|  | //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements inline cost analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "inline-cost" | 
|  |  | 
|  | STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { | 
|  | typedef InstVisitor<CallAnalyzer, bool> Base; | 
|  | friend class InstVisitor<CallAnalyzer, bool>; | 
|  |  | 
|  | /// The TargetTransformInfo available for this compilation. | 
|  | const TargetTransformInfo &TTI; | 
|  |  | 
|  | /// The cache of @llvm.assume intrinsics. | 
|  | AssumptionCacheTracker *ACT; | 
|  |  | 
|  | // The called function. | 
|  | Function &F; | 
|  |  | 
|  | // The candidate callsite being analyzed. Please do not use this to do | 
|  | // analysis in the caller function; we want the inline cost query to be | 
|  | // easily cacheable. Instead, use the cover function paramHasAttr. | 
|  | CallSite CandidateCS; | 
|  |  | 
|  | int Threshold; | 
|  | int Cost; | 
|  |  | 
|  | bool IsCallerRecursive; | 
|  | bool IsRecursiveCall; | 
|  | bool ExposesReturnsTwice; | 
|  | bool HasDynamicAlloca; | 
|  | bool ContainsNoDuplicateCall; | 
|  | bool HasReturn; | 
|  | bool HasIndirectBr; | 
|  | bool HasFrameEscape; | 
|  |  | 
|  | /// Number of bytes allocated statically by the callee. | 
|  | uint64_t AllocatedSize; | 
|  | unsigned NumInstructions, NumVectorInstructions; | 
|  | int FiftyPercentVectorBonus, TenPercentVectorBonus; | 
|  | int VectorBonus; | 
|  |  | 
|  | // While we walk the potentially-inlined instructions, we build up and | 
|  | // maintain a mapping of simplified values specific to this callsite. The | 
|  | // idea is to propagate any special information we have about arguments to | 
|  | // this call through the inlinable section of the function, and account for | 
|  | // likely simplifications post-inlining. The most important aspect we track | 
|  | // is CFG altering simplifications -- when we prove a basic block dead, that | 
|  | // can cause dramatic shifts in the cost of inlining a function. | 
|  | DenseMap<Value *, Constant *> SimplifiedValues; | 
|  |  | 
|  | // Keep track of the values which map back (through function arguments) to | 
|  | // allocas on the caller stack which could be simplified through SROA. | 
|  | DenseMap<Value *, Value *> SROAArgValues; | 
|  |  | 
|  | // The mapping of caller Alloca values to their accumulated cost savings. If | 
|  | // we have to disable SROA for one of the allocas, this tells us how much | 
|  | // cost must be added. | 
|  | DenseMap<Value *, int> SROAArgCosts; | 
|  |  | 
|  | // Keep track of values which map to a pointer base and constant offset. | 
|  | DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; | 
|  |  | 
|  | // Custom simplification helper routines. | 
|  | bool isAllocaDerivedArg(Value *V); | 
|  | bool lookupSROAArgAndCost(Value *V, Value *&Arg, | 
|  | DenseMap<Value *, int>::iterator &CostIt); | 
|  | void disableSROA(DenseMap<Value *, int>::iterator CostIt); | 
|  | void disableSROA(Value *V); | 
|  | void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
|  | int InstructionCost); | 
|  | bool isGEPOffsetConstant(GetElementPtrInst &GEP); | 
|  | bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); | 
|  | bool simplifyCallSite(Function *F, CallSite CS); | 
|  | ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); | 
|  |  | 
|  | /// Return true if the given argument to the function being considered for | 
|  | /// inlining has the given attribute set either at the call site or the | 
|  | /// function declaration.  Primarily used to inspect call site specific | 
|  | /// attributes since these can be more precise than the ones on the callee | 
|  | /// itself. | 
|  | bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); | 
|  |  | 
|  | /// Return true if the given value is known non null within the callee if | 
|  | /// inlined through this particular callsite. | 
|  | bool isKnownNonNullInCallee(Value *V); | 
|  |  | 
|  | // Custom analysis routines. | 
|  | bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues); | 
|  |  | 
|  | // Disable several entry points to the visitor so we don't accidentally use | 
|  | // them by declaring but not defining them here. | 
|  | void visit(Module *);     void visit(Module &); | 
|  | void visit(Function *);   void visit(Function &); | 
|  | void visit(BasicBlock *); void visit(BasicBlock &); | 
|  |  | 
|  | // Provide base case for our instruction visit. | 
|  | bool visitInstruction(Instruction &I); | 
|  |  | 
|  | // Our visit overrides. | 
|  | bool visitAlloca(AllocaInst &I); | 
|  | bool visitPHI(PHINode &I); | 
|  | bool visitGetElementPtr(GetElementPtrInst &I); | 
|  | bool visitBitCast(BitCastInst &I); | 
|  | bool visitPtrToInt(PtrToIntInst &I); | 
|  | bool visitIntToPtr(IntToPtrInst &I); | 
|  | bool visitCastInst(CastInst &I); | 
|  | bool visitUnaryInstruction(UnaryInstruction &I); | 
|  | bool visitCmpInst(CmpInst &I); | 
|  | bool visitSub(BinaryOperator &I); | 
|  | bool visitBinaryOperator(BinaryOperator &I); | 
|  | bool visitLoad(LoadInst &I); | 
|  | bool visitStore(StoreInst &I); | 
|  | bool visitExtractValue(ExtractValueInst &I); | 
|  | bool visitInsertValue(InsertValueInst &I); | 
|  | bool visitCallSite(CallSite CS); | 
|  | bool visitReturnInst(ReturnInst &RI); | 
|  | bool visitBranchInst(BranchInst &BI); | 
|  | bool visitSwitchInst(SwitchInst &SI); | 
|  | bool visitIndirectBrInst(IndirectBrInst &IBI); | 
|  | bool visitResumeInst(ResumeInst &RI); | 
|  | bool visitCleanupReturnInst(CleanupReturnInst &RI); | 
|  | bool visitCatchReturnInst(CatchReturnInst &RI); | 
|  | bool visitUnreachableInst(UnreachableInst &I); | 
|  |  | 
|  | public: | 
|  | CallAnalyzer(const TargetTransformInfo &TTI, AssumptionCacheTracker *ACT, | 
|  | Function &Callee, int Threshold, CallSite CSArg) | 
|  | : TTI(TTI), ACT(ACT), F(Callee), CandidateCS(CSArg), Threshold(Threshold), | 
|  | Cost(0), IsCallerRecursive(false), IsRecursiveCall(false), | 
|  | ExposesReturnsTwice(false), HasDynamicAlloca(false), | 
|  | ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), | 
|  | HasFrameEscape(false), AllocatedSize(0), NumInstructions(0), | 
|  | NumVectorInstructions(0), FiftyPercentVectorBonus(0), | 
|  | TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0), | 
|  | NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0), | 
|  | NumConstantPtrDiffs(0), NumInstructionsSimplified(0), | 
|  | SROACostSavings(0), SROACostSavingsLost(0) {} | 
|  |  | 
|  | bool analyzeCall(CallSite CS); | 
|  |  | 
|  | int getThreshold() { return Threshold; } | 
|  | int getCost() { return Cost; } | 
|  |  | 
|  | // Keep a bunch of stats about the cost savings found so we can print them | 
|  | // out when debugging. | 
|  | unsigned NumConstantArgs; | 
|  | unsigned NumConstantOffsetPtrArgs; | 
|  | unsigned NumAllocaArgs; | 
|  | unsigned NumConstantPtrCmps; | 
|  | unsigned NumConstantPtrDiffs; | 
|  | unsigned NumInstructionsSimplified; | 
|  | unsigned SROACostSavings; | 
|  | unsigned SROACostSavingsLost; | 
|  |  | 
|  | void dump(); | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// \brief Test whether the given value is an Alloca-derived function argument. | 
|  | bool CallAnalyzer::isAllocaDerivedArg(Value *V) { | 
|  | return SROAArgValues.count(V); | 
|  | } | 
|  |  | 
|  | /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. | 
|  | /// Returns false if V does not map to a SROA-candidate. | 
|  | bool CallAnalyzer::lookupSROAArgAndCost( | 
|  | Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { | 
|  | if (SROAArgValues.empty() || SROAArgCosts.empty()) | 
|  | return false; | 
|  |  | 
|  | DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); | 
|  | if (ArgIt == SROAArgValues.end()) | 
|  | return false; | 
|  |  | 
|  | Arg = ArgIt->second; | 
|  | CostIt = SROAArgCosts.find(Arg); | 
|  | return CostIt != SROAArgCosts.end(); | 
|  | } | 
|  |  | 
|  | /// \brief Disable SROA for the candidate marked by this cost iterator. | 
|  | /// | 
|  | /// This marks the candidate as no longer viable for SROA, and adds the cost | 
|  | /// savings associated with it back into the inline cost measurement. | 
|  | void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { | 
|  | // If we're no longer able to perform SROA we need to undo its cost savings | 
|  | // and prevent subsequent analysis. | 
|  | Cost += CostIt->second; | 
|  | SROACostSavings -= CostIt->second; | 
|  | SROACostSavingsLost += CostIt->second; | 
|  | SROAArgCosts.erase(CostIt); | 
|  | } | 
|  |  | 
|  | /// \brief If 'V' maps to a SROA candidate, disable SROA for it. | 
|  | void CallAnalyzer::disableSROA(Value *V) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(V, SROAArg, CostIt)) | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | /// \brief Accumulate the given cost for a particular SROA candidate. | 
|  | void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
|  | int InstructionCost) { | 
|  | CostIt->second += InstructionCost; | 
|  | SROACostSavings += InstructionCost; | 
|  | } | 
|  |  | 
|  | /// \brief Check whether a GEP's indices are all constant. | 
|  | /// | 
|  | /// Respects any simplified values known during the analysis of this callsite. | 
|  | bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { | 
|  | for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) | 
|  | if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Accumulate a constant GEP offset into an APInt if possible. | 
|  | /// | 
|  | /// Returns false if unable to compute the offset for any reason. Respects any | 
|  | /// simplified values known during the analysis of this callsite. | 
|  | bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | unsigned IntPtrWidth = DL.getPointerSizeInBits(); | 
|  | assert(IntPtrWidth == Offset.getBitWidth()); | 
|  |  | 
|  | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | 
|  | GTI != GTE; ++GTI) { | 
|  | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); | 
|  | if (!OpC) | 
|  | if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) | 
|  | OpC = dyn_cast<ConstantInt>(SimpleOp); | 
|  | if (!OpC) | 
|  | return false; | 
|  | if (OpC->isZero()) continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | unsigned ElementIdx = OpC->getZExtValue(); | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); | 
|  | Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitAlloca(AllocaInst &I) { | 
|  | // Check whether inlining will turn a dynamic alloca into a static | 
|  | // alloca, and handle that case. | 
|  | if (I.isArrayAllocation()) { | 
|  | if (Constant *Size = SimplifiedValues.lookup(I.getArraySize())) { | 
|  | ConstantInt *AllocSize = dyn_cast<ConstantInt>(Size); | 
|  | assert(AllocSize && "Allocation size not a constant int?"); | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | AllocatedSize += Ty->getPrimitiveSizeInBits() * AllocSize->getZExtValue(); | 
|  | return Base::visitAlloca(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accumulate the allocated size. | 
|  | if (I.isStaticAlloca()) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | AllocatedSize += DL.getTypeAllocSize(Ty); | 
|  | } | 
|  |  | 
|  | // We will happily inline static alloca instructions. | 
|  | if (I.isStaticAlloca()) | 
|  | return Base::visitAlloca(I); | 
|  |  | 
|  | // FIXME: This is overly conservative. Dynamic allocas are inefficient for | 
|  | // a variety of reasons, and so we would like to not inline them into | 
|  | // functions which don't currently have a dynamic alloca. This simply | 
|  | // disables inlining altogether in the presence of a dynamic alloca. | 
|  | HasDynamicAlloca = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitPHI(PHINode &I) { | 
|  | // FIXME: We should potentially be tracking values through phi nodes, | 
|  | // especially when they collapse to a single value due to deleted CFG edges | 
|  | // during inlining. | 
|  |  | 
|  | // FIXME: We need to propagate SROA *disabling* through phi nodes, even | 
|  | // though we don't want to propagate it's bonuses. The idea is to disable | 
|  | // SROA if it *might* be used in an inappropriate manner. | 
|  |  | 
|  | // Phi nodes are always zero-cost. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), | 
|  | SROAArg, CostIt); | 
|  |  | 
|  | // Try to fold GEPs of constant-offset call site argument pointers. This | 
|  | // requires target data and inbounds GEPs. | 
|  | if (I.isInBounds()) { | 
|  | // Check if we have a base + offset for the pointer. | 
|  | Value *Ptr = I.getPointerOperand(); | 
|  | std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); | 
|  | if (BaseAndOffset.first) { | 
|  | // Check if the offset of this GEP is constant, and if so accumulate it | 
|  | // into Offset. | 
|  | if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { | 
|  | // Non-constant GEPs aren't folded, and disable SROA. | 
|  | if (SROACandidate) | 
|  | disableSROA(CostIt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Add the result as a new mapping to Base + Offset. | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  |  | 
|  | // Also handle SROA candidates here, we already know that the GEP is | 
|  | // all-constant indexed. | 
|  | if (SROACandidate) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isGEPOffsetConstant(I)) { | 
|  | if (SROACandidate) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | // Constant GEPs are modeled as free. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Variable GEPs will require math and will disable SROA. | 
|  | if (SROACandidate) | 
|  | disableSROA(CostIt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBitCast(BitCastInst &I) { | 
|  | // Propagate constants through bitcasts. | 
|  | Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(I.getOperand(0)); | 
|  | if (COp) | 
|  | if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Track base/offsets through casts | 
|  | std::pair<Value *, APInt> BaseAndOffset | 
|  | = ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
|  | // Casts don't change the offset, just wrap it up. | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  |  | 
|  | // Also look for SROA candidates here. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | // Bitcasts are always zero cost. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(I.getOperand(0)); | 
|  | if (COp) | 
|  | if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Track base/offset pairs when converted to a plain integer provided the | 
|  | // integer is large enough to represent the pointer. | 
|  | unsigned IntegerSize = I.getType()->getScalarSizeInBits(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (IntegerSize >= DL.getPointerSizeInBits()) { | 
|  | std::pair<Value *, APInt> BaseAndOffset | 
|  | = ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  | } | 
|  |  | 
|  | // This is really weird. Technically, ptrtoint will disable SROA. However, | 
|  | // unless that ptrtoint is *used* somewhere in the live basic blocks after | 
|  | // inlining, it will be nuked, and SROA should proceed. All of the uses which | 
|  | // would block SROA would also block SROA if applied directly to a pointer, | 
|  | // and so we can just add the integer in here. The only places where SROA is | 
|  | // preserved either cannot fire on an integer, or won't in-and-of themselves | 
|  | // disable SROA (ext) w/o some later use that we would see and disable. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(I.getOperand(0)); | 
|  | if (COp) | 
|  | if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Track base/offset pairs when round-tripped through a pointer without | 
|  | // modifications provided the integer is not too large. | 
|  | Value *Op = I.getOperand(0); | 
|  | unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (IntegerSize <= DL.getPointerSizeInBits()) { | 
|  | std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  | } | 
|  |  | 
|  | // "Propagate" SROA here in the same manner as we do for ptrtoint above. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCastInst(CastInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(I.getOperand(0)); | 
|  | if (COp) | 
|  | if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. | 
|  | disableSROA(I.getOperand(0)); | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { | 
|  | Value *Operand = I.getOperand(0); | 
|  | Constant *COp = dyn_cast<Constant>(Operand); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(Operand); | 
|  | if (COp) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), | 
|  | COp, DL)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Disable any SROA on the argument to arbitrary unary operators. | 
|  | disableSROA(Operand); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { | 
|  | unsigned ArgNo = A->getArgNo(); | 
|  | return CandidateCS.paramHasAttr(ArgNo+1, Attr); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { | 
|  | // Does the *call site* have the NonNull attribute set on an argument?  We | 
|  | // use the attribute on the call site to memoize any analysis done in the | 
|  | // caller. This will also trip if the callee function has a non-null | 
|  | // parameter attribute, but that's a less interesting case because hopefully | 
|  | // the callee would already have been simplified based on that. | 
|  | if (Argument *A = dyn_cast<Argument>(V)) | 
|  | if (paramHasAttr(A, Attribute::NonNull)) | 
|  | return true; | 
|  |  | 
|  | // Is this an alloca in the caller?  This is distinct from the attribute case | 
|  | // above because attributes aren't updated within the inliner itself and we | 
|  | // always want to catch the alloca derived case. | 
|  | if (isAllocaDerivedArg(V)) | 
|  | // We can actually predict the result of comparisons between an | 
|  | // alloca-derived value and null. Note that this fires regardless of | 
|  | // SROA firing. | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCmpInst(CmpInst &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | // First try to handle simplified comparisons. | 
|  | if (!isa<Constant>(LHS)) | 
|  | if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
|  | LHS = SimpleLHS; | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
|  | RHS = SimpleRHS; | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.getOpcode() == Instruction::FCmp) | 
|  | return false; | 
|  |  | 
|  | // Otherwise look for a comparison between constant offset pointers with | 
|  | // a common base. | 
|  | Value *LHSBase, *RHSBase; | 
|  | APInt LHSOffset, RHSOffset; | 
|  | std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
|  | if (LHSBase) { | 
|  | std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
|  | if (RHSBase && LHSBase == RHSBase) { | 
|  | // We have common bases, fold the icmp to a constant based on the | 
|  | // offsets. | 
|  | Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
|  | Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
|  | if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | ++NumConstantPtrCmps; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the comparison is an equality comparison with null, we can simplify it | 
|  | // if we know the value (argument) can't be null | 
|  | if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && | 
|  | isKnownNonNullInCallee(I.getOperand(0))) { | 
|  | bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; | 
|  | SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) | 
|  | : ConstantInt::getFalse(I.getType()); | 
|  | return true; | 
|  | } | 
|  | // Finally check for SROA candidates in comparisons. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | 
|  | if (isa<ConstantPointerNull>(I.getOperand(1))) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitSub(BinaryOperator &I) { | 
|  | // Try to handle a special case: we can fold computing the difference of two | 
|  | // constant-related pointers. | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | Value *LHSBase, *RHSBase; | 
|  | APInt LHSOffset, RHSOffset; | 
|  | std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
|  | if (LHSBase) { | 
|  | std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
|  | if (RHSBase && LHSBase == RHSBase) { | 
|  | // We have common bases, fold the subtract to a constant based on the | 
|  | // offsets. | 
|  | Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
|  | Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
|  | if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | ++NumConstantPtrDiffs; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, fall back to the generic logic for simplifying and handling | 
|  | // instructions. | 
|  | return Base::visitSub(I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | if (!isa<Constant>(LHS)) | 
|  | if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
|  | LHS = SimpleLHS; | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
|  | RHS = SimpleRHS; | 
|  | Value *SimpleV = nullptr; | 
|  | if (auto FI = dyn_cast<FPMathOperator>(&I)) | 
|  | SimpleV = | 
|  | SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); | 
|  | else | 
|  | SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); | 
|  |  | 
|  | if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Disable any SROA on arguments to arbitrary, unsimplified binary operators. | 
|  | disableSROA(LHS); | 
|  | disableSROA(RHS); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitLoad(LoadInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | 
|  | if (I.isSimple()) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitStore(StoreInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | 
|  | if (I.isSimple()) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { | 
|  | // Constant folding for extract value is trivial. | 
|  | Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); | 
|  | if (!C) | 
|  | C = SimplifiedValues.lookup(I.getAggregateOperand()); | 
|  | if (C) { | 
|  | SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SROA can look through these but give them a cost. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { | 
|  | // Constant folding for insert value is trivial. | 
|  | Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); | 
|  | if (!AggC) | 
|  | AggC = SimplifiedValues.lookup(I.getAggregateOperand()); | 
|  | Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); | 
|  | if (!InsertedC) | 
|  | InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); | 
|  | if (AggC && InsertedC) { | 
|  | SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, | 
|  | I.getIndices()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SROA can look through these but give them a cost. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Try to simplify a call site. | 
|  | /// | 
|  | /// Takes a concrete function and callsite and tries to actually simplify it by | 
|  | /// analyzing the arguments and call itself with instsimplify. Returns true if | 
|  | /// it has simplified the callsite to some other entity (a constant), making it | 
|  | /// free. | 
|  | bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { | 
|  | // FIXME: Using the instsimplify logic directly for this is inefficient | 
|  | // because we have to continually rebuild the argument list even when no | 
|  | // simplifications can be performed. Until that is fixed with remapping | 
|  | // inside of instsimplify, directly constant fold calls here. | 
|  | if (!canConstantFoldCallTo(F)) | 
|  | return false; | 
|  |  | 
|  | // Try to re-map the arguments to constants. | 
|  | SmallVector<Constant *, 4> ConstantArgs; | 
|  | ConstantArgs.reserve(CS.arg_size()); | 
|  | for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | 
|  | I != E; ++I) { | 
|  | Constant *C = dyn_cast<Constant>(*I); | 
|  | if (!C) | 
|  | C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); | 
|  | if (!C) | 
|  | return false; // This argument doesn't map to a constant. | 
|  |  | 
|  | ConstantArgs.push_back(C); | 
|  | } | 
|  | if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { | 
|  | SimplifiedValues[CS.getInstruction()] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCallSite(CallSite CS) { | 
|  | if (CS.hasFnAttr(Attribute::ReturnsTwice) && | 
|  | !F.hasFnAttribute(Attribute::ReturnsTwice)) { | 
|  | // This aborts the entire analysis. | 
|  | ExposesReturnsTwice = true; | 
|  | return false; | 
|  | } | 
|  | if (CS.isCall() && | 
|  | cast<CallInst>(CS.getInstruction())->cannotDuplicate()) | 
|  | ContainsNoDuplicateCall = true; | 
|  |  | 
|  | if (Function *F = CS.getCalledFunction()) { | 
|  | // When we have a concrete function, first try to simplify it directly. | 
|  | if (simplifyCallSite(F, CS)) | 
|  | return true; | 
|  |  | 
|  | // Next check if it is an intrinsic we know about. | 
|  | // FIXME: Lift this into part of the InstVisitor. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | return Base::visitCallSite(CS); | 
|  |  | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | // SROA can usually chew through these intrinsics, but they aren't free. | 
|  | return false; | 
|  | case Intrinsic::localescape: | 
|  | HasFrameEscape = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (F == CS.getInstruction()->getParent()->getParent()) { | 
|  | // This flag will fully abort the analysis, so don't bother with anything | 
|  | // else. | 
|  | IsRecursiveCall = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TTI.isLoweredToCall(F)) { | 
|  | // We account for the average 1 instruction per call argument setup | 
|  | // here. | 
|  | Cost += CS.arg_size() * InlineConstants::InstrCost; | 
|  |  | 
|  | // Everything other than inline ASM will also have a significant cost | 
|  | // merely from making the call. | 
|  | if (!isa<InlineAsm>(CS.getCalledValue())) | 
|  | Cost += InlineConstants::CallPenalty; | 
|  | } | 
|  |  | 
|  | return Base::visitCallSite(CS); | 
|  | } | 
|  |  | 
|  | // Otherwise we're in a very special case -- an indirect function call. See | 
|  | // if we can be particularly clever about this. | 
|  | Value *Callee = CS.getCalledValue(); | 
|  |  | 
|  | // First, pay the price of the argument setup. We account for the average | 
|  | // 1 instruction per call argument setup here. | 
|  | Cost += CS.arg_size() * InlineConstants::InstrCost; | 
|  |  | 
|  | // Next, check if this happens to be an indirect function call to a known | 
|  | // function in this inline context. If not, we've done all we can. | 
|  | Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); | 
|  | if (!F) | 
|  | return Base::visitCallSite(CS); | 
|  |  | 
|  | // If we have a constant that we are calling as a function, we can peer | 
|  | // through it and see the function target. This happens not infrequently | 
|  | // during devirtualization and so we want to give it a hefty bonus for | 
|  | // inlining, but cap that bonus in the event that inlining wouldn't pan | 
|  | // out. Pretend to inline the function, with a custom threshold. | 
|  | CallAnalyzer CA(TTI, ACT, *F, InlineConstants::IndirectCallThreshold, CS); | 
|  | if (CA.analyzeCall(CS)) { | 
|  | // We were able to inline the indirect call! Subtract the cost from the | 
|  | // bonus we want to apply, but don't go below zero. | 
|  | Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); | 
|  | } | 
|  |  | 
|  | return Base::visitCallSite(CS); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { | 
|  | // At least one return instruction will be free after inlining. | 
|  | bool Free = !HasReturn; | 
|  | HasReturn = true; | 
|  | return Free; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBranchInst(BranchInst &BI) { | 
|  | // We model unconditional branches as essentially free -- they really | 
|  | // shouldn't exist at all, but handling them makes the behavior of the | 
|  | // inliner more regular and predictable. Interestingly, conditional branches | 
|  | // which will fold away are also free. | 
|  | return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || | 
|  | dyn_cast_or_null<ConstantInt>( | 
|  | SimplifiedValues.lookup(BI.getCondition())); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { | 
|  | // We model unconditional switches as free, see the comments on handling | 
|  | // branches. | 
|  | if (isa<ConstantInt>(SI.getCondition())) | 
|  | return true; | 
|  | if (Value *V = SimplifiedValues.lookup(SI.getCondition())) | 
|  | if (isa<ConstantInt>(V)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, we need to accumulate a cost proportional to the number of | 
|  | // distinct successor blocks. This fan-out in the CFG cannot be represented | 
|  | // for free even if we can represent the core switch as a jumptable that | 
|  | // takes a single instruction. | 
|  | // | 
|  | // NB: We convert large switches which are just used to initialize large phi | 
|  | // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent | 
|  | // inlining those. It will prevent inlining in cases where the optimization | 
|  | // does not (yet) fire. | 
|  | SmallPtrSet<BasicBlock *, 8> SuccessorBlocks; | 
|  | SuccessorBlocks.insert(SI.getDefaultDest()); | 
|  | for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I) | 
|  | SuccessorBlocks.insert(I.getCaseSuccessor()); | 
|  | // Add cost corresponding to the number of distinct destinations. The first | 
|  | // we model as free because of fallthrough. | 
|  | Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { | 
|  | // We never want to inline functions that contain an indirectbr.  This is | 
|  | // incorrect because all the blockaddress's (in static global initializers | 
|  | // for example) would be referring to the original function, and this | 
|  | // indirect jump would jump from the inlined copy of the function into the | 
|  | // original function which is extremely undefined behavior. | 
|  | // FIXME: This logic isn't really right; we can safely inline functions with | 
|  | // indirectbr's as long as no other function or global references the | 
|  | // blockaddress of a block within the current function. | 
|  | HasIndirectBr = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a resume instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a cleanupret instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a catchret instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { | 
|  | // FIXME: It might be reasonably to discount the cost of instructions leading | 
|  | // to unreachable as they have the lowest possible impact on both runtime and | 
|  | // code size. | 
|  | return true; // No actual code is needed for unreachable. | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitInstruction(Instruction &I) { | 
|  | // Some instructions are free. All of the free intrinsics can also be | 
|  | // handled by SROA, etc. | 
|  | if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) | 
|  | return true; | 
|  |  | 
|  | // We found something we don't understand or can't handle. Mark any SROA-able | 
|  | // values in the operand list as no longer viable. | 
|  | for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) | 
|  | disableSROA(*OI); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Analyze a basic block for its contribution to the inline cost. | 
|  | /// | 
|  | /// This method walks the analyzer over every instruction in the given basic | 
|  | /// block and accounts for their cost during inlining at this callsite. It | 
|  | /// aborts early if the threshold has been exceeded or an impossible to inline | 
|  | /// construct has been detected. It returns false if inlining is no longer | 
|  | /// viable, and true if inlining remains viable. | 
|  | bool CallAnalyzer::analyzeBlock(BasicBlock *BB, | 
|  | SmallPtrSetImpl<const Value *> &EphValues) { | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | // FIXME: Currently, the number of instructions in a function regardless of | 
|  | // our ability to simplify them during inline to constants or dead code, | 
|  | // are actually used by the vector bonus heuristic. As long as that's true, | 
|  | // we have to special case debug intrinsics here to prevent differences in | 
|  | // inlining due to debug symbols. Eventually, the number of unsimplified | 
|  | // instructions shouldn't factor into the cost computation, but until then, | 
|  | // hack around it here. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | // Skip ephemeral values. | 
|  | if (EphValues.count(&*I)) | 
|  | continue; | 
|  |  | 
|  | ++NumInstructions; | 
|  | if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) | 
|  | ++NumVectorInstructions; | 
|  |  | 
|  | // If the instruction is floating point, and the target says this operation | 
|  | // is expensive or the function has the "use-soft-float" attribute, this may | 
|  | // eventually become a library call. Treat the cost as such. | 
|  | if (I->getType()->isFloatingPointTy()) { | 
|  | bool hasSoftFloatAttr = false; | 
|  |  | 
|  | // If the function has the "use-soft-float" attribute, mark it as | 
|  | // expensive. | 
|  | if (F.hasFnAttribute("use-soft-float")) { | 
|  | Attribute Attr = F.getFnAttribute("use-soft-float"); | 
|  | StringRef Val = Attr.getValueAsString(); | 
|  | if (Val == "true") | 
|  | hasSoftFloatAttr = true; | 
|  | } | 
|  |  | 
|  | if (TTI.getFPOpCost(I->getType()) == TargetTransformInfo::TCC_Expensive || | 
|  | hasSoftFloatAttr) | 
|  | Cost += InlineConstants::CallPenalty; | 
|  | } | 
|  |  | 
|  | // If the instruction simplified to a constant, there is no cost to this | 
|  | // instruction. Visit the instructions using our InstVisitor to account for | 
|  | // all of the per-instruction logic. The visit tree returns true if we | 
|  | // consumed the instruction in any way, and false if the instruction's base | 
|  | // cost should count against inlining. | 
|  | if (Base::visit(&*I)) | 
|  | ++NumInstructionsSimplified; | 
|  | else | 
|  | Cost += InlineConstants::InstrCost; | 
|  |  | 
|  | // If the visit this instruction detected an uninlinable pattern, abort. | 
|  | if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | 
|  | HasIndirectBr || HasFrameEscape) | 
|  | return false; | 
|  |  | 
|  | // If the caller is a recursive function then we don't want to inline | 
|  | // functions which allocate a lot of stack space because it would increase | 
|  | // the caller stack usage dramatically. | 
|  | if (IsCallerRecursive && | 
|  | AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | 
|  | return false; | 
|  |  | 
|  | // Check if we've past the maximum possible threshold so we don't spin in | 
|  | // huge basic blocks that will never inline. | 
|  | if (Cost > Threshold) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Compute the base pointer and cumulative constant offsets for V. | 
|  | /// | 
|  | /// This strips all constant offsets off of V, leaving it the base pointer, and | 
|  | /// accumulates the total constant offset applied in the returned constant. It | 
|  | /// returns 0 if V is not a pointer, and returns the constant '0' if there are | 
|  | /// no constant offsets applied. | 
|  | ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | unsigned IntPtrWidth = DL.getPointerSizeInBits(); | 
|  | APInt Offset = APInt::getNullValue(IntPtrWidth); | 
|  |  | 
|  | // Even though we don't look through PHI nodes, we could be called on an | 
|  | // instruction in an unreachable block, which may be on a cycle. | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | Visited.insert(V); | 
|  | do { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) | 
|  | return nullptr; | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->mayBeOverridden()) | 
|  | break; | 
|  | V = GA->getAliasee(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
|  | } while (Visited.insert(V).second); | 
|  |  | 
|  | Type *IntPtrTy = DL.getIntPtrType(V->getContext()); | 
|  | return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); | 
|  | } | 
|  |  | 
|  | /// \brief Analyze a call site for potential inlining. | 
|  | /// | 
|  | /// Returns true if inlining this call is viable, and false if it is not | 
|  | /// viable. It computes the cost and adjusts the threshold based on numerous | 
|  | /// factors and heuristics. If this method returns false but the computed cost | 
|  | /// is below the computed threshold, then inlining was forcibly disabled by | 
|  | /// some artifact of the routine. | 
|  | bool CallAnalyzer::analyzeCall(CallSite CS) { | 
|  | ++NumCallsAnalyzed; | 
|  |  | 
|  | // Perform some tweaks to the cost and threshold based on the direct | 
|  | // callsite information. | 
|  |  | 
|  | // We want to more aggressively inline vector-dense kernels, so up the | 
|  | // threshold, and we'll lower it if the % of vector instructions gets too | 
|  | // low. Note that these bonuses are some what arbitrary and evolved over time | 
|  | // by accident as much as because they are principled bonuses. | 
|  | // | 
|  | // FIXME: It would be nice to remove all such bonuses. At least it would be | 
|  | // nice to base the bonus values on something more scientific. | 
|  | assert(NumInstructions == 0); | 
|  | assert(NumVectorInstructions == 0); | 
|  | FiftyPercentVectorBonus = 3 * Threshold / 2; | 
|  | TenPercentVectorBonus = 3 * Threshold / 4; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | // Track whether the post-inlining function would have more than one basic | 
|  | // block. A single basic block is often intended for inlining. Balloon the | 
|  | // threshold by 50% until we pass the single-BB phase. | 
|  | bool SingleBB = true; | 
|  | int SingleBBBonus = Threshold / 2; | 
|  |  | 
|  | // Speculatively apply all possible bonuses to Threshold. If cost exceeds | 
|  | // this Threshold any time, and cost cannot decrease, we can stop processing | 
|  | // the rest of the function body. | 
|  | Threshold += (SingleBBBonus + FiftyPercentVectorBonus); | 
|  |  | 
|  | // Give out bonuses per argument, as the instructions setting them up will | 
|  | // be gone after inlining. | 
|  | for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { | 
|  | if (CS.isByValArgument(I)) { | 
|  | // We approximate the number of loads and stores needed by dividing the | 
|  | // size of the byval type by the target's pointer size. | 
|  | PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); | 
|  | unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); | 
|  | unsigned PointerSize = DL.getPointerSizeInBits(); | 
|  | // Ceiling division. | 
|  | unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; | 
|  |  | 
|  | // If it generates more than 8 stores it is likely to be expanded as an | 
|  | // inline memcpy so we take that as an upper bound. Otherwise we assume | 
|  | // one load and one store per word copied. | 
|  | // FIXME: The maxStoresPerMemcpy setting from the target should be used | 
|  | // here instead of a magic number of 8, but it's not available via | 
|  | // DataLayout. | 
|  | NumStores = std::min(NumStores, 8U); | 
|  |  | 
|  | Cost -= 2 * NumStores * InlineConstants::InstrCost; | 
|  | } else { | 
|  | // For non-byval arguments subtract off one instruction per call | 
|  | // argument. | 
|  | Cost -= InlineConstants::InstrCost; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is only one call of the function, and it has internal linkage, | 
|  | // the cost of inlining it drops dramatically. | 
|  | bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && | 
|  | &F == CS.getCalledFunction(); | 
|  | if (OnlyOneCallAndLocalLinkage) | 
|  | Cost += InlineConstants::LastCallToStaticBonus; | 
|  |  | 
|  | // If the instruction after the call, or if the normal destination of the | 
|  | // invoke is an unreachable instruction, the function is noreturn. As such, | 
|  | // there is little point in inlining this unless there is literally zero | 
|  | // cost. | 
|  | Instruction *Instr = CS.getInstruction(); | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { | 
|  | if (isa<UnreachableInst>(II->getNormalDest()->begin())) | 
|  | Threshold = 0; | 
|  | } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) | 
|  | Threshold = 0; | 
|  |  | 
|  | // If this function uses the coldcc calling convention, prefer not to inline | 
|  | // it. | 
|  | if (F.getCallingConv() == CallingConv::Cold) | 
|  | Cost += InlineConstants::ColdccPenalty; | 
|  |  | 
|  | // Check if we're done. This can happen due to bonuses and penalties. | 
|  | if (Cost > Threshold) | 
|  | return false; | 
|  |  | 
|  | if (F.empty()) | 
|  | return true; | 
|  |  | 
|  | Function *Caller = CS.getInstruction()->getParent()->getParent(); | 
|  | // Check if the caller function is recursive itself. | 
|  | for (User *U : Caller->users()) { | 
|  | CallSite Site(U); | 
|  | if (!Site) | 
|  | continue; | 
|  | Instruction *I = Site.getInstruction(); | 
|  | if (I->getParent()->getParent() == Caller) { | 
|  | IsCallerRecursive = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Populate our simplified values by mapping from function arguments to call | 
|  | // arguments with known important simplifications. | 
|  | CallSite::arg_iterator CAI = CS.arg_begin(); | 
|  | for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); | 
|  | FAI != FAE; ++FAI, ++CAI) { | 
|  | assert(CAI != CS.arg_end()); | 
|  | if (Constant *C = dyn_cast<Constant>(CAI)) | 
|  | SimplifiedValues[&*FAI] = C; | 
|  |  | 
|  | Value *PtrArg = *CAI; | 
|  | if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { | 
|  | ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); | 
|  |  | 
|  | // We can SROA any pointer arguments derived from alloca instructions. | 
|  | if (isa<AllocaInst>(PtrArg)) { | 
|  | SROAArgValues[&*FAI] = PtrArg; | 
|  | SROAArgCosts[PtrArg] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | NumConstantArgs = SimplifiedValues.size(); | 
|  | NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); | 
|  | NumAllocaArgs = SROAArgValues.size(); | 
|  |  | 
|  | // FIXME: If a caller has multiple calls to a callee, we end up recomputing | 
|  | // the ephemeral values multiple times (and they're completely determined by | 
|  | // the callee, so this is purely duplicate work). | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(&F, &ACT->getAssumptionCache(F), EphValues); | 
|  |  | 
|  | // The worklist of live basic blocks in the callee *after* inlining. We avoid | 
|  | // adding basic blocks of the callee which can be proven to be dead for this | 
|  | // particular call site in order to get more accurate cost estimates. This | 
|  | // requires a somewhat heavyweight iteration pattern: we need to walk the | 
|  | // basic blocks in a breadth-first order as we insert live successors. To | 
|  | // accomplish this, prioritizing for small iterations because we exit after | 
|  | // crossing our threshold, we use a small-size optimized SetVector. | 
|  | typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, | 
|  | SmallPtrSet<BasicBlock *, 16> > BBSetVector; | 
|  | BBSetVector BBWorklist; | 
|  | BBWorklist.insert(&F.getEntryBlock()); | 
|  | // Note that we *must not* cache the size, this loop grows the worklist. | 
|  | for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { | 
|  | // Bail out the moment we cross the threshold. This means we'll under-count | 
|  | // the cost, but only when undercounting doesn't matter. | 
|  | if (Cost > Threshold) | 
|  | break; | 
|  |  | 
|  | BasicBlock *BB = BBWorklist[Idx]; | 
|  | if (BB->empty()) | 
|  | continue; | 
|  |  | 
|  | // Disallow inlining a blockaddress. A blockaddress only has defined | 
|  | // behavior for an indirect branch in the same function, and we do not | 
|  | // currently support inlining indirect branches. But, the inliner may not | 
|  | // see an indirect branch that ends up being dead code at a particular call | 
|  | // site. If the blockaddress escapes the function, e.g., via a global | 
|  | // variable, inlining may lead to an invalid cross-function reference. | 
|  | if (BB->hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | // Analyze the cost of this block. If we blow through the threshold, this | 
|  | // returns false, and we can bail on out. | 
|  | if (!analyzeBlock(BB, EphValues)) { | 
|  | if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | 
|  | HasIndirectBr || HasFrameEscape) | 
|  | return false; | 
|  |  | 
|  | // If the caller is a recursive function then we don't want to inline | 
|  | // functions which allocate a lot of stack space because it would increase | 
|  | // the caller stack usage dramatically. | 
|  | if (IsCallerRecursive && | 
|  | AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  |  | 
|  | // Add in the live successors by first checking whether we have terminator | 
|  | // that may be simplified based on the values simplified by this call. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional()) { | 
|  | Value *Cond = BI->getCondition(); | 
|  | if (ConstantInt *SimpleCond | 
|  | = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
|  | BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Value *Cond = SI->getCondition(); | 
|  | if (ConstantInt *SimpleCond | 
|  | = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
|  | BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're unable to select a particular successor, just count all of | 
|  | // them. | 
|  | for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; | 
|  | ++TIdx) | 
|  | BBWorklist.insert(TI->getSuccessor(TIdx)); | 
|  |  | 
|  | // If we had any successors at this point, than post-inlining is likely to | 
|  | // have them as well. Note that we assume any basic blocks which existed | 
|  | // due to branches or switches which folded above will also fold after | 
|  | // inlining. | 
|  | if (SingleBB && TI->getNumSuccessors() > 1) { | 
|  | // Take off the bonus we applied to the threshold. | 
|  | Threshold -= SingleBBBonus; | 
|  | SingleBB = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a noduplicate call, we can still inline as long as | 
|  | // inlining this would cause the removal of the caller (so the instruction | 
|  | // is not actually duplicated, just moved). | 
|  | if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) | 
|  | return false; | 
|  |  | 
|  | // We applied the maximum possible vector bonus at the beginning. Now, | 
|  | // subtract the excess bonus, if any, from the Threshold before | 
|  | // comparing against Cost. | 
|  | if (NumVectorInstructions <= NumInstructions / 10) | 
|  | Threshold -= FiftyPercentVectorBonus; | 
|  | else if (NumVectorInstructions <= NumInstructions / 2) | 
|  | Threshold -= (FiftyPercentVectorBonus - TenPercentVectorBonus); | 
|  |  | 
|  | return Cost <= std::max(0, Threshold); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// \brief Dump stats about this call's analysis. | 
|  | void CallAnalyzer::dump() { | 
|  | #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n" | 
|  | DEBUG_PRINT_STAT(NumConstantArgs); | 
|  | DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); | 
|  | DEBUG_PRINT_STAT(NumAllocaArgs); | 
|  | DEBUG_PRINT_STAT(NumConstantPtrCmps); | 
|  | DEBUG_PRINT_STAT(NumConstantPtrDiffs); | 
|  | DEBUG_PRINT_STAT(NumInstructionsSimplified); | 
|  | DEBUG_PRINT_STAT(NumInstructions); | 
|  | DEBUG_PRINT_STAT(SROACostSavings); | 
|  | DEBUG_PRINT_STAT(SROACostSavingsLost); | 
|  | DEBUG_PRINT_STAT(ContainsNoDuplicateCall); | 
|  | DEBUG_PRINT_STAT(Cost); | 
|  | DEBUG_PRINT_STAT(Threshold); | 
|  | #undef DEBUG_PRINT_STAT | 
|  | } | 
|  | #endif | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | 
|  | true, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | 
|  | true, true) | 
|  |  | 
|  | char InlineCostAnalysis::ID = 0; | 
|  |  | 
|  | InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {} | 
|  |  | 
|  | InlineCostAnalysis::~InlineCostAnalysis() {} | 
|  |  | 
|  | void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | CallGraphSCCPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { | 
|  | TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); | 
|  | ACT = &getAnalysis<AssumptionCacheTracker>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { | 
|  | return getInlineCost(CS, CS.getCalledFunction(), Threshold); | 
|  | } | 
|  |  | 
|  | /// \brief Test that two functions either have or have not the given attribute | 
|  | ///        at the same time. | 
|  | template<typename AttrKind> | 
|  | static bool attributeMatches(Function *F1, Function *F2, AttrKind Attr) { | 
|  | return F1->getFnAttribute(Attr) == F2->getFnAttribute(Attr); | 
|  | } | 
|  |  | 
|  | /// \brief Test that there are no attribute conflicts between Caller and Callee | 
|  | ///        that prevent inlining. | 
|  | static bool functionsHaveCompatibleAttributes(Function *Caller, | 
|  | Function *Callee, | 
|  | TargetTransformInfo &TTI) { | 
|  | return TTI.areInlineCompatible(Caller, Callee) && | 
|  | attributeMatches(Caller, Callee, Attribute::SanitizeAddress) && | 
|  | attributeMatches(Caller, Callee, Attribute::SanitizeMemory) && | 
|  | attributeMatches(Caller, Callee, Attribute::SanitizeThread); | 
|  | } | 
|  |  | 
|  | InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, | 
|  | int Threshold) { | 
|  | // Cannot inline indirect calls. | 
|  | if (!Callee) | 
|  | return llvm::InlineCost::getNever(); | 
|  |  | 
|  | // Calls to functions with always-inline attributes should be inlined | 
|  | // whenever possible. | 
|  | if (CS.hasFnAttr(Attribute::AlwaysInline)) { | 
|  | if (isInlineViable(*Callee)) | 
|  | return llvm::InlineCost::getAlways(); | 
|  | return llvm::InlineCost::getNever(); | 
|  | } | 
|  |  | 
|  | // Never inline functions with conflicting attributes (unless callee has | 
|  | // always-inline attribute). | 
|  | if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee, | 
|  | TTIWP->getTTI(*Callee))) | 
|  | return llvm::InlineCost::getNever(); | 
|  |  | 
|  | // Don't inline this call if the caller has the optnone attribute. | 
|  | if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone)) | 
|  | return llvm::InlineCost::getNever(); | 
|  |  | 
|  | // Don't inline functions which can be redefined at link-time to mean | 
|  | // something else.  Don't inline functions marked noinline or call sites | 
|  | // marked noinline. | 
|  | if (Callee->mayBeOverridden() || | 
|  | Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) | 
|  | return llvm::InlineCost::getNever(); | 
|  |  | 
|  | DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName() | 
|  | << "...\n"); | 
|  |  | 
|  | CallAnalyzer CA(TTIWP->getTTI(*Callee), ACT, *Callee, Threshold, CS); | 
|  | bool ShouldInline = CA.analyzeCall(CS); | 
|  |  | 
|  | DEBUG(CA.dump()); | 
|  |  | 
|  | // Check if there was a reason to force inlining or no inlining. | 
|  | if (!ShouldInline && CA.getCost() < CA.getThreshold()) | 
|  | return InlineCost::getNever(); | 
|  | if (ShouldInline && CA.getCost() >= CA.getThreshold()) | 
|  | return InlineCost::getAlways(); | 
|  |  | 
|  | return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); | 
|  | } | 
|  |  | 
|  | bool InlineCostAnalysis::isInlineViable(Function &F) { | 
|  | bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); | 
|  | for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { | 
|  | // Disallow inlining of functions which contain indirect branches or | 
|  | // blockaddresses. | 
|  | if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | for (auto &II : *BI) { | 
|  | CallSite CS(&II); | 
|  | if (!CS) | 
|  | continue; | 
|  |  | 
|  | // Disallow recursive calls. | 
|  | if (&F == CS.getCalledFunction()) | 
|  | return false; | 
|  |  | 
|  | // Disallow calls which expose returns-twice to a function not previously | 
|  | // attributed as such. | 
|  | if (!ReturnsTwice && CS.isCall() && | 
|  | cast<CallInst>(CS.getInstruction())->canReturnTwice()) | 
|  | return false; | 
|  |  | 
|  | // Disallow inlining functions that call @llvm.localescape. Doing this | 
|  | // correctly would require major changes to the inliner. | 
|  | if (CS.getCalledFunction() && | 
|  | CS.getCalledFunction()->getIntrinsicID() == | 
|  | llvm::Intrinsic::localescape) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |