|  | //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This pass does misc. AMDGPU optimizations on IR before instruction | 
|  | /// selection. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/LegacyDivergenceAnalysis.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-codegenprepare" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | static cl::opt<bool> WidenLoads( | 
|  | "amdgpu-codegenprepare-widen-constant-loads", | 
|  | cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | class AMDGPUCodeGenPrepare : public FunctionPass, | 
|  | public InstVisitor<AMDGPUCodeGenPrepare, bool> { | 
|  | const GCNSubtarget *ST = nullptr; | 
|  | AssumptionCache *AC = nullptr; | 
|  | LegacyDivergenceAnalysis *DA = nullptr; | 
|  | Module *Mod = nullptr; | 
|  | bool HasUnsafeFPMath = false; | 
|  |  | 
|  | /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to | 
|  | /// binary operation \p V. | 
|  | /// | 
|  | /// \returns Binary operation \p V. | 
|  | /// \returns \p T's base element bit width. | 
|  | unsigned getBaseElementBitWidth(const Type *T) const; | 
|  |  | 
|  | /// \returns Equivalent 32 bit integer type for given type \p T. For example, | 
|  | /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> | 
|  | /// is returned. | 
|  | Type *getI32Ty(IRBuilder<> &B, const Type *T) const; | 
|  |  | 
|  | /// \returns True if binary operation \p I is a signed binary operation, false | 
|  | /// otherwise. | 
|  | bool isSigned(const BinaryOperator &I) const; | 
|  |  | 
|  | /// \returns True if the condition of 'select' operation \p I comes from a | 
|  | /// signed 'icmp' operation, false otherwise. | 
|  | bool isSigned(const SelectInst &I) const; | 
|  |  | 
|  | /// \returns True if type \p T needs to be promoted to 32 bit integer type, | 
|  | /// false otherwise. | 
|  | bool needsPromotionToI32(const Type *T) const; | 
|  |  | 
|  | /// Promotes uniform binary operation \p I to equivalent 32 bit binary | 
|  | /// operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and | 
|  | /// truncating the result of 32 bit binary operation back to \p I's original | 
|  | /// type. Division operation is not promoted. | 
|  | /// | 
|  | /// \returns True if \p I is promoted to equivalent 32 bit binary operation, | 
|  | /// false otherwise. | 
|  | bool promoteUniformOpToI32(BinaryOperator &I) const; | 
|  |  | 
|  | /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformOpToI32(ICmpInst &I) const; | 
|  |  | 
|  | /// Promotes uniform 'select' operation \p I to 32 bit 'select' | 
|  | /// operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the | 
|  | /// result of 32 bit 'select' operation back to \p I's original type. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformOpToI32(SelectInst &I) const; | 
|  |  | 
|  | /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' | 
|  | /// intrinsic. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by zero extending the operand to 32 | 
|  | /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the | 
|  | /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the | 
|  | /// shift amount is 32 minus \p I's base element bit width), and truncating | 
|  | /// the result of the shift operation back to \p I's original type. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; | 
|  |  | 
|  | /// Expands 24 bit div or rem. | 
|  | Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den, | 
|  | bool IsDiv, bool IsSigned) const; | 
|  |  | 
|  | /// Expands 32 bit div or rem. | 
|  | Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den) const; | 
|  |  | 
|  | /// Widen a scalar load. | 
|  | /// | 
|  | /// \details \p Widen scalar load for uniform, small type loads from constant | 
|  | //  memory / to a full 32-bits and then truncate the input to allow a scalar | 
|  | //  load instead of a vector load. | 
|  | // | 
|  | /// \returns True. | 
|  |  | 
|  | bool canWidenScalarExtLoad(LoadInst &I) const; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | AMDGPUCodeGenPrepare() : FunctionPass(ID) {} | 
|  |  | 
|  | bool visitFDiv(BinaryOperator &I); | 
|  |  | 
|  | bool visitInstruction(Instruction &I) { return false; } | 
|  | bool visitBinaryOperator(BinaryOperator &I); | 
|  | bool visitLoadInst(LoadInst &I); | 
|  | bool visitICmpInst(ICmpInst &I); | 
|  | bool visitSelectInst(SelectInst &I); | 
|  |  | 
|  | bool visitIntrinsicInst(IntrinsicInst &I); | 
|  | bool visitBitreverseIntrinsicInst(IntrinsicInst &I); | 
|  |  | 
|  | bool doInitialization(Module &M) override; | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | StringRef getPassName() const override { return "AMDGPU IR optimizations"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<LegacyDivergenceAnalysis>(); | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { | 
|  | assert(needsPromotionToI32(T) && "T does not need promotion to i32"); | 
|  |  | 
|  | if (T->isIntegerTy()) | 
|  | return T->getIntegerBitWidth(); | 
|  | return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); | 
|  | } | 
|  |  | 
|  | Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { | 
|  | assert(needsPromotionToI32(T) && "T does not need promotion to i32"); | 
|  |  | 
|  | if (T->isIntegerTy()) | 
|  | return B.getInt32Ty(); | 
|  | return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { | 
|  | return I.getOpcode() == Instruction::AShr || | 
|  | I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { | 
|  | return isa<ICmpInst>(I.getOperand(0)) ? | 
|  | cast<ICmpInst>(I.getOperand(0))->isSigned() : false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { | 
|  | const IntegerType *IntTy = dyn_cast<IntegerType>(T); | 
|  | if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) | 
|  | return true; | 
|  |  | 
|  | if (const VectorType *VT = dyn_cast<VectorType>(T)) { | 
|  | // TODO: The set of packed operations is more limited, so may want to | 
|  | // promote some anyway. | 
|  | if (ST->hasVOP3PInsts()) | 
|  | return false; | 
|  |  | 
|  | return needsPromotionToI32(VT->getElementType()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if the op promoted to i32 should have nsw set. | 
|  | static bool promotedOpIsNSW(const Instruction &I) { | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Shl: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | return I.hasNoUnsignedWrap(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if the op promoted to i32 should have nuw set. | 
|  | static bool promotedOpIsNUW(const Instruction &I) { | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Shl: | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | return true; | 
|  | case Instruction::Sub: | 
|  | return I.hasNoUnsignedWrap(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { | 
|  | Type *Ty = I.getType(); | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  | int TySize = DL.getTypeSizeInBits(Ty); | 
|  | unsigned Align = I.getAlignment() ? | 
|  | I.getAlignment() : DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | if (I.getOpcode() == Instruction::SDiv || | 
|  | I.getOpcode() == Instruction::UDiv || | 
|  | I.getOpcode() == Instruction::SRem || | 
|  | I.getOpcode() == Instruction::URem) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Value *ExtOp0 = nullptr; | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *ExtRes = nullptr; | 
|  | Value *TruncRes = nullptr; | 
|  |  | 
|  | if (isSigned(I)) { | 
|  | ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | } else { | 
|  | ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | } | 
|  |  | 
|  | ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { | 
|  | if (promotedOpIsNSW(cast<Instruction>(I))) | 
|  | Inst->setHasNoSignedWrap(); | 
|  |  | 
|  | if (promotedOpIsNUW(cast<Instruction>(I))) | 
|  | Inst->setHasNoUnsignedWrap(); | 
|  |  | 
|  | if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) | 
|  | Inst->setIsExact(ExactOp->isExact()); | 
|  | } | 
|  |  | 
|  | TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { | 
|  | assert(needsPromotionToI32(I.getOperand(0)->getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); | 
|  | Value *ExtOp0 = nullptr; | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *NewICmp  = nullptr; | 
|  |  | 
|  | if (I.isSigned()) { | 
|  | ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | } else { | 
|  | ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | } | 
|  | NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); | 
|  |  | 
|  | I.replaceAllUsesWith(NewICmp); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *ExtOp2 = nullptr; | 
|  | Value *ExtRes = nullptr; | 
|  | Value *TruncRes = nullptr; | 
|  |  | 
|  | if (isSigned(I)) { | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); | 
|  | } else { | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); | 
|  | } | 
|  | ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); | 
|  | TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( | 
|  | IntrinsicInst &I) const { | 
|  | assert(I.getIntrinsicID() == Intrinsic::bitreverse && | 
|  | "I must be bitreverse intrinsic"); | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Function *I32 = | 
|  | Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); | 
|  | Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); | 
|  | Value *LShrOp = | 
|  | Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); | 
|  | Value *TruncRes = | 
|  | Builder.CreateTrunc(LShrOp, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) { | 
|  | const ConstantFP *CNum = dyn_cast<ConstantFP>(Num); | 
|  | if (!CNum) | 
|  | return HasDenormals; | 
|  |  | 
|  | if (UnsafeDiv) | 
|  | return true; | 
|  |  | 
|  | bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0); | 
|  |  | 
|  | // Reciprocal f32 is handled separately without denormals. | 
|  | return HasDenormals ^ IsOne; | 
|  | } | 
|  |  | 
|  | // Insert an intrinsic for fast fdiv for safe math situations where we can | 
|  | // reduce precision. Leave fdiv for situations where the generic node is | 
|  | // expected to be optimized. | 
|  | bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { | 
|  | Type *Ty = FDiv.getType(); | 
|  |  | 
|  | if (!Ty->getScalarType()->isFloatTy()) | 
|  | return false; | 
|  |  | 
|  | MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath); | 
|  | if (!FPMath) | 
|  | return false; | 
|  |  | 
|  | const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); | 
|  | float ULP = FPOp->getFPAccuracy(); | 
|  | if (ULP < 2.5f) | 
|  | return false; | 
|  |  | 
|  | FastMathFlags FMF = FPOp->getFastMathFlags(); | 
|  | bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() || | 
|  | FMF.allowReciprocal(); | 
|  |  | 
|  | // With UnsafeDiv node will be optimized to just rcp and mul. | 
|  | if (UnsafeDiv) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath); | 
|  | Builder.setFastMathFlags(FMF); | 
|  | Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); | 
|  |  | 
|  | Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); | 
|  |  | 
|  | Value *Num = FDiv.getOperand(0); | 
|  | Value *Den = FDiv.getOperand(1); | 
|  |  | 
|  | Value *NewFDiv = nullptr; | 
|  |  | 
|  | bool HasDenormals = ST->hasFP32Denormals(); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(Ty)) { | 
|  | NewFDiv = UndefValue::get(VT); | 
|  |  | 
|  | // FIXME: Doesn't do the right thing for cases where the vector is partially | 
|  | // constant. This works when the scalarizer pass is run first. | 
|  | for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { | 
|  | Value *NumEltI = Builder.CreateExtractElement(Num, I); | 
|  | Value *DenEltI = Builder.CreateExtractElement(Den, I); | 
|  | Value *NewElt; | 
|  |  | 
|  | if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) { | 
|  | NewElt = Builder.CreateFDiv(NumEltI, DenEltI); | 
|  | } else { | 
|  | NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI }); | 
|  | } | 
|  |  | 
|  | NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); | 
|  | } | 
|  | } else { | 
|  | if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals)) | 
|  | NewFDiv = Builder.CreateCall(Decl, { Num, Den }); | 
|  | } | 
|  |  | 
|  | if (NewFDiv) { | 
|  | FDiv.replaceAllUsesWith(NewFDiv); | 
|  | NewFDiv->takeName(&FDiv); | 
|  | FDiv.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | return !!NewFDiv; | 
|  | } | 
|  |  | 
|  | static bool hasUnsafeFPMath(const Function &F) { | 
|  | Attribute Attr = F.getFnAttribute("unsafe-fp-math"); | 
|  | return Attr.getValueAsString() == "true"; | 
|  | } | 
|  |  | 
|  | static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, | 
|  | Value *LHS, Value *RHS) { | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *I64Ty = Builder.getInt64Ty(); | 
|  |  | 
|  | Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); | 
|  | Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); | 
|  | Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); | 
|  | Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); | 
|  | Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); | 
|  | Hi = Builder.CreateTrunc(Hi, I32Ty); | 
|  | return std::make_pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { | 
|  | return getMul64(Builder, LHS, RHS).second; | 
|  | } | 
|  |  | 
|  | // The fractional part of a float is enough to accurately represent up to | 
|  | // a 24-bit signed integer. | 
|  | Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, | 
|  | BinaryOperator &I, | 
|  | Value *Num, Value *Den, | 
|  | bool IsDiv, bool IsSigned) const { | 
|  | assert(Num->getType()->isIntegerTy(32)); | 
|  |  | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  | unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); | 
|  | if (LHSSignBits < 9) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); | 
|  | if (RHSSignBits < 9) | 
|  | return nullptr; | 
|  |  | 
|  |  | 
|  | unsigned SignBits = std::min(LHSSignBits, RHSSignBits); | 
|  | unsigned DivBits = 32 - SignBits; | 
|  | if (IsSigned) | 
|  | ++DivBits; | 
|  |  | 
|  | Type *Ty = Num->getType(); | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *F32Ty = Builder.getFloatTy(); | 
|  | ConstantInt *One = Builder.getInt32(1); | 
|  | Value *JQ = One; | 
|  |  | 
|  | if (IsSigned) { | 
|  | // char|short jq = ia ^ ib; | 
|  | JQ = Builder.CreateXor(Num, Den); | 
|  |  | 
|  | // jq = jq >> (bitsize - 2) | 
|  | JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); | 
|  |  | 
|  | // jq = jq | 0x1 | 
|  | JQ = Builder.CreateOr(JQ, One); | 
|  | } | 
|  |  | 
|  | // int ia = (int)LHS; | 
|  | Value *IA = Num; | 
|  |  | 
|  | // int ib, (int)RHS; | 
|  | Value *IB = Den; | 
|  |  | 
|  | // float fa = (float)ia; | 
|  | Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) | 
|  | : Builder.CreateUIToFP(IA, F32Ty); | 
|  |  | 
|  | // float fb = (float)ib; | 
|  | Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) | 
|  | : Builder.CreateUIToFP(IB,F32Ty); | 
|  |  | 
|  | Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB); | 
|  | Value *FQM = Builder.CreateFMul(FA, RCP); | 
|  |  | 
|  | // fq = trunc(fqm); | 
|  | CallInst* FQ = Builder.CreateIntrinsic(Intrinsic::trunc, { FQM }); | 
|  | FQ->copyFastMathFlags(Builder.getFastMathFlags()); | 
|  |  | 
|  | // float fqneg = -fq; | 
|  | Value *FQNeg = Builder.CreateFNeg(FQ); | 
|  |  | 
|  | // float fr = mad(fqneg, fb, fa); | 
|  | Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, | 
|  | { FQNeg, FB, FA }, FQ); | 
|  |  | 
|  | // int iq = (int)fq; | 
|  | Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) | 
|  | : Builder.CreateFPToUI(FQ, I32Ty); | 
|  |  | 
|  | // fr = fabs(fr); | 
|  | FR = Builder.CreateIntrinsic(Intrinsic::fabs, { FR }, FQ); | 
|  |  | 
|  | // fb = fabs(fb); | 
|  | FB = Builder.CreateIntrinsic(Intrinsic::fabs, { FB }, FQ); | 
|  |  | 
|  | // int cv = fr >= fb; | 
|  | Value *CV = Builder.CreateFCmpOGE(FR, FB); | 
|  |  | 
|  | // jq = (cv ? jq : 0); | 
|  | JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); | 
|  |  | 
|  | // dst = iq + jq; | 
|  | Value *Div = Builder.CreateAdd(IQ, JQ); | 
|  |  | 
|  | Value *Res = Div; | 
|  | if (!IsDiv) { | 
|  | // Rem needs compensation, it's easier to recompute it | 
|  | Value *Rem = Builder.CreateMul(Div, Den); | 
|  | Res = Builder.CreateSub(Num, Rem); | 
|  | } | 
|  |  | 
|  | // Truncate to number of bits this divide really is. | 
|  | if (IsSigned) { | 
|  | Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits)); | 
|  | Res = Builder.CreateSExt(Res, Ty); | 
|  | } else { | 
|  | ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); | 
|  | Res = Builder.CreateAnd(Res, TruncMask); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, | 
|  | BinaryOperator &I, | 
|  | Value *Num, Value *Den) const { | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  | assert(Opc == Instruction::URem || Opc == Instruction::UDiv || | 
|  | Opc == Instruction::SRem || Opc == Instruction::SDiv); | 
|  |  | 
|  | FastMathFlags FMF; | 
|  | FMF.setFast(); | 
|  | Builder.setFastMathFlags(FMF); | 
|  |  | 
|  | if (isa<Constant>(Den)) | 
|  | return nullptr; // Keep it for optimization | 
|  |  | 
|  | bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; | 
|  | bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; | 
|  |  | 
|  | Type *Ty = Num->getType(); | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *F32Ty = Builder.getFloatTy(); | 
|  |  | 
|  | if (Ty->getScalarSizeInBits() < 32) { | 
|  | if (IsSigned) { | 
|  | Num = Builder.CreateSExt(Num, I32Ty); | 
|  | Den = Builder.CreateSExt(Den, I32Ty); | 
|  | } else { | 
|  | Num = Builder.CreateZExt(Num, I32Ty); | 
|  | Den = Builder.CreateZExt(Den, I32Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { | 
|  | Res = Builder.CreateTrunc(Res, Ty); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | ConstantInt *Zero = Builder.getInt32(0); | 
|  | ConstantInt *One = Builder.getInt32(1); | 
|  | ConstantInt *MinusOne = Builder.getInt32(~0); | 
|  |  | 
|  | Value *Sign = nullptr; | 
|  | if (IsSigned) { | 
|  | ConstantInt *K31 = Builder.getInt32(31); | 
|  | Value *LHSign = Builder.CreateAShr(Num, K31); | 
|  | Value *RHSign = Builder.CreateAShr(Den, K31); | 
|  | // Remainder sign is the same as LHS | 
|  | Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; | 
|  |  | 
|  | Num = Builder.CreateAdd(Num, LHSign); | 
|  | Den = Builder.CreateAdd(Den, RHSign); | 
|  |  | 
|  | Num = Builder.CreateXor(Num, LHSign); | 
|  | Den = Builder.CreateXor(Den, RHSign); | 
|  | } | 
|  |  | 
|  | // RCP =  URECIP(Den) = 2^32 / Den + e | 
|  | // e is rounding error. | 
|  | Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); | 
|  | Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32); | 
|  | Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); | 
|  | Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); | 
|  | Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); | 
|  |  | 
|  | // RCP_LO, RCP_HI = mul(RCP, Den) */ | 
|  | Value *RCP_LO, *RCP_HI; | 
|  | std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); | 
|  |  | 
|  | // NEG_RCP_LO = -RCP_LO | 
|  | Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); | 
|  |  | 
|  | // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) | 
|  | Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); | 
|  | Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); | 
|  |  | 
|  | // Calculate the rounding error from the URECIP instruction | 
|  | // E = mulhu(ABS_RCP_LO, RCP) | 
|  | Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); | 
|  |  | 
|  | // RCP_A_E = RCP + E | 
|  | Value *RCP_A_E = Builder.CreateAdd(RCP, E); | 
|  |  | 
|  | // RCP_S_E = RCP - E | 
|  | Value *RCP_S_E = Builder.CreateSub(RCP, E); | 
|  |  | 
|  | // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) | 
|  | Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); | 
|  |  | 
|  | // Quotient = mulhu(Tmp0, Num) | 
|  | Value *Quotient = getMulHu(Builder, Tmp0, Num); | 
|  |  | 
|  | // Num_S_Remainder = Quotient * Den | 
|  | Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); | 
|  |  | 
|  | // Remainder = Num - Num_S_Remainder | 
|  | Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); | 
|  |  | 
|  | // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) | 
|  | Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); | 
|  | Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); | 
|  |  | 
|  | // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) | 
|  | Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); | 
|  | Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, | 
|  | MinusOne, Zero); | 
|  |  | 
|  | // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero | 
|  | Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); | 
|  | Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); | 
|  |  | 
|  | Value *Res; | 
|  | if (IsDiv) { | 
|  | // Quotient_A_One = Quotient + 1 | 
|  | Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); | 
|  |  | 
|  | // Quotient_S_One = Quotient - 1 | 
|  | Value *Quotient_S_One = Builder.CreateSub(Quotient, One); | 
|  |  | 
|  | // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) | 
|  | Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); | 
|  |  | 
|  | // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) | 
|  | Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); | 
|  | } else { | 
|  | // Remainder_S_Den = Remainder - Den | 
|  | Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); | 
|  |  | 
|  | // Remainder_A_Den = Remainder + Den | 
|  | Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); | 
|  |  | 
|  | // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) | 
|  | Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); | 
|  |  | 
|  | // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) | 
|  | Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); | 
|  | } | 
|  |  | 
|  | if (IsSigned) { | 
|  | Res = Builder.CreateXor(Res, Sign); | 
|  | Res = Builder.CreateSub(Res, Sign); | 
|  | } | 
|  |  | 
|  | Res = Builder.CreateTrunc(Res, Ty); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && | 
|  | DA->isUniform(&I) && promoteUniformOpToI32(I)) | 
|  | return true; | 
|  |  | 
|  | bool Changed = false; | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  | Type *Ty = I.getType(); | 
|  | Value *NewDiv = nullptr; | 
|  | if ((Opc == Instruction::URem || Opc == Instruction::UDiv || | 
|  | Opc == Instruction::SRem || Opc == Instruction::SDiv) && | 
|  | Ty->getScalarSizeInBits() <= 32) { | 
|  | Value *Num = I.getOperand(0); | 
|  | Value *Den = I.getOperand(1); | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | if (VectorType *VT = dyn_cast<VectorType>(Ty)) { | 
|  | NewDiv = UndefValue::get(VT); | 
|  |  | 
|  | for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { | 
|  | Value *NumEltN = Builder.CreateExtractElement(Num, N); | 
|  | Value *DenEltN = Builder.CreateExtractElement(Den, N); | 
|  | Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); | 
|  | if (!NewElt) | 
|  | NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); | 
|  | NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); | 
|  | } | 
|  | } else { | 
|  | NewDiv = expandDivRem32(Builder, I, Num, Den); | 
|  | } | 
|  |  | 
|  | if (NewDiv) { | 
|  | I.replaceAllUsesWith(NewDiv); | 
|  | I.eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { | 
|  | if (!WidenLoads) | 
|  | return false; | 
|  |  | 
|  | if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | 
|  | canWidenScalarExtLoad(I)) { | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); | 
|  | Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); | 
|  | LoadInst *WidenLoad = Builder.CreateLoad(BitCast); | 
|  | WidenLoad->copyMetadata(I); | 
|  |  | 
|  | // If we have range metadata, we need to convert the type, and not make | 
|  | // assumptions about the high bits. | 
|  | if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { | 
|  | ConstantInt *Lower = | 
|  | mdconst::extract<ConstantInt>(Range->getOperand(0)); | 
|  |  | 
|  | if (Lower->getValue().isNullValue()) { | 
|  | WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); | 
|  | } else { | 
|  | Metadata *LowAndHigh[] = { | 
|  | ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), | 
|  | // Don't make assumptions about the high bits. | 
|  | ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) | 
|  | }; | 
|  |  | 
|  | WidenLoad->setMetadata(LLVMContext::MD_range, | 
|  | MDNode::get(Mod->getContext(), LowAndHigh)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); | 
|  | Type *IntNTy = Builder.getIntNTy(TySize); | 
|  | Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); | 
|  | Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); | 
|  | I.replaceAllUsesWith(ValOrig); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && | 
|  | DA->isUniform(&I)) | 
|  | Changed |= promoteUniformOpToI32(I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && | 
|  | DA->isUniform(&I)) | 
|  | Changed |= promoteUniformOpToI32(I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { | 
|  | switch (I.getIntrinsicID()) { | 
|  | case Intrinsic::bitreverse: | 
|  | return visitBitreverseIntrinsicInst(I); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && | 
|  | DA->isUniform(&I)) | 
|  | Changed |= promoteUniformBitreverseToI32(I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { | 
|  | Mod = &M; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
|  | if (!TPC) | 
|  | return false; | 
|  |  | 
|  | const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); | 
|  | ST = &TM.getSubtarget<GCNSubtarget>(F); | 
|  | AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | DA = &getAnalysis<LegacyDivergenceAnalysis>(); | 
|  | HasUnsafeFPMath = hasUnsafeFPMath(F); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (BasicBlock &BB : F) { | 
|  | BasicBlock::iterator Next; | 
|  | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { | 
|  | Next = std::next(I); | 
|  | MadeChange |= visit(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, | 
|  | "AMDGPU IR optimizations", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) | 
|  | INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", | 
|  | false, false) | 
|  |  | 
|  | char AMDGPUCodeGenPrepare::ID = 0; | 
|  |  | 
|  | FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { | 
|  | return new AMDGPUCodeGenPrepare(); | 
|  | } |