| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <climits> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| typedef typename ELFT::uint uintX_t; |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Ehdr Elf_Ehdr; |
| typedef typename ELFT::Phdr Elf_Phdr; |
| typedef typename ELFT::Sym Elf_Sym; |
| typedef typename ELFT::SymRange Elf_Sym_Range; |
| typedef typename ELFT::Rela Elf_Rela; |
| void run(); |
| |
| private: |
| typedef PhdrEntry<ELFT> Phdr; |
| |
| void createSyntheticSections(); |
| void copyLocalSymbols(); |
| void addReservedSymbols(); |
| void addInputSec(InputSectionBase<ELFT> *S); |
| void createSections(); |
| void forEachRelSec(std::function<void(InputSectionBase<ELFT> &)> Fn); |
| void sortSections(); |
| void finalizeSections(); |
| void addPredefinedSections(); |
| bool needsGot(); |
| |
| std::vector<Phdr> createPhdrs(); |
| void assignAddresses(); |
| void assignFileOffsets(); |
| void assignFileOffsetsBinary(); |
| void setPhdrs(); |
| void fixHeaders(); |
| void fixSectionAlignments(); |
| void fixAbsoluteSymbols(); |
| void openFile(); |
| void writeHeader(); |
| void writeSections(); |
| void writeSectionsBinary(); |
| void writeBuildId(); |
| |
| std::unique_ptr<FileOutputBuffer> Buffer; |
| |
| std::vector<OutputSectionBase *> OutputSections; |
| OutputSectionFactory<ELFT> Factory; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSectionBase *Sec); |
| OutputSectionBase *findSection(StringRef Name); |
| |
| std::vector<Phdr> Phdrs; |
| |
| uintX_t FileSize; |
| uintX_t SectionHeaderOff; |
| }; |
| } // anonymous namespace |
| |
| StringRef elf::getOutputSectionName(StringRef Name) { |
| if (Config->Relocatable) |
| return Name; |
| |
| for (StringRef V : |
| {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", |
| ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", |
| ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { |
| StringRef Prefix = V.drop_back(); |
| if (Name.startswith(V) || Name == Prefix) |
| return Prefix; |
| } |
| |
| // CommonSection is identified as "COMMON" in linker scripts. |
| // By default, it should go to .bss section. |
| if (Name == "COMMON") |
| return ".bss"; |
| |
| // ".zdebug_" is a prefix for ZLIB-compressed sections. |
| // Because we decompressed input sections, we want to remove 'z'. |
| if (Name.startswith(".zdebug_")) |
| return Saver.save(Twine(".") + Name.substr(2)); |
| return Name; |
| } |
| |
| template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) { |
| if (!Config->PrintGcSections) |
| return; |
| errs() << "removing unused section from '" << IS->Name << "' in file '" |
| << IS->getFile()->getName() << "'\n"; |
| } |
| |
| template <class ELFT> static bool needsInterpSection() { |
| return !Symtab<ELFT>::X->getSharedFiles().empty() && |
| !Config->DynamicLinker.empty() && |
| !Script<ELFT>::X->ignoreInterpSection(); |
| } |
| |
| template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| createSyntheticSections(); |
| addReservedSymbols(); |
| |
| if (Target->NeedsThunks) |
| forEachRelSec(createThunks<ELFT>); |
| |
| Script<ELFT>::X->OutputSections = &OutputSections; |
| if (ScriptConfig->HasSections) { |
| Script<ELFT>::X->createSections(Factory); |
| } else { |
| createSections(); |
| Script<ELFT>::X->processCommands(Factory); |
| } |
| |
| if (Config->Discard != DiscardPolicy::All) |
| copyLocalSymbols(); |
| |
| finalizeSections(); |
| if (HasError) |
| return; |
| |
| if (Config->Relocatable) { |
| assignFileOffsets(); |
| } else { |
| Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() |
| : createPhdrs(); |
| fixHeaders(); |
| if (ScriptConfig->HasSections) { |
| Script<ELFT>::X->assignAddresses(Phdrs); |
| } else { |
| fixSectionAlignments(); |
| assignAddresses(); |
| } |
| |
| if (!Config->OFormatBinary) |
| assignFileOffsets(); |
| else |
| assignFileOffsetsBinary(); |
| |
| setPhdrs(); |
| fixAbsoluteSymbols(); |
| } |
| |
| openFile(); |
| if (HasError) |
| return; |
| if (!Config->OFormatBinary) { |
| writeHeader(); |
| writeSections(); |
| } else { |
| writeSectionsBinary(); |
| } |
| writeBuildId(); |
| if (HasError) |
| return; |
| if (auto EC = Buffer->commit()) |
| error(EC, "failed to write to the output file"); |
| if (Config->ExitEarly) { |
| // Flush the output streams and exit immediately. A full shutdown is a good |
| // test that we are keeping track of all allocated memory, but actually |
| // freeing it is a waste of time in a regular linker run. |
| exitLld(0); |
| } |
| } |
| |
| // Initialize Out<ELFT> members. |
| template <class ELFT> void Writer<ELFT>::createSyntheticSections() { |
| // Initialize all pointers with NULL. This is needed because |
| // you can call lld::elf::main more than once as a library. |
| memset(&Out<ELFT>::First, 0, sizeof(Out<ELFT>)); |
| |
| // Create singleton output sections. |
| Out<ELFT>::Bss = |
| make<OutputSection<ELFT>>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); |
| In<ELFT>::DynStrTab = make<StringTableSection<ELFT>>(".dynstr", true); |
| Out<ELFT>::Dynamic = make<DynamicSection<ELFT>>(); |
| Out<ELFT>::EhFrame = make<EhOutputSection<ELFT>>(); |
| Out<ELFT>::Plt = make<PltSection<ELFT>>(); |
| Out<ELFT>::RelaDyn = make<RelocationSection<ELFT>>( |
| Config->Rela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); |
| In<ELFT>::ShStrTab = make<StringTableSection<ELFT>>(".shstrtab", false); |
| Out<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); |
| Out<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); |
| |
| Out<ELFT>::ElfHeader = make<OutputSectionBase>("", 0, SHF_ALLOC); |
| Out<ELFT>::ElfHeader->Size = sizeof(Elf_Ehdr); |
| Out<ELFT>::ProgramHeaders = make<OutputSectionBase>("", 0, SHF_ALLOC); |
| Out<ELFT>::ProgramHeaders->updateAlignment(sizeof(uintX_t)); |
| |
| if (needsInterpSection<ELFT>()) { |
| In<ELFT>::Interp = createInterpSection<ELFT>(); |
| Symtab<ELFT>::X->Sections.push_back(In<ELFT>::Interp); |
| } else { |
| In<ELFT>::Interp = nullptr; |
| } |
| |
| if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) { |
| Out<ELFT>::DynSymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::DynStrTab); |
| } |
| |
| if (Config->EhFrameHdr) |
| Out<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>(); |
| |
| if (Config->GnuHash) |
| Out<ELFT>::GnuHashTab = make<GnuHashTableSection<ELFT>>(); |
| if (Config->SysvHash) |
| Out<ELFT>::HashTab = make<HashTableSection<ELFT>>(); |
| if (Config->GdbIndex) |
| Out<ELFT>::GdbIndex = make<GdbIndexSection<ELFT>>(); |
| |
| Out<ELFT>::RelaPlt = make<RelocationSection<ELFT>>( |
| Config->Rela ? ".rela.plt" : ".rel.plt", false /*Sort*/); |
| if (Config->Strip != StripPolicy::All) { |
| In<ELFT>::StrTab = make<StringTableSection<ELFT>>(".strtab", false); |
| Out<ELFT>::SymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::StrTab); |
| } |
| |
| if (Config->EMachine == EM_MIPS && !Config->Shared) { |
| // This is a MIPS specific section to hold a space within the data segment |
| // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. |
| // See "Dynamic section" in Chapter 5 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| Out<ELFT>::MipsRldMap = make<OutputSection<ELFT>>(".rld_map", SHT_PROGBITS, |
| SHF_ALLOC | SHF_WRITE); |
| Out<ELFT>::MipsRldMap->Size = sizeof(uintX_t); |
| Out<ELFT>::MipsRldMap->updateAlignment(sizeof(uintX_t)); |
| } |
| if (!Config->VersionDefinitions.empty()) |
| Out<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); |
| |
| // Initialize linker generated sections |
| if (!Config->Relocatable) |
| Symtab<ELFT>::X->Sections.push_back(createCommentSection<ELFT>()); |
| |
| if (Config->BuildId == BuildIdKind::Fast) |
| In<ELFT>::BuildId = make<BuildIdFastHash<ELFT>>(); |
| else if (Config->BuildId == BuildIdKind::Md5) |
| In<ELFT>::BuildId = make<BuildIdMd5<ELFT>>(); |
| else if (Config->BuildId == BuildIdKind::Sha1) |
| In<ELFT>::BuildId = make<BuildIdSha1<ELFT>>(); |
| else if (Config->BuildId == BuildIdKind::Uuid) |
| In<ELFT>::BuildId = make<BuildIdUuid<ELFT>>(); |
| else if (Config->BuildId == BuildIdKind::Hexstring) |
| In<ELFT>::BuildId = make<BuildIdHexstring<ELFT>>(); |
| else |
| In<ELFT>::BuildId = nullptr; |
| |
| if (In<ELFT>::BuildId) |
| Symtab<ELFT>::X->Sections.push_back(In<ELFT>::BuildId); |
| |
| InputSection<ELFT> *Common = createCommonSection<ELFT>(); |
| if (!Common->Data.empty()) { |
| In<ELFT>::Common = Common; |
| Symtab<ELFT>::X->Sections.push_back(Common); |
| } |
| |
| if (Config->EMachine == EM_MIPS) { |
| // .MIPS.abiflags |
| auto *AbiFlags = make<MipsAbiFlagsSection<ELFT>>(); |
| if (AbiFlags->Live) { |
| In<ELFT>::MipsAbiFlags = AbiFlags; |
| Symtab<ELFT>::X->Sections.push_back(AbiFlags); |
| } |
| // .MIPS.options |
| auto *OptSec = make<MipsOptionsSection<ELFT>>(); |
| if (OptSec->Live) { |
| In<ELFT>::MipsOptions = OptSec; |
| Symtab<ELFT>::X->Sections.push_back(OptSec); |
| } |
| // MIPS .reginfo |
| auto *RegSec = make<MipsReginfoSection<ELFT>>(); |
| if (RegSec->Live) { |
| In<ELFT>::MipsReginfo = RegSec; |
| Symtab<ELFT>::X->Sections.push_back(RegSec); |
| } |
| } |
| |
| In<ELFT>::Got = make<GotSection<ELFT>>(); |
| In<ELFT>::GotPlt = make<GotPltSection<ELFT>>(); |
| |
| // These sections are filled after createSections() is called. |
| // We use this list to fixup size of output sections, when they |
| // are finalized. |
| In<ELFT>::SyntheticSections = {In<ELFT>::ShStrTab, In<ELFT>::StrTab, |
| In<ELFT>::DynStrTab, In<ELFT>::Got, |
| In<ELFT>::GotPlt}; |
| } |
| |
| template <class ELFT> |
| static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, |
| const SymbolBody &B) { |
| if (B.isFile()) |
| return false; |
| |
| // We keep sections in symtab for relocatable output. |
| if (B.isSection()) |
| return Config->Relocatable; |
| |
| // If sym references a section in a discarded group, don't keep it. |
| if (Sec == &InputSection<ELFT>::Discarded) |
| return false; |
| |
| if (Config->Discard == DiscardPolicy::None) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (!SymName.startswith(".L") && !SymName.empty()) |
| return true; |
| |
| if (Config->Discard == DiscardPolicy::Locals) |
| return false; |
| |
| return !Sec || !(Sec->Flags & SHF_MERGE); |
| } |
| |
| template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { |
| if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) |
| return false; |
| |
| if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { |
| // Always include absolute symbols. |
| if (!D->Section) |
| return true; |
| // Exclude symbols pointing to garbage-collected sections. |
| if (!D->Section->Live) |
| return false; |
| if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) |
| if (!S->getSectionPiece(D->Value)->Live) |
| return false; |
| } |
| return true; |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| if (!Out<ELFT>::SymTab) |
| return; |
| for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { |
| StringRef StrTab = F->getStringTable(); |
| for (SymbolBody *B : F->getLocalSymbols()) { |
| if (!B->IsLocal) |
| fatal(getFilename(F) + |
| ": broken object: getLocalSymbols returns a non-local symbol"); |
| auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); |
| // No reason to keep local undefined symbol in symtab. |
| if (!DR) |
| continue; |
| if (!includeInSymtab<ELFT>(*B)) |
| continue; |
| if (B->getNameOffset() >= StrTab.size()) |
| fatal(getFilename(F) + ": invalid symbol name offset"); |
| StringRef SymName(StrTab.data() + B->getNameOffset()); |
| InputSectionBase<ELFT> *Sec = DR->Section; |
| if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B)) |
| continue; |
| ++Out<ELFT>::SymTab->NumLocals; |
| if (Config->Relocatable) |
| B->DynsymIndex = Out<ELFT>::SymTab->NumLocals; |
| F->KeptLocalSyms.push_back( |
| std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); |
| } |
| } |
| } |
| |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that |
| // we would like to make sure appear is a specific order to maximize their |
| // coverage by a single signed 16-bit offset from the TOC base pointer. |
| // Conversely, the special .tocbss section should be first among all SHT_NOBITS |
| // sections. This will put it next to the loaded special PPC64 sections (and, |
| // thus, within reach of the TOC base pointer). |
| static int getPPC64SectionRank(StringRef SectionName) { |
| return StringSwitch<int>(SectionName) |
| .Case(".tocbss", 0) |
| .Case(".branch_lt", 2) |
| .Case(".toc", 3) |
| .Case(".toc1", 4) |
| .Case(".opd", 5) |
| .Default(1); |
| } |
| |
| template <class ELFT> bool elf::isRelroSection(const OutputSectionBase *Sec) { |
| if (!Config->ZRelro) |
| return false; |
| uint64_t Flags = Sec->Flags; |
| if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) |
| return false; |
| if (Flags & SHF_TLS) |
| return true; |
| uint32_t Type = Sec->Type; |
| if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || |
| Type == SHT_PREINIT_ARRAY) |
| return true; |
| if (Sec == In<ELFT>::GotPlt->OutSec) |
| return Config->ZNow; |
| if (Sec == Out<ELFT>::Dynamic || Sec == In<ELFT>::Got->OutSec) |
| return true; |
| StringRef S = Sec->getName(); |
| return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || |
| S == ".eh_frame"; |
| } |
| |
| template <class ELFT> |
| static bool compareSectionsNonScript(const OutputSectionBase *A, |
| const OutputSectionBase *B) { |
| // Put .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| bool AIsInterp = A->getName() == ".interp"; |
| bool BIsInterp = B->getName() == ".interp"; |
| if (AIsInterp != BIsInterp) |
| return AIsInterp; |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| bool AIsAlloc = A->Flags & SHF_ALLOC; |
| bool BIsAlloc = B->Flags & SHF_ALLOC; |
| if (AIsAlloc != BIsAlloc) |
| return AIsAlloc; |
| |
| // We don't have any special requirements for the relative order of two non |
| // allocatable sections. |
| if (!AIsAlloc) |
| return false; |
| |
| // We want the read only sections first so that they go in the PT_LOAD |
| // covering the program headers at the start of the file. |
| bool AIsWritable = A->Flags & SHF_WRITE; |
| bool BIsWritable = B->Flags & SHF_WRITE; |
| if (AIsWritable != BIsWritable) |
| return BIsWritable; |
| |
| if (!ScriptConfig->HasSections) { |
| // For a corresponding reason, put non exec sections first (the program |
| // header PT_LOAD is not executable). |
| // We only do that if we are not using linker scripts, since with linker |
| // scripts ro and rx sections are in the same PT_LOAD, so their relative |
| // order is not important. |
| bool AIsExec = A->Flags & SHF_EXECINSTR; |
| bool BIsExec = B->Flags & SHF_EXECINSTR; |
| if (AIsExec != BIsExec) |
| return BIsExec; |
| } |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS |
| // sections are placed here as they don't take up virtual address space in the |
| // PT_LOAD. |
| bool AIsTls = A->Flags & SHF_TLS; |
| bool BIsTls = B->Flags & SHF_TLS; |
| if (AIsTls != BIsTls) |
| return AIsTls; |
| |
| // The next requirement we have is to put nobits sections last. The |
| // reason is that the only thing the dynamic linker will see about |
| // them is a p_memsz that is larger than p_filesz. Seeing that it |
| // zeros the end of the PT_LOAD, so that has to correspond to the |
| // nobits sections. |
| bool AIsNoBits = A->Type == SHT_NOBITS; |
| bool BIsNoBits = B->Type == SHT_NOBITS; |
| if (AIsNoBits != BIsNoBits) |
| return BIsNoBits; |
| |
| // We place RelRo section before plain r/w ones. |
| bool AIsRelRo = isRelroSection<ELFT>(A); |
| bool BIsRelRo = isRelroSection<ELFT>(B); |
| if (AIsRelRo != BIsRelRo) |
| return AIsRelRo; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (Config->EMachine == EM_PPC64) |
| return getPPC64SectionRank(A->getName()) < |
| getPPC64SectionRank(B->getName()); |
| |
| return false; |
| } |
| |
| // Output section ordering is determined by this function. |
| template <class ELFT> |
| static bool compareSections(const OutputSectionBase *A, |
| const OutputSectionBase *B) { |
| // For now, put sections mentioned in a linker script first. |
| int AIndex = Script<ELFT>::X->getSectionIndex(A->getName()); |
| int BIndex = Script<ELFT>::X->getSectionIndex(B->getName()); |
| bool AInScript = AIndex != INT_MAX; |
| bool BInScript = BIndex != INT_MAX; |
| if (AInScript != BInScript) |
| return AInScript; |
| // If both are in the script, use that order. |
| if (AInScript) |
| return AIndex < BIndex; |
| |
| return compareSectionsNonScript<ELFT>(A, B); |
| } |
| |
| // Program header entry |
| template <class ELFT> |
| PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) { |
| H.p_type = Type; |
| H.p_flags = Flags; |
| } |
| |
| template <class ELFT> void PhdrEntry<ELFT>::add(OutputSectionBase *Sec) { |
| Last = Sec; |
| if (!First) |
| First = Sec; |
| H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->Addralign); |
| if (H.p_type == PT_LOAD) |
| Sec->FirstInPtLoad = First; |
| } |
| |
| template <class ELFT> |
| static Symbol *addOptionalSynthetic(StringRef Name, OutputSectionBase *Sec, |
| typename ELFT::uint Val, |
| uint8_t StOther = STV_HIDDEN) { |
| SymbolBody *S = Symtab<ELFT>::X->find(Name); |
| if (!S) |
| return nullptr; |
| if (!S->isUndefined() && !S->isShared()) |
| return S->symbol(); |
| return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther); |
| } |
| |
| template <class ELFT> |
| static Symbol *addRegular(StringRef Name, InputSectionBase<ELFT> *IS, |
| typename ELFT::uint Value) { |
| typename ELFT::Sym LocalHidden = {}; |
| LocalHidden.setBindingAndType(STB_LOCAL, STT_NOTYPE); |
| LocalHidden.setVisibility(STV_HIDDEN); |
| Symbol *S = Symtab<ELFT>::X->addRegular(Name, LocalHidden, IS, nullptr); |
| cast<DefinedRegular<ELFT>>(S->body())->Value = Value; |
| return S; |
| } |
| |
| template <class ELFT> |
| static Symbol *addOptionalRegular(StringRef Name, InputSectionBase<ELFT> *IS, |
| typename ELFT::uint Value) { |
| SymbolBody *S = Symtab<ELFT>::X->find(Name); |
| if (!S) |
| return nullptr; |
| if (!S->isUndefined() && !S->isShared()) |
| return S->symbol(); |
| return addRegular(Name, IS, Value); |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt) |
| return; |
| StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; |
| addOptionalSynthetic<ELFT>(S, Out<ELFT>::RelaPlt, 0); |
| |
| S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; |
| addOptionalSynthetic<ELFT>(S, Out<ELFT>::RelaPlt, |
| DefinedSynthetic<ELFT>::SectionEnd); |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| template <class ELFT> void Writer<ELFT>::addReservedSymbols() { |
| if (Config->EMachine == EM_MIPS && !Config->Relocatable) { |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which is relative to GOT. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| addRegular("_gp", In<ELFT>::Got, MipsGPOffset); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| Symbol *Sym = addOptionalRegular("_gp_disp", In<ELFT>::Got, MipsGPOffset); |
| if (Sym) |
| ElfSym<ELFT>::MipsGpDisp = Sym->body(); |
| |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| addOptionalRegular("__gnu_local_gp", In<ELFT>::Got, MipsGPOffset); |
| } |
| |
| // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol |
| // is magical and is used to produce a R_386_GOTPC relocation. |
| // The R_386_GOTPC relocation value doesn't actually depend on the |
| // symbol value, so it could use an index of STN_UNDEF which, according |
| // to the spec, means the symbol value is 0. |
| // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in |
| // the object file. |
| // The situation is even stranger on x86_64 where the assembly doesn't |
| // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as |
| // an undefined symbol in the .o files. |
| // Given that the symbol is effectively unused, we just create a dummy |
| // hidden one to avoid the undefined symbol error. |
| if (!Config->Relocatable) |
| Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); |
| |
| // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For |
| // static linking the linker is required to optimize away any references to |
| // __tls_get_addr, so it's not defined anywhere. Create a hidden definition |
| // to avoid the undefined symbol error. As usual special cases are ARM and |
| // MIPS - the libc for these targets defines __tls_get_addr itself because |
| // there are no TLS optimizations for these targets. |
| if (!Out<ELFT>::DynSymTab && |
| (Config->EMachine != EM_MIPS && Config->EMachine != EM_ARM)) |
| Symtab<ELFT>::X->addIgnored("__tls_get_addr"); |
| |
| // If linker script do layout we do not need to create any standart symbols. |
| if (ScriptConfig->HasSections) |
| return; |
| |
| ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start"); |
| |
| auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1, |
| DefinedRegular<ELFT> *&Sym2) { |
| Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT); |
| |
| // The name without the underscore is not a reserved name, |
| // so it is defined only when there is a reference against it. |
| assert(S.startswith("_")); |
| S = S.substr(1); |
| if (SymbolBody *B = Symtab<ELFT>::X->find(S)) |
| if (B->isUndefined()) |
| Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT); |
| }; |
| |
| Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); |
| Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); |
| Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); |
| } |
| |
| // Sort input sections by section name suffixes for |
| // __attribute__((init_priority(N))). |
| template <class ELFT> static void sortInitFini(OutputSectionBase *S) { |
| if (S) |
| reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); |
| } |
| |
| // Sort input sections by the special rule for .ctors and .dtors. |
| template <class ELFT> static void sortCtorsDtors(OutputSectionBase *S) { |
| if (S) |
| reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); |
| } |
| |
| // Sort input sections using the list provided by --symbol-ordering-file. |
| template <class ELFT> |
| static void sortBySymbolsOrder(ArrayRef<OutputSectionBase *> V) { |
| if (Config->SymbolOrderingFile.empty()) |
| return; |
| |
| // Build sections order map from symbols list. |
| DenseMap<InputSectionBase<ELFT> *, unsigned> SectionsOrder; |
| for (elf::ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) { |
| for (SymbolBody *Body : File->getSymbols()) { |
| auto *D = dyn_cast<DefinedRegular<ELFT>>(Body); |
| if (!D || !D->Section) |
| continue; |
| StringRef SymName = getSymbolName(File->getStringTable(), *Body); |
| auto It = Config->SymbolOrderingFile.find(CachedHashString(SymName)); |
| if (It == Config->SymbolOrderingFile.end()) |
| continue; |
| |
| auto It2 = SectionsOrder.insert({D->Section, It->second}); |
| if (!It2.second) |
| It2.first->second = std::min(It->second, It2.first->second); |
| } |
| } |
| |
| for (OutputSectionBase *Base : V) |
| if (OutputSection<ELFT> *Sec = dyn_cast<OutputSection<ELFT>>(Base)) |
| Sec->sort([&](InputSection<ELFT> *S) { |
| auto It = SectionsOrder.find(S); |
| return It == SectionsOrder.end() ? UINT32_MAX : It->second; |
| }); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::forEachRelSec( |
| std::function<void(InputSectionBase<ELFT> &)> Fn) { |
| for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections) { |
| if (!IS->Live) |
| continue; |
| // Scan all relocations. Each relocation goes through a series |
| // of tests to determine if it needs special treatment, such as |
| // creating GOT, PLT, copy relocations, etc. |
| // Note that relocations for non-alloc sections are directly |
| // processed by InputSection::relocateNonAlloc. |
| if (!(IS->Flags & SHF_ALLOC)) |
| continue; |
| if (isa<InputSection<ELFT>>(IS) || isa<EhInputSection<ELFT>>(IS)) |
| Fn(*IS); |
| } |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addInputSec(InputSectionBase<ELFT> *IS) { |
| if (!IS) |
| return; |
| |
| if (!IS->Live) { |
| reportDiscarded(IS); |
| return; |
| } |
| OutputSectionBase *Sec; |
| bool IsNew; |
| StringRef OutsecName = getOutputSectionName(IS->Name); |
| std::tie(Sec, IsNew) = Factory.create(IS, OutsecName); |
| if (IsNew) |
| OutputSections.push_back(Sec); |
| Sec->addSection(IS); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::createSections() { |
| for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections) |
| addInputSec(IS); |
| |
| sortBySymbolsOrder<ELFT>(OutputSections); |
| sortInitFini<ELFT>(findSection(".init_array")); |
| sortInitFini<ELFT>(findSection(".fini_array")); |
| sortCtorsDtors<ELFT>(findSection(".ctors")); |
| sortCtorsDtors<ELFT>(findSection(".dtors")); |
| |
| for (OutputSectionBase *Sec : OutputSections) |
| Sec->assignOffsets(); |
| } |
| |
| template <class ELFT> |
| static bool canSharePtLoad(const OutputSectionBase &S1, |
| const OutputSectionBase &S2) { |
| if (!(S1.Flags & SHF_ALLOC) || !(S2.Flags & SHF_ALLOC)) |
| return false; |
| |
| bool S1IsWrite = S1.Flags & SHF_WRITE; |
| bool S2IsWrite = S2.Flags & SHF_WRITE; |
| if (S1IsWrite != S2IsWrite) |
| return false; |
| |
| if (!S1IsWrite) |
| return true; // RO and RX share a PT_LOAD with linker scripts. |
| return (S1.Flags & SHF_EXECINSTR) == (S2.Flags & SHF_EXECINSTR); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortSections() { |
| // Don't sort if using -r. It is not necessary and we want to preserve the |
| // relative order for SHF_LINK_ORDER sections. |
| if (Config->Relocatable) |
| return; |
| if (!ScriptConfig->HasSections) { |
| std::stable_sort(OutputSections.begin(), OutputSections.end(), |
| compareSectionsNonScript<ELFT>); |
| return; |
| } |
| Script<ELFT>::X->adjustSectionsBeforeSorting(); |
| |
| // The order of the sections in the script is arbitrary and may not agree with |
| // compareSectionsNonScript. This means that we cannot easily define a |
| // strict weak ordering. To see why, consider a comparison of a section in the |
| // script and one not in the script. We have a two simple options: |
| // * Make them equivalent (a is not less than b, and b is not less than a). |
| // The problem is then that equivalence has to be transitive and we can |
| // have sections a, b and c with only b in a script and a less than c |
| // which breaks this property. |
| // * Use compareSectionsNonScript. Given that the script order doesn't have |
| // to match, we can end up with sections a, b, c, d where b and c are in the |
| // script and c is compareSectionsNonScript less than b. In which case d |
| // can be equivalent to c, a to b and d < a. As a concrete example: |
| // .a (rx) # not in script |
| // .b (rx) # in script |
| // .c (ro) # in script |
| // .d (ro) # not in script |
| // |
| // The way we define an order then is: |
| // * First put script sections at the start and sort the script and |
| // non-script sections independently. |
| // * Move each non-script section to its preferred position. We try |
| // to put each section in the last position where it it can share |
| // a PT_LOAD. |
| |
| std::stable_sort(OutputSections.begin(), OutputSections.end(), |
| compareSections<ELFT>); |
| |
| auto I = OutputSections.begin(); |
| auto E = OutputSections.end(); |
| auto NonScriptI = |
| std::find_if(OutputSections.begin(), E, [](OutputSectionBase *S) { |
| return Script<ELFT>::X->getSectionIndex(S->getName()) == INT_MAX; |
| }); |
| while (NonScriptI != E) { |
| auto BestPos = std::max_element( |
| I, NonScriptI, [&](OutputSectionBase *&A, OutputSectionBase *&B) { |
| bool ACanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *A); |
| bool BCanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *B); |
| if (ACanSharePtLoad != BCanSharePtLoad) |
| return BCanSharePtLoad; |
| |
| bool ACmp = compareSectionsNonScript<ELFT>(*NonScriptI, A); |
| bool BCmp = compareSectionsNonScript<ELFT>(*NonScriptI, B); |
| if (ACmp != BCmp) |
| return BCmp; // FIXME: missing test |
| |
| size_t PosA = &A - &OutputSections[0]; |
| size_t PosB = &B - &OutputSections[0]; |
| return ACmp ? PosA > PosB : PosA < PosB; |
| }); |
| |
| // max_element only returns NonScriptI if the range is empty. If the range |
| // is not empty we should consider moving the the element forward one |
| // position. |
| if (BestPos != NonScriptI && |
| !compareSectionsNonScript<ELFT>(*NonScriptI, *BestPos)) |
| ++BestPos; |
| std::rotate(BestPos, NonScriptI, NonScriptI + 1); |
| ++NonScriptI; |
| } |
| |
| Script<ELFT>::X->adjustSectionsAfterSorting(); |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::finalizeSections() { |
| Out<ELFT>::DebugInfo = findSection(".debug_info"); |
| Out<ELFT>::PreinitArray = findSection(".preinit_array"); |
| Out<ELFT>::InitArray = findSection(".init_array"); |
| Out<ELFT>::FiniArray = findSection(".fini_array"); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| if (!Config->Relocatable) { |
| addStartEndSymbols(); |
| for (OutputSectionBase *Sec : OutputSections) |
| addStartStopSymbols(Sec); |
| } |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (Out<ELFT>::DynSymTab) |
| Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0, |
| STV_HIDDEN); |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| if (!Out<ELFT>::EhFrame->empty()) { |
| OutputSections.push_back(Out<ELFT>::EhFrame); |
| Out<ELFT>::EhFrame->finalize(); |
| } |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. |
| forEachRelSec(scanRelocations<ELFT>); |
| |
| // Now that we have defined all possible symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { |
| SymbolBody *Body = S->body(); |
| |
| if (!includeInSymtab<ELFT>(*Body)) |
| continue; |
| if (Out<ELFT>::SymTab) |
| Out<ELFT>::SymTab->addSymbol(Body); |
| |
| if (Out<ELFT>::DynSymTab && S->includeInDynsym()) { |
| Out<ELFT>::DynSymTab->addSymbol(Body); |
| if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) |
| if (SS->file()->isNeeded()) |
| Out<ELFT>::VerNeed->addSymbol(SS); |
| } |
| } |
| |
| // Do not proceed if there was an undefined symbol. |
| if (HasError) |
| return; |
| |
| // So far we have added sections from input object files. |
| // This function adds linker-created Out<ELFT>::* sections. |
| addPredefinedSections(); |
| |
| sortSections(); |
| |
| unsigned I = 1; |
| for (OutputSectionBase *Sec : OutputSections) { |
| Sec->SectionIndex = I++; |
| Sec->ShName = In<ELFT>::ShStrTab->addString(Sec->getName()); |
| } |
| |
| // Finalizers fix each section's size. |
| // .dynsym is finalized early since that may fill up .gnu.hash. |
| if (Out<ELFT>::DynSymTab) |
| Out<ELFT>::DynSymTab->finalize(); |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. |
| for (OutputSectionBase *Sec : OutputSections) |
| if (Sec != Out<ELFT>::Dynamic) |
| Sec->finalize(); |
| |
| if (Out<ELFT>::DynSymTab) |
| Out<ELFT>::Dynamic->finalize(); |
| |
| // Now that all output offsets are fixed. Finalize mergeable sections |
| // to fix their maps from input offsets to output offsets. |
| for (OutputSectionBase *Sec : OutputSections) |
| Sec->finalizePieces(); |
| } |
| |
| template <class ELFT> bool Writer<ELFT>::needsGot() { |
| if (!In<ELFT>::Got->empty()) |
| return true; |
| |
| // We add the .got section to the result for dynamic MIPS target because |
| // its address and properties are mentioned in the .dynamic section. |
| if (Config->EMachine == EM_MIPS && !Config->Relocatable) |
| return true; |
| |
| // If we have a relocation that is relative to GOT (such as GOTOFFREL), |
| // we need to emit a GOT even if it's empty. |
| return In<ELFT>::Got->HasGotOffRel; |
| } |
| |
| // This function add Out<ELFT>::* sections to OutputSections. |
| template <class ELFT> void Writer<ELFT>::addPredefinedSections() { |
| auto Add = [&](OutputSectionBase *OS) { |
| if (OS) |
| OutputSections.push_back(OS); |
| }; |
| |
| // This order is not the same as the final output order |
| // because we sort the sections using their attributes below. |
| if (Out<ELFT>::GdbIndex && Out<ELFT>::DebugInfo) |
| Add(Out<ELFT>::GdbIndex); |
| Add(Out<ELFT>::SymTab); |
| addInputSec(In<ELFT>::ShStrTab); |
| addInputSec(In<ELFT>::StrTab); |
| if (Out<ELFT>::DynSymTab) { |
| Add(Out<ELFT>::DynSymTab); |
| |
| bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; |
| if (Out<ELFT>::VerDef || HasVerNeed) |
| Add(Out<ELFT>::VerSym); |
| Add(Out<ELFT>::VerDef); |
| if (HasVerNeed) |
| Add(Out<ELFT>::VerNeed); |
| |
| Add(Out<ELFT>::GnuHashTab); |
| Add(Out<ELFT>::HashTab); |
| Add(Out<ELFT>::Dynamic); |
| addInputSec(In<ELFT>::DynStrTab); |
| if (Out<ELFT>::RelaDyn->hasRelocs()) |
| Add(Out<ELFT>::RelaDyn); |
| Add(Out<ELFT>::MipsRldMap); |
| } |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even during static linking it can contain R_[*]_IRELATIVE relocations. |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) |
| Add(Out<ELFT>::RelaPlt); |
| |
| // We fill .got and .got.plt sections in scanRelocs(). This is the |
| // reason we don't add it earlier in createSections(). |
| if (needsGot()) { |
| In<ELFT>::Got->finalize(); |
| addInputSec(In<ELFT>::Got); |
| } |
| |
| if (!In<ELFT>::GotPlt->empty()) |
| addInputSec(In<ELFT>::GotPlt); |
| |
| if (!Out<ELFT>::Plt->empty()) |
| Add(Out<ELFT>::Plt); |
| if (!Out<ELFT>::EhFrame->empty()) |
| Add(Out<ELFT>::EhFrameHdr); |
| if (Out<ELFT>::Bss->Size > 0) |
| Add(Out<ELFT>::Bss); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| auto Define = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { |
| // These symbols resolve to the image base if the section does not exist. |
| addOptionalSynthetic<ELFT>(Start, OS, 0); |
| addOptionalSynthetic<ELFT>(End, OS, |
| OS ? DefinedSynthetic<ELFT>::SectionEnd : 0); |
| }; |
| |
| Define("__preinit_array_start", "__preinit_array_end", |
| Out<ELFT>::PreinitArray); |
| Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); |
| Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); |
| |
| if (OutputSectionBase *Sec = findSection(".ARM.exidx")) |
| Define("__exidx_start", "__exidx_end", Sec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSectionBase *Sec) { |
| StringRef S = Sec->getName(); |
| if (!isValidCIdentifier(S)) |
| return; |
| addOptionalSynthetic<ELFT>(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); |
| addOptionalSynthetic<ELFT>(Saver.save("__stop_" + S), Sec, |
| DefinedSynthetic<ELFT>::SectionEnd, STV_DEFAULT); |
| } |
| |
| template <class ELFT> |
| OutputSectionBase *Writer<ELFT>::findSection(StringRef Name) { |
| for (OutputSectionBase *Sec : OutputSections) |
| if (Sec->getName() == Name) |
| return Sec; |
| return nullptr; |
| } |
| |
| template <class ELFT> static bool needsPtLoad(OutputSectionBase *Sec) { |
| if (!(Sec->Flags & SHF_ALLOC)) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| // Linker scripts are responsible for aligning addresses. Unfortunately, most |
| // linker scripts are designed for creating two PT_LOADs only, one RX and one |
| // RW. This means that there is no alignment in the RO to RX transition and we |
| // cannot create a PT_LOAD there. |
| template <class ELFT> |
| static typename ELFT::uint computeFlags(typename ELFT::uint F) { |
| if (ScriptConfig->HasSections && !(F & PF_W)) |
| return F | PF_X; |
| return F; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() { |
| std::vector<Phdr> Ret; |
| auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * { |
| Ret.emplace_back(Type, Flags); |
| return &Ret.back(); |
| }; |
| |
| // The first phdr entry is PT_PHDR which describes the program header itself. |
| Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); |
| Hdr.add(Out<ELFT>::ProgramHeaders); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (OutputSectionBase *Sec = findSection(".interp")) { |
| Phdr &Hdr = *AddHdr(PT_INTERP, Sec->getPhdrFlags()); |
| Hdr.add(Sec); |
| } |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uintX_t Flags = computeFlags<ELFT>(PF_R); |
| Phdr *Load = AddHdr(PT_LOAD, Flags); |
| if (!ScriptConfig->HasSections) { |
| Load->add(Out<ELFT>::ElfHeader); |
| Load->add(Out<ELFT>::ProgramHeaders); |
| } |
| |
| Phdr TlsHdr(PT_TLS, PF_R); |
| Phdr RelRo(PT_GNU_RELRO, PF_R); |
| Phdr Note(PT_NOTE, PF_R); |
| Phdr ARMExidx(PT_ARM_EXIDX, PF_R); |
| for (OutputSectionBase *Sec : OutputSections) { |
| if (!(Sec->Flags & SHF_ALLOC)) |
| break; |
| |
| // If we meet TLS section then we create TLS header |
| // and put all TLS sections inside for further use when |
| // assign addresses. |
| if (Sec->Flags & SHF_TLS) |
| TlsHdr.add(Sec); |
| |
| if (!needsPtLoad<ELFT>(Sec)) |
| continue; |
| |
| // Segments are contiguous memory regions that has the same attributes |
| // (e.g. executable or writable). There is one phdr for each segment. |
| // Therefore, we need to create a new phdr when the next section has |
| // different flags or is loaded at a discontiguous address using AT linker |
| // script command. |
| uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags()); |
| if (Script<ELFT>::X->hasLMA(Sec->getName()) || Flags != NewFlags) { |
| Load = AddHdr(PT_LOAD, NewFlags); |
| Flags = NewFlags; |
| } |
| |
| Load->add(Sec); |
| |
| if (isRelroSection<ELFT>(Sec)) |
| RelRo.add(Sec); |
| if (Sec->Type == SHT_NOTE) |
| Note.add(Sec); |
| if (Config->EMachine == EM_ARM && Sec->Type == SHT_ARM_EXIDX) |
| ARMExidx.add(Sec); |
| } |
| |
| // Add the TLS segment unless it's empty. |
| if (TlsHdr.First) |
| Ret.push_back(std::move(TlsHdr)); |
| |
| // Add an entry for .dynamic. |
| if (Out<ELFT>::DynSymTab) { |
| Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags()); |
| H.add(Out<ELFT>::Dynamic); |
| } |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after proccessing relocations. |
| if (RelRo.First) |
| Ret.push_back(std::move(RelRo)); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) { |
| Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags()); |
| Hdr.add(Out<ELFT>::EhFrameHdr); |
| } |
| |
| // PT_OPENBSD_RANDOMIZE specifies the location and size of a part of the |
| // memory image of the program that must be filled with random data before any |
| // code in the object is executed. |
| if (OutputSectionBase *Sec = findSection(".openbsd.randomdata")) { |
| Phdr &Hdr = *AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags()); |
| Hdr.add(Sec); |
| } |
| |
| // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
| if (ARMExidx.First) |
| Ret.push_back(std::move(ARMExidx)); |
| |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. |
| if (!Config->ZExecstack) { |
| Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W); |
| if (Config->ZStackSize != uint64_t(-1)) |
| Hdr.H.p_memsz = Config->ZStackSize; |
| } |
| |
| // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
| // is expected to perform W^X violations, such as calling mprotect(2) or |
| // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
| // OpenBSD. |
| if (Config->ZWxneeded) |
| AddHdr(PT_OPENBSD_WXNEEDED, PF_X); |
| |
| if (Note.First) |
| Ret.push_back(std::move(Note)); |
| return Ret; |
| } |
| |
| // The first section of each PT_LOAD and the first section after PT_GNU_RELRO |
| // have to be page aligned so that the dynamic linker can set the permissions. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| for (const Phdr &P : Phdrs) |
| if (P.H.p_type == PT_LOAD) |
| P.First->PageAlign = true; |
| |
| for (const Phdr &P : Phdrs) { |
| if (P.H.p_type != PT_GNU_RELRO) |
| continue; |
| // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we |
| // have to align it to a page. |
| auto End = OutputSections.end(); |
| auto I = std::find(OutputSections.begin(), End, P.Last); |
| if (I == End || (I + 1) == End) |
| continue; |
| OutputSectionBase *Sec = *(I + 1); |
| if (needsPtLoad<ELFT>(Sec)) |
| Sec->PageAlign = true; |
| } |
| } |
| |
| // We should set file offsets and VAs for elf header and program headers |
| // sections. These are special, we do not include them into output sections |
| // list, but have them to simplify the code. |
| template <class ELFT> void Writer<ELFT>::fixHeaders() { |
| uintX_t BaseVA = ScriptConfig->HasSections ? 0 : Config->ImageBase; |
| Out<ELFT>::ElfHeader->Addr = BaseVA; |
| uintX_t Off = Out<ELFT>::ElfHeader->Size; |
| Out<ELFT>::ProgramHeaders->Addr = Off + BaseVA; |
| Out<ELFT>::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); |
| } |
| |
| // Assign VAs (addresses at run-time) to output sections. |
| template <class ELFT> void Writer<ELFT>::assignAddresses() { |
| uintX_t VA = Config->ImageBase + getHeaderSize<ELFT>(); |
| uintX_t ThreadBssOffset = 0; |
| for (OutputSectionBase *Sec : OutputSections) { |
| uintX_t Alignment = Sec->Addralign; |
| if (Sec->PageAlign) |
| Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); |
| |
| auto I = Config->SectionStartMap.find(Sec->getName()); |
| if (I != Config->SectionStartMap.end()) |
| VA = I->second; |
| |
| // We only assign VAs to allocated sections. |
| if (needsPtLoad<ELFT>(Sec)) { |
| VA = alignTo(VA, Alignment); |
| Sec->Addr = VA; |
| VA += Sec->Size; |
| } else if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) { |
| uintX_t TVA = VA + ThreadBssOffset; |
| TVA = alignTo(TVA, Alignment); |
| Sec->Addr = TVA; |
| ThreadBssOffset = TVA - VA + Sec->Size; |
| } |
| } |
| } |
| |
| // Adjusts the file alignment for a given output section and returns |
| // its new file offset. The file offset must be the same with its |
| // virtual address (modulo the page size) so that the loader can load |
| // executables without any address adjustment. |
| template <class ELFT, class uintX_t> |
| static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase *Sec) { |
| uintX_t Alignment = Sec->Addralign; |
| if (Sec->PageAlign) |
| Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); |
| Off = alignTo(Off, Alignment); |
| |
| OutputSectionBase *First = Sec->FirstInPtLoad; |
| // If the section is not in a PT_LOAD, we have no other constraint. |
| if (!First) |
| return Off; |
| |
| // If two sections share the same PT_LOAD the file offset is calculated using |
| // this formula: Off2 = Off1 + (VA2 - VA1). |
| if (Sec == First) |
| return alignTo(Off, Target->MaxPageSize, Sec->Addr); |
| return First->Offset + Sec->Addr - First->Addr; |
| } |
| |
| template <class ELFT, class uintX_t> |
| void setOffset(OutputSectionBase *Sec, uintX_t &Off) { |
| if (Sec->Type == SHT_NOBITS) { |
| Sec->Offset = Off; |
| return; |
| } |
| |
| Off = getFileAlignment<ELFT>(Off, Sec); |
| Sec->Offset = Off; |
| Off += Sec->Size; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
| uintX_t Off = 0; |
| for (OutputSectionBase *Sec : OutputSections) |
| if (Sec->Flags & SHF_ALLOC) |
| setOffset<ELFT>(Sec, Off); |
| FileSize = alignTo(Off, sizeof(uintX_t)); |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| uintX_t Off = 0; |
| setOffset<ELFT>(Out<ELFT>::ElfHeader, Off); |
| setOffset<ELFT>(Out<ELFT>::ProgramHeaders, Off); |
| |
| for (OutputSectionBase *Sec : OutputSections) |
| setOffset<ELFT>(Sec, Off); |
| |
| SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); |
| FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs() { |
| for (Phdr &P : Phdrs) { |
| Elf_Phdr &H = P.H; |
| OutputSectionBase *First = P.First; |
| OutputSectionBase *Last = P.Last; |
| if (First) { |
| H.p_filesz = Last->Offset - First->Offset; |
| if (Last->Type != SHT_NOBITS) |
| H.p_filesz += Last->Size; |
| H.p_memsz = Last->Addr + Last->Size - First->Addr; |
| H.p_offset = First->Offset; |
| H.p_vaddr = First->Addr; |
| if (!P.HasLMA) |
| H.p_paddr = First->getLMA(); |
| } |
| if (H.p_type == PT_LOAD) |
| H.p_align = Config->MaxPageSize; |
| else if (H.p_type == PT_GNU_RELRO) |
| H.p_align = 1; |
| |
| // The TLS pointer goes after PT_TLS. At least glibc will align it, |
| // so round up the size to make sure the offsets are correct. |
| if (H.p_type == PT_TLS) { |
| Out<ELFT>::TlsPhdr = &H; |
| if (H.p_memsz) |
| H.p_memsz = alignTo(H.p_memsz, H.p_align); |
| } |
| } |
| } |
| |
| template <class ELFT> static typename ELFT::uint getEntryAddr() { |
| if (Config->Entry.empty()) |
| return Config->EntryAddr; |
| if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry)) |
| return B->getVA<ELFT>(); |
| warn("entry symbol " + Config->Entry + " not found, assuming 0"); |
| return 0; |
| } |
| |
| template <class ELFT> static uint8_t getELFEncoding() { |
| if (ELFT::TargetEndianness == llvm::support::little) |
| return ELFDATA2LSB; |
| return ELFDATA2MSB; |
| } |
| |
| static uint16_t getELFType() { |
| if (Config->Pic) |
| return ET_DYN; |
| if (Config->Relocatable) |
| return ET_REL; |
| return ET_EXEC; |
| } |
| |
| // This function is called after we have assigned address and size |
| // to each section. This function fixes some predefined absolute |
| // symbol values that depend on section address and size. |
| template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { |
| // __ehdr_start is the location of program headers. |
| if (ElfSym<ELFT>::EhdrStart) |
| ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->Addr; |
| |
| auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) { |
| if (S1) |
| S1->Value = V; |
| if (S2) |
| S2->Value = V; |
| }; |
| |
| // _etext is the first location after the last read-only loadable segment. |
| // _edata is the first location after the last read-write loadable segment. |
| // _end is the first location after the uninitialized data region. |
| for (Phdr &P : Phdrs) { |
| Elf_Phdr &H = P.H; |
| if (H.p_type != PT_LOAD) |
| continue; |
| Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz); |
| |
| uintX_t Val = H.p_vaddr + H.p_filesz; |
| if (H.p_flags & PF_W) |
| Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val); |
| else |
| Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val); |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| memcpy(Buf, "\177ELF", 4); |
| |
| // Write the ELF header. |
| auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); |
| EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); |
| EHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| EHdr->e_ident[EI_OSABI] = Config->OSABI; |
| EHdr->e_type = getELFType(); |
| EHdr->e_machine = Config->EMachine; |
| EHdr->e_version = EV_CURRENT; |
| EHdr->e_entry = getEntryAddr<ELFT>(); |
| EHdr->e_shoff = SectionHeaderOff; |
| EHdr->e_ehsize = sizeof(Elf_Ehdr); |
| EHdr->e_phnum = Phdrs.size(); |
| EHdr->e_shentsize = sizeof(Elf_Shdr); |
| EHdr->e_shnum = OutputSections.size() + 1; |
| EHdr->e_shstrndx = In<ELFT>::ShStrTab->OutSec->SectionIndex; |
| |
| if (Config->EMachine == EM_ARM) |
| // We don't currently use any features incompatible with EF_ARM_EABI_VER5, |
| // but we don't have any firm guarantees of conformance. Linux AArch64 |
| // kernels (as of 2016) require an EABI version to be set. |
| EHdr->e_flags = EF_ARM_EABI_VER5; |
| else if (Config->EMachine == EM_MIPS) |
| EHdr->e_flags = getMipsEFlags<ELFT>(); |
| |
| if (!Config->Relocatable) { |
| EHdr->e_phoff = sizeof(Elf_Ehdr); |
| EHdr->e_phentsize = sizeof(Elf_Phdr); |
| } |
| |
| // Write the program header table. |
| auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); |
| for (Phdr &P : Phdrs) |
| *HBuf++ = P.H; |
| |
| // Write the section header table. Note that the first table entry is null. |
| auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); |
| for (OutputSectionBase *Sec : OutputSections) |
| Sec->writeHeaderTo<ELFT>(++SHdrs); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::openFile() { |
| ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(Config->OutputFile, FileSize, |
| FileOutputBuffer::F_executable); |
| if (auto EC = BufferOrErr.getError()) |
| error(EC, "failed to open " + Config->OutputFile); |
| else |
| Buffer = std::move(*BufferOrErr); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| for (OutputSectionBase *Sec : OutputSections) |
| if (Sec->Flags & SHF_ALLOC) |
| Sec->writeTo(Buf + Sec->Offset); |
| } |
| |
| // Convert the .ARM.exidx table entries that use relative PREL31 offsets to |
| // Absolute addresses. This form is internal to LLD and is only used to |
| // make reordering the table simpler. |
| static void ARMExidxEntryPrelToAbs(uint8_t *Loc, uint64_t EntryVA) { |
| uint64_t Addr = Target->getImplicitAddend(Loc, R_ARM_PREL31) + EntryVA; |
| bool InlineEntry = |
| (read32le(Loc + 4) == 1 || (read32le(Loc + 4) & 0x80000000)); |
| if (InlineEntry) |
| // Set flag in unused bit of code address so that when we convert back we |
| // know which table entries to leave alone. |
| Addr |= 0x1; |
| else |
| write32le(Loc + 4, |
| Target->getImplicitAddend(Loc + 4, R_ARM_PREL31) + EntryVA + 4); |
| write32le(Loc, Addr); |
| } |
| |
| // Convert the .ARM.exidx table entries from the internal to LLD form using |
| // absolute addresses back to relative PREL31 offsets. |
| static void ARMExidxEntryAbsToPrel(uint8_t *Loc, uint64_t EntryVA) { |
| uint64_t Off = read32le(Loc) - EntryVA; |
| // ARMExidxEntryPreltoAbs sets bit 0 if the table entry has inline data |
| // that is not an address |
| bool InlineEntry = Off & 0x1; |
| Target->relocateOne(Loc, R_ARM_PREL31, Off & ~0x1); |
| if (!InlineEntry) |
| Target->relocateOne(Loc + 4, R_ARM_PREL31, |
| read32le(Loc + 4) - (EntryVA + 4)); |
| } |
| |
| // The table formed by the .ARM.exidx OutputSection has entries with two |
| // 4-byte fields: |
| // | PREL31 offset to function | Action to take for function | |
| // The table must be ordered in ascending virtual address of the functions |
| // identified by the first field of the table. Instead of using the |
| // SHF_LINK_ORDER dependency to reorder the sections prior to relocation we |
| // sort the table post-relocation. |
| // Ref: Exception handling ABI for the ARM architecture |
| static void sortARMExidx(uint8_t *Buf, uint64_t OutSecVA, uint64_t Size) { |
| struct ARMExidxEntry { |
| ulittle32_t Target; |
| ulittle32_t Action; |
| }; |
| ARMExidxEntry *Start = (ARMExidxEntry *)Buf; |
| size_t NumEnt = Size / sizeof(ARMExidxEntry); |
| for (uint64_t Off = 0; Off < Size; Off += 8) |
| ARMExidxEntryPrelToAbs(Buf + Off, OutSecVA + Off); |
| std::stable_sort(Start, Start + NumEnt, |
| [](const ARMExidxEntry &A, const ARMExidxEntry &B) { |
| return A.Target < B.Target; |
| }); |
| for (uint64_t Off = 0; Off < Size; Off += 8) |
| ARMExidxEntryAbsToPrel(Buf + Off, OutSecVA + Off); |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| |
| // Finalize MIPS .reginfo and .MIPS.options sections |
| // because they contain offsets to .got and _gp. |
| if (In<ELFT>::MipsReginfo) |
| In<ELFT>::MipsReginfo->finalize(); |
| if (In<ELFT>::MipsOptions) |
| In<ELFT>::MipsOptions->finalize(); |
| |
| // PPC64 needs to process relocations in the .opd section |
| // before processing relocations in code-containing sections. |
| Out<ELFT>::Opd = findSection(".opd"); |
| if (Out<ELFT>::Opd) { |
| Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->Offset; |
| Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->Offset); |
| } |
| |
| for (OutputSectionBase *Sec : OutputSections) |
| if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr) |
| Sec->writeTo(Buf + Sec->Offset); |
| |
| OutputSectionBase *ARMExidx = findSection(".ARM.exidx"); |
| if (!Config->Relocatable) |
| if (auto *OS = dyn_cast_or_null<OutputSection<ELFT>>(ARMExidx)) |
| sortARMExidx(Buf + OS->Offset, OS->Addr, OS->Size); |
| |
| // The .eh_frame_hdr depends on .eh_frame section contents, therefore |
| // it should be written after .eh_frame is written. |
| if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) |
| Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->Offset); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeBuildId() { |
| if (!In<ELFT>::BuildId || !In<ELFT>::BuildId->OutSec) |
| return; |
| |
| // Compute a hash of all sections of the output file. |
| uint8_t *Start = Buffer->getBufferStart(); |
| uint8_t *End = Start + FileSize; |
| In<ELFT>::BuildId->writeBuildId({Start, End}); |
| } |
| |
| template void elf::writeResult<ELF32LE>(); |
| template void elf::writeResult<ELF32BE>(); |
| template void elf::writeResult<ELF64LE>(); |
| template void elf::writeResult<ELF64BE>(); |
| |
| template struct elf::PhdrEntry<ELF32LE>; |
| template struct elf::PhdrEntry<ELF32BE>; |
| template struct elf::PhdrEntry<ELF64LE>; |
| template struct elf::PhdrEntry<ELF64BE>; |
| |
| template bool elf::isRelroSection<ELF32LE>(const OutputSectionBase *); |
| template bool elf::isRelroSection<ELF32BE>(const OutputSectionBase *); |
| template bool elf::isRelroSection<ELF64LE>(const OutputSectionBase *); |
| template bool elf::isRelroSection<ELF64BE>(const OutputSectionBase *); |
| |
| template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *); |
| template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *); |
| template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *); |
| template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *); |