|  | //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the interfaces that Hexagon uses to lower LLVM code | 
|  | // into a selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonISelLowering.h" | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonMachineFunctionInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "HexagonTargetMachine.h" | 
|  | #include "HexagonTargetObjectFile.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/TargetCallingConv.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-lowering" | 
|  |  | 
|  | static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", | 
|  | cl::init(true), cl::Hidden, | 
|  | cl::desc("Control jump table emission on Hexagon target")); | 
|  |  | 
|  | static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Enable Hexagon SDNode scheduling")); | 
|  |  | 
|  | static cl::opt<bool> EnableFastMath("ffast-math", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Enable Fast Math processing")); | 
|  |  | 
|  | static cl::opt<int> MinimumJumpTables("minimum-jump-tables", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(5), | 
|  | cl::desc("Set minimum jump tables")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(6), | 
|  | cl::desc("Max #stores to inline memcpy")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(4), | 
|  | cl::desc("Max #stores to inline memcpy")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(6), | 
|  | cl::desc("Max #stores to inline memmove")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(4), | 
|  | cl::desc("Max #stores to inline memmove")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(8), | 
|  | cl::desc("Max #stores to inline memset")); | 
|  |  | 
|  | static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(4), | 
|  | cl::desc("Max #stores to inline memset")); | 
|  |  | 
|  | static cl::opt<bool> AlignLoads("hexagon-align-loads", | 
|  | cl::Hidden, cl::init(false), | 
|  | cl::desc("Rewrite unaligned loads as a pair of aligned loads")); | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HexagonCCState : public CCState { | 
|  | unsigned NumNamedVarArgParams = 0; | 
|  |  | 
|  | public: | 
|  | HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, | 
|  | SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, | 
|  | unsigned NumNamedArgs) | 
|  | : CCState(CC, IsVarArg, MF, locs, C), | 
|  | NumNamedVarArgParams(NumNamedArgs) {} | 
|  | unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | // Implement calling convention for Hexagon. | 
|  |  | 
|  | static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | static const MCPhysReg ArgRegs[] = { | 
|  | Hexagon::R0, Hexagon::R1, Hexagon::R2, | 
|  | Hexagon::R3, Hexagon::R4, Hexagon::R5 | 
|  | }; | 
|  | const unsigned NumArgRegs = array_lengthof(ArgRegs); | 
|  | unsigned RegNum = State.getFirstUnallocated(ArgRegs); | 
|  |  | 
|  | // RegNum is an index into ArgRegs: skip a register if RegNum is odd. | 
|  | if (RegNum != NumArgRegs && RegNum % 2 == 1) | 
|  | State.AllocateReg(ArgRegs[RegNum]); | 
|  |  | 
|  | // Always return false here, as this function only makes sure that the first | 
|  | // unallocated register has an even register number and does not actually | 
|  | // allocate a register for the current argument. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #include "HexagonGenCallingConv.inc" | 
|  |  | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" of size "Size".  Alignment information is | 
|  | /// specified by the specific parameter attribute. The copy will be passed as | 
|  | /// a byval function parameter.  Sometimes what we are copying is the end of a | 
|  | /// larger object, the part that does not fit in registers. | 
|  | static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, | 
|  | SDValue Chain, ISD::ArgFlagsTy Flags, | 
|  | SelectionDAG &DAG, const SDLoc &dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | /*isVolatile=*/false, /*AlwaysInline=*/false, | 
|  | /*isTailCall=*/false, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::CanLowerReturn( | 
|  | CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); | 
|  |  | 
|  | if (MF.getSubtarget<HexagonSubtarget>().useHVXOps()) | 
|  | return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_Hexagon); | 
|  | } | 
|  |  | 
|  | // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is | 
|  | // passed by value, the function prototype is modified to return void and | 
|  | // the value is stored in memory pointed by a pointer passed by caller. | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | // CCValAssign - represent the assignment of the return value to locations. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  |  | 
|  | // CCState - Info about the registers and stack slot. | 
|  | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Analyze return values of ISD::RET | 
|  | if (Subtarget.useHVXOps()) | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); | 
|  | else | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); | 
|  |  | 
|  | // Guarantee that all emitted copies are stuck together with flags. | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | 
|  | // If either no tail call or told not to tail call at all, don't. | 
|  | auto Attr = | 
|  | CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); | 
|  | if (!CI->isTailCall() || Attr.getValueAsString() == "true") | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned  HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | // Just support r19, the linux kernel uses it. | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("r19", Hexagon::R19) | 
|  | .Default(0); | 
|  | if (Reg) | 
|  | return Reg; | 
|  |  | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of an ISD::CALL into the | 
|  | /// appropriate copies out of appropriate physical registers.  This assumes that | 
|  | /// Chain/Glue are the input chain/glue to use, and that TheCall is the call | 
|  | /// being lowered. Returns a SDNode with the same number of values as the | 
|  | /// ISD::CALL. | 
|  | SDValue HexagonTargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, | 
|  | const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  |  | 
|  | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | if (Subtarget.useHVXOps()) | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); | 
|  | else | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | SDValue RetVal; | 
|  | if (RVLocs[i].getValVT() == MVT::i1) { | 
|  | // Return values of type MVT::i1 require special handling. The reason | 
|  | // is that MVT::i1 is associated with the PredRegs register class, but | 
|  | // values of that type are still returned in R0. Generate an explicit | 
|  | // copy into a predicate register from R0, and treat the value of the | 
|  | // predicate register as the call result. | 
|  | auto &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), | 
|  | MVT::i32, Glue); | 
|  | // FR0 = (Value, Chain, Glue) | 
|  | Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); | 
|  | SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, | 
|  | FR0.getValue(0), FR0.getValue(2)); | 
|  | // TPR = (Chain, Glue) | 
|  | // Don't glue this CopyFromReg, because it copies from a virtual | 
|  | // register. If it is glued to the call, InstrEmitter will add it | 
|  | // as an implicit def to the call (EmitMachineNode). | 
|  | RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); | 
|  | Glue = TPR.getValue(1); | 
|  | Chain = TPR.getValue(0); | 
|  | } else { | 
|  | RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), | 
|  | RVLocs[i].getValVT(), Glue); | 
|  | Glue = RetVal.getValue(2); | 
|  | Chain = RetVal.getValue(1); | 
|  | } | 
|  | InVals.push_back(RetVal.getValue(0)); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// LowerCall - Functions arguments are copied from virtual regs to | 
|  | /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG                     = CLI.DAG; | 
|  | SDLoc &dl                             = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins; | 
|  | SDValue Chain                         = CLI.Chain; | 
|  | SDValue Callee                        = CLI.Callee; | 
|  | CallingConv::ID CallConv              = CLI.CallConv; | 
|  | bool IsVarArg                         = CLI.IsVarArg; | 
|  | bool DoesNotReturn                    = CLI.DoesNotReturn; | 
|  |  | 
|  | bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | auto PtrVT = getPointerTy(MF.getDataLayout()); | 
|  |  | 
|  | unsigned NumParams = CLI.CS.getInstruction() | 
|  | ? CLI.CS.getFunctionType()->getNumParams() | 
|  | : 0; | 
|  | if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), | 
|  | NumParams); | 
|  |  | 
|  | if (Subtarget.useHVXOps()) | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); | 
|  | else | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); | 
|  |  | 
|  | auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); | 
|  | if (Attr.getValueAsString() == "true") | 
|  | CLI.IsTailCall = false; | 
|  |  | 
|  | if (CLI.IsTailCall) { | 
|  | bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); | 
|  | CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, | 
|  | IsVarArg, IsStructRet, StructAttrFlag, Outs, | 
|  | OutVals, Ins, DAG); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (VA.isMemLoc()) { | 
|  | CLI.IsTailCall = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" | 
|  | : "Argument must be passed on stack. " | 
|  | "Not eligible for Tail Call\n")); | 
|  | } | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  | SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  |  | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | SDValue StackPtr = | 
|  | DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); | 
|  |  | 
|  | bool NeedsArgAlign = false; | 
|  | unsigned LargestAlignSeen = 0; | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | // Record if we need > 8 byte alignment on an argument. | 
|  | bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); | 
|  | NeedsArgAlign |= ArgAlign; | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getBitcast(VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (VA.isMemLoc()) { | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, | 
|  | StackPtr.getValueType()); | 
|  | MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); | 
|  | if (ArgAlign) | 
|  | LargestAlignSeen = std::max(LargestAlignSeen, | 
|  | VA.getLocVT().getStoreSizeInBits() >> 3); | 
|  | if (Flags.isByVal()) { | 
|  | // The argument is a struct passed by value. According to LLVM, "Arg" | 
|  | // is a pointer. | 
|  | MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, | 
|  | Flags, DAG, dl)); | 
|  | } else { | 
|  | MachinePointerInfo LocPI = MachinePointerInfo::getStack( | 
|  | DAG.getMachineFunction(), LocMemOffset); | 
|  | SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); | 
|  | MemOpChains.push_back(S); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Arguments that can be passed on register must be kept at RegsToPass | 
|  | // vector. | 
|  | if (VA.isRegLoc()) | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } | 
|  |  | 
|  | if (NeedsArgAlign && Subtarget.hasV60Ops()) { | 
|  | LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); | 
|  | unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); | 
|  | LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); | 
|  | MFI.ensureMaxAlignment(LargestAlignSeen); | 
|  | } | 
|  | // Transform all store nodes into one single node because all store | 
|  | // nodes are independent of each other. | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); | 
|  |  | 
|  | SDValue Glue; | 
|  | if (!CLI.IsTailCall) { | 
|  | Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); | 
|  | Glue = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token | 
|  | // chain and flag operands which copy the outgoing args into registers. | 
|  | // The Glue is necessary since all emitted instructions must be | 
|  | // stuck together. | 
|  | if (!CLI.IsTailCall) { | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | } | 
|  | } else { | 
|  | // For tail calls lower the arguments to the 'real' stack slot. | 
|  | // | 
|  | // Force all the incoming stack arguments to be loaded from the stack | 
|  | // before any new outgoing arguments are stored to the stack, because the | 
|  | // outgoing stack slots may alias the incoming argument stack slots, and | 
|  | // the alias isn't otherwise explicit. This is slightly more conservative | 
|  | // than necessary, because it means that each store effectively depends | 
|  | // on every argument instead of just those arguments it would clobber. | 
|  | // | 
|  | // Do not flag preceding copytoreg stuff together with the following stuff. | 
|  | Glue = SDValue(); | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, Glue); | 
|  | Glue = Chain.getValue(1); | 
|  | } | 
|  | Glue = SDValue(); | 
|  | } | 
|  |  | 
|  | bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls(); | 
|  | unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); | 
|  | } else if (ExternalSymbolSDNode *S = | 
|  | dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are | 
|  | // known live into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  | } | 
|  |  | 
|  | const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (Glue.getNode()) | 
|  | Ops.push_back(Glue); | 
|  |  | 
|  | if (CLI.IsTailCall) { | 
|  | MFI.setHasTailCall(); | 
|  | return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | // Set this here because we need to know this for "hasFP" in frame lowering. | 
|  | // The target-independent code calls getFrameRegister before setting it, and | 
|  | // getFrameRegister uses hasFP to determine whether the function has FP. | 
|  | MFI.setHasCalls(true); | 
|  |  | 
|  | unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; | 
|  | Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), | 
|  | DAG.getIntPtrConstant(0, dl, true), Glue, dl); | 
|  | Glue = Chain.getValue(1); | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, | 
|  | InVals, OutVals, Callee); | 
|  | } | 
|  |  | 
|  | /// Returns true by value, base pointer and offset pointer and addressing | 
|  | /// mode by reference if this node can be combined with a load / store to | 
|  | /// form a post-indexed load / store. | 
|  | bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, | 
|  | SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const { | 
|  | LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N); | 
|  | if (!LSN) | 
|  | return false; | 
|  | EVT VT = LSN->getMemoryVT(); | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  | bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || | 
|  | VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || | 
|  | VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || | 
|  | VT == MVT::v4i16 || VT == MVT::v8i8 || | 
|  | Subtarget.isHVXVectorType(VT.getSimpleVT()); | 
|  | if (!IsLegalType) | 
|  | return false; | 
|  |  | 
|  | if (Op->getOpcode() != ISD::ADD) | 
|  | return false; | 
|  | Base = Op->getOperand(0); | 
|  | Offset = Op->getOperand(1); | 
|  | if (!isa<ConstantSDNode>(Offset.getNode())) | 
|  | return false; | 
|  | AM = ISD::POST_INC; | 
|  |  | 
|  | int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); | 
|  | return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | unsigned LR = HRI.getRARegister(); | 
|  |  | 
|  | if ((Op.getOpcode() != ISD::INLINEASM && | 
|  | Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR()) | 
|  | return Op; | 
|  |  | 
|  | unsigned NumOps = Op.getNumOperands(); | 
|  | if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) | 
|  | --NumOps;  // Ignore the flag operand. | 
|  |  | 
|  | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { | 
|  | unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); | 
|  | unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); | 
|  | ++i;  // Skip the ID value. | 
|  |  | 
|  | switch (InlineAsm::getKind(Flags)) { | 
|  | default: | 
|  | llvm_unreachable("Bad flags!"); | 
|  | case InlineAsm::Kind_RegUse: | 
|  | case InlineAsm::Kind_Imm: | 
|  | case InlineAsm::Kind_Mem: | 
|  | i += NumVals; | 
|  | break; | 
|  | case InlineAsm::Kind_Clobber: | 
|  | case InlineAsm::Kind_RegDef: | 
|  | case InlineAsm::Kind_RegDefEarlyClobber: { | 
|  | for (; NumVals; --NumVals, ++i) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); | 
|  | if (Reg != LR) | 
|  | continue; | 
|  | HMFI.setHasClobberLR(true); | 
|  | return Op; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Need to transform ISD::PREFETCH into something that doesn't inherit | 
|  | // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and | 
|  | // SDNPMayStore. | 
|  | SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Addr = Op.getOperand(1); | 
|  | // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in, | 
|  | // if the "reg" is fed by an "add". | 
|  | SDLoc DL(Op); | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); | 
|  | } | 
|  |  | 
|  | // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode | 
|  | // is marked as having side-effects, while the register read on Hexagon does | 
|  | // not have any. TableGen refuses to accept the direct pattern from that node | 
|  | // to the A4_tfrcpp. | 
|  | SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); | 
|  | return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); | 
|  | } | 
|  |  | 
|  | SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | // Lower the hexagon_prefetch builtin to DCFETCH, as above. | 
|  | if (IntNo == Intrinsic::hexagon_prefetch) { | 
|  | SDValue Addr = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size = Op.getOperand(1); | 
|  | SDValue Align = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); | 
|  | assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); | 
|  |  | 
|  | unsigned A = AlignConst->getSExtValue(); | 
|  | auto &HFI = *Subtarget.getFrameLowering(); | 
|  | // "Zero" means natural stack alignment. | 
|  | if (A == 0) | 
|  | A = HFI.getStackAlignment(); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs () << __func__ << " Align: " << A << " Size: "; | 
|  | Size.getNode()->dump(&DAG); | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  |  | 
|  | SDValue AC = DAG.getConstant(A, dl, MVT::i32); | 
|  | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); | 
|  | SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(Op, AA); | 
|  | return AA; | 
|  | } | 
|  |  | 
|  | SDValue HexagonTargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), | 
|  | MF.getFunction().getFunctionType()->getNumParams()); | 
|  |  | 
|  | if (Subtarget.useHVXOps()) | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); | 
|  | else | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); | 
|  |  | 
|  | // For LLVM, in the case when returning a struct by value (>8byte), | 
|  | // the first argument is a pointer that points to the location on caller's | 
|  | // stack where the return value will be stored. For Hexagon, the location on | 
|  | // caller's stack is passed only when the struct size is smaller than (and | 
|  | // equal to) 8 bytes. If not, no address will be passed into callee and | 
|  | // callee return the result direclty through R0/R1. | 
|  |  | 
|  | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | bool ByVal = Flags.isByVal(); | 
|  |  | 
|  | // Arguments passed in registers: | 
|  | // 1. 32- and 64-bit values and HVX vectors are passed directly, | 
|  | // 2. Large structs are passed via an address, and the address is | 
|  | //    passed in a register. | 
|  | if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) | 
|  | llvm_unreachable("ByValSize must be bigger than 8 bytes"); | 
|  |  | 
|  | bool InReg = VA.isRegLoc() && | 
|  | (!ByVal || (ByVal && Flags.getByValSize() > 8)); | 
|  |  | 
|  | if (InReg) { | 
|  | MVT RegVT = VA.getLocVT(); | 
|  | if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | RegVT = VA.getValVT(); | 
|  |  | 
|  | const TargetRegisterClass *RC = getRegClassFor(RegVT); | 
|  | Register VReg = MRI.createVirtualRegister(RC); | 
|  | SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); | 
|  |  | 
|  | // Treat values of type MVT::i1 specially: they are passed in | 
|  | // registers of type i32, but they need to remain as values of | 
|  | // type i1 for consistency of the argument lowering. | 
|  | if (VA.getValVT() == MVT::i1) { | 
|  | assert(RegVT.getSizeInBits() <= 32); | 
|  | SDValue T = DAG.getNode(ISD::AND, dl, RegVT, | 
|  | Copy, DAG.getConstant(1, dl, RegVT)); | 
|  | Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | #ifndef NDEBUG | 
|  | unsigned RegSize = RegVT.getSizeInBits(); | 
|  | assert(RegSize == 32 || RegSize == 64 || | 
|  | Subtarget.isHVXVectorType(RegVT)); | 
|  | #endif | 
|  | } | 
|  | InVals.push_back(Copy); | 
|  | MRI.addLiveIn(VA.getLocReg(), VReg); | 
|  | } else { | 
|  | assert(VA.isMemLoc() && "Argument should be passed in memory"); | 
|  |  | 
|  | // If it's a byval parameter, then we need to compute the | 
|  | // "real" size, not the size of the pointer. | 
|  | unsigned ObjSize = Flags.isByVal() | 
|  | ? Flags.getByValSize() | 
|  | : VA.getLocVT().getStoreSizeInBits() / 8; | 
|  |  | 
|  | // Create the frame index object for this incoming parameter. | 
|  | int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); | 
|  | int FI = MFI.CreateFixedObject(ObjSize, Offset, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // If it's a pass-by-value aggregate, then do not dereference the stack | 
|  | // location. Instead, we should generate a reference to the stack | 
|  | // location. | 
|  | InVals.push_back(FIN); | 
|  | } else { | 
|  | SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(MF, FI, 0)); | 
|  | InVals.push_back(L); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (IsVarArg) { | 
|  | // This will point to the next argument passed via stack. | 
|  | int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(); | 
|  | int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); | 
|  | HMFI.setVarArgsFrameIndex(FI); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | // VASTART stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  | SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), | 
|  | MachinePointerInfo(SV)); | 
|  | } | 
|  |  | 
|  | SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | MVT ResTy = ty(Op); | 
|  | MVT OpTy = ty(LHS); | 
|  |  | 
|  | if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { | 
|  | MVT ElemTy = OpTy.getVectorElementType(); | 
|  | assert(ElemTy.isScalarInteger()); | 
|  | MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), | 
|  | OpTy.getVectorNumElements()); | 
|  | return DAG.getSetCC(dl, ResTy, | 
|  | DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), | 
|  | DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); | 
|  | } | 
|  |  | 
|  | // Treat all other vector types as legal. | 
|  | if (ResTy.isVector()) | 
|  | return Op; | 
|  |  | 
|  | // Comparisons of short integers should use sign-extend, not zero-extend, | 
|  | // since we can represent small negative values in the compare instructions. | 
|  | // The LLVM default is to use zero-extend arbitrarily in these cases. | 
|  | auto isSExtFree = [this](SDValue N) { | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::TRUNCATE: { | 
|  | // A sign-extend of a truncate of a sign-extend is free. | 
|  | SDValue Op = N.getOperand(0); | 
|  | if (Op.getOpcode() != ISD::AssertSext) | 
|  | return false; | 
|  | EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | unsigned ThisBW = ty(N).getSizeInBits(); | 
|  | unsigned OrigBW = OrigTy.getSizeInBits(); | 
|  | // The type that was sign-extended to get the AssertSext must be | 
|  | // narrower than the type of N (so that N has still the same value | 
|  | // as the original). | 
|  | return ThisBW >= OrigBW; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | // We have sign-extended loads. | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (OpTy == MVT::i8 || OpTy == MVT::i16) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); | 
|  | bool IsNegative = C && C->getAPIntValue().isNegative(); | 
|  | if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) | 
|  | return DAG.getSetCC(dl, ResTy, | 
|  | DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), | 
|  | DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue PredOp = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); | 
|  | MVT OpTy = ty(Op1); | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { | 
|  | MVT ElemTy = OpTy.getVectorElementType(); | 
|  | assert(ElemTy.isScalarInteger()); | 
|  | MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), | 
|  | OpTy.getVectorNumElements()); | 
|  | // Generate (trunc (select (_, sext, sext))). | 
|  | return DAG.getSExtOrTrunc( | 
|  | DAG.getSelect(dl, WideTy, PredOp, | 
|  | DAG.getSExtOrTrunc(Op1, dl, WideTy), | 
|  | DAG.getSExtOrTrunc(Op2, dl, WideTy)), | 
|  | dl, OpTy); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static Constant *convert_i1_to_i8(const Constant *ConstVal) { | 
|  | SmallVector<Constant *, 128> NewConst; | 
|  | const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal); | 
|  | if (!CV) | 
|  | return nullptr; | 
|  |  | 
|  | LLVMContext &Ctx = ConstVal->getContext(); | 
|  | IRBuilder<> IRB(Ctx); | 
|  | unsigned NumVectorElements = CV->getNumOperands(); | 
|  | assert(isPowerOf2_32(NumVectorElements) && | 
|  | "conversion only supported for pow2 VectorSize!"); | 
|  |  | 
|  | for (unsigned i = 0; i < NumVectorElements / 8; ++i) { | 
|  | uint8_t x = 0; | 
|  | for (unsigned j = 0; j < 8; ++j) { | 
|  | uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue(); | 
|  | x |= y << (7 - j); | 
|  | } | 
|  | assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!"); | 
|  | NewConst.push_back(IRB.getInt8(x)); | 
|  | } | 
|  | return ConstantVector::get(NewConst); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT ValTy = Op.getValueType(); | 
|  | ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); | 
|  | Constant *CVal = nullptr; | 
|  | bool isVTi1Type = false; | 
|  | if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) { | 
|  | Type *CValTy = ConstVal->getType(); | 
|  | if (CValTy->isVectorTy() && | 
|  | CValTy->getVectorElementType()->isIntegerTy(1)) { | 
|  | CVal = convert_i1_to_i8(ConstVal); | 
|  | isVTi1Type = (CVal != nullptr); | 
|  | } | 
|  | } | 
|  | unsigned Align = CPN->getAlignment(); | 
|  | bool IsPositionIndependent = isPositionIndependent(); | 
|  | unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; | 
|  |  | 
|  | unsigned Offset = 0; | 
|  | SDValue T; | 
|  | if (CPN->isMachineConstantPoolEntry()) | 
|  | T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, | 
|  | TF); | 
|  | else if (isVTi1Type) | 
|  | T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF); | 
|  | else | 
|  | T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); | 
|  |  | 
|  | assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF && | 
|  | "Inconsistent target flag encountered"); | 
|  |  | 
|  | if (IsPositionIndependent) | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); | 
|  | return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | int Idx = cast<JumpTableSDNode>(Op)->getIndex(); | 
|  | if (isPositionIndependent()) { | 
|  | SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); | 
|  | } | 
|  |  | 
|  | SDValue T = DAG.getTargetJumpTable(Idx, VT); | 
|  | return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MFI.setReturnAddressIsTaken(true); | 
|  |  | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | if (Depth) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | SDValue Offset = DAG.getConstant(4, dl, MVT::i32); | 
|  | return DAG.getLoad(VT, dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), | 
|  | MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | // Return LR, which contains the return address. Mark it an implicit live-in. | 
|  | unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setFrameAddressIsTaken(true); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | HRI.getFrameRegister(), VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, | 
|  | MachinePointerInfo()); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { | 
|  | SDLoc dl(Op); | 
|  | return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | auto *GAN = cast<GlobalAddressSDNode>(Op); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | auto *GV = GAN->getGlobal(); | 
|  | int64_t Offset = GAN->getOffset(); | 
|  |  | 
|  | auto &HLOF = *HTM.getObjFileLowering(); | 
|  | Reloc::Model RM = HTM.getRelocationModel(); | 
|  |  | 
|  | if (RM == Reloc::Static) { | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); | 
|  | const GlobalObject *GO = GV->getBaseObject(); | 
|  | if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) | 
|  | return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); | 
|  | return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); | 
|  | } | 
|  |  | 
|  | bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); | 
|  | if (UsePCRel) { | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, | 
|  | HexagonII::MO_PCREL); | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); | 
|  | } | 
|  |  | 
|  | // Use GOT index. | 
|  | SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); | 
|  | SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); | 
|  | return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); | 
|  | } | 
|  |  | 
|  | // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | SDLoc dl(Op); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | Reloc::Model RM = HTM.getRelocationModel(); | 
|  | if (RM == Reloc::Static) { | 
|  | SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); | 
|  | return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); | 
|  | } | 
|  |  | 
|  | SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, | 
|  | HexagonII::MO_PCREL); | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, | 
|  | GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, | 
|  | unsigned char OperandFlags) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDLoc dl(GA); | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), | 
|  | OperandFlags); | 
|  | // Create Operands for the call.The Operands should have the following: | 
|  | // 1. Chain SDValue | 
|  | // 2. Callee which in this case is the Global address value. | 
|  | // 3. Registers live into the call.In this case its R0, as we | 
|  | //    have just one argument to be passed. | 
|  | // 4. Glue. | 
|  | // Note: The order is important. | 
|  |  | 
|  | const auto &HRI = *Subtarget.getRegisterInfo(); | 
|  | const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), | 
|  | DAG.getRegisterMask(Mask), Glue }; | 
|  | Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); | 
|  |  | 
|  | // Inform MFI that function has calls. | 
|  | MFI.setAdjustsStack(true); | 
|  |  | 
|  | Glue = Chain.getValue(1); | 
|  | return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Lower using the intial executable model for TLS addresses | 
|  | // | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(GA); | 
|  | int64_t Offset = GA->getOffset(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // Get the thread pointer. | 
|  | SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); | 
|  |  | 
|  | bool IsPositionIndependent = isPositionIndependent(); | 
|  | unsigned char TF = | 
|  | IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; | 
|  |  | 
|  | // First generate the TLS symbol address | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, | 
|  | Offset, TF); | 
|  |  | 
|  | SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); | 
|  |  | 
|  | if (IsPositionIndependent) { | 
|  | // Generate the GOT pointer in case of position independent code | 
|  | SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); | 
|  |  | 
|  | // Add the TLS Symbol address to GOT pointer.This gives | 
|  | // GOT relative relocation for the symbol. | 
|  | Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); | 
|  | } | 
|  |  | 
|  | // Load the offset value for TLS symbol.This offset is relative to | 
|  | // thread pointer. | 
|  | SDValue LoadOffset = | 
|  | DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); | 
|  |  | 
|  | // Address of the thread local variable is the add of thread | 
|  | // pointer and the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Lower using the local executable model for TLS addresses | 
|  | // | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(GA); | 
|  | int64_t Offset = GA->getOffset(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // Get the thread pointer. | 
|  | SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); | 
|  | // Generate the TLS symbol address | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, | 
|  | HexagonII::MO_TPREL); | 
|  | SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); | 
|  |  | 
|  | // Address of the thread local variable is the add of thread | 
|  | // pointer and the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Lower using the general dynamic model for TLS addresses | 
|  | // | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(GA); | 
|  | int64_t Offset = GA->getOffset(); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // First generate the TLS symbol address | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, | 
|  | HexagonII::MO_GDGOT); | 
|  |  | 
|  | // Then, generate the GOT pointer | 
|  | SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); | 
|  |  | 
|  | // Add the TLS symbol and the GOT pointer | 
|  | SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); | 
|  | SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); | 
|  |  | 
|  | // Copy over the argument to R0 | 
|  | SDValue InFlag; | 
|  | Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | unsigned Flags = | 
|  | static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls() | 
|  | ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended | 
|  | : HexagonII::MO_GDPLT; | 
|  |  | 
|  | return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, | 
|  | Hexagon::R0, Flags); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Lower TLS addresses. | 
|  | // | 
|  | // For now for dynamic models, we only support the general dynamic model. | 
|  | // | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  |  | 
|  | switch (HTM.getTLSModel(GA->getGlobal())) { | 
|  | case TLSModel::GeneralDynamic: | 
|  | case TLSModel::LocalDynamic: | 
|  | return LowerToTLSGeneralDynamicModel(GA, DAG); | 
|  | case TLSModel::InitialExec: | 
|  | return LowerToTLSInitialExecModel(GA, DAG); | 
|  | case TLSModel::LocalExec: | 
|  | return LowerToTLSLocalExecModel(GA, DAG); | 
|  | } | 
|  | llvm_unreachable("Bogus TLS model"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetLowering Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, | 
|  | const HexagonSubtarget &ST) | 
|  | : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), | 
|  | Subtarget(ST) { | 
|  | auto &HRI = *Subtarget.getRegisterInfo(); | 
|  |  | 
|  | setPrefLoopLogAlignment(4); | 
|  | setPrefFunctionLogAlignment(4); | 
|  | setMinFunctionAlignment(llvm::Align(4)); | 
|  | setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); | 
|  | setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); | 
|  | setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); | 
|  |  | 
|  | setMaxAtomicSizeInBitsSupported(64); | 
|  | setMinCmpXchgSizeInBits(32); | 
|  |  | 
|  | if (EnableHexSDNodeSched) | 
|  | setSchedulingPreference(Sched::VLIW); | 
|  | else | 
|  | setSchedulingPreference(Sched::Source); | 
|  |  | 
|  | // Limits for inline expansion of memcpy/memmove | 
|  | MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; | 
|  | MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; | 
|  | MaxStoresPerMemmove = MaxStoresPerMemmoveCL; | 
|  | MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; | 
|  | MaxStoresPerMemset = MaxStoresPerMemsetCL; | 
|  | MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; | 
|  |  | 
|  | // | 
|  | // Set up register classes. | 
|  | // | 
|  |  | 
|  | addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass); | 
|  | addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa | 
|  | addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa | 
|  | addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba | 
|  | addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass); | 
|  | addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); | 
|  | addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass); | 
|  | addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass); | 
|  | addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass); | 
|  | addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); | 
|  | addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); | 
|  |  | 
|  | addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); | 
|  | addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); | 
|  |  | 
|  | // | 
|  | // Handling of scalar operations. | 
|  | // | 
|  | // All operations default to "legal", except: | 
|  | // - indexed loads and stores (pre-/post-incremented), | 
|  | // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, | 
|  | //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, | 
|  | //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, | 
|  | //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, | 
|  | // which default to "expand" for at least one type. | 
|  |  | 
|  | // Misc operations. | 
|  | setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal); | 
|  | setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal); | 
|  | setOperationAction(ISD::TRAP,                 MVT::Other, Legal); | 
|  | setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom); | 
|  | setOperationAction(ISD::JumpTable,            MVT::i32,   Custom); | 
|  | setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand); | 
|  | setOperationAction(ISD::INLINEASM,            MVT::Other, Custom); | 
|  | setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom); | 
|  | setOperationAction(ISD::PREFETCH,             MVT::Other, Custom); | 
|  | setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom); | 
|  | setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom); | 
|  | setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom); | 
|  | setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom); | 
|  |  | 
|  | // Custom legalize GlobalAddress nodes into CONST32. | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom); | 
|  | setOperationAction(ISD::BlockAddress,  MVT::i32, Custom); | 
|  |  | 
|  | // Hexagon needs to optimize cases with negative constants. | 
|  | setOperationAction(ISD::SETCC, MVT::i8,    Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::i16,   Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::v4i8,  Custom); | 
|  | setOperationAction(ISD::SETCC, MVT::v2i16, Custom); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex. | 
|  | setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND,   MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAARG,   MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY,  MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | 
|  |  | 
|  | if (EmitJumpTables) | 
|  | setMinimumJumpTableEntries(MinimumJumpTables); | 
|  | else | 
|  | setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max()); | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::ABS, MVT::i32, Legal); | 
|  | setOperationAction(ISD::ABS, MVT::i64, Legal); | 
|  |  | 
|  | // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, | 
|  | // but they only operate on i64. | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::UADDO,    VT, Custom); | 
|  | setOperationAction(ISD::USUBO,    VT, Custom); | 
|  | setOperationAction(ISD::SADDO,    VT, Expand); | 
|  | setOperationAction(ISD::SSUBO,    VT, Expand); | 
|  | setOperationAction(ISD::ADDCARRY, VT, Expand); | 
|  | setOperationAction(ISD::SUBCARRY, VT, Expand); | 
|  | } | 
|  | setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTLZ, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::CTLZ, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTTZ, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::CTTZ, MVT::i16, Promote); | 
|  |  | 
|  | // Popcount can count # of 1s in i64 but returns i32. | 
|  | setOperationAction(ISD::CTPOP, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i32, Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); | 
|  | setOperationAction(ISD::BSWAP, MVT::i32, Legal); | 
|  | setOperationAction(ISD::BSWAP, MVT::i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FSHL, MVT::i32, Legal); | 
|  | setOperationAction(ISD::FSHL, MVT::i64, Legal); | 
|  | setOperationAction(ISD::FSHR, MVT::i32, Legal); | 
|  | setOperationAction(ISD::FSHR, MVT::i64, Legal); | 
|  |  | 
|  | for (unsigned IntExpOp : | 
|  | {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM, | 
|  | ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR, | 
|  | ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, | 
|  | ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { | 
|  | for (MVT VT : MVT::integer_valuetypes()) | 
|  | setOperationAction(IntExpOp, VT, Expand); | 
|  | } | 
|  |  | 
|  | for (unsigned FPExpOp : | 
|  | {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, | 
|  | ISD::FPOW, ISD::FCOPYSIGN}) { | 
|  | for (MVT VT : MVT::fp_valuetypes()) | 
|  | setOperationAction(FPExpOp, VT, Expand); | 
|  | } | 
|  |  | 
|  | // No extending loads from i32. | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand); | 
|  | } | 
|  | // Turn FP truncstore into trunc + store. | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  | // Turn FP extload into load/fpextend. | 
|  | for (MVT VT : MVT::fp_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); | 
|  |  | 
|  | // Expand BR_CC and SELECT_CC for all integer and fp types. | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setOperationAction(ISD::BR_CC,     VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | } | 
|  | for (MVT VT : MVT::fp_valuetypes()) { | 
|  | setOperationAction(ISD::BR_CC,     VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | } | 
|  | setOperationAction(ISD::BR_CC, MVT::Other, Expand); | 
|  |  | 
|  | // | 
|  | // Handling of vector operations. | 
|  | // | 
|  |  | 
|  | // Set the action for vector operations to "expand", then override it with | 
|  | // either "custom" or "legal" for specific cases. | 
|  | static const unsigned VectExpOps[] = { | 
|  | // Integer arithmetic: | 
|  | ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV, | 
|  | ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO, | 
|  | ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI, | 
|  | // Logical/bit: | 
|  | ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR, | 
|  | ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ, | 
|  | // Floating point arithmetic/math functions: | 
|  | ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV, | 
|  | ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN, | 
|  | ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2, | 
|  | ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC, | 
|  | ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR, | 
|  | ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, | 
|  | // Misc: | 
|  | ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool, | 
|  | // Vector: | 
|  | ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR, | 
|  | ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT, | 
|  | ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR, | 
|  | ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE | 
|  | }; | 
|  |  | 
|  | for (MVT VT : MVT::vector_valuetypes()) { | 
|  | for (unsigned VectExpOp : VectExpOps) | 
|  | setOperationAction(VectExpOp, VT, Expand); | 
|  |  | 
|  | // Expand all extending loads and truncating stores: | 
|  | for (MVT TargetVT : MVT::vector_valuetypes()) { | 
|  | if (TargetVT == VT) | 
|  | continue; | 
|  | setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); | 
|  | setTruncStoreAction(VT, TargetVT, Expand); | 
|  | } | 
|  |  | 
|  | // Normalize all inputs to SELECT to be vectors of i32. | 
|  | if (VT.getVectorElementType() != MVT::i32) { | 
|  | MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType(ISD::SELECT, VT, VT32); | 
|  | } | 
|  | setOperationAction(ISD::SRA, VT, Custom); | 
|  | setOperationAction(ISD::SHL, VT, Custom); | 
|  | setOperationAction(ISD::SRL, VT, Custom); | 
|  | } | 
|  |  | 
|  | // Extending loads from (native) vectors of i8 into (native) vectors of i16 | 
|  | // are legal. | 
|  | setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); | 
|  |  | 
|  | // Types natively supported: | 
|  | for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, | 
|  | MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { | 
|  | setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ADD, NativeVT, Legal); | 
|  | setOperationAction(ISD::SUB, NativeVT, Legal); | 
|  | setOperationAction(ISD::MUL, NativeVT, Legal); | 
|  | setOperationAction(ISD::AND, NativeVT, Legal); | 
|  | setOperationAction(ISD::OR,  NativeVT, Legal); | 
|  | setOperationAction(ISD::XOR, NativeVT, Legal); | 
|  | } | 
|  |  | 
|  | // Custom lower unaligned loads. | 
|  | // Also, for both loads and stores, verify the alignment of the address | 
|  | // in case it is a compile-time constant. This is a usability feature to | 
|  | // provide a meaningful error message to users. | 
|  | for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, | 
|  | MVT::v2i16, MVT::v4i16, MVT::v2i32}) { | 
|  | setOperationAction(ISD::LOAD,  VT, Custom); | 
|  | setOperationAction(ISD::STORE, VT, Custom); | 
|  | } | 
|  |  | 
|  | for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16, | 
|  | MVT::v2i32}) { | 
|  | setCondCodeAction(ISD::SETNE,  VT, Expand); | 
|  | setCondCodeAction(ISD::SETLE,  VT, Expand); | 
|  | setCondCodeAction(ISD::SETGE,  VT, Expand); | 
|  | setCondCodeAction(ISD::SETLT,  VT, Expand); | 
|  | setCondCodeAction(ISD::SETULE, VT, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, VT, Expand); | 
|  | setCondCodeAction(ISD::SETULT, VT, Expand); | 
|  | } | 
|  |  | 
|  | // Custom-lower bitcasts from i8 to v8i1. | 
|  | setOperationAction(ISD::BITCAST,        MVT::i8,    Custom); | 
|  | setOperationAction(ISD::SETCC,          MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom); | 
|  | setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom); | 
|  |  | 
|  | // V5+. | 
|  | setOperationAction(ISD::FMA,  MVT::f64, Expand); | 
|  | setOperationAction(ISD::FADD, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSUB, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FMUL, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); | 
|  |  | 
|  | // Handling of indexed loads/stores: default is "expand". | 
|  | // | 
|  | for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, | 
|  | MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { | 
|  | setIndexedLoadAction(ISD::POST_INC, VT, Legal); | 
|  | setIndexedStoreAction(ISD::POST_INC, VT, Legal); | 
|  | } | 
|  |  | 
|  | // Subtarget-specific operation actions. | 
|  | // | 
|  | if (Subtarget.hasV60Ops()) { | 
|  | setOperationAction(ISD::ROTL, MVT::i32, Legal); | 
|  | setOperationAction(ISD::ROTL, MVT::i64, Legal); | 
|  | setOperationAction(ISD::ROTR, MVT::i32, Legal); | 
|  | setOperationAction(ISD::ROTR, MVT::i64, Legal); | 
|  | } | 
|  | if (Subtarget.hasV66Ops()) { | 
|  | setOperationAction(ISD::FADD, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FSUB, MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  |  | 
|  | if (Subtarget.useHVXOps()) | 
|  | initializeHVXLowering(); | 
|  |  | 
|  | computeRegisterProperties(&HRI); | 
|  |  | 
|  | // | 
|  | // Library calls for unsupported operations | 
|  | // | 
|  | bool FastMath  = EnableFastMath; | 
|  |  | 
|  | setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); | 
|  | setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); | 
|  | setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); | 
|  | setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); | 
|  | setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); | 
|  | setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); | 
|  | setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); | 
|  | setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); | 
|  |  | 
|  | setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); | 
|  | setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); | 
|  | setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); | 
|  | setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); | 
|  |  | 
|  | // This is the only fast library function for sqrtd. | 
|  | if (FastMath) | 
|  | setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); | 
|  |  | 
|  | // Prefix is: nothing  for "slow-math", | 
|  | //            "fast2_" for V5+ fast-math double-precision | 
|  | // (actually, keep fast-math and fast-math2 separate for now) | 
|  | if (FastMath) { | 
|  | setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); | 
|  | setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); | 
|  | setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); | 
|  | setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); | 
|  | setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); | 
|  | } else { | 
|  | setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); | 
|  | setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); | 
|  | setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); | 
|  | setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); | 
|  | setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); | 
|  | } | 
|  |  | 
|  | if (FastMath) | 
|  | setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); | 
|  | else | 
|  | setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); | 
|  |  | 
|  | // These cause problems when the shift amount is non-constant. | 
|  | setLibcallName(RTLIB::SHL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRA_I128, nullptr); | 
|  | } | 
|  |  | 
|  | const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch ((HexagonISD::NodeType)Opcode) { | 
|  | case HexagonISD::ADDC:          return "HexagonISD::ADDC"; | 
|  | case HexagonISD::SUBC:          return "HexagonISD::SUBC"; | 
|  | case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA"; | 
|  | case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT"; | 
|  | case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL"; | 
|  | case HexagonISD::BARRIER:       return "HexagonISD::BARRIER"; | 
|  | case HexagonISD::CALL:          return "HexagonISD::CALL"; | 
|  | case HexagonISD::CALLnr:        return "HexagonISD::CALLnr"; | 
|  | case HexagonISD::CALLR:         return "HexagonISD::CALLR"; | 
|  | case HexagonISD::COMBINE:       return "HexagonISD::COMBINE"; | 
|  | case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP"; | 
|  | case HexagonISD::CONST32:       return "HexagonISD::CONST32"; | 
|  | case HexagonISD::CP:            return "HexagonISD::CP"; | 
|  | case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH"; | 
|  | case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN"; | 
|  | case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT"; | 
|  | case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU"; | 
|  | case HexagonISD::INSERT:        return "HexagonISD::INSERT"; | 
|  | case HexagonISD::JT:            return "HexagonISD::JT"; | 
|  | case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG"; | 
|  | case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN"; | 
|  | case HexagonISD::VASL:          return "HexagonISD::VASL"; | 
|  | case HexagonISD::VASR:          return "HexagonISD::VASR"; | 
|  | case HexagonISD::VLSR:          return "HexagonISD::VLSR"; | 
|  | case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT"; | 
|  | case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW"; | 
|  | case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0"; | 
|  | case HexagonISD::VROR:          return "HexagonISD::VROR"; | 
|  | case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE"; | 
|  | case HexagonISD::PTRUE:         return "HexagonISD::PTRUE"; | 
|  | case HexagonISD::PFALSE:        return "HexagonISD::PFALSE"; | 
|  | case HexagonISD::VZERO:         return "HexagonISD::VZERO"; | 
|  | case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW"; | 
|  | case HexagonISD::D2P:           return "HexagonISD::D2P"; | 
|  | case HexagonISD::P2D:           return "HexagonISD::P2D"; | 
|  | case HexagonISD::V2Q:           return "HexagonISD::V2Q"; | 
|  | case HexagonISD::Q2V:           return "HexagonISD::Q2V"; | 
|  | case HexagonISD::QCAT:          return "HexagonISD::QCAT"; | 
|  | case HexagonISD::QTRUE:         return "HexagonISD::QTRUE"; | 
|  | case HexagonISD::QFALSE:        return "HexagonISD::QFALSE"; | 
|  | case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST"; | 
|  | case HexagonISD::VALIGN:        return "HexagonISD::VALIGN"; | 
|  | case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR"; | 
|  | case HexagonISD::OP_END:        break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl, | 
|  | unsigned NeedAlign) const { | 
|  | auto *CA = dyn_cast<ConstantSDNode>(Ptr); | 
|  | if (!CA) | 
|  | return; | 
|  | unsigned Addr = CA->getZExtValue(); | 
|  | unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign; | 
|  | if (HaveAlign < NeedAlign) { | 
|  | std::string ErrMsg; | 
|  | raw_string_ostream O(ErrMsg); | 
|  | O << "Misaligned constant address: " << format_hex(Addr, 10) | 
|  | << " has alignment " << HaveAlign | 
|  | << ", but the memory access requires " << NeedAlign; | 
|  | if (DebugLoc DL = dl.getDebugLoc()) | 
|  | DL.print(O << ", at "); | 
|  | report_fatal_error(O.str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load | 
|  | // intrinsic. | 
|  | static bool isBrevLdIntrinsic(const Value *Inst) { | 
|  | unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID(); | 
|  | return (ID == Intrinsic::hexagon_L2_loadrd_pbr || | 
|  | ID == Intrinsic::hexagon_L2_loadri_pbr || | 
|  | ID == Intrinsic::hexagon_L2_loadrh_pbr || | 
|  | ID == Intrinsic::hexagon_L2_loadruh_pbr || | 
|  | ID == Intrinsic::hexagon_L2_loadrb_pbr || | 
|  | ID == Intrinsic::hexagon_L2_loadrub_pbr); | 
|  | } | 
|  |  | 
|  | // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous | 
|  | // instruction. So far we only handle bitcast, extract value and bit reverse | 
|  | // load intrinsic instructions. Should we handle CGEP ? | 
|  | static Value *getBrevLdObject(Value *V) { | 
|  | if (Operator::getOpcode(V) == Instruction::ExtractValue || | 
|  | Operator::getOpcode(V) == Instruction::BitCast) | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V)) | 
|  | V = cast<Instruction>(V)->getOperand(0); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or | 
|  | // a back edge. If the back edge comes from the intrinsic itself, the incoming | 
|  | // edge is returned. | 
|  | static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { | 
|  | const BasicBlock *Parent = PN->getParent(); | 
|  | int Idx = -1; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { | 
|  | BasicBlock *Blk = PN->getIncomingBlock(i); | 
|  | // Determine if the back edge is originated from intrinsic. | 
|  | if (Blk == Parent) { | 
|  | Value *BackEdgeVal = PN->getIncomingValue(i); | 
|  | Value *BaseVal; | 
|  | // Loop over till we return the same Value or we hit the IntrBaseVal. | 
|  | do { | 
|  | BaseVal = BackEdgeVal; | 
|  | BackEdgeVal = getBrevLdObject(BackEdgeVal); | 
|  | } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); | 
|  | // If the getBrevLdObject returns IntrBaseVal, we should return the | 
|  | // incoming edge. | 
|  | if (IntrBaseVal == BackEdgeVal) | 
|  | continue; | 
|  | Idx = i; | 
|  | break; | 
|  | } else // Set the node to incoming edge. | 
|  | Idx = i; | 
|  | } | 
|  | assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); | 
|  | return PN->getIncomingValue(Idx); | 
|  | } | 
|  |  | 
|  | // Bit-reverse Load Intrinsic: Figure out the underlying object the base | 
|  | // pointer points to, for the bit-reverse load intrinsic. Setting this to | 
|  | // memoperand might help alias analysis to figure out the dependencies. | 
|  | static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { | 
|  | Value *IntrBaseVal = V; | 
|  | Value *BaseVal; | 
|  | // Loop over till we return the same Value, implies we either figure out | 
|  | // the object or we hit a PHI | 
|  | do { | 
|  | BaseVal = V; | 
|  | V = getBrevLdObject(V); | 
|  | } while (BaseVal != V); | 
|  |  | 
|  | // Identify the object from PHINode. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(V)) | 
|  | return returnEdge(PN, IntrBaseVal); | 
|  | // For non PHI nodes, the object is the last value returned by getBrevLdObject | 
|  | else | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// Given an intrinsic, checks if on the target the intrinsic will need to map | 
|  | /// to a MemIntrinsicNode (touches memory). If this is the case, it returns | 
|  | /// true and store the intrinsic information into the IntrinsicInfo that was | 
|  | /// passed to the function. | 
|  | bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &I, | 
|  | MachineFunction &MF, | 
|  | unsigned Intrinsic) const { | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::hexagon_L2_loadrd_pbr: | 
|  | case Intrinsic::hexagon_L2_loadri_pbr: | 
|  | case Intrinsic::hexagon_L2_loadrh_pbr: | 
|  | case Intrinsic::hexagon_L2_loadruh_pbr: | 
|  | case Intrinsic::hexagon_L2_loadrb_pbr: | 
|  | case Intrinsic::hexagon_L2_loadrub_pbr: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); | 
|  | auto &Cont = I.getCalledFunction()->getParent()->getContext(); | 
|  | // The intrinsic function call is of the form { ElTy, i8* } | 
|  | // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type | 
|  | // should be derived from ElTy. | 
|  | Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0); | 
|  | Info.memVT = MVT::getVT(ElTy); | 
|  | llvm::Value *BasePtrVal = I.getOperand(0); | 
|  | Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); | 
|  | // The offset value comes through Modifier register. For now, assume the | 
|  | // offset is 0. | 
|  | Info.offset = 0; | 
|  | Info.align = | 
|  | MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont))); | 
|  | Info.flags = MachineMemOperand::MOLoad; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::hexagon_V6_vgathermw: | 
|  | case Intrinsic::hexagon_V6_vgathermw_128B: | 
|  | case Intrinsic::hexagon_V6_vgathermh: | 
|  | case Intrinsic::hexagon_V6_vgathermh_128B: | 
|  | case Intrinsic::hexagon_V6_vgathermhw: | 
|  | case Intrinsic::hexagon_V6_vgathermhw_128B: | 
|  | case Intrinsic::hexagon_V6_vgathermwq: | 
|  | case Intrinsic::hexagon_V6_vgathermwq_128B: | 
|  | case Intrinsic::hexagon_V6_vgathermhq: | 
|  | case Intrinsic::hexagon_V6_vgathermhq_128B: | 
|  | case Intrinsic::hexagon_V6_vgathermhwq: | 
|  | case Intrinsic::hexagon_V6_vgathermhwq_128B: { | 
|  | const Module &M = *I.getParent()->getParent()->getParent(); | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Type *VecTy = I.getArgOperand(1)->getType(); | 
|  | Info.memVT = MVT::getVT(VecTy); | 
|  | Info.ptrVal = I.getArgOperand(0); | 
|  | Info.offset = 0; | 
|  | Info.align = | 
|  | MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8); | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MOVolatile; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const { | 
|  | return X.getValueType().isScalarInteger(); // 'tstbit' | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | 
|  | return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (!VT1.isSimple() || !VT2.isSimple()) | 
|  | return false; | 
|  | return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | return isOperationLegalOrCustom(ISD::FMA, VT); | 
|  | } | 
|  |  | 
|  | // Should we expand the build vector with shuffles? | 
|  | bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, | 
|  | unsigned DefinedValues) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask, | 
|  | EVT VT) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | HexagonTargetLowering::getPreferredVectorAction(MVT VT) const { | 
|  | if (VT.getVectorNumElements() == 1) | 
|  | return TargetLoweringBase::TypeScalarizeVector; | 
|  |  | 
|  | // Always widen vectors of i1. | 
|  | MVT ElemTy = VT.getVectorElementType(); | 
|  | if (ElemTy == MVT::i1) | 
|  | return TargetLoweringBase::TypeWidenVector; | 
|  |  | 
|  | if (Subtarget.useHVXOps()) { | 
|  | // If the size of VT is at least half of the vector length, | 
|  | // widen the vector. Note: the threshold was not selected in | 
|  | // any scientific way. | 
|  | ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); | 
|  | if (llvm::find(Tys, ElemTy) != Tys.end()) { | 
|  | unsigned HwWidth = 8*Subtarget.getVectorLength(); | 
|  | unsigned VecWidth = VT.getSizeInBits(); | 
|  | if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) | 
|  | return TargetLoweringBase::TypeWidenVector; | 
|  | } | 
|  | } | 
|  | return TargetLoweringBase::TypeSplitVector; | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, int> | 
|  | HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | SDValue Op1 = Addr.getOperand(1); | 
|  | if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode())) | 
|  | return { Addr.getOperand(0), CN->getSExtValue() }; | 
|  | } | 
|  | return { Addr, 0 }; | 
|  | } | 
|  |  | 
|  | // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors | 
|  | // to select data from, V3 is the permutation. | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | const auto *SVN = cast<ShuffleVectorSDNode>(Op); | 
|  | ArrayRef<int> AM = SVN->getMask(); | 
|  | assert(AM.size() <= 8 && "Unexpected shuffle mask"); | 
|  | unsigned VecLen = AM.size(); | 
|  |  | 
|  | MVT VecTy = ty(Op); | 
|  | assert(!Subtarget.isHVXVectorType(VecTy, true) && | 
|  | "HVX shuffles should be legal"); | 
|  | assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); | 
|  |  | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | // If the inputs are not the same as the output, bail. This is not an | 
|  | // error situation, but complicates the handling and the default expansion | 
|  | // (into BUILD_VECTOR) should be adequate. | 
|  | if (ty(Op0) != VecTy || ty(Op1) != VecTy) | 
|  | return SDValue(); | 
|  |  | 
|  | // Normalize the mask so that the first non-negative index comes from | 
|  | // the first operand. | 
|  | SmallVector<int,8> Mask(AM.begin(), AM.end()); | 
|  | unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); | 
|  | if (F == AM.size()) | 
|  | return DAG.getUNDEF(VecTy); | 
|  | if (AM[F] >= int(VecLen)) { | 
|  | ShuffleVectorSDNode::commuteMask(Mask); | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // Express the shuffle mask in terms of bytes. | 
|  | SmallVector<int,8> ByteMask; | 
|  | unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; | 
|  | for (unsigned i = 0, e = Mask.size(); i != e; ++i) { | 
|  | int M = Mask[i]; | 
|  | if (M < 0) { | 
|  | for (unsigned j = 0; j != ElemBytes; ++j) | 
|  | ByteMask.push_back(-1); | 
|  | } else { | 
|  | for (unsigned j = 0; j != ElemBytes; ++j) | 
|  | ByteMask.push_back(M*ElemBytes + j); | 
|  | } | 
|  | } | 
|  | assert(ByteMask.size() <= 8); | 
|  |  | 
|  | // All non-undef (non-negative) indexes are well within [0..127], so they | 
|  | // fit in a single byte. Build two 64-bit words: | 
|  | // - MaskIdx where each byte is the corresponding index (for non-negative | 
|  | //   indexes), and 0xFF for negative indexes, and | 
|  | // - MaskUnd that has 0xFF for each negative index. | 
|  | uint64_t MaskIdx = 0; | 
|  | uint64_t MaskUnd = 0; | 
|  | for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { | 
|  | unsigned S = 8*i; | 
|  | uint64_t M = ByteMask[i] & 0xFF; | 
|  | if (M == 0xFF) | 
|  | MaskUnd |= M << S; | 
|  | MaskIdx |= M << S; | 
|  | } | 
|  |  | 
|  | if (ByteMask.size() == 4) { | 
|  | // Identity. | 
|  | if (MaskIdx == (0x03020100 | MaskUnd)) | 
|  | return Op0; | 
|  | // Byte swap. | 
|  | if (MaskIdx == (0x00010203 | MaskUnd)) { | 
|  | SDValue T0 = DAG.getBitcast(MVT::i32, Op0); | 
|  | SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); | 
|  | return DAG.getBitcast(VecTy, T1); | 
|  | } | 
|  |  | 
|  | // Byte packs. | 
|  | SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl, | 
|  | typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0}); | 
|  | if (MaskIdx == (0x06040200 | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); | 
|  | if (MaskIdx == (0x07050301 | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); | 
|  |  | 
|  | SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl, | 
|  | typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1}); | 
|  | if (MaskIdx == (0x02000604 | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); | 
|  | if (MaskIdx == (0x03010705 | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); | 
|  | } | 
|  |  | 
|  | if (ByteMask.size() == 8) { | 
|  | // Identity. | 
|  | if (MaskIdx == (0x0706050403020100ull | MaskUnd)) | 
|  | return Op0; | 
|  | // Byte swap. | 
|  | if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { | 
|  | SDValue T0 = DAG.getBitcast(MVT::i64, Op0); | 
|  | SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); | 
|  | return DAG.getBitcast(VecTy, T1); | 
|  | } | 
|  |  | 
|  | // Halfword picks. | 
|  | if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); | 
|  | if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); | 
|  | if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); | 
|  | if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); | 
|  | if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { | 
|  | VectorPair P = opSplit(Op0, dl, DAG); | 
|  | return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); | 
|  | } | 
|  |  | 
|  | // Byte packs. | 
|  | if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); | 
|  | if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) | 
|  | return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Create a Hexagon-specific node for shifting a vector by an integer. | 
|  | SDValue | 
|  | HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) { | 
|  | if (SDValue S = BVN->getSplatValue()) { | 
|  | unsigned NewOpc; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SHL: | 
|  | NewOpc = HexagonISD::VASL; | 
|  | break; | 
|  | case ISD::SRA: | 
|  | NewOpc = HexagonISD::VASR; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | NewOpc = HexagonISD::VLSR; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected shift opcode"); | 
|  | } | 
|  | return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { | 
|  | return getVectorShiftByInt(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1).getNode())) | 
|  | return Op; | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT ResTy = ty(Op); | 
|  | SDValue InpV = Op.getOperand(0); | 
|  | MVT InpTy = ty(InpV); | 
|  | assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | // Handle conversion from i8 to v8i1. | 
|  | if (ResTy == MVT::v8i1) { | 
|  | SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); | 
|  | SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); | 
|  | return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values, | 
|  | MVT VecTy, SelectionDAG &DAG, | 
|  | MutableArrayRef<ConstantInt*> Consts) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); | 
|  | bool AllConst = true; | 
|  |  | 
|  | for (unsigned i = 0, e = Values.size(); i != e; ++i) { | 
|  | SDValue V = Values[i]; | 
|  | if (V.isUndef()) { | 
|  | Consts[i] = ConstantInt::get(IntTy, 0); | 
|  | continue; | 
|  | } | 
|  | // Make sure to always cast to IntTy. | 
|  | if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) { | 
|  | const ConstantInt *CI = CN->getConstantIntValue(); | 
|  | Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); | 
|  | } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) { | 
|  | const ConstantFP *CF = CN->getConstantFPValue(); | 
|  | APInt A = CF->getValueAPF().bitcastToAPInt(); | 
|  | Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); | 
|  | } else { | 
|  | AllConst = false; | 
|  | } | 
|  | } | 
|  | return AllConst; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, | 
|  | MVT VecTy, SelectionDAG &DAG) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | assert(VecTy.getVectorNumElements() == Elem.size()); | 
|  |  | 
|  | SmallVector<ConstantInt*,4> Consts(Elem.size()); | 
|  | bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); | 
|  |  | 
|  | unsigned First, Num = Elem.size(); | 
|  | for (First = 0; First != Num; ++First) | 
|  | if (!isUndef(Elem[First])) | 
|  | break; | 
|  | if (First == Num) | 
|  | return DAG.getUNDEF(VecTy); | 
|  |  | 
|  | if (AllConst && | 
|  | llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) | 
|  | return getZero(dl, VecTy, DAG); | 
|  |  | 
|  | if (ElemTy == MVT::i16) { | 
|  | assert(Elem.size() == 2); | 
|  | if (AllConst) { | 
|  | uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | | 
|  | Consts[1]->getZExtValue() << 16; | 
|  | return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32)); | 
|  | } | 
|  | SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, | 
|  | {Elem[1], Elem[0]}, DAG); | 
|  | return DAG.getBitcast(MVT::v2i16, N); | 
|  | } | 
|  |  | 
|  | if (ElemTy == MVT::i8) { | 
|  | // First try generating a constant. | 
|  | if (AllConst) { | 
|  | int32_t V = (Consts[0]->getZExtValue() & 0xFF) | | 
|  | (Consts[1]->getZExtValue() & 0xFF) << 8 | | 
|  | (Consts[1]->getZExtValue() & 0xFF) << 16 | | 
|  | Consts[2]->getZExtValue() << 24; | 
|  | return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // Then try splat. | 
|  | bool IsSplat = true; | 
|  | for (unsigned i = 0; i != Num; ++i) { | 
|  | if (i == First) | 
|  | continue; | 
|  | if (Elem[i] == Elem[First] || isUndef(Elem[i])) | 
|  | continue; | 
|  | IsSplat = false; | 
|  | break; | 
|  | } | 
|  | if (IsSplat) { | 
|  | // Legalize the operand to VSPLAT. | 
|  | SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); | 
|  | return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); | 
|  | } | 
|  |  | 
|  | // Generate | 
|  | //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | | 
|  | //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 | 
|  | assert(Elem.size() == 4); | 
|  | SDValue Vs[4]; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); | 
|  | Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); | 
|  | } | 
|  | SDValue S8 = DAG.getConstant(8, dl, MVT::i32); | 
|  | SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); | 
|  | SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); | 
|  | SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); | 
|  | SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); | 
|  |  | 
|  | SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); | 
|  | return DAG.getBitcast(MVT::v4i8, R); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n'; | 
|  | #endif | 
|  | llvm_unreachable("Unexpected vector element type"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, | 
|  | MVT VecTy, SelectionDAG &DAG) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | assert(VecTy.getVectorNumElements() == Elem.size()); | 
|  |  | 
|  | SmallVector<ConstantInt*,8> Consts(Elem.size()); | 
|  | bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); | 
|  |  | 
|  | unsigned First, Num = Elem.size(); | 
|  | for (First = 0; First != Num; ++First) | 
|  | if (!isUndef(Elem[First])) | 
|  | break; | 
|  | if (First == Num) | 
|  | return DAG.getUNDEF(VecTy); | 
|  |  | 
|  | if (AllConst && | 
|  | llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) | 
|  | return getZero(dl, VecTy, DAG); | 
|  |  | 
|  | // First try splat if possible. | 
|  | if (ElemTy == MVT::i16) { | 
|  | bool IsSplat = true; | 
|  | for (unsigned i = 0; i != Num; ++i) { | 
|  | if (i == First) | 
|  | continue; | 
|  | if (Elem[i] == Elem[First] || isUndef(Elem[i])) | 
|  | continue; | 
|  | IsSplat = false; | 
|  | break; | 
|  | } | 
|  | if (IsSplat) { | 
|  | // Legalize the operand to VSPLAT. | 
|  | SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); | 
|  | return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Then try constant. | 
|  | if (AllConst) { | 
|  | uint64_t Val = 0; | 
|  | unsigned W = ElemTy.getSizeInBits(); | 
|  | uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull | 
|  | : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull; | 
|  | for (unsigned i = 0; i != Num; ++i) | 
|  | Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); | 
|  | SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); | 
|  | return DAG.getBitcast(VecTy, V0); | 
|  | } | 
|  |  | 
|  | // Build two 32-bit vectors and concatenate. | 
|  | MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); | 
|  | SDValue L = (ElemTy == MVT::i32) | 
|  | ? Elem[0] | 
|  | : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); | 
|  | SDValue H = (ElemTy == MVT::i32) | 
|  | ? Elem[1] | 
|  | : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); | 
|  | return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, | 
|  | const SDLoc &dl, MVT ValTy, MVT ResTy, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | assert(!ValTy.isVector() || | 
|  | VecTy.getVectorElementType() == ValTy.getVectorElementType()); | 
|  | unsigned VecWidth = VecTy.getSizeInBits(); | 
|  | unsigned ValWidth = ValTy.getSizeInBits(); | 
|  | unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); | 
|  | assert((VecWidth % ElemWidth) == 0); | 
|  | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV); | 
|  |  | 
|  | // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon | 
|  | // without any coprocessors). | 
|  | if (ElemWidth == 1) { | 
|  | assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure"); | 
|  | assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); | 
|  | // Check if this is an extract of the lowest bit. | 
|  | if (IdxN) { | 
|  | // Extracting the lowest bit is a no-op, but it changes the type, | 
|  | // so it must be kept as an operation to avoid errors related to | 
|  | // type mismatches. | 
|  | if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1) | 
|  | return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); | 
|  | } | 
|  |  | 
|  | // If the value extracted is a single bit, use tstbit. | 
|  | if (ValWidth == 1) { | 
|  | SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); | 
|  | SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); | 
|  | SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); | 
|  | return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); | 
|  | } | 
|  |  | 
|  | // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in | 
|  | // a predicate register. The elements of the vector are repeated | 
|  | // in the register (if necessary) so that the total number is 8. | 
|  | // The extracted subvector will need to be expanded in such a way. | 
|  | unsigned Scale = VecWidth / ValWidth; | 
|  |  | 
|  | // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to | 
|  | // position 0. | 
|  | assert(ty(IdxV) == MVT::i32); | 
|  | unsigned VecRep = 8 / VecWidth; | 
|  | SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
|  | DAG.getConstant(8*VecRep, dl, MVT::i32)); | 
|  | SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); | 
|  | SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); | 
|  | while (Scale > 1) { | 
|  | // The longest possible subvector is at most 32 bits, so it is always | 
|  | // contained in the low subregister. | 
|  | T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1); | 
|  | T1 = expandPredicate(T1, dl, DAG); | 
|  | Scale /= 2; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); | 
|  | } | 
|  |  | 
|  | assert(VecWidth == 32 || VecWidth == 64); | 
|  |  | 
|  | // Cast everything to scalar integer types. | 
|  | MVT ScalarTy = tyScalar(VecTy); | 
|  | VecV = DAG.getBitcast(ScalarTy, VecV); | 
|  |  | 
|  | SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); | 
|  | SDValue ExtV; | 
|  |  | 
|  | if (IdxN) { | 
|  | unsigned Off = IdxN->getZExtValue() * ElemWidth; | 
|  | if (VecWidth == 64 && ValWidth == 32) { | 
|  | assert(Off == 0 || Off == 32); | 
|  | unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; | 
|  | ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV); | 
|  | } else if (Off == 0 && (ValWidth % 8) == 0) { | 
|  | ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); | 
|  | } else { | 
|  | SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); | 
|  | // The return type of EXTRACTU must be the same as the type of the | 
|  | // input vector. | 
|  | ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, | 
|  | {VecV, WidthV, OffV}); | 
|  | } | 
|  | } else { | 
|  | if (ty(IdxV) != MVT::i32) | 
|  | IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); | 
|  | SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
|  | DAG.getConstant(ElemWidth, dl, MVT::i32)); | 
|  | ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, | 
|  | {VecV, WidthV, OffV}); | 
|  | } | 
|  |  | 
|  | // Cast ExtV to the requested result type. | 
|  | ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); | 
|  | ExtV = DAG.getBitcast(ResTy, ExtV); | 
|  | return ExtV; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, | 
|  | const SDLoc &dl, MVT ValTy, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | if (VecTy.getVectorElementType() == MVT::i1) { | 
|  | MVT ValTy = ty(ValV); | 
|  | assert(ValTy.getVectorElementType() == MVT::i1); | 
|  | SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV); | 
|  | unsigned VecLen = VecTy.getVectorNumElements(); | 
|  | unsigned Scale = VecLen / ValTy.getVectorNumElements(); | 
|  | assert(Scale > 1); | 
|  |  | 
|  | for (unsigned R = Scale; R > 1; R /= 2) { | 
|  | ValR = contractPredicate(ValR, dl, DAG); | 
|  | ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, | 
|  | DAG.getUNDEF(MVT::i32), ValR); | 
|  | } | 
|  | // The longest possible subvector is at most 32 bits, so it is always | 
|  | // contained in the low subregister. | 
|  | ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR); | 
|  |  | 
|  | unsigned ValBytes = 64 / Scale; | 
|  | SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32); | 
|  | SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
|  | DAG.getConstant(8, dl, MVT::i32)); | 
|  | SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); | 
|  | SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, | 
|  | {VecR, ValR, Width, Idx}); | 
|  | return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); | 
|  | } | 
|  |  | 
|  | unsigned VecWidth = VecTy.getSizeInBits(); | 
|  | unsigned ValWidth = ValTy.getSizeInBits(); | 
|  | assert(VecWidth == 32 || VecWidth == 64); | 
|  | assert((VecWidth % ValWidth) == 0); | 
|  |  | 
|  | // Cast everything to scalar integer types. | 
|  | MVT ScalarTy = MVT::getIntegerVT(VecWidth); | 
|  | // The actual type of ValV may be different than ValTy (which is related | 
|  | // to the vector type). | 
|  | unsigned VW = ty(ValV).getSizeInBits(); | 
|  | ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); | 
|  | VecV = DAG.getBitcast(ScalarTy, VecV); | 
|  | if (VW != VecWidth) | 
|  | ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); | 
|  |  | 
|  | SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); | 
|  | SDValue InsV; | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) { | 
|  | unsigned W = C->getZExtValue() * ValWidth; | 
|  | SDValue OffV = DAG.getConstant(W, dl, MVT::i32); | 
|  | InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, | 
|  | {VecV, ValV, WidthV, OffV}); | 
|  | } else { | 
|  | if (ty(IdxV) != MVT::i32) | 
|  | IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); | 
|  | SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); | 
|  | InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, | 
|  | {VecV, ValV, WidthV, OffV}); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(ty(Vec32).getSizeInBits() == 32); | 
|  | if (isUndef(Vec32)) | 
|  | return DAG.getUNDEF(MVT::i64); | 
|  | return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(ty(Vec64).getSizeInBits() == 64); | 
|  | if (isUndef(Vec64)) | 
|  | return DAG.getUNDEF(MVT::i32); | 
|  | return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) | 
|  | const { | 
|  | if (Ty.isVector()) { | 
|  | assert(Ty.isInteger() && "Only integer vectors are supported here"); | 
|  | unsigned W = Ty.getSizeInBits(); | 
|  | if (W <= 64) | 
|  | return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); | 
|  | return DAG.getNode(HexagonISD::VZERO, dl, Ty); | 
|  | } | 
|  |  | 
|  | if (Ty.isInteger()) | 
|  | return DAG.getConstant(0, dl, Ty); | 
|  | if (Ty.isFloatingPoint()) | 
|  | return DAG.getConstantFP(0.0, dl, Ty); | 
|  | llvm_unreachable("Invalid type for zero"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(Op); | 
|  | unsigned BW = VecTy.getSizeInBits(); | 
|  | const SDLoc &dl(Op); | 
|  | SmallVector<SDValue,8> Ops; | 
|  | for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  |  | 
|  | if (BW == 32) | 
|  | return buildVector32(Ops, dl, VecTy, DAG); | 
|  | if (BW == 64) | 
|  | return buildVector64(Ops, dl, VecTy, DAG); | 
|  |  | 
|  | if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { | 
|  | // Check if this is a special case or all-0 or all-1. | 
|  | bool All0 = true, All1 = true; | 
|  | for (SDValue P : Ops) { | 
|  | auto *CN = dyn_cast<ConstantSDNode>(P.getNode()); | 
|  | if (CN == nullptr) { | 
|  | All0 = All1 = false; | 
|  | break; | 
|  | } | 
|  | uint32_t C = CN->getZExtValue(); | 
|  | All0 &= (C == 0); | 
|  | All1 &= (C == 1); | 
|  | } | 
|  | if (All0) | 
|  | return DAG.getNode(HexagonISD::PFALSE, dl, VecTy); | 
|  | if (All1) | 
|  | return DAG.getNode(HexagonISD::PTRUE, dl, VecTy); | 
|  |  | 
|  | // For each i1 element in the resulting predicate register, put 1 | 
|  | // shifted by the index of the element into a general-purpose register, | 
|  | // then or them together and transfer it back into a predicate register. | 
|  | SDValue Rs[8]; | 
|  | SDValue Z = getZero(dl, MVT::i32, DAG); | 
|  | // Always produce 8 bits, repeat inputs if necessary. | 
|  | unsigned Rep = 8 / VecTy.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); | 
|  | Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); | 
|  | } | 
|  | for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { | 
|  | for (unsigned i = 0, e = A.size()/2; i != e; ++i) | 
|  | Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); | 
|  | } | 
|  | // Move the value directly to a predicate register. | 
|  | return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(Op); | 
|  | const SDLoc &dl(Op); | 
|  | if (VecTy.getSizeInBits() == 64) { | 
|  | assert(Op.getNumOperands() == 2); | 
|  | return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1), | 
|  | Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | if (ElemTy == MVT::i1) { | 
|  | assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); | 
|  | MVT OpTy = ty(Op.getOperand(0)); | 
|  | // Scale is how many times the operands need to be contracted to match | 
|  | // the representation in the target register. | 
|  | unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); | 
|  | assert(Scale == Op.getNumOperands() && Scale > 1); | 
|  |  | 
|  | // First, convert all bool vectors to integers, then generate pairwise | 
|  | // inserts to form values of doubled length. Up until there are only | 
|  | // two values left to concatenate, all of these values will fit in a | 
|  | // 32-bit integer, so keep them as i32 to use 32-bit inserts. | 
|  | SmallVector<SDValue,4> Words[2]; | 
|  | unsigned IdxW = 0; | 
|  |  | 
|  | for (SDValue P : Op.getNode()->op_values()) { | 
|  | SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); | 
|  | for (unsigned R = Scale; R > 1; R /= 2) { | 
|  | W = contractPredicate(W, dl, DAG); | 
|  | W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, | 
|  | DAG.getUNDEF(MVT::i32), W); | 
|  | } | 
|  | W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W); | 
|  | Words[IdxW].push_back(W); | 
|  | } | 
|  |  | 
|  | while (Scale > 2) { | 
|  | SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); | 
|  | Words[IdxW ^ 1].clear(); | 
|  |  | 
|  | for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { | 
|  | SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; | 
|  | // Insert W1 into W0 right next to the significant bits of W0. | 
|  | SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, | 
|  | {W0, W1, WidthV, WidthV}); | 
|  | Words[IdxW ^ 1].push_back(T); | 
|  | } | 
|  | IdxW ^= 1; | 
|  | Scale /= 2; | 
|  | } | 
|  |  | 
|  | // Another sanity check. At this point there should only be two words | 
|  | // left, and Scale should be 2. | 
|  | assert(Scale == 2 && Words[IdxW].size() == 2); | 
|  |  | 
|  | SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, | 
|  | Words[IdxW][1], Words[IdxW][0]); | 
|  | return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | MVT ElemTy = ty(Vec).getVectorElementType(); | 
|  | return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), | 
|  | ty(Op), ty(Op), DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), | 
|  | SDLoc(Op), ty(Op).getVectorElementType(), DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue ValV = Op.getOperand(1); | 
|  | return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), | 
|  | SDLoc(Op), ty(ValV), DAG); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { | 
|  | // Assuming the caller does not have either a signext or zeroext modifier, and | 
|  | // only one value is accepted, any reasonable truncation is allowed. | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: in principle up to 64-bit could be made safe, but it would be very | 
|  | // fragile at the moment: any support for multiple value returns would be | 
|  | // liable to disallow tail calls involving i64 -> iN truncation in many cases. | 
|  | return Ty1->getPrimitiveSizeInBits() <= 32; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { | 
|  | LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); | 
|  | unsigned ClaimAlign = LN->getAlignment(); | 
|  | validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign); | 
|  | // Call LowerUnalignedLoad for all loads, it recognizes loads that | 
|  | // don't need extra aligning. | 
|  | return LowerUnalignedLoad(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { | 
|  | StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); | 
|  | unsigned ClaimAlign = SN->getAlignment(); | 
|  | SDValue Ptr = SN->getBasePtr(); | 
|  | const SDLoc &dl(Op); | 
|  | validateConstPtrAlignment(Ptr, dl, ClaimAlign); | 
|  |  | 
|  | MVT StoreTy = SN->getMemoryVT().getSimpleVT(); | 
|  | unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy); | 
|  | if (ClaimAlign < NeedAlign) | 
|  | return expandUnalignedStore(SN, DAG); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); | 
|  | MVT LoadTy = ty(Op); | 
|  | unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy); | 
|  | unsigned HaveAlign = LN->getAlignment(); | 
|  | if (HaveAlign >= NeedAlign) | 
|  | return Op; | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  |  | 
|  | // If the load aligning is disabled or the load can be broken up into two | 
|  | // smaller legal loads, do the default (target-independent) expansion. | 
|  | bool DoDefault = false; | 
|  | // Handle it in the default way if this is an indexed load. | 
|  | if (!LN->isUnindexed()) | 
|  | DoDefault = true; | 
|  |  | 
|  | if (!AlignLoads) { | 
|  | if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand())) | 
|  | return Op; | 
|  | DoDefault = true; | 
|  | } | 
|  | if (!DoDefault && (2 * HaveAlign) == NeedAlign) { | 
|  | // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". | 
|  | MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign) | 
|  | : MVT::getVectorVT(MVT::i8, HaveAlign); | 
|  | DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand()); | 
|  | } | 
|  | if (DoDefault) { | 
|  | std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG); | 
|  | return DAG.getMergeValues({P.first, P.second}, dl); | 
|  | } | 
|  |  | 
|  | // The code below generates two loads, both aligned as NeedAlign, and | 
|  | // with the distance of NeedAlign between them. For that to cover the | 
|  | // bits that need to be loaded (and without overlapping), the size of | 
|  | // the loads should be equal to NeedAlign. This is true for all loadable | 
|  | // types, but add an assertion in case something changes in the future. | 
|  | assert(LoadTy.getSizeInBits() == 8*NeedAlign); | 
|  |  | 
|  | unsigned LoadLen = NeedAlign; | 
|  | SDValue Base = LN->getBasePtr(); | 
|  | SDValue Chain = LN->getChain(); | 
|  | auto BO = getBaseAndOffset(Base); | 
|  | unsigned BaseOpc = BO.first.getOpcode(); | 
|  | if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) | 
|  | return Op; | 
|  |  | 
|  | if (BO.second % LoadLen != 0) { | 
|  | BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, | 
|  | DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); | 
|  | BO.second -= BO.second % LoadLen; | 
|  | } | 
|  | SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) | 
|  | ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, | 
|  | DAG.getConstant(NeedAlign, dl, MVT::i32)) | 
|  | : BO.first; | 
|  | SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl); | 
|  | SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl); | 
|  |  | 
|  | MachineMemOperand *WideMMO = nullptr; | 
|  | if (MachineMemOperand *MMO = LN->getMemOperand()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(), | 
|  | 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(), | 
|  | MMO->getSyncScopeID(), MMO->getOrdering(), | 
|  | MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); | 
|  | SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); | 
|  |  | 
|  | SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, | 
|  | {Load1, Load0, BaseNoOff.getOperand(0)}); | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | Load0.getValue(1), Load1.getValue(1)); | 
|  | SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); | 
|  | return M; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue X = Op.getOperand(0), Y = Op.getOperand(1); | 
|  | auto *CY = dyn_cast<ConstantSDNode>(Y); | 
|  | if (!CY) | 
|  | return SDValue(); | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | SDVTList VTs = Op.getNode()->getVTList(); | 
|  | assert(VTs.NumVTs == 2); | 
|  | assert(VTs.VTs[1] == MVT::i1); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | if (CY) { | 
|  | uint32_t VY = CY->getZExtValue(); | 
|  | assert(VY != 0 && "This should have been folded"); | 
|  | // X +/- 1 | 
|  | if (VY != 1) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Opc == ISD::UADDO) { | 
|  | SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y}); | 
|  | SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG), | 
|  | ISD::SETEQ); | 
|  | return DAG.getMergeValues({Op, Ov}, dl); | 
|  | } | 
|  | if (Opc == ISD::USUBO) { | 
|  | SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y}); | 
|  | SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, | 
|  | DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ); | 
|  | return DAG.getMergeValues({Op, Ov}, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); | 
|  |  | 
|  | if (Opc == ISD::ADDCARRY) | 
|  | return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), | 
|  | { X, Y, C }); | 
|  |  | 
|  | EVT CarryTy = C.getValueType(); | 
|  | SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), | 
|  | { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); | 
|  | SDValue Out[] = { SubC.getValue(0), | 
|  | DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; | 
|  | return DAG.getMergeValues(Out, dl); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  | auto PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | // Mark function as containing a call to EH_RETURN. | 
|  | HexagonMachineFunctionInfo *FuncInfo = | 
|  | DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); | 
|  | FuncInfo->setHasEHReturn(); | 
|  |  | 
|  | unsigned OffsetReg = Hexagon::R28; | 
|  |  | 
|  | SDValue StoreAddr = | 
|  | DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), | 
|  | DAG.getIntPtrConstant(4, dl)); | 
|  | Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); | 
|  |  | 
|  | // Not needed we already use it as explict input to EH_RETURN. | 
|  | // MF.getRegInfo().addLiveOut(OffsetReg); | 
|  |  | 
|  | return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | // Handle INLINEASM first. | 
|  | if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR) | 
|  | return LowerINLINEASM(Op, DAG); | 
|  |  | 
|  | if (isHvxOperation(Op)) { | 
|  | // If HVX lowering returns nothing, try the default lowering. | 
|  | if (SDValue V = LowerHvxOperation(Op, DAG)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | Op.getNode()->dumpr(&DAG); | 
|  | if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) | 
|  | errs() << "Error: check for a non-legal type in this operation\n"; | 
|  | #endif | 
|  | llvm_unreachable("Should not custom lower this!"); | 
|  | case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG); | 
|  | case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::BITCAST:              return LowerBITCAST(Op, DAG); | 
|  | case ISD::LOAD:                 return LowerLoad(Op, DAG); | 
|  | case ISD::STORE:                return LowerStore(Op, DAG); | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO:                return LowerUAddSubO(Op, DAG); | 
|  | case ISD::ADDCARRY: | 
|  | case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG); | 
|  | case ISD::SRA: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG); | 
|  | case ISD::ROTL:                 return LowerROTL(Op, DAG); | 
|  | case ISD::ConstantPool:         return LowerConstantPool(Op, DAG); | 
|  | case ISD::JumpTable:            return LowerJumpTable(Op, DAG); | 
|  | case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG); | 
|  | case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG); | 
|  | case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG); | 
|  | case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG); | 
|  | case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG); | 
|  | case ISD::VASTART:              return LowerVASTART(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::SETCC:                return LowerSETCC(Op, DAG); | 
|  | case ISD::VSELECT:              return LowerVSELECT(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG); | 
|  | case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | // We are only custom-lowering stores to verify the alignment of the | 
|  | // address if it is a compile-time constant. Since a store can be modified | 
|  | // during type-legalization (the value being stored may need legalization), | 
|  | // return empty Results here to indicate that we don't really make any | 
|  | // changes in the custom lowering. | 
|  | if (N->getOpcode() != ISD::STORE) | 
|  | return TargetLowering::LowerOperationWrapper(N, Results, DAG); | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(N); | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::SHL: | 
|  | return; | 
|  | case ISD::BITCAST: | 
|  | // Handle a bitcast from v8i1 to i8. | 
|  | if (N->getValueType(0) == MVT::i8) { | 
|  | SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, | 
|  | N->getOperand(0), DAG); | 
|  | SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8); | 
|  | Results.push_back(T); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) | 
|  | const { | 
|  | SDValue Op(N, 0); | 
|  | if (isHvxOperation(Op)) { | 
|  | if (SDValue V = PerformHvxDAGCombine(N, DCI)) | 
|  | return V; | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | if (Opc == HexagonISD::P2D) { | 
|  | SDValue P = Op.getOperand(0); | 
|  | switch (P.getOpcode()) { | 
|  | case HexagonISD::PTRUE: | 
|  | return DCI.DAG.getConstant(-1, dl, ty(Op)); | 
|  | case HexagonISD::PFALSE: | 
|  | return getZero(dl, ty(Op), DCI.DAG); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (Opc == ISD::VSELECT) { | 
|  | // This is pretty much duplicated in HexagonISelLoweringHVX... | 
|  | // | 
|  | // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0) | 
|  | SDValue Cond = Op.getOperand(0); | 
|  | if (Cond->getOpcode() == ISD::XOR) { | 
|  | SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); | 
|  | if (C1->getOpcode() == HexagonISD::PTRUE) { | 
|  | SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, | 
|  | Op.getOperand(2), Op.getOperand(1)); | 
|  | return VSel; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Returns relocation base for the given PIC jumptable. | 
|  | SDValue | 
|  | HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | int Idx = cast<JumpTableSDNode>(Table)->getIndex(); | 
|  | EVT VT = Table.getValueType(); | 
|  | SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); | 
|  | return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetLowering::ConstraintType | 
|  | HexagonTargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'q': | 
|  | case 'v': | 
|  | if (Subtarget.useHVXOps()) | 
|  | return C_RegisterClass; | 
|  | break; | 
|  | case 'a': | 
|  | return C_RegisterClass; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | HexagonTargetLowering::getRegForInlineAsmConstraint( | 
|  | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { | 
|  |  | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'r':   // R0-R31 | 
|  | switch (VT.SimpleTy) { | 
|  | default: | 
|  | return {0u, nullptr}; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | return {0u, &Hexagon::IntRegsRegClass}; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | return {0u, &Hexagon::DoubleRegsRegClass}; | 
|  | } | 
|  | break; | 
|  | case 'a': // M0-M1 | 
|  | if (VT != MVT::i32) | 
|  | return {0u, nullptr}; | 
|  | return {0u, &Hexagon::ModRegsRegClass}; | 
|  | case 'q': // q0-q3 | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return {0u, nullptr}; | 
|  | case 512: | 
|  | case 1024: | 
|  | return {0u, &Hexagon::HvxQRRegClass}; | 
|  | } | 
|  | break; | 
|  | case 'v': // V0-V31 | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return {0u, nullptr}; | 
|  | case 512: | 
|  | return {0u, &Hexagon::HvxVRRegClass}; | 
|  | case 1024: | 
|  | if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) | 
|  | return {0u, &Hexagon::HvxVRRegClass}; | 
|  | return {0u, &Hexagon::HvxWRRegClass}; | 
|  | case 2048: | 
|  | return {0u, &Hexagon::HvxWRRegClass}; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return {0u, nullptr}; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | /// isFPImmLegal - Returns true if the target can instruction select the | 
|  | /// specified FP immediate natively. If false, the legalizer will | 
|  | /// materialize the FP immediate as a load from a constant pool. | 
|  | bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | 
|  | bool ForCodeSize) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented by | 
|  | /// AM is legal for this target, for a load/store of the specified type. | 
|  | bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS, Instruction *I) const { | 
|  | if (Ty->isSized()) { | 
|  | // When LSR detects uses of the same base address to access different | 
|  | // types (e.g. unions), it will assume a conservative type for these | 
|  | // uses: | 
|  | //   LSR Use: Kind=Address of void in addrspace(4294967295), ... | 
|  | // The type Ty passed here would then be "void". Skip the alignment | 
|  | // checks, but do not return false right away, since that confuses | 
|  | // LSR into crashing. | 
|  | unsigned A = DL.getABITypeAlignment(Ty); | 
|  | // The base offset must be a multiple of the alignment. | 
|  | if ((AM.BaseOffs % A) != 0) | 
|  | return false; | 
|  | // The shifted offset must fit in 11 bits. | 
|  | if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | int Scale = AM.Scale; | 
|  | if (Scale < 0) | 
|  | Scale = -Scale; | 
|  | switch (Scale) { | 
|  | case 0:  // No scale reg, "r+i", "r", or just "i". | 
|  | break; | 
|  | default: // No scaled addressing mode. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if folding a constant offset with the given GlobalAddress is | 
|  | /// legal.  It is frequently not legal in PIC relocation models. | 
|  | bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) | 
|  | const { | 
|  | return HTM.getRelocationModel() == Reloc::Static; | 
|  | } | 
|  |  | 
|  | /// isLegalICmpImmediate - Return true if the specified immediate is legal | 
|  | /// icmp immediate, that is the target has icmp instructions which can compare | 
|  | /// a register against the immediate without having to materialize the | 
|  | /// immediate into a register. | 
|  | bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
|  | return Imm >= -512 && Imm <= 511; | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | 
|  | /// for tail call optimization. Targets which want to do tail call | 
|  | /// optimization should implement this function. | 
|  | bool HexagonTargetLowering::IsEligibleForTailCallOptimization( | 
|  | SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool IsVarArg, | 
|  | bool IsCalleeStructRet, | 
|  | bool IsCallerStructRet, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const { | 
|  | const Function &CallerF = DAG.getMachineFunction().getFunction(); | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  |  | 
|  | // *************************************************************************** | 
|  | //  Look for obvious safe cases to perform tail call optimization that do not | 
|  | //  require ABI changes. | 
|  | // *************************************************************************** | 
|  |  | 
|  | // If this is a tail call via a function pointer, then don't do it! | 
|  | if (!isa<GlobalAddressSDNode>(Callee) && | 
|  | !isa<ExternalSymbolSDNode>(Callee)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not optimize if the calling conventions do not match and the conventions | 
|  | // used are not C or Fast. | 
|  | if (!CCMatch) { | 
|  | bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); | 
|  | bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); | 
|  | // If R & E, then ok. | 
|  | if (!R || !E) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not tail call optimize vararg calls. | 
|  | if (IsVarArg) | 
|  | return false; | 
|  |  | 
|  | // Also avoid tail call optimization if either caller or callee uses struct | 
|  | // return semantics. | 
|  | if (IsCalleeStructRet || IsCallerStructRet) | 
|  | return false; | 
|  |  | 
|  | // In addition to the cases above, we also disable Tail Call Optimization if | 
|  | // the calling convention code that at least one outgoing argument needs to | 
|  | // go on the stack. We cannot check that here because at this point that | 
|  | // information is not available. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns the target specific optimal type for load and store operations as | 
|  | /// a result of memset, memcpy, and memmove lowering. | 
|  | /// | 
|  | /// If DstAlign is zero that means it's safe to destination alignment can | 
|  | /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't | 
|  | /// a need to check it against alignment requirement, probably because the | 
|  | /// source does not need to be loaded. If 'IsMemset' is true, that means it's | 
|  | /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of | 
|  | /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it | 
|  | /// does not need to be loaded.  It returns EVT::Other if the type should be | 
|  | /// determined using generic target-independent logic. | 
|  | EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, | 
|  | bool MemcpyStrSrc, const AttributeList &FuncAttributes) const { | 
|  |  | 
|  | auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { | 
|  | return (GivenA % MinA) == 0; | 
|  | }; | 
|  |  | 
|  | if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) | 
|  | return MVT::i64; | 
|  | if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) | 
|  | return MVT::i32; | 
|  | if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) | 
|  | return MVT::i16; | 
|  |  | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::allowsMisalignedMemoryAccesses( | 
|  | EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags, | 
|  | bool *Fast) const { | 
|  | if (Fast) | 
|  | *Fast = false; | 
|  | return Subtarget.isHVXVectorType(VT.getSimpleVT()); | 
|  | } | 
|  |  | 
|  | std::pair<const TargetRegisterClass*, uint8_t> | 
|  | HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, | 
|  | MVT VT) const { | 
|  | if (Subtarget.isHVXVectorType(VT, true)) { | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | unsigned VecWidth = Subtarget.getVectorLength() * 8; | 
|  |  | 
|  | if (VT.getVectorElementType() == MVT::i1) | 
|  | return std::make_pair(&Hexagon::HvxQRRegClass, 1); | 
|  | if (BitWidth == VecWidth) | 
|  | return std::make_pair(&Hexagon::HvxVRRegClass, 1); | 
|  | assert(BitWidth == 2 * VecWidth); | 
|  | return std::make_pair(&Hexagon::HvxWRRegClass, 1); | 
|  | } | 
|  |  | 
|  | return TargetLowering::findRepresentativeClass(TRI, VT); | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load, | 
|  | ISD::LoadExtType ExtTy, EVT NewVT) const { | 
|  | // TODO: This may be worth removing. Check regression tests for diffs. | 
|  | if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) | 
|  | return false; | 
|  |  | 
|  | auto *L = cast<LoadSDNode>(Load); | 
|  | std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr()); | 
|  | // Small-data object, do not shrink. | 
|  | if (BO.first.getOpcode() == HexagonISD::CONST32_GP) | 
|  | return false; | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) { | 
|  | auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine()); | 
|  | const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal()); | 
|  | return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, | 
|  | AtomicOrdering Ord) const { | 
|  | BasicBlock *BB = Builder.GetInsertBlock(); | 
|  | Module *M = BB->getParent()->getParent(); | 
|  | auto PT = cast<PointerType>(Addr->getType()); | 
|  | Type *Ty = PT->getElementType(); | 
|  | unsigned SZ = Ty->getPrimitiveSizeInBits(); | 
|  | assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); | 
|  | Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked | 
|  | : Intrinsic::hexagon_L4_loadd_locked; | 
|  | Function *Fn = Intrinsic::getDeclaration(M, IntID); | 
|  |  | 
|  | PointerType *NewPtrTy | 
|  | = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace()); | 
|  | Addr = Builder.CreateBitCast(Addr, NewPtrTy); | 
|  |  | 
|  | Value *Call = Builder.CreateCall(Fn, Addr, "larx"); | 
|  |  | 
|  | return Builder.CreateBitCast(Call, Ty); | 
|  | } | 
|  |  | 
|  | /// Perform a store-conditional operation to Addr. Return the status of the | 
|  | /// store. This should be 0 if the store succeeded, non-zero otherwise. | 
|  | Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, | 
|  | Value *Val, Value *Addr, AtomicOrdering Ord) const { | 
|  | BasicBlock *BB = Builder.GetInsertBlock(); | 
|  | Module *M = BB->getParent()->getParent(); | 
|  | Type *Ty = Val->getType(); | 
|  | unsigned SZ = Ty->getPrimitiveSizeInBits(); | 
|  |  | 
|  | Type *CastTy = Builder.getIntNTy(SZ); | 
|  | assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); | 
|  | Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked | 
|  | : Intrinsic::hexagon_S4_stored_locked; | 
|  | Function *Fn = Intrinsic::getDeclaration(M, IntID); | 
|  |  | 
|  | unsigned AS = Addr->getType()->getPointerAddressSpace(); | 
|  | Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS)); | 
|  | Val = Builder.CreateBitCast(Val, CastTy); | 
|  |  | 
|  | Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); | 
|  | Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); | 
|  | Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); | 
|  | return Ext; | 
|  | } | 
|  |  | 
|  | TargetLowering::AtomicExpansionKind | 
|  | HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { | 
|  | // Do not expand loads and stores that don't exceed 64 bits. | 
|  | return LI->getType()->getPrimitiveSizeInBits() > 64 | 
|  | ? AtomicExpansionKind::LLOnly | 
|  | : AtomicExpansionKind::None; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { | 
|  | // Do not expand loads and stores that don't exceed 64 bits. | 
|  | return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; | 
|  | } | 
|  |  | 
|  | TargetLowering::AtomicExpansionKind | 
|  | HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( | 
|  | AtomicCmpXchgInst *AI) const { | 
|  | const DataLayout &DL = AI->getModule()->getDataLayout(); | 
|  | unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); | 
|  | if (Size >= 4 && Size <= 8) | 
|  | return AtomicExpansionKind::LLSC; | 
|  | return AtomicExpansionKind::None; | 
|  | } |