|  | //===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// | 
|  | // | 
|  | // This file contains a printer that converts from our internal | 
|  | // representation of machine-dependent LLVM code to Intel-format | 
|  | // assembly language. This printer is the output mechanism used | 
|  | // by `llc' and `lli -print-machineinstrs' on X86. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/Mangler.h" | 
|  | #include "Support/Statistic.h" | 
|  | #include "Support/StringExtras.h" | 
|  | #include "Support/CommandLine.h" | 
|  |  | 
|  | namespace { | 
|  | Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); | 
|  |  | 
|  | // FIXME: This should be automatically picked up by autoconf from the C | 
|  | // frontend | 
|  | cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden, | 
|  | cl::desc("Emit X86 assembly code suitable for consumption by cygwin")); | 
|  |  | 
|  | struct Printer : public MachineFunctionPass { | 
|  | /// Output stream on which we're printing assembly code. | 
|  | /// | 
|  | std::ostream &O; | 
|  |  | 
|  | /// Target machine description which we query for reg. names, data | 
|  | /// layout, etc. | 
|  | /// | 
|  | TargetMachine &TM; | 
|  |  | 
|  | /// Name-mangler for global names. | 
|  | /// | 
|  | Mangler *Mang; | 
|  |  | 
|  | Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } | 
|  |  | 
|  | /// We name each basic block in a Function with a unique number, so | 
|  | /// that we can consistently refer to them later. This is cleared | 
|  | /// at the beginning of each call to runOnMachineFunction(). | 
|  | /// | 
|  | typedef std::map<const Value *, unsigned> ValueMapTy; | 
|  | ValueMapTy NumberForBB; | 
|  |  | 
|  | /// Cache of mangled name for current function. This is | 
|  | /// recalculated at the beginning of each call to | 
|  | /// runOnMachineFunction(). | 
|  | /// | 
|  | std::string CurrentFnName; | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "X86 Assembly Printer"; | 
|  | } | 
|  |  | 
|  | void checkImplUses (const TargetInstrDescriptor &Desc); | 
|  | void printMachineInstruction(const MachineInstr *MI); | 
|  | void printOp(const MachineOperand &MO, | 
|  | bool elideOffsetKeyword = false); | 
|  | void printMemReference(const MachineInstr *MI, unsigned Op); | 
|  | void printConstantPool(MachineConstantPool *MCP); | 
|  | bool runOnMachineFunction(MachineFunction &F); | 
|  | std::string ConstantExprToString(const ConstantExpr* CE); | 
|  | std::string valToExprString(const Value* V); | 
|  | bool doInitialization(Module &M); | 
|  | bool doFinalization(Module &M); | 
|  | void printConstantValueOnly(const Constant* CV); | 
|  | void printSingleConstantValue(const Constant* CV); | 
|  | }; | 
|  | } // end of anonymous namespace | 
|  |  | 
|  | /// createX86CodePrinterPass - Returns a pass that prints the X86 | 
|  | /// assembly code for a MachineFunction to the given output stream, | 
|  | /// using the given target machine description.  This should work | 
|  | /// regardless of whether the function is in SSA form. | 
|  | /// | 
|  | FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ | 
|  | return new Printer(o, tm); | 
|  | } | 
|  |  | 
|  | /// valToExprString - Helper function for ConstantExprToString(). | 
|  | /// Appends result to argument string S. | 
|  | /// | 
|  | std::string Printer::valToExprString(const Value* V) { | 
|  | std::string S; | 
|  | bool failed = false; | 
|  | if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known | 
|  | if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) | 
|  | S += std::string(CB == ConstantBool::True ? "1" : "0"); | 
|  | else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) | 
|  | S += itostr(CI->getValue()); | 
|  | else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) | 
|  | S += utostr(CI->getValue()); | 
|  | else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) | 
|  | S += ftostr(CFP->getValue()); | 
|  | else if (isa<ConstantPointerNull>(CV)) | 
|  | S += "0"; | 
|  | else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV)) | 
|  | S += valToExprString(CPR->getValue()); | 
|  | else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) | 
|  | S += ConstantExprToString(CE); | 
|  | else | 
|  | failed = true; | 
|  | } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) { | 
|  | S += Mang->getValueName(GV); | 
|  | } | 
|  | else | 
|  | failed = true; | 
|  |  | 
|  | if (failed) { | 
|  | assert(0 && "Cannot convert value to string"); | 
|  | S += "<illegal-value>"; | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// ConstantExprToString - Convert a ConstantExpr to an asm expression | 
|  | /// and return this as a string. | 
|  | /// | 
|  | std::string Printer::ConstantExprToString(const ConstantExpr* CE) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  | switch(CE->getOpcode()) { | 
|  | case Instruction::GetElementPtr: | 
|  | { // generate a symbolic expression for the byte address | 
|  | const Value* ptrVal = CE->getOperand(0); | 
|  | std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); | 
|  | if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) | 
|  | return "(" + valToExprString(ptrVal) + ") + " + utostr(Offset); | 
|  | else | 
|  | return valToExprString(ptrVal); | 
|  | } | 
|  |  | 
|  | case Instruction::Cast: | 
|  | // Support only non-converting or widening casts for now, that is, | 
|  | // ones that do not involve a change in value.  This assertion is | 
|  | // not a complete check. | 
|  | { | 
|  | Constant *Op = CE->getOperand(0); | 
|  | const Type *OpTy = Op->getType(), *Ty = CE->getType(); | 
|  | assert(((isa<PointerType>(OpTy) | 
|  | && (Ty == Type::LongTy || Ty == Type::ULongTy)) | 
|  | || (isa<PointerType>(Ty) | 
|  | && (OpTy == Type::LongTy || OpTy == Type::ULongTy))) | 
|  | || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) | 
|  | && (OpTy->isLosslesslyConvertibleTo(Ty)))) | 
|  | && "FIXME: Don't yet support this kind of constant cast expr"); | 
|  | return "(" + valToExprString(Op) + ")"; | 
|  | } | 
|  |  | 
|  | case Instruction::Add: | 
|  | return "(" + valToExprString(CE->getOperand(0)) + ") + (" | 
|  | + valToExprString(CE->getOperand(1)) + ")"; | 
|  |  | 
|  | default: | 
|  | assert(0 && "Unsupported operator in ConstantExprToString()"); | 
|  | return ""; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// printSingleConstantValue - Print a single constant value. | 
|  | /// | 
|  | void | 
|  | Printer::printSingleConstantValue(const Constant* CV) | 
|  | { | 
|  | assert(CV->getType() != Type::VoidTy && | 
|  | CV->getType() != Type::TypeTy && | 
|  | CV->getType() != Type::LabelTy && | 
|  | "Unexpected type for Constant"); | 
|  |  | 
|  | assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV)) | 
|  | && "Aggregate types should be handled outside this function"); | 
|  |  | 
|  | const Type *type = CV->getType(); | 
|  | O << "\t"; | 
|  | switch(type->getPrimitiveID()) | 
|  | { | 
|  | case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: | 
|  | O << ".byte"; | 
|  | break; | 
|  | case Type::UShortTyID: case Type::ShortTyID: | 
|  | O << ".word"; | 
|  | break; | 
|  | case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID: | 
|  | O << ".long"; | 
|  | break; | 
|  | case Type::ULongTyID: case Type::LongTyID: | 
|  | O << ".quad"; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | O << ".long"; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | O << ".quad"; | 
|  | break; | 
|  | case Type::ArrayTyID: | 
|  | if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) || | 
|  | (cast<ArrayType>(type)->getElementType() == Type::SByteTy)) | 
|  | O << ".string"; | 
|  | else | 
|  | assert (0 && "Can't handle printing this type of array"); | 
|  | break; | 
|  | default: | 
|  | assert (0 && "Can't handle printing this type of thing"); | 
|  | break; | 
|  | } | 
|  | O << "\t"; | 
|  |  | 
|  | if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV)) | 
|  | { | 
|  | // Constant expression built from operators, constants, and | 
|  | // symbolic addrs | 
|  | O << ConstantExprToString(CE) << "\n"; | 
|  | } | 
|  | else if (type->isPrimitiveType()) | 
|  | { | 
|  | if (type->isFloatingPoint()) { | 
|  | // FP Constants are printed as integer constants to avoid losing | 
|  | // precision... | 
|  | double Val = cast<ConstantFP>(CV)->getValue(); | 
|  | if (type == Type::FloatTy) { | 
|  | float FVal = (float)Val; | 
|  | char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules | 
|  | O << *(unsigned int*)ProxyPtr; | 
|  | } else if (type == Type::DoubleTy) { | 
|  | char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules | 
|  | O << *(uint64_t*)ProxyPtr; | 
|  | } else { | 
|  | assert(0 && "Unknown floating point type!"); | 
|  | } | 
|  |  | 
|  | O << "\t# " << type->getDescription() << " value: " << Val << "\n"; | 
|  | } else { | 
|  | WriteAsOperand(O, CV, false, false) << "\n"; | 
|  | } | 
|  | } | 
|  | else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV)) | 
|  | { | 
|  | // This is a constant address for a global variable or method. | 
|  | // Use the name of the variable or method as the address value. | 
|  | O << Mang->getValueName(CPR->getValue()) << "\n"; | 
|  | } | 
|  | else if (isa<ConstantPointerNull>(CV)) | 
|  | { | 
|  | // Null pointer value | 
|  | O << "0\n"; | 
|  | } | 
|  | else | 
|  | { | 
|  | assert(0 && "Unknown elementary type for constant"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isStringCompatible - Can we treat the specified array as a string? | 
|  | /// Only if it is an array of ubytes or non-negative sbytes. | 
|  | /// | 
|  | static bool isStringCompatible(const ConstantArray *CVA) { | 
|  | const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); | 
|  | if (ETy == Type::UByteTy) return true; | 
|  | if (ETy != Type::SByteTy) return false; | 
|  |  | 
|  | for (unsigned i = 0; i < CVA->getNumOperands(); ++i) | 
|  | if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// toOctal - Convert the low order bits of X into an octal digit. | 
|  | /// | 
|  | static inline char toOctal(int X) { | 
|  | return (X&7)+'0'; | 
|  | } | 
|  |  | 
|  | /// getAsCString - Return the specified array as a C compatible | 
|  | /// string, only if the predicate isStringCompatible is true. | 
|  | /// | 
|  | static std::string getAsCString(const ConstantArray *CVA) { | 
|  | assert(isStringCompatible(CVA) && "Array is not string compatible!"); | 
|  |  | 
|  | std::string Result; | 
|  | const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); | 
|  | Result = "\""; | 
|  | for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { | 
|  | unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); | 
|  |  | 
|  | if (C == '"') { | 
|  | Result += "\\\""; | 
|  | } else if (C == '\\') { | 
|  | Result += "\\\\"; | 
|  | } else if (isprint(C)) { | 
|  | Result += C; | 
|  | } else { | 
|  | switch(C) { | 
|  | case '\b': Result += "\\b"; break; | 
|  | case '\f': Result += "\\f"; break; | 
|  | case '\n': Result += "\\n"; break; | 
|  | case '\r': Result += "\\r"; break; | 
|  | case '\t': Result += "\\t"; break; | 
|  | default: | 
|  | Result += '\\'; | 
|  | Result += toOctal(C >> 6); | 
|  | Result += toOctal(C >> 3); | 
|  | Result += toOctal(C >> 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | Result += "\""; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Print a constant value or values (it may be an aggregate). | 
|  | // Uses printSingleConstantValue() to print each individual value. | 
|  | void Printer::printConstantValueOnly(const Constant *CV) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  |  | 
|  | if (CV->isNullValue()) { | 
|  | O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; | 
|  | } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { | 
|  | if (isStringCompatible(CVA)) { | 
|  | // print the string alone and return | 
|  | O << "\t.string\t" << getAsCString(CVA) << "\n"; | 
|  | } else { // Not a string.  Print the values in successive locations | 
|  | const std::vector<Use> &constValues = CVA->getValues(); | 
|  | for (unsigned i=0; i < constValues.size(); i++) | 
|  | printConstantValueOnly(cast<Constant>(constValues[i].get())); | 
|  | } | 
|  | } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { | 
|  | // Print the fields in successive locations. Pad to align if needed! | 
|  | const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); | 
|  | const std::vector<Use>& constValues = CVS->getValues(); | 
|  | unsigned sizeSoFar = 0; | 
|  | for (unsigned i=0, N = constValues.size(); i < N; i++) { | 
|  | const Constant* field = cast<Constant>(constValues[i].get()); | 
|  |  | 
|  | // Check if padding is needed and insert one or more 0s. | 
|  | unsigned fieldSize = TD.getTypeSize(field->getType()); | 
|  | unsigned padSize = ((i == N-1? cvsLayout->StructSize | 
|  | : cvsLayout->MemberOffsets[i+1]) | 
|  | - cvsLayout->MemberOffsets[i]) - fieldSize; | 
|  | sizeSoFar += fieldSize + padSize; | 
|  |  | 
|  | // Now print the actual field value | 
|  | printConstantValueOnly(field); | 
|  |  | 
|  | // Insert the field padding unless it's zero bytes... | 
|  | if (padSize) | 
|  | O << "\t.zero\t " << padSize << "\n"; | 
|  | } | 
|  | assert(sizeSoFar == cvsLayout->StructSize && | 
|  | "Layout of constant struct may be incorrect!"); | 
|  | } else | 
|  | printSingleConstantValue(CV); | 
|  | } | 
|  |  | 
|  | /// printConstantPool - Print to the current output stream assembly | 
|  | /// representations of the constants in the constant pool MCP. This is | 
|  | /// used to print out constants which have been "spilled to memory" by | 
|  | /// the code generator. | 
|  | /// | 
|  | void Printer::printConstantPool(MachineConstantPool *MCP) { | 
|  | const std::vector<Constant*> &CP = MCP->getConstants(); | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  |  | 
|  | if (CP.empty()) return; | 
|  |  | 
|  | for (unsigned i = 0, e = CP.size(); i != e; ++i) { | 
|  | O << "\t.section .rodata\n"; | 
|  | O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) | 
|  | << "\n"; | 
|  | O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" | 
|  | << *CP[i] << "\n"; | 
|  | printConstantValueOnly (CP[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - This uses the printMachineInstruction() | 
|  | /// method to print assembly for each instruction. | 
|  | /// | 
|  | bool Printer::runOnMachineFunction(MachineFunction &MF) { | 
|  | // BBNumber is used here so that a given Printer will never give two | 
|  | // BBs the same name. (If you have a better way, please let me know!) | 
|  | static unsigned BBNumber = 0; | 
|  |  | 
|  | O << "\n\n"; | 
|  | // What's my mangled name? | 
|  | CurrentFnName = Mang->getValueName(MF.getFunction()); | 
|  |  | 
|  | // Print out constants referenced by the function | 
|  | printConstantPool(MF.getConstantPool()); | 
|  |  | 
|  | // Print out labels for the function. | 
|  | O << "\t.text\n"; | 
|  | O << "\t.align 16\n"; | 
|  | O << "\t.globl\t" << CurrentFnName << "\n"; | 
|  | if (!EmitCygwin) | 
|  | O << "\t.type\t" << CurrentFnName << ", @function\n"; | 
|  | O << CurrentFnName << ":\n"; | 
|  |  | 
|  | // Number each basic block so that we can consistently refer to them | 
|  | // in PC-relative references. | 
|  | NumberForBB.clear(); | 
|  | for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); | 
|  | I != E; ++I) { | 
|  | NumberForBB[I->getBasicBlock()] = BBNumber++; | 
|  | } | 
|  |  | 
|  | // Print out code for the function. | 
|  | for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); | 
|  | I != E; ++I) { | 
|  | // Print a label for the basic block. | 
|  | O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# " | 
|  | << I->getBasicBlock()->getName() << "\n"; | 
|  | for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); | 
|  | II != E; ++II) { | 
|  | // Print the assembly for the instruction. | 
|  | O << "\t"; | 
|  | printMachineInstruction(*II); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We didn't modify anything. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isScale(const MachineOperand &MO) { | 
|  | return MO.isImmediate() && | 
|  | (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || | 
|  | MO.getImmedValue() == 4 || MO.getImmedValue() == 8); | 
|  | } | 
|  |  | 
|  | static bool isMem(const MachineInstr *MI, unsigned Op) { | 
|  | if (MI->getOperand(Op).isFrameIndex()) return true; | 
|  | if (MI->getOperand(Op).isConstantPoolIndex()) return true; | 
|  | return Op+4 <= MI->getNumOperands() && | 
|  | MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) && | 
|  | MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void Printer::printOp(const MachineOperand &MO, | 
|  | bool elideOffsetKeyword /* = false */) { | 
|  | const MRegisterInfo &RI = *TM.getRegisterInfo(); | 
|  | switch (MO.getType()) { | 
|  | case MachineOperand::MO_VirtualRegister: | 
|  | if (Value *V = MO.getVRegValueOrNull()) { | 
|  | O << "<" << V->getName() << ">"; | 
|  | return; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case MachineOperand::MO_MachineRegister: | 
|  | if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) | 
|  | // Bug Workaround: See note in Printer::doInitialization about %. | 
|  | O << "%" << RI.get(MO.getReg()).Name; | 
|  | else | 
|  | O << "%reg" << MO.getReg(); | 
|  | return; | 
|  |  | 
|  | case MachineOperand::MO_SignExtendedImmed: | 
|  | case MachineOperand::MO_UnextendedImmed: | 
|  | O << (int)MO.getImmedValue(); | 
|  | return; | 
|  | case MachineOperand::MO_PCRelativeDisp: { | 
|  | ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue()); | 
|  | assert (i != NumberForBB.end() | 
|  | && "Could not find a BB in the NumberForBB map!"); | 
|  | O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName(); | 
|  | return; | 
|  | } | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | if (!elideOffsetKeyword) | 
|  | O << "OFFSET "; | 
|  | O << Mang->getValueName(MO.getGlobal()); | 
|  | return; | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | O << MO.getSymbolName(); | 
|  | return; | 
|  | default: | 
|  | O << "<unknown operand type>"; return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const std::string sizePtr(const TargetInstrDescriptor &Desc) { | 
|  | switch (Desc.TSFlags & X86II::ArgMask) { | 
|  | default: assert(0 && "Unknown arg size!"); | 
|  | case X86II::Arg8:   return "BYTE PTR"; | 
|  | case X86II::Arg16:  return "WORD PTR"; | 
|  | case X86II::Arg32:  return "DWORD PTR"; | 
|  | case X86II::Arg64:  return "QWORD PTR"; | 
|  | case X86II::ArgF32:  return "DWORD PTR"; | 
|  | case X86II::ArgF64:  return "QWORD PTR"; | 
|  | case X86II::ArgF80:  return "XWORD PTR"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Printer::printMemReference(const MachineInstr *MI, unsigned Op) { | 
|  | assert(isMem(MI, Op) && "Invalid memory reference!"); | 
|  |  | 
|  | if (MI->getOperand(Op).isFrameIndex()) { | 
|  | O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); | 
|  | if (MI->getOperand(Op+3).getImmedValue()) | 
|  | O << " + " << MI->getOperand(Op+3).getImmedValue(); | 
|  | O << "]"; | 
|  | return; | 
|  | } else if (MI->getOperand(Op).isConstantPoolIndex()) { | 
|  | O << "[.CPI" << CurrentFnName << "_" | 
|  | << MI->getOperand(Op).getConstantPoolIndex(); | 
|  | if (MI->getOperand(Op+3).getImmedValue()) | 
|  | O << " + " << MI->getOperand(Op+3).getImmedValue(); | 
|  | O << "]"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const MachineOperand &BaseReg  = MI->getOperand(Op); | 
|  | int ScaleVal                   = MI->getOperand(Op+1).getImmedValue(); | 
|  | const MachineOperand &IndexReg = MI->getOperand(Op+2); | 
|  | int DispVal                    = MI->getOperand(Op+3).getImmedValue(); | 
|  |  | 
|  | O << "["; | 
|  | bool NeedPlus = false; | 
|  | if (BaseReg.getReg()) { | 
|  | printOp(BaseReg); | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (IndexReg.getReg()) { | 
|  | if (NeedPlus) O << " + "; | 
|  | if (ScaleVal != 1) | 
|  | O << ScaleVal << "*"; | 
|  | printOp(IndexReg); | 
|  | NeedPlus = true; | 
|  | } | 
|  |  | 
|  | if (DispVal) { | 
|  | if (NeedPlus) | 
|  | if (DispVal > 0) | 
|  | O << " + "; | 
|  | else { | 
|  | O << " - "; | 
|  | DispVal = -DispVal; | 
|  | } | 
|  | O << DispVal; | 
|  | } | 
|  | O << "]"; | 
|  | } | 
|  |  | 
|  | /// checkImplUses - Emit the implicit-use registers for the | 
|  | /// instruction described by DESC, if its PrintImplUses flag is set. | 
|  | /// | 
|  | void Printer::checkImplUses (const TargetInstrDescriptor &Desc) { | 
|  | const MRegisterInfo &RI = *TM.getRegisterInfo(); | 
|  | if (Desc.TSFlags & X86II::PrintImplUses) { | 
|  | for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { | 
|  | // Bug Workaround: See note in Printer::doInitialization about %. | 
|  | O << ", %" << RI.get(*p).Name; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// printMachineInstruction -- Print out a single X86 LLVM instruction | 
|  | /// MI in Intel syntax to the current output stream. | 
|  | /// | 
|  | void Printer::printMachineInstruction(const MachineInstr *MI) { | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | const TargetInstrInfo &TII = TM.getInstrInfo(); | 
|  | const TargetInstrDescriptor &Desc = TII.get(Opcode); | 
|  |  | 
|  | ++EmittedInsts; | 
|  | switch (Desc.TSFlags & X86II::FormMask) { | 
|  | case X86II::Pseudo: | 
|  | // Print pseudo-instructions as comments; either they should have been | 
|  | // turned into real instructions by now, or they don't need to be | 
|  | // seen by the assembler (e.g., IMPLICIT_USEs.) | 
|  | O << "# "; | 
|  | if (Opcode == X86::PHI) { | 
|  | printOp(MI->getOperand(0)); | 
|  | O << " = phi "; | 
|  | for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { | 
|  | if (i != 1) O << ", "; | 
|  | O << "["; | 
|  | printOp(MI->getOperand(i)); | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(i+1)); | 
|  | O << "]"; | 
|  | } | 
|  | } else { | 
|  | unsigned i = 0; | 
|  | if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || | 
|  | MI->getOperand(0).opIsDefAndUse())) { | 
|  | printOp(MI->getOperand(0)); | 
|  | O << " = "; | 
|  | ++i; | 
|  | } | 
|  | O << TII.getName(MI->getOpcode()); | 
|  |  | 
|  | for (unsigned e = MI->getNumOperands(); i != e; ++i) { | 
|  | O << " "; | 
|  | if (MI->getOperand(i).opIsDefOnly() || | 
|  | MI->getOperand(i).opIsDefAndUse()) O << "*"; | 
|  | printOp(MI->getOperand(i)); | 
|  | if (MI->getOperand(i).opIsDefOnly() || | 
|  | MI->getOperand(i).opIsDefAndUse()) O << "*"; | 
|  | } | 
|  | } | 
|  | O << "\n"; | 
|  | return; | 
|  |  | 
|  | case X86II::RawFrm: | 
|  | // The accepted forms of Raw instructions are: | 
|  | //   1. nop     - No operand required | 
|  | //   2. jmp foo - PC relative displacement operand | 
|  | //   3. call bar - GlobalAddress Operand or External Symbol Operand | 
|  | // | 
|  | assert(MI->getNumOperands() == 0 || | 
|  | (MI->getNumOperands() == 1 && | 
|  | (MI->getOperand(0).isPCRelativeDisp() || | 
|  | MI->getOperand(0).isGlobalAddress() || | 
|  | MI->getOperand(0).isExternalSymbol())) && | 
|  | "Illegal raw instruction!"); | 
|  | O << TII.getName(MI->getOpcode()) << " "; | 
|  |  | 
|  | if (MI->getNumOperands() == 1) { | 
|  | printOp(MI->getOperand(0), true); // Don't print "OFFSET"... | 
|  | } | 
|  | O << "\n"; | 
|  | return; | 
|  |  | 
|  | case X86II::AddRegFrm: { | 
|  | // There are currently two forms of acceptable AddRegFrm instructions. | 
|  | // Either the instruction JUST takes a single register (like inc, dec, etc), | 
|  | // or it takes a register and an immediate of the same size as the register | 
|  | // (move immediate f.e.).  Note that this immediate value might be stored as | 
|  | // an LLVM value, to represent, for example, loading the address of a global | 
|  | // into a register.  The initial register might be duplicated if this is a | 
|  | // M_2_ADDR_REG instruction | 
|  | // | 
|  | assert(MI->getOperand(0).isRegister() && | 
|  | (MI->getNumOperands() == 1 || | 
|  | (MI->getNumOperands() == 2 && | 
|  | (MI->getOperand(1).getVRegValueOrNull() || | 
|  | MI->getOperand(1).isImmediate() || | 
|  | MI->getOperand(1).isRegister() || | 
|  | MI->getOperand(1).isGlobalAddress() || | 
|  | MI->getOperand(1).isExternalSymbol()))) && | 
|  | "Illegal form for AddRegFrm instruction!"); | 
|  |  | 
|  | unsigned Reg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | printOp(MI->getOperand(0)); | 
|  | if (MI->getNumOperands() == 2 && | 
|  | (!MI->getOperand(1).isRegister() || | 
|  | MI->getOperand(1).getVRegValueOrNull() || | 
|  | MI->getOperand(1).isGlobalAddress() || | 
|  | MI->getOperand(1).isExternalSymbol())) { | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(1)); | 
|  | } | 
|  | checkImplUses(Desc); | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  | case X86II::MRMDestReg: { | 
|  | // There are two acceptable forms of MRMDestReg instructions, those with 2, | 
|  | // 3 and 4 operands: | 
|  | // | 
|  | // 2 Operands: this is for things like mov that do not read a second input | 
|  | // | 
|  | // 3 Operands: in this form, the first two registers (the destination, and | 
|  | // the first operand) should be the same, post register allocation.  The 3rd | 
|  | // operand is an additional input.  This should be for things like add | 
|  | // instructions. | 
|  | // | 
|  | // 4 Operands: This form is for instructions which are 3 operands forms, but | 
|  | // have a constant argument as well. | 
|  | // | 
|  | bool isTwoAddr = TII.isTwoAddrInstr(Opcode); | 
|  | assert(MI->getOperand(0).isRegister() && | 
|  | (MI->getNumOperands() == 2 || | 
|  | (isTwoAddr && MI->getOperand(1).isRegister() && | 
|  | MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && | 
|  | (MI->getNumOperands() == 3 || | 
|  | (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate())))) | 
|  | && "Bad format for MRMDestReg!"); | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | printOp(MI->getOperand(0)); | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(1+isTwoAddr)); | 
|  | if (MI->getNumOperands() == 4) { | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(3)); | 
|  | } | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86II::MRMDestMem: { | 
|  | // These instructions are the same as MRMDestReg, but instead of having a | 
|  | // register reference for the mod/rm field, it's a memory reference. | 
|  | // | 
|  | assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && | 
|  | MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!"); | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " "; | 
|  | printMemReference(MI, 0); | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(4)); | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86II::MRMSrcReg: { | 
|  | // There is a two forms that are acceptable for MRMSrcReg instructions, | 
|  | // those with 3 and 2 operands: | 
|  | // | 
|  | // 3 Operands: in this form, the last register (the second input) is the | 
|  | // ModR/M input.  The first two operands should be the same, post register | 
|  | // allocation.  This is for things like: add r32, r/m32 | 
|  | // | 
|  | // 2 Operands: this is for things like mov that do not read a second input | 
|  | // | 
|  | assert(MI->getOperand(0).isRegister() && | 
|  | MI->getOperand(1).isRegister() && | 
|  | (MI->getNumOperands() == 2 || | 
|  | (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister())) | 
|  | && "Bad format for MRMSrcReg!"); | 
|  | if (MI->getNumOperands() == 3 && | 
|  | MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) | 
|  | O << "**"; | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | printOp(MI->getOperand(0)); | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(MI->getNumOperands()-1)); | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86II::MRMSrcMem: { | 
|  | // These instructions are the same as MRMSrcReg, but instead of having a | 
|  | // register reference for the mod/rm field, it's a memory reference. | 
|  | // | 
|  | assert(MI->getOperand(0).isRegister() && | 
|  | (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || | 
|  | (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && | 
|  | isMem(MI, 2)) | 
|  | && "Bad format for MRMDestReg!"); | 
|  | if (MI->getNumOperands() == 2+4 && | 
|  | MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) | 
|  | O << "**"; | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | printOp(MI->getOperand(0)); | 
|  | O << ", " << sizePtr(Desc) << " "; | 
|  | printMemReference(MI, MI->getNumOperands()-4); | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86II::MRMS0r: case X86II::MRMS1r: | 
|  | case X86II::MRMS2r: case X86II::MRMS3r: | 
|  | case X86II::MRMS4r: case X86II::MRMS5r: | 
|  | case X86II::MRMS6r: case X86II::MRMS7r: { | 
|  | // In this form, the following are valid formats: | 
|  | //  1. sete r | 
|  | //  2. cmp reg, immediate | 
|  | //  2. shl rdest, rinput  <implicit CL or 1> | 
|  | //  3. sbb rdest, rinput, immediate   [rdest = rinput] | 
|  | // | 
|  | assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && | 
|  | MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); | 
|  | assert((MI->getNumOperands() != 2 || | 
|  | MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& | 
|  | "Bad MRMSxR format!"); | 
|  | assert((MI->getNumOperands() < 3 || | 
|  | (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && | 
|  | "Bad MRMSxR format!"); | 
|  |  | 
|  | if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && | 
|  | MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) | 
|  | O << "**"; | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | printOp(MI->getOperand(0)); | 
|  | if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(MI->getNumOperands()-1)); | 
|  | } | 
|  | checkImplUses(Desc); | 
|  | O << "\n"; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86II::MRMS0m: case X86II::MRMS1m: | 
|  | case X86II::MRMS2m: case X86II::MRMS3m: | 
|  | case X86II::MRMS4m: case X86II::MRMS5m: | 
|  | case X86II::MRMS6m: case X86II::MRMS7m: { | 
|  | // In this form, the following are valid formats: | 
|  | //  1. sete [m] | 
|  | //  2. cmp [m], immediate | 
|  | //  2. shl [m], rinput  <implicit CL or 1> | 
|  | //  3. sbb [m], immediate | 
|  | // | 
|  | assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && | 
|  | isMem(MI, 0) && "Bad MRMSxM format!"); | 
|  | assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) && | 
|  | "Bad MRMSxM format!"); | 
|  | // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" | 
|  | // is misassembled by gas in intel_syntax mode as its 32-bit | 
|  | // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw | 
|  | // opcode bytes instead of the instruction. | 
|  | if (MI->getOpCode() == X86::FSTPr80) { | 
|  | if ((MI->getOperand(0).getReg() == X86::ESP) | 
|  | && (MI->getOperand(1).getImmedValue() == 1)) { | 
|  | int DispVal = MI->getOperand(3).getImmedValue(); | 
|  | if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. | 
|  | unsigned int val = (unsigned int) DispVal; | 
|  | O << ".byte 0xdb, 0xbc, 0x24\n\t"; | 
|  | O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; | 
|  | } else { // 1 byte disp. | 
|  | unsigned char val = (unsigned char) DispVal; | 
|  | O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val | 
|  | << std::dec << "\t# "; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is | 
|  | // misassembled by gas in intel_syntax mode as its 32-bit | 
|  | // equivalent "fld DWORD PTR [...]". Workaround: Output the raw | 
|  | // opcode bytes instead of the instruction. | 
|  | if (MI->getOpCode() == X86::FLDr80) { | 
|  | if ((MI->getOperand(0).getReg() == X86::ESP) | 
|  | && (MI->getOperand(1).getImmedValue() == 1)) { | 
|  | int DispVal = MI->getOperand(3).getImmedValue(); | 
|  | if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. | 
|  | unsigned int val = (unsigned int) DispVal; | 
|  | O << ".byte 0xdb, 0xac, 0x24\n\t"; | 
|  | O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; | 
|  | } else { // 1 byte disp. | 
|  | unsigned char val = (unsigned char) DispVal; | 
|  | O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val | 
|  | << std::dec << "\t# "; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an | 
|  | // invalid opcode, saying "64 bit operations are only supported in | 
|  | // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR | 
|  | // [...]", which is wrong. Workaround: Output the raw opcode bytes | 
|  | // instead of the instruction. | 
|  | if (MI->getOpCode() == X86::FILDr64) { | 
|  | if ((MI->getOperand(0).getReg() == X86::ESP) | 
|  | && (MI->getOperand(1).getImmedValue() == 1)) { | 
|  | int DispVal = MI->getOperand(3).getImmedValue(); | 
|  | if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. | 
|  | unsigned int val = (unsigned int) DispVal; | 
|  | O << ".byte 0xdf, 0xac, 0x24\n\t"; | 
|  | O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; | 
|  | } else { // 1 byte disp. | 
|  | unsigned char val = (unsigned char) DispVal; | 
|  | O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val | 
|  | << std::dec << "\t# "; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as | 
|  | // an invalid opcode, saying "64 bit operations are only | 
|  | // supported in 64 bit modes." libopcodes disassembles it as | 
|  | // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output | 
|  | // "fistpll DWORD PTR " instead, which is what libopcodes is | 
|  | // expecting to see. | 
|  | if (MI->getOpCode() == X86::FISTPr64) { | 
|  | O << "fistpll DWORD PTR "; | 
|  | printMemReference(MI, 0); | 
|  | if (MI->getNumOperands() == 5) { | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(4)); | 
|  | } | 
|  | O << "\t# "; | 
|  | } | 
|  |  | 
|  | O << TII.getName(MI->getOpCode()) << " "; | 
|  | O << sizePtr(Desc) << " "; | 
|  | printMemReference(MI, 0); | 
|  | if (MI->getNumOperands() == 5) { | 
|  | O << ", "; | 
|  | printOp(MI->getOperand(4)); | 
|  | } | 
|  | O << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | default: | 
|  | O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Printer::doInitialization(Module &M) { | 
|  | // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. | 
|  | // | 
|  | // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an | 
|  | // instruction as a reference to the register named sp, and if you try to | 
|  | // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased | 
|  | // before being looked up in the symbol table. This creates spurious | 
|  | // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' | 
|  | // mode, and decorate all register names with percent signs. | 
|  | O << "\t.intel_syntax\n"; | 
|  | Mang = new Mangler(M, EmitCygwin); | 
|  | return false; // success | 
|  | } | 
|  |  | 
|  | // SwitchSection - Switch to the specified section of the executable if we are | 
|  | // not already in it! | 
|  | // | 
|  | static void SwitchSection(std::ostream &OS, std::string &CurSection, | 
|  | const char *NewSection) { | 
|  | if (CurSection != NewSection) { | 
|  | CurSection = NewSection; | 
|  | if (!CurSection.empty()) | 
|  | OS << "\t" << NewSection << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Printer::doFinalization(Module &M) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  | std::string CurSection; | 
|  |  | 
|  | // Print out module-level global variables here. | 
|  | for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) | 
|  | if (I->hasInitializer()) {   // External global require no code | 
|  | O << "\n\n"; | 
|  | std::string name = Mang->getValueName(I); | 
|  | Constant *C = I->getInitializer(); | 
|  | unsigned Size = TD.getTypeSize(C->getType()); | 
|  | unsigned Align = TD.getTypeAlignment(C->getType()); | 
|  |  | 
|  | if (C->isNullValue() && | 
|  | (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || | 
|  | I->hasWeakLinkage() /* FIXME: Verify correct */)) { | 
|  | SwitchSection(O, CurSection, ".data"); | 
|  | if (I->hasInternalLinkage()) | 
|  | O << "\t.local " << name << "\n"; | 
|  |  | 
|  | O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) | 
|  | << "," << (unsigned)TD.getTypeAlignment(C->getType()); | 
|  | O << "\t\t# "; | 
|  | WriteAsOperand(O, I, true, true, &M); | 
|  | O << "\n"; | 
|  | } else { | 
|  | switch (I->getLinkage()) { | 
|  | case GlobalValue::LinkOnceLinkage: | 
|  | case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak. | 
|  | // Nonnull linkonce -> weak | 
|  | O << "\t.weak " << name << "\n"; | 
|  | SwitchSection(O, CurSection, ""); | 
|  | O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; | 
|  | break; | 
|  |  | 
|  | case GlobalValue::AppendingLinkage: | 
|  | // FIXME: appending linkage variables should go into a section of | 
|  | // their name or something.  For now, just emit them as external. | 
|  | case GlobalValue::ExternalLinkage: | 
|  | // If external or appending, declare as a global symbol | 
|  | O << "\t.globl " << name << "\n"; | 
|  | // FALL THROUGH | 
|  | case GlobalValue::InternalLinkage: | 
|  | if (C->isNullValue()) | 
|  | SwitchSection(O, CurSection, ".bss"); | 
|  | else | 
|  | SwitchSection(O, CurSection, ".data"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | O << "\t.align " << Align << "\n"; | 
|  | O << "\t.type " << name << ",@object\n"; | 
|  | O << "\t.size " << name << "," << Size << "\n"; | 
|  | O << name << ":\t\t\t\t# "; | 
|  | WriteAsOperand(O, I, true, true, &M); | 
|  | O << " = "; | 
|  | WriteAsOperand(O, C, false, false, &M); | 
|  | O << "\n"; | 
|  | printConstantValueOnly(C); | 
|  | } | 
|  | } | 
|  |  | 
|  | delete Mang; | 
|  | return false; // success | 
|  | } |