|  | //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the actions class which performs semantic analysis and | 
|  | // builds an AST out of a parse stream. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclFriend.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/PrettyDeclStackTrace.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/Basic/DiagnosticOptions.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/HeaderSearch.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/CXXFieldCollector.h" | 
|  | #include "clang/Sema/DelayedDiagnostic.h" | 
|  | #include "clang/Sema/ExternalSemaSource.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/MultiplexExternalSemaSource.h" | 
|  | #include "clang/Sema/ObjCMethodList.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaConsumer.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "clang/Sema/TemplateInstCallback.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) { | 
|  | return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); | 
|  | } | 
|  |  | 
|  | ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); } | 
|  |  | 
|  | PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context, | 
|  | const Preprocessor &PP) { | 
|  | PrintingPolicy Policy = Context.getPrintingPolicy(); | 
|  | // In diagnostics, we print _Bool as bool if the latter is defined as the | 
|  | // former. | 
|  | Policy.Bool = Context.getLangOpts().Bool; | 
|  | if (!Policy.Bool) { | 
|  | if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) { | 
|  | Policy.Bool = BoolMacro->isObjectLike() && | 
|  | BoolMacro->getNumTokens() == 1 && | 
|  | BoolMacro->getReplacementToken(0).is(tok::kw__Bool); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Policy; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTranslationUnitScope(Scope *S) { | 
|  | TUScope = S; | 
|  | PushDeclContext(S, Context.getTranslationUnitDecl()); | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  | namespace sema { | 
|  |  | 
|  | class SemaPPCallbacks : public PPCallbacks { | 
|  | Sema *S = nullptr; | 
|  | llvm::SmallVector<SourceLocation, 8> IncludeStack; | 
|  |  | 
|  | public: | 
|  | void set(Sema &S) { this->S = &S; } | 
|  |  | 
|  | void reset() { S = nullptr; } | 
|  |  | 
|  | virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason, | 
|  | SrcMgr::CharacteristicKind FileType, | 
|  | FileID PrevFID) override { | 
|  | if (!S) | 
|  | return; | 
|  | switch (Reason) { | 
|  | case EnterFile: { | 
|  | SourceManager &SM = S->getSourceManager(); | 
|  | SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc)); | 
|  | if (IncludeLoc.isValid()) { | 
|  | IncludeStack.push_back(IncludeLoc); | 
|  | S->DiagnoseNonDefaultPragmaPack( | 
|  | Sema::PragmaPackDiagnoseKind::NonDefaultStateAtInclude, IncludeLoc); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ExitFile: | 
|  | if (!IncludeStack.empty()) | 
|  | S->DiagnoseNonDefaultPragmaPack( | 
|  | Sema::PragmaPackDiagnoseKind::ChangedStateAtExit, | 
|  | IncludeStack.pop_back_val()); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace sema | 
|  | } // end namespace clang | 
|  |  | 
|  | Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, | 
|  | TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter) | 
|  | : ExternalSource(nullptr), isMultiplexExternalSource(false), | 
|  | FPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp), | 
|  | Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()), | 
|  | SourceMgr(PP.getSourceManager()), CollectStats(false), | 
|  | CodeCompleter(CodeCompleter), CurContext(nullptr), | 
|  | OriginalLexicalContext(nullptr), MSStructPragmaOn(false), | 
|  | MSPointerToMemberRepresentationMethod( | 
|  | LangOpts.getMSPointerToMemberRepresentationMethod()), | 
|  | VtorDispStack(MSVtorDispAttr::Mode(LangOpts.VtorDispMode)), PackStack(0), | 
|  | DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr), | 
|  | CodeSegStack(nullptr), CurInitSeg(nullptr), VisContext(nullptr), | 
|  | PragmaAttributeCurrentTargetDecl(nullptr), | 
|  | IsBuildingRecoveryCallExpr(false), Cleanup{}, LateTemplateParser(nullptr), | 
|  | LateTemplateParserCleanup(nullptr), OpaqueParser(nullptr), IdResolver(pp), | 
|  | StdExperimentalNamespaceCache(nullptr), StdInitializerList(nullptr), | 
|  | StdCoroutineTraitsCache(nullptr), CXXTypeInfoDecl(nullptr), | 
|  | MSVCGuidDecl(nullptr), NSNumberDecl(nullptr), NSValueDecl(nullptr), | 
|  | NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr), | 
|  | ValueWithBytesObjCTypeMethod(nullptr), NSArrayDecl(nullptr), | 
|  | ArrayWithObjectsMethod(nullptr), NSDictionaryDecl(nullptr), | 
|  | DictionaryWithObjectsMethod(nullptr), GlobalNewDeleteDeclared(false), | 
|  | TUKind(TUKind), NumSFINAEErrors(0), | 
|  | FullyCheckedComparisonCategories( | 
|  | static_cast<unsigned>(ComparisonCategoryType::Last) + 1), | 
|  | AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false), | 
|  | NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1), | 
|  | CurrentInstantiationScope(nullptr), DisableTypoCorrection(false), | 
|  | TyposCorrected(0), AnalysisWarnings(*this), | 
|  | ThreadSafetyDeclCache(nullptr), VarDataSharingAttributesStack(nullptr), | 
|  | CurScope(nullptr), Ident_super(nullptr), Ident___float128(nullptr) { | 
|  | TUScope = nullptr; | 
|  |  | 
|  | LoadedExternalKnownNamespaces = false; | 
|  | for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I) | 
|  | NSNumberLiteralMethods[I] = nullptr; | 
|  |  | 
|  | if (getLangOpts().ObjC) | 
|  | NSAPIObj.reset(new NSAPI(Context)); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) | 
|  | FieldCollector.reset(new CXXFieldCollector()); | 
|  |  | 
|  | // Tell diagnostics how to render things from the AST library. | 
|  | Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context); | 
|  |  | 
|  | ExprEvalContexts.emplace_back( | 
|  | ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{}, | 
|  | nullptr, ExpressionEvaluationContextRecord::EK_Other); | 
|  |  | 
|  | PreallocatedFunctionScope.reset(new FunctionScopeInfo(Diags)); | 
|  |  | 
|  | // Initialization of data sharing attributes stack for OpenMP | 
|  | InitDataSharingAttributesStack(); | 
|  |  | 
|  | std::unique_ptr<sema::SemaPPCallbacks> Callbacks = | 
|  | llvm::make_unique<sema::SemaPPCallbacks>(); | 
|  | SemaPPCallbackHandler = Callbacks.get(); | 
|  | PP.addPPCallbacks(std::move(Callbacks)); | 
|  | SemaPPCallbackHandler->set(*this); | 
|  | } | 
|  |  | 
|  | void Sema::addImplicitTypedef(StringRef Name, QualType T) { | 
|  | DeclarationName DN = &Context.Idents.get(Name); | 
|  | if (IdResolver.begin(DN) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope); | 
|  | } | 
|  |  | 
|  | void Sema::Initialize() { | 
|  | if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) | 
|  | SC->InitializeSema(*this); | 
|  |  | 
|  | // Tell the external Sema source about this Sema object. | 
|  | if (ExternalSemaSource *ExternalSema | 
|  | = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) | 
|  | ExternalSema->InitializeSema(*this); | 
|  |  | 
|  | // This needs to happen after ExternalSemaSource::InitializeSema(this) or we | 
|  | // will not be able to merge any duplicate __va_list_tag decls correctly. | 
|  | VAListTagName = PP.getIdentifierInfo("__va_list_tag"); | 
|  |  | 
|  | if (!TUScope) | 
|  | return; | 
|  |  | 
|  | // Initialize predefined 128-bit integer types, if needed. | 
|  | if (Context.getTargetInfo().hasInt128Type()) { | 
|  | // If either of the 128-bit integer types are unavailable to name lookup, | 
|  | // define them now. | 
|  | DeclarationName Int128 = &Context.Idents.get("__int128_t"); | 
|  | if (IdResolver.begin(Int128) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getInt128Decl(), TUScope); | 
|  |  | 
|  | DeclarationName UInt128 = &Context.Idents.get("__uint128_t"); | 
|  | if (IdResolver.begin(UInt128) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getUInt128Decl(), TUScope); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Initialize predefined Objective-C types: | 
|  | if (getLangOpts().ObjC) { | 
|  | // If 'SEL' does not yet refer to any declarations, make it refer to the | 
|  | // predefined 'SEL'. | 
|  | DeclarationName SEL = &Context.Idents.get("SEL"); | 
|  | if (IdResolver.begin(SEL) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getObjCSelDecl(), TUScope); | 
|  |  | 
|  | // If 'id' does not yet refer to any declarations, make it refer to the | 
|  | // predefined 'id'. | 
|  | DeclarationName Id = &Context.Idents.get("id"); | 
|  | if (IdResolver.begin(Id) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getObjCIdDecl(), TUScope); | 
|  |  | 
|  | // Create the built-in typedef for 'Class'. | 
|  | DeclarationName Class = &Context.Idents.get("Class"); | 
|  | if (IdResolver.begin(Class) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getObjCClassDecl(), TUScope); | 
|  |  | 
|  | // Create the built-in forward declaratino for 'Protocol'. | 
|  | DeclarationName Protocol = &Context.Idents.get("Protocol"); | 
|  | if (IdResolver.begin(Protocol) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope); | 
|  | } | 
|  |  | 
|  | // Create the internal type for the *StringMakeConstantString builtins. | 
|  | DeclarationName ConstantString = &Context.Idents.get("__NSConstantString"); | 
|  | if (IdResolver.begin(ConstantString) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope); | 
|  |  | 
|  | // Initialize Microsoft "predefined C++ types". | 
|  | if (getLangOpts().MSVCCompat) { | 
|  | if (getLangOpts().CPlusPlus && | 
|  | IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class), | 
|  | TUScope); | 
|  |  | 
|  | addImplicitTypedef("size_t", Context.getSizeType()); | 
|  | } | 
|  |  | 
|  | // Initialize predefined OpenCL types and supported extensions and (optional) | 
|  | // core features. | 
|  | if (getLangOpts().OpenCL) { | 
|  | getOpenCLOptions().addSupport(Context.getTargetInfo().getSupportedOpenCLOpts()); | 
|  | getOpenCLOptions().enableSupportedCore(getLangOpts().OpenCLVersion); | 
|  | addImplicitTypedef("sampler_t", Context.OCLSamplerTy); | 
|  | addImplicitTypedef("event_t", Context.OCLEventTy); | 
|  | if (getLangOpts().OpenCLVersion >= 200) { | 
|  | addImplicitTypedef("clk_event_t", Context.OCLClkEventTy); | 
|  | addImplicitTypedef("queue_t", Context.OCLQueueTy); | 
|  | addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy); | 
|  | addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy)); | 
|  | addImplicitTypedef("atomic_uint", | 
|  | Context.getAtomicType(Context.UnsignedIntTy)); | 
|  | auto AtomicLongT = Context.getAtomicType(Context.LongTy); | 
|  | addImplicitTypedef("atomic_long", AtomicLongT); | 
|  | auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy); | 
|  | addImplicitTypedef("atomic_ulong", AtomicULongT); | 
|  | addImplicitTypedef("atomic_float", | 
|  | Context.getAtomicType(Context.FloatTy)); | 
|  | auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy); | 
|  | addImplicitTypedef("atomic_double", AtomicDoubleT); | 
|  | // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as | 
|  | // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide. | 
|  | addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy)); | 
|  | auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType()); | 
|  | addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT); | 
|  | auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType()); | 
|  | addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT); | 
|  | auto AtomicSizeT = Context.getAtomicType(Context.getSizeType()); | 
|  | addImplicitTypedef("atomic_size_t", AtomicSizeT); | 
|  | auto AtomicPtrDiffT = Context.getAtomicType(Context.getPointerDiffType()); | 
|  | addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT); | 
|  |  | 
|  | // OpenCL v2.0 s6.13.11.6: | 
|  | // - The atomic_long and atomic_ulong types are supported if the | 
|  | //   cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics | 
|  | //   extensions are supported. | 
|  | // - The atomic_double type is only supported if double precision | 
|  | //   is supported and the cl_khr_int64_base_atomics and | 
|  | //   cl_khr_int64_extended_atomics extensions are supported. | 
|  | // - If the device address space is 64-bits, the data types | 
|  | //   atomic_intptr_t, atomic_uintptr_t, atomic_size_t and | 
|  | //   atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and | 
|  | //   cl_khr_int64_extended_atomics extensions are supported. | 
|  | std::vector<QualType> Atomic64BitTypes; | 
|  | Atomic64BitTypes.push_back(AtomicLongT); | 
|  | Atomic64BitTypes.push_back(AtomicULongT); | 
|  | Atomic64BitTypes.push_back(AtomicDoubleT); | 
|  | if (Context.getTypeSize(AtomicSizeT) == 64) { | 
|  | Atomic64BitTypes.push_back(AtomicSizeT); | 
|  | Atomic64BitTypes.push_back(AtomicIntPtrT); | 
|  | Atomic64BitTypes.push_back(AtomicUIntPtrT); | 
|  | Atomic64BitTypes.push_back(AtomicPtrDiffT); | 
|  | } | 
|  | for (auto &I : Atomic64BitTypes) | 
|  | setOpenCLExtensionForType(I, | 
|  | "cl_khr_int64_base_atomics cl_khr_int64_extended_atomics"); | 
|  |  | 
|  | setOpenCLExtensionForType(AtomicDoubleT, "cl_khr_fp64"); | 
|  | } | 
|  |  | 
|  | setOpenCLExtensionForType(Context.DoubleTy, "cl_khr_fp64"); | 
|  |  | 
|  | #define GENERIC_IMAGE_TYPE_EXT(Type, Id, Ext) \ | 
|  | setOpenCLExtensionForType(Context.Id, Ext); | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
|  | addImplicitTypedef(#ExtType, Context.Id##Ty); \ | 
|  | setOpenCLExtensionForType(Context.Id##Ty, #Ext); | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | }; | 
|  |  | 
|  | if (Context.getTargetInfo().hasBuiltinMSVaList()) { | 
|  | DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list"); | 
|  | if (IdResolver.begin(MSVaList) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope); | 
|  | } | 
|  |  | 
|  | DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list"); | 
|  | if (IdResolver.begin(BuiltinVaList) == IdResolver.end()) | 
|  | PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope); | 
|  | } | 
|  |  | 
|  | Sema::~Sema() { | 
|  | if (VisContext) FreeVisContext(); | 
|  |  | 
|  | // Kill all the active scopes. | 
|  | for (sema::FunctionScopeInfo *FSI : FunctionScopes) | 
|  | if (FSI != PreallocatedFunctionScope.get()) | 
|  | delete FSI; | 
|  |  | 
|  | // Tell the SemaConsumer to forget about us; we're going out of scope. | 
|  | if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) | 
|  | SC->ForgetSema(); | 
|  |  | 
|  | // Detach from the external Sema source. | 
|  | if (ExternalSemaSource *ExternalSema | 
|  | = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) | 
|  | ExternalSema->ForgetSema(); | 
|  |  | 
|  | // If Sema's ExternalSource is the multiplexer - we own it. | 
|  | if (isMultiplexExternalSource) | 
|  | delete ExternalSource; | 
|  |  | 
|  | threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache); | 
|  |  | 
|  | // Destroys data sharing attributes stack for OpenMP | 
|  | DestroyDataSharingAttributesStack(); | 
|  |  | 
|  | // Detach from the PP callback handler which outlives Sema since it's owned | 
|  | // by the preprocessor. | 
|  | SemaPPCallbackHandler->reset(); | 
|  |  | 
|  | assert(DelayedTypos.empty() && "Uncorrected typos!"); | 
|  | } | 
|  |  | 
|  | /// makeUnavailableInSystemHeader - There is an error in the current | 
|  | /// context.  If we're still in a system header, and we can plausibly | 
|  | /// make the relevant declaration unavailable instead of erroring, do | 
|  | /// so and return true. | 
|  | bool Sema::makeUnavailableInSystemHeader(SourceLocation loc, | 
|  | UnavailableAttr::ImplicitReason reason) { | 
|  | // If we're not in a function, it's an error. | 
|  | FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext); | 
|  | if (!fn) return false; | 
|  |  | 
|  | // If we're in template instantiation, it's an error. | 
|  | if (inTemplateInstantiation()) | 
|  | return false; | 
|  |  | 
|  | // If that function's not in a system header, it's an error. | 
|  | if (!Context.getSourceManager().isInSystemHeader(loc)) | 
|  | return false; | 
|  |  | 
|  | // If the function is already unavailable, it's not an error. | 
|  | if (fn->hasAttr<UnavailableAttr>()) return true; | 
|  |  | 
|  | fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ASTMutationListener *Sema::getASTMutationListener() const { | 
|  | return getASTConsumer().GetASTMutationListener(); | 
|  | } | 
|  |  | 
|  | ///Registers an external source. If an external source already exists, | 
|  | /// creates a multiplex external source and appends to it. | 
|  | /// | 
|  | ///\param[in] E - A non-null external sema source. | 
|  | /// | 
|  | void Sema::addExternalSource(ExternalSemaSource *E) { | 
|  | assert(E && "Cannot use with NULL ptr"); | 
|  |  | 
|  | if (!ExternalSource) { | 
|  | ExternalSource = E; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isMultiplexExternalSource) | 
|  | static_cast<MultiplexExternalSemaSource*>(ExternalSource)->addSource(*E); | 
|  | else { | 
|  | ExternalSource = new MultiplexExternalSemaSource(*ExternalSource, *E); | 
|  | isMultiplexExternalSource = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Print out statistics about the semantic analysis. | 
|  | void Sema::PrintStats() const { | 
|  | llvm::errs() << "\n*** Semantic Analysis Stats:\n"; | 
|  | llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n"; | 
|  |  | 
|  | BumpAlloc.PrintStats(); | 
|  | AnalysisWarnings.PrintStats(); | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseNullableToNonnullConversion(QualType DstType, | 
|  | QualType SrcType, | 
|  | SourceLocation Loc) { | 
|  | Optional<NullabilityKind> ExprNullability = SrcType->getNullability(Context); | 
|  | if (!ExprNullability || *ExprNullability != NullabilityKind::Nullable) | 
|  | return; | 
|  |  | 
|  | Optional<NullabilityKind> TypeNullability = DstType->getNullability(Context); | 
|  | if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull) | 
|  | return; | 
|  |  | 
|  | Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr* E) { | 
|  | if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant, | 
|  | E->getBeginLoc())) | 
|  | return; | 
|  | // nullptr only exists from C++11 on, so don't warn on its absence earlier. | 
|  | if (!getLangOpts().CPlusPlus11) | 
|  | return; | 
|  |  | 
|  | if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer) | 
|  | return; | 
|  | if (E->IgnoreParenImpCasts()->getType()->isNullPtrType()) | 
|  | return; | 
|  |  | 
|  | // If it is a macro from system header, and if the macro name is not "NULL", | 
|  | // do not warn. | 
|  | SourceLocation MaybeMacroLoc = E->getBeginLoc(); | 
|  | if (Diags.getSuppressSystemWarnings() && | 
|  | SourceMgr.isInSystemMacro(MaybeMacroLoc) && | 
|  | !findMacroSpelling(MaybeMacroLoc, "NULL")) | 
|  | return; | 
|  |  | 
|  | Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant) | 
|  | << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr"); | 
|  | } | 
|  |  | 
|  | /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. | 
|  | /// If there is already an implicit cast, merge into the existing one. | 
|  | /// The result is of the given category. | 
|  | ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty, | 
|  | CastKind Kind, ExprValueKind VK, | 
|  | const CXXCastPath *BasePath, | 
|  | CheckedConversionKind CCK) { | 
|  | #ifndef NDEBUG | 
|  | if (VK == VK_RValue && !E->isRValue()) { | 
|  | switch (Kind) { | 
|  | default: | 
|  | llvm_unreachable("can't implicitly cast lvalue to rvalue with this cast " | 
|  | "kind"); | 
|  | case CK_LValueToRValue: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_ToVoid: | 
|  | case CK_NonAtomicToAtomic: | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue"); | 
|  | #endif | 
|  |  | 
|  | diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc()); | 
|  | diagnoseZeroToNullptrConversion(Kind, E); | 
|  |  | 
|  | QualType ExprTy = Context.getCanonicalType(E->getType()); | 
|  | QualType TypeTy = Context.getCanonicalType(Ty); | 
|  |  | 
|  | if (ExprTy == TypeTy) | 
|  | return E; | 
|  |  | 
|  | // C++1z [conv.array]: The temporary materialization conversion is applied. | 
|  | // We also use this to fuel C++ DR1213, which applies to C++11 onwards. | 
|  | if (Kind == CK_ArrayToPointerDecay && getLangOpts().CPlusPlus && | 
|  | E->getValueKind() == VK_RValue) { | 
|  | // The temporary is an lvalue in C++98 and an xvalue otherwise. | 
|  | ExprResult Materialized = CreateMaterializeTemporaryExpr( | 
|  | E->getType(), E, !getLangOpts().CPlusPlus11); | 
|  | if (Materialized.isInvalid()) | 
|  | return ExprError(); | 
|  | E = Materialized.get(); | 
|  | } | 
|  |  | 
|  | if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { | 
|  | ImpCast->setType(Ty); | 
|  | ImpCast->setValueKind(VK); | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK); | 
|  | } | 
|  |  | 
|  | /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding | 
|  | /// to the conversion from scalar type ScalarTy to the Boolean type. | 
|  | CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) { | 
|  | switch (ScalarTy->getScalarTypeKind()) { | 
|  | case Type::STK_Bool: return CK_NoOp; | 
|  | case Type::STK_CPointer: return CK_PointerToBoolean; | 
|  | case Type::STK_BlockPointer: return CK_PointerToBoolean; | 
|  | case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean; | 
|  | case Type::STK_MemberPointer: return CK_MemberPointerToBoolean; | 
|  | case Type::STK_Integral: return CK_IntegralToBoolean; | 
|  | case Type::STK_Floating: return CK_FloatingToBoolean; | 
|  | case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean; | 
|  | case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean; | 
|  | case Type::STK_FixedPoint: return CK_FixedPointToBoolean; | 
|  | } | 
|  | llvm_unreachable("unknown scalar type kind"); | 
|  | } | 
|  |  | 
|  | /// Used to prune the decls of Sema's UnusedFileScopedDecls vector. | 
|  | static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { | 
|  | if (D->getMostRecentDecl()->isUsed()) | 
|  | return true; | 
|  |  | 
|  | if (D->isExternallyVisible()) | 
|  | return true; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // If this is a function template and none of its specializations is used, | 
|  | // we should warn. | 
|  | if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate()) | 
|  | for (const auto *Spec : Template->specializations()) | 
|  | if (ShouldRemoveFromUnused(SemaRef, Spec)) | 
|  | return true; | 
|  |  | 
|  | // UnusedFileScopedDecls stores the first declaration. | 
|  | // The declaration may have become definition so check again. | 
|  | const FunctionDecl *DeclToCheck; | 
|  | if (FD->hasBody(DeclToCheck)) | 
|  | return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); | 
|  |  | 
|  | // Later redecls may add new information resulting in not having to warn, | 
|  | // so check again. | 
|  | DeclToCheck = FD->getMostRecentDecl(); | 
|  | if (DeclToCheck != FD) | 
|  | return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | // If a variable usable in constant expressions is referenced, | 
|  | // don't warn if it isn't used: if the value of a variable is required | 
|  | // for the computation of a constant expression, it doesn't make sense to | 
|  | // warn even if the variable isn't odr-used.  (isReferenced doesn't | 
|  | // precisely reflect that, but it's a decent approximation.) | 
|  | if (VD->isReferenced() && | 
|  | VD->isUsableInConstantExpressions(SemaRef->Context)) | 
|  | return true; | 
|  |  | 
|  | if (VarTemplateDecl *Template = VD->getDescribedVarTemplate()) | 
|  | // If this is a variable template and none of its specializations is used, | 
|  | // we should warn. | 
|  | for (const auto *Spec : Template->specializations()) | 
|  | if (ShouldRemoveFromUnused(SemaRef, Spec)) | 
|  | return true; | 
|  |  | 
|  | // UnusedFileScopedDecls stores the first declaration. | 
|  | // The declaration may have become definition so check again. | 
|  | const VarDecl *DeclToCheck = VD->getDefinition(); | 
|  | if (DeclToCheck) | 
|  | return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); | 
|  |  | 
|  | // Later redecls may add new information resulting in not having to warn, | 
|  | // so check again. | 
|  | DeclToCheck = VD->getMostRecentDecl(); | 
|  | if (DeclToCheck != VD) | 
|  | return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isFunctionOrVarDeclExternC(NamedDecl *ND) { | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(ND)) | 
|  | return FD->isExternC(); | 
|  | return cast<VarDecl>(ND)->isExternC(); | 
|  | } | 
|  |  | 
|  | /// Determine whether ND is an external-linkage function or variable whose | 
|  | /// type has no linkage. | 
|  | bool Sema::isExternalWithNoLinkageType(ValueDecl *VD) { | 
|  | // Note: it's not quite enough to check whether VD has UniqueExternalLinkage, | 
|  | // because we also want to catch the case where its type has VisibleNoLinkage, | 
|  | // which does not affect the linkage of VD. | 
|  | return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() && | 
|  | !isExternalFormalLinkage(VD->getType()->getLinkage()) && | 
|  | !isFunctionOrVarDeclExternC(VD); | 
|  | } | 
|  |  | 
|  | /// Obtains a sorted list of functions and variables that are undefined but | 
|  | /// ODR-used. | 
|  | void Sema::getUndefinedButUsed( | 
|  | SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) { | 
|  | for (const auto &UndefinedUse : UndefinedButUsed) { | 
|  | NamedDecl *ND = UndefinedUse.first; | 
|  |  | 
|  | // Ignore attributes that have become invalid. | 
|  | if (ND->isInvalidDecl()) continue; | 
|  |  | 
|  | // __attribute__((weakref)) is basically a definition. | 
|  | if (ND->hasAttr<WeakRefAttr>()) continue; | 
|  |  | 
|  | if (isa<CXXDeductionGuideDecl>(ND)) | 
|  | continue; | 
|  |  | 
|  | if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) { | 
|  | // An exported function will always be emitted when defined, so even if | 
|  | // the function is inline, it doesn't have to be emitted in this TU. An | 
|  | // imported function implies that it has been exported somewhere else. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { | 
|  | if (FD->isDefined()) | 
|  | continue; | 
|  | if (FD->isExternallyVisible() && | 
|  | !isExternalWithNoLinkageType(FD) && | 
|  | !FD->getMostRecentDecl()->isInlined() && | 
|  | !FD->hasAttr<ExcludeFromExplicitInstantiationAttr>()) | 
|  | continue; | 
|  | if (FD->getBuiltinID()) | 
|  | continue; | 
|  | } else { | 
|  | auto *VD = cast<VarDecl>(ND); | 
|  | if (VD->hasDefinition() != VarDecl::DeclarationOnly) | 
|  | continue; | 
|  | if (VD->isExternallyVisible() && | 
|  | !isExternalWithNoLinkageType(VD) && | 
|  | !VD->getMostRecentDecl()->isInline() && | 
|  | !VD->hasAttr<ExcludeFromExplicitInstantiationAttr>()) | 
|  | continue; | 
|  |  | 
|  | // Skip VarDecls that lack formal definitions but which we know are in | 
|  | // fact defined somewhere. | 
|  | if (VD->isKnownToBeDefined()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Undefined.push_back(std::make_pair(ND, UndefinedUse.second)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// checkUndefinedButUsed - Check for undefined objects with internal linkage | 
|  | /// or that are inline. | 
|  | static void checkUndefinedButUsed(Sema &S) { | 
|  | if (S.UndefinedButUsed.empty()) return; | 
|  |  | 
|  | // Collect all the still-undefined entities with internal linkage. | 
|  | SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined; | 
|  | S.getUndefinedButUsed(Undefined); | 
|  | if (Undefined.empty()) return; | 
|  |  | 
|  | for (auto Undef : Undefined) { | 
|  | ValueDecl *VD = cast<ValueDecl>(Undef.first); | 
|  | SourceLocation UseLoc = Undef.second; | 
|  |  | 
|  | if (S.isExternalWithNoLinkageType(VD)) { | 
|  | // C++ [basic.link]p8: | 
|  | //   A type without linkage shall not be used as the type of a variable | 
|  | //   or function with external linkage unless | 
|  | //    -- the entity has C language linkage | 
|  | //    -- the entity is not odr-used or is defined in the same TU | 
|  | // | 
|  | // As an extension, accept this in cases where the type is externally | 
|  | // visible, since the function or variable actually can be defined in | 
|  | // another translation unit in that case. | 
|  | S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage()) | 
|  | ? diag::ext_undefined_internal_type | 
|  | : diag::err_undefined_internal_type) | 
|  | << isa<VarDecl>(VD) << VD; | 
|  | } else if (!VD->isExternallyVisible()) { | 
|  | // FIXME: We can promote this to an error. The function or variable can't | 
|  | // be defined anywhere else, so the program must necessarily violate the | 
|  | // one definition rule. | 
|  | S.Diag(VD->getLocation(), diag::warn_undefined_internal) | 
|  | << isa<VarDecl>(VD) << VD; | 
|  | } else if (auto *FD = dyn_cast<FunctionDecl>(VD)) { | 
|  | (void)FD; | 
|  | assert(FD->getMostRecentDecl()->isInlined() && | 
|  | "used object requires definition but isn't inline or internal?"); | 
|  | // FIXME: This is ill-formed; we should reject. | 
|  | S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD; | 
|  | } else { | 
|  | assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() && | 
|  | "used var requires definition but isn't inline or internal?"); | 
|  | S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD; | 
|  | } | 
|  | if (UseLoc.isValid()) | 
|  | S.Diag(UseLoc, diag::note_used_here); | 
|  | } | 
|  |  | 
|  | S.UndefinedButUsed.clear(); | 
|  | } | 
|  |  | 
|  | void Sema::LoadExternalWeakUndeclaredIdentifiers() { | 
|  | if (!ExternalSource) | 
|  | return; | 
|  |  | 
|  | SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs; | 
|  | ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs); | 
|  | for (auto &WeakID : WeakIDs) | 
|  | WeakUndeclaredIdentifiers.insert(WeakID); | 
|  | } | 
|  |  | 
|  |  | 
|  | typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap; | 
|  |  | 
|  | /// Returns true, if all methods and nested classes of the given | 
|  | /// CXXRecordDecl are defined in this translation unit. | 
|  | /// | 
|  | /// Should only be called from ActOnEndOfTranslationUnit so that all | 
|  | /// definitions are actually read. | 
|  | static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD, | 
|  | RecordCompleteMap &MNCComplete) { | 
|  | RecordCompleteMap::iterator Cache = MNCComplete.find(RD); | 
|  | if (Cache != MNCComplete.end()) | 
|  | return Cache->second; | 
|  | if (!RD->isCompleteDefinition()) | 
|  | return false; | 
|  | bool Complete = true; | 
|  | for (DeclContext::decl_iterator I = RD->decls_begin(), | 
|  | E = RD->decls_end(); | 
|  | I != E && Complete; ++I) { | 
|  | if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I)) | 
|  | Complete = M->isDefined() || M->isDefaulted() || | 
|  | (M->isPure() && !isa<CXXDestructorDecl>(M)); | 
|  | else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I)) | 
|  | // If the template function is marked as late template parsed at this | 
|  | // point, it has not been instantiated and therefore we have not | 
|  | // performed semantic analysis on it yet, so we cannot know if the type | 
|  | // can be considered complete. | 
|  | Complete = !F->getTemplatedDecl()->isLateTemplateParsed() && | 
|  | F->getTemplatedDecl()->isDefined(); | 
|  | else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) { | 
|  | if (R->isInjectedClassName()) | 
|  | continue; | 
|  | if (R->hasDefinition()) | 
|  | Complete = MethodsAndNestedClassesComplete(R->getDefinition(), | 
|  | MNCComplete); | 
|  | else | 
|  | Complete = false; | 
|  | } | 
|  | } | 
|  | MNCComplete[RD] = Complete; | 
|  | return Complete; | 
|  | } | 
|  |  | 
|  | /// Returns true, if the given CXXRecordDecl is fully defined in this | 
|  | /// translation unit, i.e. all methods are defined or pure virtual and all | 
|  | /// friends, friend functions and nested classes are fully defined in this | 
|  | /// translation unit. | 
|  | /// | 
|  | /// Should only be called from ActOnEndOfTranslationUnit so that all | 
|  | /// definitions are actually read. | 
|  | static bool IsRecordFullyDefined(const CXXRecordDecl *RD, | 
|  | RecordCompleteMap &RecordsComplete, | 
|  | RecordCompleteMap &MNCComplete) { | 
|  | RecordCompleteMap::iterator Cache = RecordsComplete.find(RD); | 
|  | if (Cache != RecordsComplete.end()) | 
|  | return Cache->second; | 
|  | bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete); | 
|  | for (CXXRecordDecl::friend_iterator I = RD->friend_begin(), | 
|  | E = RD->friend_end(); | 
|  | I != E && Complete; ++I) { | 
|  | // Check if friend classes and methods are complete. | 
|  | if (TypeSourceInfo *TSI = (*I)->getFriendType()) { | 
|  | // Friend classes are available as the TypeSourceInfo of the FriendDecl. | 
|  | if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl()) | 
|  | Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete); | 
|  | else | 
|  | Complete = false; | 
|  | } else { | 
|  | // Friend functions are available through the NamedDecl of FriendDecl. | 
|  | if (const FunctionDecl *FD = | 
|  | dyn_cast<FunctionDecl>((*I)->getFriendDecl())) | 
|  | Complete = FD->isDefined(); | 
|  | else | 
|  | // This is a template friend, give up. | 
|  | Complete = false; | 
|  | } | 
|  | } | 
|  | RecordsComplete[RD] = Complete; | 
|  | return Complete; | 
|  | } | 
|  |  | 
|  | void Sema::emitAndClearUnusedLocalTypedefWarnings() { | 
|  | if (ExternalSource) | 
|  | ExternalSource->ReadUnusedLocalTypedefNameCandidates( | 
|  | UnusedLocalTypedefNameCandidates); | 
|  | for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) { | 
|  | if (TD->isReferenced()) | 
|  | continue; | 
|  | Diag(TD->getLocation(), diag::warn_unused_local_typedef) | 
|  | << isa<TypeAliasDecl>(TD) << TD->getDeclName(); | 
|  | } | 
|  | UnusedLocalTypedefNameCandidates.clear(); | 
|  | } | 
|  |  | 
|  | /// This is called before the very first declaration in the translation unit | 
|  | /// is parsed. Note that the ASTContext may have already injected some | 
|  | /// declarations. | 
|  | void Sema::ActOnStartOfTranslationUnit() { | 
|  | if (getLangOpts().ModulesTS && | 
|  | (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface || | 
|  | getLangOpts().getCompilingModule() == LangOptions::CMK_None)) { | 
|  | SourceLocation StartOfTU = | 
|  | SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); | 
|  |  | 
|  | // We start in the global module; all those declarations are implicitly | 
|  | // module-private (though they do not have module linkage). | 
|  | auto &Map = PP.getHeaderSearchInfo().getModuleMap(); | 
|  | auto *GlobalModule = Map.createGlobalModuleForInterfaceUnit(StartOfTU); | 
|  | assert(GlobalModule && "module creation should not fail"); | 
|  |  | 
|  | // Enter the scope of the global module. | 
|  | ModuleScopes.push_back({}); | 
|  | ModuleScopes.back().Module = GlobalModule; | 
|  | VisibleModules.setVisible(GlobalModule, StartOfTU); | 
|  |  | 
|  | // All declarations created from now on are owned by the global module. | 
|  | auto *TU = Context.getTranslationUnitDecl(); | 
|  | TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); | 
|  | TU->setLocalOwningModule(GlobalModule); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnEndOfTranslationUnit - This is called at the very end of the | 
|  | /// translation unit when EOF is reached and all but the top-level scope is | 
|  | /// popped. | 
|  | void Sema::ActOnEndOfTranslationUnit() { | 
|  | assert(DelayedDiagnostics.getCurrentPool() == nullptr | 
|  | && "reached end of translation unit with a pool attached?"); | 
|  |  | 
|  | // If code completion is enabled, don't perform any end-of-translation-unit | 
|  | // work. | 
|  | if (PP.isCodeCompletionEnabled()) | 
|  | return; | 
|  |  | 
|  | // Transfer late parsed template instantiations over to the pending template | 
|  | // instantiation list. During normal compliation, the late template parser | 
|  | // will be installed and instantiating these templates will succeed. | 
|  | // | 
|  | // If we are building a TU prefix for serialization, it is also safe to | 
|  | // transfer these over, even though they are not parsed. The end of the TU | 
|  | // should be outside of any eager template instantiation scope, so when this | 
|  | // AST is deserialized, these templates will not be parsed until the end of | 
|  | // the combined TU. | 
|  | PendingInstantiations.insert(PendingInstantiations.end(), | 
|  | LateParsedInstantiations.begin(), | 
|  | LateParsedInstantiations.end()); | 
|  | LateParsedInstantiations.clear(); | 
|  |  | 
|  | // Complete translation units and modules define vtables and perform implicit | 
|  | // instantiations. PCH files do not. | 
|  | if (TUKind != TU_Prefix) { | 
|  | DiagnoseUseOfUnimplementedSelectors(); | 
|  |  | 
|  | // If DefinedUsedVTables ends up marking any virtual member functions it | 
|  | // might lead to more pending template instantiations, which we then need | 
|  | // to instantiate. | 
|  | DefineUsedVTables(); | 
|  |  | 
|  | // C++: Perform implicit template instantiations. | 
|  | // | 
|  | // FIXME: When we perform these implicit instantiations, we do not | 
|  | // carefully keep track of the point of instantiation (C++ [temp.point]). | 
|  | // This means that name lookup that occurs within the template | 
|  | // instantiation will always happen at the end of the translation unit, | 
|  | // so it will find some names that are not required to be found. This is | 
|  | // valid, but we could do better by diagnosing if an instantiation uses a | 
|  | // name that was not visible at its first point of instantiation. | 
|  | if (ExternalSource) { | 
|  | // Load pending instantiations from the external source. | 
|  | SmallVector<PendingImplicitInstantiation, 4> Pending; | 
|  | ExternalSource->ReadPendingInstantiations(Pending); | 
|  | for (auto PII : Pending) | 
|  | if (auto Func = dyn_cast<FunctionDecl>(PII.first)) | 
|  | Func->setInstantiationIsPending(true); | 
|  | PendingInstantiations.insert(PendingInstantiations.begin(), | 
|  | Pending.begin(), Pending.end()); | 
|  | } | 
|  |  | 
|  | PerformPendingInstantiations(); | 
|  |  | 
|  | assert(LateParsedInstantiations.empty() && | 
|  | "end of TU template instantiation should not create more " | 
|  | "late-parsed templates"); | 
|  |  | 
|  | if (LateTemplateParserCleanup) | 
|  | LateTemplateParserCleanup(OpaqueParser); | 
|  |  | 
|  | CheckDelayedMemberExceptionSpecs(); | 
|  | } | 
|  |  | 
|  | DiagnoseUnterminatedPragmaPack(); | 
|  | DiagnoseUnterminatedPragmaAttribute(); | 
|  |  | 
|  | // All delayed member exception specs should be checked or we end up accepting | 
|  | // incompatible declarations. | 
|  | assert(DelayedOverridingExceptionSpecChecks.empty()); | 
|  | assert(DelayedEquivalentExceptionSpecChecks.empty()); | 
|  | assert(DelayedDefaultedMemberExceptionSpecs.empty()); | 
|  |  | 
|  | // All dllexport classes should have been processed already. | 
|  | assert(DelayedDllExportClasses.empty()); | 
|  |  | 
|  | // Remove file scoped decls that turned out to be used. | 
|  | UnusedFileScopedDecls.erase( | 
|  | std::remove_if(UnusedFileScopedDecls.begin(nullptr, true), | 
|  | UnusedFileScopedDecls.end(), | 
|  | [this](const DeclaratorDecl *DD) { | 
|  | return ShouldRemoveFromUnused(this, DD); | 
|  | }), | 
|  | UnusedFileScopedDecls.end()); | 
|  |  | 
|  | if (TUKind == TU_Prefix) { | 
|  | // Translation unit prefixes don't need any of the checking below. | 
|  | if (!PP.isIncrementalProcessingEnabled()) | 
|  | TUScope = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for #pragma weak identifiers that were never declared | 
|  | LoadExternalWeakUndeclaredIdentifiers(); | 
|  | for (auto WeakID : WeakUndeclaredIdentifiers) { | 
|  | if (WeakID.second.getUsed()) | 
|  | continue; | 
|  |  | 
|  | Decl *PrevDecl = LookupSingleName(TUScope, WeakID.first, SourceLocation(), | 
|  | LookupOrdinaryName); | 
|  | if (PrevDecl != nullptr && | 
|  | !(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) | 
|  | Diag(WeakID.second.getLocation(), diag::warn_attribute_wrong_decl_type) | 
|  | << "'weak'" << ExpectedVariableOrFunction; | 
|  | else | 
|  | Diag(WeakID.second.getLocation(), diag::warn_weak_identifier_undeclared) | 
|  | << WeakID.first; | 
|  | } | 
|  |  | 
|  | if (LangOpts.CPlusPlus11 && | 
|  | !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation())) | 
|  | CheckDelegatingCtorCycles(); | 
|  |  | 
|  | if (!Diags.hasErrorOccurred()) { | 
|  | if (ExternalSource) | 
|  | ExternalSource->ReadUndefinedButUsed(UndefinedButUsed); | 
|  | checkUndefinedButUsed(*this); | 
|  | } | 
|  |  | 
|  | if (TUKind == TU_Module) { | 
|  | // If we are building a module interface unit, we need to have seen the | 
|  | // module declaration by now. | 
|  | if (getLangOpts().getCompilingModule() == | 
|  | LangOptions::CMK_ModuleInterface && | 
|  | (ModuleScopes.empty() || | 
|  | ModuleScopes.back().Module->Kind != Module::ModuleInterfaceUnit)) { | 
|  | // FIXME: Make a better guess as to where to put the module declaration. | 
|  | Diag(getSourceManager().getLocForStartOfFile( | 
|  | getSourceManager().getMainFileID()), | 
|  | diag::err_module_declaration_missing); | 
|  | } | 
|  |  | 
|  | // If we are building a module, resolve all of the exported declarations | 
|  | // now. | 
|  | if (Module *CurrentModule = PP.getCurrentModule()) { | 
|  | ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); | 
|  |  | 
|  | SmallVector<Module *, 2> Stack; | 
|  | Stack.push_back(CurrentModule); | 
|  | while (!Stack.empty()) { | 
|  | Module *Mod = Stack.pop_back_val(); | 
|  |  | 
|  | // Resolve the exported declarations and conflicts. | 
|  | // FIXME: Actually complain, once we figure out how to teach the | 
|  | // diagnostic client to deal with complaints in the module map at this | 
|  | // point. | 
|  | ModMap.resolveExports(Mod, /*Complain=*/false); | 
|  | ModMap.resolveUses(Mod, /*Complain=*/false); | 
|  | ModMap.resolveConflicts(Mod, /*Complain=*/false); | 
|  |  | 
|  | // Queue the submodules, so their exports will also be resolved. | 
|  | Stack.append(Mod->submodule_begin(), Mod->submodule_end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for | 
|  | // modules when they are built, not every time they are used. | 
|  | emitAndClearUnusedLocalTypedefWarnings(); | 
|  | } | 
|  |  | 
|  | // C99 6.9.2p2: | 
|  | //   A declaration of an identifier for an object that has file | 
|  | //   scope without an initializer, and without a storage-class | 
|  | //   specifier or with the storage-class specifier static, | 
|  | //   constitutes a tentative definition. If a translation unit | 
|  | //   contains one or more tentative definitions for an identifier, | 
|  | //   and the translation unit contains no external definition for | 
|  | //   that identifier, then the behavior is exactly as if the | 
|  | //   translation unit contains a file scope declaration of that | 
|  | //   identifier, with the composite type as of the end of the | 
|  | //   translation unit, with an initializer equal to 0. | 
|  | llvm::SmallSet<VarDecl *, 32> Seen; | 
|  | for (TentativeDefinitionsType::iterator | 
|  | T = TentativeDefinitions.begin(ExternalSource), | 
|  | TEnd = TentativeDefinitions.end(); | 
|  | T != TEnd; ++T) { | 
|  | VarDecl *VD = (*T)->getActingDefinition(); | 
|  |  | 
|  | // If the tentative definition was completed, getActingDefinition() returns | 
|  | // null. If we've already seen this variable before, insert()'s second | 
|  | // return value is false. | 
|  | if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second) | 
|  | continue; | 
|  |  | 
|  | if (const IncompleteArrayType *ArrayT | 
|  | = Context.getAsIncompleteArrayType(VD->getType())) { | 
|  | // Set the length of the array to 1 (C99 6.9.2p5). | 
|  | Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); | 
|  | llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); | 
|  | QualType T = Context.getConstantArrayType(ArrayT->getElementType(), | 
|  | One, ArrayType::Normal, 0); | 
|  | VD->setType(T); | 
|  | } else if (RequireCompleteType(VD->getLocation(), VD->getType(), | 
|  | diag::err_tentative_def_incomplete_type)) | 
|  | VD->setInvalidDecl(); | 
|  |  | 
|  | // No initialization is performed for a tentative definition. | 
|  | CheckCompleteVariableDeclaration(VD); | 
|  |  | 
|  | // Notify the consumer that we've completed a tentative definition. | 
|  | if (!VD->isInvalidDecl()) | 
|  | Consumer.CompleteTentativeDefinition(VD); | 
|  | } | 
|  |  | 
|  | // If there were errors, disable 'unused' warnings since they will mostly be | 
|  | // noise. Don't warn for a use from a module: either we should warn on all | 
|  | // file-scope declarations in modules or not at all, but whether the | 
|  | // declaration is used is immaterial. | 
|  | if (!Diags.hasErrorOccurred() && TUKind != TU_Module) { | 
|  | // Output warning for unused file scoped decls. | 
|  | for (UnusedFileScopedDeclsType::iterator | 
|  | I = UnusedFileScopedDecls.begin(ExternalSource), | 
|  | E = UnusedFileScopedDecls.end(); I != E; ++I) { | 
|  | if (ShouldRemoveFromUnused(this, *I)) | 
|  | continue; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | 
|  | const FunctionDecl *DiagD; | 
|  | if (!FD->hasBody(DiagD)) | 
|  | DiagD = FD; | 
|  | if (DiagD->isDeleted()) | 
|  | continue; // Deleted functions are supposed to be unused. | 
|  | if (DiagD->isReferenced()) { | 
|  | if (isa<CXXMethodDecl>(DiagD)) | 
|  | Diag(DiagD->getLocation(), diag::warn_unneeded_member_function) | 
|  | << DiagD->getDeclName(); | 
|  | else { | 
|  | if (FD->getStorageClass() == SC_Static && | 
|  | !FD->isInlineSpecified() && | 
|  | !SourceMgr.isInMainFile( | 
|  | SourceMgr.getExpansionLoc(FD->getLocation()))) | 
|  | Diag(DiagD->getLocation(), | 
|  | diag::warn_unneeded_static_internal_decl) | 
|  | << DiagD->getDeclName(); | 
|  | else | 
|  | Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) | 
|  | << /*function*/0 << DiagD->getDeclName(); | 
|  | } | 
|  | } else { | 
|  | if (FD->getDescribedFunctionTemplate()) | 
|  | Diag(DiagD->getLocation(), diag::warn_unused_template) | 
|  | << /*function*/0 << DiagD->getDeclName(); | 
|  | else | 
|  | Diag(DiagD->getLocation(), | 
|  | isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function | 
|  | : diag::warn_unused_function) | 
|  | << DiagD->getDeclName(); | 
|  | } | 
|  | } else { | 
|  | const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition(); | 
|  | if (!DiagD) | 
|  | DiagD = cast<VarDecl>(*I); | 
|  | if (DiagD->isReferenced()) { | 
|  | Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) | 
|  | << /*variable*/1 << DiagD->getDeclName(); | 
|  | } else if (DiagD->getType().isConstQualified()) { | 
|  | const SourceManager &SM = SourceMgr; | 
|  | if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) || | 
|  | !PP.getLangOpts().IsHeaderFile) | 
|  | Diag(DiagD->getLocation(), diag::warn_unused_const_variable) | 
|  | << DiagD->getDeclName(); | 
|  | } else { | 
|  | if (DiagD->getDescribedVarTemplate()) | 
|  | Diag(DiagD->getLocation(), diag::warn_unused_template) | 
|  | << /*variable*/1 << DiagD->getDeclName(); | 
|  | else | 
|  | Diag(DiagD->getLocation(), diag::warn_unused_variable) | 
|  | << DiagD->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | emitAndClearUnusedLocalTypedefWarnings(); | 
|  | } | 
|  |  | 
|  | if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) { | 
|  | // FIXME: Load additional unused private field candidates from the external | 
|  | // source. | 
|  | RecordCompleteMap RecordsComplete; | 
|  | RecordCompleteMap MNCComplete; | 
|  | for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(), | 
|  | E = UnusedPrivateFields.end(); I != E; ++I) { | 
|  | const NamedDecl *D = *I; | 
|  | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (RD && !RD->isUnion() && | 
|  | IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) { | 
|  | Diag(D->getLocation(), diag::warn_unused_private_field) | 
|  | << D->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) { | 
|  | if (ExternalSource) | 
|  | ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs); | 
|  | for (const auto &DeletedFieldInfo : DeleteExprs) { | 
|  | for (const auto &DeleteExprLoc : DeletedFieldInfo.second) { | 
|  | AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first, | 
|  | DeleteExprLoc.second); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check we've noticed that we're no longer parsing the initializer for every | 
|  | // variable. If we miss cases, then at best we have a performance issue and | 
|  | // at worst a rejects-valid bug. | 
|  | assert(ParsingInitForAutoVars.empty() && | 
|  | "Didn't unmark var as having its initializer parsed"); | 
|  |  | 
|  | if (!PP.isIncrementalProcessingEnabled()) | 
|  | TUScope = nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | DeclContext *Sema::getFunctionLevelDeclContext() { | 
|  | DeclContext *DC = CurContext; | 
|  |  | 
|  | while (true) { | 
|  | if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC)) { | 
|  | DC = DC->getParent(); | 
|  | } else if (isa<CXXMethodDecl>(DC) && | 
|  | cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call && | 
|  | cast<CXXRecordDecl>(DC->getParent())->isLambda()) { | 
|  | DC = DC->getParent()->getParent(); | 
|  | } | 
|  | else break; | 
|  | } | 
|  |  | 
|  | return DC; | 
|  | } | 
|  |  | 
|  | /// getCurFunctionDecl - If inside of a function body, this returns a pointer | 
|  | /// to the function decl for the function being parsed.  If we're currently | 
|  | /// in a 'block', this returns the containing context. | 
|  | FunctionDecl *Sema::getCurFunctionDecl() { | 
|  | DeclContext *DC = getFunctionLevelDeclContext(); | 
|  | return dyn_cast<FunctionDecl>(DC); | 
|  | } | 
|  |  | 
|  | ObjCMethodDecl *Sema::getCurMethodDecl() { | 
|  | DeclContext *DC = getFunctionLevelDeclContext(); | 
|  | while (isa<RecordDecl>(DC)) | 
|  | DC = DC->getParent(); | 
|  | return dyn_cast<ObjCMethodDecl>(DC); | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::getCurFunctionOrMethodDecl() { | 
|  | DeclContext *DC = getFunctionLevelDeclContext(); | 
|  | if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC)) | 
|  | return cast<NamedDecl>(DC); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Sema::EmitCurrentDiagnostic(unsigned DiagID) { | 
|  | // FIXME: It doesn't make sense to me that DiagID is an incoming argument here | 
|  | // and yet we also use the current diag ID on the DiagnosticsEngine. This has | 
|  | // been made more painfully obvious by the refactor that introduced this | 
|  | // function, but it is possible that the incoming argument can be | 
|  | // eliminated. If it truly cannot be (for example, there is some reentrancy | 
|  | // issue I am not seeing yet), then there should at least be a clarifying | 
|  | // comment somewhere. | 
|  | if (Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) { | 
|  | switch (DiagnosticIDs::getDiagnosticSFINAEResponse( | 
|  | Diags.getCurrentDiagID())) { | 
|  | case DiagnosticIDs::SFINAE_Report: | 
|  | // We'll report the diagnostic below. | 
|  | break; | 
|  |  | 
|  | case DiagnosticIDs::SFINAE_SubstitutionFailure: | 
|  | // Count this failure so that we know that template argument deduction | 
|  | // has failed. | 
|  | ++NumSFINAEErrors; | 
|  |  | 
|  | // Make a copy of this suppressed diagnostic and store it with the | 
|  | // template-deduction information. | 
|  | if (*Info && !(*Info)->hasSFINAEDiagnostic()) { | 
|  | Diagnostic DiagInfo(&Diags); | 
|  | (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), | 
|  | PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); | 
|  | } | 
|  |  | 
|  | Diags.setLastDiagnosticIgnored(); | 
|  | Diags.Clear(); | 
|  | return; | 
|  |  | 
|  | case DiagnosticIDs::SFINAE_AccessControl: { | 
|  | // Per C++ Core Issue 1170, access control is part of SFINAE. | 
|  | // Additionally, the AccessCheckingSFINAE flag can be used to temporarily | 
|  | // make access control a part of SFINAE for the purposes of checking | 
|  | // type traits. | 
|  | if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11) | 
|  | break; | 
|  |  | 
|  | SourceLocation Loc = Diags.getCurrentDiagLoc(); | 
|  |  | 
|  | // Suppress this diagnostic. | 
|  | ++NumSFINAEErrors; | 
|  |  | 
|  | // Make a copy of this suppressed diagnostic and store it with the | 
|  | // template-deduction information. | 
|  | if (*Info && !(*Info)->hasSFINAEDiagnostic()) { | 
|  | Diagnostic DiagInfo(&Diags); | 
|  | (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), | 
|  | PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); | 
|  | } | 
|  |  | 
|  | Diags.setLastDiagnosticIgnored(); | 
|  | Diags.Clear(); | 
|  |  | 
|  | // Now the diagnostic state is clear, produce a C++98 compatibility | 
|  | // warning. | 
|  | Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control); | 
|  |  | 
|  | // The last diagnostic which Sema produced was ignored. Suppress any | 
|  | // notes attached to it. | 
|  | Diags.setLastDiagnosticIgnored(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case DiagnosticIDs::SFINAE_Suppress: | 
|  | // Make a copy of this suppressed diagnostic and store it with the | 
|  | // template-deduction information; | 
|  | if (*Info) { | 
|  | Diagnostic DiagInfo(&Diags); | 
|  | (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), | 
|  | PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); | 
|  | } | 
|  |  | 
|  | // Suppress this diagnostic. | 
|  | Diags.setLastDiagnosticIgnored(); | 
|  | Diags.Clear(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the diagnostic printing policy over the ASTContext printing policy. | 
|  | // TODO: Stop doing that.  See: https://reviews.llvm.org/D45093#1090292 | 
|  | Context.setPrintingPolicy(getPrintingPolicy()); | 
|  |  | 
|  | // Emit the diagnostic. | 
|  | if (!Diags.EmitCurrentDiagnostic()) | 
|  | return; | 
|  |  | 
|  | // If this is not a note, and we're in a template instantiation | 
|  | // that is different from the last template instantiation where | 
|  | // we emitted an error, print a template instantiation | 
|  | // backtrace. | 
|  | if (!DiagnosticIDs::isBuiltinNote(DiagID)) | 
|  | PrintContextStack(); | 
|  | } | 
|  |  | 
|  | Sema::SemaDiagnosticBuilder | 
|  | Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) { | 
|  | SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID())); | 
|  | PD.Emit(Builder); | 
|  |  | 
|  | return Builder; | 
|  | } | 
|  |  | 
|  | /// Looks through the macro-expansion chain for the given | 
|  | /// location, looking for a macro expansion with the given name. | 
|  | /// If one is found, returns true and sets the location to that | 
|  | /// expansion loc. | 
|  | bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) { | 
|  | SourceLocation loc = locref; | 
|  | if (!loc.isMacroID()) return false; | 
|  |  | 
|  | // There's no good way right now to look at the intermediate | 
|  | // expansions, so just jump to the expansion location. | 
|  | loc = getSourceManager().getExpansionLoc(loc); | 
|  |  | 
|  | // If that's written with the name, stop here. | 
|  | SmallVector<char, 16> buffer; | 
|  | if (getPreprocessor().getSpelling(loc, buffer) == name) { | 
|  | locref = loc; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determines the active Scope associated with the given declaration | 
|  | /// context. | 
|  | /// | 
|  | /// This routine maps a declaration context to the active Scope object that | 
|  | /// represents that declaration context in the parser. It is typically used | 
|  | /// from "scope-less" code (e.g., template instantiation, lazy creation of | 
|  | /// declarations) that injects a name for name-lookup purposes and, therefore, | 
|  | /// must update the Scope. | 
|  | /// | 
|  | /// \returns The scope corresponding to the given declaraion context, or NULL | 
|  | /// if no such scope is open. | 
|  | Scope *Sema::getScopeForContext(DeclContext *Ctx) { | 
|  |  | 
|  | if (!Ctx) | 
|  | return nullptr; | 
|  |  | 
|  | Ctx = Ctx->getPrimaryContext(); | 
|  | for (Scope *S = getCurScope(); S; S = S->getParent()) { | 
|  | // Ignore scopes that cannot have declarations. This is important for | 
|  | // out-of-line definitions of static class members. | 
|  | if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) | 
|  | if (DeclContext *Entity = S->getEntity()) | 
|  | if (Ctx == Entity->getPrimaryContext()) | 
|  | return S; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Enter a new function scope | 
|  | void Sema::PushFunctionScope() { | 
|  | if (FunctionScopes.empty()) { | 
|  | // Use PreallocatedFunctionScope to avoid allocating memory when possible. | 
|  | PreallocatedFunctionScope->Clear(); | 
|  | FunctionScopes.push_back(PreallocatedFunctionScope.get()); | 
|  | } else { | 
|  | FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); | 
|  | } | 
|  | if (LangOpts.OpenMP) | 
|  | pushOpenMPFunctionRegion(); | 
|  | } | 
|  |  | 
|  | void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { | 
|  | FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), | 
|  | BlockScope, Block)); | 
|  | } | 
|  |  | 
|  | LambdaScopeInfo *Sema::PushLambdaScope() { | 
|  | LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics()); | 
|  | FunctionScopes.push_back(LSI); | 
|  | return LSI; | 
|  | } | 
|  |  | 
|  | void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) { | 
|  | if (LambdaScopeInfo *const LSI = getCurLambda()) { | 
|  | LSI->AutoTemplateParameterDepth = Depth; | 
|  | return; | 
|  | } | 
|  | llvm_unreachable( | 
|  | "Remove assertion if intentionally called in a non-lambda context."); | 
|  | } | 
|  |  | 
|  | // Check that the type of the VarDecl has an accessible copy constructor and | 
|  | // resolve its destructor's exception spefication. | 
|  | static void checkEscapingByref(VarDecl *VD, Sema &S) { | 
|  | QualType T = VD->getType(); | 
|  | EnterExpressionEvaluationContext scope( | 
|  | S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  | SourceLocation Loc = VD->getLocation(); | 
|  | Expr *VarRef = new (S.Context) DeclRefExpr(VD, false, T, VK_LValue, Loc); | 
|  | ExprResult Result = S.PerformMoveOrCopyInitialization( | 
|  | InitializedEntity::InitializeBlock(Loc, T, false), VD, VD->getType(), | 
|  | VarRef, /*AllowNRVO=*/true); | 
|  | if (!Result.isInvalid()) { | 
|  | Result = S.MaybeCreateExprWithCleanups(Result); | 
|  | Expr *Init = Result.getAs<Expr>(); | 
|  | S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init)); | 
|  | } | 
|  |  | 
|  | // The destructor's exception spefication is needed when IRGen generates | 
|  | // block copy/destroy functions. Resolve it here. | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | if (CXXDestructorDecl *DD = RD->getDestructor()) { | 
|  | auto *FPT = DD->getType()->getAs<FunctionProtoType>(); | 
|  | S.ResolveExceptionSpec(Loc, FPT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) { | 
|  | // Set the EscapingByref flag of __block variables captured by | 
|  | // escaping blocks. | 
|  | for (const BlockDecl *BD : FSI.Blocks) { | 
|  | if (BD->doesNotEscape()) | 
|  | continue; | 
|  | for (const BlockDecl::Capture &BC : BD->captures()) { | 
|  | VarDecl *VD = BC.getVariable(); | 
|  | if (VD->hasAttr<BlocksAttr>()) | 
|  | VD->setEscapingByref(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (VarDecl *VD : FSI.ByrefBlockVars) { | 
|  | // __block variables might require us to capture a copy-initializer. | 
|  | if (!VD->isEscapingByref()) | 
|  | continue; | 
|  | // It's currently invalid to ever have a __block variable with an | 
|  | // array type; should we diagnose that here? | 
|  | // Regardless, we don't want to ignore array nesting when | 
|  | // constructing this copy. | 
|  | if (VD->getType()->isStructureOrClassType()) | 
|  | checkEscapingByref(VD, S); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP, | 
|  | const Decl *D, const BlockExpr *blkExpr) { | 
|  | assert(!FunctionScopes.empty() && "mismatched push/pop!"); | 
|  |  | 
|  | // This function shouldn't be called after popping the current function scope. | 
|  | // markEscapingByrefs calls PerformMoveOrCopyInitialization, which can call | 
|  | // PushFunctionScope, which can cause clearing out PreallocatedFunctionScope | 
|  | // when FunctionScopes is empty. | 
|  | markEscapingByrefs(*FunctionScopes.back(), *this); | 
|  |  | 
|  | FunctionScopeInfo *Scope = FunctionScopes.pop_back_val(); | 
|  |  | 
|  | if (LangOpts.OpenMP) | 
|  | popOpenMPFunctionRegion(Scope); | 
|  |  | 
|  | // Issue any analysis-based warnings. | 
|  | if (WP && D) | 
|  | AnalysisWarnings.IssueWarnings(*WP, Scope, D, blkExpr); | 
|  | else | 
|  | for (const auto &PUD : Scope->PossiblyUnreachableDiags) | 
|  | Diag(PUD.Loc, PUD.PD); | 
|  |  | 
|  | // Delete the scope unless its our preallocated scope. | 
|  | if (Scope != PreallocatedFunctionScope.get()) | 
|  | delete Scope; | 
|  | } | 
|  |  | 
|  | void Sema::PushCompoundScope(bool IsStmtExpr) { | 
|  | getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo(IsStmtExpr)); | 
|  | } | 
|  |  | 
|  | void Sema::PopCompoundScope() { | 
|  | FunctionScopeInfo *CurFunction = getCurFunction(); | 
|  | assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop"); | 
|  |  | 
|  | CurFunction->CompoundScopes.pop_back(); | 
|  | } | 
|  |  | 
|  | /// Determine whether any errors occurred within this function/method/ | 
|  | /// block. | 
|  | bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const { | 
|  | return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred(); | 
|  | } | 
|  |  | 
|  | void Sema::setFunctionHasBranchIntoScope() { | 
|  | if (!FunctionScopes.empty()) | 
|  | FunctionScopes.back()->setHasBranchIntoScope(); | 
|  | } | 
|  |  | 
|  | void Sema::setFunctionHasBranchProtectedScope() { | 
|  | if (!FunctionScopes.empty()) | 
|  | FunctionScopes.back()->setHasBranchProtectedScope(); | 
|  | } | 
|  |  | 
|  | void Sema::setFunctionHasIndirectGoto() { | 
|  | if (!FunctionScopes.empty()) | 
|  | FunctionScopes.back()->setHasIndirectGoto(); | 
|  | } | 
|  |  | 
|  | BlockScopeInfo *Sema::getCurBlock() { | 
|  | if (FunctionScopes.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back()); | 
|  | if (CurBSI && CurBSI->TheDecl && | 
|  | !CurBSI->TheDecl->Encloses(CurContext)) { | 
|  | // We have switched contexts due to template instantiation. | 
|  | assert(!CodeSynthesisContexts.empty()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return CurBSI; | 
|  | } | 
|  |  | 
|  | FunctionScopeInfo *Sema::getEnclosingFunction() const { | 
|  | if (FunctionScopes.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | for (int e = FunctionScopes.size() - 1; e >= 0; --e) { | 
|  | if (isa<sema::BlockScopeInfo>(FunctionScopes[e])) | 
|  | continue; | 
|  | return FunctionScopes[e]; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) { | 
|  | if (FunctionScopes.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | auto I = FunctionScopes.rbegin(); | 
|  | if (IgnoreNonLambdaCapturingScope) { | 
|  | auto E = FunctionScopes.rend(); | 
|  | while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I)) | 
|  | ++I; | 
|  | if (I == E) | 
|  | return nullptr; | 
|  | } | 
|  | auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I); | 
|  | if (CurLSI && CurLSI->Lambda && | 
|  | !CurLSI->Lambda->Encloses(CurContext)) { | 
|  | // We have switched contexts due to template instantiation. | 
|  | assert(!CodeSynthesisContexts.empty()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return CurLSI; | 
|  | } | 
|  | // We have a generic lambda if we parsed auto parameters, or we have | 
|  | // an associated template parameter list. | 
|  | LambdaScopeInfo *Sema::getCurGenericLambda() { | 
|  | if (LambdaScopeInfo *LSI =  getCurLambda()) { | 
|  | return (LSI->AutoTemplateParams.size() || | 
|  | LSI->GLTemplateParameterList) ? LSI : nullptr; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | void Sema::ActOnComment(SourceRange Comment) { | 
|  | if (!LangOpts.RetainCommentsFromSystemHeaders && | 
|  | SourceMgr.isInSystemHeader(Comment.getBegin())) | 
|  | return; | 
|  | RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false); | 
|  | if (RC.isAlmostTrailingComment()) { | 
|  | SourceRange MagicMarkerRange(Comment.getBegin(), | 
|  | Comment.getBegin().getLocWithOffset(3)); | 
|  | StringRef MagicMarkerText; | 
|  | switch (RC.getKind()) { | 
|  | case RawComment::RCK_OrdinaryBCPL: | 
|  | MagicMarkerText = "///<"; | 
|  | break; | 
|  | case RawComment::RCK_OrdinaryC: | 
|  | MagicMarkerText = "/**<"; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("if this is an almost Doxygen comment, " | 
|  | "it should be ordinary"); | 
|  | } | 
|  | Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) << | 
|  | FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText); | 
|  | } | 
|  | Context.addComment(RC); | 
|  | } | 
|  |  | 
|  | // Pin this vtable to this file. | 
|  | ExternalSemaSource::~ExternalSemaSource() {} | 
|  |  | 
|  | void ExternalSemaSource::ReadMethodPool(Selector Sel) { } | 
|  | void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { } | 
|  |  | 
|  | void ExternalSemaSource::ReadKnownNamespaces( | 
|  | SmallVectorImpl<NamespaceDecl *> &Namespaces) { | 
|  | } | 
|  |  | 
|  | void ExternalSemaSource::ReadUndefinedButUsed( | 
|  | llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {} | 
|  |  | 
|  | void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector< | 
|  | FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {} | 
|  |  | 
|  | /// Figure out if an expression could be turned into a call. | 
|  | /// | 
|  | /// Use this when trying to recover from an error where the programmer may have | 
|  | /// written just the name of a function instead of actually calling it. | 
|  | /// | 
|  | /// \param E - The expression to examine. | 
|  | /// \param ZeroArgCallReturnTy - If the expression can be turned into a call | 
|  | ///  with no arguments, this parameter is set to the type returned by such a | 
|  | ///  call; otherwise, it is set to an empty QualType. | 
|  | /// \param OverloadSet - If the expression is an overloaded function | 
|  | ///  name, this parameter is populated with the decls of the various overloads. | 
|  | bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, | 
|  | UnresolvedSetImpl &OverloadSet) { | 
|  | ZeroArgCallReturnTy = QualType(); | 
|  | OverloadSet.clear(); | 
|  |  | 
|  | const OverloadExpr *Overloads = nullptr; | 
|  | bool IsMemExpr = false; | 
|  | if (E.getType() == Context.OverloadTy) { | 
|  | OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E)); | 
|  |  | 
|  | // Ignore overloads that are pointer-to-member constants. | 
|  | if (FR.HasFormOfMemberPointer) | 
|  | return false; | 
|  |  | 
|  | Overloads = FR.Expression; | 
|  | } else if (E.getType() == Context.BoundMemberTy) { | 
|  | Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens()); | 
|  | IsMemExpr = true; | 
|  | } | 
|  |  | 
|  | bool Ambiguous = false; | 
|  | bool IsMV = false; | 
|  |  | 
|  | if (Overloads) { | 
|  | for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), | 
|  | DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { | 
|  | OverloadSet.addDecl(*it); | 
|  |  | 
|  | // Check whether the function is a non-template, non-member which takes no | 
|  | // arguments. | 
|  | if (IsMemExpr) | 
|  | continue; | 
|  | if (const FunctionDecl *OverloadDecl | 
|  | = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) { | 
|  | if (OverloadDecl->getMinRequiredArguments() == 0) { | 
|  | if (!ZeroArgCallReturnTy.isNull() && !Ambiguous && | 
|  | (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() || | 
|  | OverloadDecl->isCPUSpecificMultiVersion()))) { | 
|  | ZeroArgCallReturnTy = QualType(); | 
|  | Ambiguous = true; | 
|  | } else { | 
|  | ZeroArgCallReturnTy = OverloadDecl->getReturnType(); | 
|  | IsMV = OverloadDecl->isCPUDispatchMultiVersion() || | 
|  | OverloadDecl->isCPUSpecificMultiVersion(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's not a member, use better machinery to try to resolve the call | 
|  | if (!IsMemExpr) | 
|  | return !ZeroArgCallReturnTy.isNull(); | 
|  | } | 
|  |  | 
|  | // Attempt to call the member with no arguments - this will correctly handle | 
|  | // member templates with defaults/deduction of template arguments, overloads | 
|  | // with default arguments, etc. | 
|  | if (IsMemExpr && !E.isTypeDependent()) { | 
|  | bool Suppress = getDiagnostics().getSuppressAllDiagnostics(); | 
|  | getDiagnostics().setSuppressAllDiagnostics(true); | 
|  | ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(), | 
|  | None, SourceLocation()); | 
|  | getDiagnostics().setSuppressAllDiagnostics(Suppress); | 
|  | if (R.isUsable()) { | 
|  | ZeroArgCallReturnTy = R.get()->getType(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) { | 
|  | if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) { | 
|  | if (Fun->getMinRequiredArguments() == 0) | 
|  | ZeroArgCallReturnTy = Fun->getReturnType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't have an expression that's convenient to get a FunctionDecl from, | 
|  | // but we can at least check if the type is "function of 0 arguments". | 
|  | QualType ExprTy = E.getType(); | 
|  | const FunctionType *FunTy = nullptr; | 
|  | QualType PointeeTy = ExprTy->getPointeeType(); | 
|  | if (!PointeeTy.isNull()) | 
|  | FunTy = PointeeTy->getAs<FunctionType>(); | 
|  | if (!FunTy) | 
|  | FunTy = ExprTy->getAs<FunctionType>(); | 
|  |  | 
|  | if (const FunctionProtoType *FPT = | 
|  | dyn_cast_or_null<FunctionProtoType>(FunTy)) { | 
|  | if (FPT->getNumParams() == 0) | 
|  | ZeroArgCallReturnTy = FunTy->getReturnType(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Give notes for a set of overloads. | 
|  | /// | 
|  | /// A companion to tryExprAsCall. In cases when the name that the programmer | 
|  | /// wrote was an overloaded function, we may be able to make some guesses about | 
|  | /// plausible overloads based on their return types; such guesses can be handed | 
|  | /// off to this method to be emitted as notes. | 
|  | /// | 
|  | /// \param Overloads - The overloads to note. | 
|  | /// \param FinalNoteLoc - If we've suppressed printing some overloads due to | 
|  | ///  -fshow-overloads=best, this is the location to attach to the note about too | 
|  | ///  many candidates. Typically this will be the location of the original | 
|  | ///  ill-formed expression. | 
|  | static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, | 
|  | const SourceLocation FinalNoteLoc) { | 
|  | int ShownOverloads = 0; | 
|  | int SuppressedOverloads = 0; | 
|  | for (UnresolvedSetImpl::iterator It = Overloads.begin(), | 
|  | DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { | 
|  | // FIXME: Magic number for max shown overloads stolen from | 
|  | // OverloadCandidateSet::NoteCandidates. | 
|  | if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == Ovl_Best) { | 
|  | ++SuppressedOverloads; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | NamedDecl *Fn = (*It)->getUnderlyingDecl(); | 
|  | // Don't print overloads for non-default multiversioned functions. | 
|  | if (const auto *FD = Fn->getAsFunction()) { | 
|  | if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() && | 
|  | !FD->getAttr<TargetAttr>()->isDefaultVersion()) | 
|  | continue; | 
|  | } | 
|  | S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); | 
|  | ++ShownOverloads; | 
|  | } | 
|  |  | 
|  | if (SuppressedOverloads) | 
|  | S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) | 
|  | << SuppressedOverloads; | 
|  | } | 
|  |  | 
|  | static void notePlausibleOverloads(Sema &S, SourceLocation Loc, | 
|  | const UnresolvedSetImpl &Overloads, | 
|  | bool (*IsPlausibleResult)(QualType)) { | 
|  | if (!IsPlausibleResult) | 
|  | return noteOverloads(S, Overloads, Loc); | 
|  |  | 
|  | UnresolvedSet<2> PlausibleOverloads; | 
|  | for (OverloadExpr::decls_iterator It = Overloads.begin(), | 
|  | DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { | 
|  | const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It); | 
|  | QualType OverloadResultTy = OverloadDecl->getReturnType(); | 
|  | if (IsPlausibleResult(OverloadResultTy)) | 
|  | PlausibleOverloads.addDecl(It.getDecl()); | 
|  | } | 
|  | noteOverloads(S, PlausibleOverloads, Loc); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given expression can be called by just | 
|  | /// putting parentheses after it.  Notably, expressions with unary | 
|  | /// operators can't be because the unary operator will start parsing | 
|  | /// outside the call. | 
|  | static bool IsCallableWithAppend(Expr *E) { | 
|  | E = E->IgnoreImplicit(); | 
|  | return (!isa<CStyleCastExpr>(E) && | 
|  | !isa<UnaryOperator>(E) && | 
|  | !isa<BinaryOperator>(E) && | 
|  | !isa<CXXOperatorCallExpr>(E)); | 
|  | } | 
|  |  | 
|  | static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) { | 
|  | if (const auto *UO = dyn_cast<UnaryOperator>(E)) | 
|  | E = UO->getSubExpr(); | 
|  |  | 
|  | if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
|  | if (ULE->getNumDecls() == 0) | 
|  | return false; | 
|  |  | 
|  | const NamedDecl *ND = *ULE->decls_begin(); | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) | 
|  | return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, | 
|  | bool ForceComplain, | 
|  | bool (*IsPlausibleResult)(QualType)) { | 
|  | SourceLocation Loc = E.get()->getExprLoc(); | 
|  | SourceRange Range = E.get()->getSourceRange(); | 
|  |  | 
|  | QualType ZeroArgCallTy; | 
|  | UnresolvedSet<4> Overloads; | 
|  | if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) && | 
|  | !ZeroArgCallTy.isNull() && | 
|  | (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) { | 
|  | // At this point, we know E is potentially callable with 0 | 
|  | // arguments and that it returns something of a reasonable type, | 
|  | // so we can emit a fixit and carry on pretending that E was | 
|  | // actually a CallExpr. | 
|  | SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd()); | 
|  | bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); | 
|  | Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range | 
|  | << (IsCallableWithAppend(E.get()) | 
|  | ? FixItHint::CreateInsertion(ParenInsertionLoc, "()") | 
|  | : FixItHint()); | 
|  | if (!IsMV) | 
|  | notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); | 
|  |  | 
|  | // FIXME: Try this before emitting the fixit, and suppress diagnostics | 
|  | // while doing so. | 
|  | E = ActOnCallExpr(nullptr, E.get(), Range.getEnd(), None, | 
|  | Range.getEnd().getLocWithOffset(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!ForceComplain) return false; | 
|  |  | 
|  | bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); | 
|  | Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range; | 
|  | if (!IsMV) | 
|  | notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); | 
|  | E = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Sema::getSuperIdentifier() const { | 
|  | if (!Ident_super) | 
|  | Ident_super = &Context.Idents.get("super"); | 
|  | return Ident_super; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Sema::getFloat128Identifier() const { | 
|  | if (!Ident___float128) | 
|  | Ident___float128 = &Context.Idents.get("__float128"); | 
|  | return Ident___float128; | 
|  | } | 
|  |  | 
|  | void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD, | 
|  | CapturedRegionKind K) { | 
|  | CapturingScopeInfo *CSI = new CapturedRegionScopeInfo( | 
|  | getDiagnostics(), S, CD, RD, CD->getContextParam(), K, | 
|  | (getLangOpts().OpenMP && K == CR_OpenMP) ? getOpenMPNestingLevel() : 0); | 
|  | CSI->ReturnType = Context.VoidTy; | 
|  | FunctionScopes.push_back(CSI); | 
|  | } | 
|  |  | 
|  | CapturedRegionScopeInfo *Sema::getCurCapturedRegion() { | 
|  | if (FunctionScopes.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back()); | 
|  | } | 
|  |  | 
|  | const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> & | 
|  | Sema::getMismatchingDeleteExpressions() const { | 
|  | return DeleteExprs; | 
|  | } | 
|  |  | 
|  | void Sema::setOpenCLExtensionForType(QualType T, llvm::StringRef ExtStr) { | 
|  | if (ExtStr.empty()) | 
|  | return; | 
|  | llvm::SmallVector<StringRef, 1> Exts; | 
|  | ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false); | 
|  | auto CanT = T.getCanonicalType().getTypePtr(); | 
|  | for (auto &I : Exts) | 
|  | OpenCLTypeExtMap[CanT].insert(I.str()); | 
|  | } | 
|  |  | 
|  | void Sema::setOpenCLExtensionForDecl(Decl *FD, StringRef ExtStr) { | 
|  | llvm::SmallVector<StringRef, 1> Exts; | 
|  | ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false); | 
|  | if (Exts.empty()) | 
|  | return; | 
|  | for (auto &I : Exts) | 
|  | OpenCLDeclExtMap[FD].insert(I.str()); | 
|  | } | 
|  |  | 
|  | void Sema::setCurrentOpenCLExtensionForType(QualType T) { | 
|  | if (CurrOpenCLExtension.empty()) | 
|  | return; | 
|  | setOpenCLExtensionForType(T, CurrOpenCLExtension); | 
|  | } | 
|  |  | 
|  | void Sema::setCurrentOpenCLExtensionForDecl(Decl *D) { | 
|  | if (CurrOpenCLExtension.empty()) | 
|  | return; | 
|  | setOpenCLExtensionForDecl(D, CurrOpenCLExtension); | 
|  | } | 
|  |  | 
|  | std::string Sema::getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD) { | 
|  | if (!OpenCLDeclExtMap.empty()) | 
|  | return getOpenCLExtensionsFromExtMap(FD, OpenCLDeclExtMap); | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | std::string Sema::getOpenCLExtensionsFromTypeExtMap(FunctionType *FT) { | 
|  | if (!OpenCLTypeExtMap.empty()) | 
|  | return getOpenCLExtensionsFromExtMap(FT, OpenCLTypeExtMap); | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | template <typename T, typename MapT> | 
|  | std::string Sema::getOpenCLExtensionsFromExtMap(T *FDT, MapT &Map) { | 
|  | std::string ExtensionNames = ""; | 
|  | auto Loc = Map.find(FDT); | 
|  |  | 
|  | for (auto const& I : Loc->second) { | 
|  | ExtensionNames += I; | 
|  | ExtensionNames += " "; | 
|  | } | 
|  | ExtensionNames.pop_back(); | 
|  |  | 
|  | return ExtensionNames; | 
|  | } | 
|  |  | 
|  | bool Sema::isOpenCLDisabledDecl(Decl *FD) { | 
|  | auto Loc = OpenCLDeclExtMap.find(FD); | 
|  | if (Loc == OpenCLDeclExtMap.end()) | 
|  | return false; | 
|  | for (auto &I : Loc->second) { | 
|  | if (!getOpenCLOptions().isEnabled(I)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename T, typename DiagLocT, typename DiagInfoT, typename MapT> | 
|  | bool Sema::checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc, | 
|  | DiagInfoT DiagInfo, MapT &Map, | 
|  | unsigned Selector, | 
|  | SourceRange SrcRange) { | 
|  | auto Loc = Map.find(D); | 
|  | if (Loc == Map.end()) | 
|  | return false; | 
|  | bool Disabled = false; | 
|  | for (auto &I : Loc->second) { | 
|  | if (I != CurrOpenCLExtension && !getOpenCLOptions().isEnabled(I)) { | 
|  | Diag(DiagLoc, diag::err_opencl_requires_extension) << Selector << DiagInfo | 
|  | << I << SrcRange; | 
|  | Disabled = true; | 
|  | } | 
|  | } | 
|  | return Disabled; | 
|  | } | 
|  |  | 
|  | bool Sema::checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType QT) { | 
|  | // Check extensions for declared types. | 
|  | Decl *Decl = nullptr; | 
|  | if (auto TypedefT = dyn_cast<TypedefType>(QT.getTypePtr())) | 
|  | Decl = TypedefT->getDecl(); | 
|  | if (auto TagT = dyn_cast<TagType>(QT.getCanonicalType().getTypePtr())) | 
|  | Decl = TagT->getDecl(); | 
|  | auto Loc = DS.getTypeSpecTypeLoc(); | 
|  |  | 
|  | // Check extensions for vector types. | 
|  | // e.g. double4 is not allowed when cl_khr_fp64 is absent. | 
|  | if (QT->isExtVectorType()) { | 
|  | auto TypePtr = QT->castAs<ExtVectorType>()->getElementType().getTypePtr(); | 
|  | return checkOpenCLDisabledTypeOrDecl(TypePtr, Loc, QT, OpenCLTypeExtMap); | 
|  | } | 
|  |  | 
|  | if (checkOpenCLDisabledTypeOrDecl(Decl, Loc, QT, OpenCLDeclExtMap)) | 
|  | return true; | 
|  |  | 
|  | // Check extensions for builtin types. | 
|  | return checkOpenCLDisabledTypeOrDecl(QT.getCanonicalType().getTypePtr(), Loc, | 
|  | QT, OpenCLTypeExtMap); | 
|  | } | 
|  |  | 
|  | bool Sema::checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E) { | 
|  | IdentifierInfo *FnName = D.getIdentifier(); | 
|  | return checkOpenCLDisabledTypeOrDecl(&D, E.getBeginLoc(), FnName, | 
|  | OpenCLDeclExtMap, 1, D.getSourceRange()); | 
|  | } |