|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  |  | 
|  | <html> | 
|  | <head> | 
|  | <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA | 
|  | construction</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div> | 
|  |  | 
|  | <ul> | 
|  | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | <li>Chapter 7 | 
|  | <ol> | 
|  | <li><a href="#intro">Chapter 7 Introduction</a></li> | 
|  | <li><a href="#why">Why is this a hard problem?</a></li> | 
|  | <li><a href="#memory">Memory in LLVM</a></li> | 
|  | <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li> | 
|  | <li><a href="#adjustments">Adjusting Existing Variables for | 
|  | Mutation</a></li> | 
|  | <li><a href="#assignment">New Assignment Operator</a></li> | 
|  | <li><a href="#localvars">User-defined Local Variables</a></li> | 
|  | <li><a href="#code">Full Code Listing</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM | 
|  | tidbits</li> | 
|  | </ul> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language | 
|  | with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very | 
|  | respectable, albeit simple, <a | 
|  | href="http://en.wikipedia.org/wiki/Functional_programming">functional | 
|  | programming language</a>.  In our journey, we learned some parsing techniques, | 
|  | how to build and represent an AST, how to build LLVM IR, and how to optimize | 
|  | the resultant code as well as JIT compile it.</p> | 
|  |  | 
|  | <p>While Kaleidoscope is interesting as a functional language, the fact that it | 
|  | is functional makes it "too easy" to generate LLVM IR for it.  In particular, a | 
|  | functional language makes it very easy to build LLVM IR directly in <a | 
|  | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>. | 
|  | Since LLVM requires that the input code be in SSA form, this is a very nice | 
|  | property and it is often unclear to newcomers how to generate code for an | 
|  | imperative language with mutable variables.</p> | 
|  |  | 
|  | <p>The short (and happy) summary of this chapter is that there is no need for | 
|  | your front-end to build SSA form: LLVM provides highly tuned and well tested | 
|  | support for this, though the way it works is a bit unexpected for some.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="why">Why is this a hard problem?</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | To understand why mutable variables cause complexities in SSA construction, | 
|  | consider this extremely simple C example: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | int G, H; | 
|  | int test(_Bool Condition) { | 
|  | int X; | 
|  | if (Condition) | 
|  | X = G; | 
|  | else | 
|  | X = H; | 
|  | return X; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In this case, we have the variable "X", whose value depends on the path | 
|  | executed in the program.  Because there are two different possible values for X | 
|  | before the return instruction, a PHI node is inserted to merge the two values. | 
|  | The LLVM IR that we want for this example looks like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | @G = weak global i32 0   ; type of @G is i32* | 
|  | @H = weak global i32 0   ; type of @H is i32* | 
|  |  | 
|  | define i32 @test(i1 %Condition) { | 
|  | entry: | 
|  | br i1 %Condition, label %cond_true, label %cond_false | 
|  |  | 
|  | cond_true: | 
|  | %X.0 = load i32* @G | 
|  | br label %cond_next | 
|  |  | 
|  | cond_false: | 
|  | %X.1 = load i32* @H | 
|  | br label %cond_next | 
|  |  | 
|  | cond_next: | 
|  | %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] | 
|  | ret i32 %X.2 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In this example, the loads from the G and H global variables are explicit in | 
|  | the LLVM IR, and they live in the then/else branches of the if statement | 
|  | (cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node | 
|  | in the cond_next block selects the right value to use based on where control | 
|  | flow is coming from: if control flow comes from the cond_false block, X.2 gets | 
|  | the value of X.1.  Alternatively, if control flow comes from cond_true, it gets | 
|  | the value of X.0.  The intent of this chapter is not to explain the details of | 
|  | SSA form.  For more information, see one of the many <a | 
|  | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online | 
|  | references</a>.</p> | 
|  |  | 
|  | <p>The question for this article is "who places the phi nodes when lowering | 
|  | assignments to mutable variables?".  The issue here is that LLVM | 
|  | <em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it. | 
|  | However, SSA construction requires non-trivial algorithms and data structures, | 
|  | so it is inconvenient and wasteful for every front-end to have to reproduce this | 
|  | logic.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="memory">Memory in LLVM</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>The 'trick' here is that while LLVM does require all register values to be | 
|  | in SSA form, it does not require (or permit) memory objects to be in SSA form. | 
|  | In the example above, note that the loads from G and H are direct accesses to | 
|  | G and H: they are not renamed or versioned.  This differs from some other | 
|  | compiler systems, which do try to version memory objects.  In LLVM, instead of | 
|  | encoding dataflow analysis of memory into the LLVM IR, it is handled with <a | 
|  | href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on | 
|  | demand.</p> | 
|  |  | 
|  | <p> | 
|  | With this in mind, the high-level idea is that we want to make a stack variable | 
|  | (which lives in memory, because it is on the stack) for each mutable object in | 
|  | a function.  To take advantage of this trick, we need to talk about how LLVM | 
|  | represents stack variables. | 
|  | </p> | 
|  |  | 
|  | <p>In LLVM, all memory accesses are explicit with load/store instructions, and | 
|  | it is carefully designed not to have (or need) an "address-of" operator.  Notice | 
|  | how the type of the @G/@H global variables is actually "i32*" even though the | 
|  | variable is defined as "i32".  What this means is that @G defines <em>space</em> | 
|  | for an i32 in the global data area, but its <em>name</em> actually refers to the | 
|  | address for that space.  Stack variables work the same way, except that instead of | 
|  | being declared with global variable definitions, they are declared with the | 
|  | <a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | define i32 @example() { | 
|  | entry: | 
|  | %X = alloca i32           ; type of %X is i32*. | 
|  | ... | 
|  | %tmp = load i32* %X       ; load the stack value %X from the stack. | 
|  | %tmp2 = add i32 %tmp, 1   ; increment it | 
|  | store i32 %tmp2, i32* %X  ; store it back | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code shows an example of how you can declare and manipulate a stack | 
|  | variable in the LLVM IR.  Stack memory allocated with the alloca instruction is | 
|  | fully general: you can pass the address of the stack slot to functions, you can | 
|  | store it in other variables, etc.  In our example above, we could rewrite the | 
|  | example to use the alloca technique to avoid using a PHI node:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | @G = weak global i32 0   ; type of @G is i32* | 
|  | @H = weak global i32 0   ; type of @H is i32* | 
|  |  | 
|  | define i32 @test(i1 %Condition) { | 
|  | entry: | 
|  | %X = alloca i32           ; type of %X is i32*. | 
|  | br i1 %Condition, label %cond_true, label %cond_false | 
|  |  | 
|  | cond_true: | 
|  | %X.0 = load i32* @G | 
|  | store i32 %X.0, i32* %X   ; Update X | 
|  | br label %cond_next | 
|  |  | 
|  | cond_false: | 
|  | %X.1 = load i32* @H | 
|  | store i32 %X.1, i32* %X   ; Update X | 
|  | br label %cond_next | 
|  |  | 
|  | cond_next: | 
|  | %X.2 = load i32* %X       ; Read X | 
|  | ret i32 %X.2 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>With this, we have discovered a way to handle arbitrary mutable variables | 
|  | without the need to create Phi nodes at all:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>Each mutable variable becomes a stack allocation.</li> | 
|  | <li>Each read of the variable becomes a load from the stack.</li> | 
|  | <li>Each update of the variable becomes a store to the stack.</li> | 
|  | <li>Taking the address of a variable just uses the stack address directly.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>While this solution has solved our immediate problem, it introduced another | 
|  | one: we have now apparently introduced a lot of stack traffic for very simple | 
|  | and common operations, a major performance problem.  Fortunately for us, the | 
|  | LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles | 
|  | this case, promoting allocas like this into SSA registers, inserting Phi nodes | 
|  | as appropriate.  If you run this example through the pass, for example, you'll | 
|  | get:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | $ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b> | 
|  | @G = weak global i32 0 | 
|  | @H = weak global i32 0 | 
|  |  | 
|  | define i32 @test(i1 %Condition) { | 
|  | entry: | 
|  | br i1 %Condition, label %cond_true, label %cond_false | 
|  |  | 
|  | cond_true: | 
|  | %X.0 = load i32* @G | 
|  | br label %cond_next | 
|  |  | 
|  | cond_false: | 
|  | %X.1 = load i32* @H | 
|  | br label %cond_next | 
|  |  | 
|  | cond_next: | 
|  | %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] | 
|  | ret i32 %X.01 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The mem2reg pass implements the standard "iterated dominance frontier" | 
|  | algorithm for constructing SSA form and has a number of optimizations that speed | 
|  | up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing | 
|  | with mutable variables, and we highly recommend that you depend on it.  Note that | 
|  | mem2reg only works on variables in certain circumstances:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it | 
|  | promotes them.  It does not apply to global variables or heap allocations.</li> | 
|  |  | 
|  | <li>mem2reg only looks for alloca instructions in the entry block of the | 
|  | function.  Being in the entry block guarantees that the alloca is only executed | 
|  | once, which makes analysis simpler.</li> | 
|  |  | 
|  | <li>mem2reg only promotes allocas whose uses are direct loads and stores.  If | 
|  | the address of the stack object is passed to a function, or if any funny pointer | 
|  | arithmetic is involved, the alloca will not be promoted.</li> | 
|  |  | 
|  | <li>mem2reg only works on allocas of <a | 
|  | href="../LangRef.html#t_classifications">first class</a> | 
|  | values (such as pointers, scalars and vectors), and only if the array size | 
|  | of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of | 
|  | promoting structs or arrays to registers.  Note that the "scalarrepl" pass is | 
|  | more powerful and can promote structs, "unions", and arrays in many cases.</li> | 
|  |  | 
|  | </ol> | 
|  |  | 
|  | <p> | 
|  | All of these properties are easy to satisfy for most imperative languages, and | 
|  | we'll illustrate it below with Kaleidoscope.  The final question you may be | 
|  | asking is: should I bother with this nonsense for my front-end?  Wouldn't it be | 
|  | better if I just did SSA construction directly, avoiding use of the mem2reg | 
|  | optimization pass?  In short, we strongly recommend that you use this technique | 
|  | for building SSA form, unless there is an extremely good reason not to.  Using | 
|  | this technique is:</p> | 
|  |  | 
|  | <ul> | 
|  | <li>Proven and well tested: llvm-gcc and clang both use this technique for local | 
|  | mutable variables.  As such, the most common clients of LLVM are using this to | 
|  | handle a bulk of their variables.  You can be sure that bugs are found fast and | 
|  | fixed early.</li> | 
|  |  | 
|  | <li>Extremely Fast: mem2reg has a number of special cases that make it fast in | 
|  | common cases as well as fully general.  For example, it has fast-paths for | 
|  | variables that are only used in a single block, variables that only have one | 
|  | assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc. | 
|  | </li> | 
|  |  | 
|  | <li>Needed for debug info generation: <a href="../SourceLevelDebugging.html"> | 
|  | Debug information in LLVM</a> relies on having the address of the variable | 
|  | exposed so that debug info can be attached to it.  This technique dovetails | 
|  | very naturally with this style of debug info.</li> | 
|  | </ul> | 
|  |  | 
|  | <p>If nothing else, this makes it much easier to get your front-end up and | 
|  | running, and is very simple to implement.  Lets extend Kaleidoscope with mutable | 
|  | variables now! | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="kalvars">Mutable Variables in | 
|  | Kaleidoscope</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Now that we know the sort of problem we want to tackle, lets see what this | 
|  | looks like in the context of our little Kaleidoscope language.  We're going to | 
|  | add two features:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>The ability to mutate variables with the '=' operator.</li> | 
|  | <li>The ability to define new variables.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>While the first item is really what this is about, we only have variables | 
|  | for incoming arguments as well as for induction variables, and redefining those only | 
|  | goes so far :).  Also, the ability to define new variables is a | 
|  | useful thing regardless of whether you will be mutating them.  Here's a | 
|  | motivating example that shows how we could use these:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Define ':' for sequencing: as a low-precedence operator that ignores operands | 
|  | # and just returns the RHS. | 
|  | def binary : 1 (x y) y; | 
|  |  | 
|  | # Recursive fib, we could do this before. | 
|  | def fib(x) | 
|  | if (x < 3) then | 
|  | 1 | 
|  | else | 
|  | fib(x-1)+fib(x-2); | 
|  |  | 
|  | # Iterative fib. | 
|  | def fibi(x) | 
|  | <b>var a = 1, b = 1, c in</b> | 
|  | (for i = 3, i < x in | 
|  | <b>c = a + b</b> : | 
|  | <b>a = b</b> : | 
|  | <b>b = c</b>) : | 
|  | b; | 
|  |  | 
|  | # Call it. | 
|  | fibi(10); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p> | 
|  | In order to mutate variables, we have to change our existing variables to use | 
|  | the "alloca trick".  Once we have that, we'll add our new operator, then extend | 
|  | Kaleidoscope to support new variable definitions. | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="adjustments">Adjusting Existing Variables for | 
|  | Mutation</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | The symbol table in Kaleidoscope is managed at code generation time by the | 
|  | '<tt>NamedValues</tt>' map.  This map currently keeps track of the LLVM "Value*" | 
|  | that holds the double value for the named variable.  In order to support | 
|  | mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds | 
|  | the <em>memory location</em> of the variable in question.  Note that this | 
|  | change is a refactoring: it changes the structure of the code, but does not | 
|  | (by itself) change the behavior of the compiler.  All of these changes are | 
|  | isolated in the Kaleidoscope code generator.</p> | 
|  |  | 
|  | <p> | 
|  | At this point in Kaleidoscope's development, it only supports variables for two | 
|  | things: incoming arguments to functions and the induction variable of 'for' | 
|  | loops.  For consistency, we'll allow mutation of these variables in addition to | 
|  | other user-defined variables.  This means that these will both need memory | 
|  | locations. | 
|  | </p> | 
|  |  | 
|  | <p>To start our transformation of Kaleidoscope, we'll change the NamedValues | 
|  | map so that it maps to AllocaInst* instead of Value*.  Once we do this, the C++ | 
|  | compiler will tell us what parts of the code we need to update:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | static std::map<std::string, AllocaInst*> NamedValues; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Also, since we will need to create these alloca's, we'll use a helper | 
|  | function that ensures that the allocas are created in the entry block of the | 
|  | function:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of | 
|  | /// the function.  This is used for mutable variables etc. | 
|  | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, | 
|  | const std::string &VarName) { | 
|  | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), | 
|  | TheFunction->getEntryBlock().begin()); | 
|  | return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, | 
|  | VarName.c_str()); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This funny looking code creates an IRBuilder object that is pointing at | 
|  | the first instruction (.begin()) of the entry block.  It then creates an alloca | 
|  | with the expected name and returns it.  Because all values in Kaleidoscope are | 
|  | doubles, there is no need to pass in a type to use.</p> | 
|  |  | 
|  | <p>With this in place, the first functionality change we want to make is to | 
|  | variable references.  In our new scheme, variables live on the stack, so code | 
|  | generating a reference to them actually needs to produce a load from the stack | 
|  | slot:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *VariableExprAST::Codegen() { | 
|  | // Look this variable up in the function. | 
|  | Value *V = NamedValues[Name]; | 
|  | if (V == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | <b>// Load the value. | 
|  | return Builder.CreateLoad(V, Name.c_str());</b> | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>As you can see, this is pretty straightforward.  Now we need to update the | 
|  | things that define the variables to set up the alloca.  We'll start with | 
|  | <tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for | 
|  | the unabridged code):</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | <b>// Create an alloca for the variable in the entry block. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b> | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  |  | 
|  | <b>// Store the value into the alloca. | 
|  | Builder.CreateStore(StartVal, Alloca);</b> | 
|  | ... | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | <b>// Reload, increment, and restore the alloca.  This handles the case where | 
|  | // the body of the loop mutates the variable. | 
|  | Value *CurVar = Builder.CreateLoad(Alloca); | 
|  | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); | 
|  | Builder.CreateStore(NextVar, Alloca);</b> | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code is virtually identical to the code <a | 
|  | href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>.  The | 
|  | big difference is that we no longer have to construct a PHI node, and we use | 
|  | load/store to access the variable as needed.</p> | 
|  |  | 
|  | <p>To support mutable argument variables, we need to also make allocas for them. | 
|  | The code for this is also pretty simple:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// CreateArgumentAllocas - Create an alloca for each argument and register the | 
|  | /// argument in the symbol table so that references to it will succeed. | 
|  | void PrototypeAST::CreateArgumentAllocas(Function *F) { | 
|  | Function::arg_iterator AI = F->arg_begin(); | 
|  | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { | 
|  | // Create an alloca for this variable. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); | 
|  |  | 
|  | // Store the initial value into the alloca. | 
|  | Builder.CreateStore(AI, Alloca); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | NamedValues[Args[Idx]] = Alloca; | 
|  | } | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>For each argument, we make an alloca, store the input value to the function | 
|  | into the alloca, and register the alloca as the memory location for the | 
|  | argument.  This method gets invoked by <tt>FunctionAST::Codegen</tt> right after | 
|  | it sets up the entry block for the function.</p> | 
|  |  | 
|  | <p>The final missing piece is adding the mem2reg pass, which allows us to get | 
|  | good codegen once again:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | // target lays out data structures. | 
|  | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | <b>// Promote allocas to registers. | 
|  | OurFPM.add(createPromoteMemoryToRegisterPass());</b> | 
|  | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | OurFPM.add(createInstructionCombiningPass()); | 
|  | // Reassociate expressions. | 
|  | OurFPM.add(createReassociatePass()); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>It is interesting to see what the code looks like before and after the | 
|  | mem2reg optimization runs.  For example, this is the before/after code for our | 
|  | recursive fib function.  Before the optimization:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | define double @fib(double %x) { | 
|  | entry: | 
|  | <b>%x1 = alloca double | 
|  | store double %x, double* %x1 | 
|  | %x2 = load double* %x1</b> | 
|  | %cmptmp = fcmp ult double %x2, 3.000000e+00 | 
|  | %booltmp = uitofp i1 %cmptmp to double | 
|  | %ifcond = fcmp one double %booltmp, 0.000000e+00 | 
|  | br i1 %ifcond, label %then, label %else | 
|  |  | 
|  | then:		; preds = %entry | 
|  | br label %ifcont | 
|  |  | 
|  | else:		; preds = %entry | 
|  | <b>%x3 = load double* %x1</b> | 
|  | %subtmp = sub double %x3, 1.000000e+00 | 
|  | %calltmp = call double @fib( double %subtmp ) | 
|  | <b>%x4 = load double* %x1</b> | 
|  | %subtmp5 = sub double %x4, 2.000000e+00 | 
|  | %calltmp6 = call double @fib( double %subtmp5 ) | 
|  | %addtmp = add double %calltmp, %calltmp6 | 
|  | br label %ifcont | 
|  |  | 
|  | ifcont:		; preds = %else, %then | 
|  | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] | 
|  | ret double %iftmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here there is only one variable (x, the input argument) but you can still | 
|  | see the extremely simple-minded code generation strategy we are using.  In the | 
|  | entry block, an alloca is created, and the initial input value is stored into | 
|  | it.  Each reference to the variable does a reload from the stack.  Also, note | 
|  | that we didn't modify the if/then/else expression, so it still inserts a PHI | 
|  | node.  While we could make an alloca for it, it is actually easier to create a | 
|  | PHI node for it, so we still just make the PHI.</p> | 
|  |  | 
|  | <p>Here is the code after the mem2reg pass runs:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | define double @fib(double %x) { | 
|  | entry: | 
|  | %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00 | 
|  | %booltmp = uitofp i1 %cmptmp to double | 
|  | %ifcond = fcmp one double %booltmp, 0.000000e+00 | 
|  | br i1 %ifcond, label %then, label %else | 
|  |  | 
|  | then: | 
|  | br label %ifcont | 
|  |  | 
|  | else: | 
|  | %subtmp = sub double <b>%x</b>, 1.000000e+00 | 
|  | %calltmp = call double @fib( double %subtmp ) | 
|  | %subtmp5 = sub double <b>%x</b>, 2.000000e+00 | 
|  | %calltmp6 = call double @fib( double %subtmp5 ) | 
|  | %addtmp = add double %calltmp, %calltmp6 | 
|  | br label %ifcont | 
|  |  | 
|  | ifcont:		; preds = %else, %then | 
|  | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] | 
|  | ret double %iftmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This is a trivial case for mem2reg, since there are no redefinitions of the | 
|  | variable.  The point of showing this is to calm your tension about inserting | 
|  | such blatent inefficiencies :).</p> | 
|  |  | 
|  | <p>After the rest of the optimizers run, we get:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | define double @fib(double %x) { | 
|  | entry: | 
|  | %cmptmp = fcmp ult double %x, 3.000000e+00 | 
|  | %booltmp = uitofp i1 %cmptmp to double | 
|  | %ifcond = fcmp ueq double %booltmp, 0.000000e+00 | 
|  | br i1 %ifcond, label %else, label %ifcont | 
|  |  | 
|  | else: | 
|  | %subtmp = sub double %x, 1.000000e+00 | 
|  | %calltmp = call double @fib( double %subtmp ) | 
|  | %subtmp5 = sub double %x, 2.000000e+00 | 
|  | %calltmp6 = call double @fib( double %subtmp5 ) | 
|  | %addtmp = add double %calltmp, %calltmp6 | 
|  | ret double %addtmp | 
|  |  | 
|  | ifcont: | 
|  | ret double 1.000000e+00 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here we see that the simplifycfg pass decided to clone the return instruction | 
|  | into the end of the 'else' block.  This allowed it to eliminate some branches | 
|  | and the PHI node.</p> | 
|  |  | 
|  | <p>Now that all symbol table references are updated to use stack variables, | 
|  | we'll add the assignment operator.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="assignment">New Assignment Operator</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>With our current framework, adding a new assignment operator is really | 
|  | simple.  We will parse it just like any other binary operator, but handle it | 
|  | internally (instead of allowing the user to define it).  The first step is to | 
|  | set a precedence:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | int main() { | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | <b>BinopPrecedence['='] = 2;</b> | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that the parser knows the precedence of the binary operator, it takes | 
|  | care of all the parsing and AST generation.  We just need to implement codegen | 
|  | for the assignment operator.  This looks like:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | // Special case '=' because we don't want to emit the LHS as an expression. | 
|  | if (Op == '=') { | 
|  | // Assignment requires the LHS to be an identifier. | 
|  | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); | 
|  | if (!LHSE) | 
|  | return ErrorV("destination of '=' must be a variable"); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Unlike the rest of the binary operators, our assignment operator doesn't | 
|  | follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled | 
|  | as a special case before the other binary operators are handled.  The other | 
|  | strange thing is that it requires the LHS to be a variable.  It is invalid to | 
|  | have "(x+1) = expr" - only things like "x = expr" are allowed. | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Codegen the RHS. | 
|  | Value *Val = RHS->Codegen(); | 
|  | if (Val == 0) return 0; | 
|  |  | 
|  | // Look up the name. | 
|  | Value *Variable = NamedValues[LHSE->getName()]; | 
|  | if (Variable == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | Builder.CreateStore(Val, Variable); | 
|  | return Val; | 
|  | } | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Once we have the variable, codegen'ing the assignment is straightforward: | 
|  | we emit the RHS of the assignment, create a store, and return the computed | 
|  | value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p> | 
|  |  | 
|  | <p>Now that we have an assignment operator, we can mutate loop variables and | 
|  | arguments.  For example, we can now run code like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Function to print a double. | 
|  | extern printd(x); | 
|  |  | 
|  | # Define ':' for sequencing: as a low-precedence operator that ignores operands | 
|  | # and just returns the RHS. | 
|  | def binary : 1 (x y) y; | 
|  |  | 
|  | def test(x) | 
|  | printd(x) : | 
|  | x = 4 : | 
|  | printd(x); | 
|  |  | 
|  | test(123); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>When run, this example prints "123" and then "4", showing that we did | 
|  | actually mutate the value!  Okay, we have now officially implemented our goal: | 
|  | getting this to work requires SSA construction in the general case.  However, | 
|  | to be really useful, we want the ability to define our own local variables, lets | 
|  | add this next! | 
|  | </p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="localvars">User-defined Local | 
|  | Variables</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Adding var/in is just like any other other extensions we made to | 
|  | Kaleidoscope: we extend the lexer, the parser, the AST and the code generator. | 
|  | The first step for adding our new 'var/in' construct is to extend the lexer. | 
|  | As before, this is pretty trivial, the code looks like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | enum Token { | 
|  | ... | 
|  | <b>// var definition | 
|  | tok_var = -13</b> | 
|  | ... | 
|  | } | 
|  | ... | 
|  | static int gettok() { | 
|  | ... | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary; | 
|  | <b>if (IdentifierStr == "var") return tok_var;</b> | 
|  | return tok_identifier; | 
|  | ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The next step is to define the AST node that we will construct.  For var/in, | 
|  | it looks like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// VarExprAST - Expression class for var/in | 
|  | class VarExprAST : public ExprAST { | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, | 
|  | ExprAST *body) | 
|  | : VarNames(varnames), Body(body) {} | 
|  |  | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>var/in allows a list of names to be defined all at once, and each name can | 
|  | optionally have an initializer value.  As such, we capture this information in | 
|  | the VarNames vector.  Also, var/in has a body, this body is allowed to access | 
|  | the variables defined by the var/in.</p> | 
|  |  | 
|  | <p>With this in place, we can define the parser pieces.  The first thing we do is add | 
|  | it as a primary expression:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | <b>///   ::= varexpr</b> | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | <b>case tok_var:        return ParseVarExpr();</b> | 
|  | } | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Next we define ParseVarExpr:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// varexpr ::= 'var' identifier ('=' expression)? | 
|  | //                    (',' identifier ('=' expression)?)* 'in' expression | 
|  | static ExprAST *ParseVarExpr() { | 
|  | getNextToken();  // eat the var. | 
|  |  | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  |  | 
|  | // At least one variable name is required. | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after var"); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The first part of this code parses the list of identifier/expr pairs into the | 
|  | local <tt>VarNames</tt> vector. | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | while (1) { | 
|  | std::string Name = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | // Read the optional initializer. | 
|  | ExprAST *Init = 0; | 
|  | if (CurTok == '=') { | 
|  | getNextToken(); // eat the '='. | 
|  |  | 
|  | Init = ParseExpression(); | 
|  | if (Init == 0) return 0; | 
|  | } | 
|  |  | 
|  | VarNames.push_back(std::make_pair(Name, Init)); | 
|  |  | 
|  | // End of var list, exit loop. | 
|  | if (CurTok != ',') break; | 
|  | getNextToken(); // eat the ','. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier list after var"); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Once all the variables are parsed, we then parse the body and create the | 
|  | AST node:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // At this point, we have to have 'in'. | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' keyword after 'var'"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new VarExprAST(VarNames, Body); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that we can parse and represent the code, we need to support emission of | 
|  | LLVM IR for it.  This code starts out with:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *VarExprAST::Codegen() { | 
|  | std::vector<AllocaInst *> OldBindings; | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Register all variables and emit their initializer. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { | 
|  | const std::string &VarName = VarNames[i].first; | 
|  | ExprAST *Init = VarNames[i].second; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Basically it loops over all the variables, installing them one at a time. | 
|  | For each variable we put into the symbol table, we remember the previous value | 
|  | that we replace in OldBindings.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Emit the initializer before adding the variable to scope, this prevents | 
|  | // the initializer from referencing the variable itself, and permits stuff | 
|  | // like this: | 
|  | //  var a = 1 in | 
|  | //    var a = a in ...   # refers to outer 'a'. | 
|  | Value *InitVal; | 
|  | if (Init) { | 
|  | InitVal = Init->Codegen(); | 
|  | if (InitVal == 0) return 0; | 
|  | } else { // If not specified, use 0.0. | 
|  | InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); | 
|  | } | 
|  |  | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  | Builder.CreateStore(InitVal, Alloca); | 
|  |  | 
|  | // Remember the old variable binding so that we can restore the binding when | 
|  | // we unrecurse. | 
|  | OldBindings.push_back(NamedValues[VarName]); | 
|  |  | 
|  | // Remember this binding. | 
|  | NamedValues[VarName] = Alloca; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>There are more comments here than code.  The basic idea is that we emit the | 
|  | initializer, create the alloca, then update the symbol table to point to it. | 
|  | Once all the variables are installed in the symbol table, we evaluate the body | 
|  | of the var/in expression:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Codegen the body, now that all vars are in scope. | 
|  | Value *BodyVal = Body->Codegen(); | 
|  | if (BodyVal == 0) return 0; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Finally, before returning, we restore the previous variable bindings:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Pop all our variables from scope. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) | 
|  | NamedValues[VarNames[i].first] = OldBindings[i]; | 
|  |  | 
|  | // Return the body computation. | 
|  | return BodyVal; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The end result of all of this is that we get properly scoped variable | 
|  | definitions, and we even (trivially) allow mutation of them :).</p> | 
|  |  | 
|  | <p>With this, we completed what we set out to do.  Our nice iterative fib | 
|  | example from the intro compiles and runs just fine.  The mem2reg pass optimizes | 
|  | all of our stack variables into SSA registers, inserting PHI nodes where needed, | 
|  | and our front-end remains simple: no "iterated dominance frontier" computation | 
|  | anywhere in sight.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | Here is the complete code listing for our running example, enhanced with mutable | 
|  | variables and var/in support.  To build this example, use: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Compile | 
|  | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
|  | # Run | 
|  | ./toy | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here is the code:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | #include "llvm/ExecutionEngine/Interpreter.h" | 
|  | #include "llvm/ExecutionEngine/JIT.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/ModuleProvider.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/Analysis/Verifier.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetSelect.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Support/IRBuilder.h" | 
|  | #include <cstdio> | 
|  | #include <string> | 
|  | #include <map> | 
|  | #include <vector> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  |  | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | tok_for = -9, tok_in = -10, | 
|  |  | 
|  | // operators | 
|  | tok_binary = -11, tok_unary = -12, | 
|  |  | 
|  | // var definition | 
|  | tok_var = -13 | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary; | 
|  | if (IdentifierStr == "var") return tok_var; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | virtual Value *Codegen() = 0; | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | NumberExprAST(double val) : Val(val) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | VariableExprAST(const std::string &name) : Name(name) {} | 
|  | const std::string &getName() const { return Name; } | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// UnaryExprAST - Expression class for a unary operator. | 
|  | class UnaryExprAST : public ExprAST { | 
|  | char Opcode; | 
|  | ExprAST *Operand; | 
|  | public: | 
|  | UnaryExprAST(char opcode, ExprAST *operand) | 
|  | : Opcode(opcode), Operand(operand) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | class IfExprAST : public ExprAST { | 
|  | ExprAST *Cond, *Then, *Else; | 
|  | public: | 
|  | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
|  | : Cond(cond), Then(then), Else(_else) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | class ForExprAST : public ExprAST { | 
|  | std::string VarName; | 
|  | ExprAST *Start, *End, *Step, *Body; | 
|  | public: | 
|  | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
|  | ExprAST *step, ExprAST *body) | 
|  | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VarExprAST - Expression class for var/in | 
|  | class VarExprAST : public ExprAST { | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, | 
|  | ExprAST *body) | 
|  | : VarNames(varnames), Body(body) {} | 
|  |  | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its name, and its argument names (thus implicitly the number | 
|  | /// of arguments the function takes), as well as if it is an operator. | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | bool isOperator; | 
|  | unsigned Precedence;  // Precedence if a binary op. | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args, | 
|  | bool isoperator = false, unsigned prec = 0) | 
|  | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} | 
|  |  | 
|  | bool isUnaryOp() const { return isOperator && Args.size() == 1; } | 
|  | bool isBinaryOp() const { return isOperator && Args.size() == 2; } | 
|  |  | 
|  | char getOperatorName() const { | 
|  | assert(isUnaryOp() || isBinaryOp()); | 
|  | return Name[Name.size()-1]; | 
|  | } | 
|  |  | 
|  | unsigned getBinaryPrecedence() const { return Precedence; } | 
|  |  | 
|  | Function *Codegen(); | 
|  |  | 
|  | void CreateArgumentAllocas(Function *F); | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | static ExprAST *ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static ExprAST *ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | ExprAST *Cond = ParseExpression(); | 
|  | if (!Cond) return 0; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return Error("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | ExprAST *Then = ParseExpression(); | 
|  | if (Then == 0) return 0; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return Error("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *Else = ParseExpression(); | 
|  | if (!Else) return 0; | 
|  |  | 
|  | return new IfExprAST(Cond, Then, Else); | 
|  | } | 
|  |  | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static ExprAST *ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return Error("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | ExprAST *Start = ParseExpression(); | 
|  | if (Start == 0) return 0; | 
|  | if (CurTok != ',') | 
|  | return Error("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *End = ParseExpression(); | 
|  | if (End == 0) return 0; | 
|  |  | 
|  | // The step value is optional. | 
|  | ExprAST *Step = 0; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (Step == 0) return 0; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new ForExprAST(IdName, Start, End, Step, Body); | 
|  | } | 
|  |  | 
|  | /// varexpr ::= 'var' identifier ('=' expression)? | 
|  | //                    (',' identifier ('=' expression)?)* 'in' expression | 
|  | static ExprAST *ParseVarExpr() { | 
|  | getNextToken();  // eat the var. | 
|  |  | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  |  | 
|  | // At least one variable name is required. | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after var"); | 
|  |  | 
|  | while (1) { | 
|  | std::string Name = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | // Read the optional initializer. | 
|  | ExprAST *Init = 0; | 
|  | if (CurTok == '=') { | 
|  | getNextToken(); // eat the '='. | 
|  |  | 
|  | Init = ParseExpression(); | 
|  | if (Init == 0) return 0; | 
|  | } | 
|  |  | 
|  | VarNames.push_back(std::make_pair(Name, Init)); | 
|  |  | 
|  | // End of var list, exit loop. | 
|  | if (CurTok != ',') break; | 
|  | getNextToken(); // eat the ','. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier list after var"); | 
|  | } | 
|  |  | 
|  | // At this point, we have to have 'in'. | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' keyword after 'var'"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new VarExprAST(VarNames, Body); | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | ///   ::= varexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | case tok_var:        return ParseVarExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// unary | 
|  | ///   ::= primary | 
|  | ///   ::= '!' unary | 
|  | static ExprAST *ParseUnary() { | 
|  | // If the current token is not an operator, it must be a primary expr. | 
|  | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
|  | return ParsePrimary(); | 
|  |  | 
|  | // If this is a unary operator, read it. | 
|  | int Opc = CurTok; | 
|  | getNextToken(); | 
|  | if (ExprAST *Operand = ParseUnary()) | 
|  | return new UnaryExprAST(Opc, Operand); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' unary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the unary expression after the binary operator. | 
|  | ExprAST *RHS = ParseUnary(); | 
|  | if (!RHS) return 0; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= unary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParseUnary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | ///   ::= binary LETTER number? (id, id) | 
|  | ///   ::= unary LETTER (id) | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30; | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorP("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_unary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected unary operator"); | 
|  | FnName = "unary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 1; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_binary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected binary operator"); | 
|  | FnName = "binary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 2; | 
|  | getNextToken(); | 
|  |  | 
|  | // Read the precedence if present. | 
|  | if (CurTok == tok_number) { | 
|  | if (NumVal < 1 || NumVal > 100) | 
|  | return ErrorP("Invalid precedecnce: must be 1..100"); | 
|  | BinaryPrecedence = (unsigned)NumVal; | 
|  | getNextToken(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | // Verify right number of names for operator. | 
|  | if (Kind && ArgNames.size() != Kind) | 
|  | return ErrorP("Invalid number of operands for operator"); | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static Module *TheModule; | 
|  | static IRBuilder<> Builder(getGlobalContext()); | 
|  | static std::map<std::string, AllocaInst*> NamedValues; | 
|  | static FunctionPassManager *TheFPM; | 
|  |  | 
|  | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of | 
|  | /// the function.  This is used for mutable variables etc. | 
|  | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, | 
|  | const std::string &VarName) { | 
|  | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), | 
|  | TheFunction->getEntryBlock().begin()); | 
|  | return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, | 
|  | VarName.c_str()); | 
|  | } | 
|  |  | 
|  | Value *NumberExprAST::Codegen() { | 
|  | return ConstantFP::get(getGlobalContext(), APFloat(Val)); | 
|  | } | 
|  |  | 
|  | Value *VariableExprAST::Codegen() { | 
|  | // Look this variable up in the function. | 
|  | Value *V = NamedValues[Name]; | 
|  | if (V == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | // Load the value. | 
|  | return Builder.CreateLoad(V, Name.c_str()); | 
|  | } | 
|  |  | 
|  | Value *UnaryExprAST::Codegen() { | 
|  | Value *OperandV = Operand->Codegen(); | 
|  | if (OperandV == 0) return 0; | 
|  |  | 
|  | Function *F = TheModule->getFunction(std::string("unary")+Opcode); | 
|  | if (F == 0) | 
|  | return ErrorV("Unknown unary operator"); | 
|  |  | 
|  | return Builder.CreateCall(F, OperandV, "unop"); | 
|  | } | 
|  |  | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | // Special case '=' because we don't want to emit the LHS as an expression. | 
|  | if (Op == '=') { | 
|  | // Assignment requires the LHS to be an identifier. | 
|  | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); | 
|  | if (!LHSE) | 
|  | return ErrorV("destination of '=' must be a variable"); | 
|  | // Codegen the RHS. | 
|  | Value *Val = RHS->Codegen(); | 
|  | if (Val == 0) return 0; | 
|  |  | 
|  | // Look up the name. | 
|  | Value *Variable = NamedValues[LHSE->getName()]; | 
|  | if (Variable == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | Builder.CreateStore(Val, Variable); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *L = LHS->Codegen(); | 
|  | Value *R = RHS->Codegen(); | 
|  | if (L == 0 || R == 0) return 0; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
|  | case '-': return Builder.CreateSub(L, R, "subtmp"); | 
|  | case '*': return Builder.CreateMul(L, R, "multmp"); | 
|  | case '<': | 
|  | L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | // If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
|  | // a call to it. | 
|  | Function *F = TheModule->getFunction(std::string("binary")+Op); | 
|  | assert(F && "binary operator not found!"); | 
|  |  | 
|  | Value *Ops[] = { L, R }; | 
|  | return Builder.CreateCall(F, Ops, Ops+2, "binop"); | 
|  | } | 
|  |  | 
|  | Value *CallExprAST::Codegen() { | 
|  | // Look up the name in the global module table. | 
|  | Function *CalleeF = TheModule->getFunction(Callee); | 
|  | if (CalleeF == 0) | 
|  | return ErrorV("Unknown function referenced"); | 
|  |  | 
|  | // If argument mismatch error. | 
|  | if (CalleeF->arg_size() != Args.size()) | 
|  | return ErrorV("Incorrect # arguments passed"); | 
|  |  | 
|  | std::vector<Value*> ArgsV; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | ArgsV.push_back(Args[i]->Codegen()); | 
|  | if (ArgsV.back() == 0) return 0; | 
|  | } | 
|  |  | 
|  | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
|  | } | 
|  |  | 
|  | Value *IfExprAST::Codegen() { | 
|  | Value *CondV = Cond->Codegen(); | 
|  | if (CondV == 0) return 0; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | CondV = Builder.CreateFCmpONE(CondV, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "ifcond"); | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
|  |  | 
|  | Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
|  |  | 
|  | // Emit then value. | 
|  | Builder.SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->Codegen(); | 
|  | if (ThenV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | Builder.SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->Codegen(); | 
|  | if (ElseV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | Builder.SetInsertPoint(MergeBB); | 
|  | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ForExprAST::Codegen() { | 
|  | // Output this as: | 
|  | //   var = alloca double | 
|  | //   ... | 
|  | //   start = startexpr | 
|  | //   store start -> var | 
|  | //   goto loop | 
|  | // loop: | 
|  | //   ... | 
|  | //   bodyexpr | 
|  | //   ... | 
|  | // loopend: | 
|  | //   step = stepexpr | 
|  | //   endcond = endexpr | 
|  | // | 
|  | //   curvar = load var | 
|  | //   nextvar = curvar + step | 
|  | //   store nextvar -> var | 
|  | //   br endcond, loop, endloop | 
|  | // outloop: | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create an alloca for the variable in the entry block. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  |  | 
|  | // Store the value into the alloca. | 
|  | Builder.CreateStore(StartVal, Alloca); | 
|  |  | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start insertion in LoopBB. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | AllocaInst *OldVal = NamedValues[VarName]; | 
|  | NamedValues[VarName] = Alloca; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (Body->Codegen() == 0) | 
|  | return 0; | 
|  |  | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->Codegen(); | 
|  | if (StepVal == 0) return 0; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Reload, increment, and restore the alloca.  This handles the case where | 
|  | // the body of the loop mutates the variable. | 
|  | Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); | 
|  | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); | 
|  | Builder.CreateStore(NextVar, Alloca); | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = Builder.CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  |  | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | Builder.SetInsertPoint(AfterBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | NamedValues[VarName] = OldVal; | 
|  | else | 
|  | NamedValues.erase(VarName); | 
|  |  | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  |  | 
|  | Value *VarExprAST::Codegen() { | 
|  | std::vector<AllocaInst *> OldBindings; | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Register all variables and emit their initializer. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { | 
|  | const std::string &VarName = VarNames[i].first; | 
|  | ExprAST *Init = VarNames[i].second; | 
|  |  | 
|  | // Emit the initializer before adding the variable to scope, this prevents | 
|  | // the initializer from referencing the variable itself, and permits stuff | 
|  | // like this: | 
|  | //  var a = 1 in | 
|  | //    var a = a in ...   # refers to outer 'a'. | 
|  | Value *InitVal; | 
|  | if (Init) { | 
|  | InitVal = Init->Codegen(); | 
|  | if (InitVal == 0) return 0; | 
|  | } else { // If not specified, use 0.0. | 
|  | InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); | 
|  | } | 
|  |  | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  | Builder.CreateStore(InitVal, Alloca); | 
|  |  | 
|  | // Remember the old variable binding so that we can restore the binding when | 
|  | // we unrecurse. | 
|  | OldBindings.push_back(NamedValues[VarName]); | 
|  |  | 
|  | // Remember this binding. | 
|  | NamedValues[VarName] = Alloca; | 
|  | } | 
|  |  | 
|  | // Codegen the body, now that all vars are in scope. | 
|  | Value *BodyVal = Body->Codegen(); | 
|  | if (BodyVal == 0) return 0; | 
|  |  | 
|  | // Pop all our variables from scope. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) | 
|  | NamedValues[VarNames[i].first] = OldBindings[i]; | 
|  |  | 
|  | // Return the body computation. | 
|  | return BodyVal; | 
|  | } | 
|  |  | 
|  | Function *PrototypeAST::Codegen() { | 
|  | // Make the function type:  double(double,double) etc. | 
|  | std::vector<const Type*> Doubles(Args.size(), | 
|  | Type::getDoubleTy(getGlobalContext())); | 
|  | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
|  | Doubles, false); | 
|  |  | 
|  | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
|  |  | 
|  | // If F conflicted, there was already something named 'Name'.  If it has a | 
|  | // body, don't allow redefinition or reextern. | 
|  | if (F->getName() != Name) { | 
|  | // Delete the one we just made and get the existing one. | 
|  | F->eraseFromParent(); | 
|  | F = TheModule->getFunction(Name); | 
|  |  | 
|  | // If F already has a body, reject this. | 
|  | if (!F->empty()) { | 
|  | ErrorF("redefinition of function"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If F took a different number of args, reject. | 
|  | if (F->arg_size() != Args.size()) { | 
|  | ErrorF("redefinition of function with different # args"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set names for all arguments. | 
|  | unsigned Idx = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | ++AI, ++Idx) | 
|  | AI->setName(Args[Idx]); | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// CreateArgumentAllocas - Create an alloca for each argument and register the | 
|  | /// argument in the symbol table so that references to it will succeed. | 
|  | void PrototypeAST::CreateArgumentAllocas(Function *F) { | 
|  | Function::arg_iterator AI = F->arg_begin(); | 
|  | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { | 
|  | // Create an alloca for this variable. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); | 
|  |  | 
|  | // Store the initial value into the alloca. | 
|  | Builder.CreateStore(AI, Alloca); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | NamedValues[Args[Idx]] = Alloca; | 
|  | } | 
|  | } | 
|  |  | 
|  | Function *FunctionAST::Codegen() { | 
|  | NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->Codegen(); | 
|  | if (TheFunction == 0) | 
|  | return 0; | 
|  |  | 
|  | // If this is an operator, install it. | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | // Add all arguments to the symbol table and create their allocas. | 
|  | Proto->CreateArgumentAllocas(TheFunction); | 
|  |  | 
|  | if (Value *RetVal = Body->Codegen()) { | 
|  | // Finish off the function. | 
|  | Builder.CreateRet(RetVal); | 
|  |  | 
|  | // Validate the generated code, checking for consistency. | 
|  | verifyFunction(*TheFunction); | 
|  |  | 
|  | // Optimize the function. | 
|  | TheFPM->run(*TheFunction); | 
|  |  | 
|  | return TheFunction; | 
|  | } | 
|  |  | 
|  | // Error reading body, remove function. | 
|  | TheFunction->eraseFromParent(); | 
|  |  | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence.erase(Proto->getOperatorName()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing and JIT Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static ExecutionEngine *TheExecutionEngine; | 
|  |  | 
|  | static void HandleDefinition() { | 
|  | if (FunctionAST *F = ParseDefinition()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | fprintf(stderr, "Read function definition:"); | 
|  | LF->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern() { | 
|  | if (PrototypeAST *P = ParseExtern()) { | 
|  | if (Function *F = P->Codegen()) { | 
|  | fprintf(stderr, "Read extern: "); | 
|  | F->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression() { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | // JIT the function, returning a function pointer. | 
|  | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  |  | 
|  | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | // can call it as a native function. | 
|  | double (*FP)() = (double (*)())(intptr_t)FPtr; | 
|  | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | fprintf(stderr, "ready> "); | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Library" functions that can be "extern'd" from user code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// putchard - putchar that takes a double and returns 0. | 
|  | extern "C" | 
|  | double putchard(double X) { | 
|  | putchar((char)X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// printd - printf that takes a double prints it as "%f\n", returning 0. | 
|  | extern "C" | 
|  | double printd(double X) { | 
|  | printf("%f\n", X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main() { | 
|  | InitializeNativeTarget(); | 
|  | LLVMContext &Context = getGlobalContext(); | 
|  |  | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['='] = 2; | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Prime the first token. | 
|  | fprintf(stderr, "ready> "); | 
|  | getNextToken(); | 
|  |  | 
|  | // Make the module, which holds all the code. | 
|  | TheModule = new Module("my cool jit", Context); | 
|  |  | 
|  | ExistingModuleProvider *OurModuleProvider = | 
|  | new ExistingModuleProvider(TheModule); | 
|  |  | 
|  | // Create the JIT.  This takes ownership of the module and module provider. | 
|  | TheExecutionEngine = EngineBuilder(OurModuleProvider).create(); | 
|  |  | 
|  | FunctionPassManager OurFPM(OurModuleProvider); | 
|  |  | 
|  | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | // target lays out data structures. | 
|  | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | // Promote allocas to registers. | 
|  | OurFPM.add(createPromoteMemoryToRegisterPass()); | 
|  | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | OurFPM.add(createInstructionCombiningPass()); | 
|  | // Reassociate expressions. | 
|  | OurFPM.add(createReassociatePass()); | 
|  | // Eliminate Common SubExpressions. | 
|  | OurFPM.add(createGVNPass()); | 
|  | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | OurFPM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | OurFPM.doInitialization(); | 
|  |  | 
|  | // Set the global so the code gen can use this. | 
|  | TheFPM = &OurFPM; | 
|  |  | 
|  | // Run the main "interpreter loop" now. | 
|  | MainLoop(); | 
|  |  | 
|  | TheFPM = 0; | 
|  |  | 
|  | // Print out all of the generated code. | 
|  | TheModule->dump(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
|  | </address> | 
|  | </body> | 
|  | </html> |