|  | //===-- Local.cpp - Functions to perform local transformations ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This family of functions perform various local transformations to the | 
|  | // program. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/LibCallSemantics.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "local" | 
|  |  | 
|  | STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Local constant propagation. | 
|  | // | 
|  |  | 
|  | /// ConstantFoldTerminator - If a terminator instruction is predicated on a | 
|  | /// constant value, convert it into an unconditional branch to the constant | 
|  | /// destination.  This is a nontrivial operation because the successors of this | 
|  | /// basic block must have their PHI nodes updated. | 
|  | /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch | 
|  | /// conditions and indirectbr addresses this might make dead if | 
|  | /// DeleteDeadConditions is true. | 
|  | bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | TerminatorInst *T = BB->getTerminator(); | 
|  | IRBuilder<> Builder(T); | 
|  |  | 
|  | // Branch - See if we are conditional jumping on constant | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(T)) { | 
|  | if (BI->isUnconditional()) return false;  // Can't optimize uncond branch | 
|  | BasicBlock *Dest1 = BI->getSuccessor(0); | 
|  | BasicBlock *Dest2 = BI->getSuccessor(1); | 
|  |  | 
|  | if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { | 
|  | // Are we branching on constant? | 
|  | // YES.  Change to unconditional branch... | 
|  | BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; | 
|  | BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1; | 
|  |  | 
|  | //cerr << "Function: " << T->getParent()->getParent() | 
|  | //     << "\nRemoving branch from " << T->getParent() | 
|  | //     << "\n\nTo: " << OldDest << endl; | 
|  |  | 
|  | // Let the basic block know that we are letting go of it.  Based on this, | 
|  | // it will adjust it's PHI nodes. | 
|  | OldDest->removePredecessor(BB); | 
|  |  | 
|  | // Replace the conditional branch with an unconditional one. | 
|  | Builder.CreateBr(Destination); | 
|  | BI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Dest2 == Dest1) {       // Conditional branch to same location? | 
|  | // This branch matches something like this: | 
|  | //     br bool %cond, label %Dest, label %Dest | 
|  | // and changes it into:  br label %Dest | 
|  |  | 
|  | // Let the basic block know that we are letting go of one copy of it. | 
|  | assert(BI->getParent() && "Terminator not inserted in block!"); | 
|  | Dest1->removePredecessor(BI->getParent()); | 
|  |  | 
|  | // Replace the conditional branch with an unconditional one. | 
|  | Builder.CreateBr(Dest1); | 
|  | Value *Cond = BI->getCondition(); | 
|  | BI->eraseFromParent(); | 
|  | if (DeleteDeadConditions) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { | 
|  | // If we are switching on a constant, we can convert the switch to an | 
|  | // unconditional branch. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); | 
|  | BasicBlock *DefaultDest = SI->getDefaultDest(); | 
|  | BasicBlock *TheOnlyDest = DefaultDest; | 
|  |  | 
|  | // If the default is unreachable, ignore it when searching for TheOnlyDest. | 
|  | if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && | 
|  | SI->getNumCases() > 0) { | 
|  | TheOnlyDest = SI->case_begin().getCaseSuccessor(); | 
|  | } | 
|  |  | 
|  | // Figure out which case it goes to. | 
|  | for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); | 
|  | i != e; ++i) { | 
|  | // Found case matching a constant operand? | 
|  | if (i.getCaseValue() == CI) { | 
|  | TheOnlyDest = i.getCaseSuccessor(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check to see if this branch is going to the same place as the default | 
|  | // dest.  If so, eliminate it as an explicit compare. | 
|  | if (i.getCaseSuccessor() == DefaultDest) { | 
|  | MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); | 
|  | unsigned NCases = SI->getNumCases(); | 
|  | // Fold the case metadata into the default if there will be any branches | 
|  | // left, unless the metadata doesn't match the switch. | 
|  | if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { | 
|  | // Collect branch weights into a vector. | 
|  | SmallVector<uint32_t, 8> Weights; | 
|  | for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; | 
|  | ++MD_i) { | 
|  | ConstantInt *CI = | 
|  | mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); | 
|  | assert(CI); | 
|  | Weights.push_back(CI->getValue().getZExtValue()); | 
|  | } | 
|  | // Merge weight of this case to the default weight. | 
|  | unsigned idx = i.getCaseIndex(); | 
|  | Weights[0] += Weights[idx+1]; | 
|  | // Remove weight for this case. | 
|  | std::swap(Weights[idx+1], Weights.back()); | 
|  | Weights.pop_back(); | 
|  | SI->setMetadata(LLVMContext::MD_prof, | 
|  | MDBuilder(BB->getContext()). | 
|  | createBranchWeights(Weights)); | 
|  | } | 
|  | // Remove this entry. | 
|  | DefaultDest->removePredecessor(SI->getParent()); | 
|  | SI->removeCase(i); | 
|  | --i; --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if the switch only branches to one destination. | 
|  | // We do this by reseting "TheOnlyDest" to null when we find two non-equal | 
|  | // destinations. | 
|  | if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; | 
|  | } | 
|  |  | 
|  | if (CI && !TheOnlyDest) { | 
|  | // Branching on a constant, but not any of the cases, go to the default | 
|  | // successor. | 
|  | TheOnlyDest = SI->getDefaultDest(); | 
|  | } | 
|  |  | 
|  | // If we found a single destination that we can fold the switch into, do so | 
|  | // now. | 
|  | if (TheOnlyDest) { | 
|  | // Insert the new branch. | 
|  | Builder.CreateBr(TheOnlyDest); | 
|  | BasicBlock *BB = SI->getParent(); | 
|  |  | 
|  | // Remove entries from PHI nodes which we no longer branch to... | 
|  | for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { | 
|  | // Found case matching a constant operand? | 
|  | BasicBlock *Succ = SI->getSuccessor(i); | 
|  | if (Succ == TheOnlyDest) | 
|  | TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest | 
|  | else | 
|  | Succ->removePredecessor(BB); | 
|  | } | 
|  |  | 
|  | // Delete the old switch. | 
|  | Value *Cond = SI->getCondition(); | 
|  | SI->eraseFromParent(); | 
|  | if (DeleteDeadConditions) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SI->getNumCases() == 1) { | 
|  | // Otherwise, we can fold this switch into a conditional branch | 
|  | // instruction if it has only one non-default destination. | 
|  | SwitchInst::CaseIt FirstCase = SI->case_begin(); | 
|  | Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), | 
|  | FirstCase.getCaseValue(), "cond"); | 
|  |  | 
|  | // Insert the new branch. | 
|  | BranchInst *NewBr = Builder.CreateCondBr(Cond, | 
|  | FirstCase.getCaseSuccessor(), | 
|  | SI->getDefaultDest()); | 
|  | MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); | 
|  | if (MD && MD->getNumOperands() == 3) { | 
|  | ConstantInt *SICase = | 
|  | mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); | 
|  | ConstantInt *SIDef = | 
|  | mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); | 
|  | assert(SICase && SIDef); | 
|  | // The TrueWeight should be the weight for the single case of SI. | 
|  | NewBr->setMetadata(LLVMContext::MD_prof, | 
|  | MDBuilder(BB->getContext()). | 
|  | createBranchWeights(SICase->getValue().getZExtValue(), | 
|  | SIDef->getValue().getZExtValue())); | 
|  | } | 
|  |  | 
|  | // Delete the old switch. | 
|  | SI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { | 
|  | // indirectbr blockaddress(@F, @BB) -> br label @BB | 
|  | if (BlockAddress *BA = | 
|  | dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { | 
|  | BasicBlock *TheOnlyDest = BA->getBasicBlock(); | 
|  | // Insert the new branch. | 
|  | Builder.CreateBr(TheOnlyDest); | 
|  |  | 
|  | for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { | 
|  | if (IBI->getDestination(i) == TheOnlyDest) | 
|  | TheOnlyDest = nullptr; | 
|  | else | 
|  | IBI->getDestination(i)->removePredecessor(IBI->getParent()); | 
|  | } | 
|  | Value *Address = IBI->getAddress(); | 
|  | IBI->eraseFromParent(); | 
|  | if (DeleteDeadConditions) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); | 
|  |  | 
|  | // If we didn't find our destination in the IBI successor list, then we | 
|  | // have undefined behavior.  Replace the unconditional branch with an | 
|  | // 'unreachable' instruction. | 
|  | if (TheOnlyDest) { | 
|  | BB->getTerminator()->eraseFromParent(); | 
|  | new UnreachableInst(BB->getContext(), BB); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Local dead code elimination. | 
|  | // | 
|  |  | 
|  | /// isInstructionTriviallyDead - Return true if the result produced by the | 
|  | /// instruction is not used, and the instruction has no side effects. | 
|  | /// | 
|  | bool llvm::isInstructionTriviallyDead(Instruction *I, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | if (!I->use_empty() || isa<TerminatorInst>(I)) return false; | 
|  |  | 
|  | // We don't want the landingpad instruction removed by anything this general. | 
|  | if (isa<LandingPadInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // We don't want debug info removed by anything this general, unless | 
|  | // debug info is empty. | 
|  | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { | 
|  | if (DDI->getAddress()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { | 
|  | if (DVI->getValue()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!I->mayHaveSideEffects()) return true; | 
|  |  | 
|  | // Special case intrinsics that "may have side effects" but can be deleted | 
|  | // when dead. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | // Safe to delete llvm.stacksave if dead. | 
|  | if (II->getIntrinsicID() == Intrinsic::stacksave) | 
|  | return true; | 
|  |  | 
|  | // Lifetime intrinsics are dead when their right-hand is undef. | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) | 
|  | return isa<UndefValue>(II->getArgOperand(1)); | 
|  |  | 
|  | // Assumptions are dead if their condition is trivially true. | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) { | 
|  | if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) | 
|  | return !Cond->isZero(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isAllocLikeFn(I, TLI)) return true; | 
|  |  | 
|  | if (CallInst *CI = isFreeCall(I, TLI)) | 
|  | if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) | 
|  | return C->isNullValue() || isa<UndefValue>(C); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a | 
|  | /// trivially dead instruction, delete it.  If that makes any of its operands | 
|  | /// trivially dead, delete them too, recursively.  Return true if any | 
|  | /// instructions were deleted. | 
|  | bool | 
|  | llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) | 
|  | return false; | 
|  |  | 
|  | SmallVector<Instruction*, 16> DeadInsts; | 
|  | DeadInsts.push_back(I); | 
|  |  | 
|  | do { | 
|  | I = DeadInsts.pop_back_val(); | 
|  |  | 
|  | // Null out all of the instruction's operands to see if any operand becomes | 
|  | // dead as we go. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | Value *OpV = I->getOperand(i); | 
|  | I->setOperand(i, nullptr); | 
|  |  | 
|  | if (!OpV->use_empty()) continue; | 
|  |  | 
|  | // If the operand is an instruction that became dead as we nulled out the | 
|  | // operand, and if it is 'trivially' dead, delete it in a future loop | 
|  | // iteration. | 
|  | if (Instruction *OpI = dyn_cast<Instruction>(OpV)) | 
|  | if (isInstructionTriviallyDead(OpI, TLI)) | 
|  | DeadInsts.push_back(OpI); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | } while (!DeadInsts.empty()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// areAllUsesEqual - Check whether the uses of a value are all the same. | 
|  | /// This is similar to Instruction::hasOneUse() except this will also return | 
|  | /// true when there are no uses or multiple uses that all refer to the same | 
|  | /// value. | 
|  | static bool areAllUsesEqual(Instruction *I) { | 
|  | Value::user_iterator UI = I->user_begin(); | 
|  | Value::user_iterator UE = I->user_end(); | 
|  | if (UI == UE) | 
|  | return true; | 
|  |  | 
|  | User *TheUse = *UI; | 
|  | for (++UI; UI != UE; ++UI) { | 
|  | if (*UI != TheUse) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively | 
|  | /// dead PHI node, due to being a def-use chain of single-use nodes that | 
|  | /// either forms a cycle or is terminated by a trivially dead instruction, | 
|  | /// delete it.  If that makes any of its operands trivially dead, delete them | 
|  | /// too, recursively.  Return true if a change was made. | 
|  | bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | SmallPtrSet<Instruction*, 4> Visited; | 
|  | for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); | 
|  | I = cast<Instruction>(*I->user_begin())) { | 
|  | if (I->use_empty()) | 
|  | return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); | 
|  |  | 
|  | // If we find an instruction more than once, we're on a cycle that | 
|  | // won't prove fruitful. | 
|  | if (!Visited.insert(I).second) { | 
|  | // Break the cycle and delete the instruction and its operands. | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyInstructionsInBlock - Scan the specified basic block and try to | 
|  | /// simplify any instructions in it and recursively delete dead instructions. | 
|  | /// | 
|  | /// This returns true if it changed the code, note that it can delete | 
|  | /// instructions in other blocks as well in this block. | 
|  | bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // In debug builds, ensure that the terminator of the block is never replaced | 
|  | // or deleted by these simplifications. The idea of simplification is that it | 
|  | // cannot introduce new instructions, and there is no way to replace the | 
|  | // terminator of a block without introducing a new instruction. | 
|  | AssertingVH<Instruction> TerminatorVH(--BB->end()); | 
|  | #endif | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { | 
|  | assert(!BI->isTerminator()); | 
|  | Instruction *Inst = BI++; | 
|  |  | 
|  | WeakVH BIHandle(BI); | 
|  | if (recursivelySimplifyInstruction(Inst, TLI)) { | 
|  | MadeChange = true; | 
|  | if (BIHandle != BI) | 
|  | BI = BB->begin(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); | 
|  | if (BIHandle != BI) | 
|  | BI = BB->begin(); | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Control Flow Graph Restructuring. | 
|  | // | 
|  |  | 
|  |  | 
|  | /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this | 
|  | /// method is called when we're about to delete Pred as a predecessor of BB.  If | 
|  | /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. | 
|  | /// | 
|  | /// Unlike the removePredecessor method, this attempts to simplify uses of PHI | 
|  | /// nodes that collapse into identity values.  For example, if we have: | 
|  | ///   x = phi(1, 0, 0, 0) | 
|  | ///   y = and x, z | 
|  | /// | 
|  | /// .. and delete the predecessor corresponding to the '1', this will attempt to | 
|  | /// recursively fold the and to 0. | 
|  | void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { | 
|  | // This only adjusts blocks with PHI nodes. | 
|  | if (!isa<PHINode>(BB->begin())) | 
|  | return; | 
|  |  | 
|  | // Remove the entries for Pred from the PHI nodes in BB, but do not simplify | 
|  | // them down.  This will leave us with single entry phi nodes and other phis | 
|  | // that can be removed. | 
|  | BB->removePredecessor(Pred, true); | 
|  |  | 
|  | WeakVH PhiIt = &BB->front(); | 
|  | while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { | 
|  | PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); | 
|  | Value *OldPhiIt = PhiIt; | 
|  |  | 
|  | if (!recursivelySimplifyInstruction(PN)) | 
|  | continue; | 
|  |  | 
|  | // If recursive simplification ended up deleting the next PHI node we would | 
|  | // iterate to, then our iterator is invalid, restart scanning from the top | 
|  | // of the block. | 
|  | if (PhiIt != OldPhiIt) PhiIt = &BB->front(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its | 
|  | /// predecessor is known to have one successor (DestBB!).  Eliminate the edge | 
|  | /// between them, moving the instructions in the predecessor into DestBB and | 
|  | /// deleting the predecessor block. | 
|  | /// | 
|  | void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { | 
|  | // If BB has single-entry PHI nodes, fold them. | 
|  | while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { | 
|  | Value *NewVal = PN->getIncomingValue(0); | 
|  | // Replace self referencing PHI with undef, it must be dead. | 
|  | if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); | 
|  | PN->replaceAllUsesWith(NewVal); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | BasicBlock *PredBB = DestBB->getSinglePredecessor(); | 
|  | assert(PredBB && "Block doesn't have a single predecessor!"); | 
|  |  | 
|  | // Zap anything that took the address of DestBB.  Not doing this will give the | 
|  | // address an invalid value. | 
|  | if (DestBB->hasAddressTaken()) { | 
|  | BlockAddress *BA = BlockAddress::get(DestBB); | 
|  | Constant *Replacement = | 
|  | ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); | 
|  | BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, | 
|  | BA->getType())); | 
|  | BA->destroyConstant(); | 
|  | } | 
|  |  | 
|  | // Anything that branched to PredBB now branches to DestBB. | 
|  | PredBB->replaceAllUsesWith(DestBB); | 
|  |  | 
|  | // Splice all the instructions from PredBB to DestBB. | 
|  | PredBB->getTerminator()->eraseFromParent(); | 
|  | DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); | 
|  |  | 
|  | // If the PredBB is the entry block of the function, move DestBB up to | 
|  | // become the entry block after we erase PredBB. | 
|  | if (PredBB == &DestBB->getParent()->getEntryBlock()) | 
|  | DestBB->moveAfter(PredBB); | 
|  |  | 
|  | if (DT) { | 
|  | BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); | 
|  | DT->changeImmediateDominator(DestBB, PredBBIDom); | 
|  | DT->eraseNode(PredBB); | 
|  | } | 
|  | // Nuke BB. | 
|  | PredBB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// CanMergeValues - Return true if we can choose one of these values to use | 
|  | /// in place of the other. Note that we will always choose the non-undef | 
|  | /// value to keep. | 
|  | static bool CanMergeValues(Value *First, Value *Second) { | 
|  | return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); | 
|  | } | 
|  |  | 
|  | /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an | 
|  | /// almost-empty BB ending in an unconditional branch to Succ, into Succ. | 
|  | /// | 
|  | /// Assumption: Succ is the single successor for BB. | 
|  | /// | 
|  | static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { | 
|  | assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); | 
|  |  | 
|  | DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " | 
|  | << Succ->getName() << "\n"); | 
|  | // Shortcut, if there is only a single predecessor it must be BB and merging | 
|  | // is always safe | 
|  | if (Succ->getSinglePredecessor()) return true; | 
|  |  | 
|  | // Make a list of the predecessors of BB | 
|  | SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); | 
|  |  | 
|  | // Look at all the phi nodes in Succ, to see if they present a conflict when | 
|  | // merging these blocks | 
|  | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  |  | 
|  | // If the incoming value from BB is again a PHINode in | 
|  | // BB which has the same incoming value for *PI as PN does, we can | 
|  | // merge the phi nodes and then the blocks can still be merged | 
|  | PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); | 
|  | if (BBPN && BBPN->getParent() == BB) { | 
|  | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { | 
|  | BasicBlock *IBB = PN->getIncomingBlock(PI); | 
|  | if (BBPreds.count(IBB) && | 
|  | !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), | 
|  | PN->getIncomingValue(PI))) { | 
|  | DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " | 
|  | << Succ->getName() << " is conflicting with " | 
|  | << BBPN->getName() << " with regard to common predecessor " | 
|  | << IBB->getName() << "\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Value* Val = PN->getIncomingValueForBlock(BB); | 
|  | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { | 
|  | // See if the incoming value for the common predecessor is equal to the | 
|  | // one for BB, in which case this phi node will not prevent the merging | 
|  | // of the block. | 
|  | BasicBlock *IBB = PN->getIncomingBlock(PI); | 
|  | if (BBPreds.count(IBB) && | 
|  | !CanMergeValues(Val, PN->getIncomingValue(PI))) { | 
|  | DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " | 
|  | << Succ->getName() << " is conflicting with regard to common " | 
|  | << "predecessor " << IBB->getName() << "\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | typedef SmallVector<BasicBlock *, 16> PredBlockVector; | 
|  | typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; | 
|  |  | 
|  | /// \brief Determines the value to use as the phi node input for a block. | 
|  | /// | 
|  | /// Select between \p OldVal any value that we know flows from \p BB | 
|  | /// to a particular phi on the basis of which one (if either) is not | 
|  | /// undef. Update IncomingValues based on the selected value. | 
|  | /// | 
|  | /// \param OldVal The value we are considering selecting. | 
|  | /// \param BB The block that the value flows in from. | 
|  | /// \param IncomingValues A map from block-to-value for other phi inputs | 
|  | /// that we have examined. | 
|  | /// | 
|  | /// \returns the selected value. | 
|  | static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, | 
|  | IncomingValueMap &IncomingValues) { | 
|  | if (!isa<UndefValue>(OldVal)) { | 
|  | assert((!IncomingValues.count(BB) || | 
|  | IncomingValues.find(BB)->second == OldVal) && | 
|  | "Expected OldVal to match incoming value from BB!"); | 
|  |  | 
|  | IncomingValues.insert(std::make_pair(BB, OldVal)); | 
|  | return OldVal; | 
|  | } | 
|  |  | 
|  | IncomingValueMap::const_iterator It = IncomingValues.find(BB); | 
|  | if (It != IncomingValues.end()) return It->second; | 
|  |  | 
|  | return OldVal; | 
|  | } | 
|  |  | 
|  | /// \brief Create a map from block to value for the operands of a | 
|  | /// given phi. | 
|  | /// | 
|  | /// Create a map from block to value for each non-undef value flowing | 
|  | /// into \p PN. | 
|  | /// | 
|  | /// \param PN The phi we are collecting the map for. | 
|  | /// \param IncomingValues [out] The map from block to value for this phi. | 
|  | static void gatherIncomingValuesToPhi(PHINode *PN, | 
|  | IncomingValueMap &IncomingValues) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *BB = PN->getIncomingBlock(i); | 
|  | Value *V = PN->getIncomingValue(i); | 
|  |  | 
|  | if (!isa<UndefValue>(V)) | 
|  | IncomingValues.insert(std::make_pair(BB, V)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Replace the incoming undef values to a phi with the values | 
|  | /// from a block-to-value map. | 
|  | /// | 
|  | /// \param PN The phi we are replacing the undefs in. | 
|  | /// \param IncomingValues A map from block to value. | 
|  | static void replaceUndefValuesInPhi(PHINode *PN, | 
|  | const IncomingValueMap &IncomingValues) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = PN->getIncomingValue(i); | 
|  |  | 
|  | if (!isa<UndefValue>(V)) continue; | 
|  |  | 
|  | BasicBlock *BB = PN->getIncomingBlock(i); | 
|  | IncomingValueMap::const_iterator It = IncomingValues.find(BB); | 
|  | if (It == IncomingValues.end()) continue; | 
|  |  | 
|  | PN->setIncomingValue(i, It->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Replace a value flowing from a block to a phi with | 
|  | /// potentially multiple instances of that value flowing from the | 
|  | /// block's predecessors to the phi. | 
|  | /// | 
|  | /// \param BB The block with the value flowing into the phi. | 
|  | /// \param BBPreds The predecessors of BB. | 
|  | /// \param PN The phi that we are updating. | 
|  | static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, | 
|  | const PredBlockVector &BBPreds, | 
|  | PHINode *PN) { | 
|  | Value *OldVal = PN->removeIncomingValue(BB, false); | 
|  | assert(OldVal && "No entry in PHI for Pred BB!"); | 
|  |  | 
|  | IncomingValueMap IncomingValues; | 
|  |  | 
|  | // We are merging two blocks - BB, and the block containing PN - and | 
|  | // as a result we need to redirect edges from the predecessors of BB | 
|  | // to go to the block containing PN, and update PN | 
|  | // accordingly. Since we allow merging blocks in the case where the | 
|  | // predecessor and successor blocks both share some predecessors, | 
|  | // and where some of those common predecessors might have undef | 
|  | // values flowing into PN, we want to rewrite those values to be | 
|  | // consistent with the non-undef values. | 
|  |  | 
|  | gatherIncomingValuesToPhi(PN, IncomingValues); | 
|  |  | 
|  | // If this incoming value is one of the PHI nodes in BB, the new entries | 
|  | // in the PHI node are the entries from the old PHI. | 
|  | if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { | 
|  | PHINode *OldValPN = cast<PHINode>(OldVal); | 
|  | for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { | 
|  | // Note that, since we are merging phi nodes and BB and Succ might | 
|  | // have common predecessors, we could end up with a phi node with | 
|  | // identical incoming branches. This will be cleaned up later (and | 
|  | // will trigger asserts if we try to clean it up now, without also | 
|  | // simplifying the corresponding conditional branch). | 
|  | BasicBlock *PredBB = OldValPN->getIncomingBlock(i); | 
|  | Value *PredVal = OldValPN->getIncomingValue(i); | 
|  | Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, | 
|  | IncomingValues); | 
|  |  | 
|  | // And add a new incoming value for this predecessor for the | 
|  | // newly retargeted branch. | 
|  | PN->addIncoming(Selected, PredBB); | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { | 
|  | // Update existing incoming values in PN for this | 
|  | // predecessor of BB. | 
|  | BasicBlock *PredBB = BBPreds[i]; | 
|  | Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, | 
|  | IncomingValues); | 
|  |  | 
|  | // And add a new incoming value for this predecessor for the | 
|  | // newly retargeted branch. | 
|  | PN->addIncoming(Selected, PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | replaceUndefValuesInPhi(PN, IncomingValues); | 
|  | } | 
|  |  | 
|  | /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an | 
|  | /// unconditional branch, and contains no instructions other than PHI nodes, | 
|  | /// potential side-effect free intrinsics and the branch.  If possible, | 
|  | /// eliminate BB by rewriting all the predecessors to branch to the successor | 
|  | /// block and return true.  If we can't transform, return false. | 
|  | bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { | 
|  | assert(BB != &BB->getParent()->getEntryBlock() && | 
|  | "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); | 
|  |  | 
|  | // We can't eliminate infinite loops. | 
|  | BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); | 
|  | if (BB == Succ) return false; | 
|  |  | 
|  | // Check to see if merging these blocks would cause conflicts for any of the | 
|  | // phi nodes in BB or Succ. If not, we can safely merge. | 
|  | if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; | 
|  |  | 
|  | // Check for cases where Succ has multiple predecessors and a PHI node in BB | 
|  | // has uses which will not disappear when the PHI nodes are merged.  It is | 
|  | // possible to handle such cases, but difficult: it requires checking whether | 
|  | // BB dominates Succ, which is non-trivial to calculate in the case where | 
|  | // Succ has multiple predecessors.  Also, it requires checking whether | 
|  | // constructing the necessary self-referential PHI node doesn't introduce any | 
|  | // conflicts; this isn't too difficult, but the previous code for doing this | 
|  | // was incorrect. | 
|  | // | 
|  | // Note that if this check finds a live use, BB dominates Succ, so BB is | 
|  | // something like a loop pre-header (or rarely, a part of an irreducible CFG); | 
|  | // folding the branch isn't profitable in that case anyway. | 
|  | if (!Succ->getSinglePredecessor()) { | 
|  | BasicBlock::iterator BBI = BB->begin(); | 
|  | while (isa<PHINode>(*BBI)) { | 
|  | for (Use &U : BBI->uses()) { | 
|  | if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { | 
|  | if (PN->getIncomingBlock(U) != BB) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | ++BBI; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); | 
|  |  | 
|  | if (isa<PHINode>(Succ->begin())) { | 
|  | // If there is more than one pred of succ, and there are PHI nodes in | 
|  | // the successor, then we need to add incoming edges for the PHI nodes | 
|  | // | 
|  | const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); | 
|  |  | 
|  | // Loop over all of the PHI nodes in the successor of BB. | 
|  | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  |  | 
|  | redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Succ->getSinglePredecessor()) { | 
|  | // BB is the only predecessor of Succ, so Succ will end up with exactly | 
|  | // the same predecessors BB had. | 
|  |  | 
|  | // Copy over any phi, debug or lifetime instruction. | 
|  | BB->getTerminator()->eraseFromParent(); | 
|  | Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); | 
|  | } else { | 
|  | while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { | 
|  | // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. | 
|  | assert(PN->use_empty() && "There shouldn't be any uses here!"); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything that jumped to BB now goes to Succ. | 
|  | BB->replaceAllUsesWith(Succ); | 
|  | if (!Succ->hasName()) Succ->takeName(BB); | 
|  | BB->eraseFromParent();              // Delete the old basic block. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI | 
|  | /// nodes in this block. This doesn't try to be clever about PHI nodes | 
|  | /// which differ only in the order of the incoming values, but instcombine | 
|  | /// orders them so it usually won't matter. | 
|  | /// | 
|  | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // This implementation doesn't currently consider undef operands | 
|  | // specially. Theoretically, two phis which are identical except for | 
|  | // one having an undef where the other doesn't could be collapsed. | 
|  |  | 
|  | // Map from PHI hash values to PHI nodes. If multiple PHIs have | 
|  | // the same hash value, the element is the first PHI in the | 
|  | // linked list in CollisionMap. | 
|  | DenseMap<uintptr_t, PHINode *> HashMap; | 
|  |  | 
|  | // Maintain linked lists of PHI nodes with common hash values. | 
|  | DenseMap<PHINode *, PHINode *> CollisionMap; | 
|  |  | 
|  | // Examine each PHI. | 
|  | for (BasicBlock::iterator I = BB->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I++); ) { | 
|  | // Compute a hash value on the operands. Instcombine will likely have sorted | 
|  | // them, which helps expose duplicates, but we have to check all the | 
|  | // operands to be safe in case instcombine hasn't run. | 
|  | uintptr_t Hash = 0; | 
|  | // This hash algorithm is quite weak as hash functions go, but it seems | 
|  | // to do a good enough job for this particular purpose, and is very quick. | 
|  | for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { | 
|  | Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); | 
|  | Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); | 
|  | } | 
|  | for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); | 
|  | I != E; ++I) { | 
|  | Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); | 
|  | Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); | 
|  | } | 
|  | // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. | 
|  | Hash >>= 1; | 
|  | // If we've never seen this hash value before, it's a unique PHI. | 
|  | std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = | 
|  | HashMap.insert(std::make_pair(Hash, PN)); | 
|  | if (Pair.second) continue; | 
|  | // Otherwise it's either a duplicate or a hash collision. | 
|  | for (PHINode *OtherPN = Pair.first->second; ; ) { | 
|  | if (OtherPN->isIdenticalTo(PN)) { | 
|  | // A duplicate. Replace this PHI with its duplicate. | 
|  | PN->replaceAllUsesWith(OtherPN); | 
|  | PN->eraseFromParent(); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | // A non-duplicate hash collision. | 
|  | DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); | 
|  | if (I == CollisionMap.end()) { | 
|  | // Set this PHI to be the head of the linked list of colliding PHIs. | 
|  | PHINode *Old = Pair.first->second; | 
|  | Pair.first->second = PN; | 
|  | CollisionMap[PN] = Old; | 
|  | break; | 
|  | } | 
|  | // Proceed to the next PHI in the list. | 
|  | OtherPN = I->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// enforceKnownAlignment - If the specified pointer points to an object that | 
|  | /// we control, modify the object's alignment to PrefAlign. This isn't | 
|  | /// often possible though. If alignment is important, a more reliable approach | 
|  | /// is to simply align all global variables and allocation instructions to | 
|  | /// their preferred alignment from the beginning. | 
|  | /// | 
|  | static unsigned enforceKnownAlignment(Value *V, unsigned Align, | 
|  | unsigned PrefAlign, | 
|  | const DataLayout &DL) { | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | // If the preferred alignment is greater than the natural stack alignment | 
|  | // then don't round up. This avoids dynamic stack realignment. | 
|  | if (DL.exceedsNaturalStackAlignment(PrefAlign)) | 
|  | return Align; | 
|  | // If there is a requested alignment and if this is an alloca, round up. | 
|  | if (AI->getAlignment() >= PrefAlign) | 
|  | return AI->getAlignment(); | 
|  | AI->setAlignment(PrefAlign); | 
|  | return PrefAlign; | 
|  | } | 
|  |  | 
|  | if (auto *GO = dyn_cast<GlobalObject>(V)) { | 
|  | // If there is a large requested alignment and we can, bump up the alignment | 
|  | // of the global. | 
|  | if (GO->isDeclaration()) | 
|  | return Align; | 
|  | // If the memory we set aside for the global may not be the memory used by | 
|  | // the final program then it is impossible for us to reliably enforce the | 
|  | // preferred alignment. | 
|  | if (GO->isWeakForLinker()) | 
|  | return Align; | 
|  |  | 
|  | if (GO->getAlignment() >= PrefAlign) | 
|  | return GO->getAlignment(); | 
|  | // We can only increase the alignment of the global if it has no alignment | 
|  | // specified or if it is not assigned a section.  If it is assigned a | 
|  | // section, the global could be densely packed with other objects in the | 
|  | // section, increasing the alignment could cause padding issues. | 
|  | if (!GO->hasSection() || GO->getAlignment() == 0) | 
|  | GO->setAlignment(PrefAlign); | 
|  | return GO->getAlignment(); | 
|  | } | 
|  |  | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that | 
|  | /// we can determine, return it, otherwise return 0.  If PrefAlign is specified, | 
|  | /// and it is more than the alignment of the ultimate object, see if we can | 
|  | /// increase the alignment of the ultimate object, making this check succeed. | 
|  | unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, | 
|  | const DataLayout &DL, | 
|  | const Instruction *CxtI, | 
|  | AssumptionCache *AC, | 
|  | const DominatorTree *DT) { | 
|  | assert(V->getType()->isPointerTy() && | 
|  | "getOrEnforceKnownAlignment expects a pointer!"); | 
|  | unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); | 
|  |  | 
|  | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); | 
|  | unsigned TrailZ = KnownZero.countTrailingOnes(); | 
|  |  | 
|  | // Avoid trouble with ridiculously large TrailZ values, such as | 
|  | // those computed from a null pointer. | 
|  | TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); | 
|  |  | 
|  | unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); | 
|  |  | 
|  | // LLVM doesn't support alignments larger than this currently. | 
|  | Align = std::min(Align, +Value::MaximumAlignment); | 
|  |  | 
|  | if (PrefAlign > Align) | 
|  | Align = enforceKnownAlignment(V, Align, PrefAlign, DL); | 
|  |  | 
|  | // We don't need to make any adjustment. | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | ///===---------------------------------------------------------------------===// | 
|  | ///  Dbg Intrinsic utilities | 
|  | /// | 
|  |  | 
|  | /// See if there is a dbg.value intrinsic for DIVar before I. | 
|  | static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { | 
|  | // Since we can't guarantee that the original dbg.declare instrinsic | 
|  | // is removed by LowerDbgDeclare(), we need to make sure that we are | 
|  | // not inserting the same dbg.value intrinsic over and over. | 
|  | llvm::BasicBlock::InstListType::iterator PrevI(I); | 
|  | if (PrevI != I->getParent()->getInstList().begin()) { | 
|  | --PrevI; | 
|  | if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) | 
|  | if (DVI->getValue() == I->getOperand(0) && | 
|  | DVI->getOffset() == 0 && | 
|  | DVI->getVariable() == DIVar) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value | 
|  | /// that has an associated llvm.dbg.decl intrinsic. | 
|  | bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, | 
|  | StoreInst *SI, DIBuilder &Builder) { | 
|  | DIVariable DIVar(DDI->getVariable()); | 
|  | DIExpression DIExpr(DDI->getExpression()); | 
|  | assert((!DIVar || DIVar.isVariable()) && | 
|  | "Variable in DbgDeclareInst should be either null or a DIVariable."); | 
|  | if (!DIVar) | 
|  | return false; | 
|  |  | 
|  | if (LdStHasDebugValue(DIVar, SI)) | 
|  | return true; | 
|  |  | 
|  | Instruction *DbgVal = nullptr; | 
|  | // If an argument is zero extended then use argument directly. The ZExt | 
|  | // may be zapped by an optimization pass in future. | 
|  | Argument *ExtendedArg = nullptr; | 
|  | if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) | 
|  | ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); | 
|  | if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) | 
|  | ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); | 
|  | if (ExtendedArg) | 
|  | DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI); | 
|  | else | 
|  | DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, | 
|  | DIExpr, SI); | 
|  | DbgVal->setDebugLoc(DDI->getDebugLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value | 
|  | /// that has an associated llvm.dbg.decl intrinsic. | 
|  | bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, | 
|  | LoadInst *LI, DIBuilder &Builder) { | 
|  | DIVariable DIVar(DDI->getVariable()); | 
|  | DIExpression DIExpr(DDI->getExpression()); | 
|  | assert((!DIVar || DIVar.isVariable()) && | 
|  | "Variable in DbgDeclareInst should be either null or a DIVariable."); | 
|  | if (!DIVar) | 
|  | return false; | 
|  |  | 
|  | if (LdStHasDebugValue(DIVar, LI)) | 
|  | return true; | 
|  |  | 
|  | Instruction *DbgVal = | 
|  | Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI); | 
|  | DbgVal->setDebugLoc(DDI->getDebugLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether this alloca is either a VLA or an array. | 
|  | static bool isArray(AllocaInst *AI) { | 
|  | return AI->isArrayAllocation() || | 
|  | AI->getType()->getElementType()->isArrayTy(); | 
|  | } | 
|  |  | 
|  | /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set | 
|  | /// of llvm.dbg.value intrinsics. | 
|  | bool llvm::LowerDbgDeclare(Function &F) { | 
|  | DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); | 
|  | SmallVector<DbgDeclareInst *, 4> Dbgs; | 
|  | for (auto &FI : F) | 
|  | for (BasicBlock::iterator BI : FI) | 
|  | if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) | 
|  | Dbgs.push_back(DDI); | 
|  |  | 
|  | if (Dbgs.empty()) | 
|  | return false; | 
|  |  | 
|  | for (auto &I : Dbgs) { | 
|  | DbgDeclareInst *DDI = I; | 
|  | AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); | 
|  | // If this is an alloca for a scalar variable, insert a dbg.value | 
|  | // at each load and store to the alloca and erase the dbg.declare. | 
|  | // The dbg.values allow tracking a variable even if it is not | 
|  | // stored on the stack, while the dbg.declare can only describe | 
|  | // the stack slot (and at a lexical-scope granularity). Later | 
|  | // passes will attempt to elide the stack slot. | 
|  | if (AI && !isArray(AI)) { | 
|  | for (User *U : AI->users()) | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(U)) | 
|  | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); | 
|  | else if (LoadInst *LI = dyn_cast<LoadInst>(U)) | 
|  | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); | 
|  | else if (CallInst *CI = dyn_cast<CallInst>(U)) { | 
|  | // This is a call by-value or some other instruction that | 
|  | // takes a pointer to the variable. Insert a *value* | 
|  | // intrinsic that describes the alloca. | 
|  | auto DbgVal = DIB.insertDbgValueIntrinsic( | 
|  | AI, 0, DIVariable(DDI->getVariable()), | 
|  | DIExpression(DDI->getExpression()), CI); | 
|  | DbgVal->setDebugLoc(DDI->getDebugLoc()); | 
|  | } | 
|  | DDI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the | 
|  | /// alloca 'V', if any. | 
|  | DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { | 
|  | if (auto *L = LocalAsMetadata::getIfExists(V)) | 
|  | if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) | 
|  | for (User *U : MDV->users()) | 
|  | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) | 
|  | return DDI; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, | 
|  | DIBuilder &Builder, bool Deref) { | 
|  | DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); | 
|  | if (!DDI) | 
|  | return false; | 
|  | DebugLoc Loc = DDI->getDebugLoc(); | 
|  | DIVariable DIVar(DDI->getVariable()); | 
|  | DIExpression DIExpr(DDI->getExpression()); | 
|  | assert((!DIVar || DIVar.isVariable()) && | 
|  | "Variable in DbgDeclareInst should be either null or a DIVariable."); | 
|  | if (!DIVar) | 
|  | return false; | 
|  |  | 
|  | if (Deref) { | 
|  | // Create a copy of the original DIDescriptor for user variable, prepending | 
|  | // "deref" operation to a list of address elements, as new llvm.dbg.declare | 
|  | // will take a value storing address of the memory for variable, not | 
|  | // alloca itself. | 
|  | SmallVector<uint64_t, 4> NewDIExpr; | 
|  | NewDIExpr.push_back(dwarf::DW_OP_deref); | 
|  | if (DIExpr) | 
|  | for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i) | 
|  | NewDIExpr.push_back(DIExpr.getElement(i)); | 
|  | DIExpr = Builder.createExpression(NewDIExpr); | 
|  | } | 
|  |  | 
|  | // Insert llvm.dbg.declare in the same basic block as the original alloca, | 
|  | // and remove old llvm.dbg.declare. | 
|  | BasicBlock *BB = AI->getParent(); | 
|  | Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, BB) | 
|  | ->setDebugLoc(Loc); | 
|  | DDI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// changeToUnreachable - Insert an unreachable instruction before the specified | 
|  | /// instruction, making it and the rest of the code in the block dead. | 
|  | static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { | 
|  | BasicBlock *BB = I->getParent(); | 
|  | // Loop over all of the successors, removing BB's entry from any PHI | 
|  | // nodes. | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) | 
|  | (*SI)->removePredecessor(BB); | 
|  |  | 
|  | // Insert a call to llvm.trap right before this.  This turns the undefined | 
|  | // behavior into a hard fail instead of falling through into random code. | 
|  | if (UseLLVMTrap) { | 
|  | Function *TrapFn = | 
|  | Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); | 
|  | CallInst *CallTrap = CallInst::Create(TrapFn, "", I); | 
|  | CallTrap->setDebugLoc(I->getDebugLoc()); | 
|  | } | 
|  | new UnreachableInst(I->getContext(), I); | 
|  |  | 
|  | // All instructions after this are dead. | 
|  | BasicBlock::iterator BBI = I, BBE = BB->end(); | 
|  | while (BBI != BBE) { | 
|  | if (!BBI->use_empty()) | 
|  | BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); | 
|  | BB->getInstList().erase(BBI++); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// changeToCall - Convert the specified invoke into a normal call. | 
|  | static void changeToCall(InvokeInst *II) { | 
|  | SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); | 
|  | CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); | 
|  | NewCall->takeName(II); | 
|  | NewCall->setCallingConv(II->getCallingConv()); | 
|  | NewCall->setAttributes(II->getAttributes()); | 
|  | NewCall->setDebugLoc(II->getDebugLoc()); | 
|  | II->replaceAllUsesWith(NewCall); | 
|  |  | 
|  | // Follow the call by a branch to the normal destination. | 
|  | BranchInst::Create(II->getNormalDest(), II); | 
|  |  | 
|  | // Update PHI nodes in the unwind destination | 
|  | II->getUnwindDest()->removePredecessor(II->getParent()); | 
|  | II->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | static bool markAliveBlocks(BasicBlock *BB, | 
|  | SmallPtrSetImpl<BasicBlock*> &Reachable) { | 
|  |  | 
|  | SmallVector<BasicBlock*, 128> Worklist; | 
|  | Worklist.push_back(BB); | 
|  | Reachable.insert(BB); | 
|  | bool Changed = false; | 
|  | do { | 
|  | BB = Worklist.pop_back_val(); | 
|  |  | 
|  | // Do a quick scan of the basic block, turning any obviously unreachable | 
|  | // instructions into LLVM unreachable insts.  The instruction combining pass | 
|  | // canonicalizes unreachable insts into stores to null or undef. | 
|  | for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ | 
|  | // Assumptions that are known to be false are equivalent to unreachable. | 
|  | // Also, if the condition is undefined, then we make the choice most | 
|  | // beneficial to the optimizer, and choose that to also be unreachable. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) { | 
|  | bool MakeUnreachable = false; | 
|  | if (isa<UndefValue>(II->getArgOperand(0))) | 
|  | MakeUnreachable = true; | 
|  | else if (ConstantInt *Cond = | 
|  | dyn_cast<ConstantInt>(II->getArgOperand(0))) | 
|  | MakeUnreachable = Cond->isZero(); | 
|  |  | 
|  | if (MakeUnreachable) { | 
|  | // Don't insert a call to llvm.trap right before the unreachable. | 
|  | changeToUnreachable(BBI, false); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(BBI)) { | 
|  | if (CI->doesNotReturn()) { | 
|  | // If we found a call to a no-return function, insert an unreachable | 
|  | // instruction after it.  Make sure there isn't *already* one there | 
|  | // though. | 
|  | ++BBI; | 
|  | if (!isa<UnreachableInst>(BBI)) { | 
|  | // Don't insert a call to llvm.trap right before the unreachable. | 
|  | changeToUnreachable(BBI, false); | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Store to undef and store to null are undefined and used to signal that | 
|  | // they should be changed to unreachable by passes that can't modify the | 
|  | // CFG. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { | 
|  | // Don't touch volatile stores. | 
|  | if (SI->isVolatile()) continue; | 
|  |  | 
|  | Value *Ptr = SI->getOperand(1); | 
|  |  | 
|  | if (isa<UndefValue>(Ptr) || | 
|  | (isa<ConstantPointerNull>(Ptr) && | 
|  | SI->getPointerAddressSpace() == 0)) { | 
|  | changeToUnreachable(SI, true); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn invokes that call 'nounwind' functions into ordinary calls. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { | 
|  | Value *Callee = II->getCalledValue(); | 
|  | if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { | 
|  | changeToUnreachable(II, true); | 
|  | Changed = true; | 
|  | } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(II)) { | 
|  | if (II->use_empty() && II->onlyReadsMemory()) { | 
|  | // jump to the normal destination branch. | 
|  | BranchInst::Create(II->getNormalDest(), II); | 
|  | II->getUnwindDest()->removePredecessor(II->getParent()); | 
|  | II->eraseFromParent(); | 
|  | } else | 
|  | changeToCall(II); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Changed |= ConstantFoldTerminator(BB, true); | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) | 
|  | if (Reachable.insert(*SI).second) | 
|  | Worklist.push_back(*SI); | 
|  | } while (!Worklist.empty()); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even | 
|  | /// if they are in a dead cycle.  Return true if a change was made, false | 
|  | /// otherwise. | 
|  | bool llvm::removeUnreachableBlocks(Function &F) { | 
|  | SmallPtrSet<BasicBlock*, 128> Reachable; | 
|  | bool Changed = markAliveBlocks(F.begin(), Reachable); | 
|  |  | 
|  | // If there are unreachable blocks in the CFG... | 
|  | if (Reachable.size() == F.size()) | 
|  | return Changed; | 
|  |  | 
|  | assert(Reachable.size() < F.size()); | 
|  | NumRemoved += F.size()-Reachable.size(); | 
|  |  | 
|  | // Loop over all of the basic blocks that are not reachable, dropping all of | 
|  | // their internal references... | 
|  | for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (Reachable.count(BB)) | 
|  | continue; | 
|  |  | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) | 
|  | if (Reachable.count(*SI)) | 
|  | (*SI)->removePredecessor(BB); | 
|  | BB->dropAllReferences(); | 
|  | } | 
|  |  | 
|  | for (Function::iterator I = ++F.begin(); I != F.end();) | 
|  | if (!Reachable.count(I)) | 
|  | I = F.getBasicBlockList().erase(I); | 
|  | else | 
|  | ++I; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; | 
|  | K->dropUnknownMetadata(KnownIDs); | 
|  | K->getAllMetadataOtherThanDebugLoc(Metadata); | 
|  | for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { | 
|  | unsigned Kind = Metadata[i].first; | 
|  | MDNode *JMD = J->getMetadata(Kind); | 
|  | MDNode *KMD = Metadata[i].second; | 
|  |  | 
|  | switch (Kind) { | 
|  | default: | 
|  | K->setMetadata(Kind, nullptr); // Remove unknown metadata | 
|  | break; | 
|  | case LLVMContext::MD_dbg: | 
|  | llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); | 
|  | case LLVMContext::MD_tbaa: | 
|  | K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); | 
|  | break; | 
|  | case LLVMContext::MD_alias_scope: | 
|  | K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); | 
|  | break; | 
|  | case LLVMContext::MD_noalias: | 
|  | K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); | 
|  | break; | 
|  | case LLVMContext::MD_range: | 
|  | K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); | 
|  | break; | 
|  | case LLVMContext::MD_fpmath: | 
|  | K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); | 
|  | break; | 
|  | case LLVMContext::MD_invariant_load: | 
|  | // Only set the !invariant.load if it is present in both instructions. | 
|  | K->setMetadata(Kind, JMD); | 
|  | break; | 
|  | case LLVMContext::MD_nonnull: | 
|  | // Only set the !nonnull if it is present in both instructions. | 
|  | K->setMetadata(Kind, JMD); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } |