|  | //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Decl subclasses. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "Linkage.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/CanonicalType.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclOpenMP.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DeclarationName.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExternalASTSource.h" | 
|  | #include "clang/AST/ODRHash.h" | 
|  | #include "clang/AST/PrettyDeclStackTrace.h" | 
|  | #include "clang/AST/PrettyPrinter.h" | 
|  | #include "clang/AST/Redeclarable.h" | 
|  | #include "clang/AST/Stmt.h" | 
|  | #include "clang/AST/TemplateBase.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/Linkage.h" | 
|  | #include "clang/Basic/Module.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SanitizerBlacklist.h" | 
|  | #include "clang/Basic/Sanitizers.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "clang/Basic/TargetCXXABI.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Basic/Visibility.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstring> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <type_traits> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | Decl *clang::getPrimaryMergedDecl(Decl *D) { | 
|  | return D->getASTContext().getPrimaryMergedDecl(D); | 
|  | } | 
|  |  | 
|  | void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { | 
|  | SourceLocation Loc = this->Loc; | 
|  | if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); | 
|  | if (Loc.isValid()) { | 
|  | Loc.print(OS, Context.getSourceManager()); | 
|  | OS << ": "; | 
|  | } | 
|  | OS << Message; | 
|  |  | 
|  | if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { | 
|  | OS << " '"; | 
|  | ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); | 
|  | OS << "'"; | 
|  | } | 
|  |  | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | // Defined here so that it can be inlined into its direct callers. | 
|  | bool Decl::isOutOfLine() const { | 
|  | return !getLexicalDeclContext()->Equals(getDeclContext()); | 
|  | } | 
|  |  | 
|  | TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) | 
|  | : Decl(TranslationUnit, nullptr, SourceLocation()), | 
|  | DeclContext(TranslationUnit), Ctx(ctx) {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // NamedDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Visibility rules aren't rigorously externally specified, but here | 
|  | // are the basic principles behind what we implement: | 
|  | // | 
|  | // 1. An explicit visibility attribute is generally a direct expression | 
|  | // of the user's intent and should be honored.  Only the innermost | 
|  | // visibility attribute applies.  If no visibility attribute applies, | 
|  | // global visibility settings are considered. | 
|  | // | 
|  | // 2. There is one caveat to the above: on or in a template pattern, | 
|  | // an explicit visibility attribute is just a default rule, and | 
|  | // visibility can be decreased by the visibility of template | 
|  | // arguments.  But this, too, has an exception: an attribute on an | 
|  | // explicit specialization or instantiation causes all the visibility | 
|  | // restrictions of the template arguments to be ignored. | 
|  | // | 
|  | // 3. A variable that does not otherwise have explicit visibility can | 
|  | // be restricted by the visibility of its type. | 
|  | // | 
|  | // 4. A visibility restriction is explicit if it comes from an | 
|  | // attribute (or something like it), not a global visibility setting. | 
|  | // When emitting a reference to an external symbol, visibility | 
|  | // restrictions are ignored unless they are explicit. | 
|  | // | 
|  | // 5. When computing the visibility of a non-type, including a | 
|  | // non-type member of a class, only non-type visibility restrictions | 
|  | // are considered: the 'visibility' attribute, global value-visibility | 
|  | // settings, and a few special cases like __private_extern. | 
|  | // | 
|  | // 6. When computing the visibility of a type, including a type member | 
|  | // of a class, only type visibility restrictions are considered: | 
|  | // the 'type_visibility' attribute and global type-visibility settings. | 
|  | // However, a 'visibility' attribute counts as a 'type_visibility' | 
|  | // attribute on any declaration that only has the former. | 
|  | // | 
|  | // The visibility of a "secondary" entity, like a template argument, | 
|  | // is computed using the kind of that entity, not the kind of the | 
|  | // primary entity for which we are computing visibility.  For example, | 
|  | // the visibility of a specialization of either of these templates: | 
|  | //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); | 
|  | //   template <class T, bool (&compare)(T, X)> class matcher; | 
|  | // is restricted according to the type visibility of the argument 'T', | 
|  | // the type visibility of 'bool(&)(T,X)', and the value visibility of | 
|  | // the argument function 'compare'.  That 'has_match' is a value | 
|  | // and 'matcher' is a type only matters when looking for attributes | 
|  | // and settings from the immediate context. | 
|  |  | 
|  | /// Does this computation kind permit us to consider additional | 
|  | /// visibility settings from attributes and the like? | 
|  | static bool hasExplicitVisibilityAlready(LVComputationKind computation) { | 
|  | return computation.IgnoreExplicitVisibility; | 
|  | } | 
|  |  | 
|  | /// Given an LVComputationKind, return one of the same type/value sort | 
|  | /// that records that it already has explicit visibility. | 
|  | static LVComputationKind | 
|  | withExplicitVisibilityAlready(LVComputationKind Kind) { | 
|  | Kind.IgnoreExplicitVisibility = true; | 
|  | return Kind; | 
|  | } | 
|  |  | 
|  | static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, | 
|  | LVComputationKind kind) { | 
|  | assert(!kind.IgnoreExplicitVisibility && | 
|  | "asking for explicit visibility when we shouldn't be"); | 
|  | return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); | 
|  | } | 
|  |  | 
|  | /// Is the given declaration a "type" or a "value" for the purposes of | 
|  | /// visibility computation? | 
|  | static bool usesTypeVisibility(const NamedDecl *D) { | 
|  | return isa<TypeDecl>(D) || | 
|  | isa<ClassTemplateDecl>(D) || | 
|  | isa<ObjCInterfaceDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Does the given declaration have member specialization information, | 
|  | /// and if so, is it an explicit specialization? | 
|  | template <class T> static typename | 
|  | std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type | 
|  | isExplicitMemberSpecialization(const T *D) { | 
|  | if (const MemberSpecializationInfo *member = | 
|  | D->getMemberSpecializationInfo()) { | 
|  | return member->isExplicitSpecialization(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// For templates, this question is easier: a member template can't be | 
|  | /// explicitly instantiated, so there's a single bit indicating whether | 
|  | /// or not this is an explicit member specialization. | 
|  | static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { | 
|  | return D->isMemberSpecialization(); | 
|  | } | 
|  |  | 
|  | /// Given a visibility attribute, return the explicit visibility | 
|  | /// associated with it. | 
|  | template <class T> | 
|  | static Visibility getVisibilityFromAttr(const T *attr) { | 
|  | switch (attr->getVisibility()) { | 
|  | case T::Default: | 
|  | return DefaultVisibility; | 
|  | case T::Hidden: | 
|  | return HiddenVisibility; | 
|  | case T::Protected: | 
|  | return ProtectedVisibility; | 
|  | } | 
|  | llvm_unreachable("bad visibility kind"); | 
|  | } | 
|  |  | 
|  | /// Return the explicit visibility of the given declaration. | 
|  | static Optional<Visibility> getVisibilityOf(const NamedDecl *D, | 
|  | NamedDecl::ExplicitVisibilityKind kind) { | 
|  | // If we're ultimately computing the visibility of a type, look for | 
|  | // a 'type_visibility' attribute before looking for 'visibility'. | 
|  | if (kind == NamedDecl::VisibilityForType) { | 
|  | if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { | 
|  | return getVisibilityFromAttr(A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this declaration has an explicit visibility attribute, use it. | 
|  | if (const auto *A = D->getAttr<VisibilityAttr>()) { | 
|  | return getVisibilityFromAttr(A); | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::getLVForType(const Type &T, | 
|  | LVComputationKind computation) { | 
|  | if (computation.IgnoreAllVisibility) | 
|  | return LinkageInfo(T.getLinkage(), DefaultVisibility, true); | 
|  | return getTypeLinkageAndVisibility(&T); | 
|  | } | 
|  |  | 
|  | /// Get the most restrictive linkage for the types in the given | 
|  | /// template parameter list.  For visibility purposes, template | 
|  | /// parameters are part of the signature of a template. | 
|  | LinkageInfo LinkageComputer::getLVForTemplateParameterList( | 
|  | const TemplateParameterList *Params, LVComputationKind computation) { | 
|  | LinkageInfo LV; | 
|  | for (const NamedDecl *P : *Params) { | 
|  | // Template type parameters are the most common and never | 
|  | // contribute to visibility, pack or not. | 
|  | if (isa<TemplateTypeParmDecl>(P)) | 
|  | continue; | 
|  |  | 
|  | // Non-type template parameters can be restricted by the value type, e.g. | 
|  | //   template <enum X> class A { ... }; | 
|  | // We have to be careful here, though, because we can be dealing with | 
|  | // dependent types. | 
|  | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { | 
|  | // Handle the non-pack case first. | 
|  | if (!NTTP->isExpandedParameterPack()) { | 
|  | if (!NTTP->getType()->isDependentType()) { | 
|  | LV.merge(getLVForType(*NTTP->getType(), computation)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look at all the types in an expanded pack. | 
|  | for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { | 
|  | QualType type = NTTP->getExpansionType(i); | 
|  | if (!type->isDependentType()) | 
|  | LV.merge(getTypeLinkageAndVisibility(type)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Template template parameters can be restricted by their | 
|  | // template parameters, recursively. | 
|  | const auto *TTP = cast<TemplateTemplateParmDecl>(P); | 
|  |  | 
|  | // Handle the non-pack case first. | 
|  | if (!TTP->isExpandedParameterPack()) { | 
|  | LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), | 
|  | computation)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look at all expansions in an expanded pack. | 
|  | for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); | 
|  | i != n; ++i) { | 
|  | LV.merge(getLVForTemplateParameterList( | 
|  | TTP->getExpansionTemplateParameters(i), computation)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { | 
|  | const Decl *Ret = nullptr; | 
|  | const DeclContext *DC = D->getDeclContext(); | 
|  | while (DC->getDeclKind() != Decl::TranslationUnit) { | 
|  | if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) | 
|  | Ret = cast<Decl>(DC); | 
|  | DC = DC->getParent(); | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// Get the most restrictive linkage for the types and | 
|  | /// declarations in the given template argument list. | 
|  | /// | 
|  | /// Note that we don't take an LVComputationKind because we always | 
|  | /// want to honor the visibility of template arguments in the same way. | 
|  | LinkageInfo | 
|  | LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, | 
|  | LVComputationKind computation) { | 
|  | LinkageInfo LV; | 
|  |  | 
|  | for (const TemplateArgument &Arg : Args) { | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::Expression: | 
|  | continue; | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | LV.merge(getLVForType(*Arg.getAsType(), computation)); | 
|  | continue; | 
|  |  | 
|  | case TemplateArgument::Declaration: { | 
|  | const NamedDecl *ND = Arg.getAsDecl(); | 
|  | assert(!usesTypeVisibility(ND)); | 
|  | LV.merge(getLVForDecl(ND, computation)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::NullPtr: | 
|  | LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); | 
|  | continue; | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | if (TemplateDecl *Template = | 
|  | Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) | 
|  | LV.merge(getLVForDecl(Template, computation)); | 
|  | continue; | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); | 
|  | continue; | 
|  | } | 
|  | llvm_unreachable("bad template argument kind"); | 
|  | } | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LinkageInfo | 
|  | LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, | 
|  | LVComputationKind computation) { | 
|  | return getLVForTemplateArgumentList(TArgs.asArray(), computation); | 
|  | } | 
|  |  | 
|  | static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, | 
|  | const FunctionTemplateSpecializationInfo *specInfo) { | 
|  | // Include visibility from the template parameters and arguments | 
|  | // only if this is not an explicit instantiation or specialization | 
|  | // with direct explicit visibility.  (Implicit instantiations won't | 
|  | // have a direct attribute.) | 
|  | if (!specInfo->isExplicitInstantiationOrSpecialization()) | 
|  | return true; | 
|  |  | 
|  | return !fn->hasAttr<VisibilityAttr>(); | 
|  | } | 
|  |  | 
|  | /// Merge in template-related linkage and visibility for the given | 
|  | /// function template specialization. | 
|  | /// | 
|  | /// We don't need a computation kind here because we can assume | 
|  | /// LVForValue. | 
|  | /// | 
|  | /// \param[out] LV the computation to use for the parent | 
|  | void LinkageComputer::mergeTemplateLV( | 
|  | LinkageInfo &LV, const FunctionDecl *fn, | 
|  | const FunctionTemplateSpecializationInfo *specInfo, | 
|  | LVComputationKind computation) { | 
|  | bool considerVisibility = | 
|  | shouldConsiderTemplateVisibility(fn, specInfo); | 
|  |  | 
|  | // Merge information from the template parameters. | 
|  | FunctionTemplateDecl *temp = specInfo->getTemplate(); | 
|  | LinkageInfo tempLV = | 
|  | getLVForTemplateParameterList(temp->getTemplateParameters(), computation); | 
|  | LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
|  |  | 
|  | // Merge information from the template arguments. | 
|  | const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; | 
|  | LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); | 
|  | LV.mergeMaybeWithVisibility(argsLV, considerVisibility); | 
|  | } | 
|  |  | 
|  | /// Does the given declaration have a direct visibility attribute | 
|  | /// that would match the given rules? | 
|  | static bool hasDirectVisibilityAttribute(const NamedDecl *D, | 
|  | LVComputationKind computation) { | 
|  | if (computation.IgnoreAllVisibility) | 
|  | return false; | 
|  |  | 
|  | return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || | 
|  | D->hasAttr<VisibilityAttr>(); | 
|  | } | 
|  |  | 
|  | /// Should we consider visibility associated with the template | 
|  | /// arguments and parameters of the given class template specialization? | 
|  | static bool shouldConsiderTemplateVisibility( | 
|  | const ClassTemplateSpecializationDecl *spec, | 
|  | LVComputationKind computation) { | 
|  | // Include visibility from the template parameters and arguments | 
|  | // only if this is not an explicit instantiation or specialization | 
|  | // with direct explicit visibility (and note that implicit | 
|  | // instantiations won't have a direct attribute). | 
|  | // | 
|  | // Furthermore, we want to ignore template parameters and arguments | 
|  | // for an explicit specialization when computing the visibility of a | 
|  | // member thereof with explicit visibility. | 
|  | // | 
|  | // This is a bit complex; let's unpack it. | 
|  | // | 
|  | // An explicit class specialization is an independent, top-level | 
|  | // declaration.  As such, if it or any of its members has an | 
|  | // explicit visibility attribute, that must directly express the | 
|  | // user's intent, and we should honor it.  The same logic applies to | 
|  | // an explicit instantiation of a member of such a thing. | 
|  |  | 
|  | // Fast path: if this is not an explicit instantiation or | 
|  | // specialization, we always want to consider template-related | 
|  | // visibility restrictions. | 
|  | if (!spec->isExplicitInstantiationOrSpecialization()) | 
|  | return true; | 
|  |  | 
|  | // This is the 'member thereof' check. | 
|  | if (spec->isExplicitSpecialization() && | 
|  | hasExplicitVisibilityAlready(computation)) | 
|  | return false; | 
|  |  | 
|  | return !hasDirectVisibilityAttribute(spec, computation); | 
|  | } | 
|  |  | 
|  | /// Merge in template-related linkage and visibility for the given | 
|  | /// class template specialization. | 
|  | void LinkageComputer::mergeTemplateLV( | 
|  | LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, | 
|  | LVComputationKind computation) { | 
|  | bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); | 
|  |  | 
|  | // Merge information from the template parameters, but ignore | 
|  | // visibility if we're only considering template arguments. | 
|  |  | 
|  | ClassTemplateDecl *temp = spec->getSpecializedTemplate(); | 
|  | LinkageInfo tempLV = | 
|  | getLVForTemplateParameterList(temp->getTemplateParameters(), computation); | 
|  | LV.mergeMaybeWithVisibility(tempLV, | 
|  | considerVisibility && !hasExplicitVisibilityAlready(computation)); | 
|  |  | 
|  | // Merge information from the template arguments.  We ignore | 
|  | // template-argument visibility if we've got an explicit | 
|  | // instantiation with a visibility attribute. | 
|  | const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); | 
|  | LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); | 
|  | if (considerVisibility) | 
|  | LV.mergeVisibility(argsLV); | 
|  | LV.mergeExternalVisibility(argsLV); | 
|  | } | 
|  |  | 
|  | /// Should we consider visibility associated with the template | 
|  | /// arguments and parameters of the given variable template | 
|  | /// specialization? As usual, follow class template specialization | 
|  | /// logic up to initialization. | 
|  | static bool shouldConsiderTemplateVisibility( | 
|  | const VarTemplateSpecializationDecl *spec, | 
|  | LVComputationKind computation) { | 
|  | // Include visibility from the template parameters and arguments | 
|  | // only if this is not an explicit instantiation or specialization | 
|  | // with direct explicit visibility (and note that implicit | 
|  | // instantiations won't have a direct attribute). | 
|  | if (!spec->isExplicitInstantiationOrSpecialization()) | 
|  | return true; | 
|  |  | 
|  | // An explicit variable specialization is an independent, top-level | 
|  | // declaration.  As such, if it has an explicit visibility attribute, | 
|  | // that must directly express the user's intent, and we should honor | 
|  | // it. | 
|  | if (spec->isExplicitSpecialization() && | 
|  | hasExplicitVisibilityAlready(computation)) | 
|  | return false; | 
|  |  | 
|  | return !hasDirectVisibilityAttribute(spec, computation); | 
|  | } | 
|  |  | 
|  | /// Merge in template-related linkage and visibility for the given | 
|  | /// variable template specialization. As usual, follow class template | 
|  | /// specialization logic up to initialization. | 
|  | void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, | 
|  | const VarTemplateSpecializationDecl *spec, | 
|  | LVComputationKind computation) { | 
|  | bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); | 
|  |  | 
|  | // Merge information from the template parameters, but ignore | 
|  | // visibility if we're only considering template arguments. | 
|  |  | 
|  | VarTemplateDecl *temp = spec->getSpecializedTemplate(); | 
|  | LinkageInfo tempLV = | 
|  | getLVForTemplateParameterList(temp->getTemplateParameters(), computation); | 
|  | LV.mergeMaybeWithVisibility(tempLV, | 
|  | considerVisibility && !hasExplicitVisibilityAlready(computation)); | 
|  |  | 
|  | // Merge information from the template arguments.  We ignore | 
|  | // template-argument visibility if we've got an explicit | 
|  | // instantiation with a visibility attribute. | 
|  | const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); | 
|  | LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); | 
|  | if (considerVisibility) | 
|  | LV.mergeVisibility(argsLV); | 
|  | LV.mergeExternalVisibility(argsLV); | 
|  | } | 
|  |  | 
|  | static bool useInlineVisibilityHidden(const NamedDecl *D) { | 
|  | // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. | 
|  | const LangOptions &Opts = D->getASTContext().getLangOpts(); | 
|  | if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) | 
|  | return false; | 
|  |  | 
|  | const auto *FD = dyn_cast<FunctionDecl>(D); | 
|  | if (!FD) | 
|  | return false; | 
|  |  | 
|  | TemplateSpecializationKind TSK = TSK_Undeclared; | 
|  | if (FunctionTemplateSpecializationInfo *spec | 
|  | = FD->getTemplateSpecializationInfo()) { | 
|  | TSK = spec->getTemplateSpecializationKind(); | 
|  | } else if (MemberSpecializationInfo *MSI = | 
|  | FD->getMemberSpecializationInfo()) { | 
|  | TSK = MSI->getTemplateSpecializationKind(); | 
|  | } | 
|  |  | 
|  | const FunctionDecl *Def = nullptr; | 
|  | // InlineVisibilityHidden only applies to definitions, and | 
|  | // isInlined() only gives meaningful answers on definitions | 
|  | // anyway. | 
|  | return TSK != TSK_ExplicitInstantiationDeclaration && | 
|  | TSK != TSK_ExplicitInstantiationDefinition && | 
|  | FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); | 
|  | } | 
|  |  | 
|  | template <typename T> static bool isFirstInExternCContext(T *D) { | 
|  | const T *First = D->getFirstDecl(); | 
|  | return First->isInExternCContext(); | 
|  | } | 
|  |  | 
|  | static bool isSingleLineLanguageLinkage(const Decl &D) { | 
|  | if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) | 
|  | if (!SD->hasBraces()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether D is declared in the purview of a named module. | 
|  | static bool isInModulePurview(const NamedDecl *D) { | 
|  | if (auto *M = D->getOwningModule()) | 
|  | return M->isModulePurview(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { | 
|  | // FIXME: Handle isModulePrivate. | 
|  | switch (D->getModuleOwnershipKind()) { | 
|  | case Decl::ModuleOwnershipKind::Unowned: | 
|  | case Decl::ModuleOwnershipKind::ModulePrivate: | 
|  | return false; | 
|  | case Decl::ModuleOwnershipKind::Visible: | 
|  | case Decl::ModuleOwnershipKind::VisibleWhenImported: | 
|  | return isInModulePurview(D); | 
|  | } | 
|  | llvm_unreachable("unexpected module ownership kind"); | 
|  | } | 
|  |  | 
|  | static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { | 
|  | // Internal linkage declarations within a module interface unit are modeled | 
|  | // as "module-internal linkage", which means that they have internal linkage | 
|  | // formally but can be indirectly accessed from outside the module via inline | 
|  | // functions and templates defined within the module. | 
|  | if (isInModulePurview(D)) | 
|  | return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); | 
|  |  | 
|  | return LinkageInfo::internal(); | 
|  | } | 
|  |  | 
|  | static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { | 
|  | // C++ Modules TS [basic.link]/6.8: | 
|  | //   - A name declared at namespace scope that does not have internal linkage | 
|  | //     by the previous rules and that is introduced by a non-exported | 
|  | //     declaration has module linkage. | 
|  | if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( | 
|  | cast<NamedDecl>(D->getCanonicalDecl()))) | 
|  | return LinkageInfo(ModuleLinkage, DefaultVisibility, false); | 
|  |  | 
|  | return LinkageInfo::external(); | 
|  | } | 
|  |  | 
|  | static StorageClass getStorageClass(const Decl *D) { | 
|  | if (auto *TD = dyn_cast<TemplateDecl>(D)) | 
|  | D = TD->getTemplatedDecl(); | 
|  | if (D) { | 
|  | if (auto *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getStorageClass(); | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getStorageClass(); | 
|  | } | 
|  | return SC_None; | 
|  | } | 
|  |  | 
|  | LinkageInfo | 
|  | LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, | 
|  | LVComputationKind computation, | 
|  | bool IgnoreVarTypeLinkage) { | 
|  | assert(D->getDeclContext()->getRedeclContext()->isFileContext() && | 
|  | "Not a name having namespace scope"); | 
|  | ASTContext &Context = D->getASTContext(); | 
|  |  | 
|  | // C++ [basic.link]p3: | 
|  | //   A name having namespace scope (3.3.6) has internal linkage if it | 
|  | //   is the name of | 
|  |  | 
|  | if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { | 
|  | // - a variable, variable template, function, or function template | 
|  | //   that is explicitly declared static; or | 
|  | // (This bullet corresponds to C99 6.2.2p3.) | 
|  | return getInternalLinkageFor(D); | 
|  | } | 
|  |  | 
|  | if (const auto *Var = dyn_cast<VarDecl>(D)) { | 
|  | // - a non-template variable of non-volatile const-qualified type, unless | 
|  | //   - it is explicitly declared extern, or | 
|  | //   - it is inline or exported, or | 
|  | //   - it was previously declared and the prior declaration did not have | 
|  | //     internal linkage | 
|  | // (There is no equivalent in C99.) | 
|  | if (Context.getLangOpts().CPlusPlus && | 
|  | Var->getType().isConstQualified() && | 
|  | !Var->getType().isVolatileQualified() && | 
|  | !Var->isInline() && | 
|  | !isExportedFromModuleInterfaceUnit(Var) && | 
|  | !isa<VarTemplateSpecializationDecl>(Var) && | 
|  | !Var->getDescribedVarTemplate()) { | 
|  | const VarDecl *PrevVar = Var->getPreviousDecl(); | 
|  | if (PrevVar) | 
|  | return getLVForDecl(PrevVar, computation); | 
|  |  | 
|  | if (Var->getStorageClass() != SC_Extern && | 
|  | Var->getStorageClass() != SC_PrivateExtern && | 
|  | !isSingleLineLanguageLinkage(*Var)) | 
|  | return getInternalLinkageFor(Var); | 
|  | } | 
|  |  | 
|  | for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; | 
|  | PrevVar = PrevVar->getPreviousDecl()) { | 
|  | if (PrevVar->getStorageClass() == SC_PrivateExtern && | 
|  | Var->getStorageClass() == SC_None) | 
|  | return getDeclLinkageAndVisibility(PrevVar); | 
|  | // Explicitly declared static. | 
|  | if (PrevVar->getStorageClass() == SC_Static) | 
|  | return getInternalLinkageFor(Var); | 
|  | } | 
|  | } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { | 
|  | //   - a data member of an anonymous union. | 
|  | const VarDecl *VD = IFD->getVarDecl(); | 
|  | assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); | 
|  | return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); | 
|  | } | 
|  | assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); | 
|  |  | 
|  | // FIXME: This gives internal linkage to names that should have no linkage | 
|  | // (those not covered by [basic.link]p6). | 
|  | if (D->isInAnonymousNamespace()) { | 
|  | const auto *Var = dyn_cast<VarDecl>(D); | 
|  | const auto *Func = dyn_cast<FunctionDecl>(D); | 
|  | // FIXME: The check for extern "C" here is not justified by the standard | 
|  | // wording, but we retain it from the pre-DR1113 model to avoid breaking | 
|  | // code. | 
|  | // | 
|  | // C++11 [basic.link]p4: | 
|  | //   An unnamed namespace or a namespace declared directly or indirectly | 
|  | //   within an unnamed namespace has internal linkage. | 
|  | if ((!Var || !isFirstInExternCContext(Var)) && | 
|  | (!Func || !isFirstInExternCContext(Func))) | 
|  | return getInternalLinkageFor(D); | 
|  | } | 
|  |  | 
|  | // Set up the defaults. | 
|  |  | 
|  | // C99 6.2.2p5: | 
|  | //   If the declaration of an identifier for an object has file | 
|  | //   scope and no storage-class specifier, its linkage is | 
|  | //   external. | 
|  | LinkageInfo LV = getExternalLinkageFor(D); | 
|  |  | 
|  | if (!hasExplicitVisibilityAlready(computation)) { | 
|  | if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { | 
|  | LV.mergeVisibility(*Vis, true); | 
|  | } else { | 
|  | // If we're declared in a namespace with a visibility attribute, | 
|  | // use that namespace's visibility, and it still counts as explicit. | 
|  | for (const DeclContext *DC = D->getDeclContext(); | 
|  | !isa<TranslationUnitDecl>(DC); | 
|  | DC = DC->getParent()) { | 
|  | const auto *ND = dyn_cast<NamespaceDecl>(DC); | 
|  | if (!ND) continue; | 
|  | if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { | 
|  | LV.mergeVisibility(*Vis, true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add in global settings if the above didn't give us direct visibility. | 
|  | if (!LV.isVisibilityExplicit()) { | 
|  | // Use global type/value visibility as appropriate. | 
|  | Visibility globalVisibility = | 
|  | computation.isValueVisibility() | 
|  | ? Context.getLangOpts().getValueVisibilityMode() | 
|  | : Context.getLangOpts().getTypeVisibilityMode(); | 
|  | LV.mergeVisibility(globalVisibility, /*explicit*/ false); | 
|  |  | 
|  | // If we're paying attention to global visibility, apply | 
|  | // -finline-visibility-hidden if this is an inline method. | 
|  | if (useInlineVisibilityHidden(D)) | 
|  | LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [basic.link]p4: | 
|  |  | 
|  | //   A name having namespace scope that has not been given internal linkage | 
|  | //   above and that is the name of | 
|  | //   [...bullets...] | 
|  | //   has its linkage determined as follows: | 
|  | //     - if the enclosing namespace has internal linkage, the name has | 
|  | //       internal linkage; [handled above] | 
|  | //     - otherwise, if the declaration of the name is attached to a named | 
|  | //       module and is not exported, the name has module linkage; | 
|  | //     - otherwise, the name has external linkage. | 
|  | // LV is currently set up to handle the last two bullets. | 
|  | // | 
|  | //   The bullets are: | 
|  |  | 
|  | //     - a variable; or | 
|  | if (const auto *Var = dyn_cast<VarDecl>(D)) { | 
|  | // GCC applies the following optimization to variables and static | 
|  | // data members, but not to functions: | 
|  | // | 
|  | // Modify the variable's LV by the LV of its type unless this is | 
|  | // C or extern "C".  This follows from [basic.link]p9: | 
|  | //   A type without linkage shall not be used as the type of a | 
|  | //   variable or function with external linkage unless | 
|  | //    - the entity has C language linkage, or | 
|  | //    - the entity is declared within an unnamed namespace, or | 
|  | //    - the entity is not used or is defined in the same | 
|  | //      translation unit. | 
|  | // and [basic.link]p10: | 
|  | //   ...the types specified by all declarations referring to a | 
|  | //   given variable or function shall be identical... | 
|  | // C does not have an equivalent rule. | 
|  | // | 
|  | // Ignore this if we've got an explicit attribute;  the user | 
|  | // probably knows what they're doing. | 
|  | // | 
|  | // Note that we don't want to make the variable non-external | 
|  | // because of this, but unique-external linkage suits us. | 
|  | if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && | 
|  | !IgnoreVarTypeLinkage) { | 
|  | LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); | 
|  | if (!isExternallyVisible(TypeLV.getLinkage())) | 
|  | return LinkageInfo::uniqueExternal(); | 
|  | if (!LV.isVisibilityExplicit()) | 
|  | LV.mergeVisibility(TypeLV); | 
|  | } | 
|  |  | 
|  | if (Var->getStorageClass() == SC_PrivateExtern) | 
|  | LV.mergeVisibility(HiddenVisibility, true); | 
|  |  | 
|  | // Note that Sema::MergeVarDecl already takes care of implementing | 
|  | // C99 6.2.2p4 and propagating the visibility attribute, so we don't have | 
|  | // to do it here. | 
|  |  | 
|  | // As per function and class template specializations (below), | 
|  | // consider LV for the template and template arguments.  We're at file | 
|  | // scope, so we do not need to worry about nested specializations. | 
|  | if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { | 
|  | mergeTemplateLV(LV, spec, computation); | 
|  | } | 
|  |  | 
|  | //     - a function; or | 
|  | } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { | 
|  | // In theory, we can modify the function's LV by the LV of its | 
|  | // type unless it has C linkage (see comment above about variables | 
|  | // for justification).  In practice, GCC doesn't do this, so it's | 
|  | // just too painful to make work. | 
|  |  | 
|  | if (Function->getStorageClass() == SC_PrivateExtern) | 
|  | LV.mergeVisibility(HiddenVisibility, true); | 
|  |  | 
|  | // Note that Sema::MergeCompatibleFunctionDecls already takes care of | 
|  | // merging storage classes and visibility attributes, so we don't have to | 
|  | // look at previous decls in here. | 
|  |  | 
|  | // In C++, then if the type of the function uses a type with | 
|  | // unique-external linkage, it's not legally usable from outside | 
|  | // this translation unit.  However, we should use the C linkage | 
|  | // rules instead for extern "C" declarations. | 
|  | if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { | 
|  | // Only look at the type-as-written. Otherwise, deducing the return type | 
|  | // of a function could change its linkage. | 
|  | QualType TypeAsWritten = Function->getType(); | 
|  | if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) | 
|  | TypeAsWritten = TSI->getType(); | 
|  | if (!isExternallyVisible(TypeAsWritten->getLinkage())) | 
|  | return LinkageInfo::uniqueExternal(); | 
|  | } | 
|  |  | 
|  | // Consider LV from the template and the template arguments. | 
|  | // We're at file scope, so we do not need to worry about nested | 
|  | // specializations. | 
|  | if (FunctionTemplateSpecializationInfo *specInfo | 
|  | = Function->getTemplateSpecializationInfo()) { | 
|  | mergeTemplateLV(LV, Function, specInfo, computation); | 
|  | } | 
|  |  | 
|  | //     - a named class (Clause 9), or an unnamed class defined in a | 
|  | //       typedef declaration in which the class has the typedef name | 
|  | //       for linkage purposes (7.1.3); or | 
|  | //     - a named enumeration (7.2), or an unnamed enumeration | 
|  | //       defined in a typedef declaration in which the enumeration | 
|  | //       has the typedef name for linkage purposes (7.1.3); or | 
|  | } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { | 
|  | // Unnamed tags have no linkage. | 
|  | if (!Tag->hasNameForLinkage()) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | // If this is a class template specialization, consider the | 
|  | // linkage of the template and template arguments.  We're at file | 
|  | // scope, so we do not need to worry about nested specializations. | 
|  | if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { | 
|  | mergeTemplateLV(LV, spec, computation); | 
|  | } | 
|  |  | 
|  | // FIXME: This is not part of the C++ standard any more. | 
|  | //     - an enumerator belonging to an enumeration with external linkage; or | 
|  | } else if (isa<EnumConstantDecl>(D)) { | 
|  | LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), | 
|  | computation); | 
|  | if (!isExternalFormalLinkage(EnumLV.getLinkage())) | 
|  | return LinkageInfo::none(); | 
|  | LV.merge(EnumLV); | 
|  |  | 
|  | //     - a template | 
|  | } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { | 
|  | bool considerVisibility = !hasExplicitVisibilityAlready(computation); | 
|  | LinkageInfo tempLV = | 
|  | getLVForTemplateParameterList(temp->getTemplateParameters(), computation); | 
|  | LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
|  |  | 
|  | //     An unnamed namespace or a namespace declared directly or indirectly | 
|  | //     within an unnamed namespace has internal linkage. All other namespaces | 
|  | //     have external linkage. | 
|  | // | 
|  | // We handled names in anonymous namespaces above. | 
|  | } else if (isa<NamespaceDecl>(D)) { | 
|  | return LV; | 
|  |  | 
|  | // By extension, we assign external linkage to Objective-C | 
|  | // interfaces. | 
|  | } else if (isa<ObjCInterfaceDecl>(D)) { | 
|  | // fallout | 
|  |  | 
|  | } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | // A typedef declaration has linkage if it gives a type a name for | 
|  | // linkage purposes. | 
|  | if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | // Everything not covered here has no linkage. | 
|  | } else { | 
|  | return LinkageInfo::none(); | 
|  | } | 
|  |  | 
|  | // If we ended up with non-externally-visible linkage, visibility should | 
|  | // always be default. | 
|  | if (!isExternallyVisible(LV.getLinkage())) | 
|  | return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); | 
|  |  | 
|  | // Mark the symbols as hidden when compiling for the device. | 
|  | if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) | 
|  | LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LinkageInfo | 
|  | LinkageComputer::getLVForClassMember(const NamedDecl *D, | 
|  | LVComputationKind computation, | 
|  | bool IgnoreVarTypeLinkage) { | 
|  | // Only certain class members have linkage.  Note that fields don't | 
|  | // really have linkage, but it's convenient to say they do for the | 
|  | // purposes of calculating linkage of pointer-to-data-member | 
|  | // template arguments. | 
|  | // | 
|  | // Templates also don't officially have linkage, but since we ignore | 
|  | // the C++ standard and look at template arguments when determining | 
|  | // linkage and visibility of a template specialization, we might hit | 
|  | // a template template argument that way. If we do, we need to | 
|  | // consider its linkage. | 
|  | if (!(isa<CXXMethodDecl>(D) || | 
|  | isa<VarDecl>(D) || | 
|  | isa<FieldDecl>(D) || | 
|  | isa<IndirectFieldDecl>(D) || | 
|  | isa<TagDecl>(D) || | 
|  | isa<TemplateDecl>(D))) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | LinkageInfo LV; | 
|  |  | 
|  | // If we have an explicit visibility attribute, merge that in. | 
|  | if (!hasExplicitVisibilityAlready(computation)) { | 
|  | if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) | 
|  | LV.mergeVisibility(*Vis, true); | 
|  | // If we're paying attention to global visibility, apply | 
|  | // -finline-visibility-hidden if this is an inline method. | 
|  | // | 
|  | // Note that we do this before merging information about | 
|  | // the class visibility. | 
|  | if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) | 
|  | LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); | 
|  | } | 
|  |  | 
|  | // If this class member has an explicit visibility attribute, the only | 
|  | // thing that can change its visibility is the template arguments, so | 
|  | // only look for them when processing the class. | 
|  | LVComputationKind classComputation = computation; | 
|  | if (LV.isVisibilityExplicit()) | 
|  | classComputation = withExplicitVisibilityAlready(computation); | 
|  |  | 
|  | LinkageInfo classLV = | 
|  | getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); | 
|  | // The member has the same linkage as the class. If that's not externally | 
|  | // visible, we don't need to compute anything about the linkage. | 
|  | // FIXME: If we're only computing linkage, can we bail out here? | 
|  | if (!isExternallyVisible(classLV.getLinkage())) | 
|  | return classLV; | 
|  |  | 
|  |  | 
|  | // Otherwise, don't merge in classLV yet, because in certain cases | 
|  | // we need to completely ignore the visibility from it. | 
|  |  | 
|  | // Specifically, if this decl exists and has an explicit attribute. | 
|  | const NamedDecl *explicitSpecSuppressor = nullptr; | 
|  |  | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | // Only look at the type-as-written. Otherwise, deducing the return type | 
|  | // of a function could change its linkage. | 
|  | QualType TypeAsWritten = MD->getType(); | 
|  | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | 
|  | TypeAsWritten = TSI->getType(); | 
|  | if (!isExternallyVisible(TypeAsWritten->getLinkage())) | 
|  | return LinkageInfo::uniqueExternal(); | 
|  |  | 
|  | // If this is a method template specialization, use the linkage for | 
|  | // the template parameters and arguments. | 
|  | if (FunctionTemplateSpecializationInfo *spec | 
|  | = MD->getTemplateSpecializationInfo()) { | 
|  | mergeTemplateLV(LV, MD, spec, computation); | 
|  | if (spec->isExplicitSpecialization()) { | 
|  | explicitSpecSuppressor = MD; | 
|  | } else if (isExplicitMemberSpecialization(spec->getTemplate())) { | 
|  | explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); | 
|  | } | 
|  | } else if (isExplicitMemberSpecialization(MD)) { | 
|  | explicitSpecSuppressor = MD; | 
|  | } | 
|  |  | 
|  | } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { | 
|  | mergeTemplateLV(LV, spec, computation); | 
|  | if (spec->isExplicitSpecialization()) { | 
|  | explicitSpecSuppressor = spec; | 
|  | } else { | 
|  | const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); | 
|  | if (isExplicitMemberSpecialization(temp)) { | 
|  | explicitSpecSuppressor = temp->getTemplatedDecl(); | 
|  | } | 
|  | } | 
|  | } else if (isExplicitMemberSpecialization(RD)) { | 
|  | explicitSpecSuppressor = RD; | 
|  | } | 
|  |  | 
|  | // Static data members. | 
|  | } else if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) | 
|  | mergeTemplateLV(LV, spec, computation); | 
|  |  | 
|  | // Modify the variable's linkage by its type, but ignore the | 
|  | // type's visibility unless it's a definition. | 
|  | if (!IgnoreVarTypeLinkage) { | 
|  | LinkageInfo typeLV = getLVForType(*VD->getType(), computation); | 
|  | // FIXME: If the type's linkage is not externally visible, we can | 
|  | // give this static data member UniqueExternalLinkage. | 
|  | if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) | 
|  | LV.mergeVisibility(typeLV); | 
|  | LV.mergeExternalVisibility(typeLV); | 
|  | } | 
|  |  | 
|  | if (isExplicitMemberSpecialization(VD)) { | 
|  | explicitSpecSuppressor = VD; | 
|  | } | 
|  |  | 
|  | // Template members. | 
|  | } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { | 
|  | bool considerVisibility = | 
|  | (!LV.isVisibilityExplicit() && | 
|  | !classLV.isVisibilityExplicit() && | 
|  | !hasExplicitVisibilityAlready(computation)); | 
|  | LinkageInfo tempLV = | 
|  | getLVForTemplateParameterList(temp->getTemplateParameters(), computation); | 
|  | LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
|  |  | 
|  | if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { | 
|  | if (isExplicitMemberSpecialization(redeclTemp)) { | 
|  | explicitSpecSuppressor = temp->getTemplatedDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We should never be looking for an attribute directly on a template. | 
|  | assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); | 
|  |  | 
|  | // If this member is an explicit member specialization, and it has | 
|  | // an explicit attribute, ignore visibility from the parent. | 
|  | bool considerClassVisibility = true; | 
|  | if (explicitSpecSuppressor && | 
|  | // optimization: hasDVA() is true only with explicit visibility. | 
|  | LV.isVisibilityExplicit() && | 
|  | classLV.getVisibility() != DefaultVisibility && | 
|  | hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { | 
|  | considerClassVisibility = false; | 
|  | } | 
|  |  | 
|  | // Finally, merge in information from the class. | 
|  | LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | void NamedDecl::anchor() {} | 
|  |  | 
|  | bool NamedDecl::isLinkageValid() const { | 
|  | if (!hasCachedLinkage()) | 
|  | return true; | 
|  |  | 
|  | Linkage L = LinkageComputer{} | 
|  | .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) | 
|  | .getLinkage(); | 
|  | return L == getCachedLinkage(); | 
|  | } | 
|  |  | 
|  | ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { | 
|  | StringRef name = getName(); | 
|  | if (name.empty()) return SFF_None; | 
|  |  | 
|  | if (name.front() == 'C') | 
|  | if (name == "CFStringCreateWithFormat" || | 
|  | name == "CFStringCreateWithFormatAndArguments" || | 
|  | name == "CFStringAppendFormat" || | 
|  | name == "CFStringAppendFormatAndArguments") | 
|  | return SFF_CFString; | 
|  | return SFF_None; | 
|  | } | 
|  |  | 
|  | Linkage NamedDecl::getLinkageInternal() const { | 
|  | // We don't care about visibility here, so ask for the cheapest | 
|  | // possible visibility analysis. | 
|  | return LinkageComputer{} | 
|  | .getLVForDecl(this, LVComputationKind::forLinkageOnly()) | 
|  | .getLinkage(); | 
|  | } | 
|  |  | 
|  | LinkageInfo NamedDecl::getLinkageAndVisibility() const { | 
|  | return LinkageComputer{}.getDeclLinkageAndVisibility(this); | 
|  | } | 
|  |  | 
|  | static Optional<Visibility> | 
|  | getExplicitVisibilityAux(const NamedDecl *ND, | 
|  | NamedDecl::ExplicitVisibilityKind kind, | 
|  | bool IsMostRecent) { | 
|  | assert(!IsMostRecent || ND == ND->getMostRecentDecl()); | 
|  |  | 
|  | // Check the declaration itself first. | 
|  | if (Optional<Visibility> V = getVisibilityOf(ND, kind)) | 
|  | return V; | 
|  |  | 
|  | // If this is a member class of a specialization of a class template | 
|  | // and the corresponding decl has explicit visibility, use that. | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { | 
|  | CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); | 
|  | if (InstantiatedFrom) | 
|  | return getVisibilityOf(InstantiatedFrom, kind); | 
|  | } | 
|  |  | 
|  | // If there wasn't explicit visibility there, and this is a | 
|  | // specialization of a class template, check for visibility | 
|  | // on the pattern. | 
|  | if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { | 
|  | // Walk all the template decl till this point to see if there are | 
|  | // explicit visibility attributes. | 
|  | const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); | 
|  | while (TD != nullptr) { | 
|  | auto Vis = getVisibilityOf(TD, kind); | 
|  | if (Vis != None) | 
|  | return Vis; | 
|  | TD = TD->getPreviousDecl(); | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // Use the most recent declaration. | 
|  | if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { | 
|  | const NamedDecl *MostRecent = ND->getMostRecentDecl(); | 
|  | if (MostRecent != ND) | 
|  | return getExplicitVisibilityAux(MostRecent, kind, true); | 
|  | } | 
|  |  | 
|  | if (const auto *Var = dyn_cast<VarDecl>(ND)) { | 
|  | if (Var->isStaticDataMember()) { | 
|  | VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); | 
|  | if (InstantiatedFrom) | 
|  | return getVisibilityOf(InstantiatedFrom, kind); | 
|  | } | 
|  |  | 
|  | if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) | 
|  | return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), | 
|  | kind); | 
|  |  | 
|  | return None; | 
|  | } | 
|  | // Also handle function template specializations. | 
|  | if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { | 
|  | // If the function is a specialization of a template with an | 
|  | // explicit visibility attribute, use that. | 
|  | if (FunctionTemplateSpecializationInfo *templateInfo | 
|  | = fn->getTemplateSpecializationInfo()) | 
|  | return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), | 
|  | kind); | 
|  |  | 
|  | // If the function is a member of a specialization of a class template | 
|  | // and the corresponding decl has explicit visibility, use that. | 
|  | FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); | 
|  | if (InstantiatedFrom) | 
|  | return getVisibilityOf(InstantiatedFrom, kind); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // The visibility of a template is stored in the templated decl. | 
|  | if (const auto *TD = dyn_cast<TemplateDecl>(ND)) | 
|  | return getVisibilityOf(TD->getTemplatedDecl(), kind); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Optional<Visibility> | 
|  | NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { | 
|  | return getExplicitVisibilityAux(this, kind, false); | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, | 
|  | Decl *ContextDecl, | 
|  | LVComputationKind computation) { | 
|  | // This lambda has its linkage/visibility determined by its owner. | 
|  | const NamedDecl *Owner; | 
|  | if (!ContextDecl) | 
|  | Owner = dyn_cast<NamedDecl>(DC); | 
|  | else if (isa<ParmVarDecl>(ContextDecl)) | 
|  | Owner = | 
|  | dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); | 
|  | else | 
|  | Owner = cast<NamedDecl>(ContextDecl); | 
|  |  | 
|  | if (!Owner) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | // If the owner has a deduced type, we need to skip querying the linkage and | 
|  | // visibility of that type, because it might involve this closure type.  The | 
|  | // only effect of this is that we might give a lambda VisibleNoLinkage rather | 
|  | // than NoLinkage when we don't strictly need to, which is benign. | 
|  | auto *VD = dyn_cast<VarDecl>(Owner); | 
|  | LinkageInfo OwnerLV = | 
|  | VD && VD->getType()->getContainedDeducedType() | 
|  | ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) | 
|  | : getLVForDecl(Owner, computation); | 
|  |  | 
|  | // A lambda never formally has linkage. But if the owner is externally | 
|  | // visible, then the lambda is too. We apply the same rules to blocks. | 
|  | if (!isExternallyVisible(OwnerLV.getLinkage())) | 
|  | return LinkageInfo::none(); | 
|  | return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), | 
|  | OwnerLV.isVisibilityExplicit()); | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, | 
|  | LVComputationKind computation) { | 
|  | if (const auto *Function = dyn_cast<FunctionDecl>(D)) { | 
|  | if (Function->isInAnonymousNamespace() && | 
|  | !isFirstInExternCContext(Function)) | 
|  | return getInternalLinkageFor(Function); | 
|  |  | 
|  | // This is a "void f();" which got merged with a file static. | 
|  | if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) | 
|  | return getInternalLinkageFor(Function); | 
|  |  | 
|  | LinkageInfo LV; | 
|  | if (!hasExplicitVisibilityAlready(computation)) { | 
|  | if (Optional<Visibility> Vis = | 
|  | getExplicitVisibility(Function, computation)) | 
|  | LV.mergeVisibility(*Vis, true); | 
|  | } | 
|  |  | 
|  | // Note that Sema::MergeCompatibleFunctionDecls already takes care of | 
|  | // merging storage classes and visibility attributes, so we don't have to | 
|  | // look at previous decls in here. | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | if (const auto *Var = dyn_cast<VarDecl>(D)) { | 
|  | if (Var->hasExternalStorage()) { | 
|  | if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) | 
|  | return getInternalLinkageFor(Var); | 
|  |  | 
|  | LinkageInfo LV; | 
|  | if (Var->getStorageClass() == SC_PrivateExtern) | 
|  | LV.mergeVisibility(HiddenVisibility, true); | 
|  | else if (!hasExplicitVisibilityAlready(computation)) { | 
|  | if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) | 
|  | LV.mergeVisibility(*Vis, true); | 
|  | } | 
|  |  | 
|  | if (const VarDecl *Prev = Var->getPreviousDecl()) { | 
|  | LinkageInfo PrevLV = getLVForDecl(Prev, computation); | 
|  | if (PrevLV.getLinkage()) | 
|  | LV.setLinkage(PrevLV.getLinkage()); | 
|  | LV.mergeVisibility(PrevLV); | 
|  | } | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | if (!Var->isStaticLocal()) | 
|  | return LinkageInfo::none(); | 
|  | } | 
|  |  | 
|  | ASTContext &Context = D->getASTContext(); | 
|  | if (!Context.getLangOpts().CPlusPlus) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | const Decl *OuterD = getOutermostFuncOrBlockContext(D); | 
|  | if (!OuterD || OuterD->isInvalidDecl()) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | LinkageInfo LV; | 
|  | if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { | 
|  | if (!BD->getBlockManglingNumber()) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), | 
|  | BD->getBlockManglingContextDecl(), computation); | 
|  | } else { | 
|  | const auto *FD = cast<FunctionDecl>(OuterD); | 
|  | if (!FD->isInlined() && | 
|  | !isTemplateInstantiation(FD->getTemplateSpecializationKind())) | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | // If a function is hidden by -fvisibility-inlines-hidden option and | 
|  | // is not explicitly attributed as a hidden function, | 
|  | // we should not make static local variables in the function hidden. | 
|  | LV = getLVForDecl(FD, computation); | 
|  | if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && | 
|  | !LV.isVisibilityExplicit()) { | 
|  | assert(cast<VarDecl>(D)->isStaticLocal()); | 
|  | // If this was an implicitly hidden inline method, check again for | 
|  | // explicit visibility on the parent class, and use that for static locals | 
|  | // if present. | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) | 
|  | LV = getLVForDecl(MD->getParent(), computation); | 
|  | if (!LV.isVisibilityExplicit()) { | 
|  | Visibility globalVisibility = | 
|  | computation.isValueVisibility() | 
|  | ? Context.getLangOpts().getValueVisibilityMode() | 
|  | : Context.getLangOpts().getTypeVisibilityMode(); | 
|  | return LinkageInfo(VisibleNoLinkage, globalVisibility, | 
|  | /*visibilityExplicit=*/false); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!isExternallyVisible(LV.getLinkage())) | 
|  | return LinkageInfo::none(); | 
|  | return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), | 
|  | LV.isVisibilityExplicit()); | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, | 
|  | LVComputationKind computation, | 
|  | bool IgnoreVarTypeLinkage) { | 
|  | // Internal_linkage attribute overrides other considerations. | 
|  | if (D->hasAttr<InternalLinkageAttr>()) | 
|  | return getInternalLinkageFor(D); | 
|  |  | 
|  | // Objective-C: treat all Objective-C declarations as having external | 
|  | // linkage. | 
|  | switch (D->getKind()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | // Per C++ [basic.link]p2, only the names of objects, references, | 
|  | // functions, types, templates, namespaces, and values ever have linkage. | 
|  | // | 
|  | // Note that the name of a typedef, namespace alias, using declaration, | 
|  | // and so on are not the name of the corresponding type, namespace, or | 
|  | // declaration, so they do *not* have linkage. | 
|  | case Decl::ImplicitParam: | 
|  | case Decl::Label: | 
|  | case Decl::NamespaceAlias: | 
|  | case Decl::ParmVar: | 
|  | case Decl::Using: | 
|  | case Decl::UsingShadow: | 
|  | case Decl::UsingDirective: | 
|  | return LinkageInfo::none(); | 
|  |  | 
|  | case Decl::EnumConstant: | 
|  | // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. | 
|  | if (D->getASTContext().getLangOpts().CPlusPlus) | 
|  | return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); | 
|  | return LinkageInfo::visible_none(); | 
|  |  | 
|  | case Decl::Typedef: | 
|  | case Decl::TypeAlias: | 
|  | // A typedef declaration has linkage if it gives a type a name for | 
|  | // linkage purposes. | 
|  | if (!cast<TypedefNameDecl>(D) | 
|  | ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) | 
|  | return LinkageInfo::none(); | 
|  | break; | 
|  |  | 
|  | case Decl::TemplateTemplateParm: // count these as external | 
|  | case Decl::NonTypeTemplateParm: | 
|  | case Decl::ObjCAtDefsField: | 
|  | case Decl::ObjCCategory: | 
|  | case Decl::ObjCCategoryImpl: | 
|  | case Decl::ObjCCompatibleAlias: | 
|  | case Decl::ObjCImplementation: | 
|  | case Decl::ObjCMethod: | 
|  | case Decl::ObjCProperty: | 
|  | case Decl::ObjCPropertyImpl: | 
|  | case Decl::ObjCProtocol: | 
|  | return getExternalLinkageFor(D); | 
|  |  | 
|  | case Decl::CXXRecord: { | 
|  | const auto *Record = cast<CXXRecordDecl>(D); | 
|  | if (Record->isLambda()) { | 
|  | if (Record->hasKnownLambdaInternalLinkage() || | 
|  | !Record->getLambdaManglingNumber()) { | 
|  | // This lambda has no mangling number, so it's internal. | 
|  | return getInternalLinkageFor(D); | 
|  | } | 
|  |  | 
|  | return getLVForClosure( | 
|  | Record->getDeclContext()->getRedeclContext(), | 
|  | Record->getLambdaContextDecl(), computation); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle linkage for namespace-scope names. | 
|  | if (D->getDeclContext()->getRedeclContext()->isFileContext()) | 
|  | return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); | 
|  |  | 
|  | // C++ [basic.link]p5: | 
|  | //   In addition, a member function, static data member, a named | 
|  | //   class or enumeration of class scope, or an unnamed class or | 
|  | //   enumeration defined in a class-scope typedef declaration such | 
|  | //   that the class or enumeration has the typedef name for linkage | 
|  | //   purposes (7.1.3), has external linkage if the name of the class | 
|  | //   has external linkage. | 
|  | if (D->getDeclContext()->isRecord()) | 
|  | return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); | 
|  |  | 
|  | // C++ [basic.link]p6: | 
|  | //   The name of a function declared in block scope and the name of | 
|  | //   an object declared by a block scope extern declaration have | 
|  | //   linkage. If there is a visible declaration of an entity with | 
|  | //   linkage having the same name and type, ignoring entities | 
|  | //   declared outside the innermost enclosing namespace scope, the | 
|  | //   block scope declaration declares that same entity and receives | 
|  | //   the linkage of the previous declaration. If there is more than | 
|  | //   one such matching entity, the program is ill-formed. Otherwise, | 
|  | //   if no matching entity is found, the block scope entity receives | 
|  | //   external linkage. | 
|  | if (D->getDeclContext()->isFunctionOrMethod()) | 
|  | return getLVForLocalDecl(D, computation); | 
|  |  | 
|  | // C++ [basic.link]p6: | 
|  | //   Names not covered by these rules have no linkage. | 
|  | return LinkageInfo::none(); | 
|  | } | 
|  |  | 
|  | /// getLVForDecl - Get the linkage and visibility for the given declaration. | 
|  | LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, | 
|  | LVComputationKind computation) { | 
|  | // Internal_linkage attribute overrides other considerations. | 
|  | if (D->hasAttr<InternalLinkageAttr>()) | 
|  | return getInternalLinkageFor(D); | 
|  |  | 
|  | if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) | 
|  | return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); | 
|  |  | 
|  | if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) | 
|  | return *LI; | 
|  |  | 
|  | LinkageInfo LV = computeLVForDecl(D, computation); | 
|  | if (D->hasCachedLinkage()) | 
|  | assert(D->getCachedLinkage() == LV.getLinkage()); | 
|  |  | 
|  | D->setCachedLinkage(LV.getLinkage()); | 
|  | cache(D, computation, LV); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // In C (because of gnu inline) and in c++ with microsoft extensions an | 
|  | // static can follow an extern, so we can have two decls with different | 
|  | // linkages. | 
|  | const LangOptions &Opts = D->getASTContext().getLangOpts(); | 
|  | if (!Opts.CPlusPlus || Opts.MicrosoftExt) | 
|  | return LV; | 
|  |  | 
|  | // We have just computed the linkage for this decl. By induction we know | 
|  | // that all other computed linkages match, check that the one we just | 
|  | // computed also does. | 
|  | NamedDecl *Old = nullptr; | 
|  | for (auto I : D->redecls()) { | 
|  | auto *T = cast<NamedDecl>(I); | 
|  | if (T == D) | 
|  | continue; | 
|  | if (!T->isInvalidDecl() && T->hasCachedLinkage()) { | 
|  | Old = T; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); | 
|  | #endif | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { | 
|  | return getLVForDecl(D, | 
|  | LVComputationKind(usesTypeVisibility(D) | 
|  | ? NamedDecl::VisibilityForType | 
|  | : NamedDecl::VisibilityForValue)); | 
|  | } | 
|  |  | 
|  | Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { | 
|  | Module *M = getOwningModule(); | 
|  | if (!M) | 
|  | return nullptr; | 
|  |  | 
|  | switch (M->Kind) { | 
|  | case Module::ModuleMapModule: | 
|  | // Module map modules have no special linkage semantics. | 
|  | return nullptr; | 
|  |  | 
|  | case Module::ModuleInterfaceUnit: | 
|  | return M; | 
|  |  | 
|  | case Module::GlobalModuleFragment: { | 
|  | // External linkage declarations in the global module have no owning module | 
|  | // for linkage purposes. But internal linkage declarations in the global | 
|  | // module fragment of a particular module are owned by that module for | 
|  | // linkage purposes. | 
|  | if (IgnoreLinkage) | 
|  | return nullptr; | 
|  | bool InternalLinkage; | 
|  | if (auto *ND = dyn_cast<NamedDecl>(this)) | 
|  | InternalLinkage = !ND->hasExternalFormalLinkage(); | 
|  | else { | 
|  | auto *NSD = dyn_cast<NamespaceDecl>(this); | 
|  | InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || | 
|  | isInAnonymousNamespace(); | 
|  | } | 
|  | return InternalLinkage ? M->Parent : nullptr; | 
|  | } | 
|  |  | 
|  | case Module::PrivateModuleFragment: | 
|  | // The private module fragment is part of its containing module for linkage | 
|  | // purposes. | 
|  | return M->Parent; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown module kind"); | 
|  | } | 
|  |  | 
|  | void NamedDecl::printName(raw_ostream &os) const { | 
|  | os << Name; | 
|  | } | 
|  |  | 
|  | std::string NamedDecl::getQualifiedNameAsString() const { | 
|  | std::string QualName; | 
|  | llvm::raw_string_ostream OS(QualName); | 
|  | printQualifiedName(OS, getASTContext().getPrintingPolicy()); | 
|  | return OS.str(); | 
|  | } | 
|  |  | 
|  | void NamedDecl::printQualifiedName(raw_ostream &OS) const { | 
|  | printQualifiedName(OS, getASTContext().getPrintingPolicy()); | 
|  | } | 
|  |  | 
|  | void NamedDecl::printQualifiedName(raw_ostream &OS, | 
|  | const PrintingPolicy &P) const { | 
|  | if (getDeclContext()->isFunctionOrMethod()) { | 
|  | // We do not print '(anonymous)' for function parameters without name. | 
|  | printName(OS); | 
|  | return; | 
|  | } | 
|  | printNestedNameSpecifier(OS, P); | 
|  | if (getDeclName() || isa<DecompositionDecl>(this)) | 
|  | OS << *this; | 
|  | else | 
|  | OS << "(anonymous)"; | 
|  | } | 
|  |  | 
|  | void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { | 
|  | printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); | 
|  | } | 
|  |  | 
|  | void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, | 
|  | const PrintingPolicy &P) const { | 
|  | const DeclContext *Ctx = getDeclContext(); | 
|  |  | 
|  | // For ObjC methods and properties, look through categories and use the | 
|  | // interface as context. | 
|  | if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) | 
|  | if (auto *ID = MD->getClassInterface()) | 
|  | Ctx = ID; | 
|  | if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { | 
|  | if (auto *MD = PD->getGetterMethodDecl()) | 
|  | if (auto *ID = MD->getClassInterface()) | 
|  | Ctx = ID; | 
|  | } | 
|  |  | 
|  | if (Ctx->isFunctionOrMethod()) | 
|  | return; | 
|  |  | 
|  | using ContextsTy = SmallVector<const DeclContext *, 8>; | 
|  | ContextsTy Contexts; | 
|  |  | 
|  | // Collect named contexts. | 
|  | while (Ctx) { | 
|  | if (isa<NamedDecl>(Ctx)) | 
|  | Contexts.push_back(Ctx); | 
|  | Ctx = Ctx->getParent(); | 
|  | } | 
|  |  | 
|  | for (const DeclContext *DC : llvm::reverse(Contexts)) { | 
|  | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { | 
|  | OS << Spec->getName(); | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | printTemplateArgumentList(OS, TemplateArgs.asArray(), P); | 
|  | } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { | 
|  | if (P.SuppressUnwrittenScope && | 
|  | (ND->isAnonymousNamespace() || ND->isInline())) | 
|  | continue; | 
|  | if (ND->isAnonymousNamespace()) { | 
|  | OS << (P.MSVCFormatting ? "`anonymous namespace\'" | 
|  | : "(anonymous namespace)"); | 
|  | } | 
|  | else | 
|  | OS << *ND; | 
|  | } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { | 
|  | if (!RD->getIdentifier()) | 
|  | OS << "(anonymous " << RD->getKindName() << ')'; | 
|  | else | 
|  | OS << *RD; | 
|  | } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { | 
|  | const FunctionProtoType *FT = nullptr; | 
|  | if (FD->hasWrittenPrototype()) | 
|  | FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); | 
|  |  | 
|  | OS << *FD << '('; | 
|  | if (FT) { | 
|  | unsigned NumParams = FD->getNumParams(); | 
|  | for (unsigned i = 0; i < NumParams; ++i) { | 
|  | if (i) | 
|  | OS << ", "; | 
|  | OS << FD->getParamDecl(i)->getType().stream(P); | 
|  | } | 
|  |  | 
|  | if (FT->isVariadic()) { | 
|  | if (NumParams > 0) | 
|  | OS << ", "; | 
|  | OS << "..."; | 
|  | } | 
|  | } | 
|  | OS << ')'; | 
|  | } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { | 
|  | // C++ [dcl.enum]p10: Each enum-name and each unscoped | 
|  | // enumerator is declared in the scope that immediately contains | 
|  | // the enum-specifier. Each scoped enumerator is declared in the | 
|  | // scope of the enumeration. | 
|  | // For the case of unscoped enumerator, do not include in the qualified | 
|  | // name any information about its enum enclosing scope, as its visibility | 
|  | // is global. | 
|  | if (ED->isScoped()) | 
|  | OS << *ED; | 
|  | else | 
|  | continue; | 
|  | } else { | 
|  | OS << *cast<NamedDecl>(DC); | 
|  | } | 
|  | OS << "::"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void NamedDecl::getNameForDiagnostic(raw_ostream &OS, | 
|  | const PrintingPolicy &Policy, | 
|  | bool Qualified) const { | 
|  | if (Qualified) | 
|  | printQualifiedName(OS, Policy); | 
|  | else | 
|  | printName(OS); | 
|  | } | 
|  |  | 
|  | template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { | 
|  | return true; | 
|  | } | 
|  | static bool isRedeclarableImpl(...) { return false; } | 
|  | static bool isRedeclarable(Decl::Kind K) { | 
|  | switch (K) { | 
|  | #define DECL(Type, Base) \ | 
|  | case Decl::Type: \ | 
|  | return isRedeclarableImpl((Type##Decl *)nullptr); | 
|  | #define ABSTRACT_DECL(DECL) | 
|  | #include "clang/AST/DeclNodes.inc" | 
|  | } | 
|  | llvm_unreachable("unknown decl kind"); | 
|  | } | 
|  |  | 
|  | bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { | 
|  | assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); | 
|  |  | 
|  | // Never replace one imported declaration with another; we need both results | 
|  | // when re-exporting. | 
|  | if (OldD->isFromASTFile() && isFromASTFile()) | 
|  | return false; | 
|  |  | 
|  | // A kind mismatch implies that the declaration is not replaced. | 
|  | if (OldD->getKind() != getKind()) | 
|  | return false; | 
|  |  | 
|  | // For method declarations, we never replace. (Why?) | 
|  | if (isa<ObjCMethodDecl>(this)) | 
|  | return false; | 
|  |  | 
|  | // For parameters, pick the newer one. This is either an error or (in | 
|  | // Objective-C) permitted as an extension. | 
|  | if (isa<ParmVarDecl>(this)) | 
|  | return true; | 
|  |  | 
|  | // Inline namespaces can give us two declarations with the same | 
|  | // name and kind in the same scope but different contexts; we should | 
|  | // keep both declarations in this case. | 
|  | if (!this->getDeclContext()->getRedeclContext()->Equals( | 
|  | OldD->getDeclContext()->getRedeclContext())) | 
|  | return false; | 
|  |  | 
|  | // Using declarations can be replaced if they import the same name from the | 
|  | // same context. | 
|  | if (auto *UD = dyn_cast<UsingDecl>(this)) { | 
|  | ASTContext &Context = getASTContext(); | 
|  | return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == | 
|  | Context.getCanonicalNestedNameSpecifier( | 
|  | cast<UsingDecl>(OldD)->getQualifier()); | 
|  | } | 
|  | if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { | 
|  | ASTContext &Context = getASTContext(); | 
|  | return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == | 
|  | Context.getCanonicalNestedNameSpecifier( | 
|  | cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); | 
|  | } | 
|  |  | 
|  | if (isRedeclarable(getKind())) { | 
|  | if (getCanonicalDecl() != OldD->getCanonicalDecl()) | 
|  | return false; | 
|  |  | 
|  | if (IsKnownNewer) | 
|  | return true; | 
|  |  | 
|  | // Check whether this is actually newer than OldD. We want to keep the | 
|  | // newer declaration. This loop will usually only iterate once, because | 
|  | // OldD is usually the previous declaration. | 
|  | for (auto D : redecls()) { | 
|  | if (D == OldD) | 
|  | break; | 
|  |  | 
|  | // If we reach the canonical declaration, then OldD is not actually older | 
|  | // than this one. | 
|  | // | 
|  | // FIXME: In this case, we should not add this decl to the lookup table. | 
|  | if (D->isCanonicalDecl()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // It's a newer declaration of the same kind of declaration in the same | 
|  | // scope: we want this decl instead of the existing one. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In all other cases, we need to keep both declarations in case they have | 
|  | // different visibility. Any attempt to use the name will result in an | 
|  | // ambiguity if more than one is visible. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool NamedDecl::hasLinkage() const { | 
|  | return getFormalLinkage() != NoLinkage; | 
|  | } | 
|  |  | 
|  | NamedDecl *NamedDecl::getUnderlyingDeclImpl() { | 
|  | NamedDecl *ND = this; | 
|  | while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) | 
|  | ND = UD->getTargetDecl(); | 
|  |  | 
|  | if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) | 
|  | return AD->getClassInterface(); | 
|  |  | 
|  | if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) | 
|  | return AD->getNamespace(); | 
|  |  | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | bool NamedDecl::isCXXInstanceMember() const { | 
|  | if (!isCXXClassMember()) | 
|  | return false; | 
|  |  | 
|  | const NamedDecl *D = this; | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) | 
|  | return true; | 
|  | if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) | 
|  | return MD->isInstance(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // DeclaratorDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | template <typename DeclT> | 
|  | static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { | 
|  | if (decl->getNumTemplateParameterLists() > 0) | 
|  | return decl->getTemplateParameterList(0)->getTemplateLoc(); | 
|  | else | 
|  | return decl->getInnerLocStart(); | 
|  | } | 
|  |  | 
|  | SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { | 
|  | TypeSourceInfo *TSI = getTypeSourceInfo(); | 
|  | if (TSI) return TSI->getTypeLoc().getBeginLoc(); | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { | 
|  | TypeSourceInfo *TSI = getTypeSourceInfo(); | 
|  | if (TSI) return TSI->getTypeLoc().getEndLoc(); | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { | 
|  | if (QualifierLoc) { | 
|  | // Make sure the extended decl info is allocated. | 
|  | if (!hasExtInfo()) { | 
|  | // Save (non-extended) type source info pointer. | 
|  | auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); | 
|  | // Allocate external info struct. | 
|  | DeclInfo = new (getASTContext()) ExtInfo; | 
|  | // Restore savedTInfo into (extended) decl info. | 
|  | getExtInfo()->TInfo = savedTInfo; | 
|  | } | 
|  | // Set qualifier info. | 
|  | getExtInfo()->QualifierLoc = QualifierLoc; | 
|  | } else if (hasExtInfo()) { | 
|  | // Here Qualifier == 0, i.e., we are removing the qualifier (if any). | 
|  | getExtInfo()->QualifierLoc = QualifierLoc; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { | 
|  | assert(TrailingRequiresClause); | 
|  | // Make sure the extended decl info is allocated. | 
|  | if (!hasExtInfo()) { | 
|  | // Save (non-extended) type source info pointer. | 
|  | auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); | 
|  | // Allocate external info struct. | 
|  | DeclInfo = new (getASTContext()) ExtInfo; | 
|  | // Restore savedTInfo into (extended) decl info. | 
|  | getExtInfo()->TInfo = savedTInfo; | 
|  | } | 
|  | // Set requires clause info. | 
|  | getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; | 
|  | } | 
|  |  | 
|  | void DeclaratorDecl::setTemplateParameterListsInfo( | 
|  | ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { | 
|  | assert(!TPLists.empty()); | 
|  | // Make sure the extended decl info is allocated. | 
|  | if (!hasExtInfo()) { | 
|  | // Save (non-extended) type source info pointer. | 
|  | auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); | 
|  | // Allocate external info struct. | 
|  | DeclInfo = new (getASTContext()) ExtInfo; | 
|  | // Restore savedTInfo into (extended) decl info. | 
|  | getExtInfo()->TInfo = savedTInfo; | 
|  | } | 
|  | // Set the template parameter lists info. | 
|  | getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); | 
|  | } | 
|  |  | 
|  | SourceLocation DeclaratorDecl::getOuterLocStart() const { | 
|  | return getTemplateOrInnerLocStart(this); | 
|  | } | 
|  |  | 
|  | // Helper function: returns true if QT is or contains a type | 
|  | // having a postfix component. | 
|  | static bool typeIsPostfix(QualType QT) { | 
|  | while (true) { | 
|  | const Type* T = QT.getTypePtr(); | 
|  | switch (T->getTypeClass()) { | 
|  | default: | 
|  | return false; | 
|  | case Type::Pointer: | 
|  | QT = cast<PointerType>(T)->getPointeeType(); | 
|  | break; | 
|  | case Type::BlockPointer: | 
|  | QT = cast<BlockPointerType>(T)->getPointeeType(); | 
|  | break; | 
|  | case Type::MemberPointer: | 
|  | QT = cast<MemberPointerType>(T)->getPointeeType(); | 
|  | break; | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | QT = cast<ReferenceType>(T)->getPointeeType(); | 
|  | break; | 
|  | case Type::PackExpansion: | 
|  | QT = cast<PackExpansionType>(T)->getPattern(); | 
|  | break; | 
|  | case Type::Paren: | 
|  | case Type::ConstantArray: | 
|  | case Type::DependentSizedArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::FunctionProto: | 
|  | case Type::FunctionNoProto: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SourceRange DeclaratorDecl::getSourceRange() const { | 
|  | SourceLocation RangeEnd = getLocation(); | 
|  | if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { | 
|  | // If the declaration has no name or the type extends past the name take the | 
|  | // end location of the type. | 
|  | if (!getDeclName() || typeIsPostfix(TInfo->getType())) | 
|  | RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
|  | } | 
|  | return SourceRange(getOuterLocStart(), RangeEnd); | 
|  | } | 
|  |  | 
|  | void QualifierInfo::setTemplateParameterListsInfo( | 
|  | ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { | 
|  | // Free previous template parameters (if any). | 
|  | if (NumTemplParamLists > 0) { | 
|  | Context.Deallocate(TemplParamLists); | 
|  | TemplParamLists = nullptr; | 
|  | NumTemplParamLists = 0; | 
|  | } | 
|  | // Set info on matched template parameter lists (if any). | 
|  | if (!TPLists.empty()) { | 
|  | TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; | 
|  | NumTemplParamLists = TPLists.size(); | 
|  | std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VarDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { | 
|  | switch (SC) { | 
|  | case SC_None:                 break; | 
|  | case SC_Auto:                 return "auto"; | 
|  | case SC_Extern:               return "extern"; | 
|  | case SC_PrivateExtern:        return "__private_extern__"; | 
|  | case SC_Register:             return "register"; | 
|  | case SC_Static:               return "static"; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid storage class"); | 
|  | } | 
|  |  | 
|  | VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass SC) | 
|  | : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), | 
|  | redeclarable_base(C) { | 
|  | static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), | 
|  | "VarDeclBitfields too large!"); | 
|  | static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), | 
|  | "ParmVarDeclBitfields too large!"); | 
|  | static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), | 
|  | "NonParmVarDeclBitfields too large!"); | 
|  | AllBits = 0; | 
|  | VarDeclBits.SClass = SC; | 
|  | // Everything else is implicitly initialized to false. | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartL, SourceLocation IdL, | 
|  | IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass S) { | 
|  | return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) | 
|  | VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, | 
|  | QualType(), nullptr, SC_None); | 
|  | } | 
|  |  | 
|  | void VarDecl::setStorageClass(StorageClass SC) { | 
|  | assert(isLegalForVariable(SC)); | 
|  | VarDeclBits.SClass = SC; | 
|  | } | 
|  |  | 
|  | VarDecl::TLSKind VarDecl::getTLSKind() const { | 
|  | switch (VarDeclBits.TSCSpec) { | 
|  | case TSCS_unspecified: | 
|  | if (!hasAttr<ThreadAttr>() && | 
|  | !(getASTContext().getLangOpts().OpenMPUseTLS && | 
|  | getASTContext().getTargetInfo().isTLSSupported() && | 
|  | hasAttr<OMPThreadPrivateDeclAttr>())) | 
|  | return TLS_None; | 
|  | return ((getASTContext().getLangOpts().isCompatibleWithMSVC( | 
|  | LangOptions::MSVC2015)) || | 
|  | hasAttr<OMPThreadPrivateDeclAttr>()) | 
|  | ? TLS_Dynamic | 
|  | : TLS_Static; | 
|  | case TSCS___thread: // Fall through. | 
|  | case TSCS__Thread_local: | 
|  | return TLS_Static; | 
|  | case TSCS_thread_local: | 
|  | return TLS_Dynamic; | 
|  | } | 
|  | llvm_unreachable("Unknown thread storage class specifier!"); | 
|  | } | 
|  |  | 
|  | SourceRange VarDecl::getSourceRange() const { | 
|  | if (const Expr *Init = getInit()) { | 
|  | SourceLocation InitEnd = Init->getEndLoc(); | 
|  | // If Init is implicit, ignore its source range and fallback on | 
|  | // DeclaratorDecl::getSourceRange() to handle postfix elements. | 
|  | if (InitEnd.isValid() && InitEnd != getLocation()) | 
|  | return SourceRange(getOuterLocStart(), InitEnd); | 
|  | } | 
|  | return DeclaratorDecl::getSourceRange(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static LanguageLinkage getDeclLanguageLinkage(const T &D) { | 
|  | // C++ [dcl.link]p1: All function types, function names with external linkage, | 
|  | // and variable names with external linkage have a language linkage. | 
|  | if (!D.hasExternalFormalLinkage()) | 
|  | return NoLanguageLinkage; | 
|  |  | 
|  | // Language linkage is a C++ concept, but saying that everything else in C has | 
|  | // C language linkage fits the implementation nicely. | 
|  | ASTContext &Context = D.getASTContext(); | 
|  | if (!Context.getLangOpts().CPlusPlus) | 
|  | return CLanguageLinkage; | 
|  |  | 
|  | // C++ [dcl.link]p4: A C language linkage is ignored in determining the | 
|  | // language linkage of the names of class members and the function type of | 
|  | // class member functions. | 
|  | const DeclContext *DC = D.getDeclContext(); | 
|  | if (DC->isRecord()) | 
|  | return CXXLanguageLinkage; | 
|  |  | 
|  | // If the first decl is in an extern "C" context, any other redeclaration | 
|  | // will have C language linkage. If the first one is not in an extern "C" | 
|  | // context, we would have reported an error for any other decl being in one. | 
|  | if (isFirstInExternCContext(&D)) | 
|  | return CLanguageLinkage; | 
|  | return CXXLanguageLinkage; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static bool isDeclExternC(const T &D) { | 
|  | // Since the context is ignored for class members, they can only have C++ | 
|  | // language linkage or no language linkage. | 
|  | const DeclContext *DC = D.getDeclContext(); | 
|  | if (DC->isRecord()) { | 
|  | assert(D.getASTContext().getLangOpts().CPlusPlus); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return D.getLanguageLinkage() == CLanguageLinkage; | 
|  | } | 
|  |  | 
|  | LanguageLinkage VarDecl::getLanguageLinkage() const { | 
|  | return getDeclLanguageLinkage(*this); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isExternC() const { | 
|  | return isDeclExternC(*this); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isInExternCContext() const { | 
|  | return getLexicalDeclContext()->isExternCContext(); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isInExternCXXContext() const { | 
|  | return getLexicalDeclContext()->isExternCXXContext(); | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } | 
|  |  | 
|  | VarDecl::DefinitionKind | 
|  | VarDecl::isThisDeclarationADefinition(ASTContext &C) const { | 
|  | if (isThisDeclarationADemotedDefinition()) | 
|  | return DeclarationOnly; | 
|  |  | 
|  | // C++ [basic.def]p2: | 
|  | //   A declaration is a definition unless [...] it contains the 'extern' | 
|  | //   specifier or a linkage-specification and neither an initializer [...], | 
|  | //   it declares a non-inline static data member in a class declaration [...], | 
|  | //   it declares a static data member outside a class definition and the variable | 
|  | //   was defined within the class with the constexpr specifier [...], | 
|  | // C++1y [temp.expl.spec]p15: | 
|  | //   An explicit specialization of a static data member or an explicit | 
|  | //   specialization of a static data member template is a definition if the | 
|  | //   declaration includes an initializer; otherwise, it is a declaration. | 
|  | // | 
|  | // FIXME: How do you declare (but not define) a partial specialization of | 
|  | // a static data member template outside the containing class? | 
|  | if (isStaticDataMember()) { | 
|  | if (isOutOfLine() && | 
|  | !(getCanonicalDecl()->isInline() && | 
|  | getCanonicalDecl()->isConstexpr()) && | 
|  | (hasInit() || | 
|  | // If the first declaration is out-of-line, this may be an | 
|  | // instantiation of an out-of-line partial specialization of a variable | 
|  | // template for which we have not yet instantiated the initializer. | 
|  | (getFirstDecl()->isOutOfLine() | 
|  | ? getTemplateSpecializationKind() == TSK_Undeclared | 
|  | : getTemplateSpecializationKind() != | 
|  | TSK_ExplicitSpecialization) || | 
|  | isa<VarTemplatePartialSpecializationDecl>(this))) | 
|  | return Definition; | 
|  | else if (!isOutOfLine() && isInline()) | 
|  | return Definition; | 
|  | else | 
|  | return DeclarationOnly; | 
|  | } | 
|  | // C99 6.7p5: | 
|  | //   A definition of an identifier is a declaration for that identifier that | 
|  | //   [...] causes storage to be reserved for that object. | 
|  | // Note: that applies for all non-file-scope objects. | 
|  | // C99 6.9.2p1: | 
|  | //   If the declaration of an identifier for an object has file scope and an | 
|  | //   initializer, the declaration is an external definition for the identifier | 
|  | if (hasInit()) | 
|  | return Definition; | 
|  |  | 
|  | if (hasDefiningAttr()) | 
|  | return Definition; | 
|  |  | 
|  | if (const auto *SAA = getAttr<SelectAnyAttr>()) | 
|  | if (!SAA->isInherited()) | 
|  | return Definition; | 
|  |  | 
|  | // A variable template specialization (other than a static data member | 
|  | // template or an explicit specialization) is a declaration until we | 
|  | // instantiate its initializer. | 
|  | if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { | 
|  | if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && | 
|  | !isa<VarTemplatePartialSpecializationDecl>(VTSD) && | 
|  | !VTSD->IsCompleteDefinition) | 
|  | return DeclarationOnly; | 
|  | } | 
|  |  | 
|  | if (hasExternalStorage()) | 
|  | return DeclarationOnly; | 
|  |  | 
|  | // [dcl.link] p7: | 
|  | //   A declaration directly contained in a linkage-specification is treated | 
|  | //   as if it contains the extern specifier for the purpose of determining | 
|  | //   the linkage of the declared name and whether it is a definition. | 
|  | if (isSingleLineLanguageLinkage(*this)) | 
|  | return DeclarationOnly; | 
|  |  | 
|  | // C99 6.9.2p2: | 
|  | //   A declaration of an object that has file scope without an initializer, | 
|  | //   and without a storage class specifier or the scs 'static', constitutes | 
|  | //   a tentative definition. | 
|  | // No such thing in C++. | 
|  | if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) | 
|  | return TentativeDefinition; | 
|  |  | 
|  | // What's left is (in C, block-scope) declarations without initializers or | 
|  | // external storage. These are definitions. | 
|  | return Definition; | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getActingDefinition() { | 
|  | DefinitionKind Kind = isThisDeclarationADefinition(); | 
|  | if (Kind != TentativeDefinition) | 
|  | return nullptr; | 
|  |  | 
|  | VarDecl *LastTentative = nullptr; | 
|  | VarDecl *First = getFirstDecl(); | 
|  | for (auto I : First->redecls()) { | 
|  | Kind = I->isThisDeclarationADefinition(); | 
|  | if (Kind == Definition) | 
|  | return nullptr; | 
|  | else if (Kind == TentativeDefinition) | 
|  | LastTentative = I; | 
|  | } | 
|  | return LastTentative; | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getDefinition(ASTContext &C) { | 
|  | VarDecl *First = getFirstDecl(); | 
|  | for (auto I : First->redecls()) { | 
|  | if (I->isThisDeclarationADefinition(C) == Definition) | 
|  | return I; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { | 
|  | DefinitionKind Kind = DeclarationOnly; | 
|  |  | 
|  | const VarDecl *First = getFirstDecl(); | 
|  | for (auto I : First->redecls()) { | 
|  | Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); | 
|  | if (Kind == Definition) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Kind; | 
|  | } | 
|  |  | 
|  | const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { | 
|  | for (auto I : redecls()) { | 
|  | if (auto Expr = I->getInit()) { | 
|  | D = I; | 
|  | return Expr; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool VarDecl::hasInit() const { | 
|  | if (auto *P = dyn_cast<ParmVarDecl>(this)) | 
|  | if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) | 
|  | return false; | 
|  |  | 
|  | return !Init.isNull(); | 
|  | } | 
|  |  | 
|  | Expr *VarDecl::getInit() { | 
|  | if (!hasInit()) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *S = Init.dyn_cast<Stmt *>()) | 
|  | return cast<Expr>(S); | 
|  |  | 
|  | return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); | 
|  | } | 
|  |  | 
|  | Stmt **VarDecl::getInitAddress() { | 
|  | if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) | 
|  | return &ES->Value; | 
|  |  | 
|  | return Init.getAddrOfPtr1(); | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getInitializingDeclaration() { | 
|  | VarDecl *Def = nullptr; | 
|  | for (auto I : redecls()) { | 
|  | if (I->hasInit()) | 
|  | return I; | 
|  |  | 
|  | if (I->isThisDeclarationADefinition()) { | 
|  | if (isStaticDataMember()) | 
|  | return I; | 
|  | else | 
|  | Def = I; | 
|  | } | 
|  | } | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isOutOfLine() const { | 
|  | if (Decl::isOutOfLine()) | 
|  | return true; | 
|  |  | 
|  | if (!isStaticDataMember()) | 
|  | return false; | 
|  |  | 
|  | // If this static data member was instantiated from a static data member of | 
|  | // a class template, check whether that static data member was defined | 
|  | // out-of-line. | 
|  | if (VarDecl *VD = getInstantiatedFromStaticDataMember()) | 
|  | return VD->isOutOfLine(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void VarDecl::setInit(Expr *I) { | 
|  | if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { | 
|  | Eval->~EvaluatedStmt(); | 
|  | getASTContext().Deallocate(Eval); | 
|  | } | 
|  |  | 
|  | Init = I; | 
|  | } | 
|  |  | 
|  | bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const { | 
|  | const LangOptions &Lang = C.getLangOpts(); | 
|  |  | 
|  | if (!Lang.CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | // Function parameters are never usable in constant expressions. | 
|  | if (isa<ParmVarDecl>(this)) | 
|  | return false; | 
|  |  | 
|  | // In C++11, any variable of reference type can be used in a constant | 
|  | // expression if it is initialized by a constant expression. | 
|  | if (Lang.CPlusPlus11 && getType()->isReferenceType()) | 
|  | return true; | 
|  |  | 
|  | // Only const objects can be used in constant expressions in C++. C++98 does | 
|  | // not require the variable to be non-volatile, but we consider this to be a | 
|  | // defect. | 
|  | if (!getType().isConstQualified() || getType().isVolatileQualified()) | 
|  | return false; | 
|  |  | 
|  | // In C++, const, non-volatile variables of integral or enumeration types | 
|  | // can be used in constant expressions. | 
|  | if (getType()->isIntegralOrEnumerationType()) | 
|  | return true; | 
|  |  | 
|  | // Additionally, in C++11, non-volatile constexpr variables can be used in | 
|  | // constant expressions. | 
|  | return Lang.CPlusPlus11 && isConstexpr(); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const { | 
|  | // C++2a [expr.const]p3: | 
|  | //   A variable is usable in constant expressions after its initializing | 
|  | //   declaration is encountered... | 
|  | const VarDecl *DefVD = nullptr; | 
|  | const Expr *Init = getAnyInitializer(DefVD); | 
|  | if (!Init || Init->isValueDependent() || getType()->isDependentType()) | 
|  | return false; | 
|  | //   ... if it is a constexpr variable, or it is of reference type or of | 
|  | //   const-qualified integral or enumeration type, ... | 
|  | if (!DefVD->mightBeUsableInConstantExpressions(Context)) | 
|  | return false; | 
|  | //   ... and its initializer is a constant initializer. | 
|  | return DefVD->checkInitIsICE(); | 
|  | } | 
|  |  | 
|  | /// Convert the initializer for this declaration to the elaborated EvaluatedStmt | 
|  | /// form, which contains extra information on the evaluated value of the | 
|  | /// initializer. | 
|  | EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { | 
|  | auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); | 
|  | if (!Eval) { | 
|  | // Note: EvaluatedStmt contains an APValue, which usually holds | 
|  | // resources not allocated from the ASTContext.  We need to do some | 
|  | // work to avoid leaking those, but we do so in VarDecl::evaluateValue | 
|  | // where we can detect whether there's anything to clean up or not. | 
|  | Eval = new (getASTContext()) EvaluatedStmt; | 
|  | Eval->Value = Init.get<Stmt *>(); | 
|  | Init = Eval; | 
|  | } | 
|  | return Eval; | 
|  | } | 
|  |  | 
|  | APValue *VarDecl::evaluateValue() const { | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | return evaluateValue(Notes); | 
|  | } | 
|  |  | 
|  | APValue *VarDecl::evaluateValue( | 
|  | SmallVectorImpl<PartialDiagnosticAt> &Notes) const { | 
|  | EvaluatedStmt *Eval = ensureEvaluatedStmt(); | 
|  |  | 
|  | // We only produce notes indicating why an initializer is non-constant the | 
|  | // first time it is evaluated. FIXME: The notes won't always be emitted the | 
|  | // first time we try evaluation, so might not be produced at all. | 
|  | if (Eval->WasEvaluated) | 
|  | return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; | 
|  |  | 
|  | const auto *Init = cast<Expr>(Eval->Value); | 
|  | assert(!Init->isValueDependent()); | 
|  |  | 
|  | if (Eval->IsEvaluating) { | 
|  | // FIXME: Produce a diagnostic for self-initialization. | 
|  | Eval->CheckedICE = true; | 
|  | Eval->IsICE = false; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Eval->IsEvaluating = true; | 
|  |  | 
|  | bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), | 
|  | this, Notes); | 
|  |  | 
|  | // Ensure the computed APValue is cleaned up later if evaluation succeeded, | 
|  | // or that it's empty (so that there's nothing to clean up) if evaluation | 
|  | // failed. | 
|  | if (!Result) | 
|  | Eval->Evaluated = APValue(); | 
|  | else if (Eval->Evaluated.needsCleanup()) | 
|  | getASTContext().addDestruction(&Eval->Evaluated); | 
|  |  | 
|  | Eval->IsEvaluating = false; | 
|  | Eval->WasEvaluated = true; | 
|  |  | 
|  | // In C++11, we have determined whether the initializer was a constant | 
|  | // expression as a side-effect. | 
|  | if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { | 
|  | Eval->CheckedICE = true; | 
|  | Eval->IsICE = Result && Notes.empty(); | 
|  | } | 
|  |  | 
|  | return Result ? &Eval->Evaluated : nullptr; | 
|  | } | 
|  |  | 
|  | APValue *VarDecl::getEvaluatedValue() const { | 
|  | if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) | 
|  | if (Eval->WasEvaluated) | 
|  | return &Eval->Evaluated; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isInitKnownICE() const { | 
|  | if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) | 
|  | return Eval->CheckedICE; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isInitICE() const { | 
|  | assert(isInitKnownICE() && | 
|  | "Check whether we already know that the initializer is an ICE"); | 
|  | return Init.get<EvaluatedStmt *>()->IsICE; | 
|  | } | 
|  |  | 
|  | bool VarDecl::checkInitIsICE() const { | 
|  | // Initializers of weak variables are never ICEs. | 
|  | if (isWeak()) | 
|  | return false; | 
|  |  | 
|  | EvaluatedStmt *Eval = ensureEvaluatedStmt(); | 
|  | if (Eval->CheckedICE) | 
|  | // We have already checked whether this subexpression is an | 
|  | // integral constant expression. | 
|  | return Eval->IsICE; | 
|  |  | 
|  | const auto *Init = cast<Expr>(Eval->Value); | 
|  | assert(!Init->isValueDependent()); | 
|  |  | 
|  | // In C++11, evaluate the initializer to check whether it's a constant | 
|  | // expression. | 
|  | if (getASTContext().getLangOpts().CPlusPlus11) { | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | evaluateValue(Notes); | 
|  | return Eval->IsICE; | 
|  | } | 
|  |  | 
|  | // It's an ICE whether or not the definition we found is | 
|  | // out-of-line.  See DR 721 and the discussion in Clang PR | 
|  | // 6206 for details. | 
|  |  | 
|  | if (Eval->CheckingICE) | 
|  | return false; | 
|  | Eval->CheckingICE = true; | 
|  |  | 
|  | Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); | 
|  | Eval->CheckingICE = false; | 
|  | Eval->CheckedICE = true; | 
|  | return Eval->IsICE; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isParameterPack() const { | 
|  | return isa<PackExpansionType>(getType()); | 
|  | } | 
|  |  | 
|  | template<typename DeclT> | 
|  | static DeclT *getDefinitionOrSelf(DeclT *D) { | 
|  | assert(D); | 
|  | if (auto *Def = D->getDefinition()) | 
|  | return Def; | 
|  | return D; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isEscapingByref() const { | 
|  | return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; | 
|  | } | 
|  |  | 
|  | bool VarDecl::isNonEscapingByref() const { | 
|  | return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getTemplateInstantiationPattern() const { | 
|  | const VarDecl *VD = this; | 
|  |  | 
|  | // If this is an instantiated member, walk back to the template from which | 
|  | // it was instantiated. | 
|  | if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { | 
|  | if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { | 
|  | VD = VD->getInstantiatedFromStaticDataMember(); | 
|  | while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) | 
|  | VD = NewVD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's an instantiated variable template specialization, find the | 
|  | // template or partial specialization from which it was instantiated. | 
|  | if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { | 
|  | if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { | 
|  | auto From = VDTemplSpec->getInstantiatedFrom(); | 
|  | if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { | 
|  | while (!VTD->isMemberSpecialization()) { | 
|  | auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); | 
|  | if (!NewVTD) | 
|  | break; | 
|  | VTD = NewVTD; | 
|  | } | 
|  | return getDefinitionOrSelf(VTD->getTemplatedDecl()); | 
|  | } | 
|  | if (auto *VTPSD = | 
|  | From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { | 
|  | while (!VTPSD->isMemberSpecialization()) { | 
|  | auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); | 
|  | if (!NewVTPSD) | 
|  | break; | 
|  | VTPSD = NewVTPSD; | 
|  | } | 
|  | return getDefinitionOrSelf<VarDecl>(VTPSD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is the pattern of a variable template, find where it was | 
|  | // instantiated from. FIXME: Is this necessary? | 
|  | if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { | 
|  | while (!VarTemplate->isMemberSpecialization()) { | 
|  | auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); | 
|  | if (!NewVT) | 
|  | break; | 
|  | VarTemplate = NewVT; | 
|  | } | 
|  |  | 
|  | return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); | 
|  | } | 
|  |  | 
|  | if (VD == this) | 
|  | return nullptr; | 
|  | return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); | 
|  | } | 
|  |  | 
|  | VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { | 
|  | if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
|  | return cast<VarDecl>(MSI->getInstantiatedFrom()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { | 
|  | if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) | 
|  | return Spec->getSpecializationKind(); | 
|  |  | 
|  | if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
|  | return MSI->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind | 
|  | VarDecl::getTemplateSpecializationKindForInstantiation() const { | 
|  | if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
|  | return MSI->getTemplateSpecializationKind(); | 
|  |  | 
|  | if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) | 
|  | return Spec->getSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | SourceLocation VarDecl::getPointOfInstantiation() const { | 
|  | if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) | 
|  | return Spec->getPointOfInstantiation(); | 
|  |  | 
|  | if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
|  | return MSI->getPointOfInstantiation(); | 
|  |  | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { | 
|  | return getASTContext().getTemplateOrSpecializationInfo(this) | 
|  | .dyn_cast<VarTemplateDecl *>(); | 
|  | } | 
|  |  | 
|  | void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { | 
|  | getASTContext().setTemplateOrSpecializationInfo(this, Template); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isKnownToBeDefined() const { | 
|  | const auto &LangOpts = getASTContext().getLangOpts(); | 
|  | // In CUDA mode without relocatable device code, variables of form 'extern | 
|  | // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared | 
|  | // memory pool.  These are never undefined variables, even if they appear | 
|  | // inside of an anon namespace or static function. | 
|  | // | 
|  | // With CUDA relocatable device code enabled, these variables don't get | 
|  | // special handling; they're treated like regular extern variables. | 
|  | if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && | 
|  | hasExternalStorage() && hasAttr<CUDASharedAttr>() && | 
|  | isa<IncompleteArrayType>(getType())) | 
|  | return true; | 
|  |  | 
|  | return hasDefinition(); | 
|  | } | 
|  |  | 
|  | bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { | 
|  | return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || | 
|  | (!Ctx.getLangOpts().RegisterStaticDestructors && | 
|  | !hasAttr<AlwaysDestroyAttr>())); | 
|  | } | 
|  |  | 
|  | QualType::DestructionKind | 
|  | VarDecl::needsDestruction(const ASTContext &Ctx) const { | 
|  | if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) | 
|  | if (Eval->HasConstantDestruction) | 
|  | return QualType::DK_none; | 
|  |  | 
|  | if (isNoDestroy(Ctx)) | 
|  | return QualType::DK_none; | 
|  |  | 
|  | return getType().isDestructedType(); | 
|  | } | 
|  |  | 
|  | MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { | 
|  | if (isStaticDataMember()) | 
|  | // FIXME: Remove ? | 
|  | // return getASTContext().getInstantiatedFromStaticDataMember(this); | 
|  | return getASTContext().getTemplateOrSpecializationInfo(this) | 
|  | .dyn_cast<MemberSpecializationInfo *>(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | assert((isa<VarTemplateSpecializationDecl>(this) || | 
|  | getMemberSpecializationInfo()) && | 
|  | "not a variable or static data member template specialization"); | 
|  |  | 
|  | if (VarTemplateSpecializationDecl *Spec = | 
|  | dyn_cast<VarTemplateSpecializationDecl>(this)) { | 
|  | Spec->setSpecializationKind(TSK); | 
|  | if (TSK != TSK_ExplicitSpecialization && | 
|  | PointOfInstantiation.isValid() && | 
|  | Spec->getPointOfInstantiation().isInvalid()) { | 
|  | Spec->setPointOfInstantiation(PointOfInstantiation); | 
|  | if (ASTMutationListener *L = getASTContext().getASTMutationListener()) | 
|  | L->InstantiationRequested(this); | 
|  | } | 
|  | } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { | 
|  | MSI->setTemplateSpecializationKind(TSK); | 
|  | if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && | 
|  | MSI->getPointOfInstantiation().isInvalid()) { | 
|  | MSI->setPointOfInstantiation(PointOfInstantiation); | 
|  | if (ASTMutationListener *L = getASTContext().getASTMutationListener()) | 
|  | L->InstantiationRequested(this); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, | 
|  | TemplateSpecializationKind TSK) { | 
|  | assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && | 
|  | "Previous template or instantiation?"); | 
|  | getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ParmVarDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass S, Expr *DefArg) { | 
|  | return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, | 
|  | S, DefArg); | 
|  | } | 
|  |  | 
|  | QualType ParmVarDecl::getOriginalType() const { | 
|  | TypeSourceInfo *TSI = getTypeSourceInfo(); | 
|  | QualType T = TSI ? TSI->getType() : getType(); | 
|  | if (const auto *DT = dyn_cast<DecayedType>(T)) | 
|  | return DT->getOriginalType(); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) | 
|  | ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), | 
|  | nullptr, QualType(), nullptr, SC_None, nullptr); | 
|  | } | 
|  |  | 
|  | SourceRange ParmVarDecl::getSourceRange() const { | 
|  | if (!hasInheritedDefaultArg()) { | 
|  | SourceRange ArgRange = getDefaultArgRange(); | 
|  | if (ArgRange.isValid()) | 
|  | return SourceRange(getOuterLocStart(), ArgRange.getEnd()); | 
|  | } | 
|  |  | 
|  | // DeclaratorDecl considers the range of postfix types as overlapping with the | 
|  | // declaration name, but this is not the case with parameters in ObjC methods. | 
|  | if (isa<ObjCMethodDecl>(getDeclContext())) | 
|  | return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); | 
|  |  | 
|  | return DeclaratorDecl::getSourceRange(); | 
|  | } | 
|  |  | 
|  | Expr *ParmVarDecl::getDefaultArg() { | 
|  | assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); | 
|  | assert(!hasUninstantiatedDefaultArg() && | 
|  | "Default argument is not yet instantiated!"); | 
|  |  | 
|  | Expr *Arg = getInit(); | 
|  | if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) | 
|  | return E->getSubExpr(); | 
|  |  | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | void ParmVarDecl::setDefaultArg(Expr *defarg) { | 
|  | ParmVarDeclBits.DefaultArgKind = DAK_Normal; | 
|  | Init = defarg; | 
|  | } | 
|  |  | 
|  | SourceRange ParmVarDecl::getDefaultArgRange() const { | 
|  | switch (ParmVarDeclBits.DefaultArgKind) { | 
|  | case DAK_None: | 
|  | case DAK_Unparsed: | 
|  | // Nothing we can do here. | 
|  | return SourceRange(); | 
|  |  | 
|  | case DAK_Uninstantiated: | 
|  | return getUninstantiatedDefaultArg()->getSourceRange(); | 
|  |  | 
|  | case DAK_Normal: | 
|  | if (const Expr *E = getInit()) | 
|  | return E->getSourceRange(); | 
|  |  | 
|  | // Missing an actual expression, may be invalid. | 
|  | return SourceRange(); | 
|  | } | 
|  | llvm_unreachable("Invalid default argument kind."); | 
|  | } | 
|  |  | 
|  | void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { | 
|  | ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; | 
|  | Init = arg; | 
|  | } | 
|  |  | 
|  | Expr *ParmVarDecl::getUninstantiatedDefaultArg() { | 
|  | assert(hasUninstantiatedDefaultArg() && | 
|  | "Wrong kind of initialization expression!"); | 
|  | return cast_or_null<Expr>(Init.get<Stmt *>()); | 
|  | } | 
|  |  | 
|  | bool ParmVarDecl::hasDefaultArg() const { | 
|  | // FIXME: We should just return false for DAK_None here once callers are | 
|  | // prepared for the case that we encountered an invalid default argument and | 
|  | // were unable to even build an invalid expression. | 
|  | return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || | 
|  | !Init.isNull(); | 
|  | } | 
|  |  | 
|  | void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { | 
|  | getASTContext().setParameterIndex(this, parameterIndex); | 
|  | ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; | 
|  | } | 
|  |  | 
|  | unsigned ParmVarDecl::getParameterIndexLarge() const { | 
|  | return getASTContext().getParameterIndex(this); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FunctionDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, QualType T, | 
|  | TypeSourceInfo *TInfo, StorageClass S, | 
|  | bool isInlineSpecified, | 
|  | ConstexprSpecKind ConstexprKind, | 
|  | Expr *TrailingRequiresClause) | 
|  | : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, | 
|  | StartLoc), | 
|  | DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), | 
|  | EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { | 
|  | assert(T.isNull() || T->isFunctionType()); | 
|  | FunctionDeclBits.SClass = S; | 
|  | FunctionDeclBits.IsInline = isInlineSpecified; | 
|  | FunctionDeclBits.IsInlineSpecified = isInlineSpecified; | 
|  | FunctionDeclBits.IsVirtualAsWritten = false; | 
|  | FunctionDeclBits.IsPure = false; | 
|  | FunctionDeclBits.HasInheritedPrototype = false; | 
|  | FunctionDeclBits.HasWrittenPrototype = true; | 
|  | FunctionDeclBits.IsDeleted = false; | 
|  | FunctionDeclBits.IsTrivial = false; | 
|  | FunctionDeclBits.IsTrivialForCall = false; | 
|  | FunctionDeclBits.IsDefaulted = false; | 
|  | FunctionDeclBits.IsExplicitlyDefaulted = false; | 
|  | FunctionDeclBits.HasDefaultedFunctionInfo = false; | 
|  | FunctionDeclBits.HasImplicitReturnZero = false; | 
|  | FunctionDeclBits.IsLateTemplateParsed = false; | 
|  | FunctionDeclBits.ConstexprKind = ConstexprKind; | 
|  | FunctionDeclBits.InstantiationIsPending = false; | 
|  | FunctionDeclBits.UsesSEHTry = false; | 
|  | FunctionDeclBits.UsesFPIntrin = false; | 
|  | FunctionDeclBits.HasSkippedBody = false; | 
|  | FunctionDeclBits.WillHaveBody = false; | 
|  | FunctionDeclBits.IsMultiVersion = false; | 
|  | FunctionDeclBits.IsCopyDeductionCandidate = false; | 
|  | FunctionDeclBits.HasODRHash = false; | 
|  | if (TrailingRequiresClause) | 
|  | setTrailingRequiresClause(TrailingRequiresClause); | 
|  | } | 
|  |  | 
|  | void FunctionDecl::getNameForDiagnostic( | 
|  | raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { | 
|  | NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); | 
|  | const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); | 
|  | if (TemplateArgs) | 
|  | printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isVariadic() const { | 
|  | if (const auto *FT = getType()->getAs<FunctionProtoType>()) | 
|  | return FT->isVariadic(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | FunctionDecl::DefaultedFunctionInfo * | 
|  | FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, | 
|  | ArrayRef<DeclAccessPair> Lookups) { | 
|  | DefaultedFunctionInfo *Info = new (Context.Allocate( | 
|  | totalSizeToAlloc<DeclAccessPair>(Lookups.size()), | 
|  | std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) | 
|  | DefaultedFunctionInfo; | 
|  | Info->NumLookups = Lookups.size(); | 
|  | std::uninitialized_copy(Lookups.begin(), Lookups.end(), | 
|  | Info->getTrailingObjects<DeclAccessPair>()); | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { | 
|  | assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); | 
|  | assert(!Body && "can't replace function body with defaulted function info"); | 
|  |  | 
|  | FunctionDeclBits.HasDefaultedFunctionInfo = true; | 
|  | DefaultedInfo = Info; | 
|  | } | 
|  |  | 
|  | FunctionDecl::DefaultedFunctionInfo * | 
|  | FunctionDecl::getDefaultedFunctionInfo() const { | 
|  | return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { | 
|  | for (auto I : redecls()) { | 
|  | if (I->doesThisDeclarationHaveABody()) { | 
|  | Definition = I; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::hasTrivialBody() const { | 
|  | Stmt *S = getBody(); | 
|  | if (!S) { | 
|  | // Since we don't have a body for this function, we don't know if it's | 
|  | // trivial or not. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { | 
|  | for (auto I : redecls()) { | 
|  | if (I->isThisDeclarationADefinition()) { | 
|  | Definition = I; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { | 
|  | if (!hasBody(Definition)) | 
|  | return nullptr; | 
|  |  | 
|  | assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && | 
|  | "definition should not have a body"); | 
|  | if (Definition->Body) | 
|  | return Definition->Body.get(getASTContext().getExternalSource()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void FunctionDecl::setBody(Stmt *B) { | 
|  | FunctionDeclBits.HasDefaultedFunctionInfo = false; | 
|  | Body = LazyDeclStmtPtr(B); | 
|  | if (B) | 
|  | EndRangeLoc = B->getEndLoc(); | 
|  | } | 
|  |  | 
|  | void FunctionDecl::setPure(bool P) { | 
|  | FunctionDeclBits.IsPure = P; | 
|  | if (P) | 
|  | if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) | 
|  | Parent->markedVirtualFunctionPure(); | 
|  | } | 
|  |  | 
|  | template<std::size_t Len> | 
|  | static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { | 
|  | IdentifierInfo *II = ND->getIdentifier(); | 
|  | return II && II->isStr(Str); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isMain() const { | 
|  | const TranslationUnitDecl *tunit = | 
|  | dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); | 
|  | return tunit && | 
|  | !tunit->getASTContext().getLangOpts().Freestanding && | 
|  | isNamed(this, "main"); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isMSVCRTEntryPoint() const { | 
|  | const TranslationUnitDecl *TUnit = | 
|  | dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); | 
|  | if (!TUnit) | 
|  | return false; | 
|  |  | 
|  | // Even though we aren't really targeting MSVCRT if we are freestanding, | 
|  | // semantic analysis for these functions remains the same. | 
|  |  | 
|  | // MSVCRT entry points only exist on MSVCRT targets. | 
|  | if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) | 
|  | return false; | 
|  |  | 
|  | // Nameless functions like constructors cannot be entry points. | 
|  | if (!getIdentifier()) | 
|  | return false; | 
|  |  | 
|  | return llvm::StringSwitch<bool>(getName()) | 
|  | .Cases("main",     // an ANSI console app | 
|  | "wmain",    // a Unicode console App | 
|  | "WinMain",  // an ANSI GUI app | 
|  | "wWinMain", // a Unicode GUI app | 
|  | "DllMain",  // a DLL | 
|  | true) | 
|  | .Default(false); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isReservedGlobalPlacementOperator() const { | 
|  | assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); | 
|  | assert(getDeclName().getCXXOverloadedOperator() == OO_New || | 
|  | getDeclName().getCXXOverloadedOperator() == OO_Delete || | 
|  | getDeclName().getCXXOverloadedOperator() == OO_Array_New || | 
|  | getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); | 
|  |  | 
|  | if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) | 
|  | return false; | 
|  |  | 
|  | const auto *proto = getType()->castAs<FunctionProtoType>(); | 
|  | if (proto->getNumParams() != 2 || proto->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | ASTContext &Context = | 
|  | cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) | 
|  | ->getASTContext(); | 
|  |  | 
|  | // The result type and first argument type are constant across all | 
|  | // these operators.  The second argument must be exactly void*. | 
|  | return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isReplaceableGlobalAllocationFunction( | 
|  | Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { | 
|  | if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) | 
|  | return false; | 
|  | if (getDeclName().getCXXOverloadedOperator() != OO_New && | 
|  | getDeclName().getCXXOverloadedOperator() != OO_Delete && | 
|  | getDeclName().getCXXOverloadedOperator() != OO_Array_New && | 
|  | getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) | 
|  | return false; | 
|  |  | 
|  | if (isa<CXXRecordDecl>(getDeclContext())) | 
|  | return false; | 
|  |  | 
|  | // This can only fail for an invalid 'operator new' declaration. | 
|  | if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) | 
|  | return false; | 
|  |  | 
|  | const auto *FPT = getType()->castAs<FunctionProtoType>(); | 
|  | if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | // If this is a single-parameter function, it must be a replaceable global | 
|  | // allocation or deallocation function. | 
|  | if (FPT->getNumParams() == 1) | 
|  | return true; | 
|  |  | 
|  | unsigned Params = 1; | 
|  | QualType Ty = FPT->getParamType(Params); | 
|  | ASTContext &Ctx = getASTContext(); | 
|  |  | 
|  | auto Consume = [&] { | 
|  | ++Params; | 
|  | Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); | 
|  | }; | 
|  |  | 
|  | // In C++14, the next parameter can be a 'std::size_t' for sized delete. | 
|  | bool IsSizedDelete = false; | 
|  | if (Ctx.getLangOpts().SizedDeallocation && | 
|  | (getDeclName().getCXXOverloadedOperator() == OO_Delete || | 
|  | getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && | 
|  | Ctx.hasSameType(Ty, Ctx.getSizeType())) { | 
|  | IsSizedDelete = true; | 
|  | Consume(); | 
|  | } | 
|  |  | 
|  | // In C++17, the next parameter can be a 'std::align_val_t' for aligned | 
|  | // new/delete. | 
|  | if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { | 
|  | Consume(); | 
|  | if (AlignmentParam) | 
|  | *AlignmentParam = Params; | 
|  | } | 
|  |  | 
|  | // Finally, if this is not a sized delete, the final parameter can | 
|  | // be a 'const std::nothrow_t&'. | 
|  | if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { | 
|  | Ty = Ty->getPointeeType(); | 
|  | if (Ty.getCVRQualifiers() != Qualifiers::Const) | 
|  | return false; | 
|  | if (Ty->isNothrowT()) { | 
|  | if (IsNothrow) | 
|  | *IsNothrow = true; | 
|  | Consume(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Params == FPT->getNumParams(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isInlineBuiltinDeclaration() const { | 
|  | if (!getBuiltinID()) | 
|  | return false; | 
|  |  | 
|  | const FunctionDecl *Definition; | 
|  | return hasBody(Definition) && Definition->isInlineSpecified(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isDestroyingOperatorDelete() const { | 
|  | // C++ P0722: | 
|  | //   Within a class C, a single object deallocation function with signature | 
|  | //     (T, std::destroying_delete_t, <more params>) | 
|  | //   is a destroying operator delete. | 
|  | if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || | 
|  | getNumParams() < 2) | 
|  | return false; | 
|  |  | 
|  | auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); | 
|  | return RD && RD->isInStdNamespace() && RD->getIdentifier() && | 
|  | RD->getIdentifier()->isStr("destroying_delete_t"); | 
|  | } | 
|  |  | 
|  | LanguageLinkage FunctionDecl::getLanguageLinkage() const { | 
|  | return getDeclLanguageLinkage(*this); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isExternC() const { | 
|  | return isDeclExternC(*this); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isInExternCContext() const { | 
|  | if (hasAttr<OpenCLKernelAttr>()) | 
|  | return true; | 
|  | return getLexicalDeclContext()->isExternCContext(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isInExternCXXContext() const { | 
|  | return getLexicalDeclContext()->isExternCXXContext(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isGlobal() const { | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) | 
|  | return Method->isStatic(); | 
|  |  | 
|  | if (getCanonicalDecl()->getStorageClass() == SC_Static) | 
|  | return false; | 
|  |  | 
|  | for (const DeclContext *DC = getDeclContext(); | 
|  | DC->isNamespace(); | 
|  | DC = DC->getParent()) { | 
|  | if (const auto *Namespace = cast<NamespaceDecl>(DC)) { | 
|  | if (!Namespace->getDeclName()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isNoReturn() const { | 
|  | if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || | 
|  | hasAttr<C11NoReturnAttr>()) | 
|  | return true; | 
|  |  | 
|  | if (auto *FnTy = getType()->getAs<FunctionType>()) | 
|  | return FnTy->getNoReturnAttr(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | MultiVersionKind FunctionDecl::getMultiVersionKind() const { | 
|  | if (hasAttr<TargetAttr>()) | 
|  | return MultiVersionKind::Target; | 
|  | if (hasAttr<CPUDispatchAttr>()) | 
|  | return MultiVersionKind::CPUDispatch; | 
|  | if (hasAttr<CPUSpecificAttr>()) | 
|  | return MultiVersionKind::CPUSpecific; | 
|  | return MultiVersionKind::None; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isCPUDispatchMultiVersion() const { | 
|  | return isMultiVersion() && hasAttr<CPUDispatchAttr>(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isCPUSpecificMultiVersion() const { | 
|  | return isMultiVersion() && hasAttr<CPUSpecificAttr>(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isTargetMultiVersion() const { | 
|  | return isMultiVersion() && hasAttr<TargetAttr>(); | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { | 
|  | redeclarable_base::setPreviousDecl(PrevDecl); | 
|  |  | 
|  | if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { | 
|  | FunctionTemplateDecl *PrevFunTmpl | 
|  | = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; | 
|  | assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); | 
|  | FunTmpl->setPreviousDecl(PrevFunTmpl); | 
|  | } | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isInlined()) | 
|  | setImplicitlyInline(true); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } | 
|  |  | 
|  | /// Returns a value indicating whether this function corresponds to a builtin | 
|  | /// function. | 
|  | /// | 
|  | /// The function corresponds to a built-in function if it is declared at | 
|  | /// translation scope or within an extern "C" block and its name matches with | 
|  | /// the name of a builtin. The returned value will be 0 for functions that do | 
|  | /// not correspond to a builtin, a value of type \c Builtin::ID if in the | 
|  | /// target-independent range \c [1,Builtin::First), or a target-specific builtin | 
|  | /// value. | 
|  | /// | 
|  | /// \param ConsiderWrapperFunctions If true, we should consider wrapper | 
|  | /// functions as their wrapped builtins. This shouldn't be done in general, but | 
|  | /// it's useful in Sema to diagnose calls to wrappers based on their semantics. | 
|  | unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { | 
|  | unsigned BuiltinID; | 
|  |  | 
|  | if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { | 
|  | BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); | 
|  | } else { | 
|  | if (!getIdentifier()) | 
|  | return 0; | 
|  |  | 
|  | BuiltinID = getIdentifier()->getBuiltinID(); | 
|  | } | 
|  |  | 
|  | if (!BuiltinID) | 
|  | return 0; | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | if (Context.getLangOpts().CPlusPlus) { | 
|  | const auto *LinkageDecl = | 
|  | dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); | 
|  | // In C++, the first declaration of a builtin is always inside an implicit | 
|  | // extern "C". | 
|  | // FIXME: A recognised library function may not be directly in an extern "C" | 
|  | // declaration, for instance "extern "C" { namespace std { decl } }". | 
|  | if (!LinkageDecl) { | 
|  | if (BuiltinID == Builtin::BI__GetExceptionInfo && | 
|  | Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | return Builtin::BI__GetExceptionInfo; | 
|  | return 0; | 
|  | } | 
|  | if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the function is marked "overloadable", it has a different mangled name | 
|  | // and is not the C library function. | 
|  | if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && | 
|  | !hasAttr<ArmBuiltinAliasAttr>()) | 
|  | return 0; | 
|  |  | 
|  | if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | return BuiltinID; | 
|  |  | 
|  | // This function has the name of a known C library | 
|  | // function. Determine whether it actually refers to the C library | 
|  | // function or whether it just has the same name. | 
|  |  | 
|  | // If this is a static function, it's not a builtin. | 
|  | if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) | 
|  | return 0; | 
|  |  | 
|  | // OpenCL v1.2 s6.9.f - The library functions defined in | 
|  | // the C99 standard headers are not available. | 
|  | if (Context.getLangOpts().OpenCL && | 
|  | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | return 0; | 
|  |  | 
|  | // CUDA does not have device-side standard library. printf and malloc are the | 
|  | // only special cases that are supported by device-side runtime. | 
|  | if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && | 
|  | !hasAttr<CUDAHostAttr>() && | 
|  | !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) | 
|  | return 0; | 
|  |  | 
|  | return BuiltinID; | 
|  | } | 
|  |  | 
|  | /// getNumParams - Return the number of parameters this function must have | 
|  | /// based on its FunctionType.  This is the length of the ParamInfo array | 
|  | /// after it has been created. | 
|  | unsigned FunctionDecl::getNumParams() const { | 
|  | const auto *FPT = getType()->getAs<FunctionProtoType>(); | 
|  | return FPT ? FPT->getNumParams() : 0; | 
|  | } | 
|  |  | 
|  | void FunctionDecl::setParams(ASTContext &C, | 
|  | ArrayRef<ParmVarDecl *> NewParamInfo) { | 
|  | assert(!ParamInfo && "Already has param info!"); | 
|  | assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); | 
|  |  | 
|  | // Zero params -> null pointer. | 
|  | if (!NewParamInfo.empty()) { | 
|  | ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; | 
|  | std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getMinRequiredArguments - Returns the minimum number of arguments | 
|  | /// needed to call this function. This may be fewer than the number of | 
|  | /// function parameters, if some of the parameters have default | 
|  | /// arguments (in C++) or are parameter packs (C++11). | 
|  | unsigned FunctionDecl::getMinRequiredArguments() const { | 
|  | if (!getASTContext().getLangOpts().CPlusPlus) | 
|  | return getNumParams(); | 
|  |  | 
|  | unsigned NumRequiredArgs = 0; | 
|  | for (auto *Param : parameters()) | 
|  | if (!Param->isParameterPack() && !Param->hasDefaultArg()) | 
|  | ++NumRequiredArgs; | 
|  | return NumRequiredArgs; | 
|  | } | 
|  |  | 
|  | /// The combination of the extern and inline keywords under MSVC forces | 
|  | /// the function to be required. | 
|  | /// | 
|  | /// Note: This function assumes that we will only get called when isInlined() | 
|  | /// would return true for this FunctionDecl. | 
|  | bool FunctionDecl::isMSExternInline() const { | 
|  | assert(isInlined() && "expected to get called on an inlined function!"); | 
|  |  | 
|  | const ASTContext &Context = getASTContext(); | 
|  | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | !hasAttr<DLLExportAttr>()) | 
|  | return false; | 
|  |  | 
|  | for (const FunctionDecl *FD = getMostRecentDecl(); FD; | 
|  | FD = FD->getPreviousDecl()) | 
|  | if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { | 
|  | if (Redecl->getStorageClass() != SC_Extern) | 
|  | return false; | 
|  |  | 
|  | for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; | 
|  | FD = FD->getPreviousDecl()) | 
|  | if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { | 
|  | // Only consider file-scope declarations in this test. | 
|  | if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) | 
|  | return false; | 
|  |  | 
|  | // Only consider explicit declarations; the presence of a builtin for a | 
|  | // libcall shouldn't affect whether a definition is externally visible. | 
|  | if (Redecl->isImplicit()) | 
|  | return false; | 
|  |  | 
|  | if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) | 
|  | return true; // Not an inline definition | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// For a function declaration in C or C++, determine whether this | 
|  | /// declaration causes the definition to be externally visible. | 
|  | /// | 
|  | /// For instance, this determines if adding the current declaration to the set | 
|  | /// of redeclarations of the given functions causes | 
|  | /// isInlineDefinitionExternallyVisible to change from false to true. | 
|  | bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { | 
|  | assert(!doesThisDeclarationHaveABody() && | 
|  | "Must have a declaration without a body."); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  |  | 
|  | if (Context.getLangOpts().MSVCCompat) { | 
|  | const FunctionDecl *Definition; | 
|  | if (hasBody(Definition) && Definition->isInlined() && | 
|  | redeclForcesDefMSVC(this)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Context.getLangOpts().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { | 
|  | // With GNU inlining, a declaration with 'inline' but not 'extern', forces | 
|  | // an externally visible definition. | 
|  | // | 
|  | // FIXME: What happens if gnu_inline gets added on after the first | 
|  | // declaration? | 
|  | if (!isInlineSpecified() || getStorageClass() == SC_Extern) | 
|  | return false; | 
|  |  | 
|  | const FunctionDecl *Prev = this; | 
|  | bool FoundBody = false; | 
|  | while ((Prev = Prev->getPreviousDecl())) { | 
|  | FoundBody |= Prev->doesThisDeclarationHaveABody(); | 
|  |  | 
|  | if (Prev->doesThisDeclarationHaveABody()) { | 
|  | // If it's not the case that both 'inline' and 'extern' are | 
|  | // specified on the definition, then it is always externally visible. | 
|  | if (!Prev->isInlineSpecified() || | 
|  | Prev->getStorageClass() != SC_Extern) | 
|  | return false; | 
|  | } else if (Prev->isInlineSpecified() && | 
|  | Prev->getStorageClass() != SC_Extern) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return FoundBody; | 
|  | } | 
|  |  | 
|  | // C99 6.7.4p6: | 
|  | //   [...] If all of the file scope declarations for a function in a | 
|  | //   translation unit include the inline function specifier without extern, | 
|  | //   then the definition in that translation unit is an inline definition. | 
|  | if (isInlineSpecified() && getStorageClass() != SC_Extern) | 
|  | return false; | 
|  | const FunctionDecl *Prev = this; | 
|  | bool FoundBody = false; | 
|  | while ((Prev = Prev->getPreviousDecl())) { | 
|  | FoundBody |= Prev->doesThisDeclarationHaveABody(); | 
|  | if (RedeclForcesDefC99(Prev)) | 
|  | return false; | 
|  | } | 
|  | return FoundBody; | 
|  | } | 
|  |  | 
|  | FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { | 
|  | const TypeSourceInfo *TSI = getTypeSourceInfo(); | 
|  | return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() | 
|  | : FunctionTypeLoc(); | 
|  | } | 
|  |  | 
|  | SourceRange FunctionDecl::getReturnTypeSourceRange() const { | 
|  | FunctionTypeLoc FTL = getFunctionTypeLoc(); | 
|  | if (!FTL) | 
|  | return SourceRange(); | 
|  |  | 
|  | // Skip self-referential return types. | 
|  | const SourceManager &SM = getASTContext().getSourceManager(); | 
|  | SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); | 
|  | SourceLocation Boundary = getNameInfo().getBeginLoc(); | 
|  | if (RTRange.isInvalid() || Boundary.isInvalid() || | 
|  | !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) | 
|  | return SourceRange(); | 
|  |  | 
|  | return RTRange; | 
|  | } | 
|  |  | 
|  | SourceRange FunctionDecl::getParametersSourceRange() const { | 
|  | unsigned NP = getNumParams(); | 
|  | SourceLocation EllipsisLoc = getEllipsisLoc(); | 
|  |  | 
|  | if (NP == 0 && EllipsisLoc.isInvalid()) | 
|  | return SourceRange(); | 
|  |  | 
|  | SourceLocation Begin = | 
|  | NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; | 
|  | SourceLocation End = EllipsisLoc.isValid() | 
|  | ? EllipsisLoc | 
|  | : ParamInfo[NP - 1]->getSourceRange().getEnd(); | 
|  |  | 
|  | return SourceRange(Begin, End); | 
|  | } | 
|  |  | 
|  | SourceRange FunctionDecl::getExceptionSpecSourceRange() const { | 
|  | FunctionTypeLoc FTL = getFunctionTypeLoc(); | 
|  | return FTL ? FTL.getExceptionSpecRange() : SourceRange(); | 
|  | } | 
|  |  | 
|  | /// For an inline function definition in C, or for a gnu_inline function | 
|  | /// in C++, determine whether the definition will be externally visible. | 
|  | /// | 
|  | /// Inline function definitions are always available for inlining optimizations. | 
|  | /// However, depending on the language dialect, declaration specifiers, and | 
|  | /// attributes, the definition of an inline function may or may not be | 
|  | /// "externally" visible to other translation units in the program. | 
|  | /// | 
|  | /// In C99, inline definitions are not externally visible by default. However, | 
|  | /// if even one of the global-scope declarations is marked "extern inline", the | 
|  | /// inline definition becomes externally visible (C99 6.7.4p6). | 
|  | /// | 
|  | /// In GNU89 mode, or if the gnu_inline attribute is attached to the function | 
|  | /// definition, we use the GNU semantics for inline, which are nearly the | 
|  | /// opposite of C99 semantics. In particular, "inline" by itself will create | 
|  | /// an externally visible symbol, but "extern inline" will not create an | 
|  | /// externally visible symbol. | 
|  | bool FunctionDecl::isInlineDefinitionExternallyVisible() const { | 
|  | assert((doesThisDeclarationHaveABody() || willHaveBody() || | 
|  | hasAttr<AliasAttr>()) && | 
|  | "Must be a function definition"); | 
|  | assert(isInlined() && "Function must be inline"); | 
|  | ASTContext &Context = getASTContext(); | 
|  |  | 
|  | if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { | 
|  | // Note: If you change the logic here, please change | 
|  | // doesDeclarationForceExternallyVisibleDefinition as well. | 
|  | // | 
|  | // If it's not the case that both 'inline' and 'extern' are | 
|  | // specified on the definition, then this inline definition is | 
|  | // externally visible. | 
|  | if (Context.getLangOpts().CPlusPlus) | 
|  | return false; | 
|  | if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) | 
|  | return true; | 
|  |  | 
|  | // If any declaration is 'inline' but not 'extern', then this definition | 
|  | // is externally visible. | 
|  | for (auto Redecl : redecls()) { | 
|  | if (Redecl->isInlineSpecified() && | 
|  | Redecl->getStorageClass() != SC_Extern) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The rest of this function is C-only. | 
|  | assert(!Context.getLangOpts().CPlusPlus && | 
|  | "should not use C inline rules in C++"); | 
|  |  | 
|  | // C99 6.7.4p6: | 
|  | //   [...] If all of the file scope declarations for a function in a | 
|  | //   translation unit include the inline function specifier without extern, | 
|  | //   then the definition in that translation unit is an inline definition. | 
|  | for (auto Redecl : redecls()) { | 
|  | if (RedeclForcesDefC99(Redecl)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C99 6.7.4p6: | 
|  | //   An inline definition does not provide an external definition for the | 
|  | //   function, and does not forbid an external definition in another | 
|  | //   translation unit. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getOverloadedOperator - Which C++ overloaded operator this | 
|  | /// function represents, if any. | 
|  | OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { | 
|  | if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) | 
|  | return getDeclName().getCXXOverloadedOperator(); | 
|  | else | 
|  | return OO_None; | 
|  | } | 
|  |  | 
|  | /// getLiteralIdentifier - The literal suffix identifier this function | 
|  | /// represents, if any. | 
|  | const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { | 
|  | if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) | 
|  | return getDeclName().getCXXLiteralIdentifier(); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { | 
|  | if (TemplateOrSpecialization.isNull()) | 
|  | return TK_NonTemplate; | 
|  | if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) | 
|  | return TK_FunctionTemplate; | 
|  | if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) | 
|  | return TK_MemberSpecialization; | 
|  | if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) | 
|  | return TK_FunctionTemplateSpecialization; | 
|  | if (TemplateOrSpecialization.is | 
|  | <DependentFunctionTemplateSpecializationInfo*>()) | 
|  | return TK_DependentFunctionTemplateSpecialization; | 
|  |  | 
|  | llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { | 
|  | if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) | 
|  | return cast<FunctionDecl>(Info->getInstantiatedFrom()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { | 
|  | if (auto *MSI = | 
|  | TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) | 
|  | return MSI; | 
|  | if (auto *FTSI = TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo *>()) | 
|  | return FTSI->getMemberSpecializationInfo(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, | 
|  | FunctionDecl *FD, | 
|  | TemplateSpecializationKind TSK) { | 
|  | assert(TemplateOrSpecialization.isNull() && | 
|  | "Member function is already a specialization"); | 
|  | MemberSpecializationInfo *Info | 
|  | = new (C) MemberSpecializationInfo(FD, TSK); | 
|  | TemplateOrSpecialization = Info; | 
|  | } | 
|  |  | 
|  | FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { | 
|  | return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); | 
|  | } | 
|  |  | 
|  | void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { | 
|  | assert(TemplateOrSpecialization.isNull() && | 
|  | "Member function is already a specialization"); | 
|  | TemplateOrSpecialization = Template; | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isImplicitlyInstantiable() const { | 
|  | // If the function is invalid, it can't be implicitly instantiated. | 
|  | if (isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | switch (getTemplateSpecializationKindForInstantiation()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | case TSK_ExplicitSpecialization: | 
|  | return false; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | return true; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | // Handled below. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Find the actual template from which we will instantiate. | 
|  | const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); | 
|  | bool HasPattern = false; | 
|  | if (PatternDecl) | 
|  | HasPattern = PatternDecl->hasBody(PatternDecl); | 
|  |  | 
|  | // C++0x [temp.explicit]p9: | 
|  | //   Except for inline functions, other explicit instantiation declarations | 
|  | //   have the effect of suppressing the implicit instantiation of the entity | 
|  | //   to which they refer. | 
|  | if (!HasPattern || !PatternDecl) | 
|  | return true; | 
|  |  | 
|  | return PatternDecl->isInlined(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isTemplateInstantiation() const { | 
|  | // FIXME: Remove this, it's not clear what it means. (Which template | 
|  | // specialization kind?) | 
|  | return clang::isTemplateInstantiation(getTemplateSpecializationKind()); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { | 
|  | // If this is a generic lambda call operator specialization, its | 
|  | // instantiation pattern is always its primary template's pattern | 
|  | // even if its primary template was instantiated from another | 
|  | // member template (which happens with nested generic lambdas). | 
|  | // Since a lambda's call operator's body is transformed eagerly, | 
|  | // we don't have to go hunting for a prototype definition template | 
|  | // (i.e. instantiated-from-member-template) to use as an instantiation | 
|  | // pattern. | 
|  |  | 
|  | if (isGenericLambdaCallOperatorSpecialization( | 
|  | dyn_cast<CXXMethodDecl>(this))) { | 
|  | assert(getPrimaryTemplate() && "not a generic lambda call operator?"); | 
|  | return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); | 
|  | } | 
|  |  | 
|  | if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) { | 
|  | if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) | 
|  | return nullptr; | 
|  | return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); | 
|  | } | 
|  |  | 
|  | if (!clang::isTemplateInstantiation(getTemplateSpecializationKind())) | 
|  | return nullptr; | 
|  |  | 
|  | if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { | 
|  | // If we hit a point where the user provided a specialization of this | 
|  | // template, we're done looking. | 
|  | while (!Primary->isMemberSpecialization()) { | 
|  | auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); | 
|  | if (!NewPrimary) | 
|  | break; | 
|  | Primary = NewPrimary; | 
|  | } | 
|  |  | 
|  | return getDefinitionOrSelf(Primary->getTemplatedDecl()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { | 
|  | if (FunctionTemplateSpecializationInfo *Info | 
|  | = TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
|  | return Info->getTemplate(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FunctionTemplateSpecializationInfo * | 
|  | FunctionDecl::getTemplateSpecializationInfo() const { | 
|  | return TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | const TemplateArgumentList * | 
|  | FunctionDecl::getTemplateSpecializationArgs() const { | 
|  | if (FunctionTemplateSpecializationInfo *Info | 
|  | = TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
|  | return Info->TemplateArguments; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const ASTTemplateArgumentListInfo * | 
|  | FunctionDecl::getTemplateSpecializationArgsAsWritten() const { | 
|  | if (FunctionTemplateSpecializationInfo *Info | 
|  | = TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
|  | return Info->TemplateArgumentsAsWritten; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, | 
|  | FunctionTemplateDecl *Template, | 
|  | const TemplateArgumentList *TemplateArgs, | 
|  | void *InsertPos, | 
|  | TemplateSpecializationKind TSK, | 
|  | const TemplateArgumentListInfo *TemplateArgsAsWritten, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | assert((TemplateOrSpecialization.isNull() || | 
|  | TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && | 
|  | "Member function is already a specialization"); | 
|  | assert(TSK != TSK_Undeclared && | 
|  | "Must specify the type of function template specialization"); | 
|  | assert((TemplateOrSpecialization.isNull() || | 
|  | TSK == TSK_ExplicitSpecialization) && | 
|  | "Member specialization must be an explicit specialization"); | 
|  | FunctionTemplateSpecializationInfo *Info = | 
|  | FunctionTemplateSpecializationInfo::Create( | 
|  | C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, | 
|  | PointOfInstantiation, | 
|  | TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); | 
|  | TemplateOrSpecialization = Info; | 
|  | Template->addSpecialization(Info, InsertPos); | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, | 
|  | const UnresolvedSetImpl &Templates, | 
|  | const TemplateArgumentListInfo &TemplateArgs) { | 
|  | assert(TemplateOrSpecialization.isNull()); | 
|  | DependentFunctionTemplateSpecializationInfo *Info = | 
|  | DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, | 
|  | TemplateArgs); | 
|  | TemplateOrSpecialization = Info; | 
|  | } | 
|  |  | 
|  | DependentFunctionTemplateSpecializationInfo * | 
|  | FunctionDecl::getDependentSpecializationInfo() const { | 
|  | return TemplateOrSpecialization | 
|  | .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | DependentFunctionTemplateSpecializationInfo * | 
|  | DependentFunctionTemplateSpecializationInfo::Create( | 
|  | ASTContext &Context, const UnresolvedSetImpl &Ts, | 
|  | const TemplateArgumentListInfo &TArgs) { | 
|  | void *Buffer = Context.Allocate( | 
|  | totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( | 
|  | TArgs.size(), Ts.size())); | 
|  | return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); | 
|  | } | 
|  |  | 
|  | DependentFunctionTemplateSpecializationInfo:: | 
|  | DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, | 
|  | const TemplateArgumentListInfo &TArgs) | 
|  | : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { | 
|  | NumTemplates = Ts.size(); | 
|  | NumArgs = TArgs.size(); | 
|  |  | 
|  | FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); | 
|  | for (unsigned I = 0, E = Ts.size(); I != E; ++I) | 
|  | TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); | 
|  |  | 
|  | TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); | 
|  | for (unsigned I = 0, E = TArgs.size(); I != E; ++I) | 
|  | new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { | 
|  | // For a function template specialization, query the specialization | 
|  | // information object. | 
|  | if (FunctionTemplateSpecializationInfo *FTSInfo = | 
|  | TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo *>()) | 
|  | return FTSInfo->getTemplateSpecializationKind(); | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = | 
|  | TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) | 
|  | return MSInfo->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind | 
|  | FunctionDecl::getTemplateSpecializationKindForInstantiation() const { | 
|  | // This is the same as getTemplateSpecializationKind(), except that for a | 
|  | // function that is both a function template specialization and a member | 
|  | // specialization, we prefer the member specialization information. Eg: | 
|  | // | 
|  | // template<typename T> struct A { | 
|  | //   template<typename U> void f() {} | 
|  | //   template<> void f<int>() {} | 
|  | // }; | 
|  | // | 
|  | // For A<int>::f<int>(): | 
|  | // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization | 
|  | // * getTemplateSpecializationKindForInstantiation() will return | 
|  | //       TSK_ImplicitInstantiation | 
|  | // | 
|  | // This reflects the facts that A<int>::f<int> is an explicit specialization | 
|  | // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated | 
|  | // from A::f<int> if a definition is needed. | 
|  | if (FunctionTemplateSpecializationInfo *FTSInfo = | 
|  | TemplateOrSpecialization | 
|  | .dyn_cast<FunctionTemplateSpecializationInfo *>()) { | 
|  | if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) | 
|  | return MSInfo->getTemplateSpecializationKind(); | 
|  | return FTSInfo->getTemplateSpecializationKind(); | 
|  | } | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = | 
|  | TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) | 
|  | return MSInfo->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | void | 
|  | FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | if (FunctionTemplateSpecializationInfo *FTSInfo | 
|  | = TemplateOrSpecialization.dyn_cast< | 
|  | FunctionTemplateSpecializationInfo*>()) { | 
|  | FTSInfo->setTemplateSpecializationKind(TSK); | 
|  | if (TSK != TSK_ExplicitSpecialization && | 
|  | PointOfInstantiation.isValid() && | 
|  | FTSInfo->getPointOfInstantiation().isInvalid()) { | 
|  | FTSInfo->setPointOfInstantiation(PointOfInstantiation); | 
|  | if (ASTMutationListener *L = getASTContext().getASTMutationListener()) | 
|  | L->InstantiationRequested(this); | 
|  | } | 
|  | } else if (MemberSpecializationInfo *MSInfo | 
|  | = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { | 
|  | MSInfo->setTemplateSpecializationKind(TSK); | 
|  | if (TSK != TSK_ExplicitSpecialization && | 
|  | PointOfInstantiation.isValid() && | 
|  | MSInfo->getPointOfInstantiation().isInvalid()) { | 
|  | MSInfo->setPointOfInstantiation(PointOfInstantiation); | 
|  | if (ASTMutationListener *L = getASTContext().getASTMutationListener()) | 
|  | L->InstantiationRequested(this); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Function cannot have a template specialization kind"); | 
|  | } | 
|  |  | 
|  | SourceLocation FunctionDecl::getPointOfInstantiation() const { | 
|  | if (FunctionTemplateSpecializationInfo *FTSInfo | 
|  | = TemplateOrSpecialization.dyn_cast< | 
|  | FunctionTemplateSpecializationInfo*>()) | 
|  | return FTSInfo->getPointOfInstantiation(); | 
|  | else if (MemberSpecializationInfo *MSInfo | 
|  | = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) | 
|  | return MSInfo->getPointOfInstantiation(); | 
|  |  | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | bool FunctionDecl::isOutOfLine() const { | 
|  | if (Decl::isOutOfLine()) | 
|  | return true; | 
|  |  | 
|  | // If this function was instantiated from a member function of a | 
|  | // class template, check whether that member function was defined out-of-line. | 
|  | if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { | 
|  | const FunctionDecl *Definition; | 
|  | if (FD->hasBody(Definition)) | 
|  | return Definition->isOutOfLine(); | 
|  | } | 
|  |  | 
|  | // If this function was instantiated from a function template, | 
|  | // check whether that function template was defined out-of-line. | 
|  | if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { | 
|  | const FunctionDecl *Definition; | 
|  | if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) | 
|  | return Definition->isOutOfLine(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SourceRange FunctionDecl::getSourceRange() const { | 
|  | return SourceRange(getOuterLocStart(), EndRangeLoc); | 
|  | } | 
|  |  | 
|  | unsigned FunctionDecl::getMemoryFunctionKind() const { | 
|  | IdentifierInfo *FnInfo = getIdentifier(); | 
|  |  | 
|  | if (!FnInfo) | 
|  | return 0; | 
|  |  | 
|  | // Builtin handling. | 
|  | switch (getBuiltinID()) { | 
|  | case Builtin::BI__builtin_memset: | 
|  | case Builtin::BI__builtin___memset_chk: | 
|  | case Builtin::BImemset: | 
|  | return Builtin::BImemset; | 
|  |  | 
|  | case Builtin::BI__builtin_memcpy: | 
|  | case Builtin::BI__builtin___memcpy_chk: | 
|  | case Builtin::BImemcpy: | 
|  | return Builtin::BImemcpy; | 
|  |  | 
|  | case Builtin::BI__builtin_mempcpy: | 
|  | case Builtin::BI__builtin___mempcpy_chk: | 
|  | case Builtin::BImempcpy: | 
|  | return Builtin::BImempcpy; | 
|  |  | 
|  | case Builtin::BI__builtin_memmove: | 
|  | case Builtin::BI__builtin___memmove_chk: | 
|  | case Builtin::BImemmove: | 
|  | return Builtin::BImemmove; | 
|  |  | 
|  | case Builtin::BIstrlcpy: | 
|  | case Builtin::BI__builtin___strlcpy_chk: | 
|  | return Builtin::BIstrlcpy; | 
|  |  | 
|  | case Builtin::BIstrlcat: | 
|  | case Builtin::BI__builtin___strlcat_chk: | 
|  | return Builtin::BIstrlcat; | 
|  |  | 
|  | case Builtin::BI__builtin_memcmp: | 
|  | case Builtin::BImemcmp: | 
|  | return Builtin::BImemcmp; | 
|  |  | 
|  | case Builtin::BI__builtin_bcmp: | 
|  | case Builtin::BIbcmp: | 
|  | return Builtin::BIbcmp; | 
|  |  | 
|  | case Builtin::BI__builtin_strncpy: | 
|  | case Builtin::BI__builtin___strncpy_chk: | 
|  | case Builtin::BIstrncpy: | 
|  | return Builtin::BIstrncpy; | 
|  |  | 
|  | case Builtin::BI__builtin_strncmp: | 
|  | case Builtin::BIstrncmp: | 
|  | return Builtin::BIstrncmp; | 
|  |  | 
|  | case Builtin::BI__builtin_strncasecmp: | 
|  | case Builtin::BIstrncasecmp: | 
|  | return Builtin::BIstrncasecmp; | 
|  |  | 
|  | case Builtin::BI__builtin_strncat: | 
|  | case Builtin::BI__builtin___strncat_chk: | 
|  | case Builtin::BIstrncat: | 
|  | return Builtin::BIstrncat; | 
|  |  | 
|  | case Builtin::BI__builtin_strndup: | 
|  | case Builtin::BIstrndup: | 
|  | return Builtin::BIstrndup; | 
|  |  | 
|  | case Builtin::BI__builtin_strlen: | 
|  | case Builtin::BIstrlen: | 
|  | return Builtin::BIstrlen; | 
|  |  | 
|  | case Builtin::BI__builtin_bzero: | 
|  | case Builtin::BIbzero: | 
|  | return Builtin::BIbzero; | 
|  |  | 
|  | default: | 
|  | if (isExternC()) { | 
|  | if (FnInfo->isStr("memset")) | 
|  | return Builtin::BImemset; | 
|  | else if (FnInfo->isStr("memcpy")) | 
|  | return Builtin::BImemcpy; | 
|  | else if (FnInfo->isStr("mempcpy")) | 
|  | return Builtin::BImempcpy; | 
|  | else if (FnInfo->isStr("memmove")) | 
|  | return Builtin::BImemmove; | 
|  | else if (FnInfo->isStr("memcmp")) | 
|  | return Builtin::BImemcmp; | 
|  | else if (FnInfo->isStr("bcmp")) | 
|  | return Builtin::BIbcmp; | 
|  | else if (FnInfo->isStr("strncpy")) | 
|  | return Builtin::BIstrncpy; | 
|  | else if (FnInfo->isStr("strncmp")) | 
|  | return Builtin::BIstrncmp; | 
|  | else if (FnInfo->isStr("strncasecmp")) | 
|  | return Builtin::BIstrncasecmp; | 
|  | else if (FnInfo->isStr("strncat")) | 
|  | return Builtin::BIstrncat; | 
|  | else if (FnInfo->isStr("strndup")) | 
|  | return Builtin::BIstrndup; | 
|  | else if (FnInfo->isStr("strlen")) | 
|  | return Builtin::BIstrlen; | 
|  | else if (FnInfo->isStr("bzero")) | 
|  | return Builtin::BIbzero; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FunctionDecl::getODRHash() const { | 
|  | assert(hasODRHash()); | 
|  | return ODRHash; | 
|  | } | 
|  |  | 
|  | unsigned FunctionDecl::getODRHash() { | 
|  | if (hasODRHash()) | 
|  | return ODRHash; | 
|  |  | 
|  | if (auto *FT = getInstantiatedFromMemberFunction()) { | 
|  | setHasODRHash(true); | 
|  | ODRHash = FT->getODRHash(); | 
|  | return ODRHash; | 
|  | } | 
|  |  | 
|  | class ODRHash Hash; | 
|  | Hash.AddFunctionDecl(this); | 
|  | setHasODRHash(true); | 
|  | ODRHash = Hash.CalculateHash(); | 
|  | return ODRHash; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FieldDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, QualType T, | 
|  | TypeSourceInfo *TInfo, Expr *BW, bool Mutable, | 
|  | InClassInitStyle InitStyle) { | 
|  | return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, | 
|  | BW, Mutable, InitStyle); | 
|  | } | 
|  |  | 
|  | FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), | 
|  | SourceLocation(), nullptr, QualType(), nullptr, | 
|  | nullptr, false, ICIS_NoInit); | 
|  | } | 
|  |  | 
|  | bool FieldDecl::isAnonymousStructOrUnion() const { | 
|  | if (!isImplicit() || getDeclName()) | 
|  | return false; | 
|  |  | 
|  | if (const auto *Record = getType()->getAs<RecordType>()) | 
|  | return Record->getDecl()->isAnonymousStructOrUnion(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { | 
|  | assert(isBitField() && "not a bitfield"); | 
|  | return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); | 
|  | } | 
|  |  | 
|  | bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { | 
|  | return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && | 
|  | getBitWidthValue(Ctx) == 0; | 
|  | } | 
|  |  | 
|  | bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { | 
|  | if (isZeroLengthBitField(Ctx)) | 
|  | return true; | 
|  |  | 
|  | // C++2a [intro.object]p7: | 
|  | //   An object has nonzero size if it | 
|  | //     -- is not a potentially-overlapping subobject, or | 
|  | if (!hasAttr<NoUniqueAddressAttr>()) | 
|  | return false; | 
|  |  | 
|  | //     -- is not of class type, or | 
|  | const auto *RT = getType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  | const RecordDecl *RD = RT->getDecl()->getDefinition(); | 
|  | if (!RD) { | 
|  | assert(isInvalidDecl() && "valid field has incomplete type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //     -- [has] virtual member functions or virtual base classes, or | 
|  | //     -- has subobjects of nonzero size or bit-fields of nonzero length | 
|  | const auto *CXXRD = cast<CXXRecordDecl>(RD); | 
|  | if (!CXXRD->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, [...] the circumstances under which the object has zero size | 
|  | // are implementation-defined. | 
|  | // FIXME: This might be Itanium ABI specific; we don't yet know what the MS | 
|  | // ABI will do. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned FieldDecl::getFieldIndex() const { | 
|  | const FieldDecl *Canonical = getCanonicalDecl(); | 
|  | if (Canonical != this) | 
|  | return Canonical->getFieldIndex(); | 
|  |  | 
|  | if (CachedFieldIndex) return CachedFieldIndex - 1; | 
|  |  | 
|  | unsigned Index = 0; | 
|  | const RecordDecl *RD = getParent()->getDefinition(); | 
|  | assert(RD && "requested index for field of struct with no definition"); | 
|  |  | 
|  | for (auto *Field : RD->fields()) { | 
|  | Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; | 
|  | ++Index; | 
|  | } | 
|  |  | 
|  | assert(CachedFieldIndex && "failed to find field in parent"); | 
|  | return CachedFieldIndex - 1; | 
|  | } | 
|  |  | 
|  | SourceRange FieldDecl::getSourceRange() const { | 
|  | const Expr *FinalExpr = getInClassInitializer(); | 
|  | if (!FinalExpr) | 
|  | FinalExpr = getBitWidth(); | 
|  | if (FinalExpr) | 
|  | return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); | 
|  | return DeclaratorDecl::getSourceRange(); | 
|  | } | 
|  |  | 
|  | void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { | 
|  | assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && | 
|  | "capturing type in non-lambda or captured record."); | 
|  | assert(InitStorage.getInt() == ISK_NoInit && | 
|  | InitStorage.getPointer() == nullptr && | 
|  | "bit width, initializer or captured type already set"); | 
|  | InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), | 
|  | ISK_CapturedVLAType); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TagDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, | 
|  | SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, | 
|  | SourceLocation StartL) | 
|  | : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), | 
|  | TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { | 
|  | assert((DK != Enum || TK == TTK_Enum) && | 
|  | "EnumDecl not matched with TTK_Enum"); | 
|  | setPreviousDecl(PrevDecl); | 
|  | setTagKind(TK); | 
|  | setCompleteDefinition(false); | 
|  | setBeingDefined(false); | 
|  | setEmbeddedInDeclarator(false); | 
|  | setFreeStanding(false); | 
|  | setCompleteDefinitionRequired(false); | 
|  | } | 
|  |  | 
|  | SourceLocation TagDecl::getOuterLocStart() const { | 
|  | return getTemplateOrInnerLocStart(this); | 
|  | } | 
|  |  | 
|  | SourceRange TagDecl::getSourceRange() const { | 
|  | SourceLocation RBraceLoc = BraceRange.getEnd(); | 
|  | SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); | 
|  | return SourceRange(getOuterLocStart(), E); | 
|  | } | 
|  |  | 
|  | TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } | 
|  |  | 
|  | void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { | 
|  | TypedefNameDeclOrQualifier = TDD; | 
|  | if (const Type *T = getTypeForDecl()) { | 
|  | (void)T; | 
|  | assert(T->isLinkageValid()); | 
|  | } | 
|  | assert(isLinkageValid()); | 
|  | } | 
|  |  | 
|  | void TagDecl::startDefinition() { | 
|  | setBeingDefined(true); | 
|  |  | 
|  | if (auto *D = dyn_cast<CXXRecordDecl>(this)) { | 
|  | struct CXXRecordDecl::DefinitionData *Data = | 
|  | new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); | 
|  | for (auto I : redecls()) | 
|  | cast<CXXRecordDecl>(I)->DefinitionData = Data; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TagDecl::completeDefinition() { | 
|  | assert((!isa<CXXRecordDecl>(this) || | 
|  | cast<CXXRecordDecl>(this)->hasDefinition()) && | 
|  | "definition completed but not started"); | 
|  |  | 
|  | setCompleteDefinition(true); | 
|  | setBeingDefined(false); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) | 
|  | L->CompletedTagDefinition(this); | 
|  | } | 
|  |  | 
|  | TagDecl *TagDecl::getDefinition() const { | 
|  | if (isCompleteDefinition()) | 
|  | return const_cast<TagDecl *>(this); | 
|  |  | 
|  | // If it's possible for us to have an out-of-date definition, check now. | 
|  | if (mayHaveOutOfDateDef()) { | 
|  | if (IdentifierInfo *II = getIdentifier()) { | 
|  | if (II->isOutOfDate()) { | 
|  | updateOutOfDate(*II); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) | 
|  | return CXXRD->getDefinition(); | 
|  |  | 
|  | for (auto R : redecls()) | 
|  | if (R->isCompleteDefinition()) | 
|  | return R; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { | 
|  | if (QualifierLoc) { | 
|  | // Make sure the extended qualifier info is allocated. | 
|  | if (!hasExtInfo()) | 
|  | TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; | 
|  | // Set qualifier info. | 
|  | getExtInfo()->QualifierLoc = QualifierLoc; | 
|  | } else { | 
|  | // Here Qualifier == 0, i.e., we are removing the qualifier (if any). | 
|  | if (hasExtInfo()) { | 
|  | if (getExtInfo()->NumTemplParamLists == 0) { | 
|  | getASTContext().Deallocate(getExtInfo()); | 
|  | TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; | 
|  | } | 
|  | else | 
|  | getExtInfo()->QualifierLoc = QualifierLoc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TagDecl::setTemplateParameterListsInfo( | 
|  | ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { | 
|  | assert(!TPLists.empty()); | 
|  | // Make sure the extended decl info is allocated. | 
|  | if (!hasExtInfo()) | 
|  | // Allocate external info struct. | 
|  | TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; | 
|  | // Set the template parameter lists info. | 
|  | getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // EnumDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, | 
|  | bool Scoped, bool ScopedUsingClassTag, bool Fixed) | 
|  | : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { | 
|  | assert(Scoped || !ScopedUsingClassTag); | 
|  | IntegerType = nullptr; | 
|  | setNumPositiveBits(0); | 
|  | setNumNegativeBits(0); | 
|  | setScoped(Scoped); | 
|  | setScopedUsingClassTag(ScopedUsingClassTag); | 
|  | setFixed(Fixed); | 
|  | setHasODRHash(false); | 
|  | ODRHash = 0; | 
|  | } | 
|  |  | 
|  | void EnumDecl::anchor() {} | 
|  |  | 
|  | EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, | 
|  | EnumDecl *PrevDecl, bool IsScoped, | 
|  | bool IsScopedUsingClassTag, bool IsFixed) { | 
|  | auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, | 
|  | IsScoped, IsScopedUsingClassTag, IsFixed); | 
|  | Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); | 
|  | C.getTypeDeclType(Enum, PrevDecl); | 
|  | return Enum; | 
|  | } | 
|  |  | 
|  | EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | EnumDecl *Enum = | 
|  | new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), | 
|  | nullptr, nullptr, false, false, false); | 
|  | Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); | 
|  | return Enum; | 
|  | } | 
|  |  | 
|  | SourceRange EnumDecl::getIntegerTypeRange() const { | 
|  | if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) | 
|  | return TI->getTypeLoc().getSourceRange(); | 
|  | return SourceRange(); | 
|  | } | 
|  |  | 
|  | void EnumDecl::completeDefinition(QualType NewType, | 
|  | QualType NewPromotionType, | 
|  | unsigned NumPositiveBits, | 
|  | unsigned NumNegativeBits) { | 
|  | assert(!isCompleteDefinition() && "Cannot redefine enums!"); | 
|  | if (!IntegerType) | 
|  | IntegerType = NewType.getTypePtr(); | 
|  | PromotionType = NewPromotionType; | 
|  | setNumPositiveBits(NumPositiveBits); | 
|  | setNumNegativeBits(NumNegativeBits); | 
|  | TagDecl::completeDefinition(); | 
|  | } | 
|  |  | 
|  | bool EnumDecl::isClosed() const { | 
|  | if (const auto *A = getAttr<EnumExtensibilityAttr>()) | 
|  | return A->getExtensibility() == EnumExtensibilityAttr::Closed; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EnumDecl::isClosedFlag() const { | 
|  | return isClosed() && hasAttr<FlagEnumAttr>(); | 
|  | } | 
|  |  | 
|  | bool EnumDecl::isClosedNonFlag() const { | 
|  | return isClosed() && !hasAttr<FlagEnumAttr>(); | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { | 
|  | if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
|  | return MSI->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); | 
|  | assert(MSI && "Not an instantiated member enumeration?"); | 
|  | MSI->setTemplateSpecializationKind(TSK); | 
|  | if (TSK != TSK_ExplicitSpecialization && | 
|  | PointOfInstantiation.isValid() && | 
|  | MSI->getPointOfInstantiation().isInvalid()) | 
|  | MSI->setPointOfInstantiation(PointOfInstantiation); | 
|  | } | 
|  |  | 
|  | EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
|  | if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { | 
|  | EnumDecl *ED = getInstantiatedFromMemberEnum(); | 
|  | while (auto *NewED = ED->getInstantiatedFromMemberEnum()) | 
|  | ED = NewED; | 
|  | return getDefinitionOrSelf(ED); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && | 
|  | "couldn't find pattern for enum instantiation"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { | 
|  | if (SpecializationInfo) | 
|  | return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, | 
|  | TemplateSpecializationKind TSK) { | 
|  | assert(!SpecializationInfo && "Member enum is already a specialization"); | 
|  | SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); | 
|  | } | 
|  |  | 
|  | unsigned EnumDecl::getODRHash() { | 
|  | if (hasODRHash()) | 
|  | return ODRHash; | 
|  |  | 
|  | class ODRHash Hash; | 
|  | Hash.AddEnumDecl(this); | 
|  | setHasODRHash(true); | 
|  | ODRHash = Hash.CalculateHash(); | 
|  | return ODRHash; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // RecordDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, | 
|  | DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | RecordDecl *PrevDecl) | 
|  | : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { | 
|  | assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); | 
|  | setHasFlexibleArrayMember(false); | 
|  | setAnonymousStructOrUnion(false); | 
|  | setHasObjectMember(false); | 
|  | setHasVolatileMember(false); | 
|  | setHasLoadedFieldsFromExternalStorage(false); | 
|  | setNonTrivialToPrimitiveDefaultInitialize(false); | 
|  | setNonTrivialToPrimitiveCopy(false); | 
|  | setNonTrivialToPrimitiveDestroy(false); | 
|  | setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); | 
|  | setHasNonTrivialToPrimitiveDestructCUnion(false); | 
|  | setHasNonTrivialToPrimitiveCopyCUnion(false); | 
|  | setParamDestroyedInCallee(false); | 
|  | setArgPassingRestrictions(APK_CanPassInRegs); | 
|  | } | 
|  |  | 
|  | RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, RecordDecl* PrevDecl) { | 
|  | RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, | 
|  | StartLoc, IdLoc, Id, PrevDecl); | 
|  | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); | 
|  |  | 
|  | C.getTypeDeclType(R, PrevDecl); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { | 
|  | RecordDecl *R = | 
|  | new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), | 
|  | SourceLocation(), nullptr, nullptr); | 
|  | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | bool RecordDecl::isInjectedClassName() const { | 
|  | return isImplicit() && getDeclName() && getDeclContext()->isRecord() && | 
|  | cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); | 
|  | } | 
|  |  | 
|  | bool RecordDecl::isLambda() const { | 
|  | if (auto RD = dyn_cast<CXXRecordDecl>(this)) | 
|  | return RD->isLambda(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RecordDecl::isCapturedRecord() const { | 
|  | return hasAttr<CapturedRecordAttr>(); | 
|  | } | 
|  |  | 
|  | void RecordDecl::setCapturedRecord() { | 
|  | addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); | 
|  | } | 
|  |  | 
|  | RecordDecl::field_iterator RecordDecl::field_begin() const { | 
|  | if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) | 
|  | LoadFieldsFromExternalStorage(); | 
|  |  | 
|  | return field_iterator(decl_iterator(FirstDecl)); | 
|  | } | 
|  |  | 
|  | /// completeDefinition - Notes that the definition of this type is now | 
|  | /// complete. | 
|  | void RecordDecl::completeDefinition() { | 
|  | assert(!isCompleteDefinition() && "Cannot redefine record!"); | 
|  | TagDecl::completeDefinition(); | 
|  | } | 
|  |  | 
|  | /// isMsStruct - Get whether or not this record uses ms_struct layout. | 
|  | /// This which can be turned on with an attribute, pragma, or the | 
|  | /// -mms-bitfields command-line option. | 
|  | bool RecordDecl::isMsStruct(const ASTContext &C) const { | 
|  | return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; | 
|  | } | 
|  |  | 
|  | void RecordDecl::LoadFieldsFromExternalStorage() const { | 
|  | ExternalASTSource *Source = getASTContext().getExternalSource(); | 
|  | assert(hasExternalLexicalStorage() && Source && "No external storage?"); | 
|  |  | 
|  | // Notify that we have a RecordDecl doing some initialization. | 
|  | ExternalASTSource::Deserializing TheFields(Source); | 
|  |  | 
|  | SmallVector<Decl*, 64> Decls; | 
|  | setHasLoadedFieldsFromExternalStorage(true); | 
|  | Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { | 
|  | return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); | 
|  | }, Decls); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check that all decls we got were FieldDecls. | 
|  | for (unsigned i=0, e=Decls.size(); i != e; ++i) | 
|  | assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); | 
|  | #endif | 
|  |  | 
|  | if (Decls.empty()) | 
|  | return; | 
|  |  | 
|  | std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, | 
|  | /*FieldsAlreadyLoaded=*/false); | 
|  | } | 
|  |  | 
|  | bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { | 
|  | ASTContext &Context = getASTContext(); | 
|  | const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & | 
|  | (SanitizerKind::Address | SanitizerKind::KernelAddress); | 
|  | if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) | 
|  | return false; | 
|  | const auto &Blacklist = Context.getSanitizerBlacklist(); | 
|  | const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); | 
|  | // We may be able to relax some of these requirements. | 
|  | int ReasonToReject = -1; | 
|  | if (!CXXRD || CXXRD->isExternCContext()) | 
|  | ReasonToReject = 0;  // is not C++. | 
|  | else if (CXXRD->hasAttr<PackedAttr>()) | 
|  | ReasonToReject = 1;  // is packed. | 
|  | else if (CXXRD->isUnion()) | 
|  | ReasonToReject = 2;  // is a union. | 
|  | else if (CXXRD->isTriviallyCopyable()) | 
|  | ReasonToReject = 3;  // is trivially copyable. | 
|  | else if (CXXRD->hasTrivialDestructor()) | 
|  | ReasonToReject = 4;  // has trivial destructor. | 
|  | else if (CXXRD->isStandardLayout()) | 
|  | ReasonToReject = 5;  // is standard layout. | 
|  | else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(), | 
|  | "field-padding")) | 
|  | ReasonToReject = 6;  // is in a blacklisted file. | 
|  | else if (Blacklist.isBlacklistedType(EnabledAsanMask, | 
|  | getQualifiedNameAsString(), | 
|  | "field-padding")) | 
|  | ReasonToReject = 7;  // is blacklisted. | 
|  |  | 
|  | if (EmitRemark) { | 
|  | if (ReasonToReject >= 0) | 
|  | Context.getDiagnostics().Report( | 
|  | getLocation(), | 
|  | diag::remark_sanitize_address_insert_extra_padding_rejected) | 
|  | << getQualifiedNameAsString() << ReasonToReject; | 
|  | else | 
|  | Context.getDiagnostics().Report( | 
|  | getLocation(), | 
|  | diag::remark_sanitize_address_insert_extra_padding_accepted) | 
|  | << getQualifiedNameAsString(); | 
|  | } | 
|  | return ReasonToReject < 0; | 
|  | } | 
|  |  | 
|  | const FieldDecl *RecordDecl::findFirstNamedDataMember() const { | 
|  | for (const auto *I : fields()) { | 
|  | if (I->getIdentifier()) | 
|  | return I; | 
|  |  | 
|  | if (const auto *RT = I->getType()->getAs<RecordType>()) | 
|  | if (const FieldDecl *NamedDataMember = | 
|  | RT->getDecl()->findFirstNamedDataMember()) | 
|  | return NamedDataMember; | 
|  | } | 
|  |  | 
|  | // We didn't find a named data member. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // BlockDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) | 
|  | : Decl(Block, DC, CaretLoc), DeclContext(Block) { | 
|  | setIsVariadic(false); | 
|  | setCapturesCXXThis(false); | 
|  | setBlockMissingReturnType(true); | 
|  | setIsConversionFromLambda(false); | 
|  | setDoesNotEscape(false); | 
|  | setCanAvoidCopyToHeap(false); | 
|  | } | 
|  |  | 
|  | void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { | 
|  | assert(!ParamInfo && "Already has param info!"); | 
|  |  | 
|  | // Zero params -> null pointer. | 
|  | if (!NewParamInfo.empty()) { | 
|  | NumParams = NewParamInfo.size(); | 
|  | ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; | 
|  | std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, | 
|  | bool CapturesCXXThis) { | 
|  | this->setCapturesCXXThis(CapturesCXXThis); | 
|  | this->NumCaptures = Captures.size(); | 
|  |  | 
|  | if (Captures.empty()) { | 
|  | this->Captures = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | this->Captures = Captures.copy(Context).data(); | 
|  | } | 
|  |  | 
|  | bool BlockDecl::capturesVariable(const VarDecl *variable) const { | 
|  | for (const auto &I : captures()) | 
|  | // Only auto vars can be captured, so no redeclaration worries. | 
|  | if (I.getVariable() == variable) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SourceRange BlockDecl::getSourceRange() const { | 
|  | return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Other Decl Allocation/Deallocation Method Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TranslationUnitDecl::anchor() {} | 
|  |  | 
|  | TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { | 
|  | return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); | 
|  | } | 
|  |  | 
|  | void PragmaCommentDecl::anchor() {} | 
|  |  | 
|  | PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, | 
|  | TranslationUnitDecl *DC, | 
|  | SourceLocation CommentLoc, | 
|  | PragmaMSCommentKind CommentKind, | 
|  | StringRef Arg) { | 
|  | PragmaCommentDecl *PCD = | 
|  | new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) | 
|  | PragmaCommentDecl(DC, CommentLoc, CommentKind); | 
|  | memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); | 
|  | PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; | 
|  | return PCD; | 
|  | } | 
|  |  | 
|  | PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID, | 
|  | unsigned ArgSize) { | 
|  | return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) | 
|  | PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); | 
|  | } | 
|  |  | 
|  | void PragmaDetectMismatchDecl::anchor() {} | 
|  |  | 
|  | PragmaDetectMismatchDecl * | 
|  | PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, | 
|  | SourceLocation Loc, StringRef Name, | 
|  | StringRef Value) { | 
|  | size_t ValueStart = Name.size() + 1; | 
|  | PragmaDetectMismatchDecl *PDMD = | 
|  | new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) | 
|  | PragmaDetectMismatchDecl(DC, Loc, ValueStart); | 
|  | memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); | 
|  | PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; | 
|  | memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), | 
|  | Value.size()); | 
|  | PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; | 
|  | return PDMD; | 
|  | } | 
|  |  | 
|  | PragmaDetectMismatchDecl * | 
|  | PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
|  | unsigned NameValueSize) { | 
|  | return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) | 
|  | PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); | 
|  | } | 
|  |  | 
|  | void ExternCContextDecl::anchor() {} | 
|  |  | 
|  | ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, | 
|  | TranslationUnitDecl *DC) { | 
|  | return new (C, DC) ExternCContextDecl(DC); | 
|  | } | 
|  |  | 
|  | void LabelDecl::anchor() {} | 
|  |  | 
|  | LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation IdentL, IdentifierInfo *II) { | 
|  | return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); | 
|  | } | 
|  |  | 
|  | LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation IdentL, IdentifierInfo *II, | 
|  | SourceLocation GnuLabelL) { | 
|  | assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); | 
|  | return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); | 
|  | } | 
|  |  | 
|  | LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, | 
|  | SourceLocation()); | 
|  | } | 
|  |  | 
|  | void LabelDecl::setMSAsmLabel(StringRef Name) { | 
|  | char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; | 
|  | memcpy(Buffer, Name.data(), Name.size()); | 
|  | Buffer[Name.size()] = '\0'; | 
|  | MSAsmName = Buffer; | 
|  | } | 
|  |  | 
|  | void ValueDecl::anchor() {} | 
|  |  | 
|  | bool ValueDecl::isWeak() const { | 
|  | for (const auto *I : attrs()) | 
|  | if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) | 
|  | return true; | 
|  |  | 
|  | return isWeakImported(); | 
|  | } | 
|  |  | 
|  | void ImplicitParamDecl::anchor() {} | 
|  |  | 
|  | ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, QualType Type, | 
|  | ImplicitParamKind ParamKind) { | 
|  | return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); | 
|  | } | 
|  |  | 
|  | ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, | 
|  | ImplicitParamKind ParamKind) { | 
|  | return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); | 
|  | } | 
|  |  | 
|  | ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass SC, bool isInlineSpecified, | 
|  | bool hasWrittenPrototype, | 
|  | ConstexprSpecKind ConstexprKind, | 
|  | Expr *TrailingRequiresClause) { | 
|  | FunctionDecl *New = | 
|  | new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, | 
|  | SC, isInlineSpecified, ConstexprKind, | 
|  | TrailingRequiresClause); | 
|  | New->setHasWrittenPrototype(hasWrittenPrototype); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), | 
|  | DeclarationNameInfo(), QualType(), nullptr, | 
|  | SC_None, false, CSK_unspecified, nullptr); | 
|  | } | 
|  |  | 
|  | BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { | 
|  | return new (C, DC) BlockDecl(DC, L); | 
|  | } | 
|  |  | 
|  | BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) BlockDecl(nullptr, SourceLocation()); | 
|  | } | 
|  |  | 
|  | CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) | 
|  | : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), | 
|  | NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} | 
|  |  | 
|  | CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | unsigned NumParams) { | 
|  | return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) | 
|  | CapturedDecl(DC, NumParams); | 
|  | } | 
|  |  | 
|  | CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
|  | unsigned NumParams) { | 
|  | return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) | 
|  | CapturedDecl(nullptr, NumParams); | 
|  | } | 
|  |  | 
|  | Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } | 
|  | void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } | 
|  |  | 
|  | bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } | 
|  | void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } | 
|  |  | 
|  | EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, | 
|  | SourceLocation L, | 
|  | IdentifierInfo *Id, QualType T, | 
|  | Expr *E, const llvm::APSInt &V) { | 
|  | return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); | 
|  | } | 
|  |  | 
|  | EnumConstantDecl * | 
|  | EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, | 
|  | QualType(), nullptr, llvm::APSInt()); | 
|  | } | 
|  |  | 
|  | void IndirectFieldDecl::anchor() {} | 
|  |  | 
|  | IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation L, DeclarationName N, | 
|  | QualType T, | 
|  | MutableArrayRef<NamedDecl *> CH) | 
|  | : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), | 
|  | ChainingSize(CH.size()) { | 
|  | // In C++, indirect field declarations conflict with tag declarations in the | 
|  | // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. | 
|  | if (C.getLangOpts().CPlusPlus) | 
|  | IdentifierNamespace |= IDNS_Tag; | 
|  | } | 
|  |  | 
|  | IndirectFieldDecl * | 
|  | IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, | 
|  | IdentifierInfo *Id, QualType T, | 
|  | llvm::MutableArrayRef<NamedDecl *> CH) { | 
|  | return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); | 
|  | } | 
|  |  | 
|  | IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), | 
|  | DeclarationName(), QualType(), None); | 
|  | } | 
|  |  | 
|  | SourceRange EnumConstantDecl::getSourceRange() const { | 
|  | SourceLocation End = getLocation(); | 
|  | if (Init) | 
|  | End = Init->getEndLoc(); | 
|  | return SourceRange(getLocation(), End); | 
|  | } | 
|  |  | 
|  | void TypeDecl::anchor() {} | 
|  |  | 
|  | TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, TypeSourceInfo *TInfo) { | 
|  | return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); | 
|  | } | 
|  |  | 
|  | void TypedefNameDecl::anchor() {} | 
|  |  | 
|  | TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { | 
|  | if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { | 
|  | auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); | 
|  | auto *ThisTypedef = this; | 
|  | if (AnyRedecl && OwningTypedef) { | 
|  | OwningTypedef = OwningTypedef->getCanonicalDecl(); | 
|  | ThisTypedef = ThisTypedef->getCanonicalDecl(); | 
|  | } | 
|  | if (OwningTypedef == ThisTypedef) | 
|  | return TT->getDecl(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool TypedefNameDecl::isTransparentTagSlow() const { | 
|  | auto determineIsTransparent = [&]() { | 
|  | if (auto *TT = getUnderlyingType()->getAs<TagType>()) { | 
|  | if (auto *TD = TT->getDecl()) { | 
|  | if (TD->getName() != getName()) | 
|  | return false; | 
|  | SourceLocation TTLoc = getLocation(); | 
|  | SourceLocation TDLoc = TD->getLocation(); | 
|  | if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) | 
|  | return false; | 
|  | SourceManager &SM = getASTContext().getSourceManager(); | 
|  | return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | bool isTransparent = determineIsTransparent(); | 
|  | MaybeModedTInfo.setInt((isTransparent << 1) | 1); | 
|  | return isTransparent; | 
|  | } | 
|  |  | 
|  | TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), | 
|  | nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | TypeSourceInfo *TInfo) { | 
|  | return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); | 
|  | } | 
|  |  | 
|  | TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), | 
|  | SourceLocation(), nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | SourceRange TypedefDecl::getSourceRange() const { | 
|  | SourceLocation RangeEnd = getLocation(); | 
|  | if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { | 
|  | if (typeIsPostfix(TInfo->getType())) | 
|  | RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
|  | } | 
|  | return SourceRange(getBeginLoc(), RangeEnd); | 
|  | } | 
|  |  | 
|  | SourceRange TypeAliasDecl::getSourceRange() const { | 
|  | SourceLocation RangeEnd = getBeginLoc(); | 
|  | if (TypeSourceInfo *TInfo = getTypeSourceInfo()) | 
|  | RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
|  | return SourceRange(getBeginLoc(), RangeEnd); | 
|  | } | 
|  |  | 
|  | void FileScopeAsmDecl::anchor() {} | 
|  |  | 
|  | FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | StringLiteral *Str, | 
|  | SourceLocation AsmLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), | 
|  | SourceLocation()); | 
|  | } | 
|  |  | 
|  | void EmptyDecl::anchor() {} | 
|  |  | 
|  | EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { | 
|  | return new (C, DC) EmptyDecl(DC, L); | 
|  | } | 
|  |  | 
|  | EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) EmptyDecl(nullptr, SourceLocation()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ImportDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Retrieve the number of module identifiers needed to name the given | 
|  | /// module. | 
|  | static unsigned getNumModuleIdentifiers(Module *Mod) { | 
|  | unsigned Result = 1; | 
|  | while (Mod->Parent) { | 
|  | Mod = Mod->Parent; | 
|  | ++Result; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, | 
|  | Module *Imported, | 
|  | ArrayRef<SourceLocation> IdentifierLocs) | 
|  | : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) { | 
|  | assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); | 
|  | auto *StoredLocs = getTrailingObjects<SourceLocation>(); | 
|  | std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), | 
|  | StoredLocs); | 
|  | } | 
|  |  | 
|  | ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, | 
|  | Module *Imported, SourceLocation EndLoc) | 
|  | : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) { | 
|  | *getTrailingObjects<SourceLocation>() = EndLoc; | 
|  | } | 
|  |  | 
|  | ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, Module *Imported, | 
|  | ArrayRef<SourceLocation> IdentifierLocs) { | 
|  | return new (C, DC, | 
|  | additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) | 
|  | ImportDecl(DC, StartLoc, Imported, IdentifierLocs); | 
|  | } | 
|  |  | 
|  | ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | Module *Imported, | 
|  | SourceLocation EndLoc) { | 
|  | ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) | 
|  | ImportDecl(DC, StartLoc, Imported, EndLoc); | 
|  | Import->setImplicit(); | 
|  | return Import; | 
|  | } | 
|  |  | 
|  | ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
|  | unsigned NumLocations) { | 
|  | return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) | 
|  | ImportDecl(EmptyShell()); | 
|  | } | 
|  |  | 
|  | ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { | 
|  | if (!ImportedAndComplete.getInt()) | 
|  | return None; | 
|  |  | 
|  | const auto *StoredLocs = getTrailingObjects<SourceLocation>(); | 
|  | return llvm::makeArrayRef(StoredLocs, | 
|  | getNumModuleIdentifiers(getImportedModule())); | 
|  | } | 
|  |  | 
|  | SourceRange ImportDecl::getSourceRange() const { | 
|  | if (!ImportedAndComplete.getInt()) | 
|  | return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); | 
|  |  | 
|  | return SourceRange(getLocation(), getIdentifierLocs().back()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ExportDecl Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExportDecl::anchor() {} | 
|  |  | 
|  | ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation ExportLoc) { | 
|  | return new (C, DC) ExportDecl(DC, ExportLoc); | 
|  | } | 
|  |  | 
|  | ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) ExportDecl(nullptr, SourceLocation()); | 
|  | } |