSlotTracker SlotTracker( | 
|  | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); | 
|  | V.print(OS, SlotTracker); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { | 
|  | if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) | 
|  | Instr->print(OS, SlotTracker); | 
|  | else | 
|  | printAsOperand(OS, SlotTracker); | 
|  | } | 
|  |  | 
|  | // Get the top-most entry block of \p Start. This is the entry block of the | 
|  | // containing VPlan. This function is templated to support both const and non-const blocks | 
|  | template <typename T> static T *getPlanEntry(T *Start) { | 
|  | T *Next = Start; | 
|  | T *Current = Start; | 
|  | while ((Next = Next->getParent())) | 
|  | Current = Next; | 
|  |  | 
|  | SmallSetVector<T *, 8> WorkList; | 
|  | WorkList.insert(Current); | 
|  |  | 
|  | for (unsigned i = 0; i < WorkList.size(); i++) { | 
|  | T *Current = WorkList[i]; | 
|  | if (Current->getNumPredecessors() == 0) | 
|  | return Current; | 
|  | auto &Predecessors = Current->getPredecessors(); | 
|  | WorkList.insert(Predecessors.begin(), Predecessors.end()); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("VPlan without any entry node without predecessors"); | 
|  | } | 
|  |  | 
|  | VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } | 
|  |  | 
|  | const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } | 
|  |  | 
|  | /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. | 
|  | const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { | 
|  | const VPBlockBase *Block = this; | 
|  | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | Block = Region->getEntry(); | 
|  | return cast<VPBasicBlock>(Block); | 
|  | } | 
|  |  | 
|  | VPBasicBlock *VPBlockBase::getEntryBasicBlock() { | 
|  | VPBlockBase *Block = this; | 
|  | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | Block = Region->getEntry(); | 
|  | return cast<VPBasicBlock>(Block); | 
|  | } | 
|  |  | 
|  | void VPBlockBase::setPlan(VPlan *ParentPlan) { | 
|  | assert(ParentPlan->getEntry() == this && | 
|  | "Can only set plan on its entry block."); | 
|  | Plan = ParentPlan; | 
|  | } | 
|  |  | 
|  | /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. | 
|  | const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { | 
|  | const VPBlockBase *Block = this; | 
|  | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | Block = Region->getExit(); | 
|  | return cast<VPBasicBlock>(Block); | 
|  | } | 
|  |  | 
|  | VPBasicBlock *VPBlockBase::getExitBasicBlock() { | 
|  | VPBlockBase *Block = this; | 
|  | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | Block = Region->getExit(); | 
|  | return cast<VPBasicBlock>(Block); | 
|  | } | 
|  |  | 
|  | VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { | 
|  | if (!Successors.empty() || !Parent) | 
|  | return this; | 
|  | assert(Parent->getExit() == this && | 
|  | "Block w/o successors not the exit of its parent."); | 
|  | return Parent->getEnclosingBlockWithSuccessors(); | 
|  | } | 
|  |  | 
|  | VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { | 
|  | if (!Predecessors.empty() || !Parent) | 
|  | return this; | 
|  | assert(Parent->getEntry() == this && | 
|  | "Block w/o predecessors not the entry of its parent."); | 
|  | return Parent->getEnclosingBlockWithPredecessors(); | 
|  | } | 
|  |  | 
|  | void VPBlockBase::deleteCFG(VPBlockBase *Entry) { | 
|  | SmallVector<VPBlockBase *, 8> Blocks; | 
|  | for (VPBlockBase *Block : depth_first(Entry)) | 
|  | Blocks.push_back(Block); | 
|  |  | 
|  | for (VPBlockBase *Block : Blocks) | 
|  | delete Block; | 
|  | } | 
|  |  | 
|  | BasicBlock * | 
|  | VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { | 
|  | // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. | 
|  | // Pred stands for Predessor. Prev stands for Previous - last visited/created. | 
|  | BasicBlock *PrevBB = CFG.PrevBB; | 
|  | BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), | 
|  | PrevBB->getParent(), CFG.LastBB); | 
|  | LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); | 
|  |  | 
|  | // Hook up the new basic block to its predecessors. | 
|  | for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { | 
|  | VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); | 
|  | auto &PredVPSuccessors = PredVPBB->getSuccessors(); | 
|  | BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; | 
|  |  | 
|  | // In outer loop vectorization scenario, the predecessor BBlock may not yet | 
|  | // be visited(backedge). Mark the VPBasicBlock for fixup at the end of | 
|  | // vectorization. We do not encounter this case in inner loop vectorization | 
|  | // as we start out by building a loop skeleton with the vector loop header | 
|  | // and latch blocks. As a result, we never enter this function for the | 
|  | // header block in the non VPlan-native path. | 
|  | if (!PredBB) { | 
|  | assert(EnableVPlanNativePath && | 
|  | "Unexpected null predecessor in non VPlan-native path"); | 
|  | CFG.VPBBsToFix.push_back(PredVPBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(PredBB && "Predecessor basic-block not found building successor."); | 
|  | auto *PredBBTerminator = PredBB->getTerminator(); | 
|  | LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); | 
|  | if (isa<UnreachableInst>(PredBBTerminator)) { | 
|  | assert(PredVPSuccessors.size() == 1 && | 
|  | "Predecessor ending w/o branch must have single successor."); | 
|  | PredBBTerminator->eraseFromParent(); | 
|  | BranchInst::Create(NewBB, PredBB); | 
|  | } else { | 
|  | assert(PredVPSuccessors.size() == 2 && | 
|  | "Predecessor ending with branch must have two successors."); | 
|  | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; | 
|  | assert(!PredBBTerminator->getSuccessor(idx) && | 
|  | "Trying to reset an existing successor block."); | 
|  | PredBBTerminator->setSuccessor(idx, NewBB); | 
|  | } | 
|  | } | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | void VPBasicBlock::execute(VPTransformState *State) { | 
|  | bool Replica = State->Instance && | 
|  | !(State->Instance->Part == 0 && State->Instance->Lane == 0); | 
|  | VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; | 
|  | VPBlockBase *SingleHPred = nullptr; | 
|  | BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. | 
|  |  | 
|  | // 1. Create an IR basic block, or reuse the last one if possible. | 
|  | // The last IR basic block is reused, as an optimization, in three cases: | 
|  | // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; | 
|  | // B. when the current VPBB has a single (hierarchical) predecessor which | 
|  | //    is PrevVPBB and the latter has a single (hierarchical) successor; and | 
|  | // C. when the current VPBB is an entry of a region replica - where PrevVPBB | 
|  | //    is the exit of this region from a previous instance, or the predecessor | 
|  | //    of this region. | 
|  | if (PrevVPBB && /* A */ | 
|  | !((SingleHPred = getSingleHierarchicalPredecessor()) && | 
|  | SingleHPred->getExitBasicBlock() == PrevVPBB && | 
|  | PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ | 
|  | !(Replica && getPredecessors().empty())) {       /* C */ | 
|  | NewBB = createEmptyBasicBlock(State->CFG); | 
|  | State->Builder.SetInsertPoint(NewBB); | 
|  | // Temporarily terminate with unreachable until CFG is rewired. | 
|  | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); | 
|  | State->Builder.SetInsertPoint(Terminator); | 
|  | // Register NewBB in its loop. In innermost loops its the same for all BB's. | 
|  | Loop *L = State->LI->getLoopFor(State->CFG.LastBB); | 
|  | L->addBasicBlockToLoop(NewBB, *State->LI); | 
|  | State->CFG.PrevBB = NewBB; | 
|  | } | 
|  |  | 
|  | // 2. Fill the IR basic block with IR instructions. | 
|  | LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() | 
|  | << " in BB:" << NewBB->getName() << '\n'); | 
|  |  | 
|  | State->CFG.VPBB2IRBB[this] = NewBB; | 
|  | State->CFG.PrevVPBB = this; | 
|  |  | 
|  | for (VPRecipeBase &Recipe : Recipes) | 
|  | Recipe.execute(*State); | 
|  |  | 
|  | VPValue *CBV; | 
|  | if (EnableVPlanNativePath && (CBV = getCondBit())) { | 
|  | Value *IRCBV = CBV->getUnderlyingValue(); | 
|  | assert(IRCBV && "Unexpected null underlying value for condition bit"); | 
|  |  | 
|  | // Condition bit value in a VPBasicBlock is used as the branch selector. In | 
|  | // the VPlan-native path case, since all branches are uniform we generate a | 
|  | // branch instruction using the condition value from vector lane 0 and dummy | 
|  | // successors. The successors are fixed later when the successor blocks are | 
|  | // visited. | 
|  | Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); | 
|  | NewCond = State->Builder.CreateExtractElement(NewCond, | 
|  | State->Builder.getInt32(0)); | 
|  |  | 
|  | // Replace the temporary unreachable terminator with the new conditional | 
|  | // branch. | 
|  | auto *CurrentTerminator = NewBB->getTerminator(); | 
|  | assert(isa<UnreachableInst>(CurrentTerminator) && | 
|  | "Expected to replace unreachable terminator with conditional " | 
|  | "branch."); | 
|  | auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); | 
|  | CondBr->setSuccessor(0, nullptr); | 
|  | ReplaceInstWithInst(CurrentTerminator, CondBr); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); | 
|  | } | 
|  |  | 
|  | void VPRegionBlock::execute(VPTransformState *State) { | 
|  | ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); | 
|  |  | 
|  | if (!isReplicator()) { | 
|  | // Visit the VPBlocks connected to "this", starting from it. | 
|  | for (VPBlockBase *Block : RPOT) { | 
|  | if (EnableVPlanNativePath) { | 
|  | // The inner loop vectorization path does not represent loop preheader | 
|  | // and exit blocks as part of the VPlan. In the VPlan-native path, skip | 
|  | // vectorizing loop preheader block. In future, we may replace this | 
|  | // check with the check for loop preheader. | 
|  | if (Block->getNumPredecessors() == 0) | 
|  | continue; | 
|  |  | 
|  | // Skip vectorizing loop exit block. In future, we may replace this | 
|  | // check with the check for loop exit. | 
|  | if (Block->getNumSuccessors() == 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); | 
|  | Block->execute(State); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!State->Instance && "Replicating a Region with non-null instance."); | 
|  |  | 
|  | // Enter replicating mode. | 
|  | State->Instance = {0, 0}; | 
|  |  | 
|  | for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { | 
|  | State->Instance->Part = Part; | 
|  | for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { | 
|  | State->Instance->Lane = Lane; | 
|  | // Visit the VPBlocks connected to \p this, starting from it. | 
|  | for (VPBlockBase *Block : RPOT) { | 
|  | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); | 
|  | Block->execute(State); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Exit replicating mode. | 
|  | State->Instance.reset(); | 
|  | } | 
|  |  | 
|  | void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { | 
|  | assert(!Parent && "Recipe already in some VPBasicBlock"); | 
|  | assert(InsertPos->getParent() && | 
|  | "Insertion position not in any VPBasicBlock"); | 
|  | Parent = InsertPos->getParent(); | 
|  | Parent->getRecipeList().insert(InsertPos->getIterator(), this); | 
|  | } | 
|  |  | 
|  | void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { | 
|  | assert(!Parent && "Recipe already in some VPBasicBlock"); | 
|  | assert(InsertPos->getParent() && | 
|  | "Insertion position not in any VPBasicBlock"); | 
|  | Parent = InsertPos->getParent(); | 
|  | Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); | 
|  | } | 
|  |  | 
|  | void VPRecipeBase::removeFromParent() { | 
|  | assert(getParent() && "Recipe not in any VPBasicBlock"); | 
|  | getParent()->getRecipeList().remove(getIterator()); | 
|  | Parent = nullptr; | 
|  | } | 
|  |  | 
|  | iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { | 
|  | assert(getParent() && "Recipe not in any VPBasicBlock"); | 
|  | return getParent()->getRecipeList().erase(getIterator()); | 
|  | } | 
|  |  | 
|  | void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { | 
|  | removeFromParent(); | 
|  | insertAfter(InsertPos); | 
|  | } | 
|  |  | 
|  | void VPInstruction::generateInstruction(VPTransformState &State, | 
|  | unsigned Part) { | 
|  | IRBuilder<> &Builder = State.Builder; | 
|  |  | 
|  | if (Instruction::isBinaryOp(getOpcode())) { | 
|  | Value *A = State.get(getOperand(0), Part); | 
|  | Value *B = State.get(getOperand(1), Part); | 
|  | Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); | 
|  | State.set(this, V, Part); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (getOpcode()) { | 
|  | case VPInstruction::Not: { | 
|  | Value *A = State.get(getOperand(0), Part); | 
|  | Value *V = Builder.CreateNot(A); | 
|  | State.set(this, V, Part); | 
|  | break; | 
|  | } | 
|  | case VPInstruction::ICmpULE: { | 
|  | Value *IV = State.get(getOperand(0), Part); | 
|  | Value *TC = State.get(getOperand(1), Part); | 
|  | Value *V = Builder.CreateICmpULE(IV, TC); | 
|  | State.set(this, V, Part); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: { | 
|  | Value *Cond = State.get(getOperand(0), Part); | 
|  | Value *Op1 = State.get(getOperand(1), Part); | 
|  | Value *Op2 = State.get(getOperand(2), Part); | 
|  | Value *V = Builder.CreateSelect(Cond, Op1, Op2); | 
|  | State.set(this, V, Part); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unsupported opcode for instruction"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VPInstruction::execute(VPTransformState &State) { | 
|  | assert(!State.Instance && "VPInstruction executing an Instance"); | 
|  | for (unsigned Part = 0; Part < State.UF; ++Part) | 
|  | generateInstruction(State, Part); | 
|  | } | 
|  |  | 
|  | void VPInstruction::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"EMIT "; | 
|  | print(O, SlotTracker); | 
|  | O << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPInstruction::print(raw_ostream &O) const { | 
|  | VPSlotTracker SlotTracker(getParent()->getPlan()); | 
|  | print(O, SlotTracker); | 
|  | } | 
|  |  | 
|  | void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { | 
|  | if (hasResult()) { | 
|  | printAsOperand(O, SlotTracker); | 
|  | O << " = "; | 
|  | } | 
|  |  | 
|  | switch (getOpcode()) { | 
|  | case VPInstruction::Not: | 
|  | O << "not"; | 
|  | break; | 
|  | case VPInstruction::ICmpULE: | 
|  | O << "icmp ule"; | 
|  | break; | 
|  | case VPInstruction::SLPLoad: | 
|  | O << "combined load"; | 
|  | break; | 
|  | case VPInstruction::SLPStore: | 
|  | O << "combined store"; | 
|  | break; | 
|  | default: | 
|  | O << Instruction::getOpcodeName(getOpcode()); | 
|  | } | 
|  |  | 
|  | for (const VPValue *Operand : operands()) { | 
|  | O << " "; | 
|  | Operand->printAsOperand(O, SlotTracker); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate the code inside the body of the vectorized loop. Assumes a single | 
|  | /// LoopVectorBody basic-block was created for this. Introduce additional | 
|  | /// basic-blocks as needed, and fill them all. | 
|  | void VPlan::execute(VPTransformState *State) { | 
|  | // -1. Check if the backedge taken count is needed, and if so build it. | 
|  | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { | 
|  | Value *TC = State->TripCount; | 
|  | IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); | 
|  | auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), | 
|  | "trip.count.minus.1"); | 
|  | Value2VPValue[TCMO] = BackedgeTakenCount; | 
|  | } | 
|  |  | 
|  | // 0. Set the reverse mapping from VPValues to Values for code generation. | 
|  | for (auto &Entry : Value2VPValue) | 
|  | State->VPValue2Value[Entry.second] = Entry.first; | 
|  |  | 
|  | BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; | 
|  | BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); | 
|  | assert(VectorHeaderBB && "Loop preheader does not have a single successor."); | 
|  |  | 
|  | // 1. Make room to generate basic-blocks inside loop body if needed. | 
|  | BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( | 
|  | VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); | 
|  | Loop *L = State->LI->getLoopFor(VectorHeaderBB); | 
|  | L->addBasicBlockToLoop(VectorLatchBB, *State->LI); | 
|  | // Remove the edge between Header and Latch to allow other connections. | 
|  | // Temporarily terminate with unreachable until CFG is rewired. | 
|  | // Note: this asserts the generated code's assumption that | 
|  | // getFirstInsertionPt() can be dereferenced into an Instruction. | 
|  | VectorHeaderBB->getTerminator()->eraseFromParent(); | 
|  | State->Builder.SetInsertPoint(VectorHeaderBB); | 
|  | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); | 
|  | State->Builder.SetInsertPoint(Terminator); | 
|  |  | 
|  | // 2. Generate code in loop body. | 
|  | State->CFG.PrevVPBB = nullptr; | 
|  | State->CFG.PrevBB = VectorHeaderBB; | 
|  | State->CFG.LastBB = VectorLatchBB; | 
|  |  | 
|  | for (VPBlockBase *Block : depth_first(Entry)) | 
|  | Block->execute(State); | 
|  |  | 
|  | // Setup branch terminator successors for VPBBs in VPBBsToFix based on | 
|  | // VPBB's successors. | 
|  | for (auto VPBB : State->CFG.VPBBsToFix) { | 
|  | assert(EnableVPlanNativePath && | 
|  | "Unexpected VPBBsToFix in non VPlan-native path"); | 
|  | BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; | 
|  | assert(BB && "Unexpected null basic block for VPBB"); | 
|  |  | 
|  | unsigned Idx = 0; | 
|  | auto *BBTerminator = BB->getTerminator(); | 
|  |  | 
|  | for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { | 
|  | VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); | 
|  | BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); | 
|  | ++Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 3. Merge the temporary latch created with the last basic-block filled. | 
|  | BasicBlock *LastBB = State->CFG.PrevBB; | 
|  | // Connect LastBB to VectorLatchBB to facilitate their merge. | 
|  | assert((EnableVPlanNativePath || | 
|  | isa<UnreachableInst>(LastBB->getTerminator())) && | 
|  | "Expected InnerLoop VPlan CFG to terminate with unreachable"); | 
|  | assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && | 
|  | "Expected VPlan CFG to terminate with branch in NativePath"); | 
|  | LastBB->getTerminator()->eraseFromParent(); | 
|  | BranchInst::Create(VectorLatchBB, LastBB); | 
|  |  | 
|  | // Merge LastBB with Latch. | 
|  | bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); | 
|  | (void)Merged; | 
|  | assert(Merged && "Could not merge last basic block with latch."); | 
|  | VectorLatchBB = LastBB; | 
|  |  | 
|  | // We do not attempt to preserve DT for outer loop vectorization currently. | 
|  | if (!EnableVPlanNativePath) | 
|  | updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, | 
|  | L->getExitBlock()); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD | 
|  | void VPlan::dump() const { dbgs() << *this << '\n'; } | 
|  | #endif | 
|  |  | 
|  | void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, | 
|  | BasicBlock *LoopLatchBB, | 
|  | BasicBlock *LoopExitBB) { | 
|  | BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); | 
|  | assert(LoopHeaderBB && "Loop preheader does not have a single successor."); | 
|  | // The vector body may be more than a single basic-block by this point. | 
|  | // Update the dominator tree information inside the vector body by propagating | 
|  | // it from header to latch, expecting only triangular control-flow, if any. | 
|  | BasicBlock *PostDomSucc = nullptr; | 
|  | for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { | 
|  | // Get the list of successors of this block. | 
|  | std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); | 
|  | assert(Succs.size() <= 2 && | 
|  | "Basic block in vector loop has more than 2 successors."); | 
|  | PostDomSucc = Succs[0]; | 
|  | if (Succs.size() == 1) { | 
|  | assert(PostDomSucc->getSinglePredecessor() && | 
|  | "PostDom successor has more than one predecessor."); | 
|  | DT->addNewBlock(PostDomSucc, BB); | 
|  | continue; | 
|  | } | 
|  | BasicBlock *InterimSucc = Succs[1]; | 
|  | if (PostDomSucc->getSingleSuccessor() == InterimSucc) { | 
|  | PostDomSucc = Succs[1]; | 
|  | InterimSucc = Succs[0]; | 
|  | } | 
|  | assert(InterimSucc->getSingleSuccessor() == PostDomSucc && | 
|  | "One successor of a basic block does not lead to the other."); | 
|  | assert(InterimSucc->getSinglePredecessor() && | 
|  | "Interim successor has more than one predecessor."); | 
|  | assert(PostDomSucc->hasNPredecessors(2) && | 
|  | "PostDom successor has more than two predecessors."); | 
|  | DT->addNewBlock(InterimSucc, BB); | 
|  | DT->addNewBlock(PostDomSucc, BB); | 
|  | } | 
|  | // Latch block is a new dominator for the loop exit. | 
|  | DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Fast)); | 
|  | } | 
|  |  | 
|  | const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { | 
|  | return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + | 
|  | Twine(getOrCreateBID(Block)); | 
|  | } | 
|  |  | 
|  | const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { | 
|  | const std::string &Name = Block->getName(); | 
|  | if (!Name.empty()) | 
|  | return Name; | 
|  | return "VPB" + Twine(getOrCreateBID(Block)); | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::dump() { | 
|  | Depth = 1; | 
|  | bumpIndent(0); | 
|  | OS << "digraph VPlan {\n"; | 
|  | OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; | 
|  | if (!Plan.getName().empty()) | 
|  | OS << "\\n" << DOT::EscapeString(Plan.getName()); | 
|  | if (Plan.BackedgeTakenCount) { | 
|  | OS << ", where:\\n"; | 
|  | Plan.BackedgeTakenCount->print(OS, SlotTracker); | 
|  | OS << " := BackedgeTakenCount"; | 
|  | } | 
|  | OS << "\"]\n"; | 
|  | OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; | 
|  | OS << "edge [fontname=Courier, fontsize=30]\n"; | 
|  | OS << "compound=true\n"; | 
|  |  | 
|  | for (const VPBlockBase *Block : depth_first(Plan.getEntry())) | 
|  | dumpBlock(Block); | 
|  |  | 
|  | OS << "}\n"; | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { | 
|  | if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) | 
|  | dumpBasicBlock(BasicBlock); | 
|  | else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | dumpRegion(Region); | 
|  | else | 
|  | llvm_unreachable("Unsupported kind of VPBlock."); | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, | 
|  | bool Hidden, const Twine &Label) { | 
|  | // Due to "dot" we print an edge between two regions as an edge between the | 
|  | // exit basic block and the entry basic of the respective regions. | 
|  | const VPBlockBase *Tail = From->getExitBasicBlock(); | 
|  | const VPBlockBase *Head = To->getEntryBasicBlock(); | 
|  | OS << Indent << getUID(Tail) << " -> " << getUID(Head); | 
|  | OS << " [ label=\"" << Label << '\"'; | 
|  | if (Tail != From) | 
|  | OS << " ltail=" << getUID(From); | 
|  | if (Head != To) | 
|  | OS << " lhead=" << getUID(To); | 
|  | if (Hidden) | 
|  | OS << "; splines=none"; | 
|  | OS << "]\n"; | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { | 
|  | auto &Successors = Block->getSuccessors(); | 
|  | if (Successors.size() == 1) | 
|  | drawEdge(Block, Successors.front(), false, ""); | 
|  | else if (Successors.size() == 2) { | 
|  | drawEdge(Block, Successors.front(), false, "T"); | 
|  | drawEdge(Block, Successors.back(), false, "F"); | 
|  | } else { | 
|  | unsigned SuccessorNumber = 0; | 
|  | for (auto *Successor : Successors) | 
|  | drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { | 
|  | OS << Indent << getUID(BasicBlock) << " [label =\n"; | 
|  | bumpIndent(1); | 
|  | OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; | 
|  | bumpIndent(1); | 
|  |  | 
|  | // Dump the block predicate. | 
|  | const VPValue *Pred = BasicBlock->getPredicate(); | 
|  | if (Pred) { | 
|  | OS << " +\n" << Indent << " \"BlockPredicate: "; | 
|  | if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { | 
|  | PredI->printAsOperand(OS, SlotTracker); | 
|  | OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) | 
|  | << ")\\l\""; | 
|  | } else | 
|  | Pred->printAsOperand(OS, SlotTracker); | 
|  | } | 
|  |  | 
|  | for (const VPRecipeBase &Recipe : *BasicBlock) | 
|  | Recipe.print(OS, Indent, SlotTracker); | 
|  |  | 
|  | // Dump the condition bit. | 
|  | const VPValue *CBV = BasicBlock->getCondBit(); | 
|  | if (CBV) { | 
|  | OS << " +\n" << Indent << " \"CondBit: "; | 
|  | if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { | 
|  | CBI->printAsOperand(OS, SlotTracker); | 
|  | OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; | 
|  | } else { | 
|  | CBV->printAsOperand(OS, SlotTracker); | 
|  | OS << "\""; | 
|  | } | 
|  | } | 
|  |  | 
|  | bumpIndent(-2); | 
|  | OS << "\n" << Indent << "]\n"; | 
|  | dumpEdges(BasicBlock); | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { | 
|  | OS << Indent << "subgraph " << getUID(Region) << " {\n"; | 
|  | bumpIndent(1); | 
|  | OS << Indent << "fontname=Courier\n" | 
|  | << Indent << "label=\"" | 
|  | << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") | 
|  | << DOT::EscapeString(Region->getName()) << "\"\n"; | 
|  | // Dump the blocks of the region. | 
|  | assert(Region->getEntry() && "Region contains no inner blocks."); | 
|  | for (const VPBlockBase *Block : depth_first(Region->getEntry())) | 
|  | dumpBlock(Block); | 
|  | bumpIndent(-1); | 
|  | OS << Indent << "}\n"; | 
|  | dumpEdges(Region); | 
|  | } | 
|  |  | 
|  | void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { | 
|  | std::string IngredientString; | 
|  | raw_string_ostream RSO(IngredientString); | 
|  | if (auto *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (!Inst->getType()->isVoidTy()) { | 
|  | Inst->printAsOperand(RSO, false); | 
|  | RSO << " = "; | 
|  | } | 
|  | RSO << Inst->getOpcodeName() << " "; | 
|  | unsigned E = Inst->getNumOperands(); | 
|  | if (E > 0) { | 
|  | Inst->getOperand(0)->printAsOperand(RSO, false); | 
|  | for (unsigned I = 1; I < E; ++I) | 
|  | Inst->getOperand(I)->printAsOperand(RSO << ", ", false); | 
|  | } | 
|  | } else // !Inst | 
|  | V->printAsOperand(RSO, false); | 
|  | RSO.flush(); | 
|  | O << DOT::EscapeString(IngredientString); | 
|  | } | 
|  |  | 
|  | void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" | 
|  | << Indent << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient) << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"WIDEN\\l\""; | 
|  | O << "\"  " << VPlanIngredient(&Ingredient) << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"WIDEN-INDUCTION"; | 
|  | if (Trunc) { | 
|  | O << "\\l\""; | 
|  | O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\""; | 
|  | O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\""; | 
|  | } else | 
|  | O << " " << VPlanIngredient(IV) << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"WIDEN-GEP "; | 
|  | O << (IsPtrLoopInvariant ? "Inv" : "Var"); | 
|  | size_t IndicesNumber = IsIndexLoopInvariant.size(); | 
|  | for (size_t I = 0; I < IndicesNumber; ++I) | 
|  | O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; | 
|  | O << "\\l\""; | 
|  | O << " +\n" << Indent << "\"  "  << VPlanIngredient(GEP) << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"BLEND "; | 
|  | Phi->printAsOperand(O, false); | 
|  | O << " ="; | 
|  | if (getNumIncomingValues() == 1) { | 
|  | // Not a User of any mask: not really blending, this is a | 
|  | // single-predecessor phi. | 
|  | O << " "; | 
|  | getIncomingValue(0)->printAsOperand(O, SlotTracker); | 
|  | } else { | 
|  | for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { | 
|  | O << " "; | 
|  | getIncomingValue(I)->printAsOperand(O, SlotTracker); | 
|  | O << "/"; | 
|  | getMask(I)->printAsOperand(O, SlotTracker); | 
|  | } | 
|  | } | 
|  | O << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" | 
|  | << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") | 
|  | << VPlanIngredient(Ingredient); | 
|  | if (AlsoPack) | 
|  | O << " (S->V)"; | 
|  | O << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" | 
|  | << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) | 
|  | << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); | 
|  | O << ", "; | 
|  | getAddr()->printAsOperand(O, SlotTracker); | 
|  | VPValue *Mask = getMask(); | 
|  | if (Mask) { | 
|  | O << ", "; | 
|  | Mask->printAsOperand(O, SlotTracker); | 
|  | } | 
|  | O << "\\l\""; | 
|  | } | 
|  |  | 
|  | void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { | 
|  | Value *CanonicalIV = State.CanonicalIV; | 
|  | Type *STy = CanonicalIV->getType(); | 
|  | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); | 
|  | Value *VStart = Builder.CreateVectorSplat(State.VF, CanonicalIV, "broadcast"); | 
|  | for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { | 
|  | SmallVector<Constant *, 8> Indices; | 
|  | for (unsigned Lane = 0, VF = State.VF; Lane < VF; ++Lane) | 
|  | Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); | 
|  | Constant *VStep = ConstantVector::get(Indices); | 
|  | // Add the consecutive indices to the vector value. | 
|  | Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); | 
|  | State.set(getVPValue(), CanonicalVectorIV, Part); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, | 
|  | VPSlotTracker &SlotTracker) const { | 
|  | O << " +\n" << Indent << "\"EMIT "; | 
|  | getVPValue()->printAsOperand(O, SlotTracker); | 
|  | O << " = WIDEN-CANONICAL-INDUCTION \\l\""; | 
|  | } | 
|  |  | 
|  | template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); | 
|  |  | 
|  | void VPValue::replaceAllUsesWith(VPValue *New) { | 
|  | for (VPUser *User : users()) | 
|  | for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) | 
|  | if (User->getOperand(I) == this) | 
|  | User->setOperand(I, New); | 
|  | } | 
|  |  | 
|  | void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { | 
|  | if (const Value *UV = getUnderlyingValue()) { | 
|  | OS << "ir<"; | 
|  | UV->printAsOperand(OS, false); | 
|  | OS << ">"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Slot = Tracker.getSlot(this); | 
|  | if (Slot == unsigned(-1)) | 
|  | OS << "<badref>"; | 
|  | else | 
|  | OS << "vp<%" << Tracker.getSlot(this) << ">"; | 
|  | } | 
|  |  | 
|  | void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, | 
|  | Old2NewTy &Old2New, | 
|  | InterleavedAccessInfo &IAI) { | 
|  | ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); | 
|  | for (VPBlockBase *Base : RPOT) { | 
|  | visitBlock(Base, Old2New, IAI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, | 
|  | InterleavedAccessInfo &IAI) { | 
|  | if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { | 
|  | for (VPRecipeBase &VPI : *VPBB) { | 
|  | assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); | 
|  | auto *VPInst = cast<VPInstruction>(&VPI); | 
|  | auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); | 
|  | auto *IG = IAI.getInterleaveGroup(Inst); | 
|  | if (!IG) | 
|  | continue; | 
|  |  | 
|  | auto NewIGIter = Old2New.find(IG); | 
|  | if (NewIGIter == Old2New.end()) | 
|  | Old2New[IG] = new InterleaveGroup<VPInstruction>( | 
|  | IG->getFactor(), IG->isReverse(), IG->getAlign()); | 
|  |  | 
|  | if (Inst == IG->getInsertPos()) | 
|  | Old2New[IG]->setInsertPos(VPInst); | 
|  |  | 
|  | InterleaveGroupMap[VPInst] = Old2New[IG]; | 
|  | InterleaveGroupMap[VPInst]->insertMember( | 
|  | VPInst, IG->getIndex(Inst), | 
|  | Align(IG->isReverse() ? (-1) * int(IG->getFactor()) | 
|  | : IG->getFactor())); | 
|  | } | 
|  | } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) | 
|  | visitRegion(Region, Old2New, IAI); | 
|  | else | 
|  | llvm_unreachable("Unsupported kind of VPBlock."); | 
|  | } | 
|  |  | 
|  | VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, | 
|  | InterleavedAccessInfo &IAI) { | 
|  | Old2NewTy Old2New; | 
|  | visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); | 
|  | } | 
|  |  | 
|  | void VPSlotTracker::assignSlot(const VPValue *V) { | 
|  | assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); | 
|  | const Value *UV = V->getUnderlyingValue(); | 
|  | if (UV) | 
|  | return; | 
|  | const auto *VPI = dyn_cast<VPInstruction>(V); | 
|  | if (VPI && !VPI->hasResult()) | 
|  | return; | 
|  |  | 
|  | Slots[V] = NextSlot++; | 
|  | } | 
|  |  | 
|  | void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { | 
|  | if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) | 
|  | assignSlots(Region); | 
|  | else | 
|  | assignSlots(cast<VPBasicBlock>(VPBB)); | 
|  | } | 
|  |  | 
|  | void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { | 
|  | ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); | 
|  | for (const VPBlockBase *Block : RPOT) | 
|  | assignSlots(Block); | 
|  | } | 
|  |  | 
|  | void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { | 
|  | for (const VPRecipeBase &Recipe : *VPBB) { | 
|  | if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) | 
|  | assignSlot(VPI); | 
|  | else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) | 
|  | assignSlot(VPIV->getVPValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VPSlotTracker::assignSlots(const VPlan &Plan) { | 
|  |  | 
|  | for (const VPValue *V : Plan.VPExternalDefs) | 
|  | assignSlot(V); | 
|  |  | 
|  | for (auto &E : Plan.Value2VPValue) | 
|  | if (!isa<VPInstruction>(E.second)) | 
|  | assignSlot(E.second); | 
|  |  | 
|  | for (const VPValue *V : Plan.VPCBVs) | 
|  | assignSlot(V); | 
|  |  | 
|  | if (Plan.BackedgeTakenCount) | 
|  | assignSlot(Plan.BackedgeTakenCount); | 
|  |  | 
|  | ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); | 
|  | for (const VPBlockBase *Block : RPOT) | 
|  | assignSlots(Block); | 
|  | } |