|  | //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file includes support code use by SelectionDAGBuilder when lowering a | 
|  | // statepoint sequence in SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "StatepointLowering.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "statepoint-lowering" | 
|  |  | 
|  | STATISTIC(NumSlotsAllocatedForStatepoints, | 
|  | "Number of stack slots allocated for statepoints"); | 
|  | STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); | 
|  | STATISTIC(StatepointMaxSlotsRequired, | 
|  | "Maximum number of stack slots required for a singe statepoint"); | 
|  |  | 
|  | static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, | 
|  | SelectionDAGBuilder &Builder, uint64_t Value) { | 
|  | SDLoc L = Builder.getCurSDLoc(); | 
|  | Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, | 
|  | MVT::i64)); | 
|  | Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); | 
|  | } | 
|  |  | 
|  | void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { | 
|  | // Consistency check | 
|  | assert(PendingGCRelocateCalls.empty() && | 
|  | "Trying to visit statepoint before finished processing previous one"); | 
|  | Locations.clear(); | 
|  | NextSlotToAllocate = 0; | 
|  | // Need to resize this on each safepoint - we need the two to stay in | 
|  | // sync and the clear patterns of a SelectionDAGBuilder have no relation | 
|  | // to FunctionLoweringInfo. | 
|  | AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); | 
|  | for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { | 
|  | AllocatedStackSlots[i] = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void StatepointLoweringState::clear() { | 
|  | Locations.clear(); | 
|  | AllocatedStackSlots.clear(); | 
|  | assert(PendingGCRelocateCalls.empty() && | 
|  | "cleared before statepoint sequence completed"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | StatepointLoweringState::allocateStackSlot(EVT ValueType, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | NumSlotsAllocatedForStatepoints++; | 
|  |  | 
|  | // The basic scheme here is to first look for a previously created stack slot | 
|  | // which is not in use (accounting for the fact arbitrary slots may already | 
|  | // be reserved), or to create a new stack slot and use it. | 
|  |  | 
|  | // If this doesn't succeed in 40000 iterations, something is seriously wrong | 
|  | for (int i = 0; i < 40000; i++) { | 
|  | assert(Builder.FuncInfo.StatepointStackSlots.size() == | 
|  | AllocatedStackSlots.size() && | 
|  | "broken invariant"); | 
|  | const size_t NumSlots = AllocatedStackSlots.size(); | 
|  | assert(NextSlotToAllocate <= NumSlots && "broken invariant"); | 
|  |  | 
|  | if (NextSlotToAllocate >= NumSlots) { | 
|  | assert(NextSlotToAllocate == NumSlots); | 
|  | // record stats | 
|  | if (NumSlots + 1 > StatepointMaxSlotsRequired) { | 
|  | StatepointMaxSlotsRequired = NumSlots + 1; | 
|  | } | 
|  |  | 
|  | SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); | 
|  | const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | Builder.FuncInfo.StatepointStackSlots.push_back(FI); | 
|  | AllocatedStackSlots.push_back(true); | 
|  | return SpillSlot; | 
|  | } | 
|  | if (!AllocatedStackSlots[NextSlotToAllocate]) { | 
|  | const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; | 
|  | AllocatedStackSlots[NextSlotToAllocate] = true; | 
|  | return Builder.DAG.getFrameIndex(FI, ValueType); | 
|  | } | 
|  | // Note: We deliberately choose to advance this only on the failing path. | 
|  | // Doing so on the suceeding path involes a bit of complexity that caused a | 
|  | // minor bug previously.  Unless performance shows this matters, please | 
|  | // keep this code as simple as possible. | 
|  | NextSlotToAllocate++; | 
|  | } | 
|  | llvm_unreachable("infinite loop?"); | 
|  | } | 
|  |  | 
|  | /// Try to find existing copies of the incoming values in stack slots used for | 
|  | /// statepoint spilling.  If we can find a spill slot for the incoming value, | 
|  | /// mark that slot as allocated, and reuse the same slot for this safepoint. | 
|  | /// This helps to avoid series of loads and stores that only serve to resuffle | 
|  | /// values on the stack between calls. | 
|  | static void reservePreviousStackSlotForValue(SDValue Incoming, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { | 
|  | // We won't need to spill this, so no need to check for previously | 
|  | // allocated stack slots | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); | 
|  | if (Loc.getNode()) { | 
|  | // duplicates in input | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Search back for the load from a stack slot pattern to find the original | 
|  | // slot we allocated for this value.  We could extend this to deal with | 
|  | // simple modification patterns, but simple dealing with trivial load/store | 
|  | // sequences helps a lot already. | 
|  | if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { | 
|  | if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { | 
|  | const int Index = FI->getIndex(); | 
|  | auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), | 
|  | Builder.FuncInfo.StatepointStackSlots.end(), Index); | 
|  | if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { | 
|  | // not one of the lowering stack slots, can't reuse! | 
|  | // TODO: Actually, we probably could reuse the stack slot if the value | 
|  | // hasn't changed at all, but we'd need to look for intervening writes | 
|  | return; | 
|  | } else { | 
|  | // This is one of our dedicated lowering slots | 
|  | const int Offset = | 
|  | std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); | 
|  | if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { | 
|  | // stack slot already assigned to someone else, can't use it! | 
|  | // TODO: currently we reserve space for gc arguments after doing | 
|  | // normal allocation for deopt arguments.  We should reserve for | 
|  | // _all_ deopt and gc arguments, then start allocating.  This | 
|  | // will prevent some moves being inserted when vm state changes, | 
|  | // but gc state doesn't between two calls. | 
|  | return; | 
|  | } | 
|  | // Reserve this stack slot | 
|  | Builder.StatepointLowering.reserveStackSlot(Offset); | 
|  | } | 
|  |  | 
|  | // Cache this slot so we find it when going through the normal | 
|  | // assignment loop. | 
|  | SDValue Loc = | 
|  | Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); | 
|  |  | 
|  | Builder.StatepointLowering.setLocation(Incoming, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: handle case where a reloaded value flows through a phi to | 
|  | // another safepoint.  e.g. | 
|  | // bb1: | 
|  | //  a' = relocated... | 
|  | // bb2: % pred: bb1, bb3, bb4, etc. | 
|  | //  a_phi = phi(a', ...) | 
|  | // statepoint ... a_phi | 
|  | // NOTE: This will require reasoning about cross basic block values.  This is | 
|  | // decidedly non trivial and this might not be the right place to do it.  We | 
|  | // don't really have the information we need here... | 
|  |  | 
|  | // TODO: handle simple updates.  If a value is modified and the original | 
|  | // value is no longer live, it would be nice to put the modified value in the | 
|  | // same slot.  This allows folding of the memory accesses for some | 
|  | // instructions types (like an increment). | 
|  | // statepoint (i) | 
|  | // i1 = i+1 | 
|  | // statepoint (i1) | 
|  | } | 
|  |  | 
|  | /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This | 
|  | /// is not required for correctness.  It's purpose is to reduce the size of | 
|  | /// StackMap section.  It has no effect on the number of spill slots required | 
|  | /// or the actual lowering. | 
|  | static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, | 
|  | SmallVectorImpl<const Value *> &Ptrs, | 
|  | SmallVectorImpl<const Value *> &Relocs, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | // This is horribly ineffecient, but I don't care right now | 
|  | SmallSet<SDValue, 64> Seen; | 
|  |  | 
|  | SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; | 
|  | for (size_t i = 0; i < Ptrs.size(); i++) { | 
|  | SDValue SD = Builder.getValue(Ptrs[i]); | 
|  | // Only add non-duplicates | 
|  | if (Seen.count(SD) == 0) { | 
|  | NewBases.push_back(Bases[i]); | 
|  | NewPtrs.push_back(Ptrs[i]); | 
|  | NewRelocs.push_back(Relocs[i]); | 
|  | } | 
|  | Seen.insert(SD); | 
|  | } | 
|  | assert(Bases.size() >= NewBases.size()); | 
|  | assert(Ptrs.size() >= NewPtrs.size()); | 
|  | assert(Relocs.size() >= NewRelocs.size()); | 
|  | Bases = NewBases; | 
|  | Ptrs = NewPtrs; | 
|  | Relocs = NewRelocs; | 
|  | assert(Ptrs.size() == Bases.size()); | 
|  | assert(Ptrs.size() == Relocs.size()); | 
|  | } | 
|  |  | 
|  | /// Extract call from statepoint, lower it and return pointer to the | 
|  | /// call node. Also update NodeMap so that getValue(statepoint) will | 
|  | /// reference lowered call result | 
|  | static SDNode * | 
|  | lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad, | 
|  | SelectionDAGBuilder &Builder, | 
|  | SmallVectorImpl<SDValue> &PendingExports) { | 
|  |  | 
|  | ImmutableCallSite CS(ISP.getCallSite()); | 
|  |  | 
|  | SDValue ActualCallee = Builder.getValue(ISP.getActualCallee()); | 
|  |  | 
|  | assert(CS.getCallingConv() != CallingConv::AnyReg && | 
|  | "anyregcc is not supported on statepoints!"); | 
|  |  | 
|  | Type *DefTy = ISP.getActualReturnType(); | 
|  | bool HasDef = !DefTy->isVoidTy(); | 
|  |  | 
|  | SDValue ReturnValue, CallEndVal; | 
|  | std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( | 
|  | ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, | 
|  | ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad, | 
|  | false /* IsPatchPoint */); | 
|  |  | 
|  | SDNode *CallEnd = CallEndVal.getNode(); | 
|  |  | 
|  | // Get a call instruction from the call sequence chain.  Tail calls are not | 
|  | // allowed.  The following code is essentially reverse engineering X86's | 
|  | // LowerCallTo. | 
|  | // | 
|  | // We are expecting DAG to have the following form: | 
|  | // | 
|  | // ch = eh_label (only in case of invoke statepoint) | 
|  | //   ch, glue = callseq_start ch | 
|  | //   ch, glue = X86::Call ch, glue | 
|  | //   ch, glue = callseq_end ch, glue | 
|  | //   get_return_value ch, glue | 
|  | // | 
|  | // get_return_value can either be a CopyFromReg to grab the return value from | 
|  | // %RAX, or it can be a LOAD to load a value returned by reference via a stack | 
|  | // slot. | 
|  |  | 
|  | if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || | 
|  | CallEnd->getOpcode() == ISD::LOAD)) | 
|  | CallEnd = CallEnd->getOperand(0).getNode(); | 
|  |  | 
|  | assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); | 
|  |  | 
|  | if (HasDef) { | 
|  | if (CS.isInvoke()) { | 
|  | // Result value will be used in different basic block for invokes | 
|  | // so we need to export it now. But statepoint call has a different type | 
|  | // than the actuall call. It means that standart exporting mechanism will | 
|  | // create register of the wrong type. So instead we need to create | 
|  | // register with correct type and save value into it manually. | 
|  | // TODO: To eliminate this problem we can remove gc.result intrinsics | 
|  | //       completelly and make statepoint call to return a tuple. | 
|  | unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); | 
|  | RegsForValue RFV(*Builder.DAG.getContext(), | 
|  | Builder.DAG.getTargetLoweringInfo(), Reg, | 
|  | ISP.getActualReturnType()); | 
|  | SDValue Chain = Builder.DAG.getEntryNode(); | 
|  |  | 
|  | RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, | 
|  | nullptr); | 
|  | PendingExports.push_back(Chain); | 
|  | Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; | 
|  | } else { | 
|  | // The value of the statepoint itself will be the value of call itself. | 
|  | // We'll replace the actually call node shortly.  gc_result will grab | 
|  | // this value. | 
|  | Builder.setValue(CS.getInstruction(), ReturnValue); | 
|  | } | 
|  | } else { | 
|  | // The token value is never used from here on, just generate a poison value | 
|  | Builder.setValue(CS.getInstruction(), | 
|  | Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); | 
|  | } | 
|  |  | 
|  | return CallEnd->getOperand(0).getNode(); | 
|  | } | 
|  |  | 
|  | /// Callect all gc pointers coming into statepoint intrinsic, clean them up, | 
|  | /// and return two arrays: | 
|  | ///   Bases - base pointers incoming to this statepoint | 
|  | ///   Ptrs - derived pointers incoming to this statepoint | 
|  | ///   Relocs - the gc_relocate corresponding to each base/ptr pair | 
|  | /// Elements of this arrays should be in one-to-one correspondence with each | 
|  | /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call | 
|  | static void getIncomingStatepointGCValues( | 
|  | SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, | 
|  | SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | for (GCRelocateOperands relocateOpers : | 
|  | StatepointSite.getRelocates(StatepointSite)) { | 
|  | Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); | 
|  | Bases.push_back(relocateOpers.getBasePtr()); | 
|  | Ptrs.push_back(relocateOpers.getDerivedPtr()); | 
|  | } | 
|  |  | 
|  | // Remove any redundant llvm::Values which map to the same SDValue as another | 
|  | // input.  Also has the effect of removing duplicates in the original | 
|  | // llvm::Value input list as well.  This is a useful optimization for | 
|  | // reducing the size of the StackMap section.  It has no other impact. | 
|  | removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); | 
|  |  | 
|  | assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); | 
|  | } | 
|  |  | 
|  | /// Spill a value incoming to the statepoint. It might be either part of | 
|  | /// vmstate | 
|  | /// or gcstate. In both cases unconditionally spill it on the stack unless it | 
|  | /// is a null constant. Return pair with first element being frame index | 
|  | /// containing saved value and second element with outgoing chain from the | 
|  | /// emitted store | 
|  | static std::pair<SDValue, SDValue> | 
|  | spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); | 
|  |  | 
|  | // Emit new store if we didn't do it for this ptr before | 
|  | if (!Loc.getNode()) { | 
|  | Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), | 
|  | Builder); | 
|  | assert(isa<FrameIndexSDNode>(Loc)); | 
|  | int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); | 
|  | // We use TargetFrameIndex so that isel will not select it into LEA | 
|  | Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); | 
|  |  | 
|  | // TODO: We can create TokenFactor node instead of | 
|  | //       chaining stores one after another, this may allow | 
|  | //       a bit more optimal scheduling for them | 
|  | Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, | 
|  | MachinePointerInfo::getFixedStack(Index), | 
|  | false, false, 0); | 
|  |  | 
|  | Builder.StatepointLowering.setLocation(Incoming, Loc); | 
|  | } | 
|  |  | 
|  | assert(Loc.getNode()); | 
|  | return std::make_pair(Loc, Chain); | 
|  | } | 
|  |  | 
|  | /// Lower a single value incoming to a statepoint node.  This value can be | 
|  | /// either a deopt value or a gc value, the handling is the same.  We special | 
|  | /// case constants and allocas, then fall back to spilling if required. | 
|  | static void lowerIncomingStatepointValue(SDValue Incoming, | 
|  | SmallVectorImpl<SDValue> &Ops, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | SDValue Chain = Builder.getRoot(); | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { | 
|  | // If the original value was a constant, make sure it gets recorded as | 
|  | // such in the stackmap.  This is required so that the consumer can | 
|  | // parse any internal format to the deopt state.  It also handles null | 
|  | // pointers and other constant pointers in GC states | 
|  | pushStackMapConstant(Ops, Builder, C->getSExtValue()); | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { | 
|  | // This handles allocas as arguments to the statepoint (this is only | 
|  | // really meaningful for a deopt value.  For GC, we'd be trying to | 
|  | // relocate the address of the alloca itself?) | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), | 
|  | Incoming.getValueType())); | 
|  | } else { | 
|  | // Otherwise, locate a spill slot and explicitly spill it so it | 
|  | // can be found by the runtime later.  We currently do not support | 
|  | // tracking values through callee saved registers to their eventual | 
|  | // spill location.  This would be a useful optimization, but would | 
|  | // need to be optional since it requires a lot of complexity on the | 
|  | // runtime side which not all would support. | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | spillIncomingStatepointValue(Incoming, Chain, Builder); | 
|  | Ops.push_back(Res.first); | 
|  | Chain = Res.second; | 
|  | } | 
|  |  | 
|  | Builder.DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// Lower deopt state and gc pointer arguments of the statepoint.  The actual | 
|  | /// lowering is described in lowerIncomingStatepointValue.  This function is | 
|  | /// responsible for lowering everything in the right position and playing some | 
|  | /// tricks to avoid redundant stack manipulation where possible.  On | 
|  | /// completion, 'Ops' will contain ready to use operands for machine code | 
|  | /// statepoint. The chain nodes will have already been created and the DAG root | 
|  | /// will be set to the last value spilled (if any were). | 
|  | static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, | 
|  | ImmutableStatepoint StatepointSite, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | // Lower the deopt and gc arguments for this statepoint.  Layout will | 
|  | // be: deopt argument length, deopt arguments.., gc arguments... | 
|  |  | 
|  | SmallVector<const Value *, 64> Bases, Ptrs, Relocations; | 
|  | getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, | 
|  | Builder); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check that each of the gc pointer and bases we've gotten out of the | 
|  | // safepoint is something the strategy thinks might be a pointer into the GC | 
|  | // heap.  This is basically just here to help catch errors during statepoint | 
|  | // insertion. TODO: This should actually be in the Verifier, but we can't get | 
|  | // to the GCStrategy from there (yet). | 
|  | GCStrategy &S = Builder.GFI->getStrategy(); | 
|  | for (const Value *V : Bases) { | 
|  | auto Opt = S.isGCManagedPointer(V); | 
|  | if (Opt.hasValue()) { | 
|  | assert(Opt.getValue() && | 
|  | "non gc managed base pointer found in statepoint"); | 
|  | } | 
|  | } | 
|  | for (const Value *V : Ptrs) { | 
|  | auto Opt = S.isGCManagedPointer(V); | 
|  | if (Opt.hasValue()) { | 
|  | assert(Opt.getValue() && | 
|  | "non gc managed derived pointer found in statepoint"); | 
|  | } | 
|  | } | 
|  | for (const Value *V : Relocations) { | 
|  | auto Opt = S.isGCManagedPointer(V); | 
|  | if (Opt.hasValue()) { | 
|  | assert(Opt.getValue() && "non gc managed pointer relocated"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Before we actually start lowering (and allocating spill slots for values), | 
|  | // reserve any stack slots which we judge to be profitable to reuse for a | 
|  | // particular value.  This is purely an optimization over the code below and | 
|  | // doesn't change semantics at all.  It is important for performance that we | 
|  | // reserve slots for both deopt and gc values before lowering either. | 
|  | for (const Value *V : StatepointSite.vm_state_args()) { | 
|  | SDValue Incoming = Builder.getValue(V); | 
|  | reservePreviousStackSlotForValue(Incoming, Builder); | 
|  | } | 
|  | for (unsigned i = 0; i < Bases.size(); ++i) { | 
|  | const Value *Base = Bases[i]; | 
|  | reservePreviousStackSlotForValue(Builder.getValue(Base), Builder); | 
|  |  | 
|  | const Value *Ptr = Ptrs[i]; | 
|  | reservePreviousStackSlotForValue(Builder.getValue(Ptr), Builder); | 
|  | } | 
|  |  | 
|  | // First, prefix the list with the number of unique values to be | 
|  | // lowered.  Note that this is the number of *Values* not the | 
|  | // number of SDValues required to lower them. | 
|  | const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); | 
|  | pushStackMapConstant(Ops, Builder, NumVMSArgs); | 
|  |  | 
|  | assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), | 
|  | StatepointSite.vm_state_end())); | 
|  |  | 
|  | // The vm state arguments are lowered in an opaque manner.  We do | 
|  | // not know what type of values are contained within.  We skip the | 
|  | // first one since that happens to be the total number we lowered | 
|  | // explicitly just above.  We could have left it in the loop and | 
|  | // not done it explicitly, but it's far easier to understand this | 
|  | // way. | 
|  | for (const Value *V : StatepointSite.vm_state_args()) { | 
|  | SDValue Incoming = Builder.getValue(V); | 
|  | lowerIncomingStatepointValue(Incoming, Ops, Builder); | 
|  | } | 
|  |  | 
|  | // Finally, go ahead and lower all the gc arguments.  There's no prefixed | 
|  | // length for this one.  After lowering, we'll have the base and pointer | 
|  | // arrays interwoven with each (lowered) base pointer immediately followed by | 
|  | // it's (lowered) derived pointer.  i.e | 
|  | // (base[0], ptr[0], base[1], ptr[1], ...) | 
|  | for (unsigned i = 0; i < Bases.size(); ++i) { | 
|  | const Value *Base = Bases[i]; | 
|  | lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); | 
|  |  | 
|  | const Value *Ptr = Ptrs[i]; | 
|  | lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); | 
|  | } | 
|  |  | 
|  | // If there are any explicit spill slots passed to the statepoint, record | 
|  | // them, but otherwise do not do anything special.  These are user provided | 
|  | // allocas and give control over placement to the consumer.  In this case, | 
|  | // it is the contents of the slot which may get updated, not the pointer to | 
|  | // the alloca | 
|  | for (Value *V : StatepointSite.gc_args()) { | 
|  | SDValue Incoming = Builder.getValue(V); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { | 
|  | // This handles allocas as arguments to the statepoint | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), | 
|  | Incoming.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record computed locations for all lowered values. | 
|  | // This can not be embedded in lowering loops as we need to record *all* | 
|  | // values, while previous loops account only values with unique SDValues. | 
|  | const Instruction *StatepointInstr = | 
|  | StatepointSite.getCallSite().getInstruction(); | 
|  | FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = | 
|  | Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; | 
|  |  | 
|  | for (GCRelocateOperands RelocateOpers : | 
|  | StatepointSite.getRelocates(StatepointSite)) { | 
|  | const Value *V = RelocateOpers.getDerivedPtr(); | 
|  | SDValue SDV = Builder.getValue(V); | 
|  | SDValue Loc = Builder.StatepointLowering.getLocation(SDV); | 
|  |  | 
|  | if (Loc.getNode()) { | 
|  | SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); | 
|  | } else { | 
|  | // Record value as visited, but not spilled. This is case for allocas | 
|  | // and constants. For this values we can avoid emiting spill load while | 
|  | // visiting corresponding gc_relocate. | 
|  | // Actually we do not need to record them in this map at all. | 
|  | // We do this only to check that we are not relocating any unvisited value. | 
|  | SpillMap[V] = None; | 
|  |  | 
|  | // Default llvm mechanisms for exporting values which are used in | 
|  | // different basic blocks does not work for gc relocates. | 
|  | // Note that it would be incorrect to teach llvm that all relocates are | 
|  | // uses of the corresponging values so that it would automatically | 
|  | // export them. Relocates of the spilled values does not use original | 
|  | // value. | 
|  | if (StatepointSite.getCallSite().isInvoke()) | 
|  | Builder.ExportFromCurrentBlock(V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { | 
|  | // Check some preconditions for sanity | 
|  | assert(isStatepoint(&CI) && | 
|  | "function called must be the statepoint function"); | 
|  |  | 
|  | LowerStatepoint(ImmutableStatepoint(&CI)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerStatepoint( | 
|  | ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) { | 
|  | // The basic scheme here is that information about both the original call and | 
|  | // the safepoint is encoded in the CallInst.  We create a temporary call and | 
|  | // lower it, then reverse engineer the calling sequence. | 
|  |  | 
|  | NumOfStatepoints++; | 
|  | // Clear state | 
|  | StatepointLowering.startNewStatepoint(*this); | 
|  |  | 
|  | ImmutableCallSite CS(ISP.getCallSite()); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Consistency check. Don't do this for invokes. It would be too | 
|  | // expensive to preserve this information across different basic blocks | 
|  | if (!CS.isInvoke()) { | 
|  | for (const User *U : CS->users()) { | 
|  | const CallInst *Call = cast<CallInst>(U); | 
|  | if (isGCRelocate(Call)) | 
|  | StatepointLowering.scheduleRelocCall(*Call); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If this is a malformed statepoint, report it early to simplify debugging. | 
|  | // This should catch any IR level mistake that's made when constructing or | 
|  | // transforming statepoints. | 
|  | ISP.verify(); | 
|  |  | 
|  | // Check that the associated GCStrategy expects to encounter statepoints. | 
|  | assert(GFI->getStrategy().useStatepoints() && | 
|  | "GCStrategy does not expect to encounter statepoints"); | 
|  | #endif | 
|  |  | 
|  | // Lower statepoint vmstate and gcstate arguments | 
|  | SmallVector<SDValue, 10> LoweredMetaArgs; | 
|  | lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); | 
|  |  | 
|  | // Get call node, we will replace it later with statepoint | 
|  | SDNode *CallNode = | 
|  | lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports); | 
|  |  | 
|  | // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END | 
|  | // nodes with all the appropriate arguments and return values. | 
|  |  | 
|  | // Call Node: Chain, Target, {Args}, RegMask, [Glue] | 
|  | SDValue Chain = CallNode->getOperand(0); | 
|  |  | 
|  | SDValue Glue; | 
|  | bool CallHasIncomingGlue = CallNode->getGluedNode(); | 
|  | if (CallHasIncomingGlue) { | 
|  | // Glue is always last operand | 
|  | Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); | 
|  | } | 
|  |  | 
|  | // Build the GC_TRANSITION_START node if necessary. | 
|  | // | 
|  | // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the | 
|  | // order in which they appear in the call to the statepoint intrinsic. If | 
|  | // any of the operands is a pointer-typed, that operand is immediately | 
|  | // followed by a SRCVALUE for the pointer that may be used during lowering | 
|  | // (e.g. to form MachinePointerInfo values for loads/stores). | 
|  | const bool IsGCTransition = | 
|  | (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == | 
|  | (uint64_t)StatepointFlags::GCTransition; | 
|  | if (IsGCTransition) { | 
|  | SmallVector<SDValue, 8> TSOps; | 
|  |  | 
|  | // Add chain | 
|  | TSOps.push_back(Chain); | 
|  |  | 
|  | // Add GC transition arguments | 
|  | for (const Value *V : ISP.gc_transition_args()) { | 
|  | TSOps.push_back(getValue(V)); | 
|  | if (V->getType()->isPointerTy()) | 
|  | TSOps.push_back(DAG.getSrcValue(V)); | 
|  | } | 
|  |  | 
|  | // Add glue if necessary | 
|  | if (CallHasIncomingGlue) | 
|  | TSOps.push_back(Glue); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | SDValue GCTransitionStart = | 
|  | DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); | 
|  |  | 
|  | Chain = GCTransitionStart.getValue(0); | 
|  | Glue = GCTransitionStart.getValue(1); | 
|  | } | 
|  |  | 
|  | // TODO: Currently, all of these operands are being marked as read/write in | 
|  | // PrologEpilougeInserter.cpp, we should special case the VMState arguments | 
|  | // and flags to be read-only. | 
|  | SmallVector<SDValue, 40> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); | 
|  | Ops.push_back( | 
|  | DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); | 
|  |  | 
|  | // Calculate and push starting position of vmstate arguments | 
|  | // Get number of arguments incoming directly into call node | 
|  | unsigned NumCallRegArgs = | 
|  | CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); | 
|  | Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); | 
|  |  | 
|  | // Add call target | 
|  | SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); | 
|  | Ops.push_back(CallTarget); | 
|  |  | 
|  | // Add call arguments | 
|  | // Get position of register mask in the call | 
|  | SDNode::op_iterator RegMaskIt; | 
|  | if (CallHasIncomingGlue) | 
|  | RegMaskIt = CallNode->op_end() - 2; | 
|  | else | 
|  | RegMaskIt = CallNode->op_end() - 1; | 
|  | Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); | 
|  |  | 
|  | // Add a constant argument for the calling convention | 
|  | pushStackMapConstant(Ops, *this, CS.getCallingConv()); | 
|  |  | 
|  | // Add a constant argument for the flags | 
|  | uint64_t Flags = ISP.getFlags(); | 
|  | assert( | 
|  | ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) | 
|  | && "unknown flag used"); | 
|  | pushStackMapConstant(Ops, *this, Flags); | 
|  |  | 
|  | // Insert all vmstate and gcstate arguments | 
|  | Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); | 
|  |  | 
|  | // Add register mask from call node | 
|  | Ops.push_back(*RegMaskIt); | 
|  |  | 
|  | // Add chain | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | // Same for the glue, but we add it only if original call had it | 
|  | if (Glue.getNode()) | 
|  | Ops.push_back(Glue); | 
|  |  | 
|  | // Compute return values.  Provide a glue output since we consume one as | 
|  | // input.  This allows someone else to chain off us as needed. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | SDNode *StatepointMCNode = | 
|  | DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); | 
|  |  | 
|  | SDNode *SinkNode = StatepointMCNode; | 
|  |  | 
|  | // Build the GC_TRANSITION_END node if necessary. | 
|  | // | 
|  | // See the comment above regarding GC_TRANSITION_START for the layout of | 
|  | // the operands to the GC_TRANSITION_END node. | 
|  | if (IsGCTransition) { | 
|  | SmallVector<SDValue, 8> TEOps; | 
|  |  | 
|  | // Add chain | 
|  | TEOps.push_back(SDValue(StatepointMCNode, 0)); | 
|  |  | 
|  | // Add GC transition arguments | 
|  | for (const Value *V : ISP.gc_transition_args()) { | 
|  | TEOps.push_back(getValue(V)); | 
|  | if (V->getType()->isPointerTy()) | 
|  | TEOps.push_back(DAG.getSrcValue(V)); | 
|  | } | 
|  |  | 
|  | // Add glue | 
|  | TEOps.push_back(SDValue(StatepointMCNode, 1)); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | SDValue GCTransitionStart = | 
|  | DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); | 
|  |  | 
|  | SinkNode = GCTransitionStart.getNode(); | 
|  | } | 
|  |  | 
|  | // Replace original call | 
|  | DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root | 
|  | // Remove originall call node | 
|  | DAG.DeleteNode(CallNode); | 
|  |  | 
|  | // DON'T set the root - under the assumption that it's already set past the | 
|  | // inserted node we created. | 
|  |  | 
|  | // TODO: A better future implementation would be to emit a single variable | 
|  | // argument, variable return value STATEPOINT node here and then hookup the | 
|  | // return value of each gc.relocate to the respective output of the | 
|  | // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear | 
|  | // to actually be possible today. | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { | 
|  | // The result value of the gc_result is simply the result of the actual | 
|  | // call.  We've already emitted this, so just grab the value. | 
|  | Instruction *I = cast<Instruction>(CI.getArgOperand(0)); | 
|  | assert(isStatepoint(I) && "first argument must be a statepoint token"); | 
|  |  | 
|  | if (isa<InvokeInst>(I)) { | 
|  | // For invokes we should have stored call result in a virtual register. | 
|  | // We can not use default getValue() functionality to copy value from this | 
|  | // register because statepoint and actuall call return types can be | 
|  | // different, and getValue() will use CopyFromReg of the wrong type, | 
|  | // which is always i32 in our case. | 
|  | PointerType *CalleeType = | 
|  | cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType()); | 
|  | Type *RetTy = | 
|  | cast<FunctionType>(CalleeType->getElementType())->getReturnType(); | 
|  | SDValue CopyFromReg = getCopyFromRegs(I, RetTy); | 
|  |  | 
|  | assert(CopyFromReg.getNode()); | 
|  | setValue(&CI, CopyFromReg); | 
|  | } else { | 
|  | setValue(&CI, getValue(I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { | 
|  | GCRelocateOperands RelocateOpers(&CI); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Consistency check | 
|  | // We skip this check for invoke statepoints. It would be too expensive to | 
|  | // preserve validation info through different basic blocks. | 
|  | if (!RelocateOpers.isTiedToInvoke()) { | 
|  | StatepointLowering.relocCallVisited(CI); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); | 
|  | SDValue SD = getValue(DerivedPtr); | 
|  |  | 
|  | FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = | 
|  | FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; | 
|  |  | 
|  | // We should have recorded location for this pointer | 
|  | assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); | 
|  | Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; | 
|  |  | 
|  | // We didn't need to spill these special cases (constants and allocas). | 
|  | // See the handling in spillIncomingValueForStatepoint for detail. | 
|  | if (!DerivedPtrLocation) { | 
|  | setValue(&CI, SD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, | 
|  | SD.getValueType()); | 
|  |  | 
|  | // Be conservative: flush all pending loads | 
|  | // TODO: Probably we can be less restrictive on this, | 
|  | // it may allow more scheduling opprtunities | 
|  | SDValue Chain = getRoot(); | 
|  |  | 
|  | SDValue SpillLoad = | 
|  | DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, | 
|  | MachinePointerInfo::getFixedStack(*DerivedPtrLocation), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // Again, be conservative, don't emit pending loads | 
|  | DAG.setRoot(SpillLoad.getValue(1)); | 
|  |  | 
|  | assert(SpillLoad.getNode()); | 
|  | setValue(&CI, SpillLoad); | 
|  | } |