| //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This contains a MachineSchedStrategy implementation for maximizing wave |
| /// occupancy on GCN hardware. |
| //===----------------------------------------------------------------------===// |
| |
| #include "GCNSchedStrategy.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| |
| #define DEBUG_TYPE "misched" |
| |
| using namespace llvm; |
| |
| GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( |
| const MachineSchedContext *C) : |
| GenericScheduler(C) { } |
| |
| static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, |
| const MachineFunction &MF) { |
| |
| const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), |
| ST.getOccupancyWithNumVGPRs(VGPRs)); |
| return std::min(MinRegOccupancy, |
| ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), |
| *MF.getFunction())); |
| } |
| |
| void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { |
| GenericScheduler::initialize(DAG); |
| |
| const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
| |
| // FIXME: This is also necessary, because some passes that run after |
| // scheduling and before regalloc increase register pressure. |
| const int ErrorMargin = 3; |
| |
| SGPRExcessLimit = Context->RegClassInfo |
| ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; |
| VGPRExcessLimit = Context->RegClassInfo |
| ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; |
| SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, |
| SRI->getSGPRPressureSet()) - ErrorMargin; |
| VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, |
| SRI->getVGPRPressureSet()) - ErrorMargin; |
| } |
| |
| void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, |
| bool AtTop, const RegPressureTracker &RPTracker, |
| const SIRegisterInfo *SRI, |
| unsigned SGPRPressure, |
| unsigned VGPRPressure) { |
| |
| Cand.SU = SU; |
| Cand.AtTop = AtTop; |
| |
| // getDownwardPressure() and getUpwardPressure() make temporary changes to |
| // the the tracker, so we need to pass those function a non-const copy. |
| RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
| |
| std::vector<unsigned> Pressure; |
| std::vector<unsigned> MaxPressure; |
| |
| if (AtTop) |
| TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); |
| else { |
| // FIXME: I think for bottom up scheduling, the register pressure is cached |
| // and can be retrieved by DAG->getPressureDif(SU). |
| TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); |
| } |
| |
| unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
| unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
| |
| // If two instructions increase the pressure of different register sets |
| // by the same amount, the generic scheduler will prefer to schedule the |
| // instruction that increases the set with the least amount of registers, |
| // which in our case would be SGPRs. This is rarely what we want, so |
| // when we report excess/critical register pressure, we do it either |
| // only for VGPRs or only for SGPRs. |
| |
| // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. |
| const unsigned MaxVGPRPressureInc = 16; |
| bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; |
| bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; |
| |
| |
| // FIXME: We have to enter REG-EXCESS before we reach the actual threshold |
| // to increase the likelihood we don't go over the limits. We should improve |
| // the analysis to look through dependencies to find the path with the least |
| // register pressure. |
| |
| // We only need to update the RPDelata for instructions that increase |
| // register pressure. Instructions that decrease or keep reg pressure |
| // the same will be marked as RegExcess in tryCandidate() when they |
| // are compared with instructions that increase the register pressure. |
| if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { |
| Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); |
| Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); |
| } |
| |
| if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { |
| Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); |
| Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); |
| } |
| |
| // Register pressure is considered 'CRITICAL' if it is approaching a value |
| // that would reduce the wave occupancy for the execution unit. When |
| // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both |
| // has the same cost, so we don't need to prefer one over the other. |
| |
| int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; |
| int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; |
| |
| if (SGPRDelta >= 0 || VGPRDelta >= 0) { |
| if (SGPRDelta > VGPRDelta) { |
| Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); |
| Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); |
| } else { |
| Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); |
| Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); |
| } |
| } |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNodeFromQueue() |
| void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, |
| const CandPolicy &ZonePolicy, |
| const RegPressureTracker &RPTracker, |
| SchedCandidate &Cand) { |
| const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
| ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); |
| unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
| unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
| ReadyQueue &Q = Zone.Available; |
| for (SUnit *SU : Q) { |
| |
| SchedCandidate TryCand(ZonePolicy); |
| initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, |
| SGPRPressure, VGPRPressure); |
| // Pass SchedBoundary only when comparing nodes from the same boundary. |
| SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; |
| GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); |
| if (TryCand.Reason != NoCand) { |
| // Initialize resource delta if needed in case future heuristics query it. |
| if (TryCand.ResDelta == SchedResourceDelta()) |
| TryCand.initResourceDelta(Zone.DAG, SchedModel); |
| Cand.setBest(TryCand); |
| } |
| } |
| } |
| |
| static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) { |
| switch (Reason) { |
| default: |
| return Reason; |
| case GenericSchedulerBase::RegCritical: |
| case GenericSchedulerBase::RegExcess: |
| return -Reason; |
| } |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNodeBidirectional() |
| SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { |
| // Schedule as far as possible in the direction of no choice. This is most |
| // efficient, but also provides the best heuristics for CriticalPSets. |
| if (SUnit *SU = Bot.pickOnlyChoice()) { |
| IsTopNode = false; |
| return SU; |
| } |
| if (SUnit *SU = Top.pickOnlyChoice()) { |
| IsTopNode = true; |
| return SU; |
| } |
| // Set the bottom-up policy based on the state of the current bottom zone and |
| // the instructions outside the zone, including the top zone. |
| CandPolicy BotPolicy; |
| setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); |
| // Set the top-down policy based on the state of the current top zone and |
| // the instructions outside the zone, including the bottom zone. |
| CandPolicy TopPolicy; |
| setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); |
| |
| // See if BotCand is still valid (because we previously scheduled from Top). |
| DEBUG(dbgs() << "Picking from Bot:\n"); |
| if (!BotCand.isValid() || BotCand.SU->isScheduled || |
| BotCand.Policy != BotPolicy) { |
| BotCand.reset(CandPolicy()); |
| pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| DEBUG(traceCandidate(BotCand)); |
| } |
| |
| // Check if the top Q has a better candidate. |
| DEBUG(dbgs() << "Picking from Top:\n"); |
| if (!TopCand.isValid() || TopCand.SU->isScheduled || |
| TopCand.Policy != TopPolicy) { |
| TopCand.reset(CandPolicy()); |
| pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| DEBUG(traceCandidate(TopCand)); |
| } |
| |
| // Pick best from BotCand and TopCand. |
| DEBUG( |
| dbgs() << "Top Cand: "; |
| traceCandidate(TopCand); |
| dbgs() << "Bot Cand: "; |
| traceCandidate(BotCand); |
| ); |
| SchedCandidate Cand; |
| if (TopCand.Reason == BotCand.Reason) { |
| Cand = BotCand; |
| GenericSchedulerBase::CandReason TopReason = TopCand.Reason; |
| TopCand.Reason = NoCand; |
| GenericScheduler::tryCandidate(Cand, TopCand, nullptr); |
| if (TopCand.Reason != NoCand) { |
| Cand.setBest(TopCand); |
| } else { |
| TopCand.Reason = TopReason; |
| } |
| } else { |
| if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { |
| Cand = TopCand; |
| } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { |
| Cand = BotCand; |
| } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
| Cand = TopCand; |
| } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
| Cand = BotCand; |
| } else { |
| int TopRank = getBidirectionalReasonRank(TopCand.Reason); |
| int BotRank = getBidirectionalReasonRank(BotCand.Reason); |
| if (TopRank > BotRank) { |
| Cand = TopCand; |
| } else { |
| Cand = BotCand; |
| } |
| } |
| } |
| DEBUG( |
| dbgs() << "Picking: "; |
| traceCandidate(Cand); |
| ); |
| |
| IsTopNode = Cand.AtTop; |
| return Cand.SU; |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNode() |
| SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && |
| Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
| return nullptr; |
| } |
| SUnit *SU; |
| do { |
| if (RegionPolicy.OnlyTopDown) { |
| SU = Top.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| TopCand.reset(NoPolicy); |
| pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find a candidate"); |
| SU = TopCand.SU; |
| } |
| IsTopNode = true; |
| } else if (RegionPolicy.OnlyBottomUp) { |
| SU = Bot.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| BotCand.reset(NoPolicy); |
| pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find a candidate"); |
| SU = BotCand.SU; |
| } |
| IsTopNode = false; |
| } else { |
| SU = pickNodeBidirectional(IsTopNode); |
| } |
| } while (SU->isScheduled); |
| |
| if (SU->isTopReady()) |
| Top.removeReady(SU); |
| if (SU->isBottomReady()) |
| Bot.removeReady(SU); |
| |
| DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); |
| return SU; |
| } |
| |
| void GCNScheduleDAGMILive::schedule() { |
| const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
| |
| std::vector<MachineInstr*> Unsched; |
| Unsched.reserve(NumRegionInstrs); |
| for (auto &I : *this) |
| Unsched.push_back(&I); |
| |
| ScheduleDAGMILive::schedule(); |
| |
| // Check the results of scheduling. |
| GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; |
| std::vector<unsigned> UnschedPressure = getRegPressure().MaxSetPressure; |
| unsigned MaxSGPRs = std::max( |
| getTopRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()], |
| getBotRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()]); |
| unsigned MaxVGPRs = std::max( |
| getTopRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()], |
| getBotRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()]); |
| DEBUG(dbgs() << "Pressure after scheduling:\nSGPR = " << MaxSGPRs |
| << "\nVGPR = " << MaxVGPRs << '\n'); |
| if (MaxSGPRs <= S.SGPRCriticalLimit && |
| MaxVGPRs <= S.VGPRCriticalLimit) { |
| DEBUG(dbgs() << "Pressure in desired limits, done.\n"); |
| return; |
| } |
| unsigned WavesAfter = getMaxWaves(MaxSGPRs, MaxVGPRs, MF); |
| unsigned WavesUnsched = getMaxWaves(UnschedPressure[SRI->getSGPRPressureSet()], |
| UnschedPressure[SRI->getVGPRPressureSet()], MF); |
| DEBUG(dbgs() << "Occupancy before scheduling: " << WavesUnsched << |
| ", after " << WavesAfter << ".\n"); |
| if (WavesAfter >= WavesUnsched) |
| return; |
| |
| DEBUG(dbgs() << "Attempting to revert scheduling.\n"); |
| RegionEnd = RegionBegin; |
| for (MachineInstr *MI : Unsched) { |
| if (MI->getIterator() != RegionEnd) { |
| BB->remove(MI); |
| BB->insert(RegionEnd, MI); |
| if (LIS) { |
| LIS->handleMove(*MI, true); |
| RegisterOperands RegOpers; |
| RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); |
| if (ShouldTrackLaneMasks) { |
| // Adjust liveness and add missing dead+read-undef flags. |
| SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); |
| RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); |
| } else { |
| // Adjust for missing dead-def flags. |
| RegOpers.detectDeadDefs(*MI, *LIS); |
| } |
| } |
| } |
| RegionEnd = MI->getIterator(); |
| ++RegionEnd; |
| DEBUG(dbgs() << "Scheduling " << *MI); |
| } |
| RegionBegin = Unsched.front()->getIterator(); |
| |
| placeDebugValues(); |
| } |