blob: 9ae9a1c16173a48e5ef352ec5d2161b90847c447 [file] [log] [blame]
//===-- EmulateInstruction.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Host/Endian.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
EmulateInstruction*
EmulateInstruction::FindPlugin (const ArchSpec &arch, InstructionType supported_inst_type, const char *plugin_name)
{
EmulateInstructionCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetEmulateInstructionCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetEmulateInstructionCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
}
}
return NULL;
}
EmulateInstruction::EmulateInstruction (const ArchSpec &arch) :
m_arch (arch),
m_baton (NULL),
m_read_mem_callback (&ReadMemoryDefault),
m_write_mem_callback (&WriteMemoryDefault),
m_read_reg_callback (&ReadRegisterDefault),
m_write_reg_callback (&WriteRegisterDefault),
m_addr (LLDB_INVALID_ADDRESS)
{
::memset (&m_opcode, 0, sizeof (m_opcode));
}
uint64_t
EmulateInstruction::ReadRegisterUnsigned (uint32_t reg_kind, uint32_t reg_num, uint64_t fail_value, bool *success_ptr)
{
RegisterInfo reg_info;
if (GetRegisterInfo(reg_kind, reg_num, reg_info))
return ReadRegisterUnsigned (reg_info, fail_value, success_ptr);
if (success_ptr)
*success_ptr = false;
return fail_value;
}
uint64_t
EmulateInstruction::ReadRegisterUnsigned (const RegisterInfo &reg_info, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
bool success = m_read_reg_callback (this, m_baton, reg_info, uval64);
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteRegisterUnsigned (const Context &context, uint32_t reg_kind, uint32_t reg_num, uint64_t reg_value)
{
RegisterInfo reg_info;
if (GetRegisterInfo(reg_kind, reg_num, reg_info))
return WriteRegisterUnsigned (context, reg_info, reg_value);
return false;
}
bool
EmulateInstruction::WriteRegisterUnsigned (const Context &context, const RegisterInfo &reg_info, uint64_t reg_value)
{
return m_write_reg_callback (this, m_baton, context, reg_info, reg_value);
}
uint64_t
EmulateInstruction::ReadMemoryUnsigned (const Context &context, lldb::addr_t addr, size_t byte_size, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
bool success = false;
if (byte_size <= 8)
{
uint8_t buf[sizeof(uint64_t)];
size_t bytes_read = m_read_mem_callback (this, m_baton, context, addr, buf, byte_size);
if (bytes_read == byte_size)
{
uint32_t offset = 0;
DataExtractor data (buf, byte_size, GetByteOrder(), GetAddressByteSize());
uval64 = data.GetMaxU64 (&offset, byte_size);
success = true;
}
}
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteMemoryUnsigned (const Context &context,
lldb::addr_t addr,
uint64_t uval,
size_t uval_byte_size)
{
StreamString strm(Stream::eBinary, GetAddressByteSize(), GetByteOrder());
strm.PutMaxHex64 (uval, uval_byte_size);
size_t bytes_written = m_write_mem_callback (this, m_baton, context, addr, strm.GetData(), uval_byte_size);
if (bytes_written == uval_byte_size)
return true;
return false;
}
void
EmulateInstruction::SetBaton (void *baton)
{
m_baton = baton;
}
void
EmulateInstruction::SetCallbacks (ReadMemory read_mem_callback,
WriteMemory write_mem_callback,
ReadRegister read_reg_callback,
WriteRegister write_reg_callback)
{
m_read_mem_callback = read_mem_callback;
m_write_mem_callback = write_mem_callback;
m_read_reg_callback = read_reg_callback;
m_write_reg_callback = write_reg_callback;
}
void
EmulateInstruction::SetReadMemCallback (ReadMemory read_mem_callback)
{
m_read_mem_callback = read_mem_callback;
}
void
EmulateInstruction::SetWriteMemCallback (WriteMemory write_mem_callback)
{
m_write_mem_callback = write_mem_callback;
}
void
EmulateInstruction::SetReadRegCallback (ReadRegister read_reg_callback)
{
m_read_reg_callback = read_reg_callback;
}
void
EmulateInstruction::SetWriteRegCallback (WriteRegister write_reg_callback)
{
m_write_reg_callback = write_reg_callback;
}
//
// Read & Write Memory and Registers callback functions.
//
size_t
EmulateInstruction::ReadMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
DataBufferSP data_sp (new DataBufferHeap (length, '\0'));
Error error;
size_t bytes_read = frame->GetThread().GetProcess().ReadMemory (addr, data_sp->GetBytes(), data_sp->GetByteSize(),
error);
if (bytes_read > 0)
((DataBufferHeap *) data_sp.get())->CopyData (dst, length);
return bytes_read;
}
size_t
EmulateInstruction::WriteMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
lldb::DataBufferSP data_sp (new DataBufferHeap (dst, length));
if (data_sp)
{
length = data_sp->GetByteSize();
if (length > 0)
{
Error error;
size_t bytes_written = frame->GetThread().GetProcess().WriteMemory (addr, data_sp->GetBytes(), length,
error);
return bytes_written;
}
}
return 0;
}
bool
EmulateInstruction::ReadRegisterFrame (EmulateInstruction *instruction,
void *baton,
const RegisterInfo &reg_info,
uint64_t &reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_ctx = frame->GetRegisterContext().get();
Scalar value;
const uint32_t internal_reg_num = GetInternalRegisterNumber (reg_ctx, reg_info);
if (internal_reg_num != LLDB_INVALID_REGNUM)
{
if (reg_ctx->ReadRegisterValue (internal_reg_num, value))
{
reg_value = value.GetRawBits64 (0);
return true;
}
}
return false;
}
bool
EmulateInstruction::WriteRegisterFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
const RegisterInfo &reg_info,
uint64_t reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_ctx = frame->GetRegisterContext().get();
Scalar value (reg_value);
const uint32_t internal_reg_num = GetInternalRegisterNumber (reg_ctx, reg_info);
if (internal_reg_num != LLDB_INVALID_REGNUM)
return reg_ctx->WriteRegisterValue (internal_reg_num, value);
return false;
}
size_t
EmulateInstruction::ReadMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
fprintf (stdout, " Read from Memory (address = 0x%llx, length = %zu, context = ", addr, length);
context.Dump (stdout, instruction);
*((uint64_t *) dst) = 0xdeadbeef;
return length;
}
size_t
EmulateInstruction::WriteMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
fprintf (stdout, " Write to Memory (address = 0x%llx, length = %zu, context = ", addr, length);
context.Dump (stdout, instruction);
return length;
}
bool
EmulateInstruction::ReadRegisterDefault (EmulateInstruction *instruction,
void *baton,
const RegisterInfo &reg_info,
uint64_t &reg_value)
{
fprintf (stdout, " Read Register (%s)\n", reg_info.name);
uint32_t reg_kind, reg_num;
if (GetBestRegisterKindAndNumber (reg_info, reg_kind, reg_num))
reg_value = (uint64_t)reg_kind << 24 | reg_num;
else
reg_value = 0;
return true;
}
bool
EmulateInstruction::WriteRegisterDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
const RegisterInfo &reg_info,
uint64_t reg_value)
{
fprintf (stdout, " Write to Register (name = %s, value = 0x%llx, context = ", reg_info.name, reg_value);
context.Dump (stdout, instruction);
return true;
}
void
EmulateInstruction::Context::Dump (FILE *fh,
EmulateInstruction *instruction) const
{
switch (type)
{
case eContextReadOpcode:
fprintf (fh, "reading opcode");
break;
case eContextImmediate:
fprintf (fh, "immediate");
break;
case eContextPushRegisterOnStack:
fprintf (fh, "push register");
break;
case eContextPopRegisterOffStack:
fprintf (fh, "pop register");
break;
case eContextAdjustStackPointer:
fprintf (fh, "adjust sp");
break;
case eContextAdjustBaseRegister:
fprintf (fh, "adjusting (writing value back to) a base register");
break;
case eContextRegisterPlusOffset:
fprintf (fh, "register + offset");
break;
case eContextRegisterStore:
fprintf (fh, "store register");
break;
case eContextRegisterLoad:
fprintf (fh, "load register");
break;
case eContextRelativeBranchImmediate:
fprintf (fh, "relative branch immediate");
break;
case eContextAbsoluteBranchRegister:
fprintf (fh, "absolute branch register");
break;
case eContextSupervisorCall:
fprintf (fh, "supervisor call");
break;
case eContextTableBranchReadMemory:
fprintf (fh, "table branch read memory");
break;
case eContextWriteRegisterRandomBits:
fprintf (fh, "write random bits to a register");
break;
case eContextWriteMemoryRandomBits:
fprintf (fh, "write random bits to a memory address");
break;
case eContextArithmetic:
fprintf (fh, "arithmetic");
break;
case eContextReturnFromException:
fprintf (fh, "return from exception");
break;
default:
fprintf (fh, "unrecognized context.");
break;
}
switch (info_type)
{
case eInfoTypeRegisterPlusOffset:
{
fprintf (fh,
" (reg_plus_offset = %s%+lld)\n",
info.RegisterPlusOffset.reg.name,
info.RegisterPlusOffset.signed_offset);
}
break;
case eInfoTypeRegisterPlusIndirectOffset:
{
fprintf (fh, " (reg_plus_reg = %s + %s)\n",
info.RegisterPlusIndirectOffset.base_reg.name,
info.RegisterPlusIndirectOffset.offset_reg.name);
}
break;
case eInfoTypeRegisterToRegisterPlusOffset:
{
fprintf (fh, " (base_and_imm_offset = %s%+lld, data_reg = %s)\n",
info.RegisterToRegisterPlusOffset.base_reg.name,
info.RegisterToRegisterPlusOffset.offset,
info.RegisterToRegisterPlusOffset.data_reg.name);
}
break;
case eInfoTypeRegisterToRegisterPlusIndirectOffset:
{
fprintf (fh, " (base_and_reg_offset = %s + %s, data_reg = %s)\n",
info.RegisterToRegisterPlusIndirectOffset.base_reg.name,
info.RegisterToRegisterPlusIndirectOffset.offset_reg.name,
info.RegisterToRegisterPlusIndirectOffset.data_reg.name);
}
break;
case eInfoTypeRegisterRegisterOperands:
{
fprintf (fh, " (register to register binary op: %s and %s)\n",
info.RegisterRegisterOperands.operand1.name,
info.RegisterRegisterOperands.operand2.name);
}
break;
case eInfoTypeOffset:
fprintf (fh, " (signed_offset = %+lld)\n", info.signed_offset);
break;
case eInfoTypeRegister:
fprintf (fh, " (reg = %s)\n", info.reg.name);
break;
case eInfoTypeImmediate:
fprintf (fh,
" (unsigned_immediate = %llu (0x%16.16llx))\n",
info.unsigned_immediate,
info.unsigned_immediate);
break;
case eInfoTypeImmediateSigned:
fprintf (fh,
" (signed_immediate = %+lld (0x%16.16llx))\n",
info.signed_immediate,
info.signed_immediate);
break;
case eInfoTypeAddress:
fprintf (fh, " (address = 0x%llx)\n", info.address);
break;
case eInfoTypeISAAndImmediate:
fprintf (fh,
" (isa = %u, unsigned_immediate = %u (0x%8.8x))\n",
info.ISAAndImmediate.isa,
info.ISAAndImmediate.unsigned_data32,
info.ISAAndImmediate.unsigned_data32);
break;
case eInfoTypeISAAndImmediateSigned:
fprintf (fh,
" (isa = %u, signed_immediate = %i (0x%8.8x))\n",
info.ISAAndImmediateSigned.isa,
info.ISAAndImmediateSigned.signed_data32,
info.ISAAndImmediateSigned.signed_data32);
break;
case eInfoTypeISA:
fprintf (fh, " (isa = %u)\n", info.isa);
break;
case eInfoTypeNoArgs:
fprintf (fh, " \n");
break;
default:
fprintf (fh, " (unknown <info_type>)\n");
break;
}
}
bool
EmulateInstruction::SetInstruction (const Opcode &opcode, const Address &inst_addr, Target *target)
{
m_opcode = opcode;
m_addr = LLDB_INVALID_ADDRESS;
if (inst_addr.IsValid())
{
if (target)
m_addr = inst_addr.GetLoadAddress (target);
if (m_addr == LLDB_INVALID_ADDRESS)
m_addr = inst_addr.GetFileAddress ();
}
return true;
}
bool
EmulateInstruction::GetBestRegisterKindAndNumber (const RegisterInfo &reg_info,
uint32_t &reg_kind,
uint32_t &reg_num)
{
// Generic and DWARF should be the two most popular register kinds when
// emulating instructions since they are the most platform agnostic...
reg_num = reg_info.kinds[eRegisterKindGeneric];
if (reg_num != LLDB_INVALID_REGNUM)
{
reg_kind = eRegisterKindGeneric;
return true;
}
reg_num = reg_info.kinds[eRegisterKindDWARF];
if (reg_num != LLDB_INVALID_REGNUM)
{
reg_kind = eRegisterKindDWARF;
return true;
}
reg_num = reg_info.kinds[eRegisterKindLLDB];
if (reg_num != LLDB_INVALID_REGNUM)
{
reg_kind = eRegisterKindLLDB;
return true;
}
reg_num = reg_info.kinds[eRegisterKindGCC];
if (reg_num != LLDB_INVALID_REGNUM)
{
reg_kind = eRegisterKindGCC;
return true;
}
reg_num = reg_info.kinds[eRegisterKindGDB];
if (reg_num != LLDB_INVALID_REGNUM)
{
reg_kind = eRegisterKindGDB;
return true;
}
return false;
}
uint32_t
EmulateInstruction::GetInternalRegisterNumber (RegisterContext *reg_ctx, const RegisterInfo &reg_info)
{
uint32_t reg_kind, reg_num;
if (reg_ctx && GetBestRegisterKindAndNumber (reg_info, reg_kind, reg_num))
return reg_ctx->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num);
return LLDB_INVALID_REGNUM;
}
bool
EmulateInstruction::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
return false;
}