|  | //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the operating system Host concept. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Config/config.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <string.h> | 
|  |  | 
|  | // Include the platform-specific parts of this class. | 
|  | #ifdef LLVM_ON_UNIX | 
|  | #include "Unix/Host.inc" | 
|  | #endif | 
|  | #ifdef LLVM_ON_WIN32 | 
|  | #include "Windows/Host.inc" | 
|  | #endif | 
|  | #ifdef _MSC_VER | 
|  | #include <intrin.h> | 
|  | #endif | 
|  | #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | #include <mach/mach.h> | 
|  | #include <mach/mach_host.h> | 
|  | #include <mach/host_info.h> | 
|  | #include <mach/machine.h> | 
|  | #endif | 
|  |  | 
|  | #define DEBUG_TYPE "host-detection" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  Implementations of the CPU detection routines | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #if defined(__linux__) | 
|  | static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) { | 
|  | // Note: We cannot mmap /proc/cpuinfo here and then process the resulting | 
|  | // memory buffer because the 'file' has 0 size (it can be read from only | 
|  | // as a stream). | 
|  |  | 
|  | int FD; | 
|  | std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD); | 
|  | if (EC) { | 
|  | DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n"); | 
|  | return -1; | 
|  | } | 
|  | int Ret = read(FD, Buf, Size); | 
|  | int CloseStatus = close(FD); | 
|  | if (CloseStatus) | 
|  | return -1; | 
|  | return Ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ | 
|  | || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  |  | 
|  | /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the | 
|  | /// specified arguments.  If we can't run cpuid on the host, return true. | 
|  | static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, | 
|  | unsigned *rECX, unsigned *rEDX) { | 
|  | #if defined(__GNUC__) || defined(__clang__) | 
|  | #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  | // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. | 
|  | asm ("movq\t%%rbx, %%rsi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgq\t%%rbx, %%rsi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value)); | 
|  | return false; | 
|  | #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) | 
|  | asm ("movl\t%%ebx, %%esi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgl\t%%ebx, %%esi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value)); | 
|  | return false; | 
|  | // pedantic #else returns to appease -Wunreachable-code (so we don't generate | 
|  | // postprocessed code that looks like "return true; return false;") | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #elif defined(_MSC_VER) | 
|  | // The MSVC intrinsic is portable across x86 and x64. | 
|  | int registers[4]; | 
|  | __cpuid(registers, value); | 
|  | *rEAX = registers[0]; | 
|  | *rEBX = registers[1]; | 
|  | *rECX = registers[2]; | 
|  | *rEDX = registers[3]; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the | 
|  | /// 4 values in the specified arguments.  If we can't run cpuid on the host, | 
|  | /// return true. | 
|  | static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, | 
|  | unsigned *rEAX, unsigned *rEBX, unsigned *rECX, | 
|  | unsigned *rEDX) { | 
|  | #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  | #if defined(__GNUC__) | 
|  | // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. | 
|  | asm ("movq\t%%rbx, %%rsi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgq\t%%rbx, %%rsi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value), | 
|  | "c" (subleaf)); | 
|  | return false; | 
|  | #elif defined(_MSC_VER) | 
|  | int registers[4]; | 
|  | __cpuidex(registers, value, subleaf); | 
|  | *rEAX = registers[0]; | 
|  | *rEBX = registers[1]; | 
|  | *rECX = registers[2]; | 
|  | *rEDX = registers[3]; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) | 
|  | #if defined(__GNUC__) | 
|  | asm ("movl\t%%ebx, %%esi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgl\t%%ebx, %%esi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value), | 
|  | "c" (subleaf)); | 
|  | return false; | 
|  | #elif defined(_MSC_VER) | 
|  | __asm { | 
|  | mov   eax,value | 
|  | mov   ecx,subleaf | 
|  | cpuid | 
|  | mov   esi,rEAX | 
|  | mov   dword ptr [esi],eax | 
|  | mov   esi,rEBX | 
|  | mov   dword ptr [esi],ebx | 
|  | mov   esi,rECX | 
|  | mov   dword ptr [esi],ecx | 
|  | mov   esi,rEDX | 
|  | mov   dword ptr [esi],edx | 
|  | } | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool GetX86XCR0(unsigned *rEAX, unsigned *rEDX) { | 
|  | #if defined(__GNUC__) | 
|  | // Check xgetbv; this uses a .byte sequence instead of the instruction | 
|  | // directly because older assemblers do not include support for xgetbv and | 
|  | // there is no easy way to conditionally compile based on the assembler used. | 
|  | __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (*rEAX), "=d" (*rEDX) : "c" (0)); | 
|  | return false; | 
|  | #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) | 
|  | unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); | 
|  | *rEAX = Result; | 
|  | *rEDX = Result >> 32; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, | 
|  | unsigned &Model) { | 
|  | Family = (EAX >> 8) & 0xf; // Bits 8 - 11 | 
|  | Model  = (EAX >> 4) & 0xf; // Bits 4 - 7 | 
|  | if (Family == 6 || Family == 0xf) { | 
|  | if (Family == 0xf) | 
|  | // Examine extended family ID if family ID is F. | 
|  | Family += (EAX >> 20) & 0xff;    // Bits 20 - 27 | 
|  | // Examine extended model ID if family ID is 6 or F. | 
|  | Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 | 
|  | } | 
|  | } | 
|  |  | 
|  | StringRef sys::getHostCPUName() { | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) | 
|  | return "generic"; | 
|  | unsigned Family = 0; | 
|  | unsigned Model  = 0; | 
|  | DetectX86FamilyModel(EAX, Family, Model); | 
|  |  | 
|  | union { | 
|  | unsigned u[3]; | 
|  | char     c[12]; | 
|  | } text; | 
|  |  | 
|  | unsigned MaxLeaf; | 
|  | GetX86CpuIDAndInfo(0, &MaxLeaf, text.u+0, text.u+2, text.u+1); | 
|  |  | 
|  | bool HasMMX   = (EDX >> 23) & 1; | 
|  | bool HasSSE   = (EDX >> 25) & 1; | 
|  | bool HasSSE2  = (EDX >> 26) & 1; | 
|  | bool HasSSE3  = (ECX >>  0) & 1; | 
|  | bool HasSSSE3 = (ECX >>  9) & 1; | 
|  | bool HasSSE41 = (ECX >> 19) & 1; | 
|  | bool HasSSE42 = (ECX >> 20) & 1; | 
|  | bool HasMOVBE = (ECX >> 22) & 1; | 
|  | // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
|  | // indicates that the AVX registers will be saved and restored on context | 
|  | // switch, then we have full AVX support. | 
|  | const unsigned AVXBits = (1 << 27) | (1 << 28); | 
|  | bool HasAVX = ((ECX & AVXBits) == AVXBits) && !GetX86XCR0(&EAX, &EDX) && | 
|  | ((EAX & 0x6) == 0x6); | 
|  | bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); | 
|  | bool HasLeaf7 = MaxLeaf >= 0x7 && | 
|  | !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
|  | bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); | 
|  | bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); | 
|  | bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); | 
|  |  | 
|  | GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
|  | bool Em64T = (EDX >> 29) & 0x1; | 
|  | bool HasTBM = (ECX >> 21) & 0x1; | 
|  |  | 
|  | if (memcmp(text.c, "GenuineIntel", 12) == 0) { | 
|  | switch (Family) { | 
|  | case 3: | 
|  | return "i386"; | 
|  | case 4: | 
|  | switch (Model) { | 
|  | case 0: // Intel486 DX processors | 
|  | case 1: // Intel486 DX processors | 
|  | case 2: // Intel486 SX processors | 
|  | case 3: // Intel487 processors, IntelDX2 OverDrive processors, | 
|  | // IntelDX2 processors | 
|  | case 4: // Intel486 SL processor | 
|  | case 5: // IntelSX2 processors | 
|  | case 7: // Write-Back Enhanced IntelDX2 processors | 
|  | case 8: // IntelDX4 OverDrive processors, IntelDX4 processors | 
|  | default: return "i486"; | 
|  | } | 
|  | case 5: | 
|  | switch (Model) { | 
|  | case  1: // Pentium OverDrive processor for Pentium processor (60, 66), | 
|  | // Pentium processors (60, 66) | 
|  | case  2: // Pentium OverDrive processor for Pentium processor (75, 90, | 
|  | // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, | 
|  | // 150, 166, 200) | 
|  | case  3: // Pentium OverDrive processors for Intel486 processor-based | 
|  | // systems | 
|  | return "pentium"; | 
|  |  | 
|  | case  4: // Pentium OverDrive processor with MMX technology for Pentium | 
|  | // processor (75, 90, 100, 120, 133), Pentium processor with | 
|  | // MMX technology (166, 200) | 
|  | return "pentium-mmx"; | 
|  |  | 
|  | default: return "pentium"; | 
|  | } | 
|  | case 6: | 
|  | switch (Model) { | 
|  | case  1: // Pentium Pro processor | 
|  | return "pentiumpro"; | 
|  |  | 
|  | case  3: // Intel Pentium II OverDrive processor, Pentium II processor, | 
|  | // model 03 | 
|  | case  5: // Pentium II processor, model 05, Pentium II Xeon processor, | 
|  | // model 05, and Intel Celeron processor, model 05 | 
|  | case  6: // Celeron processor, model 06 | 
|  | return "pentium2"; | 
|  |  | 
|  | case  7: // Pentium III processor, model 07, and Pentium III Xeon | 
|  | // processor, model 07 | 
|  | case  8: // Pentium III processor, model 08, Pentium III Xeon processor, | 
|  | // model 08, and Celeron processor, model 08 | 
|  | case 10: // Pentium III Xeon processor, model 0Ah | 
|  | case 11: // Pentium III processor, model 0Bh | 
|  | return "pentium3"; | 
|  |  | 
|  | case  9: // Intel Pentium M processor, Intel Celeron M processor model 09. | 
|  | case 13: // Intel Pentium M processor, Intel Celeron M processor, model | 
|  | // 0Dh. All processors are manufactured using the 90 nm process. | 
|  | case 21: // Intel EP80579 Integrated Processor and Intel EP80579 | 
|  | // Integrated Processor with Intel QuickAssist Technology | 
|  | return "pentium-m"; | 
|  |  | 
|  | case 14: // Intel Core Duo processor, Intel Core Solo processor, model | 
|  | // 0Eh. All processors are manufactured using the 65 nm process. | 
|  | return "yonah"; | 
|  |  | 
|  | case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile | 
|  | // processor, Intel Core 2 Quad processor, Intel Core 2 Quad | 
|  | // mobile processor, Intel Core 2 Extreme processor, Intel | 
|  | // Pentium Dual-Core processor, Intel Xeon processor, model | 
|  | // 0Fh. All processors are manufactured using the 65 nm process. | 
|  | case 22: // Intel Celeron processor model 16h. All processors are | 
|  | // manufactured using the 65 nm process | 
|  | return "core2"; | 
|  |  | 
|  | case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model | 
|  | // 17h. All processors are manufactured using the 45 nm process. | 
|  | // | 
|  | // 45nm: Penryn , Wolfdale, Yorkfield (XE) | 
|  | case 29: // Intel Xeon processor MP. All processors are manufactured using | 
|  | // the 45 nm process. | 
|  | return "penryn"; | 
|  |  | 
|  | case 26: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 45 nm process. | 
|  | case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz. | 
|  | // As found in a Summer 2010 model iMac. | 
|  | case 46: // Nehalem EX | 
|  | return "nehalem"; | 
|  | case 37: // Intel Core i7, laptop version. | 
|  | case 44: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 32 nm process. | 
|  | case 47: // Westmere EX | 
|  | return "westmere"; | 
|  |  | 
|  | // SandyBridge: | 
|  | case 42: // Intel Core i7 processor. All processors are manufactured | 
|  | // using the 32 nm process. | 
|  | case 45: | 
|  | return "sandybridge"; | 
|  |  | 
|  | // Ivy Bridge: | 
|  | case 58: | 
|  | case 62: // Ivy Bridge EP | 
|  | return "ivybridge"; | 
|  |  | 
|  | // Haswell: | 
|  | case 60: | 
|  | case 63: | 
|  | case 69: | 
|  | case 70: | 
|  | return "haswell"; | 
|  |  | 
|  | // Broadwell: | 
|  | case 61: | 
|  | case 71: | 
|  | return "broadwell"; | 
|  |  | 
|  | // Skylake: | 
|  | case 78: | 
|  | case 94: | 
|  | return "skylake"; | 
|  |  | 
|  | case 28: // Most 45 nm Intel Atom processors | 
|  | case 38: // 45 nm Atom Lincroft | 
|  | case 39: // 32 nm Atom Medfield | 
|  | case 53: // 32 nm Atom Midview | 
|  | case 54: // 32 nm Atom Midview | 
|  | return "bonnell"; | 
|  |  | 
|  | // Atom Silvermont codes from the Intel software optimization guide. | 
|  | case 55: | 
|  | case 74: | 
|  | case 77: | 
|  | case 90: | 
|  | case 93: | 
|  | return "silvermont"; | 
|  |  | 
|  | default: // Unknown family 6 CPU, try to guess. | 
|  | if (HasAVX512) | 
|  | return "knl"; | 
|  | if (HasADX) | 
|  | return "broadwell"; | 
|  | if (HasAVX2) | 
|  | return "haswell"; | 
|  | if (HasAVX) | 
|  | return "sandybridge"; | 
|  | if (HasSSE42) | 
|  | return HasMOVBE ? "silvermont" : "nehalem"; | 
|  | if (HasSSE41) | 
|  | return "penryn"; | 
|  | if (HasSSSE3) | 
|  | return HasMOVBE ? "bonnell" : "core2"; | 
|  | if (Em64T) | 
|  | return "x86-64"; | 
|  | if (HasSSE2) | 
|  | return "pentium-m"; | 
|  | if (HasSSE) | 
|  | return "pentium3"; | 
|  | if (HasMMX) | 
|  | return "pentium2"; | 
|  | return "pentiumpro"; | 
|  | } | 
|  | case 15: { | 
|  | switch (Model) { | 
|  | case  0: // Pentium 4 processor, Intel Xeon processor. All processors are | 
|  | // model 00h and manufactured using the 0.18 micron process. | 
|  | case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon | 
|  | // processor MP, and Intel Celeron processor. All processors are | 
|  | // model 01h and manufactured using the 0.18 micron process. | 
|  | case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, | 
|  | // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron | 
|  | // processor, and Mobile Intel Celeron processor. All processors | 
|  | // are model 02h and manufactured using the 0.13 micron process. | 
|  | return (Em64T) ? "x86-64" : "pentium4"; | 
|  |  | 
|  | case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D | 
|  | // processor. All processors are model 03h and manufactured using | 
|  | // the 90 nm process. | 
|  | case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, | 
|  | // Pentium D processor, Intel Xeon processor, Intel Xeon | 
|  | // processor MP, Intel Celeron D processor. All processors are | 
|  | // model 04h and manufactured using the 90 nm process. | 
|  | case  6: // Pentium 4 processor, Pentium D processor, Pentium processor | 
|  | // Extreme Edition, Intel Xeon processor, Intel Xeon processor | 
|  | // MP, Intel Celeron D processor. All processors are model 06h | 
|  | // and manufactured using the 65 nm process. | 
|  | return (Em64T) ? "nocona" : "prescott"; | 
|  |  | 
|  | default: | 
|  | return (Em64T) ? "x86-64" : "pentium4"; | 
|  | } | 
|  | } | 
|  |  | 
|  | default: | 
|  | return "generic"; | 
|  | } | 
|  | } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { | 
|  | // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There | 
|  | // appears to be no way to generate the wide variety of AMD-specific targets | 
|  | // from the information returned from CPUID. | 
|  | switch (Family) { | 
|  | case 4: | 
|  | return "i486"; | 
|  | case 5: | 
|  | switch (Model) { | 
|  | case 6: | 
|  | case 7:  return "k6"; | 
|  | case 8:  return "k6-2"; | 
|  | case 9: | 
|  | case 13: return "k6-3"; | 
|  | case 10: return "geode"; | 
|  | default: return "pentium"; | 
|  | } | 
|  | case 6: | 
|  | switch (Model) { | 
|  | case 4:  return "athlon-tbird"; | 
|  | case 6: | 
|  | case 7: | 
|  | case 8:  return "athlon-mp"; | 
|  | case 10: return "athlon-xp"; | 
|  | default: return "athlon"; | 
|  | } | 
|  | case 15: | 
|  | if (HasSSE3) | 
|  | return "k8-sse3"; | 
|  | switch (Model) { | 
|  | case 1:  return "opteron"; | 
|  | case 5:  return "athlon-fx"; // also opteron | 
|  | default: return "athlon64"; | 
|  | } | 
|  | case 16: | 
|  | return "amdfam10"; | 
|  | case 20: | 
|  | return "btver1"; | 
|  | case 21: | 
|  | if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback. | 
|  | return "btver1"; | 
|  | if (Model >= 0x50) | 
|  | return "bdver4"; // 50h-6Fh: Excavator | 
|  | if (Model >= 0x30) | 
|  | return "bdver3"; // 30h-3Fh: Steamroller | 
|  | if (Model >= 0x10 || HasTBM) | 
|  | return "bdver2"; // 10h-1Fh: Piledriver | 
|  | return "bdver1";   // 00h-0Fh: Bulldozer | 
|  | case 22: | 
|  | if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback. | 
|  | return "btver1"; | 
|  | return "btver2"; | 
|  | default: | 
|  | return "generic"; | 
|  | } | 
|  | } | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | StringRef sys::getHostCPUName() { | 
|  | host_basic_info_data_t hostInfo; | 
|  | mach_msg_type_number_t infoCount; | 
|  |  | 
|  | infoCount = HOST_BASIC_INFO_COUNT; | 
|  | host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
|  | &infoCount); | 
|  |  | 
|  | if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; | 
|  |  | 
|  | switch(hostInfo.cpu_subtype) { | 
|  | case CPU_SUBTYPE_POWERPC_601:   return "601"; | 
|  | case CPU_SUBTYPE_POWERPC_602:   return "602"; | 
|  | case CPU_SUBTYPE_POWERPC_603:   return "603"; | 
|  | case CPU_SUBTYPE_POWERPC_603e:  return "603e"; | 
|  | case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; | 
|  | case CPU_SUBTYPE_POWERPC_604:   return "604"; | 
|  | case CPU_SUBTYPE_POWERPC_604e:  return "604e"; | 
|  | case CPU_SUBTYPE_POWERPC_620:   return "620"; | 
|  | case CPU_SUBTYPE_POWERPC_750:   return "750"; | 
|  | case CPU_SUBTYPE_POWERPC_7400:  return "7400"; | 
|  | case CPU_SUBTYPE_POWERPC_7450:  return "7450"; | 
|  | case CPU_SUBTYPE_POWERPC_970:   return "970"; | 
|  | default: ; | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | StringRef sys::getHostCPUName() { | 
|  | // Access to the Processor Version Register (PVR) on PowerPC is privileged, | 
|  | // and so we must use an operating-system interface to determine the current | 
|  | // processor type. On Linux, this is exposed through the /proc/cpuinfo file. | 
|  | const char *generic = "generic"; | 
|  |  | 
|  | // The cpu line is second (after the 'processor: 0' line), so if this | 
|  | // buffer is too small then something has changed (or is wrong). | 
|  | char buffer[1024]; | 
|  | ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); | 
|  | if (CPUInfoSize == -1) | 
|  | return generic; | 
|  |  | 
|  | const char *CPUInfoStart = buffer; | 
|  | const char *CPUInfoEnd = buffer + CPUInfoSize; | 
|  |  | 
|  | const char *CIP = CPUInfoStart; | 
|  |  | 
|  | const char *CPUStart = 0; | 
|  | size_t CPULen = 0; | 
|  |  | 
|  | // We need to find the first line which starts with cpu, spaces, and a colon. | 
|  | // After the colon, there may be some additional spaces and then the cpu type. | 
|  | while (CIP < CPUInfoEnd && CPUStart == 0) { | 
|  | if (CIP < CPUInfoEnd && *CIP == '\n') | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == 'c') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'p') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'u') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == ':') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd) { | 
|  | CPUStart = CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && | 
|  | *CIP != ',' && *CIP != '\n')) | 
|  | ++CIP; | 
|  | CPULen = CIP - CPUStart; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | while (CIP < CPUInfoEnd && *CIP != '\n') | 
|  | ++CIP; | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | return generic; | 
|  |  | 
|  | return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) | 
|  | .Case("604e", "604e") | 
|  | .Case("604", "604") | 
|  | .Case("7400", "7400") | 
|  | .Case("7410", "7400") | 
|  | .Case("7447", "7400") | 
|  | .Case("7455", "7450") | 
|  | .Case("G4", "g4") | 
|  | .Case("POWER4", "970") | 
|  | .Case("PPC970FX", "970") | 
|  | .Case("PPC970MP", "970") | 
|  | .Case("G5", "g5") | 
|  | .Case("POWER5", "g5") | 
|  | .Case("A2", "a2") | 
|  | .Case("POWER6", "pwr6") | 
|  | .Case("POWER7", "pwr7") | 
|  | .Case("POWER8", "pwr8") | 
|  | .Case("POWER8E", "pwr8") | 
|  | .Default(generic); | 
|  | } | 
|  | #elif defined(__linux__) && defined(__arm__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | // The cpuid register on arm is not accessible from user space. On Linux, | 
|  | // it is exposed through the /proc/cpuinfo file. | 
|  |  | 
|  | // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line | 
|  | // in all cases. | 
|  | char buffer[1024]; | 
|  | ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); | 
|  | if (CPUInfoSize == -1) | 
|  | return "generic"; | 
|  |  | 
|  | StringRef Str(buffer, CPUInfoSize); | 
|  |  | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | Str.split(Lines, "\n"); | 
|  |  | 
|  | // Look for the CPU implementer line. | 
|  | StringRef Implementer; | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("CPU implementer")) | 
|  | Implementer = Lines[I].substr(15).ltrim("\t :"); | 
|  |  | 
|  | if (Implementer == "0x41") // ARM Ltd. | 
|  | // Look for the CPU part line. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("CPU part")) | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
|  | .Case("0x926", "arm926ej-s") | 
|  | .Case("0xb02", "mpcore") | 
|  | .Case("0xb36", "arm1136j-s") | 
|  | .Case("0xb56", "arm1156t2-s") | 
|  | .Case("0xb76", "arm1176jz-s") | 
|  | .Case("0xc08", "cortex-a8") | 
|  | .Case("0xc09", "cortex-a9") | 
|  | .Case("0xc0f", "cortex-a15") | 
|  | .Case("0xc20", "cortex-m0") | 
|  | .Case("0xc23", "cortex-m3") | 
|  | .Case("0xc24", "cortex-m4") | 
|  | .Default("generic"); | 
|  |  | 
|  | if (Implementer == "0x51") // Qualcomm Technologies, Inc. | 
|  | // Look for the CPU part line. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("CPU part")) | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
|  | .Case("0x06f", "krait") // APQ8064 | 
|  | .Default("generic"); | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__linux__) && defined(__s390x__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | // STIDP is a privileged operation, so use /proc/cpuinfo instead. | 
|  |  | 
|  | // The "processor 0:" line comes after a fair amount of other information, | 
|  | // including a cache breakdown, but this should be plenty. | 
|  | char buffer[2048]; | 
|  | ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); | 
|  | if (CPUInfoSize == -1) | 
|  | return "generic"; | 
|  |  | 
|  | StringRef Str(buffer, CPUInfoSize); | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | Str.split(Lines, "\n"); | 
|  |  | 
|  | // Look for the CPU features. | 
|  | SmallVector<StringRef, 32> CPUFeatures; | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("features")) { | 
|  | size_t Pos = Lines[I].find(":"); | 
|  | if (Pos != StringRef::npos) { | 
|  | Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to check for the presence of vector support independently of | 
|  | // the machine type, since we may only use the vector register set when | 
|  | // supported by the kernel (and hypervisor). | 
|  | bool HaveVectorSupport = false; | 
|  | for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
|  | if (CPUFeatures[I] == "vx") | 
|  | HaveVectorSupport = true; | 
|  | } | 
|  |  | 
|  | // Now check the processor machine type. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
|  | if (Lines[I].startswith("processor ")) { | 
|  | size_t Pos = Lines[I].find("machine = "); | 
|  | if (Pos != StringRef::npos) { | 
|  | Pos += sizeof("machine = ") - 1; | 
|  | unsigned int Id; | 
|  | if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { | 
|  | if (Id >= 2964 && HaveVectorSupport) | 
|  | return "z13"; | 
|  | if (Id >= 2827) | 
|  | return "zEC12"; | 
|  | if (Id >= 2817) | 
|  | return "z196"; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #else | 
|  | StringRef sys::getHostCPUName() { | 
|  | return "generic"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ | 
|  | || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | unsigned MaxLevel; | 
|  | union { | 
|  | unsigned u[3]; | 
|  | char     c[12]; | 
|  | } text; | 
|  |  | 
|  | if (GetX86CpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) || | 
|  | MaxLevel < 1) | 
|  | return false; | 
|  |  | 
|  | GetX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | Features["cmov"]   = (EDX >> 15) & 1; | 
|  | Features["mmx"]    = (EDX >> 23) & 1; | 
|  | Features["sse"]    = (EDX >> 25) & 1; | 
|  | Features["sse2"]   = (EDX >> 26) & 1; | 
|  | Features["sse3"]   = (ECX >>  0) & 1; | 
|  | Features["ssse3"]  = (ECX >>  9) & 1; | 
|  | Features["sse4.1"] = (ECX >> 19) & 1; | 
|  | Features["sse4.2"] = (ECX >> 20) & 1; | 
|  |  | 
|  | Features["pclmul"] = (ECX >>  1) & 1; | 
|  | Features["cx16"]   = (ECX >> 13) & 1; | 
|  | Features["movbe"]  = (ECX >> 22) & 1; | 
|  | Features["popcnt"] = (ECX >> 23) & 1; | 
|  | Features["aes"]    = (ECX >> 25) & 1; | 
|  | Features["rdrnd"]  = (ECX >> 30) & 1; | 
|  |  | 
|  | // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
|  | // indicates that the AVX registers will be saved and restored on context | 
|  | // switch, then we have full AVX support. | 
|  | bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && | 
|  | !GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); | 
|  | Features["avx"]    = HasAVXSave; | 
|  | Features["fma"]    = HasAVXSave && (ECX >> 12) & 1; | 
|  | Features["f16c"]   = HasAVXSave && (ECX >> 29) & 1; | 
|  |  | 
|  | // Only enable XSAVE if OS has enabled support for saving YMM state. | 
|  | Features["xsave"]  = HasAVXSave && (ECX >> 26) & 1; | 
|  |  | 
|  | // AVX512 requires additional context to be saved by the OS. | 
|  | bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); | 
|  |  | 
|  | unsigned MaxExtLevel; | 
|  | GetX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | 
|  |  | 
|  | bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | 
|  | !GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
|  | Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1); | 
|  | Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1); | 
|  | Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1); | 
|  | Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; | 
|  | Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; | 
|  | Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1); | 
|  |  | 
|  | bool HasLeaf7 = MaxLevel >= 7 && | 
|  | !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | // AVX2 is only supported if we have the OS save support from AVX. | 
|  | Features["avx2"]     = HasAVXSave && HasLeaf7 && ((EBX >>  5) & 1); | 
|  |  | 
|  | Features["fsgsbase"] = HasLeaf7 && ((EBX >>  0) & 1); | 
|  | Features["bmi"]      = HasLeaf7 && ((EBX >>  3) & 1); | 
|  | Features["hle"]      = HasLeaf7 && ((EBX >>  4) & 1); | 
|  | Features["bmi2"]     = HasLeaf7 && ((EBX >>  8) & 1); | 
|  | Features["rtm"]      = HasLeaf7 && ((EBX >> 11) & 1); | 
|  | Features["rdseed"]   = HasLeaf7 && ((EBX >> 18) & 1); | 
|  | Features["adx"]      = HasLeaf7 && ((EBX >> 19) & 1); | 
|  | Features["sha"]      = HasLeaf7 && ((EBX >> 29) & 1); | 
|  |  | 
|  | // AVX512 is only supported if the OS supports the context save for it. | 
|  | Features["avx512f"]  = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; | 
|  | Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; | 
|  | Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; | 
|  | Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; | 
|  | Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; | 
|  | Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; | 
|  | Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; | 
|  |  | 
|  | bool HasLeafD = MaxLevel >= 0xd && | 
|  | !GetX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | // Only enable XSAVE if OS has enabled support for saving YMM state. | 
|  | Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); | 
|  | Features["xsavec"]   = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); | 
|  | Features["xsaves"]   = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
|  | // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line | 
|  | // in all cases. | 
|  | char buffer[1024]; | 
|  | ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); | 
|  | if (CPUInfoSize == -1) | 
|  | return false; | 
|  |  | 
|  | StringRef Str(buffer, CPUInfoSize); | 
|  |  | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | Str.split(Lines, "\n"); | 
|  |  | 
|  | SmallVector<StringRef, 32> CPUFeatures; | 
|  |  | 
|  | // Look for the CPU features. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("Features")) { | 
|  | Lines[I].split(CPUFeatures, ' '); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // Keep track of which crypto features we have seen | 
|  | enum { | 
|  | CAP_AES   = 0x1, | 
|  | CAP_PMULL = 0x2, | 
|  | CAP_SHA1  = 0x4, | 
|  | CAP_SHA2  = 0x8 | 
|  | }; | 
|  | uint32_t crypto = 0; | 
|  | #endif | 
|  |  | 
|  | for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
|  | StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) | 
|  | #if defined(__aarch64__) | 
|  | .Case("asimd", "neon") | 
|  | .Case("fp", "fp-armv8") | 
|  | .Case("crc32", "crc") | 
|  | #else | 
|  | .Case("half", "fp16") | 
|  | .Case("neon", "neon") | 
|  | .Case("vfpv3", "vfp3") | 
|  | .Case("vfpv3d16", "d16") | 
|  | .Case("vfpv4", "vfp4") | 
|  | .Case("idiva", "hwdiv-arm") | 
|  | .Case("idivt", "hwdiv") | 
|  | #endif | 
|  | .Default(""); | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // We need to check crypto separately since we need all of the crypto | 
|  | // extensions to enable the subtarget feature | 
|  | if (CPUFeatures[I] == "aes") | 
|  | crypto |= CAP_AES; | 
|  | else if (CPUFeatures[I] == "pmull") | 
|  | crypto |= CAP_PMULL; | 
|  | else if (CPUFeatures[I] == "sha1") | 
|  | crypto |= CAP_SHA1; | 
|  | else if (CPUFeatures[I] == "sha2") | 
|  | crypto |= CAP_SHA2; | 
|  | #endif | 
|  |  | 
|  | if (LLVMFeatureStr != "") | 
|  | Features[LLVMFeatureStr] = true; | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // If we have all crypto bits we can add the feature | 
|  | if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) | 
|  | Features["crypto"] = true; | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features){ | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::string sys::getProcessTriple() { | 
|  | Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); | 
|  |  | 
|  | if (sizeof(void *) == 8 && PT.isArch32Bit()) | 
|  | PT = PT.get64BitArchVariant(); | 
|  | if (sizeof(void *) == 4 && PT.isArch64Bit()) | 
|  | PT = PT.get32BitArchVariant(); | 
|  |  | 
|  | return PT.str(); | 
|  | } |