|  | //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file defines ObjC ARC optimizations. ARC stands for Automatic | 
|  | /// Reference Counting and is a system for managing reference counts for objects | 
|  | /// in Objective C. | 
|  | /// | 
|  | /// The optimizations performed include elimination of redundant, partially | 
|  | /// redundant, and inconsequential reference count operations, elimination of | 
|  | /// redundant weak pointer operations, and numerous minor simplifications. | 
|  | /// | 
|  | /// WARNING: This file knows about certain library functions. It recognizes them | 
|  | /// by name, and hardwires knowledge of their semantics. | 
|  | /// | 
|  | /// WARNING: This file knows about how certain Objective-C library functions are | 
|  | /// used. Naive LLVM IR transformations which would otherwise be | 
|  | /// behavior-preserving may break these assumptions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARCRuntimeEntryPoints.h" | 
|  | #include "BlotMapVector.h" | 
|  | #include "DependencyAnalysis.h" | 
|  | #include "ObjCARC.h" | 
|  | #include "ProvenanceAnalysis.h" | 
|  | #include "PtrState.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/Analysis/ObjCARCAliasAnalysis.h" | 
|  | #include "llvm/Analysis/ObjCARCAnalysisUtils.h" | 
|  | #include "llvm/Analysis/ObjCARCInstKind.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::objcarc; | 
|  |  | 
|  | #define DEBUG_TYPE "objc-arc-opts" | 
|  |  | 
|  | /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. | 
|  | /// @{ | 
|  |  | 
|  | /// This is similar to GetRCIdentityRoot but it stops as soon | 
|  | /// as it finds a value with multiple uses. | 
|  | static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { | 
|  | // ConstantData (like ConstantPointerNull and UndefValue) is used across | 
|  | // modules.  It's never a single-use value. | 
|  | if (isa<ConstantData>(Arg)) | 
|  | return nullptr; | 
|  |  | 
|  | if (Arg->hasOneUse()) { | 
|  | if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) | 
|  | return FindSingleUseIdentifiedObject(BC->getOperand(0)); | 
|  | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) | 
|  | if (GEP->hasAllZeroIndices()) | 
|  | return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); | 
|  | if (IsForwarding(GetBasicARCInstKind(Arg))) | 
|  | return FindSingleUseIdentifiedObject( | 
|  | cast<CallInst>(Arg)->getArgOperand(0)); | 
|  | if (!IsObjCIdentifiedObject(Arg)) | 
|  | return nullptr; | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | // If we found an identifiable object but it has multiple uses, but they are | 
|  | // trivial uses, we can still consider this to be a single-use value. | 
|  | if (IsObjCIdentifiedObject(Arg)) { | 
|  | for (const User *U : Arg->users()) | 
|  | if (!U->use_empty() || GetRCIdentityRoot(U) != Arg) | 
|  | return nullptr; | 
|  |  | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// | 
|  | /// \defgroup ARCOpt ARC Optimization. | 
|  | /// @{ | 
|  |  | 
|  | // TODO: On code like this: | 
|  | // | 
|  | // objc_retain(%x) | 
|  | // stuff_that_cannot_release() | 
|  | // objc_autorelease(%x) | 
|  | // stuff_that_cannot_release() | 
|  | // objc_retain(%x) | 
|  | // stuff_that_cannot_release() | 
|  | // objc_autorelease(%x) | 
|  | // | 
|  | // The second retain and autorelease can be deleted. | 
|  |  | 
|  | // TODO: It should be possible to delete | 
|  | // objc_autoreleasePoolPush and objc_autoreleasePoolPop | 
|  | // pairs if nothing is actually autoreleased between them. Also, autorelease | 
|  | // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code | 
|  | // after inlining) can be turned into plain release calls. | 
|  |  | 
|  | // TODO: Critical-edge splitting. If the optimial insertion point is | 
|  | // a critical edge, the current algorithm has to fail, because it doesn't | 
|  | // know how to split edges. It should be possible to make the optimizer | 
|  | // think in terms of edges, rather than blocks, and then split critical | 
|  | // edges on demand. | 
|  |  | 
|  | // TODO: OptimizeSequences could generalized to be Interprocedural. | 
|  |  | 
|  | // TODO: Recognize that a bunch of other objc runtime calls have | 
|  | // non-escaping arguments and non-releasing arguments, and may be | 
|  | // non-autoreleasing. | 
|  |  | 
|  | // TODO: Sink autorelease calls as far as possible. Unfortunately we | 
|  | // usually can't sink them past other calls, which would be the main | 
|  | // case where it would be useful. | 
|  |  | 
|  | // TODO: The pointer returned from objc_loadWeakRetained is retained. | 
|  |  | 
|  | // TODO: Delete release+retain pairs (rare). | 
|  |  | 
|  | STATISTIC(NumNoops,       "Number of no-op objc calls eliminated"); | 
|  | STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); | 
|  | STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); | 
|  | STATISTIC(NumRets,        "Number of return value forwarding " | 
|  | "retain+autoreleases eliminated"); | 
|  | STATISTIC(NumRRs,         "Number of retain+release paths eliminated"); | 
|  | STATISTIC(NumPeeps,       "Number of calls peephole-optimized"); | 
|  | #ifndef NDEBUG | 
|  | STATISTIC(NumRetainsBeforeOpt, | 
|  | "Number of retains before optimization"); | 
|  | STATISTIC(NumReleasesBeforeOpt, | 
|  | "Number of releases before optimization"); | 
|  | STATISTIC(NumRetainsAfterOpt, | 
|  | "Number of retains after optimization"); | 
|  | STATISTIC(NumReleasesAfterOpt, | 
|  | "Number of releases after optimization"); | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Per-BasicBlock state. | 
|  | class BBState { | 
|  | /// The number of unique control paths from the entry which can reach this | 
|  | /// block. | 
|  | unsigned TopDownPathCount = 0; | 
|  |  | 
|  | /// The number of unique control paths to exits from this block. | 
|  | unsigned BottomUpPathCount = 0; | 
|  |  | 
|  | /// The top-down traversal uses this to record information known about a | 
|  | /// pointer at the bottom of each block. | 
|  | BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown; | 
|  |  | 
|  | /// The bottom-up traversal uses this to record information known about a | 
|  | /// pointer at the top of each block. | 
|  | BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp; | 
|  |  | 
|  | /// Effective predecessors of the current block ignoring ignorable edges and | 
|  | /// ignored backedges. | 
|  | SmallVector<BasicBlock *, 2> Preds; | 
|  |  | 
|  | /// Effective successors of the current block ignoring ignorable edges and | 
|  | /// ignored backedges. | 
|  | SmallVector<BasicBlock *, 2> Succs; | 
|  |  | 
|  | public: | 
|  | static const unsigned OverflowOccurredValue; | 
|  |  | 
|  | BBState() = default; | 
|  |  | 
|  | using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator; | 
|  | using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator; | 
|  |  | 
|  | top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } | 
|  | top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } | 
|  | const_top_down_ptr_iterator top_down_ptr_begin() const { | 
|  | return PerPtrTopDown.begin(); | 
|  | } | 
|  | const_top_down_ptr_iterator top_down_ptr_end() const { | 
|  | return PerPtrTopDown.end(); | 
|  | } | 
|  | bool hasTopDownPtrs() const { | 
|  | return !PerPtrTopDown.empty(); | 
|  | } | 
|  |  | 
|  | using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator; | 
|  | using const_bottom_up_ptr_iterator = | 
|  | decltype(PerPtrBottomUp)::const_iterator; | 
|  |  | 
|  | bottom_up_ptr_iterator bottom_up_ptr_begin() { | 
|  | return PerPtrBottomUp.begin(); | 
|  | } | 
|  | bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } | 
|  | const_bottom_up_ptr_iterator bottom_up_ptr_begin() const { | 
|  | return PerPtrBottomUp.begin(); | 
|  | } | 
|  | const_bottom_up_ptr_iterator bottom_up_ptr_end() const { | 
|  | return PerPtrBottomUp.end(); | 
|  | } | 
|  | bool hasBottomUpPtrs() const { | 
|  | return !PerPtrBottomUp.empty(); | 
|  | } | 
|  |  | 
|  | /// Mark this block as being an entry block, which has one path from the | 
|  | /// entry by definition. | 
|  | void SetAsEntry() { TopDownPathCount = 1; } | 
|  |  | 
|  | /// Mark this block as being an exit block, which has one path to an exit by | 
|  | /// definition. | 
|  | void SetAsExit()  { BottomUpPathCount = 1; } | 
|  |  | 
|  | /// Attempt to find the PtrState object describing the top down state for | 
|  | /// pointer Arg. Return a new initialized PtrState describing the top down | 
|  | /// state for Arg if we do not find one. | 
|  | TopDownPtrState &getPtrTopDownState(const Value *Arg) { | 
|  | return PerPtrTopDown[Arg]; | 
|  | } | 
|  |  | 
|  | /// Attempt to find the PtrState object describing the bottom up state for | 
|  | /// pointer Arg. Return a new initialized PtrState describing the bottom up | 
|  | /// state for Arg if we do not find one. | 
|  | BottomUpPtrState &getPtrBottomUpState(const Value *Arg) { | 
|  | return PerPtrBottomUp[Arg]; | 
|  | } | 
|  |  | 
|  | /// Attempt to find the PtrState object describing the bottom up state for | 
|  | /// pointer Arg. | 
|  | bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) { | 
|  | return PerPtrBottomUp.find(Arg); | 
|  | } | 
|  |  | 
|  | void clearBottomUpPointers() { | 
|  | PerPtrBottomUp.clear(); | 
|  | } | 
|  |  | 
|  | void clearTopDownPointers() { | 
|  | PerPtrTopDown.clear(); | 
|  | } | 
|  |  | 
|  | void InitFromPred(const BBState &Other); | 
|  | void InitFromSucc(const BBState &Other); | 
|  | void MergePred(const BBState &Other); | 
|  | void MergeSucc(const BBState &Other); | 
|  |  | 
|  | /// Compute the number of possible unique paths from an entry to an exit | 
|  | /// which pass through this block. This is only valid after both the | 
|  | /// top-down and bottom-up traversals are complete. | 
|  | /// | 
|  | /// Returns true if overflow occurred. Returns false if overflow did not | 
|  | /// occur. | 
|  | bool GetAllPathCountWithOverflow(unsigned &PathCount) const { | 
|  | if (TopDownPathCount == OverflowOccurredValue || | 
|  | BottomUpPathCount == OverflowOccurredValue) | 
|  | return true; | 
|  | unsigned long long Product = | 
|  | (unsigned long long)TopDownPathCount*BottomUpPathCount; | 
|  | // Overflow occurred if any of the upper bits of Product are set or if all | 
|  | // the lower bits of Product are all set. | 
|  | return (Product >> 32) || | 
|  | ((PathCount = Product) == OverflowOccurredValue); | 
|  | } | 
|  |  | 
|  | // Specialized CFG utilities. | 
|  | using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator; | 
|  |  | 
|  | edge_iterator pred_begin() const { return Preds.begin(); } | 
|  | edge_iterator pred_end() const { return Preds.end(); } | 
|  | edge_iterator succ_begin() const { return Succs.begin(); } | 
|  | edge_iterator succ_end() const { return Succs.end(); } | 
|  |  | 
|  | void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } | 
|  | void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } | 
|  |  | 
|  | bool isExit() const { return Succs.empty(); } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const unsigned BBState::OverflowOccurredValue = 0xffffffff; | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | raw_ostream &operator<<(raw_ostream &OS, | 
|  | BBState &BBState) LLVM_ATTRIBUTE_UNUSED; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | void BBState::InitFromPred(const BBState &Other) { | 
|  | PerPtrTopDown = Other.PerPtrTopDown; | 
|  | TopDownPathCount = Other.TopDownPathCount; | 
|  | } | 
|  |  | 
|  | void BBState::InitFromSucc(const BBState &Other) { | 
|  | PerPtrBottomUp = Other.PerPtrBottomUp; | 
|  | BottomUpPathCount = Other.BottomUpPathCount; | 
|  | } | 
|  |  | 
|  | /// The top-down traversal uses this to merge information about predecessors to | 
|  | /// form the initial state for a new block. | 
|  | void BBState::MergePred(const BBState &Other) { | 
|  | if (TopDownPathCount == OverflowOccurredValue) | 
|  | return; | 
|  |  | 
|  | // Other.TopDownPathCount can be 0, in which case it is either dead or a | 
|  | // loop backedge. Loop backedges are special. | 
|  | TopDownPathCount += Other.TopDownPathCount; | 
|  |  | 
|  | // In order to be consistent, we clear the top down pointers when by adding | 
|  | // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow | 
|  | // has not occurred. | 
|  | if (TopDownPathCount == OverflowOccurredValue) { | 
|  | clearTopDownPointers(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for overflow. If we have overflow, fall back to conservative | 
|  | // behavior. | 
|  | if (TopDownPathCount < Other.TopDownPathCount) { | 
|  | TopDownPathCount = OverflowOccurredValue; | 
|  | clearTopDownPointers(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For each entry in the other set, if our set has an entry with the same key, | 
|  | // merge the entries. Otherwise, copy the entry and merge it with an empty | 
|  | // entry. | 
|  | for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); | 
|  | MI != ME; ++MI) { | 
|  | auto Pair = PerPtrTopDown.insert(*MI); | 
|  | Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second, | 
|  | /*TopDown=*/true); | 
|  | } | 
|  |  | 
|  | // For each entry in our set, if the other set doesn't have an entry with the | 
|  | // same key, force it to merge with an empty entry. | 
|  | for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) | 
|  | if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) | 
|  | MI->second.Merge(TopDownPtrState(), /*TopDown=*/true); | 
|  | } | 
|  |  | 
|  | /// The bottom-up traversal uses this to merge information about successors to | 
|  | /// form the initial state for a new block. | 
|  | void BBState::MergeSucc(const BBState &Other) { | 
|  | if (BottomUpPathCount == OverflowOccurredValue) | 
|  | return; | 
|  |  | 
|  | // Other.BottomUpPathCount can be 0, in which case it is either dead or a | 
|  | // loop backedge. Loop backedges are special. | 
|  | BottomUpPathCount += Other.BottomUpPathCount; | 
|  |  | 
|  | // In order to be consistent, we clear the top down pointers when by adding | 
|  | // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow | 
|  | // has not occurred. | 
|  | if (BottomUpPathCount == OverflowOccurredValue) { | 
|  | clearBottomUpPointers(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for overflow. If we have overflow, fall back to conservative | 
|  | // behavior. | 
|  | if (BottomUpPathCount < Other.BottomUpPathCount) { | 
|  | BottomUpPathCount = OverflowOccurredValue; | 
|  | clearBottomUpPointers(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For each entry in the other set, if our set has an entry with the | 
|  | // same key, merge the entries. Otherwise, copy the entry and merge | 
|  | // it with an empty entry. | 
|  | for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); | 
|  | MI != ME; ++MI) { | 
|  | auto Pair = PerPtrBottomUp.insert(*MI); | 
|  | Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second, | 
|  | /*TopDown=*/false); | 
|  | } | 
|  |  | 
|  | // For each entry in our set, if the other set doesn't have an entry | 
|  | // with the same key, force it to merge with an empty entry. | 
|  | for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; | 
|  | ++MI) | 
|  | if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) | 
|  | MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) { | 
|  | // Dump the pointers we are tracking. | 
|  | OS << "    TopDown State:\n"; | 
|  | if (!BBInfo.hasTopDownPtrs()) { | 
|  | LLVM_DEBUG(dbgs() << "        NONE!\n"); | 
|  | } else { | 
|  | for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end(); | 
|  | I != E; ++I) { | 
|  | const PtrState &P = I->second; | 
|  | OS << "        Ptr: " << *I->first | 
|  | << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false") | 
|  | << "\n            ImpreciseRelease: " | 
|  | << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" | 
|  | << "            HasCFGHazards:    " | 
|  | << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" | 
|  | << "            KnownPositive:    " | 
|  | << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" | 
|  | << "            Seq:              " | 
|  | << P.GetSeq() << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "    BottomUp State:\n"; | 
|  | if (!BBInfo.hasBottomUpPtrs()) { | 
|  | LLVM_DEBUG(dbgs() << "        NONE!\n"); | 
|  | } else { | 
|  | for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end(); | 
|  | I != E; ++I) { | 
|  | const PtrState &P = I->second; | 
|  | OS << "        Ptr: " << *I->first | 
|  | << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false") | 
|  | << "\n            ImpreciseRelease: " | 
|  | << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" | 
|  | << "            HasCFGHazards:    " | 
|  | << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" | 
|  | << "            KnownPositive:    " | 
|  | << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" | 
|  | << "            Seq:              " | 
|  | << P.GetSeq() << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// The main ARC optimization pass. | 
|  | class ObjCARCOpt : public FunctionPass { | 
|  | bool Changed; | 
|  | ProvenanceAnalysis PA; | 
|  |  | 
|  | /// A cache of references to runtime entry point constants. | 
|  | ARCRuntimeEntryPoints EP; | 
|  |  | 
|  | /// A cache of MDKinds that can be passed into other functions to propagate | 
|  | /// MDKind identifiers. | 
|  | ARCMDKindCache MDKindCache; | 
|  |  | 
|  | /// A flag indicating whether this optimization pass should run. | 
|  | bool Run; | 
|  |  | 
|  | /// Flags which determine whether each of the interesting runtime functions | 
|  | /// is in fact used in the current function. | 
|  | unsigned UsedInThisFunction; | 
|  |  | 
|  | bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); | 
|  | void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, | 
|  | ARCInstKind &Class); | 
|  | void OptimizeIndividualCalls(Function &F); | 
|  |  | 
|  | void CheckForCFGHazards(const BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BBState &MyStates) const; | 
|  | bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | BBState &MyStates); | 
|  | bool VisitBottomUp(BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains); | 
|  | bool VisitInstructionTopDown(Instruction *Inst, | 
|  | DenseMap<Value *, RRInfo> &Releases, | 
|  | BBState &MyStates); | 
|  | bool VisitTopDown(BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | DenseMap<Value *, RRInfo> &Releases); | 
|  | bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases); | 
|  |  | 
|  | void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, | 
|  | SmallVectorImpl<Instruction *> &DeadInsts, Module *M); | 
|  |  | 
|  | bool | 
|  | PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, Module *M, | 
|  | Instruction * Retain, | 
|  | SmallVectorImpl<Instruction *> &DeadInsts, | 
|  | RRInfo &RetainsToMove, RRInfo &ReleasesToMove, | 
|  | Value *Arg, bool KnownSafe, | 
|  | bool &AnyPairsCompletelyEliminated); | 
|  |  | 
|  | bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, Module *M); | 
|  |  | 
|  | void OptimizeWeakCalls(Function &F); | 
|  |  | 
|  | bool OptimizeSequences(Function &F); | 
|  |  | 
|  | void OptimizeReturns(Function &F); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | void GatherStatistics(Function &F, bool AfterOptimization = false); | 
|  | #endif | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  | bool doInitialization(Module &M) override; | 
|  | bool runOnFunction(Function &F) override; | 
|  | void releaseMemory() override; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | ObjCARCOpt() : FunctionPass(ID) { | 
|  | initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char ObjCARCOpt::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ObjCARCOpt, | 
|  | "objc-arc", "ObjC ARC optimization", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) | 
|  | INITIALIZE_PASS_END(ObjCARCOpt, | 
|  | "objc-arc", "ObjC ARC optimization", false, false) | 
|  |  | 
|  | Pass *llvm::createObjCARCOptPass() { | 
|  | return new ObjCARCOpt(); | 
|  | } | 
|  |  | 
|  | void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<ObjCARCAAWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | // ARC optimization doesn't currently split critical edges. | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  |  | 
|  | /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is | 
|  | /// not a return value.  Or, if it can be paired with an | 
|  | /// objc_autoreleaseReturnValue, delete the pair and return true. | 
|  | bool | 
|  | ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { | 
|  | // Check for the argument being from an immediately preceding call or invoke. | 
|  | const Value *Arg = GetArgRCIdentityRoot(RetainRV); | 
|  | ImmutableCallSite CS(Arg); | 
|  | if (const Instruction *Call = CS.getInstruction()) { | 
|  | if (Call->getParent() == RetainRV->getParent()) { | 
|  | BasicBlock::const_iterator I(Call); | 
|  | ++I; | 
|  | while (IsNoopInstruction(&*I)) | 
|  | ++I; | 
|  | if (&*I == RetainRV) | 
|  | return false; | 
|  | } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | BasicBlock *RetainRVParent = RetainRV->getParent(); | 
|  | if (II->getNormalDest() == RetainRVParent) { | 
|  | BasicBlock::const_iterator I = RetainRVParent->begin(); | 
|  | while (IsNoopInstruction(&*I)) | 
|  | ++I; | 
|  | if (&*I == RetainRV) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for being preceded by an objc_autoreleaseReturnValue on the same | 
|  | // pointer. In this case, we can delete the pair. | 
|  | BasicBlock::iterator I = RetainRV->getIterator(), | 
|  | Begin = RetainRV->getParent()->begin(); | 
|  | if (I != Begin) { | 
|  | do | 
|  | --I; | 
|  | while (I != Begin && IsNoopInstruction(&*I)); | 
|  | if (GetBasicARCInstKind(&*I) == ARCInstKind::AutoreleaseRV && | 
|  | GetArgRCIdentityRoot(&*I) == Arg) { | 
|  | Changed = true; | 
|  | ++NumPeeps; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n" | 
|  | << "Erasing " << *RetainRV << "\n"); | 
|  |  | 
|  | EraseInstruction(&*I); | 
|  | EraseInstruction(RetainRV); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn it to a plain objc_retain. | 
|  | Changed = true; | 
|  | ++NumPeeps; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " | 
|  | "objc_retain since the operand is not a return value.\n" | 
|  | "Old = " | 
|  | << *RetainRV << "\n"); | 
|  |  | 
|  | Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain); | 
|  | cast<CallInst>(RetainRV)->setCalledFunction(NewDecl); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not | 
|  | /// used as a return value. | 
|  | void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, | 
|  | Instruction *AutoreleaseRV, | 
|  | ARCInstKind &Class) { | 
|  | // Check for a return of the pointer value. | 
|  | const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV); | 
|  |  | 
|  | // If the argument is ConstantPointerNull or UndefValue, its other users | 
|  | // aren't actually interesting to look at. | 
|  | if (isa<ConstantData>(Ptr)) | 
|  | return; | 
|  |  | 
|  | SmallVector<const Value *, 2> Users; | 
|  | Users.push_back(Ptr); | 
|  |  | 
|  | // Add PHIs that are equivalent to Ptr to Users. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(Ptr)) | 
|  | getEquivalentPHIs(*PN, Users); | 
|  |  | 
|  | do { | 
|  | Ptr = Users.pop_back_val(); | 
|  | for (const User *U : Ptr->users()) { | 
|  | if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV) | 
|  | return; | 
|  | if (isa<BitCastInst>(U)) | 
|  | Users.push_back(U); | 
|  | } | 
|  | } while (!Users.empty()); | 
|  |  | 
|  | Changed = true; | 
|  | ++NumPeeps; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Transforming objc_autoreleaseReturnValue => " | 
|  | "objc_autorelease since its operand is not used as a return " | 
|  | "value.\n" | 
|  | "Old = " | 
|  | << *AutoreleaseRV << "\n"); | 
|  |  | 
|  | CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); | 
|  | Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease); | 
|  | AutoreleaseRVCI->setCalledFunction(NewDecl); | 
|  | AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. | 
|  | Class = ARCInstKind::Autorelease; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | Instruction * | 
|  | CloneCallInstForBB(CallInst &CI, BasicBlock &BB, | 
|  | const DenseMap<BasicBlock *, ColorVector> &BlockColors) { | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) { | 
|  | auto Bundle = CI.getOperandBundleAt(I); | 
|  | // Funclets will be reassociated in the future. | 
|  | if (Bundle.getTagID() == LLVMContext::OB_funclet) | 
|  | continue; | 
|  | OpBundles.emplace_back(Bundle); | 
|  | } | 
|  |  | 
|  | if (!BlockColors.empty()) { | 
|  | const ColorVector &CV = BlockColors.find(&BB)->second; | 
|  | assert(CV.size() == 1 && "non-unique color for block!"); | 
|  | Instruction *EHPad = CV.front()->getFirstNonPHI(); | 
|  | if (EHPad->isEHPad()) | 
|  | OpBundles.emplace_back("funclet", EHPad); | 
|  | } | 
|  |  | 
|  | return CallInst::Create(&CI, OpBundles); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Visit each call, one at a time, and make simplifications without doing any | 
|  | /// additional analysis. | 
|  | void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n"); | 
|  | // Reset all the flags in preparation for recomputing them. | 
|  | UsedInThisFunction = 0; | 
|  |  | 
|  | DenseMap<BasicBlock *, ColorVector> BlockColors; | 
|  | if (F.hasPersonalityFn() && | 
|  | isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) | 
|  | BlockColors = colorEHFunclets(F); | 
|  |  | 
|  | // Visit all objc_* calls in F. | 
|  | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
|  | Instruction *Inst = &*I++; | 
|  |  | 
|  | ARCInstKind Class = GetBasicARCInstKind(Inst); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n"); | 
|  |  | 
|  | switch (Class) { | 
|  | default: break; | 
|  |  | 
|  | // Delete no-op casts. These function calls have special semantics, but | 
|  | // the semantics are entirely implemented via lowering in the front-end, | 
|  | // so by the time they reach the optimizer, they are just no-op calls | 
|  | // which return their argument. | 
|  | // | 
|  | // There are gray areas here, as the ability to cast reference-counted | 
|  | // pointers to raw void* and back allows code to break ARC assumptions, | 
|  | // however these are currently considered to be unimportant. | 
|  | case ARCInstKind::NoopCast: | 
|  | Changed = true; | 
|  | ++NumNoops; | 
|  | LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n"); | 
|  | EraseInstruction(Inst); | 
|  | continue; | 
|  |  | 
|  | // If the pointer-to-weak-pointer is null, it's undefined behavior. | 
|  | case ARCInstKind::StoreWeak: | 
|  | case ARCInstKind::LoadWeak: | 
|  | case ARCInstKind::LoadWeakRetained: | 
|  | case ARCInstKind::InitWeak: | 
|  | case ARCInstKind::DestroyWeak: { | 
|  | CallInst *CI = cast<CallInst>(Inst); | 
|  | if (IsNullOrUndef(CI->getArgOperand(0))) { | 
|  | Changed = true; | 
|  | Type *Ty = CI->getArgOperand(0)->getType(); | 
|  | new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), | 
|  | Constant::getNullValue(Ty), | 
|  | CI); | 
|  | Value *NewValue = UndefValue::get(CI->getType()); | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." | 
|  | "\nOld = " | 
|  | << *CI << "\nNew = " << *NewValue << "\n"); | 
|  | CI->replaceAllUsesWith(NewValue); | 
|  | CI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::CopyWeak: | 
|  | case ARCInstKind::MoveWeak: { | 
|  | CallInst *CI = cast<CallInst>(Inst); | 
|  | if (IsNullOrUndef(CI->getArgOperand(0)) || | 
|  | IsNullOrUndef(CI->getArgOperand(1))) { | 
|  | Changed = true; | 
|  | Type *Ty = CI->getArgOperand(0)->getType(); | 
|  | new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), | 
|  | Constant::getNullValue(Ty), | 
|  | CI); | 
|  |  | 
|  | Value *NewValue = UndefValue::get(CI->getType()); | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." | 
|  | "\nOld = " | 
|  | << *CI << "\nNew = " << *NewValue << "\n"); | 
|  |  | 
|  | CI->replaceAllUsesWith(NewValue); | 
|  | CI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::RetainRV: | 
|  | if (OptimizeRetainRVCall(F, Inst)) | 
|  | continue; | 
|  | break; | 
|  | case ARCInstKind::AutoreleaseRV: | 
|  | OptimizeAutoreleaseRVCall(F, Inst, Class); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. | 
|  | if (IsAutorelease(Class) && Inst->use_empty()) { | 
|  | CallInst *Call = cast<CallInst>(Inst); | 
|  | const Value *Arg = Call->getArgOperand(0); | 
|  | Arg = FindSingleUseIdentifiedObject(Arg); | 
|  | if (Arg) { | 
|  | Changed = true; | 
|  | ++NumAutoreleases; | 
|  |  | 
|  | // Create the declaration lazily. | 
|  | LLVMContext &C = Inst->getContext(); | 
|  |  | 
|  | Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release); | 
|  | CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "", | 
|  | Call); | 
|  | NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), | 
|  | MDNode::get(C, None)); | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " | 
|  | "since x is otherwise unused.\nOld: " | 
|  | << *Call << "\nNew: " << *NewCall << "\n"); | 
|  |  | 
|  | EraseInstruction(Call); | 
|  | Inst = NewCall; | 
|  | Class = ARCInstKind::Release; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For functions which can never be passed stack arguments, add | 
|  | // a tail keyword. | 
|  | if (IsAlwaysTail(Class)) { | 
|  | Changed = true; | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Adding tail keyword to function since it can never be " | 
|  | "passed stack args: " | 
|  | << *Inst << "\n"); | 
|  | cast<CallInst>(Inst)->setTailCall(); | 
|  | } | 
|  |  | 
|  | // Ensure that functions that can never have a "tail" keyword due to the | 
|  | // semantics of ARC truly do not do so. | 
|  | if (IsNeverTail(Class)) { | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst | 
|  | << "\n"); | 
|  | cast<CallInst>(Inst)->setTailCall(false); | 
|  | } | 
|  |  | 
|  | // Set nounwind as needed. | 
|  | if (IsNoThrow(Class)) { | 
|  | Changed = true; | 
|  | LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " | 
|  | << *Inst << "\n"); | 
|  | cast<CallInst>(Inst)->setDoesNotThrow(); | 
|  | } | 
|  |  | 
|  | if (!IsNoopOnNull(Class)) { | 
|  | UsedInThisFunction |= 1 << unsigned(Class); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const Value *Arg = GetArgRCIdentityRoot(Inst); | 
|  |  | 
|  | // ARC calls with null are no-ops. Delete them. | 
|  | if (IsNullOrUndef(Arg)) { | 
|  | Changed = true; | 
|  | ++NumNoops; | 
|  | LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst | 
|  | << "\n"); | 
|  | EraseInstruction(Inst); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Keep track of which of retain, release, autorelease, and retain_block | 
|  | // are actually present in this function. | 
|  | UsedInThisFunction |= 1 << unsigned(Class); | 
|  |  | 
|  | // If Arg is a PHI, and one or more incoming values to the | 
|  | // PHI are null, and the call is control-equivalent to the PHI, and there | 
|  | // are no relevant side effects between the PHI and the call, and the call | 
|  | // is not a release that doesn't have the clang.imprecise_release tag, the | 
|  | // call could be pushed up to just those paths with non-null incoming | 
|  | // values. For now, don't bother splitting critical edges for this. | 
|  | if (Class == ARCInstKind::Release && | 
|  | !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease))) | 
|  | continue; | 
|  |  | 
|  | SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; | 
|  | Worklist.push_back(std::make_pair(Inst, Arg)); | 
|  | do { | 
|  | std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); | 
|  | Inst = Pair.first; | 
|  | Arg = Pair.second; | 
|  |  | 
|  | const PHINode *PN = dyn_cast<PHINode>(Arg); | 
|  | if (!PN) continue; | 
|  |  | 
|  | // Determine if the PHI has any null operands, or any incoming | 
|  | // critical edges. | 
|  | bool HasNull = false; | 
|  | bool HasCriticalEdges = false; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *Incoming = | 
|  | GetRCIdentityRoot(PN->getIncomingValue(i)); | 
|  | if (IsNullOrUndef(Incoming)) | 
|  | HasNull = true; | 
|  | else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back()) | 
|  | .getNumSuccessors() != 1) { | 
|  | HasCriticalEdges = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we have null operands and no critical edges, optimize. | 
|  | if (!HasCriticalEdges && HasNull) { | 
|  | SmallPtrSet<Instruction *, 4> DependingInstructions; | 
|  | SmallPtrSet<const BasicBlock *, 4> Visited; | 
|  |  | 
|  | // Check that there is nothing that cares about the reference | 
|  | // count between the call and the phi. | 
|  | switch (Class) { | 
|  | case ARCInstKind::Retain: | 
|  | case ARCInstKind::RetainBlock: | 
|  | // These can always be moved up. | 
|  | break; | 
|  | case ARCInstKind::Release: | 
|  | // These can't be moved across things that care about the retain | 
|  | // count. | 
|  | FindDependencies(NeedsPositiveRetainCount, Arg, | 
|  | Inst->getParent(), Inst, | 
|  | DependingInstructions, Visited, PA); | 
|  | break; | 
|  | case ARCInstKind::Autorelease: | 
|  | // These can't be moved across autorelease pool scope boundaries. | 
|  | FindDependencies(AutoreleasePoolBoundary, Arg, | 
|  | Inst->getParent(), Inst, | 
|  | DependingInstructions, Visited, PA); | 
|  | break; | 
|  | case ARCInstKind::ClaimRV: | 
|  | case ARCInstKind::RetainRV: | 
|  | case ARCInstKind::AutoreleaseRV: | 
|  | // Don't move these; the RV optimization depends on the autoreleaseRV | 
|  | // being tail called, and the retainRV being immediately after a call | 
|  | // (which might still happen if we get lucky with codegen layout, but | 
|  | // it's not worth taking the chance). | 
|  | continue; | 
|  | default: | 
|  | llvm_unreachable("Invalid dependence flavor"); | 
|  | } | 
|  |  | 
|  | if (DependingInstructions.size() == 1 && | 
|  | *DependingInstructions.begin() == PN) { | 
|  | Changed = true; | 
|  | ++NumPartialNoops; | 
|  | // Clone the call into each predecessor that has a non-null value. | 
|  | CallInst *CInst = cast<CallInst>(Inst); | 
|  | Type *ParamTy = CInst->getArgOperand(0)->getType(); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *Incoming = | 
|  | GetRCIdentityRoot(PN->getIncomingValue(i)); | 
|  | if (!IsNullOrUndef(Incoming)) { | 
|  | Value *Op = PN->getIncomingValue(i); | 
|  | Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); | 
|  | CallInst *Clone = cast<CallInst>(CloneCallInstForBB( | 
|  | *CInst, *InsertPos->getParent(), BlockColors)); | 
|  | if (Op->getType() != ParamTy) | 
|  | Op = new BitCastInst(Op, ParamTy, "", InsertPos); | 
|  | Clone->setArgOperand(0, Op); | 
|  | Clone->insertBefore(InsertPos); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Cloning " << *CInst | 
|  | << "\n" | 
|  | "And inserting clone at " | 
|  | << *InsertPos << "\n"); | 
|  | Worklist.push_back(std::make_pair(Clone, Incoming)); | 
|  | } | 
|  | } | 
|  | // Erase the original call. | 
|  | LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); | 
|  | EraseInstruction(CInst); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If we have a top down pointer in the S_Use state, make sure that there are | 
|  | /// no CFG hazards by checking the states of various bottom up pointers. | 
|  | static void CheckForUseCFGHazard(const Sequence SuccSSeq, | 
|  | const bool SuccSRRIKnownSafe, | 
|  | TopDownPtrState &S, | 
|  | bool &SomeSuccHasSame, | 
|  | bool &AllSuccsHaveSame, | 
|  | bool &NotAllSeqEqualButKnownSafe, | 
|  | bool &ShouldContinue) { | 
|  | switch (SuccSSeq) { | 
|  | case S_CanRelease: { | 
|  | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { | 
|  | S.ClearSequenceProgress(); | 
|  | break; | 
|  | } | 
|  | S.SetCFGHazardAfflicted(true); | 
|  | ShouldContinue = true; | 
|  | break; | 
|  | } | 
|  | case S_Use: | 
|  | SomeSuccHasSame = true; | 
|  | break; | 
|  | case S_Stop: | 
|  | case S_Release: | 
|  | case S_MovableRelease: | 
|  | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) | 
|  | AllSuccsHaveSame = false; | 
|  | else | 
|  | NotAllSeqEqualButKnownSafe = true; | 
|  | break; | 
|  | case S_Retain: | 
|  | llvm_unreachable("bottom-up pointer in retain state!"); | 
|  | case S_None: | 
|  | llvm_unreachable("This should have been handled earlier."); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If we have a Top Down pointer in the S_CanRelease state, make sure that | 
|  | /// there are no CFG hazards by checking the states of various bottom up | 
|  | /// pointers. | 
|  | static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, | 
|  | const bool SuccSRRIKnownSafe, | 
|  | TopDownPtrState &S, | 
|  | bool &SomeSuccHasSame, | 
|  | bool &AllSuccsHaveSame, | 
|  | bool &NotAllSeqEqualButKnownSafe) { | 
|  | switch (SuccSSeq) { | 
|  | case S_CanRelease: | 
|  | SomeSuccHasSame = true; | 
|  | break; | 
|  | case S_Stop: | 
|  | case S_Release: | 
|  | case S_MovableRelease: | 
|  | case S_Use: | 
|  | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) | 
|  | AllSuccsHaveSame = false; | 
|  | else | 
|  | NotAllSeqEqualButKnownSafe = true; | 
|  | break; | 
|  | case S_Retain: | 
|  | llvm_unreachable("bottom-up pointer in retain state!"); | 
|  | case S_None: | 
|  | llvm_unreachable("This should have been handled earlier."); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check for critical edges, loop boundaries, irreducible control flow, or | 
|  | /// other CFG structures where moving code across the edge would result in it | 
|  | /// being executed more. | 
|  | void | 
|  | ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BBState &MyStates) const { | 
|  | // If any top-down local-use or possible-dec has a succ which is earlier in | 
|  | // the sequence, forget it. | 
|  | for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); | 
|  | I != E; ++I) { | 
|  | TopDownPtrState &S = I->second; | 
|  | const Sequence Seq = I->second.GetSeq(); | 
|  |  | 
|  | // We only care about S_Retain, S_CanRelease, and S_Use. | 
|  | if (Seq == S_None) | 
|  | continue; | 
|  |  | 
|  | // Make sure that if extra top down states are added in the future that this | 
|  | // code is updated to handle it. | 
|  | assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && | 
|  | "Unknown top down sequence state."); | 
|  |  | 
|  | const Value *Arg = I->first; | 
|  | const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); | 
|  | bool SomeSuccHasSame = false; | 
|  | bool AllSuccsHaveSame = true; | 
|  | bool NotAllSeqEqualButKnownSafe = false; | 
|  |  | 
|  | succ_const_iterator SI(TI), SE(TI, false); | 
|  |  | 
|  | for (; SI != SE; ++SI) { | 
|  | // If VisitBottomUp has pointer information for this successor, take | 
|  | // what we know about it. | 
|  | const DenseMap<const BasicBlock *, BBState>::iterator BBI = | 
|  | BBStates.find(*SI); | 
|  | assert(BBI != BBStates.end()); | 
|  | const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); | 
|  | const Sequence SuccSSeq = SuccS.GetSeq(); | 
|  |  | 
|  | // If bottom up, the pointer is in an S_None state, clear the sequence | 
|  | // progress since the sequence in the bottom up state finished | 
|  | // suggesting a mismatch in between retains/releases. This is true for | 
|  | // all three cases that we are handling here: S_Retain, S_Use, and | 
|  | // S_CanRelease. | 
|  | if (SuccSSeq == S_None) { | 
|  | S.ClearSequenceProgress(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have S_Use or S_CanRelease, perform our check for cfg hazard | 
|  | // checks. | 
|  | const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); | 
|  |  | 
|  | // *NOTE* We do not use Seq from above here since we are allowing for | 
|  | // S.GetSeq() to change while we are visiting basic blocks. | 
|  | switch(S.GetSeq()) { | 
|  | case S_Use: { | 
|  | bool ShouldContinue = false; | 
|  | CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, | 
|  | AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, | 
|  | ShouldContinue); | 
|  | if (ShouldContinue) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | case S_CanRelease: | 
|  | CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, | 
|  | SomeSuccHasSame, AllSuccsHaveSame, | 
|  | NotAllSeqEqualButKnownSafe); | 
|  | break; | 
|  | case S_Retain: | 
|  | case S_None: | 
|  | case S_Stop: | 
|  | case S_Release: | 
|  | case S_MovableRelease: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the state at the other end of any of the successor edges | 
|  | // matches the current state, require all edges to match. This | 
|  | // guards against loops in the middle of a sequence. | 
|  | if (SomeSuccHasSame && !AllSuccsHaveSame) { | 
|  | S.ClearSequenceProgress(); | 
|  | } else if (NotAllSeqEqualButKnownSafe) { | 
|  | // If we would have cleared the state foregoing the fact that we are known | 
|  | // safe, stop code motion. This is because whether or not it is safe to | 
|  | // remove RR pairs via KnownSafe is an orthogonal concept to whether we | 
|  | // are allowed to perform code motion. | 
|  | S.SetCFGHazardAfflicted(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ObjCARCOpt::VisitInstructionBottomUp( | 
|  | Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, | 
|  | BBState &MyStates) { | 
|  | bool NestingDetected = false; | 
|  | ARCInstKind Class = GetARCInstKind(Inst); | 
|  | const Value *Arg = nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n"); | 
|  |  | 
|  | switch (Class) { | 
|  | case ARCInstKind::Release: { | 
|  | Arg = GetArgRCIdentityRoot(Inst); | 
|  |  | 
|  | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); | 
|  | NestingDetected |= S.InitBottomUp(MDKindCache, Inst); | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::RetainBlock: | 
|  | // In OptimizeIndividualCalls, we have strength reduced all optimizable | 
|  | // objc_retainBlocks to objc_retains. Thus at this point any | 
|  | // objc_retainBlocks that we see are not optimizable. | 
|  | break; | 
|  | case ARCInstKind::Retain: | 
|  | case ARCInstKind::RetainRV: { | 
|  | Arg = GetArgRCIdentityRoot(Inst); | 
|  | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); | 
|  | if (S.MatchWithRetain()) { | 
|  | // Don't do retain+release tracking for ARCInstKind::RetainRV, because | 
|  | // it's better to let it remain as the first instruction after a call. | 
|  | if (Class != ARCInstKind::RetainRV) { | 
|  | LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n"); | 
|  | Retains[Inst] = S.GetRRInfo(); | 
|  | } | 
|  | S.ClearSequenceProgress(); | 
|  | } | 
|  | // A retain moving bottom up can be a use. | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::AutoreleasepoolPop: | 
|  | // Conservatively, clear MyStates for all known pointers. | 
|  | MyStates.clearBottomUpPointers(); | 
|  | return NestingDetected; | 
|  | case ARCInstKind::AutoreleasepoolPush: | 
|  | case ARCInstKind::None: | 
|  | // These are irrelevant. | 
|  | return NestingDetected; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Consider any other possible effects of this instruction on each | 
|  | // pointer being tracked. | 
|  | for (auto MI = MyStates.bottom_up_ptr_begin(), | 
|  | ME = MyStates.bottom_up_ptr_end(); | 
|  | MI != ME; ++MI) { | 
|  | const Value *Ptr = MI->first; | 
|  | if (Ptr == Arg) | 
|  | continue; // Handled above. | 
|  | BottomUpPtrState &S = MI->second; | 
|  |  | 
|  | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) | 
|  | continue; | 
|  |  | 
|  | S.HandlePotentialUse(BB, Inst, Ptr, PA, Class); | 
|  | } | 
|  |  | 
|  | return NestingDetected; | 
|  | } | 
|  |  | 
|  | bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains) { | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n"); | 
|  |  | 
|  | bool NestingDetected = false; | 
|  | BBState &MyStates = BBStates[BB]; | 
|  |  | 
|  | // Merge the states from each successor to compute the initial state | 
|  | // for the current block. | 
|  | BBState::edge_iterator SI(MyStates.succ_begin()), | 
|  | SE(MyStates.succ_end()); | 
|  | if (SI != SE) { | 
|  | const BasicBlock *Succ = *SI; | 
|  | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); | 
|  | assert(I != BBStates.end()); | 
|  | MyStates.InitFromSucc(I->second); | 
|  | ++SI; | 
|  | for (; SI != SE; ++SI) { | 
|  | Succ = *SI; | 
|  | I = BBStates.find(Succ); | 
|  | assert(I != BBStates.end()); | 
|  | MyStates.MergeSucc(I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Before:\n" | 
|  | << BBStates[BB] << "\n" | 
|  | << "Performing Dataflow:\n"); | 
|  |  | 
|  | // Visit all the instructions, bottom-up. | 
|  | for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { | 
|  | Instruction *Inst = &*std::prev(I); | 
|  |  | 
|  | // Invoke instructions are visited as part of their successors (below). | 
|  | if (isa<InvokeInst>(Inst)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n"); | 
|  |  | 
|  | NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); | 
|  | } | 
|  |  | 
|  | // If there's a predecessor with an invoke, visit the invoke as if it were | 
|  | // part of this block, since we can't insert code after an invoke in its own | 
|  | // block, and we don't want to split critical edges. | 
|  | for (BBState::edge_iterator PI(MyStates.pred_begin()), | 
|  | PE(MyStates.pred_end()); PI != PE; ++PI) { | 
|  | BasicBlock *Pred = *PI; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) | 
|  | NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n"); | 
|  |  | 
|  | return NestingDetected; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, | 
|  | DenseMap<Value *, RRInfo> &Releases, | 
|  | BBState &MyStates) { | 
|  | bool NestingDetected = false; | 
|  | ARCInstKind Class = GetARCInstKind(Inst); | 
|  | const Value *Arg = nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n"); | 
|  |  | 
|  | switch (Class) { | 
|  | case ARCInstKind::RetainBlock: | 
|  | // In OptimizeIndividualCalls, we have strength reduced all optimizable | 
|  | // objc_retainBlocks to objc_retains. Thus at this point any | 
|  | // objc_retainBlocks that we see are not optimizable. We need to break since | 
|  | // a retain can be a potential use. | 
|  | break; | 
|  | case ARCInstKind::Retain: | 
|  | case ARCInstKind::RetainRV: { | 
|  | Arg = GetArgRCIdentityRoot(Inst); | 
|  | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); | 
|  | NestingDetected |= S.InitTopDown(Class, Inst); | 
|  | // A retain can be a potential use; proceed to the generic checking | 
|  | // code below. | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::Release: { | 
|  | Arg = GetArgRCIdentityRoot(Inst); | 
|  | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); | 
|  | // Try to form a tentative pair in between this release instruction and the | 
|  | // top down pointers that we are tracking. | 
|  | if (S.MatchWithRelease(MDKindCache, Inst)) { | 
|  | // If we succeed, copy S's RRInfo into the Release -> {Retain Set | 
|  | // Map}. Then we clear S. | 
|  | LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n"); | 
|  | Releases[Inst] = S.GetRRInfo(); | 
|  | S.ClearSequenceProgress(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::AutoreleasepoolPop: | 
|  | // Conservatively, clear MyStates for all known pointers. | 
|  | MyStates.clearTopDownPointers(); | 
|  | return false; | 
|  | case ARCInstKind::AutoreleasepoolPush: | 
|  | case ARCInstKind::None: | 
|  | // These can not be uses of | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Consider any other possible effects of this instruction on each | 
|  | // pointer being tracked. | 
|  | for (auto MI = MyStates.top_down_ptr_begin(), | 
|  | ME = MyStates.top_down_ptr_end(); | 
|  | MI != ME; ++MI) { | 
|  | const Value *Ptr = MI->first; | 
|  | if (Ptr == Arg) | 
|  | continue; // Handled above. | 
|  | TopDownPtrState &S = MI->second; | 
|  | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) | 
|  | continue; | 
|  |  | 
|  | S.HandlePotentialUse(Inst, Ptr, PA, Class); | 
|  | } | 
|  |  | 
|  | return NestingDetected; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ObjCARCOpt::VisitTopDown(BasicBlock *BB, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | DenseMap<Value *, RRInfo> &Releases) { | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n"); | 
|  | bool NestingDetected = false; | 
|  | BBState &MyStates = BBStates[BB]; | 
|  |  | 
|  | // Merge the states from each predecessor to compute the initial state | 
|  | // for the current block. | 
|  | BBState::edge_iterator PI(MyStates.pred_begin()), | 
|  | PE(MyStates.pred_end()); | 
|  | if (PI != PE) { | 
|  | const BasicBlock *Pred = *PI; | 
|  | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); | 
|  | assert(I != BBStates.end()); | 
|  | MyStates.InitFromPred(I->second); | 
|  | ++PI; | 
|  | for (; PI != PE; ++PI) { | 
|  | Pred = *PI; | 
|  | I = BBStates.find(Pred); | 
|  | assert(I != BBStates.end()); | 
|  | MyStates.MergePred(I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Before:\n" | 
|  | << BBStates[BB] << "\n" | 
|  | << "Performing Dataflow:\n"); | 
|  |  | 
|  | // Visit all the instructions, top-down. | 
|  | for (Instruction &Inst : *BB) { | 
|  | LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n"); | 
|  |  | 
|  | NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n" | 
|  | << BBStates[BB] << "\n\n"); | 
|  | CheckForCFGHazards(BB, BBStates, MyStates); | 
|  | LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n"); | 
|  | return NestingDetected; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ComputePostOrders(Function &F, | 
|  | SmallVectorImpl<BasicBlock *> &PostOrder, | 
|  | SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, | 
|  | unsigned NoObjCARCExceptionsMDKind, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates) { | 
|  | /// The visited set, for doing DFS walks. | 
|  | SmallPtrSet<BasicBlock *, 16> Visited; | 
|  |  | 
|  | // Do DFS, computing the PostOrder. | 
|  | SmallPtrSet<BasicBlock *, 16> OnStack; | 
|  | SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; | 
|  |  | 
|  | // Functions always have exactly one entry block, and we don't have | 
|  | // any other block that we treat like an entry block. | 
|  | BasicBlock *EntryBB = &F.getEntryBlock(); | 
|  | BBState &MyStates = BBStates[EntryBB]; | 
|  | MyStates.SetAsEntry(); | 
|  | TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back()); | 
|  | SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); | 
|  | Visited.insert(EntryBB); | 
|  | OnStack.insert(EntryBB); | 
|  | do { | 
|  | dfs_next_succ: | 
|  | BasicBlock *CurrBB = SuccStack.back().first; | 
|  | TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back()); | 
|  | succ_iterator SE(TI, false); | 
|  |  | 
|  | while (SuccStack.back().second != SE) { | 
|  | BasicBlock *SuccBB = *SuccStack.back().second++; | 
|  | if (Visited.insert(SuccBB).second) { | 
|  | TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back()); | 
|  | SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); | 
|  | BBStates[CurrBB].addSucc(SuccBB); | 
|  | BBState &SuccStates = BBStates[SuccBB]; | 
|  | SuccStates.addPred(CurrBB); | 
|  | OnStack.insert(SuccBB); | 
|  | goto dfs_next_succ; | 
|  | } | 
|  |  | 
|  | if (!OnStack.count(SuccBB)) { | 
|  | BBStates[CurrBB].addSucc(SuccBB); | 
|  | BBStates[SuccBB].addPred(CurrBB); | 
|  | } | 
|  | } | 
|  | OnStack.erase(CurrBB); | 
|  | PostOrder.push_back(CurrBB); | 
|  | SuccStack.pop_back(); | 
|  | } while (!SuccStack.empty()); | 
|  |  | 
|  | Visited.clear(); | 
|  |  | 
|  | // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. | 
|  | // Functions may have many exits, and there also blocks which we treat | 
|  | // as exits due to ignored edges. | 
|  | SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; | 
|  | for (BasicBlock &ExitBB : F) { | 
|  | BBState &MyStates = BBStates[&ExitBB]; | 
|  | if (!MyStates.isExit()) | 
|  | continue; | 
|  |  | 
|  | MyStates.SetAsExit(); | 
|  |  | 
|  | PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin())); | 
|  | Visited.insert(&ExitBB); | 
|  | while (!PredStack.empty()) { | 
|  | reverse_dfs_next_succ: | 
|  | BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); | 
|  | while (PredStack.back().second != PE) { | 
|  | BasicBlock *BB = *PredStack.back().second++; | 
|  | if (Visited.insert(BB).second) { | 
|  | PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); | 
|  | goto reverse_dfs_next_succ; | 
|  | } | 
|  | } | 
|  | ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit the function both top-down and bottom-up. | 
|  | bool ObjCARCOpt::Visit(Function &F, | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases) { | 
|  | // Use reverse-postorder traversals, because we magically know that loops | 
|  | // will be well behaved, i.e. they won't repeatedly call retain on a single | 
|  | // pointer without doing a release. We can't use the ReversePostOrderTraversal | 
|  | // class here because we want the reverse-CFG postorder to consider each | 
|  | // function exit point, and we want to ignore selected cycle edges. | 
|  | SmallVector<BasicBlock *, 16> PostOrder; | 
|  | SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; | 
|  | ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, | 
|  | MDKindCache.get(ARCMDKindID::NoObjCARCExceptions), | 
|  | BBStates); | 
|  |  | 
|  | // Use reverse-postorder on the reverse CFG for bottom-up. | 
|  | bool BottomUpNestingDetected = false; | 
|  | for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) | 
|  | BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); | 
|  |  | 
|  | // Use reverse-postorder for top-down. | 
|  | bool TopDownNestingDetected = false; | 
|  | for (BasicBlock *BB : llvm::reverse(PostOrder)) | 
|  | TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases); | 
|  |  | 
|  | return TopDownNestingDetected && BottomUpNestingDetected; | 
|  | } | 
|  |  | 
|  | /// Move the calls in RetainsToMove and ReleasesToMove. | 
|  | void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, | 
|  | RRInfo &ReleasesToMove, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, | 
|  | SmallVectorImpl<Instruction *> &DeadInsts, | 
|  | Module *M) { | 
|  | Type *ArgTy = Arg->getType(); | 
|  | Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n"); | 
|  |  | 
|  | // Insert the new retain and release calls. | 
|  | for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) { | 
|  | Value *MyArg = ArgTy == ParamTy ? Arg : | 
|  | new BitCastInst(Arg, ParamTy, "", InsertPt); | 
|  | Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); | 
|  | CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); | 
|  | Call->setDoesNotThrow(); | 
|  | Call->setTailCall(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call | 
|  | << "\n" | 
|  | "At insertion point: " | 
|  | << *InsertPt << "\n"); | 
|  | } | 
|  | for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) { | 
|  | Value *MyArg = ArgTy == ParamTy ? Arg : | 
|  | new BitCastInst(Arg, ParamTy, "", InsertPt); | 
|  | Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release); | 
|  | CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); | 
|  | // Attach a clang.imprecise_release metadata tag, if appropriate. | 
|  | if (MDNode *M = ReleasesToMove.ReleaseMetadata) | 
|  | Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M); | 
|  | Call->setDoesNotThrow(); | 
|  | if (ReleasesToMove.IsTailCallRelease) | 
|  | Call->setTailCall(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call | 
|  | << "\n" | 
|  | "At insertion point: " | 
|  | << *InsertPt << "\n"); | 
|  | } | 
|  |  | 
|  | // Delete the original retain and release calls. | 
|  | for (Instruction *OrigRetain : RetainsToMove.Calls) { | 
|  | Retains.blot(OrigRetain); | 
|  | DeadInsts.push_back(OrigRetain); | 
|  | LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n"); | 
|  | } | 
|  | for (Instruction *OrigRelease : ReleasesToMove.Calls) { | 
|  | Releases.erase(OrigRelease); | 
|  | DeadInsts.push_back(OrigRelease); | 
|  | LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ObjCARCOpt::PairUpRetainsAndReleases( | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, Module *M, | 
|  | Instruction *Retain, | 
|  | SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, | 
|  | RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, | 
|  | bool &AnyPairsCompletelyEliminated) { | 
|  | // If a pair happens in a region where it is known that the reference count | 
|  | // is already incremented, we can similarly ignore possible decrements unless | 
|  | // we are dealing with a retainable object with multiple provenance sources. | 
|  | bool KnownSafeTD = true, KnownSafeBU = true; | 
|  | bool CFGHazardAfflicted = false; | 
|  |  | 
|  | // Connect the dots between the top-down-collected RetainsToMove and | 
|  | // bottom-up-collected ReleasesToMove to form sets of related calls. | 
|  | // This is an iterative process so that we connect multiple releases | 
|  | // to multiple retains if needed. | 
|  | unsigned OldDelta = 0; | 
|  | unsigned NewDelta = 0; | 
|  | unsigned OldCount = 0; | 
|  | unsigned NewCount = 0; | 
|  | bool FirstRelease = true; | 
|  | for (SmallVector<Instruction *, 4> NewRetains{Retain};;) { | 
|  | SmallVector<Instruction *, 4> NewReleases; | 
|  | for (Instruction *NewRetain : NewRetains) { | 
|  | auto It = Retains.find(NewRetain); | 
|  | assert(It != Retains.end()); | 
|  | const RRInfo &NewRetainRRI = It->second; | 
|  | KnownSafeTD &= NewRetainRRI.KnownSafe; | 
|  | CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted; | 
|  | for (Instruction *NewRetainRelease : NewRetainRRI.Calls) { | 
|  | auto Jt = Releases.find(NewRetainRelease); | 
|  | if (Jt == Releases.end()) | 
|  | return false; | 
|  | const RRInfo &NewRetainReleaseRRI = Jt->second; | 
|  |  | 
|  | // If the release does not have a reference to the retain as well, | 
|  | // something happened which is unaccounted for. Do not do anything. | 
|  | // | 
|  | // This can happen if we catch an additive overflow during path count | 
|  | // merging. | 
|  | if (!NewRetainReleaseRRI.Calls.count(NewRetain)) | 
|  | return false; | 
|  |  | 
|  | if (ReleasesToMove.Calls.insert(NewRetainRelease).second) { | 
|  | // If we overflow when we compute the path count, don't remove/move | 
|  | // anything. | 
|  | const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; | 
|  | unsigned PathCount = BBState::OverflowOccurredValue; | 
|  | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) | 
|  | return false; | 
|  | assert(PathCount != BBState::OverflowOccurredValue && | 
|  | "PathCount at this point can not be " | 
|  | "OverflowOccurredValue."); | 
|  | OldDelta -= PathCount; | 
|  |  | 
|  | // Merge the ReleaseMetadata and IsTailCallRelease values. | 
|  | if (FirstRelease) { | 
|  | ReleasesToMove.ReleaseMetadata = | 
|  | NewRetainReleaseRRI.ReleaseMetadata; | 
|  | ReleasesToMove.IsTailCallRelease = | 
|  | NewRetainReleaseRRI.IsTailCallRelease; | 
|  | FirstRelease = false; | 
|  | } else { | 
|  | if (ReleasesToMove.ReleaseMetadata != | 
|  | NewRetainReleaseRRI.ReleaseMetadata) | 
|  | ReleasesToMove.ReleaseMetadata = nullptr; | 
|  | if (ReleasesToMove.IsTailCallRelease != | 
|  | NewRetainReleaseRRI.IsTailCallRelease) | 
|  | ReleasesToMove.IsTailCallRelease = false; | 
|  | } | 
|  |  | 
|  | // Collect the optimal insertion points. | 
|  | if (!KnownSafe) | 
|  | for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) { | 
|  | if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) { | 
|  | // If we overflow when we compute the path count, don't | 
|  | // remove/move anything. | 
|  | const BBState &RIPBBState = BBStates[RIP->getParent()]; | 
|  | PathCount = BBState::OverflowOccurredValue; | 
|  | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) | 
|  | return false; | 
|  | assert(PathCount != BBState::OverflowOccurredValue && | 
|  | "PathCount at this point can not be " | 
|  | "OverflowOccurredValue."); | 
|  | NewDelta -= PathCount; | 
|  | } | 
|  | } | 
|  | NewReleases.push_back(NewRetainRelease); | 
|  | } | 
|  | } | 
|  | } | 
|  | NewRetains.clear(); | 
|  | if (NewReleases.empty()) break; | 
|  |  | 
|  | // Back the other way. | 
|  | for (Instruction *NewRelease : NewReleases) { | 
|  | auto It = Releases.find(NewRelease); | 
|  | assert(It != Releases.end()); | 
|  | const RRInfo &NewReleaseRRI = It->second; | 
|  | KnownSafeBU &= NewReleaseRRI.KnownSafe; | 
|  | CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; | 
|  | for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) { | 
|  | auto Jt = Retains.find(NewReleaseRetain); | 
|  | if (Jt == Retains.end()) | 
|  | return false; | 
|  | const RRInfo &NewReleaseRetainRRI = Jt->second; | 
|  |  | 
|  | // If the retain does not have a reference to the release as well, | 
|  | // something happened which is unaccounted for. Do not do anything. | 
|  | // | 
|  | // This can happen if we catch an additive overflow during path count | 
|  | // merging. | 
|  | if (!NewReleaseRetainRRI.Calls.count(NewRelease)) | 
|  | return false; | 
|  |  | 
|  | if (RetainsToMove.Calls.insert(NewReleaseRetain).second) { | 
|  | // If we overflow when we compute the path count, don't remove/move | 
|  | // anything. | 
|  | const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; | 
|  | unsigned PathCount = BBState::OverflowOccurredValue; | 
|  | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) | 
|  | return false; | 
|  | assert(PathCount != BBState::OverflowOccurredValue && | 
|  | "PathCount at this point can not be " | 
|  | "OverflowOccurredValue."); | 
|  | OldDelta += PathCount; | 
|  | OldCount += PathCount; | 
|  |  | 
|  | // Collect the optimal insertion points. | 
|  | if (!KnownSafe) | 
|  | for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) { | 
|  | if (RetainsToMove.ReverseInsertPts.insert(RIP).second) { | 
|  | // If we overflow when we compute the path count, don't | 
|  | // remove/move anything. | 
|  | const BBState &RIPBBState = BBStates[RIP->getParent()]; | 
|  |  | 
|  | PathCount = BBState::OverflowOccurredValue; | 
|  | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) | 
|  | return false; | 
|  | assert(PathCount != BBState::OverflowOccurredValue && | 
|  | "PathCount at this point can not be " | 
|  | "OverflowOccurredValue."); | 
|  | NewDelta += PathCount; | 
|  | NewCount += PathCount; | 
|  | } | 
|  | } | 
|  | NewRetains.push_back(NewReleaseRetain); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (NewRetains.empty()) break; | 
|  | } | 
|  |  | 
|  | // We can only remove pointers if we are known safe in both directions. | 
|  | bool UnconditionallySafe = KnownSafeTD && KnownSafeBU; | 
|  | if (UnconditionallySafe) { | 
|  | RetainsToMove.ReverseInsertPts.clear(); | 
|  | ReleasesToMove.ReverseInsertPts.clear(); | 
|  | NewCount = 0; | 
|  | } else { | 
|  | // Determine whether the new insertion points we computed preserve the | 
|  | // balance of retain and release calls through the program. | 
|  | // TODO: If the fully aggressive solution isn't valid, try to find a | 
|  | // less aggressive solution which is. | 
|  | if (NewDelta != 0) | 
|  | return false; | 
|  |  | 
|  | // At this point, we are not going to remove any RR pairs, but we still are | 
|  | // able to move RR pairs. If one of our pointers is afflicted with | 
|  | // CFGHazards, we cannot perform such code motion so exit early. | 
|  | const bool WillPerformCodeMotion = | 
|  | !RetainsToMove.ReverseInsertPts.empty() || | 
|  | !ReleasesToMove.ReverseInsertPts.empty(); | 
|  | if (CFGHazardAfflicted && WillPerformCodeMotion) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine whether the original call points are balanced in the retain and | 
|  | // release calls through the program. If not, conservatively don't touch | 
|  | // them. | 
|  | // TODO: It's theoretically possible to do code motion in this case, as | 
|  | // long as the existing imbalances are maintained. | 
|  | if (OldDelta != 0) | 
|  | return false; | 
|  |  | 
|  | Changed = true; | 
|  | assert(OldCount != 0 && "Unreachable code?"); | 
|  | NumRRs += OldCount - NewCount; | 
|  | // Set to true if we completely removed any RR pairs. | 
|  | AnyPairsCompletelyEliminated = NewCount == 0; | 
|  |  | 
|  | // We can move calls! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Identify pairings between the retains and releases, and delete and/or move | 
|  | /// them. | 
|  | bool ObjCARCOpt::PerformCodePlacement( | 
|  | DenseMap<const BasicBlock *, BBState> &BBStates, | 
|  | BlotMapVector<Value *, RRInfo> &Retains, | 
|  | DenseMap<Value *, RRInfo> &Releases, Module *M) { | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n"); | 
|  |  | 
|  | bool AnyPairsCompletelyEliminated = false; | 
|  | SmallVector<Instruction *, 8> DeadInsts; | 
|  |  | 
|  | // Visit each retain. | 
|  | for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), | 
|  | E = Retains.end(); | 
|  | I != E; ++I) { | 
|  | Value *V = I->first; | 
|  | if (!V) continue; // blotted | 
|  |  | 
|  | Instruction *Retain = cast<Instruction>(V); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n"); | 
|  |  | 
|  | Value *Arg = GetArgRCIdentityRoot(Retain); | 
|  |  | 
|  | // If the object being released is in static or stack storage, we know it's | 
|  | // not being managed by ObjC reference counting, so we can delete pairs | 
|  | // regardless of what possible decrements or uses lie between them. | 
|  | bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); | 
|  |  | 
|  | // A constant pointer can't be pointing to an object on the heap. It may | 
|  | // be reference-counted, but it won't be deleted. | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) | 
|  | if (const GlobalVariable *GV = | 
|  | dyn_cast<GlobalVariable>( | 
|  | GetRCIdentityRoot(LI->getPointerOperand()))) | 
|  | if (GV->isConstant()) | 
|  | KnownSafe = true; | 
|  |  | 
|  | // Connect the dots between the top-down-collected RetainsToMove and | 
|  | // bottom-up-collected ReleasesToMove to form sets of related calls. | 
|  | RRInfo RetainsToMove, ReleasesToMove; | 
|  |  | 
|  | bool PerformMoveCalls = PairUpRetainsAndReleases( | 
|  | BBStates, Retains, Releases, M, Retain, DeadInsts, | 
|  | RetainsToMove, ReleasesToMove, Arg, KnownSafe, | 
|  | AnyPairsCompletelyEliminated); | 
|  |  | 
|  | if (PerformMoveCalls) { | 
|  | // Ok, everything checks out and we're all set. Let's move/delete some | 
|  | // code! | 
|  | MoveCalls(Arg, RetainsToMove, ReleasesToMove, | 
|  | Retains, Releases, DeadInsts, M); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we're done moving everything, we can delete the newly dead | 
|  | // instructions, as we no longer need them as insert points. | 
|  | while (!DeadInsts.empty()) | 
|  | EraseInstruction(DeadInsts.pop_back_val()); | 
|  |  | 
|  | return AnyPairsCompletelyEliminated; | 
|  | } | 
|  |  | 
|  | /// Weak pointer optimizations. | 
|  | void ObjCARCOpt::OptimizeWeakCalls(Function &F) { | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n"); | 
|  |  | 
|  | // First, do memdep-style RLE and S2L optimizations. We can't use memdep | 
|  | // itself because it uses AliasAnalysis and we need to do provenance | 
|  | // queries instead. | 
|  | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
|  | Instruction *Inst = &*I++; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n"); | 
|  |  | 
|  | ARCInstKind Class = GetBasicARCInstKind(Inst); | 
|  | if (Class != ARCInstKind::LoadWeak && | 
|  | Class != ARCInstKind::LoadWeakRetained) | 
|  | continue; | 
|  |  | 
|  | // Delete objc_loadWeak calls with no users. | 
|  | if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) { | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TODO: For now, just look for an earlier available version of this value | 
|  | // within the same block. Theoretically, we could do memdep-style non-local | 
|  | // analysis too, but that would want caching. A better approach would be to | 
|  | // use the technique that EarlyCSE uses. | 
|  | inst_iterator Current = std::prev(I); | 
|  | BasicBlock *CurrentBB = &*Current.getBasicBlockIterator(); | 
|  | for (BasicBlock::iterator B = CurrentBB->begin(), | 
|  | J = Current.getInstructionIterator(); | 
|  | J != B; --J) { | 
|  | Instruction *EarlierInst = &*std::prev(J); | 
|  | ARCInstKind EarlierClass = GetARCInstKind(EarlierInst); | 
|  | switch (EarlierClass) { | 
|  | case ARCInstKind::LoadWeak: | 
|  | case ARCInstKind::LoadWeakRetained: { | 
|  | // If this is loading from the same pointer, replace this load's value | 
|  | // with that one. | 
|  | CallInst *Call = cast<CallInst>(Inst); | 
|  | CallInst *EarlierCall = cast<CallInst>(EarlierInst); | 
|  | Value *Arg = Call->getArgOperand(0); | 
|  | Value *EarlierArg = EarlierCall->getArgOperand(0); | 
|  | switch (PA.getAA()->alias(Arg, EarlierArg)) { | 
|  | case MustAlias: | 
|  | Changed = true; | 
|  | // If the load has a builtin retain, insert a plain retain for it. | 
|  | if (Class == ARCInstKind::LoadWeakRetained) { | 
|  | Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); | 
|  | CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); | 
|  | CI->setTailCall(); | 
|  | } | 
|  | // Zap the fully redundant load. | 
|  | Call->replaceAllUsesWith(EarlierCall); | 
|  | Call->eraseFromParent(); | 
|  | goto clobbered; | 
|  | case MayAlias: | 
|  | case PartialAlias: | 
|  | goto clobbered; | 
|  | case NoAlias: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::StoreWeak: | 
|  | case ARCInstKind::InitWeak: { | 
|  | // If this is storing to the same pointer and has the same size etc. | 
|  | // replace this load's value with the stored value. | 
|  | CallInst *Call = cast<CallInst>(Inst); | 
|  | CallInst *EarlierCall = cast<CallInst>(EarlierInst); | 
|  | Value *Arg = Call->getArgOperand(0); | 
|  | Value *EarlierArg = EarlierCall->getArgOperand(0); | 
|  | switch (PA.getAA()->alias(Arg, EarlierArg)) { | 
|  | case MustAlias: | 
|  | Changed = true; | 
|  | // If the load has a builtin retain, insert a plain retain for it. | 
|  | if (Class == ARCInstKind::LoadWeakRetained) { | 
|  | Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); | 
|  | CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); | 
|  | CI->setTailCall(); | 
|  | } | 
|  | // Zap the fully redundant load. | 
|  | Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); | 
|  | Call->eraseFromParent(); | 
|  | goto clobbered; | 
|  | case MayAlias: | 
|  | case PartialAlias: | 
|  | goto clobbered; | 
|  | case NoAlias: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARCInstKind::MoveWeak: | 
|  | case ARCInstKind::CopyWeak: | 
|  | // TOOD: Grab the copied value. | 
|  | goto clobbered; | 
|  | case ARCInstKind::AutoreleasepoolPush: | 
|  | case ARCInstKind::None: | 
|  | case ARCInstKind::IntrinsicUser: | 
|  | case ARCInstKind::User: | 
|  | // Weak pointers are only modified through the weak entry points | 
|  | // (and arbitrary calls, which could call the weak entry points). | 
|  | break; | 
|  | default: | 
|  | // Anything else could modify the weak pointer. | 
|  | goto clobbered; | 
|  | } | 
|  | } | 
|  | clobbered:; | 
|  | } | 
|  |  | 
|  | // Then, for each destroyWeak with an alloca operand, check to see if | 
|  | // the alloca and all its users can be zapped. | 
|  | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
|  | Instruction *Inst = &*I++; | 
|  | ARCInstKind Class = GetBasicARCInstKind(Inst); | 
|  | if (Class != ARCInstKind::DestroyWeak) | 
|  | continue; | 
|  |  | 
|  | CallInst *Call = cast<CallInst>(Inst); | 
|  | Value *Arg = Call->getArgOperand(0); | 
|  | if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { | 
|  | for (User *U : Alloca->users()) { | 
|  | const Instruction *UserInst = cast<Instruction>(U); | 
|  | switch (GetBasicARCInstKind(UserInst)) { | 
|  | case ARCInstKind::InitWeak: | 
|  | case ARCInstKind::StoreWeak: | 
|  | case ARCInstKind::DestroyWeak: | 
|  | continue; | 
|  | default: | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | Changed = true; | 
|  | for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) { | 
|  | CallInst *UserInst = cast<CallInst>(*UI++); | 
|  | switch (GetBasicARCInstKind(UserInst)) { | 
|  | case ARCInstKind::InitWeak: | 
|  | case ARCInstKind::StoreWeak: | 
|  | // These functions return their second argument. | 
|  | UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); | 
|  | break; | 
|  | case ARCInstKind::DestroyWeak: | 
|  | // No return value. | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("alloca really is used!"); | 
|  | } | 
|  | UserInst->eraseFromParent(); | 
|  | } | 
|  | Alloca->eraseFromParent(); | 
|  | done:; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify program paths which execute sequences of retains and releases which | 
|  | /// can be eliminated. | 
|  | bool ObjCARCOpt::OptimizeSequences(Function &F) { | 
|  | // Releases, Retains - These are used to store the results of the main flow | 
|  | // analysis. These use Value* as the key instead of Instruction* so that the | 
|  | // map stays valid when we get around to rewriting code and calls get | 
|  | // replaced by arguments. | 
|  | DenseMap<Value *, RRInfo> Releases; | 
|  | BlotMapVector<Value *, RRInfo> Retains; | 
|  |  | 
|  | // This is used during the traversal of the function to track the | 
|  | // states for each identified object at each block. | 
|  | DenseMap<const BasicBlock *, BBState> BBStates; | 
|  |  | 
|  | // Analyze the CFG of the function, and all instructions. | 
|  | bool NestingDetected = Visit(F, BBStates, Retains, Releases); | 
|  |  | 
|  | // Transform. | 
|  | bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, | 
|  | Releases, | 
|  | F.getParent()); | 
|  |  | 
|  | return AnyPairsCompletelyEliminated && NestingDetected; | 
|  | } | 
|  |  | 
|  | /// Check if there is a dependent call earlier that does not have anything in | 
|  | /// between the Retain and the call that can affect the reference count of their | 
|  | /// shared pointer argument. Note that Retain need not be in BB. | 
|  | static bool | 
|  | HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain, | 
|  | SmallPtrSetImpl<Instruction *> &DepInsts, | 
|  | SmallPtrSetImpl<const BasicBlock *> &Visited, | 
|  | ProvenanceAnalysis &PA) { | 
|  | FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, | 
|  | DepInsts, Visited, PA); | 
|  | if (DepInsts.size() != 1) | 
|  | return false; | 
|  |  | 
|  | auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
|  |  | 
|  | // Check that the pointer is the return value of the call. | 
|  | if (!Call || Arg != Call) | 
|  | return false; | 
|  |  | 
|  | // Check that the call is a regular call. | 
|  | ARCInstKind Class = GetBasicARCInstKind(Call); | 
|  | return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call; | 
|  | } | 
|  |  | 
|  | /// Find a dependent retain that precedes the given autorelease for which there | 
|  | /// is nothing in between the two instructions that can affect the ref count of | 
|  | /// Arg. | 
|  | static CallInst * | 
|  | FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, | 
|  | Instruction *Autorelease, | 
|  | SmallPtrSetImpl<Instruction *> &DepInsts, | 
|  | SmallPtrSetImpl<const BasicBlock *> &Visited, | 
|  | ProvenanceAnalysis &PA) { | 
|  | FindDependencies(CanChangeRetainCount, Arg, | 
|  | BB, Autorelease, DepInsts, Visited, PA); | 
|  | if (DepInsts.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
|  |  | 
|  | // Check that we found a retain with the same argument. | 
|  | if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) || | 
|  | GetArgRCIdentityRoot(Retain) != Arg) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return Retain; | 
|  | } | 
|  |  | 
|  | /// Look for an ``autorelease'' instruction dependent on Arg such that there are | 
|  | /// no instructions dependent on Arg that need a positive ref count in between | 
|  | /// the autorelease and the ret. | 
|  | static CallInst * | 
|  | FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, | 
|  | ReturnInst *Ret, | 
|  | SmallPtrSetImpl<Instruction *> &DepInsts, | 
|  | SmallPtrSetImpl<const BasicBlock *> &V, | 
|  | ProvenanceAnalysis &PA) { | 
|  | FindDependencies(NeedsPositiveRetainCount, Arg, | 
|  | BB, Ret, DepInsts, V, PA); | 
|  | if (DepInsts.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
|  | if (!Autorelease) | 
|  | return nullptr; | 
|  | ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease); | 
|  | if (!IsAutorelease(AutoreleaseClass)) | 
|  | return nullptr; | 
|  | if (GetArgRCIdentityRoot(Autorelease) != Arg) | 
|  | return nullptr; | 
|  |  | 
|  | return Autorelease; | 
|  | } | 
|  |  | 
|  | /// Look for this pattern: | 
|  | /// \code | 
|  | ///    %call = call i8* @something(...) | 
|  | ///    %2 = call i8* @objc_retain(i8* %call) | 
|  | ///    %3 = call i8* @objc_autorelease(i8* %2) | 
|  | ///    ret i8* %3 | 
|  | /// \endcode | 
|  | /// And delete the retain and autorelease. | 
|  | void ObjCARCOpt::OptimizeReturns(Function &F) { | 
|  | if (!F.getReturnType()->isPointerTy()) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n"); | 
|  |  | 
|  | SmallPtrSet<Instruction *, 4> DependingInstructions; | 
|  | SmallPtrSet<const BasicBlock *, 4> Visited; | 
|  | for (BasicBlock &BB: F) { | 
|  | ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back()); | 
|  | if (!Ret) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n"); | 
|  |  | 
|  | const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0)); | 
|  |  | 
|  | // Look for an ``autorelease'' instruction that is a predecessor of Ret and | 
|  | // dependent on Arg such that there are no instructions dependent on Arg | 
|  | // that need a positive ref count in between the autorelease and Ret. | 
|  | CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath( | 
|  | Arg, &BB, Ret, DependingInstructions, Visited, PA); | 
|  | DependingInstructions.clear(); | 
|  | Visited.clear(); | 
|  |  | 
|  | if (!Autorelease) | 
|  | continue; | 
|  |  | 
|  | CallInst *Retain = FindPredecessorRetainWithSafePath( | 
|  | Arg, Autorelease->getParent(), Autorelease, DependingInstructions, | 
|  | Visited, PA); | 
|  | DependingInstructions.clear(); | 
|  | Visited.clear(); | 
|  |  | 
|  | if (!Retain) | 
|  | continue; | 
|  |  | 
|  | // Check that there is nothing that can affect the reference count | 
|  | // between the retain and the call.  Note that Retain need not be in BB. | 
|  | bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain, | 
|  | DependingInstructions, | 
|  | Visited, PA); | 
|  | DependingInstructions.clear(); | 
|  | Visited.clear(); | 
|  |  | 
|  | if (!HasSafePathToCall) | 
|  | continue; | 
|  |  | 
|  | // If so, we can zap the retain and autorelease. | 
|  | Changed = true; | 
|  | ++NumRets; | 
|  | LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease | 
|  | << "\n"); | 
|  | EraseInstruction(Retain); | 
|  | EraseInstruction(Autorelease); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | void | 
|  | ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { | 
|  | Statistic &NumRetains = | 
|  | AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt; | 
|  | Statistic &NumReleases = | 
|  | AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt; | 
|  |  | 
|  | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
|  | Instruction *Inst = &*I++; | 
|  | switch (GetBasicARCInstKind(Inst)) { | 
|  | default: | 
|  | break; | 
|  | case ARCInstKind::Retain: | 
|  | ++NumRetains; | 
|  | break; | 
|  | case ARCInstKind::Release: | 
|  | ++NumReleases; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool ObjCARCOpt::doInitialization(Module &M) { | 
|  | if (!EnableARCOpts) | 
|  | return false; | 
|  |  | 
|  | // If nothing in the Module uses ARC, don't do anything. | 
|  | Run = ModuleHasARC(M); | 
|  | if (!Run) | 
|  | return false; | 
|  |  | 
|  | // Intuitively, objc_retain and others are nocapture, however in practice | 
|  | // they are not, because they return their argument value. And objc_release | 
|  | // calls finalizers which can have arbitrary side effects. | 
|  | MDKindCache.init(&M); | 
|  |  | 
|  | // Initialize our runtime entry point cache. | 
|  | EP.init(&M); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ObjCARCOpt::runOnFunction(Function &F) { | 
|  | if (!EnableARCOpts) | 
|  | return false; | 
|  |  | 
|  | // If nothing in the Module uses ARC, don't do anything. | 
|  | if (!Run) | 
|  | return false; | 
|  |  | 
|  | Changed = false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() | 
|  | << " >>>" | 
|  | "\n"); | 
|  |  | 
|  | PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults()); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (AreStatisticsEnabled()) { | 
|  | GatherStatistics(F, false); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // This pass performs several distinct transformations. As a compile-time aid | 
|  | // when compiling code that isn't ObjC, skip these if the relevant ObjC | 
|  | // library functions aren't declared. | 
|  |  | 
|  | // Preliminary optimizations. This also computes UsedInThisFunction. | 
|  | OptimizeIndividualCalls(F); | 
|  |  | 
|  | // Optimizations for weak pointers. | 
|  | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) | | 
|  | (1 << unsigned(ARCInstKind::LoadWeakRetained)) | | 
|  | (1 << unsigned(ARCInstKind::StoreWeak)) | | 
|  | (1 << unsigned(ARCInstKind::InitWeak)) | | 
|  | (1 << unsigned(ARCInstKind::CopyWeak)) | | 
|  | (1 << unsigned(ARCInstKind::MoveWeak)) | | 
|  | (1 << unsigned(ARCInstKind::DestroyWeak)))) | 
|  | OptimizeWeakCalls(F); | 
|  |  | 
|  | // Optimizations for retain+release pairs. | 
|  | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) | | 
|  | (1 << unsigned(ARCInstKind::RetainRV)) | | 
|  | (1 << unsigned(ARCInstKind::RetainBlock)))) | 
|  | if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release))) | 
|  | // Run OptimizeSequences until it either stops making changes or | 
|  | // no retain+release pair nesting is detected. | 
|  | while (OptimizeSequences(F)) {} | 
|  |  | 
|  | // Optimizations if objc_autorelease is used. | 
|  | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) | | 
|  | (1 << unsigned(ARCInstKind::AutoreleaseRV)))) | 
|  | OptimizeReturns(F); | 
|  |  | 
|  | // Gather statistics after optimization. | 
|  | #ifndef NDEBUG | 
|  | if (AreStatisticsEnabled()) { | 
|  | GatherStatistics(F, true); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void ObjCARCOpt::releaseMemory() { | 
|  | PA.clear(); | 
|  | } | 
|  |  | 
|  | /// @} | 
|  | /// |