|  | //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that Mips uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MipsISelLowering.h" | 
|  | #include "MCTargetDesc/MipsBaseInfo.h" | 
|  | #include "MCTargetDesc/MipsInstPrinter.h" | 
|  | #include "MCTargetDesc/MipsMCTargetDesc.h" | 
|  | #include "MipsCCState.h" | 
|  | #include "MipsInstrInfo.h" | 
|  | #include "MipsMachineFunction.h" | 
|  | #include "MipsRegisterInfo.h" | 
|  | #include "MipsSubtarget.h" | 
|  | #include "MipsTargetMachine.h" | 
|  | #include "MipsTargetObjectFile.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cctype> | 
|  | #include <cstdint> | 
|  | #include <deque> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "mips-lower" | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | LargeGOT("mxgot", cl::Hidden, | 
|  | cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | NoZeroDivCheck("mno-check-zero-division", cl::Hidden, | 
|  | cl::desc("MIPS: Don't trap on integer division by zero."), | 
|  | cl::init(false)); | 
|  |  | 
|  | extern cl::opt<bool> EmitJalrReloc; | 
|  |  | 
|  | static const MCPhysReg Mips64DPRegs[8] = { | 
|  | Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, | 
|  | Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 | 
|  | }; | 
|  |  | 
|  | // If I is a shifted mask, set the size (Size) and the first bit of the | 
|  | // mask (Pos), and return true. | 
|  | // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). | 
|  | static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { | 
|  | if (!isShiftedMask_64(I)) | 
|  | return false; | 
|  |  | 
|  | Size = countPopulation(I); | 
|  | Pos = countTrailingZeros(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The MIPS MSA ABI passes vector arguments in the integer register set. | 
|  | // The number of integer registers used is dependant on the ABI used. | 
|  | MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, | 
|  | CallingConv::ID CC, | 
|  | EVT VT) const { | 
|  | if (VT.isVector()) { | 
|  | if (Subtarget.isABI_O32()) { | 
|  | return MVT::i32; | 
|  | } else { | 
|  | return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64; | 
|  | } | 
|  | } | 
|  | return MipsTargetLowering::getRegisterType(Context, VT); | 
|  | } | 
|  |  | 
|  | unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, | 
|  | CallingConv::ID CC, | 
|  | EVT VT) const { | 
|  | if (VT.isVector()) | 
|  | return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)), | 
|  | 1U); | 
|  | return MipsTargetLowering::getNumRegisters(Context, VT); | 
|  | } | 
|  |  | 
|  | unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv( | 
|  | LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, MVT &RegisterVT) const { | 
|  | // Break down vector types to either 2 i64s or 4 i32s. | 
|  | RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT); | 
|  | IntermediateVT = RegisterVT; | 
|  | NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits() | 
|  | ? VT.getVectorNumElements() | 
|  | : VT.getSizeInBits() / RegisterVT.getSizeInBits(); | 
|  |  | 
|  | return NumIntermediates; | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { | 
|  | MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); | 
|  | return DAG.getRegister(FI->getGlobalBaseReg(), Ty); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Flag) const { | 
|  | return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Flag) const { | 
|  | return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Flag) const { | 
|  | return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Flag) const { | 
|  | return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | unsigned Flag) const { | 
|  | return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), | 
|  | N->getOffset(), Flag); | 
|  | } | 
|  |  | 
|  | const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch ((MipsISD::NodeType)Opcode) { | 
|  | case MipsISD::FIRST_NUMBER:      break; | 
|  | case MipsISD::JmpLink:           return "MipsISD::JmpLink"; | 
|  | case MipsISD::TailCall:          return "MipsISD::TailCall"; | 
|  | case MipsISD::Highest:           return "MipsISD::Highest"; | 
|  | case MipsISD::Higher:            return "MipsISD::Higher"; | 
|  | case MipsISD::Hi:                return "MipsISD::Hi"; | 
|  | case MipsISD::Lo:                return "MipsISD::Lo"; | 
|  | case MipsISD::GotHi:             return "MipsISD::GotHi"; | 
|  | case MipsISD::TlsHi:             return "MipsISD::TlsHi"; | 
|  | case MipsISD::GPRel:             return "MipsISD::GPRel"; | 
|  | case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer"; | 
|  | case MipsISD::Ret:               return "MipsISD::Ret"; | 
|  | case MipsISD::ERet:              return "MipsISD::ERet"; | 
|  | case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN"; | 
|  | case MipsISD::FMS:               return "MipsISD::FMS"; | 
|  | case MipsISD::FPBrcond:          return "MipsISD::FPBrcond"; | 
|  | case MipsISD::FPCmp:             return "MipsISD::FPCmp"; | 
|  | case MipsISD::FSELECT:           return "MipsISD::FSELECT"; | 
|  | case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64"; | 
|  | case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T"; | 
|  | case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F"; | 
|  | case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP"; | 
|  | case MipsISD::MFHI:              return "MipsISD::MFHI"; | 
|  | case MipsISD::MFLO:              return "MipsISD::MFLO"; | 
|  | case MipsISD::MTLOHI:            return "MipsISD::MTLOHI"; | 
|  | case MipsISD::Mult:              return "MipsISD::Mult"; | 
|  | case MipsISD::Multu:             return "MipsISD::Multu"; | 
|  | case MipsISD::MAdd:              return "MipsISD::MAdd"; | 
|  | case MipsISD::MAddu:             return "MipsISD::MAddu"; | 
|  | case MipsISD::MSub:              return "MipsISD::MSub"; | 
|  | case MipsISD::MSubu:             return "MipsISD::MSubu"; | 
|  | case MipsISD::DivRem:            return "MipsISD::DivRem"; | 
|  | case MipsISD::DivRemU:           return "MipsISD::DivRemU"; | 
|  | case MipsISD::DivRem16:          return "MipsISD::DivRem16"; | 
|  | case MipsISD::DivRemU16:         return "MipsISD::DivRemU16"; | 
|  | case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64"; | 
|  | case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; | 
|  | case MipsISD::Wrapper:           return "MipsISD::Wrapper"; | 
|  | case MipsISD::DynAlloc:          return "MipsISD::DynAlloc"; | 
|  | case MipsISD::Sync:              return "MipsISD::Sync"; | 
|  | case MipsISD::Ext:               return "MipsISD::Ext"; | 
|  | case MipsISD::Ins:               return "MipsISD::Ins"; | 
|  | case MipsISD::CIns:              return "MipsISD::CIns"; | 
|  | case MipsISD::LWL:               return "MipsISD::LWL"; | 
|  | case MipsISD::LWR:               return "MipsISD::LWR"; | 
|  | case MipsISD::SWL:               return "MipsISD::SWL"; | 
|  | case MipsISD::SWR:               return "MipsISD::SWR"; | 
|  | case MipsISD::LDL:               return "MipsISD::LDL"; | 
|  | case MipsISD::LDR:               return "MipsISD::LDR"; | 
|  | case MipsISD::SDL:               return "MipsISD::SDL"; | 
|  | case MipsISD::SDR:               return "MipsISD::SDR"; | 
|  | case MipsISD::EXTP:              return "MipsISD::EXTP"; | 
|  | case MipsISD::EXTPDP:            return "MipsISD::EXTPDP"; | 
|  | case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H"; | 
|  | case MipsISD::EXTR_W:            return "MipsISD::EXTR_W"; | 
|  | case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W"; | 
|  | case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W"; | 
|  | case MipsISD::SHILO:             return "MipsISD::SHILO"; | 
|  | case MipsISD::MTHLIP:            return "MipsISD::MTHLIP"; | 
|  | case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH"; | 
|  | case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL"; | 
|  | case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR"; | 
|  | case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL"; | 
|  | case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR"; | 
|  | case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL"; | 
|  | case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR"; | 
|  | case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL"; | 
|  | case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR"; | 
|  | case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH"; | 
|  | case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH"; | 
|  | case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W"; | 
|  | case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W"; | 
|  | case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH"; | 
|  | case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH"; | 
|  | case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH"; | 
|  | case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH"; | 
|  | case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH"; | 
|  | case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH"; | 
|  | case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH"; | 
|  | case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH"; | 
|  | case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH"; | 
|  | case MipsISD::MULT:              return "MipsISD::MULT"; | 
|  | case MipsISD::MULTU:             return "MipsISD::MULTU"; | 
|  | case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP"; | 
|  | case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP"; | 
|  | case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP"; | 
|  | case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP"; | 
|  | case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP"; | 
|  | case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP"; | 
|  | case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP"; | 
|  | case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP"; | 
|  | case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP"; | 
|  | case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO"; | 
|  | case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO"; | 
|  | case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO"; | 
|  | case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO"; | 
|  | case MipsISD::VCEQ:              return "MipsISD::VCEQ"; | 
|  | case MipsISD::VCLE_S:            return "MipsISD::VCLE_S"; | 
|  | case MipsISD::VCLE_U:            return "MipsISD::VCLE_U"; | 
|  | case MipsISD::VCLT_S:            return "MipsISD::VCLT_S"; | 
|  | case MipsISD::VCLT_U:            return "MipsISD::VCLT_U"; | 
|  | case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; | 
|  | case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; | 
|  | case MipsISD::VNOR:              return "MipsISD::VNOR"; | 
|  | case MipsISD::VSHF:              return "MipsISD::VSHF"; | 
|  | case MipsISD::SHF:               return "MipsISD::SHF"; | 
|  | case MipsISD::ILVEV:             return "MipsISD::ILVEV"; | 
|  | case MipsISD::ILVOD:             return "MipsISD::ILVOD"; | 
|  | case MipsISD::ILVL:              return "MipsISD::ILVL"; | 
|  | case MipsISD::ILVR:              return "MipsISD::ILVR"; | 
|  | case MipsISD::PCKEV:             return "MipsISD::PCKEV"; | 
|  | case MipsISD::PCKOD:             return "MipsISD::PCKOD"; | 
|  | case MipsISD::INSVE:             return "MipsISD::INSVE"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, | 
|  | const MipsSubtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { | 
|  | // Mips does not have i1 type, so use i32 for | 
|  | // setcc operations results (slt, sgt, ...). | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  | // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA | 
|  | // does. Integer booleans still use 0 and 1. | 
|  | if (Subtarget.hasMips32r6()) | 
|  | setBooleanContents(ZeroOrOneBooleanContent, | 
|  | ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | // Load extented operations for i1 types must be promoted | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote); | 
|  | } | 
|  |  | 
|  | // MIPS doesn't have extending float->double load/store.  Set LoadExtAction | 
|  | // for f32, f16 | 
|  | for (MVT VT : MVT::fp_valuetypes()) { | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); | 
|  | } | 
|  |  | 
|  | // Set LoadExtAction for f16 vectors to Expand | 
|  | for (MVT VT : MVT::fp_vector_valuetypes()) { | 
|  | MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); | 
|  | if (F16VT.isValid()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // Used by legalize types to correctly generate the setcc result. | 
|  | // Without this, every float setcc comes with a AND/OR with the result, | 
|  | // we don't want this, since the fpcmp result goes to a flag register, | 
|  | // which is used implicitly by brcond and select operations. | 
|  | AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); | 
|  |  | 
|  | // Mips Custom Operations | 
|  | setOperationAction(ISD::BR_JT,              MVT::Other, Expand); | 
|  | setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom); | 
|  | setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom); | 
|  | setOperationAction(ISD::JumpTable,          MVT::i32,   Custom); | 
|  | setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::f32,   Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::f64,   Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::i32,   Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::f32,   Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::f64,   Custom); | 
|  | setOperationAction(ISD::BRCOND,             MVT::Other, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom); | 
|  |  | 
|  | if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) { | 
|  | setOperationAction(ISD::FABS, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FABS, MVT::f64, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.isGP64bit()) { | 
|  | setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom); | 
|  | setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom); | 
|  | setOperationAction(ISD::JumpTable,          MVT::i64,   Custom); | 
|  | setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::i64,   Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::i64,   Custom); | 
|  | setOperationAction(ISD::STORE,              MVT::i64,   Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom); | 
|  | setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom); | 
|  | setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom); | 
|  | setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget.isGP64bit()) { | 
|  | setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom); | 
|  | setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom); | 
|  | setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom); | 
|  | if (Subtarget.isGP64bit()) | 
|  | setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom); | 
|  |  | 
|  | setOperationAction(ISD::SDIV, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIV, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIV, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIV, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | // Operations not directly supported by Mips. | 
|  | setOperationAction(ISD::BR_CC,             MVT::f32,   Expand); | 
|  | setOperationAction(ISD::BR_CC,             MVT::f64,   Expand); | 
|  | setOperationAction(ISD::BR_CC,             MVT::i32,   Expand); | 
|  | setOperationAction(ISD::BR_CC,             MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand); | 
|  | if (Subtarget.hasCnMips()) { | 
|  | setOperationAction(ISD::CTPOP,           MVT::i32,   Legal); | 
|  | setOperationAction(ISD::CTPOP,           MVT::i64,   Legal); | 
|  | } else { | 
|  | setOperationAction(ISD::CTPOP,           MVT::i32,   Expand); | 
|  | setOperationAction(ISD::CTPOP,           MVT::i64,   Expand); | 
|  | } | 
|  | setOperationAction(ISD::CTTZ,              MVT::i32,   Expand); | 
|  | setOperationAction(ISD::CTTZ,              MVT::i64,   Expand); | 
|  | setOperationAction(ISD::ROTL,              MVT::i32,   Expand); | 
|  | setOperationAction(ISD::ROTL,              MVT::i64,   Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand); | 
|  |  | 
|  | if (!Subtarget.hasMips32r2()) | 
|  | setOperationAction(ISD::ROTR, MVT::i32,   Expand); | 
|  |  | 
|  | if (!Subtarget.hasMips64r2()) | 
|  | setOperationAction(ISD::ROTR, MVT::i64,   Expand); | 
|  |  | 
|  | setOperationAction(ISD::FSIN,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FSIN,              MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FCOS,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FCOS,              MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FPOW,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FPOW,              MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FLOG,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FLOG2,             MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FLOG10,            MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FEXP,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FMA,               MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FMA,               MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FREM,              MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FREM,              MVT::f64,   Expand); | 
|  |  | 
|  | // Lower f16 conversion operations into library calls | 
|  | setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand); | 
|  | setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand); | 
|  |  | 
|  | setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VASTART,           MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAARG,             MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY,            MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND,             MVT::Other, Expand); | 
|  |  | 
|  | // Use the default for now | 
|  | setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand); | 
|  |  | 
|  | if (!Subtarget.isGP64bit()) { | 
|  | setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand); | 
|  | setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand); | 
|  | } | 
|  |  | 
|  | if (!Subtarget.hasMips32r2()) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); | 
|  | } | 
|  |  | 
|  | // MIPS16 lacks MIPS32's clz and clo instructions. | 
|  | if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) | 
|  | setOperationAction(ISD::CTLZ, MVT::i32, Expand); | 
|  | if (!Subtarget.hasMips64()) | 
|  | setOperationAction(ISD::CTLZ, MVT::i64, Expand); | 
|  |  | 
|  | if (!Subtarget.hasMips32r2()) | 
|  | setOperationAction(ISD::BSWAP, MVT::i32, Expand); | 
|  | if (!Subtarget.hasMips64r2()) | 
|  | setOperationAction(ISD::BSWAP, MVT::i64, Expand); | 
|  |  | 
|  | if (Subtarget.isGP64bit()) { | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | setTargetDAGCombine(ISD::SDIVREM); | 
|  | setTargetDAGCombine(ISD::UDIVREM); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::AssertZext); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  |  | 
|  | if (ABI.IsO32()) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRL_I128, nullptr); | 
|  | setLibcallName(RTLIB::SRA_I128, nullptr); | 
|  | } | 
|  |  | 
|  | setMinFunctionAlignment(Subtarget.isGP64bit() ? llvm::Align(8) | 
|  | : llvm::Align(4)); | 
|  |  | 
|  | // The arguments on the stack are defined in terms of 4-byte slots on O32 | 
|  | // and 8-byte slots on N32/N64. | 
|  | setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4); | 
|  |  | 
|  | setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); | 
|  |  | 
|  | MaxStoresPerMemcpy = 16; | 
|  |  | 
|  | isMicroMips = Subtarget.inMicroMipsMode(); | 
|  | } | 
|  |  | 
|  | const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, | 
|  | const MipsSubtarget &STI) { | 
|  | if (STI.inMips16Mode()) | 
|  | return createMips16TargetLowering(TM, STI); | 
|  |  | 
|  | return createMipsSETargetLowering(TM, STI); | 
|  | } | 
|  |  | 
|  | // Create a fast isel object. | 
|  | FastISel * | 
|  | MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) const { | 
|  | const MipsTargetMachine &TM = | 
|  | static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget()); | 
|  |  | 
|  | // We support only the standard encoding [MIPS32,MIPS32R5] ISAs. | 
|  | bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() && | 
|  | !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() && | 
|  | !Subtarget.inMicroMipsMode(); | 
|  |  | 
|  | // Disable if either of the following is true: | 
|  | // We do not generate PIC, the ABI is not O32, LargeGOT is being used. | 
|  | if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT) | 
|  | UseFastISel = false; | 
|  |  | 
|  | return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr; | 
|  | } | 
|  |  | 
|  | EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return MVT::i32; | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT Ty = N->getValueType(0); | 
|  | unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; | 
|  | unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; | 
|  | unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : | 
|  | MipsISD::DivRemU16; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, | 
|  | N->getOperand(0), N->getOperand(1)); | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  | SDValue InGlue = DivRem; | 
|  |  | 
|  | // insert MFLO | 
|  | if (N->hasAnyUseOfValue(0)) { | 
|  | SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, | 
|  | InGlue); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); | 
|  | InChain = CopyFromLo.getValue(1); | 
|  | InGlue = CopyFromLo.getValue(2); | 
|  | } | 
|  |  | 
|  | // insert MFHI | 
|  | if (N->hasAnyUseOfValue(1)) { | 
|  | SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, | 
|  | HI, Ty, InGlue); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Unknown fp condition code!"); | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: return Mips::FCOND_OEQ; | 
|  | case ISD::SETUNE: return Mips::FCOND_UNE; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: return Mips::FCOND_OLT; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: return Mips::FCOND_OGT; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: return Mips::FCOND_OLE; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: return Mips::FCOND_OGE; | 
|  | case ISD::SETULT: return Mips::FCOND_ULT; | 
|  | case ISD::SETULE: return Mips::FCOND_ULE; | 
|  | case ISD::SETUGT: return Mips::FCOND_UGT; | 
|  | case ISD::SETUGE: return Mips::FCOND_UGE; | 
|  | case ISD::SETUO:  return Mips::FCOND_UN; | 
|  | case ISD::SETO:   return Mips::FCOND_OR; | 
|  | case ISD::SETNE: | 
|  | case ISD::SETONE: return Mips::FCOND_ONE; | 
|  | case ISD::SETUEQ: return Mips::FCOND_UEQ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This function returns true if the floating point conditional branches and | 
|  | /// conditional moves which use condition code CC should be inverted. | 
|  | static bool invertFPCondCodeUser(Mips::CondCode CC) { | 
|  | if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) | 
|  | return false; | 
|  |  | 
|  | assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && | 
|  | "Illegal Condition Code"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Creates and returns an FPCmp node from a setcc node. | 
|  | // Returns Op if setcc is not a floating point comparison. | 
|  | static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { | 
|  | // must be a SETCC node | 
|  | if (Op.getOpcode() != ISD::SETCC) | 
|  | return Op; | 
|  |  | 
|  | SDValue LHS = Op.getOperand(0); | 
|  |  | 
|  | if (!LHS.getValueType().isFloatingPoint()) | 
|  | return Op; | 
|  |  | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of | 
|  | // node if necessary. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, | 
|  | DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // Creates and returns a CMovFPT/F node. | 
|  | static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, | 
|  | SDValue False, const SDLoc &DL) { | 
|  | ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); | 
|  | bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); | 
|  | SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); | 
|  |  | 
|  | return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, | 
|  | True.getValueType(), True, FCC0, False, Cond); | 
|  | } | 
|  |  | 
|  | static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SetCC = N->getOperand(0); | 
|  |  | 
|  | if ((SetCC.getOpcode() != ISD::SETCC) || | 
|  | !SetCC.getOperand(0).getValueType().isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue False = N->getOperand(2); | 
|  | EVT FalseTy = False.getValueType(); | 
|  |  | 
|  | if (!FalseTy.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); | 
|  |  | 
|  | // If the RHS (False) is 0, we swap the order of the operands | 
|  | // of ISD::SELECT (obviously also inverting the condition) so that we can | 
|  | // take advantage of conditional moves using the $0 register. | 
|  | // Example: | 
|  | //   return (a != 0) ? x : 0; | 
|  | //     load $reg, x | 
|  | //     movz $reg, $0, a | 
|  | if (!FalseC) | 
|  | return SDValue(); | 
|  |  | 
|  | const SDLoc DL(N); | 
|  |  | 
|  | if (!FalseC->getZExtValue()) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); | 
|  | SDValue True = N->getOperand(1); | 
|  |  | 
|  | SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), | 
|  | SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); | 
|  |  | 
|  | return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); | 
|  | } | 
|  |  | 
|  | // If both operands are integer constants there's a possibility that we | 
|  | // can do some interesting optimizations. | 
|  | SDValue True = N->getOperand(1); | 
|  | ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); | 
|  |  | 
|  | if (!TrueC || !True.getValueType().isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We'll also ignore MVT::i64 operands as this optimizations proves | 
|  | // to be ineffective because of the required sign extensions as the result | 
|  | // of a SETCC operator is always MVT::i32 for non-vector types. | 
|  | if (True.getValueType() == MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); | 
|  |  | 
|  | // 1)  (a < x) ? y : y-1 | 
|  | //  slti $reg1, a, x | 
|  | //  addiu $reg2, $reg1, y-1 | 
|  | if (Diff == 1) | 
|  | return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); | 
|  |  | 
|  | // 2)  (a < x) ? y-1 : y | 
|  | //  slti $reg1, a, x | 
|  | //  xor $reg1, $reg1, 1 | 
|  | //  addiu $reg2, $reg1, y-1 | 
|  | if (Diff == -1) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); | 
|  | SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), | 
|  | SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); | 
|  | return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); | 
|  | } | 
|  |  | 
|  | // Could not optimize. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); | 
|  |  | 
|  | ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); | 
|  | if (!FalseC || FalseC->getZExtValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Since RHS (False) is 0, we swap the order of the True/False operands | 
|  | // (obviously also inverting the condition) so that we can | 
|  | // take advantage of conditional moves using the $0 register. | 
|  | // Example: | 
|  | //   return (a != 0) ? x : 0; | 
|  | //     load $reg, x | 
|  | //     movz $reg, $0, a | 
|  | unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : | 
|  | MipsISD::CMovFP_T; | 
|  |  | 
|  | SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); | 
|  | return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), | 
|  | ValueIfFalse, FCC, ValueIfTrue, Glue); | 
|  | } | 
|  |  | 
|  | static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue FirstOperand = N->getOperand(0); | 
|  | unsigned FirstOperandOpc = FirstOperand.getOpcode(); | 
|  | SDValue Mask = N->getOperand(1); | 
|  | EVT ValTy = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | uint64_t Pos = 0, SMPos, SMSize; | 
|  | ConstantSDNode *CN; | 
|  | SDValue NewOperand; | 
|  | unsigned Opc; | 
|  |  | 
|  | // Op's second operand must be a shifted mask. | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || | 
|  | !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { | 
|  | // Pattern match EXT. | 
|  | //  $dst = and ((sra or srl) $src , pos), (2**size - 1) | 
|  | //  => ext $dst, $src, pos, size | 
|  |  | 
|  | // The second operand of the shift must be an immediate. | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) | 
|  | return SDValue(); | 
|  |  | 
|  | Pos = CN->getZExtValue(); | 
|  |  | 
|  | // Return if the shifted mask does not start at bit 0 or the sum of its size | 
|  | // and Pos exceeds the word's size. | 
|  | if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | Opc = MipsISD::Ext; | 
|  | NewOperand = FirstOperand.getOperand(0); | 
|  | } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) { | 
|  | // Pattern match CINS. | 
|  | //  $dst = and (shl $src , pos), mask | 
|  | //  => cins $dst, $src, pos, size | 
|  | // mask is a shifted mask with consecutive 1's, pos = shift amount, | 
|  | // size = population count. | 
|  |  | 
|  | // The second operand of the shift must be an immediate. | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) | 
|  | return SDValue(); | 
|  |  | 
|  | Pos = CN->getZExtValue(); | 
|  |  | 
|  | if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 || | 
|  | Pos + SMSize > ValTy.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | NewOperand = FirstOperand.getOperand(0); | 
|  | // SMSize is 'location' (position) in this case, not size. | 
|  | SMSize--; | 
|  | Opc = MipsISD::CIns; | 
|  | } else { | 
|  | // Pattern match EXT. | 
|  | //  $dst = and $src, (2**size - 1) , if size > 16 | 
|  | //  => ext $dst, $src, pos, size , pos = 0 | 
|  |  | 
|  | // If the mask is <= 0xffff, andi can be used instead. | 
|  | if (CN->getZExtValue() <= 0xffff) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return if the mask doesn't start at position 0. | 
|  | if (SMPos) | 
|  | return SDValue(); | 
|  |  | 
|  | Opc = MipsISD::Ext; | 
|  | NewOperand = FirstOperand; | 
|  | } | 
|  | return DAG.getNode(Opc, DL, ValTy, NewOperand, | 
|  | DAG.getConstant(Pos, DL, MVT::i32), | 
|  | DAG.getConstant(SMSize, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // Pattern match INS. | 
|  | //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), | 
|  | //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1 | 
|  | //  => ins $dst, $src, size, pos, $src1 | 
|  | if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); | 
|  | uint64_t SMPos0, SMSize0, SMPos1, SMSize1; | 
|  | ConstantSDNode *CN, *CN1; | 
|  |  | 
|  | // See if Op's first operand matches (and $src1 , mask0). | 
|  | if (And0.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || | 
|  | !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // See if Op's second operand matches (and (shl $src, pos), mask1). | 
|  | if (And1.getOpcode() == ISD::AND && | 
|  | And1.getOperand(0).getOpcode() == ISD::SHL) { | 
|  |  | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || | 
|  | !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) | 
|  | return SDValue(); | 
|  |  | 
|  | // The shift masks must have the same position and size. | 
|  | if (SMPos0 != SMPos1 || SMSize0 != SMSize1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Shl = And1.getOperand(0); | 
|  |  | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Shamt = CN->getZExtValue(); | 
|  |  | 
|  | // Return if the shift amount and the first bit position of mask are not the | 
|  | // same. | 
|  | EVT ValTy = N->getValueType(0); | 
|  | if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), | 
|  | DAG.getConstant(SMPos0, DL, MVT::i32), | 
|  | DAG.getConstant(SMSize0, DL, MVT::i32), | 
|  | And0.getOperand(0)); | 
|  | } else { | 
|  | // Pattern match DINS. | 
|  | //  $dst = or (and $src, mask0), mask1 | 
|  | //  where mask0 = ((1 << SMSize0) -1) << SMPos0 | 
|  | //  => dins $dst, $src, pos, size | 
|  | if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) && | 
|  | ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) || | 
|  | (SMSize0 + SMPos0 <= 32))) { | 
|  | // Check if AND instruction has constant as argument | 
|  | bool isConstCase = And1.getOpcode() != ISD::AND; | 
|  | if (And1.getOpcode() == ISD::AND) { | 
|  | if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1)))) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)))) | 
|  | return SDValue(); | 
|  | } | 
|  | // Don't generate INS if constant OR operand doesn't fit into bits | 
|  | // cleared by constant AND operand. | 
|  | if (CN->getSExtValue() & CN1->getSExtValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT ValTy = N->getOperand(0)->getValueType(0); | 
|  | SDValue Const1; | 
|  | SDValue SrlX; | 
|  | if (!isConstCase) { | 
|  | Const1 = DAG.getConstant(SMPos0, DL, MVT::i32); | 
|  | SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1); | 
|  | } | 
|  | return DAG.getNode( | 
|  | MipsISD::Ins, DL, N->getValueType(0), | 
|  | isConstCase | 
|  | ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy) | 
|  | : SrlX, | 
|  | DAG.getConstant(SMPos0, DL, MVT::i32), | 
|  | DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31 | 
|  | : SMSize0, | 
|  | DL, MVT::i32), | 
|  | And0->getOperand(0)); | 
|  |  | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // ROOTNode must have a multiplication as an operand for the match to be | 
|  | // successful. | 
|  | if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL && | 
|  | ROOTNode->getOperand(1).getOpcode() != ISD::MUL) | 
|  | return SDValue(); | 
|  |  | 
|  | // We don't handle vector types here. | 
|  | if (ROOTNode->getValueType(0).isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // For MIPS64, madd / msub instructions are inefficent to use with 64 bit | 
|  | // arithmetic. E.g. | 
|  | // (add (mul a b) c) => | 
|  | //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in | 
|  | //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32) | 
|  | //   or | 
|  | //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32) | 
|  | // | 
|  | // The overhead of setting up the Hi/Lo registers and reassembling the | 
|  | // result makes this a dubious optimzation for MIPS64. The core of the | 
|  | // problem is that Hi/Lo contain the upper and lower 32 bits of the | 
|  | // operand and result. | 
|  | // | 
|  | // It requires a chain of 4 add/mul for MIPS64R2 to get better code | 
|  | // density than doing it naively, 5 for MIPS64. Additionally, using | 
|  | // madd/msub on MIPS64 requires the operands actually be 32 bit sign | 
|  | // extended operands, not true 64 bit values. | 
|  | // | 
|  | // FIXME: For the moment, disable this completely for MIPS64. | 
|  | if (Subtarget.hasMips64()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL | 
|  | ? ROOTNode->getOperand(0) | 
|  | : ROOTNode->getOperand(1); | 
|  |  | 
|  | SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL | 
|  | ? ROOTNode->getOperand(1) | 
|  | : ROOTNode->getOperand(0); | 
|  |  | 
|  | // Transform this to a MADD only if the user of this node is the add. | 
|  | // If there are other users of the mul, this function returns here. | 
|  | if (!Mult.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // maddu and madd are unusual instructions in that on MIPS64 bits 63..31 | 
|  | // must be in canonical form, i.e. sign extended. For MIPS32, the operands | 
|  | // of the multiply must have 32 or more sign bits, otherwise we cannot | 
|  | // perform this optimization. We have to check this here as we're performing | 
|  | // this optimization pre-legalization. | 
|  | SDValue MultLHS = Mult->getOperand(0); | 
|  | SDValue MultRHS = Mult->getOperand(1); | 
|  |  | 
|  | bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND && | 
|  | MultRHS->getOpcode() == ISD::SIGN_EXTEND; | 
|  | bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND && | 
|  | MultRHS->getOpcode() == ISD::ZERO_EXTEND; | 
|  |  | 
|  | if (!IsSigned && !IsUnsigned) | 
|  | return SDValue(); | 
|  |  | 
|  | // Initialize accumulator. | 
|  | SDLoc DL(ROOTNode); | 
|  | SDValue TopHalf; | 
|  | SDValue BottomHalf; | 
|  | BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, | 
|  | CurDAG.getIntPtrConstant(0, DL)); | 
|  |  | 
|  | TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, | 
|  | CurDAG.getIntPtrConstant(1, DL)); | 
|  | SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, | 
|  | BottomHalf, | 
|  | TopHalf); | 
|  |  | 
|  | // Create MipsMAdd(u) / MipsMSub(u) node. | 
|  | bool IsAdd = ROOTNode->getOpcode() == ISD::ADD; | 
|  | unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd) | 
|  | : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub); | 
|  | SDValue MAddOps[3] = { | 
|  | CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)), | 
|  | CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn}; | 
|  | EVT VTs[2] = {MVT::i32, MVT::i32}; | 
|  | SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps); | 
|  |  | 
|  | SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd); | 
|  | SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd); | 
|  | SDValue Combined = | 
|  | CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi); | 
|  | return Combined; | 
|  | } | 
|  |  | 
|  | static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // (sub v0 (mul v1, v2)) => (msub v1, v2, v0) | 
|  | if (DCI.isBeforeLegalizeOps()) { | 
|  | if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && | 
|  | !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) | 
|  | return performMADD_MSUBCombine(N, DAG, Subtarget); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // (add v0 (mul v1, v2)) => (madd v1, v2, v0) | 
|  | if (DCI.isBeforeLegalizeOps()) { | 
|  | if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && | 
|  | !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) | 
|  | return performMADD_MSUBCombine(N, DAG, Subtarget); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) | 
|  | SDValue Add = N->getOperand(1); | 
|  |  | 
|  | if (Add.getOpcode() != ISD::ADD) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Lo = Add.getOperand(1); | 
|  |  | 
|  | if ((Lo.getOpcode() != MipsISD::Lo) || | 
|  | (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ValTy = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), | 
|  | Add.getOperand(0)); | 
|  | return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); | 
|  | } | 
|  |  | 
|  | static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // Pattern match CINS. | 
|  | //  $dst = shl (and $src , imm), pos | 
|  | //  => cins $dst, $src, pos, size | 
|  |  | 
|  | if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue FirstOperand = N->getOperand(0); | 
|  | unsigned FirstOperandOpc = FirstOperand.getOpcode(); | 
|  | SDValue SecondOperand = N->getOperand(1); | 
|  | EVT ValTy = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | uint64_t Pos = 0, SMPos, SMSize; | 
|  | ConstantSDNode *CN; | 
|  | SDValue NewOperand; | 
|  |  | 
|  | // The second operand of the shift must be an immediate. | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand))) | 
|  | return SDValue(); | 
|  |  | 
|  | Pos = CN->getZExtValue(); | 
|  |  | 
|  | if (Pos >= ValTy.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (FirstOperandOpc != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | // AND's second operand must be a shifted mask. | 
|  | if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) || | 
|  | !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Return if the shifted mask does not start at bit 0 or the sum of its size | 
|  | // and Pos exceeds the word's size. | 
|  | if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | NewOperand = FirstOperand.getOperand(0); | 
|  | // SMSize is 'location' (position) in this case, not size. | 
|  | SMSize--; | 
|  |  | 
|  | return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand, | 
|  | DAG.getConstant(Pos, DL, MVT::i32), | 
|  | DAG.getConstant(SMSize, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) | 
|  | const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | unsigned Opc = N->getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | return performDivRemCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SELECT: | 
|  | return performSELECTCombine(N, DAG, DCI, Subtarget); | 
|  | case MipsISD::CMovFP_F: | 
|  | case MipsISD::CMovFP_T: | 
|  | return performCMovFPCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::AND: | 
|  | return performANDCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::OR: | 
|  | return performORCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::ADD: | 
|  | return performADDCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SHL: | 
|  | return performSHLCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SUB: | 
|  | return performSUBCombine(N, DAG, DCI, Subtarget); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::isCheapToSpeculateCttz() const { | 
|  | return Subtarget.hasMips32(); | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::isCheapToSpeculateCtlz() const { | 
|  | return Subtarget.hasMips32(); | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::shouldFoldConstantShiftPairToMask( | 
|  | const SDNode *N, CombineLevel Level) const { | 
|  | if (N->getOperand(0).getValueType().isVector()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void | 
|  | MipsTargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Res = LowerOperation(SDValue(N, 0), DAG); | 
|  |  | 
|  | if (Res) | 
|  | for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) | 
|  | Results.push_back(Res.getValue(I)); | 
|  | } | 
|  |  | 
|  | void | 
|  | MipsTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | return LowerOperationWrapper(N, Results, DAG); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | LowerOperation(SDValue Op, SelectionDAG &DAG) const | 
|  | { | 
|  | switch (Op.getOpcode()) | 
|  | { | 
|  | case ISD::BRCOND:             return lowerBRCOND(Op, DAG); | 
|  | case ISD::ConstantPool:       return lowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG); | 
|  | case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::JumpTable:          return lowerJumpTable(Op, DAG); | 
|  | case ISD::SELECT:             return lowerSELECT(Op, DAG); | 
|  | case ISD::SETCC:              return lowerSETCC(Op, DAG); | 
|  | case ISD::VASTART:            return lowerVASTART(Op, DAG); | 
|  | case ISD::VAARG:              return lowerVAARG(Op, DAG); | 
|  | case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::FABS:               return lowerFABS(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG); | 
|  | case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG); | 
|  | case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG); | 
|  | case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG); | 
|  | case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG); | 
|  | case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true); | 
|  | case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false); | 
|  | case ISD::LOAD:               return lowerLOAD(Op, DAG); | 
|  | case ISD::STORE:              return lowerSTORE(Op, DAG); | 
|  | case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Lower helper functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // addLiveIn - This helper function adds the specified physical register to the | 
|  | // MachineFunction as a live in value.  It also creates a corresponding | 
|  | // virtual register for it. | 
|  | static unsigned | 
|  | addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) | 
|  | { | 
|  | Register VReg = MF.getRegInfo().createVirtualRegister(RC); | 
|  | MF.getRegInfo().addLiveIn(PReg, VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, | 
|  | MachineBasicBlock &MBB, | 
|  | const TargetInstrInfo &TII, | 
|  | bool Is64Bit, bool IsMicroMips) { | 
|  | if (NoZeroDivCheck) | 
|  | return &MBB; | 
|  |  | 
|  | // Insert instruction "teq $divisor_reg, $zero, 7". | 
|  | MachineBasicBlock::iterator I(MI); | 
|  | MachineInstrBuilder MIB; | 
|  | MachineOperand &Divisor = MI.getOperand(2); | 
|  | MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), | 
|  | TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) | 
|  | .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) | 
|  | .addReg(Mips::ZERO) | 
|  | .addImm(7); | 
|  |  | 
|  | // Use the 32-bit sub-register if this is a 64-bit division. | 
|  | if (Is64Bit) | 
|  | MIB->getOperand(0).setSubReg(Mips::sub_32); | 
|  |  | 
|  | // Clear Divisor's kill flag. | 
|  | Divisor.setIsKill(false); | 
|  |  | 
|  | // We would normally delete the original instruction here but in this case | 
|  | // we only needed to inject an additional instruction rather than replace it. | 
|  |  | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected instr type to insert"); | 
|  | case Mips::ATOMIC_LOAD_ADD_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_ADD_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_ADD_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_ADD_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_LOAD_AND_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_AND_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_AND_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_AND_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_LOAD_OR_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_OR_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_OR_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_OR_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_LOAD_XOR_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_XOR_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_XOR_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_XOR_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_LOAD_NAND_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_NAND_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_NAND_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_NAND_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_LOAD_SUB_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_LOAD_SUB_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_LOAD_SUB_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_LOAD_SUB_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_SWAP_I8: | 
|  | return emitAtomicBinaryPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_SWAP_I16: | 
|  | return emitAtomicBinaryPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_SWAP_I32: | 
|  | return emitAtomicBinary(MI, BB); | 
|  | case Mips::ATOMIC_SWAP_I64: | 
|  | return emitAtomicBinary(MI, BB); | 
|  |  | 
|  | case Mips::ATOMIC_CMP_SWAP_I8: | 
|  | return emitAtomicCmpSwapPartword(MI, BB, 1); | 
|  | case Mips::ATOMIC_CMP_SWAP_I16: | 
|  | return emitAtomicCmpSwapPartword(MI, BB, 2); | 
|  | case Mips::ATOMIC_CMP_SWAP_I32: | 
|  | return emitAtomicCmpSwap(MI, BB); | 
|  | case Mips::ATOMIC_CMP_SWAP_I64: | 
|  | return emitAtomicCmpSwap(MI, BB); | 
|  | case Mips::PseudoSDIV: | 
|  | case Mips::PseudoUDIV: | 
|  | case Mips::DIV: | 
|  | case Mips::DIVU: | 
|  | case Mips::MOD: | 
|  | case Mips::MODU: | 
|  | return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, | 
|  | false); | 
|  | case Mips::SDIV_MM_Pseudo: | 
|  | case Mips::UDIV_MM_Pseudo: | 
|  | case Mips::SDIV_MM: | 
|  | case Mips::UDIV_MM: | 
|  | case Mips::DIV_MMR6: | 
|  | case Mips::DIVU_MMR6: | 
|  | case Mips::MOD_MMR6: | 
|  | case Mips::MODU_MMR6: | 
|  | return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); | 
|  | case Mips::PseudoDSDIV: | 
|  | case Mips::PseudoDUDIV: | 
|  | case Mips::DDIV: | 
|  | case Mips::DDIVU: | 
|  | case Mips::DMOD: | 
|  | case Mips::DMODU: | 
|  | return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); | 
|  |  | 
|  | case Mips::PseudoSELECT_I: | 
|  | case Mips::PseudoSELECT_I64: | 
|  | case Mips::PseudoSELECT_S: | 
|  | case Mips::PseudoSELECT_D32: | 
|  | case Mips::PseudoSELECT_D64: | 
|  | return emitPseudoSELECT(MI, BB, false, Mips::BNE); | 
|  | case Mips::PseudoSELECTFP_F_I: | 
|  | case Mips::PseudoSELECTFP_F_I64: | 
|  | case Mips::PseudoSELECTFP_F_S: | 
|  | case Mips::PseudoSELECTFP_F_D32: | 
|  | case Mips::PseudoSELECTFP_F_D64: | 
|  | return emitPseudoSELECT(MI, BB, true, Mips::BC1F); | 
|  | case Mips::PseudoSELECTFP_T_I: | 
|  | case Mips::PseudoSELECTFP_T_I64: | 
|  | case Mips::PseudoSELECTFP_T_S: | 
|  | case Mips::PseudoSELECTFP_T_D32: | 
|  | case Mips::PseudoSELECTFP_T_D64: | 
|  | return emitPseudoSELECT(MI, BB, true, Mips::BC1T); | 
|  | case Mips::PseudoD_SELECT_I: | 
|  | case Mips::PseudoD_SELECT_I64: | 
|  | return emitPseudoD_SELECT(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and | 
|  | // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) | 
|  | MachineBasicBlock * | 
|  | MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned AtomicOp; | 
|  | switch (MI.getOpcode()) { | 
|  | case Mips::ATOMIC_LOAD_ADD_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_SUB_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_AND_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_OR_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_XOR_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_NAND_I32: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_SWAP_I32: | 
|  | AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_ADD_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_SUB_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_AND_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_OR_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_XOR_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_NAND_I64: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_SWAP_I64: | 
|  | AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown pseudo atomic for replacement!"); | 
|  | } | 
|  |  | 
|  | Register OldVal = MI.getOperand(0).getReg(); | 
|  | Register Ptr = MI.getOperand(1).getReg(); | 
|  | Register Incr = MI.getOperand(2).getReg(); | 
|  | Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); | 
|  |  | 
|  | MachineBasicBlock::iterator II(MI); | 
|  |  | 
|  | // The scratch registers here with the EarlyClobber | Define | Implicit | 
|  | // flags is used to persuade the register allocator and the machine | 
|  | // verifier to accept the usage of this register. This has to be a real | 
|  | // register which has an UNDEF value but is dead after the instruction which | 
|  | // is unique among the registers chosen for the instruction. | 
|  |  | 
|  | // The EarlyClobber flag has the semantic properties that the operand it is | 
|  | // attached to is clobbered before the rest of the inputs are read. Hence it | 
|  | // must be unique among the operands to the instruction. | 
|  | // The Define flag is needed to coerce the machine verifier that an Undef | 
|  | // value isn't a problem. | 
|  | // The Dead flag is needed as the value in scratch isn't used by any other | 
|  | // instruction. Kill isn't used as Dead is more precise. | 
|  | // The implicit flag is here due to the interaction between the other flags | 
|  | // and the machine verifier. | 
|  |  | 
|  | // For correctness purpose, a new pseudo is introduced here. We need this | 
|  | // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence | 
|  | // that is spread over >1 basic blocks. A register allocator which | 
|  | // introduces (or any codegen infact) a store, can violate the expectations | 
|  | // of the hardware. | 
|  | // | 
|  | // An atomic read-modify-write sequence starts with a linked load | 
|  | // instruction and ends with a store conditional instruction. The atomic | 
|  | // read-modify-write sequence fails if any of the following conditions | 
|  | // occur between the execution of ll and sc: | 
|  | //   * A coherent store is completed by another process or coherent I/O | 
|  | //     module into the block of synchronizable physical memory containing | 
|  | //     the word. The size and alignment of the block is | 
|  | //     implementation-dependent. | 
|  | //   * A coherent store is executed between an LL and SC sequence on the | 
|  | //     same processor to the block of synchornizable physical memory | 
|  | //     containing the word. | 
|  | // | 
|  |  | 
|  | Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr)); | 
|  | Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr)); | 
|  |  | 
|  | BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr); | 
|  | BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); | 
|  |  | 
|  | BuildMI(*BB, II, DL, TII->get(AtomicOp)) | 
|  | .addReg(OldVal, RegState::Define | RegState::EarlyClobber) | 
|  | .addReg(PtrCopy) | 
|  | .addReg(IncrCopy) | 
|  | .addReg(Scratch, RegState::Define | RegState::EarlyClobber | | 
|  | RegState::Implicit | RegState::Dead); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( | 
|  | MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, | 
|  | unsigned SrcReg) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (Subtarget.hasMips32r2() && Size == 1) { | 
|  | BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasMips32r2() && Size == 2) { | 
|  | BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(MVT::i32); | 
|  | Register ScrReg = RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | assert(Size < 32); | 
|  | int64_t ShiftImm = 32 - (Size * 8); | 
|  |  | 
|  | BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); | 
|  | BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( | 
|  | MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { | 
|  | assert((Size == 1 || Size == 2) && | 
|  | "Unsupported size for EmitAtomicBinaryPartial."); | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(MVT::i32); | 
|  | const bool ArePtrs64bit = ABI.ArePtrs64bit(); | 
|  | const TargetRegisterClass *RCp = | 
|  | getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Ptr = MI.getOperand(1).getReg(); | 
|  | Register Incr = MI.getOperand(2).getReg(); | 
|  |  | 
|  | Register AlignedAddr = RegInfo.createVirtualRegister(RCp); | 
|  | Register ShiftAmt = RegInfo.createVirtualRegister(RC); | 
|  | Register Mask = RegInfo.createVirtualRegister(RC); | 
|  | Register Mask2 = RegInfo.createVirtualRegister(RC); | 
|  | Register Incr2 = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); | 
|  | Register PtrLSB2 = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskUpper = RegInfo.createVirtualRegister(RC); | 
|  | Register Scratch = RegInfo.createVirtualRegister(RC); | 
|  | Register Scratch2 = RegInfo.createVirtualRegister(RC); | 
|  | Register Scratch3 = RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | unsigned AtomicOp = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | case Mips::ATOMIC_LOAD_NAND_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_NAND_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_SWAP_I8: | 
|  | AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_SWAP_I16: | 
|  | AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_ADD_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_ADD_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_SUB_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_SUB_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_AND_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_AND_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_OR_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_OR_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_XOR_I8: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA; | 
|  | break; | 
|  | case Mips::ATOMIC_LOAD_XOR_I16: | 
|  | AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown subword atomic pseudo for expansion!"); | 
|  | } | 
|  |  | 
|  | // insert new blocks after the current block | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineFunction::iterator It = ++BB->getIterator(); | 
|  | MF->insert(It, exitMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to exitMBB. | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | BB->addSuccessor(exitMBB, BranchProbability::getOne()); | 
|  |  | 
|  | //  thisMBB: | 
|  | //    addiu   masklsb2,$0,-4                # 0xfffffffc | 
|  | //    and     alignedaddr,ptr,masklsb2 | 
|  | //    andi    ptrlsb2,ptr,3 | 
|  | //    sll     shiftamt,ptrlsb2,3 | 
|  | //    ori     maskupper,$0,255               # 0xff | 
|  | //    sll     mask,maskupper,shiftamt | 
|  | //    nor     mask2,$0,mask | 
|  | //    sll     incr2,incr,shiftamt | 
|  |  | 
|  | int64_t MaskImm = (Size == 1) ? 255 : 65535; | 
|  | BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) | 
|  | .addReg(ABI.GetNullPtr()).addImm(-4); | 
|  | BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) | 
|  | .addReg(Ptr).addReg(MaskLSB2); | 
|  | BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) | 
|  | .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); | 
|  | if (Subtarget.isLittle()) { | 
|  | BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); | 
|  | } else { | 
|  | Register Off = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, DL, TII->get(Mips::XORi), Off) | 
|  | .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); | 
|  | } | 
|  | BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) | 
|  | .addReg(Mips::ZERO).addImm(MaskImm); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) | 
|  | .addReg(MaskUpper).addReg(ShiftAmt); | 
|  | BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); | 
|  |  | 
|  |  | 
|  | // The purposes of the flags on the scratch registers is explained in | 
|  | // emitAtomicBinary. In summary, we need a scratch register which is going to | 
|  | // be undef, that is unique among registers chosen for the instruction. | 
|  |  | 
|  | BuildMI(BB, DL, TII->get(AtomicOp)) | 
|  | .addReg(Dest, RegState::Define | RegState::EarlyClobber) | 
|  | .addReg(AlignedAddr) | 
|  | .addReg(Incr2) | 
|  | .addReg(Mask) | 
|  | .addReg(Mask2) | 
|  | .addReg(ShiftAmt) | 
|  | .addReg(Scratch, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit) | 
|  | .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit) | 
|  | .addReg(Scratch3, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit); | 
|  |  | 
|  | MI.eraseFromParent(); // The instruction is gone now. | 
|  |  | 
|  | return exitMBB; | 
|  | } | 
|  |  | 
|  | // Lower atomic compare and swap to a pseudo instruction, taking care to | 
|  | // define a scratch register for the pseudo instruction's expansion. The | 
|  | // instruction is expanded after the register allocator as to prevent | 
|  | // the insertion of stores between the linked load and the store conditional. | 
|  |  | 
|  | MachineBasicBlock * | 
|  | MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  |  | 
|  | assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 || | 
|  | MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) && | 
|  | "Unsupported atomic pseudo for EmitAtomicCmpSwap."); | 
|  |  | 
|  | const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8; | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 | 
|  | ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA | 
|  | : Mips::ATOMIC_CMP_SWAP_I64_POSTRA; | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Ptr = MI.getOperand(1).getReg(); | 
|  | Register OldVal = MI.getOperand(2).getReg(); | 
|  | Register NewVal = MI.getOperand(3).getReg(); | 
|  |  | 
|  | Register Scratch = MRI.createVirtualRegister(RC); | 
|  | MachineBasicBlock::iterator II(MI); | 
|  |  | 
|  | // We need to create copies of the various registers and kill them at the | 
|  | // atomic pseudo. If the copies are not made, when the atomic is expanded | 
|  | // after fast register allocation, the spills will end up outside of the | 
|  | // blocks that their values are defined in, causing livein errors. | 
|  |  | 
|  | Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr)); | 
|  | Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal)); | 
|  | Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal)); | 
|  |  | 
|  | BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); | 
|  | BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal); | 
|  | BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal); | 
|  |  | 
|  | // The purposes of the flags on the scratch registers is explained in | 
|  | // emitAtomicBinary. In summary, we need a scratch register which is going to | 
|  | // be undef, that is unique among registers chosen for the instruction. | 
|  |  | 
|  | BuildMI(*BB, II, DL, TII->get(AtomicOp)) | 
|  | .addReg(Dest, RegState::Define | RegState::EarlyClobber) | 
|  | .addReg(PtrCopy, RegState::Kill) | 
|  | .addReg(OldValCopy, RegState::Kill) | 
|  | .addReg(NewValCopy, RegState::Kill) | 
|  | .addReg(Scratch, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit); | 
|  |  | 
|  | MI.eraseFromParent(); // The instruction is gone now. | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( | 
|  | MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { | 
|  | assert((Size == 1 || Size == 2) && | 
|  | "Unsupported size for EmitAtomicCmpSwapPartial."); | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(MVT::i32); | 
|  | const bool ArePtrs64bit = ABI.ArePtrs64bit(); | 
|  | const TargetRegisterClass *RCp = | 
|  | getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Ptr = MI.getOperand(1).getReg(); | 
|  | Register CmpVal = MI.getOperand(2).getReg(); | 
|  | Register NewVal = MI.getOperand(3).getReg(); | 
|  |  | 
|  | Register AlignedAddr = RegInfo.createVirtualRegister(RCp); | 
|  | Register ShiftAmt = RegInfo.createVirtualRegister(RC); | 
|  | Register Mask = RegInfo.createVirtualRegister(RC); | 
|  | Register Mask2 = RegInfo.createVirtualRegister(RC); | 
|  | Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC); | 
|  | Register ShiftedNewVal = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); | 
|  | Register PtrLSB2 = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskUpper = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskedCmpVal = RegInfo.createVirtualRegister(RC); | 
|  | Register MaskedNewVal = RegInfo.createVirtualRegister(RC); | 
|  | unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8 | 
|  | ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA | 
|  | : Mips::ATOMIC_CMP_SWAP_I16_POSTRA; | 
|  |  | 
|  | // The scratch registers here with the EarlyClobber | Define | Dead | Implicit | 
|  | // flags are used to coerce the register allocator and the machine verifier to | 
|  | // accept the usage of these registers. | 
|  | // The EarlyClobber flag has the semantic properties that the operand it is | 
|  | // attached to is clobbered before the rest of the inputs are read. Hence it | 
|  | // must be unique among the operands to the instruction. | 
|  | // The Define flag is needed to coerce the machine verifier that an Undef | 
|  | // value isn't a problem. | 
|  | // The Dead flag is needed as the value in scratch isn't used by any other | 
|  | // instruction. Kill isn't used as Dead is more precise. | 
|  | Register Scratch = RegInfo.createVirtualRegister(RC); | 
|  | Register Scratch2 = RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | // insert new blocks after the current block | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineFunction::iterator It = ++BB->getIterator(); | 
|  | MF->insert(It, exitMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to exitMBB. | 
|  | exitMBB->splice(exitMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | exitMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | BB->addSuccessor(exitMBB, BranchProbability::getOne()); | 
|  |  | 
|  | //  thisMBB: | 
|  | //    addiu   masklsb2,$0,-4                # 0xfffffffc | 
|  | //    and     alignedaddr,ptr,masklsb2 | 
|  | //    andi    ptrlsb2,ptr,3 | 
|  | //    xori    ptrlsb2,ptrlsb2,3              # Only for BE | 
|  | //    sll     shiftamt,ptrlsb2,3 | 
|  | //    ori     maskupper,$0,255               # 0xff | 
|  | //    sll     mask,maskupper,shiftamt | 
|  | //    nor     mask2,$0,mask | 
|  | //    andi    maskedcmpval,cmpval,255 | 
|  | //    sll     shiftedcmpval,maskedcmpval,shiftamt | 
|  | //    andi    maskednewval,newval,255 | 
|  | //    sll     shiftednewval,maskednewval,shiftamt | 
|  | int64_t MaskImm = (Size == 1) ? 255 : 65535; | 
|  | BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) | 
|  | .addReg(ABI.GetNullPtr()).addImm(-4); | 
|  | BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) | 
|  | .addReg(Ptr).addReg(MaskLSB2); | 
|  | BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) | 
|  | .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); | 
|  | if (Subtarget.isLittle()) { | 
|  | BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); | 
|  | } else { | 
|  | Register Off = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(BB, DL, TII->get(Mips::XORi), Off) | 
|  | .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); | 
|  | } | 
|  | BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) | 
|  | .addReg(Mips::ZERO).addImm(MaskImm); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) | 
|  | .addReg(MaskUpper).addReg(ShiftAmt); | 
|  | BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); | 
|  | BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) | 
|  | .addReg(CmpVal).addImm(MaskImm); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) | 
|  | .addReg(MaskedCmpVal).addReg(ShiftAmt); | 
|  | BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) | 
|  | .addReg(NewVal).addImm(MaskImm); | 
|  | BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) | 
|  | .addReg(MaskedNewVal).addReg(ShiftAmt); | 
|  |  | 
|  | // The purposes of the flags on the scratch registers are explained in | 
|  | // emitAtomicBinary. In summary, we need a scratch register which is going to | 
|  | // be undef, that is unique among the register chosen for the instruction. | 
|  |  | 
|  | BuildMI(BB, DL, TII->get(AtomicOp)) | 
|  | .addReg(Dest, RegState::Define | RegState::EarlyClobber) | 
|  | .addReg(AlignedAddr) | 
|  | .addReg(Mask) | 
|  | .addReg(ShiftedCmpVal) | 
|  | .addReg(Mask2) | 
|  | .addReg(ShiftedNewVal) | 
|  | .addReg(ShiftAmt) | 
|  | .addReg(Scratch, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit) | 
|  | .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | | 
|  | RegState::Dead | RegState::Implicit); | 
|  |  | 
|  | MI.eraseFromParent(); // The instruction is gone now. | 
|  |  | 
|  | return exitMBB; | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { | 
|  | // The first operand is the chain, the second is the condition, the third is | 
|  | // the block to branch to if the condition is true. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Dest = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); | 
|  | SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); | 
|  |  | 
|  | // Return if flag is not set by a floating point comparison. | 
|  | if (CondRes.getOpcode() != MipsISD::FPCmp) | 
|  | return Op; | 
|  |  | 
|  | SDValue CCNode  = CondRes.getOperand(2); | 
|  | Mips::CondCode CC = | 
|  | (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); | 
|  | unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; | 
|  | SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); | 
|  | SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); | 
|  | return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, | 
|  | FCC0, Dest, CondRes); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | lowerSELECT(SDValue Op, SelectionDAG &DAG) const | 
|  | { | 
|  | assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); | 
|  | SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); | 
|  |  | 
|  | // Return if flag is not set by a floating point comparison. | 
|  | if (Cond.getOpcode() != MipsISD::FPCmp) | 
|  | return Op; | 
|  |  | 
|  | return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), | 
|  | SDLoc(Op)); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); | 
|  | SDValue Cond = createFPCmp(DAG, Op); | 
|  |  | 
|  | assert(Cond.getOpcode() == MipsISD::FPCmp && | 
|  | "Floating point operand expected."); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue True  = DAG.getConstant(1, DL, MVT::i32); | 
|  | SDValue False = DAG.getConstant(0, DL, MVT::i32); | 
|  |  | 
|  | return createCMovFP(DAG, Cond, True, False, DL); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT Ty = Op.getValueType(); | 
|  | GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = N->getGlobal(); | 
|  |  | 
|  | if (!isPositionIndependent()) { | 
|  | const MipsTargetObjectFile *TLOF = | 
|  | static_cast<const MipsTargetObjectFile *>( | 
|  | getTargetMachine().getObjFileLowering()); | 
|  | const GlobalObject *GO = GV->getBaseObject(); | 
|  | if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine())) | 
|  | // %gp_rel relocation | 
|  | return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); | 
|  |  | 
|  | // %hi/%lo relocation | 
|  | return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | // %highest/%higher/%hi/%lo relocation | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  | } | 
|  |  | 
|  | // Every other architecture would use shouldAssumeDSOLocal in here, but | 
|  | // mips is special. | 
|  | // * In PIC code mips requires got loads even for local statics! | 
|  | // * To save on got entries, for local statics the got entry contains the | 
|  | //   page and an additional add instruction takes care of the low bits. | 
|  | // * It is legal to access a hidden symbol with a non hidden undefined, | 
|  | //   so one cannot guarantee that all access to a hidden symbol will know | 
|  | //   it is hidden. | 
|  | // * Mips linkers don't support creating a page and a full got entry for | 
|  | //   the same symbol. | 
|  | // * Given all that, we have to use a full got entry for hidden symbols :-( | 
|  | if (GV->hasLocalLinkage()) | 
|  | return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); | 
|  |  | 
|  | if (LargeGOT) | 
|  | return getAddrGlobalLargeGOT( | 
|  | N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, | 
|  | DAG.getEntryNode(), | 
|  | MachinePointerInfo::getGOT(DAG.getMachineFunction())); | 
|  |  | 
|  | return getAddrGlobal( | 
|  | N, SDLoc(N), Ty, DAG, | 
|  | (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, | 
|  | DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); | 
|  | EVT Ty = Op.getValueType(); | 
|  |  | 
|  | if (!isPositionIndependent()) | 
|  | return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  |  | 
|  | return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const | 
|  | { | 
|  | // If the relocation model is PIC, use the General Dynamic TLS Model or | 
|  | // Local Dynamic TLS model, otherwise use the Initial Exec or | 
|  | // Local Exec TLS Model. | 
|  |  | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | if (DAG.getTarget().useEmulatedTLS()) | 
|  | return LowerToTLSEmulatedModel(GA, DAG); | 
|  |  | 
|  | SDLoc DL(GA); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  |  | 
|  | TLSModel::Model model = getTargetMachine().getTLSModel(GV); | 
|  |  | 
|  | if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { | 
|  | // General Dynamic and Local Dynamic TLS Model. | 
|  | unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM | 
|  | : MipsII::MO_TLSGD; | 
|  |  | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); | 
|  | SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, | 
|  | getGlobalReg(DAG, PtrVT), TGA); | 
|  | unsigned PtrSize = PtrVT.getSizeInBits(); | 
|  | IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); | 
|  |  | 
|  | SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); | 
|  |  | 
|  | ArgListTy Args; | 
|  | ArgListEntry Entry; | 
|  | Entry.Node = Argument; | 
|  | Entry.Ty = PtrTy; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(DL) | 
|  | .setChain(DAG.getEntryNode()) | 
|  | .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); | 
|  | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | 
|  |  | 
|  | SDValue Ret = CallResult.first; | 
|  |  | 
|  | if (model != TLSModel::LocalDynamic) | 
|  | return Ret; | 
|  |  | 
|  | SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | MipsII::MO_DTPREL_HI); | 
|  | SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); | 
|  | SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | MipsII::MO_DTPREL_LO); | 
|  | SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); | 
|  | } | 
|  |  | 
|  | SDValue Offset; | 
|  | if (model == TLSModel::InitialExec) { | 
|  | // Initial Exec TLS Model | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | MipsII::MO_GOTTPREL); | 
|  | TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), | 
|  | TGA); | 
|  | Offset = | 
|  | DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo()); | 
|  | } else { | 
|  | // Local Exec TLS Model | 
|  | assert(model == TLSModel::LocalExec); | 
|  | SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | MipsII::MO_TPREL_HI); | 
|  | SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, | 
|  | MipsII::MO_TPREL_LO); | 
|  | SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); | 
|  | SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); | 
|  | Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); | 
|  | } | 
|  |  | 
|  | SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); | 
|  | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | lowerJumpTable(SDValue Op, SelectionDAG &DAG) const | 
|  | { | 
|  | JumpTableSDNode *N = cast<JumpTableSDNode>(Op); | 
|  | EVT Ty = Op.getValueType(); | 
|  |  | 
|  | if (!isPositionIndependent()) | 
|  | return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  |  | 
|  | return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | lowerConstantPool(SDValue Op, SelectionDAG &DAG) const | 
|  | { | 
|  | ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); | 
|  | EVT Ty = Op.getValueType(); | 
|  |  | 
|  | if (!isPositionIndependent()) { | 
|  | const MipsTargetObjectFile *TLOF = | 
|  | static_cast<const MipsTargetObjectFile *>( | 
|  | getTargetMachine().getObjFileLowering()); | 
|  |  | 
|  | if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), | 
|  | getTargetMachine())) | 
|  | // %gp_rel relocation | 
|  | return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); | 
|  |  | 
|  | return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  | } | 
|  |  | 
|  | return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | getPointerTy(MF.getDataLayout())); | 
|  |  | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), | 
|  | MachinePointerInfo(SV)); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDNode *Node = Op.getNode(); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue VAListPtr = Node->getOperand(1); | 
|  | unsigned Align = Node->getConstantOperandVal(3); | 
|  | const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | 
|  | SDLoc DL(Node); | 
|  | unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; | 
|  |  | 
|  | SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, | 
|  | VAListPtr, MachinePointerInfo(SV)); | 
|  | SDValue VAList = VAListLoad; | 
|  |  | 
|  | // Re-align the pointer if necessary. | 
|  | // It should only ever be necessary for 64-bit types on O32 since the minimum | 
|  | // argument alignment is the same as the maximum type alignment for N32/N64. | 
|  | // | 
|  | // FIXME: We currently align too often. The code generator doesn't notice | 
|  | //        when the pointer is still aligned from the last va_arg (or pair of | 
|  | //        va_args for the i64 on O32 case). | 
|  | if (Align > getMinStackArgumentAlignment()) { | 
|  | assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); | 
|  |  | 
|  | VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, | 
|  | DAG.getConstant(Align - 1, DL, VAList.getValueType())); | 
|  |  | 
|  | VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, | 
|  | DAG.getConstant(-(int64_t)Align, DL, | 
|  | VAList.getValueType())); | 
|  | } | 
|  |  | 
|  | // Increment the pointer, VAList, to the next vaarg. | 
|  | auto &TD = DAG.getDataLayout(); | 
|  | unsigned ArgSizeInBytes = | 
|  | TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); | 
|  | SDValue Tmp3 = | 
|  | DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, | 
|  | DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), | 
|  | DL, VAList.getValueType())); | 
|  | // Store the incremented VAList to the legalized pointer | 
|  | Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, | 
|  | MachinePointerInfo(SV)); | 
|  |  | 
|  | // In big-endian mode we must adjust the pointer when the load size is smaller | 
|  | // than the argument slot size. We must also reduce the known alignment to | 
|  | // match. For example in the N64 ABI, we must add 4 bytes to the offset to get | 
|  | // the correct half of the slot, and reduce the alignment from 8 (slot | 
|  | // alignment) down to 4 (type alignment). | 
|  | if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { | 
|  | unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; | 
|  | VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, | 
|  | DAG.getIntPtrConstant(Adjustment, DL)); | 
|  | } | 
|  | // Load the actual argument out of the pointer VAList | 
|  | return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, | 
|  | bool HasExtractInsert) { | 
|  | EVT TyX = Op.getOperand(0).getValueType(); | 
|  | EVT TyY = Op.getOperand(1).getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); | 
|  | SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); | 
|  | SDValue Res; | 
|  |  | 
|  | // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it | 
|  | // to i32. | 
|  | SDValue X = (TyX == MVT::f32) ? | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : | 
|  | DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), | 
|  | Const1); | 
|  | SDValue Y = (TyY == MVT::f32) ? | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : | 
|  | DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), | 
|  | Const1); | 
|  |  | 
|  | if (HasExtractInsert) { | 
|  | // ext  E, Y, 31, 1  ; extract bit31 of Y | 
|  | // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X | 
|  | SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); | 
|  | Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); | 
|  | } else { | 
|  | // sll SllX, X, 1 | 
|  | // srl SrlX, SllX, 1 | 
|  | // srl SrlY, Y, 31 | 
|  | // sll SllY, SrlX, 31 | 
|  | // or  Or, SrlX, SllY | 
|  | SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); | 
|  | SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); | 
|  | SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); | 
|  | SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); | 
|  | Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); | 
|  | } | 
|  |  | 
|  | if (TyX == MVT::f32) | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); | 
|  |  | 
|  | SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); | 
|  | } | 
|  |  | 
|  | static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, | 
|  | bool HasExtractInsert) { | 
|  | unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); | 
|  | unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); | 
|  | EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); | 
|  | SDLoc DL(Op); | 
|  | SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | // Bitcast to integer nodes. | 
|  | SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); | 
|  | SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); | 
|  |  | 
|  | if (HasExtractInsert) { | 
|  | // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y | 
|  | // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X | 
|  | SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, | 
|  | DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); | 
|  |  | 
|  | if (WidthX > WidthY) | 
|  | E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); | 
|  | else if (WidthY > WidthX) | 
|  | E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); | 
|  |  | 
|  | SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, | 
|  | DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, | 
|  | X); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); | 
|  | } | 
|  |  | 
|  | // (d)sll SllX, X, 1 | 
|  | // (d)srl SrlX, SllX, 1 | 
|  | // (d)srl SrlY, Y, width(Y)-1 | 
|  | // (d)sll SllY, SrlX, width(Y)-1 | 
|  | // or     Or, SrlX, SllY | 
|  | SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); | 
|  | SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); | 
|  | SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, | 
|  | DAG.getConstant(WidthY - 1, DL, MVT::i32)); | 
|  |  | 
|  | if (WidthX > WidthY) | 
|  | SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); | 
|  | else if (WidthY > WidthX) | 
|  | SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); | 
|  |  | 
|  | SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, | 
|  | DAG.getConstant(WidthX - 1, DL, MVT::i32)); | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (Subtarget.isGP64bit()) | 
|  | return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); | 
|  |  | 
|  | return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); | 
|  | } | 
|  |  | 
|  | static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, | 
|  | bool HasExtractInsert) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it | 
|  | // to i32. | 
|  | SDValue X = (Op.getValueType() == MVT::f32) | 
|  | ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) | 
|  | : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Op.getOperand(0), Const1); | 
|  |  | 
|  | // Clear MSB. | 
|  | if (HasExtractInsert) | 
|  | Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, | 
|  | DAG.getRegister(Mips::ZERO, MVT::i32), | 
|  | DAG.getConstant(31, DL, MVT::i32), Const1, X); | 
|  | else { | 
|  | // TODO: Provide DAG patterns which transform (and x, cst) | 
|  | // back to a (shl (srl x (clz cst)) (clz cst)) sequence. | 
|  | SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); | 
|  | Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); | 
|  | } | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32) | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res); | 
|  |  | 
|  | // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64 | 
|  | // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we | 
|  | // should be able to drop the usage of mfc1/mtc1 and rewrite the register in | 
|  | // place. | 
|  | SDValue LowX = | 
|  | DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); | 
|  | } | 
|  |  | 
|  | static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, | 
|  | bool HasExtractInsert) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | // Bitcast to integer node. | 
|  | SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0)); | 
|  |  | 
|  | // Clear MSB. | 
|  | if (HasExtractInsert) | 
|  | Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64, | 
|  | DAG.getRegister(Mips::ZERO_64, MVT::i64), | 
|  | DAG.getConstant(63, DL, MVT::i32), Const1, X); | 
|  | else { | 
|  | SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1); | 
|  | Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const { | 
|  | if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64)) | 
|  | return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert()); | 
|  |  | 
|  | return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering:: | 
|  | lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | // check the depth | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { | 
|  | DAG.getContext()->emitError( | 
|  | "return address can be determined only for current frame"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setFrameAddressIsTaken(true); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue FrameAddr = DAG.getCopyFromReg( | 
|  | DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | // check the depth | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { | 
|  | DAG.getContext()->emitError( | 
|  | "return address can be determined only for current frame"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; | 
|  | MFI.setReturnAddressIsTaken(true); | 
|  |  | 
|  | // Return RA, which contains the return address. Mark it an implicit live-in. | 
|  | unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); | 
|  | } | 
|  |  | 
|  | // An EH_RETURN is the result of lowering llvm.eh.return which in turn is | 
|  | // generated from __builtin_eh_return (offset, handler) | 
|  | // The effect of this is to adjust the stack pointer by "offset" | 
|  | // and then branch to "handler". | 
|  | SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | MipsFI->setCallsEhReturn(); | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  | EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | // Store stack offset in V1, store jump target in V0. Glue CopyToReg and | 
|  | // EH_RETURN nodes, so that instructions are emitted back-to-back. | 
|  | unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; | 
|  | unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; | 
|  | Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); | 
|  | return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, | 
|  | DAG.getRegister(OffsetReg, Ty), | 
|  | DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), | 
|  | Chain.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME: Need pseudo-fence for 'singlethread' fences | 
|  | // FIXME: Set SType for weaker fences where supported/appropriate. | 
|  | unsigned SType = 0; | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), | 
|  | DAG.getConstant(SType, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); | 
|  | SDValue Shamt = Op.getOperand(2); | 
|  | // if shamt < (VT.bits): | 
|  | //  lo = (shl lo, shamt) | 
|  | //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) | 
|  | // else: | 
|  | //  lo = 0 | 
|  | //  hi = (shl lo, shamt[4:0]) | 
|  | SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, | 
|  | DAG.getConstant(-1, DL, MVT::i32)); | 
|  | SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); | 
|  | SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); | 
|  | SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); | 
|  | SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, | 
|  | DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); | 
|  | Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, | 
|  | DAG.getConstant(0, DL, VT), ShiftLeftLo); | 
|  | Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); | 
|  |  | 
|  | SDValue Ops[2] = {Lo, Hi}; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, | 
|  | bool IsSRA) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); | 
|  | SDValue Shamt = Op.getOperand(2); | 
|  | MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | // if shamt < (VT.bits): | 
|  | //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) | 
|  | //  if isSRA: | 
|  | //    hi = (sra hi, shamt) | 
|  | //  else: | 
|  | //    hi = (srl hi, shamt) | 
|  | // else: | 
|  | //  if isSRA: | 
|  | //   lo = (sra hi, shamt[4:0]) | 
|  | //   hi = (sra hi, 31) | 
|  | //  else: | 
|  | //   lo = (srl hi, shamt[4:0]) | 
|  | //   hi = 0 | 
|  | SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, | 
|  | DAG.getConstant(-1, DL, MVT::i32)); | 
|  | SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); | 
|  | SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); | 
|  | SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, | 
|  | DL, VT, Hi, Shamt); | 
|  | SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, | 
|  | DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); | 
|  | SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, | 
|  | DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); | 
|  |  | 
|  | if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) { | 
|  | SDVTList VTList = DAG.getVTList(VT, VT); | 
|  | return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64 | 
|  | : Mips::PseudoD_SELECT_I, | 
|  | DL, VTList, Cond, ShiftRightHi, | 
|  | IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or, | 
|  | ShiftRightHi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); | 
|  | Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, | 
|  | IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); | 
|  |  | 
|  | SDValue Ops[2] = {Lo, Hi}; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, | 
|  | SDValue Chain, SDValue Src, unsigned Offset) { | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); | 
|  | EVT BasePtrVT = Ptr.getValueType(); | 
|  | SDLoc DL(LD); | 
|  | SDVTList VTList = DAG.getVTList(VT, MVT::Other); | 
|  |  | 
|  | if (Offset) | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, | 
|  | DAG.getConstant(Offset, DL, BasePtrVT)); | 
|  |  | 
|  | SDValue Ops[] = { Chain, Ptr, Src }; | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, | 
|  | LD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Expand an unaligned 32 or 64-bit integer load node. | 
|  | SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  |  | 
|  | if (Subtarget.systemSupportsUnalignedAccess()) | 
|  | return Op; | 
|  |  | 
|  | // Return if load is aligned or if MemVT is neither i32 nor i64. | 
|  | if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || | 
|  | ((MemVT != MVT::i32) && (MemVT != MVT::i64))) | 
|  | return SDValue(); | 
|  |  | 
|  | bool IsLittle = Subtarget.isLittle(); | 
|  | EVT VT = Op.getValueType(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); | 
|  |  | 
|  | assert((VT == MVT::i32) || (VT == MVT::i64)); | 
|  |  | 
|  | // Expand | 
|  | //  (set dst, (i64 (load baseptr))) | 
|  | // to | 
|  | //  (set tmp, (ldl (add baseptr, 7), undef)) | 
|  | //  (set dst, (ldr baseptr, tmp)) | 
|  | if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { | 
|  | SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, | 
|  | IsLittle ? 7 : 0); | 
|  | return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, | 
|  | IsLittle ? 0 : 7); | 
|  | } | 
|  |  | 
|  | SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, | 
|  | IsLittle ? 3 : 0); | 
|  | SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, | 
|  | IsLittle ? 0 : 3); | 
|  |  | 
|  | // Expand | 
|  | //  (set dst, (i32 (load baseptr))) or | 
|  | //  (set dst, (i64 (sextload baseptr))) or | 
|  | //  (set dst, (i64 (extload baseptr))) | 
|  | // to | 
|  | //  (set tmp, (lwl (add baseptr, 3), undef)) | 
|  | //  (set dst, (lwr baseptr, tmp)) | 
|  | if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || | 
|  | (ExtType == ISD::EXTLOAD)) | 
|  | return LWR; | 
|  |  | 
|  | assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); | 
|  |  | 
|  | // Expand | 
|  | //  (set dst, (i64 (zextload baseptr))) | 
|  | // to | 
|  | //  (set tmp0, (lwl (add baseptr, 3), undef)) | 
|  | //  (set tmp1, (lwr baseptr, tmp0)) | 
|  | //  (set tmp2, (shl tmp1, 32)) | 
|  | //  (set dst, (srl tmp2, 32)) | 
|  | SDLoc DL(LD); | 
|  | SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); | 
|  | SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); | 
|  | SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); | 
|  | SDValue Ops[] = { SRL, LWR.getValue(1) }; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, | 
|  | SDValue Chain, unsigned Offset) { | 
|  | SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); | 
|  | EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); | 
|  | SDLoc DL(SD); | 
|  | SDVTList VTList = DAG.getVTList(MVT::Other); | 
|  |  | 
|  | if (Offset) | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, | 
|  | DAG.getConstant(Offset, DL, BasePtrVT)); | 
|  |  | 
|  | SDValue Ops[] = { Chain, Value, Ptr }; | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, | 
|  | SD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Expand an unaligned 32 or 64-bit integer store node. | 
|  | static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, | 
|  | bool IsLittle) { | 
|  | SDValue Value = SD->getValue(), Chain = SD->getChain(); | 
|  | EVT VT = Value.getValueType(); | 
|  |  | 
|  | // Expand | 
|  | //  (store val, baseptr) or | 
|  | //  (truncstore val, baseptr) | 
|  | // to | 
|  | //  (swl val, (add baseptr, 3)) | 
|  | //  (swr val, baseptr) | 
|  | if ((VT == MVT::i32) || SD->isTruncatingStore()) { | 
|  | SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, | 
|  | IsLittle ? 3 : 0); | 
|  | return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); | 
|  | } | 
|  |  | 
|  | assert(VT == MVT::i64); | 
|  |  | 
|  | // Expand | 
|  | //  (store val, baseptr) | 
|  | // to | 
|  | //  (sdl val, (add baseptr, 7)) | 
|  | //  (sdr val, baseptr) | 
|  | SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); | 
|  | return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); | 
|  | } | 
|  |  | 
|  | // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). | 
|  | static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG, | 
|  | bool SingleFloat) { | 
|  | SDValue Val = SD->getValue(); | 
|  |  | 
|  | if (Val.getOpcode() != ISD::FP_TO_SINT || | 
|  | (Val.getValueSizeInBits() > 32 && SingleFloat)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); | 
|  | SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, | 
|  | Val.getOperand(0)); | 
|  | return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), | 
|  | SD->getPointerInfo(), SD->getAlignment(), | 
|  | SD->getMemOperand()->getFlags()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | StoreSDNode *SD = cast<StoreSDNode>(Op); | 
|  | EVT MemVT = SD->getMemoryVT(); | 
|  |  | 
|  | // Lower unaligned integer stores. | 
|  | if (!Subtarget.systemSupportsUnalignedAccess() && | 
|  | (SD->getAlignment() < MemVT.getSizeInBits() / 8) && | 
|  | ((MemVT == MVT::i32) || (MemVT == MVT::i64))) | 
|  | return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); | 
|  |  | 
|  | return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat()); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | // Return a fixed StackObject with offset 0 which points to the old stack | 
|  | // pointer. | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | EVT ValTy = Op->getValueType(0); | 
|  | int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); | 
|  | return DAG.getFrameIndex(FI, ValTy); | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); | 
|  | SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, | 
|  | Op.getOperand(0)); | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TODO: Implement a generic logic using tblgen that can support this. | 
|  | // Mips O32 ABI rules: | 
|  | // --- | 
|  | // i32 - Passed in A0, A1, A2, A3 and stack | 
|  | // f32 - Only passed in f32 registers if no int reg has been used yet to hold | 
|  | //       an argument. Otherwise, passed in A1, A2, A3 and stack. | 
|  | // f64 - Only passed in two aliased f32 registers if no int reg has been used | 
|  | //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is | 
|  | //       not used, it must be shadowed. If only A3 is available, shadow it and | 
|  | //       go to stack. | 
|  | // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack. | 
|  | // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3} | 
|  | //         with the remainder spilled to the stack. | 
|  | // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases | 
|  | //         spilling the remainder to the stack. | 
|  | // | 
|  | //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, | 
|  | CCState &State, ArrayRef<MCPhysReg> F64Regs) { | 
|  | const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( | 
|  | State.getMachineFunction().getSubtarget()); | 
|  |  | 
|  | static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; | 
|  |  | 
|  | const MipsCCState * MipsState = static_cast<MipsCCState *>(&State); | 
|  |  | 
|  | static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; | 
|  |  | 
|  | static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 }; | 
|  |  | 
|  | // Do not process byval args here. | 
|  | if (ArgFlags.isByVal()) | 
|  | return true; | 
|  |  | 
|  | // Promote i8 and i16 | 
|  | if (ArgFlags.isInReg() && !Subtarget.isLittle()) { | 
|  | if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { | 
|  | LocVT = MVT::i32; | 
|  | if (ArgFlags.isSExt()) | 
|  | LocInfo = CCValAssign::SExtUpper; | 
|  | else if (ArgFlags.isZExt()) | 
|  | LocInfo = CCValAssign::ZExtUpper; | 
|  | else | 
|  | LocInfo = CCValAssign::AExtUpper; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote i8 and i16 | 
|  | if (LocVT == MVT::i8 || LocVT == MVT::i16) { | 
|  | LocVT = MVT::i32; | 
|  | if (ArgFlags.isSExt()) | 
|  | LocInfo = CCValAssign::SExt; | 
|  | else if (ArgFlags.isZExt()) | 
|  | LocInfo = CCValAssign::ZExt; | 
|  | else | 
|  | LocInfo = CCValAssign::AExt; | 
|  | } | 
|  |  | 
|  | unsigned Reg; | 
|  |  | 
|  | // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following | 
|  | // is true: function is vararg, argument is 3rd or higher, there is previous | 
|  | // argument which is not f32 or f64. | 
|  | bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || | 
|  | State.getFirstUnallocated(F32Regs) != ValNo; | 
|  | unsigned OrigAlign = ArgFlags.getOrigAlign(); | 
|  | bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); | 
|  | bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo); | 
|  |  | 
|  | // The MIPS vector ABI for floats passes them in a pair of registers | 
|  | if (ValVT == MVT::i32 && isVectorFloat) { | 
|  | // This is the start of an vector that was scalarized into an unknown number | 
|  | // of components. It doesn't matter how many there are. Allocate one of the | 
|  | // notional 8 byte aligned registers which map onto the argument stack, and | 
|  | // shadow the register lost to alignment requirements. | 
|  | if (ArgFlags.isSplit()) { | 
|  | Reg = State.AllocateReg(FloatVectorIntRegs); | 
|  | if (Reg == Mips::A2) | 
|  | State.AllocateReg(Mips::A1); | 
|  | else if (Reg == 0) | 
|  | State.AllocateReg(Mips::A3); | 
|  | } else { | 
|  | // If we're an intermediate component of the split, we can just attempt to | 
|  | // allocate a register directly. | 
|  | Reg = State.AllocateReg(IntRegs); | 
|  | } | 
|  | } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { | 
|  | Reg = State.AllocateReg(IntRegs); | 
|  | // If this is the first part of an i64 arg, | 
|  | // the allocated register must be either A0 or A2. | 
|  | if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) | 
|  | Reg = State.AllocateReg(IntRegs); | 
|  | LocVT = MVT::i32; | 
|  | } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { | 
|  | // Allocate int register and shadow next int register. If first | 
|  | // available register is Mips::A1 or Mips::A3, shadow it too. | 
|  | Reg = State.AllocateReg(IntRegs); | 
|  | if (Reg == Mips::A1 || Reg == Mips::A3) | 
|  | Reg = State.AllocateReg(IntRegs); | 
|  | State.AllocateReg(IntRegs); | 
|  | LocVT = MVT::i32; | 
|  | } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { | 
|  | // we are guaranteed to find an available float register | 
|  | if (ValVT == MVT::f32) { | 
|  | Reg = State.AllocateReg(F32Regs); | 
|  | // Shadow int register | 
|  | State.AllocateReg(IntRegs); | 
|  | } else { | 
|  | Reg = State.AllocateReg(F64Regs); | 
|  | // Shadow int registers | 
|  | unsigned Reg2 = State.AllocateReg(IntRegs); | 
|  | if (Reg2 == Mips::A1 || Reg2 == Mips::A3) | 
|  | State.AllocateReg(IntRegs); | 
|  | State.AllocateReg(IntRegs); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Cannot handle this ValVT."); | 
|  |  | 
|  | if (!Reg) { | 
|  | unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign); | 
|  | State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | 
|  | } else | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, | 
|  | MVT LocVT, CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
|  | static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; | 
|  |  | 
|  | return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); | 
|  | } | 
|  |  | 
|  | static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, | 
|  | MVT LocVT, CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
|  | static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; | 
|  |  | 
|  | return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); | 
|  | } | 
|  |  | 
|  | static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, | 
|  | CCState &State) LLVM_ATTRIBUTE_UNUSED; | 
|  |  | 
|  | #include "MipsGenCallingConv.inc" | 
|  |  | 
|  | CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{ | 
|  | return CC_Mips; | 
|  | } | 
|  |  | 
|  | CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{ | 
|  | return RetCC_Mips; | 
|  | } | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                  Call Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Return next O32 integer argument register. | 
|  | static unsigned getNextIntArgReg(unsigned Reg) { | 
|  | assert((Reg == Mips::A0) || (Reg == Mips::A2)); | 
|  | return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; | 
|  | } | 
|  |  | 
|  | SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, | 
|  | SDValue Chain, SDValue Arg, | 
|  | const SDLoc &DL, bool IsTailCall, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!IsTailCall) { | 
|  | SDValue PtrOff = | 
|  | DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, | 
|  | DAG.getIntPtrConstant(Offset, DL)); | 
|  | return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), | 
|  | /* Alignment = */ 0, MachineMemOperand::MOVolatile); | 
|  | } | 
|  |  | 
|  | void MipsTargetLowering:: | 
|  | getOpndList(SmallVectorImpl<SDValue> &Ops, | 
|  | std::deque<std::pair<unsigned, SDValue>> &RegsToPass, | 
|  | bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, | 
|  | bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, | 
|  | SDValue Chain) const { | 
|  | // Insert node "GP copy globalreg" before call to function. | 
|  | // | 
|  | // R_MIPS_CALL* operators (emitted when non-internal functions are called | 
|  | // in PIC mode) allow symbols to be resolved via lazy binding. | 
|  | // The lazy binding stub requires GP to point to the GOT. | 
|  | // Note that we don't need GP to point to the GOT for indirect calls | 
|  | // (when R_MIPS_CALL* is not used for the call) because Mips linker generates | 
|  | // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs | 
|  | // used for the function (that is, Mips linker doesn't generate lazy binding | 
|  | // stub for a function whose address is taken in the program). | 
|  | if (IsPICCall && !InternalLinkage && IsCallReloc) { | 
|  | unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; | 
|  | EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; | 
|  | RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token | 
|  | // chain and flag operands which copy the outgoing args into registers. | 
|  | // The InFlag in necessary since all emitted instructions must be | 
|  | // stuck together. | 
|  | SDValue InFlag; | 
|  |  | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are | 
|  | // known live into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | const uint32_t *Mask = | 
|  | TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | if (Subtarget.inMips16HardFloat()) { | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { | 
|  | StringRef Sym = G->getGlobal()->getName(); | 
|  | Function *F = G->getGlobal()->getParent()->getFunction(Sym); | 
|  | if (F && F->hasFnAttribute("__Mips16RetHelper")) { | 
|  | Mask = MipsRegisterInfo::getMips16RetHelperMask(); | 
|  | } | 
|  | } | 
|  | } | 
|  | Ops.push_back(CLI.DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  | } | 
|  |  | 
|  | void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, | 
|  | SDNode *Node) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return; | 
|  | case Mips::JALR: | 
|  | case Mips::JALRPseudo: | 
|  | case Mips::JALR64: | 
|  | case Mips::JALR64Pseudo: | 
|  | case Mips::JALR16_MM: | 
|  | case Mips::JALRC16_MMR6: | 
|  | case Mips::TAILCALLREG: | 
|  | case Mips::TAILCALLREG64: | 
|  | case Mips::TAILCALLR6REG: | 
|  | case Mips::TAILCALL64R6REG: | 
|  | case Mips::TAILCALLREG_MM: | 
|  | case Mips::TAILCALLREG_MMR6: { | 
|  | if (!EmitJalrReloc || | 
|  | Subtarget.inMips16Mode() || | 
|  | !isPositionIndependent() || | 
|  | Node->getNumOperands() < 1 || | 
|  | Node->getOperand(0).getNumOperands() < 2) { | 
|  | return; | 
|  | } | 
|  | // We are after the callee address, set by LowerCall(). | 
|  | // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the | 
|  | // symbol. | 
|  | const SDValue TargetAddr = Node->getOperand(0).getOperand(1); | 
|  | StringRef Sym; | 
|  | if (const GlobalAddressSDNode *G = | 
|  | dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) { | 
|  | Sym = G->getGlobal()->getName(); | 
|  | } | 
|  | else if (const ExternalSymbolSDNode *ES = | 
|  | dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) { | 
|  | Sym = ES->getSymbol(); | 
|  | } | 
|  |  | 
|  | if (Sym.empty()) | 
|  | return; | 
|  |  | 
|  | MachineFunction *MF = MI.getParent()->getParent(); | 
|  | MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym); | 
|  | MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerCall - functions arguments are copied from virtual regs to | 
|  | /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. | 
|  | SDValue | 
|  | MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG                     = CLI.DAG; | 
|  | SDLoc DL                              = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins; | 
|  | SDValue Chain                         = CLI.Chain; | 
|  | SDValue Callee                        = CLI.Callee; | 
|  | bool &IsTailCall                      = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv              = CLI.CallConv; | 
|  | bool IsVarArg                         = CLI.IsVarArg; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); | 
|  | MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); | 
|  | bool IsPIC = isPositionIndependent(); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | MipsCCState CCInfo( | 
|  | CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), | 
|  | MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); | 
|  |  | 
|  | const ExternalSymbolSDNode *ES = | 
|  | dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode()); | 
|  |  | 
|  | // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which | 
|  | // is during the lowering of a call with a byval argument which produces | 
|  | // a call to memcpy. For the O32 case, this causes the caller to allocate | 
|  | // stack space for the reserved argument area for the callee, then recursively | 
|  | // again for the memcpy call. In the NEWABI case, this doesn't occur as those | 
|  | // ABIs mandate that the callee allocates the reserved argument area. We do | 
|  | // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though. | 
|  | // | 
|  | // If the callee has a byval argument and memcpy is used, we are mandated | 
|  | // to already have produced a reserved argument area for the callee for O32. | 
|  | // Therefore, the reserved argument area can be reused for both calls. | 
|  | // | 
|  | // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START | 
|  | // present, as we have yet to hook that node onto the chain. | 
|  | // | 
|  | // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this | 
|  | // case. GCC does a similar trick, in that wherever possible, it calculates | 
|  | // the maximum out going argument area (including the reserved area), and | 
|  | // preallocates the stack space on entrance to the caller. | 
|  | // | 
|  | // FIXME: We should do the same for efficiency and space. | 
|  |  | 
|  | // Note: The check on the calling convention below must match | 
|  | //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes(). | 
|  | bool MemcpyInByVal = ES && | 
|  | StringRef(ES->getSymbol()) == StringRef("memcpy") && | 
|  | CallConv != CallingConv::Fast && | 
|  | Chain.getOpcode() == ISD::CALLSEQ_START; | 
|  |  | 
|  | // Allocate the reserved argument area. It seems strange to do this from the | 
|  | // caller side but removing it breaks the frame size calculation. | 
|  | unsigned ReservedArgArea = | 
|  | MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv); | 
|  | CCInfo.AllocateStack(ReservedArgArea, 1); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), | 
|  | ES ? ES->getSymbol() : nullptr); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NextStackOffset = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | // Check if it's really possible to do a tail call. Restrict it to functions | 
|  | // that are part of this compilation unit. | 
|  | bool InternalLinkage = false; | 
|  | if (IsTailCall) { | 
|  | IsTailCall = isEligibleForTailCallOptimization( | 
|  | CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | InternalLinkage = G->getGlobal()->hasInternalLinkage(); | 
|  | IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() || | 
|  | G->getGlobal()->hasPrivateLinkage() || | 
|  | G->getGlobal()->hasHiddenVisibility() || | 
|  | G->getGlobal()->hasProtectedVisibility()); | 
|  | } | 
|  | } | 
|  | if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) | 
|  | report_fatal_error("failed to perform tail call elimination on a call " | 
|  | "site marked musttail"); | 
|  |  | 
|  | if (IsTailCall) | 
|  | ++NumTailCalls; | 
|  |  | 
|  | // Chain is the output chain of the last Load/Store or CopyToReg node. | 
|  | // ByValChain is the output chain of the last Memcpy node created for copying | 
|  | // byval arguments to the stack. | 
|  | unsigned StackAlignment = TFL->getStackAlignment(); | 
|  | NextStackOffset = alignTo(NextStackOffset, StackAlignment); | 
|  | SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); | 
|  |  | 
|  | if (!(IsTailCall || MemcpyInByVal)) | 
|  | Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL); | 
|  |  | 
|  | SDValue StackPtr = | 
|  | DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | std::deque<std::pair<unsigned, SDValue>> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  |  | 
|  | CCInfo.rewindByValRegsInfo(); | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | SDValue Arg = OutVals[i]; | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | bool UseUpperBits = false; | 
|  |  | 
|  | // ByVal Arg. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned FirstByValReg, LastByValReg; | 
|  | unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); | 
|  | CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); | 
|  |  | 
|  | assert(Flags.getByValSize() && | 
|  | "ByVal args of size 0 should have been ignored by front-end."); | 
|  | assert(ByValIdx < CCInfo.getInRegsParamsCount()); | 
|  | assert(!IsTailCall && | 
|  | "Do not tail-call optimize if there is a byval argument."); | 
|  | passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, | 
|  | FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), | 
|  | VA); | 
|  | CCInfo.nextInRegsParam(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | if (VA.isRegLoc()) { | 
|  | if ((ValVT == MVT::f32 && LocVT == MVT::i32) || | 
|  | (ValVT == MVT::f64 && LocVT == MVT::i64) || | 
|  | (ValVT == MVT::i64 && LocVT == MVT::f64)) | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); | 
|  | else if (ValVT == MVT::f64 && LocVT == MVT::i32) { | 
|  | SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Arg, DAG.getConstant(0, DL, MVT::i32)); | 
|  | SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Arg, DAG.getConstant(1, DL, MVT::i32)); | 
|  | if (!Subtarget.isLittle()) | 
|  | std::swap(Lo, Hi); | 
|  | Register LocRegLo = VA.getLocReg(); | 
|  | unsigned LocRegHigh = getNextIntArgReg(LocRegLo); | 
|  | RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); | 
|  | RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); | 
|  | break; | 
|  | case CCValAssign::SExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); | 
|  | break; | 
|  | case CCValAssign::ZExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); | 
|  | break; | 
|  | case CCValAssign::AExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (UseUpperBits) { | 
|  | unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); | 
|  | unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); | 
|  | Arg = DAG.getNode( | 
|  | ISD::SHL, DL, VA.getLocVT(), Arg, | 
|  | DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // Arguments that can be passed on register must be kept at | 
|  | // RegsToPass vector | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Register can't get to this point... | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | // emit ISD::STORE whichs stores the | 
|  | // parameter value to a stack Location | 
|  | MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), | 
|  | Chain, Arg, DL, IsTailCall, DAG)); | 
|  | } | 
|  |  | 
|  | // Transform all store nodes into one single node because all store | 
|  | // nodes are independent of each other. | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | 
|  |  | 
|  | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
|  | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
|  | // node so that legalize doesn't hack it. | 
|  |  | 
|  | EVT Ty = Callee.getValueType(); | 
|  | bool GlobalOrExternal = false, IsCallReloc = false; | 
|  |  | 
|  | // The long-calls feature is ignored in case of PIC. | 
|  | // While we do not support -mshared / -mno-shared properly, | 
|  | // ignore long-calls in case of -mabicalls too. | 
|  | if (!Subtarget.isABICalls() && !IsPIC) { | 
|  | // If the function should be called using "long call", | 
|  | // get its address into a register to prevent using | 
|  | // of the `jal` instruction for the direct call. | 
|  | if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | if (Subtarget.useLongCalls()) | 
|  | Callee = Subtarget.hasSym32() | 
|  | ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  | } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | bool UseLongCalls = Subtarget.useLongCalls(); | 
|  | // If the function has long-call/far/near attribute | 
|  | // it overrides command line switch pased to the backend. | 
|  | if (auto *F = dyn_cast<Function>(N->getGlobal())) { | 
|  | if (F->hasFnAttribute("long-call")) | 
|  | UseLongCalls = true; | 
|  | else if (F->hasFnAttribute("short-call")) | 
|  | UseLongCalls = false; | 
|  | } | 
|  | if (UseLongCalls) | 
|  | Callee = Subtarget.hasSym32() | 
|  | ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) | 
|  | : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | if (IsPIC) { | 
|  | const GlobalValue *Val = G->getGlobal(); | 
|  | InternalLinkage = Val->hasInternalLinkage(); | 
|  |  | 
|  | if (InternalLinkage) | 
|  | Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); | 
|  | else if (LargeGOT) { | 
|  | Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, | 
|  | MipsII::MO_CALL_LO16, Chain, | 
|  | FuncInfo->callPtrInfo(Val)); | 
|  | IsCallReloc = true; | 
|  | } else { | 
|  | Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, | 
|  | FuncInfo->callPtrInfo(Val)); | 
|  | IsCallReloc = true; | 
|  | } | 
|  | } else | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, | 
|  | getPointerTy(DAG.getDataLayout()), 0, | 
|  | MipsII::MO_NO_FLAG); | 
|  | GlobalOrExternal = true; | 
|  | } | 
|  | else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | const char *Sym = S->getSymbol(); | 
|  |  | 
|  | if (!IsPIC) // static | 
|  | Callee = DAG.getTargetExternalSymbol( | 
|  | Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); | 
|  | else if (LargeGOT) { | 
|  | Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, | 
|  | MipsII::MO_CALL_LO16, Chain, | 
|  | FuncInfo->callPtrInfo(Sym)); | 
|  | IsCallReloc = true; | 
|  | } else { // PIC | 
|  | Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, | 
|  | FuncInfo->callPtrInfo(Sym)); | 
|  | IsCallReloc = true; | 
|  | } | 
|  |  | 
|  | GlobalOrExternal = true; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops(1, Chain); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage, | 
|  | IsCallReloc, CLI, Callee, Chain); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | MF.getFrameInfo().setHasTailCall(); | 
|  | return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); | 
|  | SDValue InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node in the case of where it is not a call to | 
|  | // memcpy. | 
|  | if (!(MemcpyInByVal)) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, | 
|  | DAG.getIntPtrConstant(0, DL, true), InFlag, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, | 
|  | InVals, CLI); | 
|  | } | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | SDValue MipsTargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, | 
|  | TargetLowering::CallLoweringInfo &CLI) const { | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | const ExternalSymbolSDNode *ES = | 
|  | dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy, | 
|  | ES ? ES->getSymbol() : nullptr); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  |  | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), | 
|  | RVLocs[i].getLocVT(), InFlag); | 
|  | Chain = Val.getValue(1); | 
|  | InFlag = Val.getValue(2); | 
|  |  | 
|  | if (VA.isUpperBitsInLoc()) { | 
|  | unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); | 
|  | unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); | 
|  | unsigned Shift = | 
|  | VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; | 
|  | Val = DAG.getNode( | 
|  | Shift, DL, VA.getLocVT(), Val, | 
|  | DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | case CCValAssign::AExtUpper: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | case CCValAssign::ZExtUpper: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | case CCValAssign::SExtUpper: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, | 
|  | EVT ArgVT, const SDLoc &DL, | 
|  | SelectionDAG &DAG) { | 
|  | MVT LocVT = VA.getLocVT(); | 
|  | EVT ValVT = VA.getValVT(); | 
|  |  | 
|  | // Shift into the upper bits if necessary. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | break; | 
|  | case CCValAssign::AExtUpper: | 
|  | case CCValAssign::SExtUpper: | 
|  | case CCValAssign::ZExtUpper: { | 
|  | unsigned ValSizeInBits = ArgVT.getSizeInBits(); | 
|  | unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); | 
|  | unsigned Opcode = | 
|  | VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; | 
|  | Val = DAG.getNode( | 
|  | Opcode, DL, VA.getLocVT(), Val, | 
|  | DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an value smaller than the argument slot size (32-bit for O32, | 
|  | // 64-bit for N32/N64), it has been promoted in some way to the argument slot | 
|  | // size. Extract the value and insert any appropriate assertions regarding | 
|  | // sign/zero extension. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::AExtUpper: | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::SExtUpper: | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::ZExtUpper: | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //             Formal Arguments Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// LowerFormalArguments - transform physical registers into virtual registers | 
|  | /// and generate load operations for arguments places on the stack. | 
|  | SDValue MipsTargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | MipsFI->setVarArgsFrameIndex(0); | 
|  |  | 
|  | // Used with vargs to acumulate store chains. | 
|  | std::vector<SDValue> OutChains; | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); | 
|  | const Function &Func = DAG.getMachineFunction().getFunction(); | 
|  | Function::const_arg_iterator FuncArg = Func.arg_begin(); | 
|  |  | 
|  | if (Func.hasFnAttribute("interrupt") && !Func.arg_empty()) | 
|  | report_fatal_error( | 
|  | "Functions with the interrupt attribute cannot have arguments!"); | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); | 
|  | MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), | 
|  | CCInfo.getInRegsParamsCount() > 0); | 
|  |  | 
|  | unsigned CurArgIdx = 0; | 
|  | CCInfo.rewindByValRegsInfo(); | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (Ins[i].isOrigArg()) { | 
|  | std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); | 
|  | CurArgIdx = Ins[i].getOrigArgIndex(); | 
|  | } | 
|  | EVT ValVT = VA.getValVT(); | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | bool IsRegLoc = VA.isRegLoc(); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); | 
|  | unsigned FirstByValReg, LastByValReg; | 
|  | unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); | 
|  | CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); | 
|  |  | 
|  | assert(Flags.getByValSize() && | 
|  | "ByVal args of size 0 should have been ignored by front-end."); | 
|  | assert(ByValIdx < CCInfo.getInRegsParamsCount()); | 
|  | copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, | 
|  | FirstByValReg, LastByValReg, VA, CCInfo); | 
|  | CCInfo.nextInRegsParam(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Arguments stored on registers | 
|  | if (IsRegLoc) { | 
|  | MVT RegVT = VA.getLocVT(); | 
|  | Register ArgReg = VA.getLocReg(); | 
|  | const TargetRegisterClass *RC = getRegClassFor(RegVT); | 
|  |  | 
|  | // Transform the arguments stored on | 
|  | // physical registers into virtual ones | 
|  | unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); | 
|  |  | 
|  | ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); | 
|  |  | 
|  | // Handle floating point arguments passed in integer registers and | 
|  | // long double arguments passed in floating point registers. | 
|  | if ((RegVT == MVT::i32 && ValVT == MVT::f32) || | 
|  | (RegVT == MVT::i64 && ValVT == MVT::f64) || | 
|  | (RegVT == MVT::f64 && ValVT == MVT::i64)) | 
|  | ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); | 
|  | else if (ABI.IsO32() && RegVT == MVT::i32 && | 
|  | ValVT == MVT::f64) { | 
|  | unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), | 
|  | getNextIntArgReg(ArgReg), RC); | 
|  | SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); | 
|  | if (!Subtarget.isLittle()) | 
|  | std::swap(ArgValue, ArgValue2); | 
|  | ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, | 
|  | ArgValue, ArgValue2); | 
|  | } | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } else { // VA.isRegLoc() | 
|  | MVT LocVT = VA.getLocVT(); | 
|  |  | 
|  | if (ABI.IsO32()) { | 
|  | // We ought to be able to use LocVT directly but O32 sets it to i32 | 
|  | // when allocating floating point values to integer registers. | 
|  | // This shouldn't influence how we load the value into registers unless | 
|  | // we are targeting softfloat. | 
|  | if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) | 
|  | LocVT = VA.getValVT(); | 
|  | } | 
|  |  | 
|  | // sanity check | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | // The stack pointer offset is relative to the caller stack frame. | 
|  | int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, | 
|  | VA.getLocMemOffset(), true); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | SDValue ArgValue = DAG.getLoad( | 
|  | LocVT, DL, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); | 
|  | OutChains.push_back(ArgValue.getValue(1)); | 
|  |  | 
|  | ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | // The mips ABIs for returning structs by value requires that we copy | 
|  | // the sret argument into $v0 for the return. Save the argument into | 
|  | // a virtual register so that we can access it from the return points. | 
|  | if (Ins[i].Flags.isSRet()) { | 
|  | unsigned Reg = MipsFI->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | Reg = MF.getRegInfo().createVirtualRegister( | 
|  | getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); | 
|  | MipsFI->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsVarArg) | 
|  | writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); | 
|  |  | 
|  | // All stores are grouped in one node to allow the matching between | 
|  | // the size of Ins and InVals. This only happens when on varg functions | 
|  | if (!OutChains.empty()) { | 
|  | OutChains.push_back(Chain); | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool | 
|  | MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_Mips); | 
|  | } | 
|  |  | 
|  | bool | 
|  | MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { | 
|  | if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32) | 
|  | return true; | 
|  |  | 
|  | return IsSigned; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, | 
|  | const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | MipsFI->setISR(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | // CCValAssign - represent the assignment of | 
|  | // the return value to a location | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | // CCState - Info about the registers and stack slot. | 
|  | MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); | 
|  |  | 
|  | // Analyze return values. | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_Mips); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 4> RetOps(1, Chain); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | SDValue Val = OutVals[i]; | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | bool UseUpperBits = false; | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); | 
|  | break; | 
|  | case CCValAssign::AExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); | 
|  | break; | 
|  | case CCValAssign::ZExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); | 
|  | break; | 
|  | case CCValAssign::SExtUpper: | 
|  | UseUpperBits = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (UseUpperBits) { | 
|  | unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); | 
|  | unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); | 
|  | Val = DAG.getNode( | 
|  | ISD::SHL, DL, VA.getLocVT(), Val, | 
|  | DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); | 
|  |  | 
|  | // Guarantee that all emitted copies are stuck together with flags. | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // The mips ABIs for returning structs by value requires that we copy | 
|  | // the sret argument into $v0 for the return. We saved the argument into | 
|  | // a virtual register in the entry block, so now we copy the value out | 
|  | // and into $v0. | 
|  | if (MF.getFunction().hasStructRetAttr()) { | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  | unsigned Reg = MipsFI->getSRetReturnReg(); | 
|  |  | 
|  | if (!Reg) | 
|  | llvm_unreachable("sret virtual register not created in the entry block"); | 
|  | SDValue Val = | 
|  | DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); | 
|  | unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | // ISRs must use "eret". | 
|  | if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt")) | 
|  | return LowerInterruptReturn(RetOps, DL, DAG); | 
|  |  | 
|  | // Standard return on Mips is a "jr $ra" | 
|  | return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Mips Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | MipsTargetLowering::ConstraintType | 
|  | MipsTargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | // Mips specific constraints | 
|  | // GCC config/mips/constraints.md | 
|  | // | 
|  | // 'd' : An address register. Equivalent to r | 
|  | //       unless generating MIPS16 code. | 
|  | // 'y' : Equivalent to r; retained for | 
|  | //       backwards compatibility. | 
|  | // 'c' : A register suitable for use in an indirect | 
|  | //       jump. This will always be $25 for -mabicalls. | 
|  | // 'l' : The lo register. 1 word storage. | 
|  | // 'x' : The hilo register pair. Double word storage. | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default : break; | 
|  | case 'd': | 
|  | case 'y': | 
|  | case 'f': | 
|  | case 'c': | 
|  | case 'l': | 
|  | case 'x': | 
|  | return C_RegisterClass; | 
|  | case 'R': | 
|  | return C_Memory; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constraint == "ZC") | 
|  | return C_Memory; | 
|  |  | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | MipsTargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | break; | 
|  | case 'd': | 
|  | case 'y': | 
|  | if (type->isIntegerTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'f': // FPU or MSA register | 
|  | if (Subtarget.hasMSA() && type->isVectorTy() && | 
|  | cast<VectorType>(type)->getBitWidth() == 128) | 
|  | weight = CW_Register; | 
|  | else if (type->isFloatTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'c': // $25 for indirect jumps | 
|  | case 'l': // lo register | 
|  | case 'x': // hilo register pair | 
|  | if (type->isIntegerTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'I': // signed 16 bit immediate | 
|  | case 'J': // integer zero | 
|  | case 'K': // unsigned 16 bit immediate | 
|  | case 'L': // signed 32 bit immediate where lower 16 bits are 0 | 
|  | case 'N': // immediate in the range of -65535 to -1 (inclusive) | 
|  | case 'O': // signed 15 bit immediate (+- 16383) | 
|  | case 'P': // immediate in the range of 65535 to 1 (inclusive) | 
|  | if (isa<ConstantInt>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 'R': | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// This is a helper function to parse a physical register string and split it | 
|  | /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag | 
|  | /// that is returned indicates whether parsing was successful. The second flag | 
|  | /// is true if the numeric part exists. | 
|  | static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, | 
|  | unsigned long long &Reg) { | 
|  | if (C.front() != '{' || C.back() != '}') | 
|  | return std::make_pair(false, false); | 
|  |  | 
|  | // Search for the first numeric character. | 
|  | StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; | 
|  | I = std::find_if(B, E, isdigit); | 
|  |  | 
|  | Prefix = StringRef(B, I - B); | 
|  |  | 
|  | // The second flag is set to false if no numeric characters were found. | 
|  | if (I == E) | 
|  | return std::make_pair(true, false); | 
|  |  | 
|  | // Parse the numeric characters. | 
|  | return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), | 
|  | true); | 
|  | } | 
|  |  | 
|  | EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, | 
|  | ISD::NodeType) const { | 
|  | bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32; | 
|  | EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32); | 
|  | return VT.bitsLT(MinVT) ? MinVT : VT; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: | 
|  | parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { | 
|  | const TargetRegisterInfo *TRI = | 
|  | Subtarget.getRegisterInfo(); | 
|  | const TargetRegisterClass *RC; | 
|  | StringRef Prefix; | 
|  | unsigned long long Reg; | 
|  |  | 
|  | std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); | 
|  |  | 
|  | if (!R.first) | 
|  | return std::make_pair(0U, nullptr); | 
|  |  | 
|  | if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. | 
|  | // No numeric characters follow "hi" or "lo". | 
|  | if (R.second) | 
|  | return std::make_pair(0U, nullptr); | 
|  |  | 
|  | RC = TRI->getRegClass(Prefix == "hi" ? | 
|  | Mips::HI32RegClassID : Mips::LO32RegClassID); | 
|  | return std::make_pair(*(RC->begin()), RC); | 
|  | } else if (Prefix.startswith("$msa")) { | 
|  | // Parse $msa(ir|csr|access|save|modify|request|map|unmap) | 
|  |  | 
|  | // No numeric characters follow the name. | 
|  | if (R.second) | 
|  | return std::make_pair(0U, nullptr); | 
|  |  | 
|  | Reg = StringSwitch<unsigned long long>(Prefix) | 
|  | .Case("$msair", Mips::MSAIR) | 
|  | .Case("$msacsr", Mips::MSACSR) | 
|  | .Case("$msaaccess", Mips::MSAAccess) | 
|  | .Case("$msasave", Mips::MSASave) | 
|  | .Case("$msamodify", Mips::MSAModify) | 
|  | .Case("$msarequest", Mips::MSARequest) | 
|  | .Case("$msamap", Mips::MSAMap) | 
|  | .Case("$msaunmap", Mips::MSAUnmap) | 
|  | .Default(0); | 
|  |  | 
|  | if (!Reg) | 
|  | return std::make_pair(0U, nullptr); | 
|  |  | 
|  | RC = TRI->getRegClass(Mips::MSACtrlRegClassID); | 
|  | return std::make_pair(Reg, RC); | 
|  | } | 
|  |  | 
|  | if (!R.second) | 
|  | return std::make_pair(0U, nullptr); | 
|  |  | 
|  | if (Prefix == "$f") { // Parse $f0-$f31. | 
|  | // If the size of FP registers is 64-bit or Reg is an even number, select | 
|  | // the 64-bit register class. Otherwise, select the 32-bit register class. | 
|  | if (VT == MVT::Other) | 
|  | VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; | 
|  |  | 
|  | RC = getRegClassFor(VT); | 
|  |  | 
|  | if (RC == &Mips::AFGR64RegClass) { | 
|  | assert(Reg % 2 == 0); | 
|  | Reg >>= 1; | 
|  | } | 
|  | } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. | 
|  | RC = TRI->getRegClass(Mips::FCCRegClassID); | 
|  | else if (Prefix == "$w") { // Parse $w0-$w31. | 
|  | RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); | 
|  | } else { // Parse $0-$31. | 
|  | assert(Prefix == "$"); | 
|  | RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); | 
|  | } | 
|  |  | 
|  | assert(Reg < RC->getNumRegs()); | 
|  | return std::make_pair(*(RC->begin() + Reg), RC); | 
|  | } | 
|  |  | 
|  | /// Given a register class constraint, like 'r', if this corresponds directly | 
|  | /// to an LLVM register class, return a register of 0 and the register class | 
|  | /// pointer. | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'd': // Address register. Same as 'r' unless generating MIPS16 code. | 
|  | case 'y': // Same as 'r'. Exists for compatibility. | 
|  | case 'r': | 
|  | if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { | 
|  | if (Subtarget.inMips16Mode()) | 
|  | return std::make_pair(0U, &Mips::CPU16RegsRegClass); | 
|  | return std::make_pair(0U, &Mips::GPR32RegClass); | 
|  | } | 
|  | if (VT == MVT::i64 && !Subtarget.isGP64bit()) | 
|  | return std::make_pair(0U, &Mips::GPR32RegClass); | 
|  | if (VT == MVT::i64 && Subtarget.isGP64bit()) | 
|  | return std::make_pair(0U, &Mips::GPR64RegClass); | 
|  | // This will generate an error message | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 'f': // FPU or MSA register | 
|  | if (VT == MVT::v16i8) | 
|  | return std::make_pair(0U, &Mips::MSA128BRegClass); | 
|  | else if (VT == MVT::v8i16 || VT == MVT::v8f16) | 
|  | return std::make_pair(0U, &Mips::MSA128HRegClass); | 
|  | else if (VT == MVT::v4i32 || VT == MVT::v4f32) | 
|  | return std::make_pair(0U, &Mips::MSA128WRegClass); | 
|  | else if (VT == MVT::v2i64 || VT == MVT::v2f64) | 
|  | return std::make_pair(0U, &Mips::MSA128DRegClass); | 
|  | else if (VT == MVT::f32) | 
|  | return std::make_pair(0U, &Mips::FGR32RegClass); | 
|  | else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { | 
|  | if (Subtarget.isFP64bit()) | 
|  | return std::make_pair(0U, &Mips::FGR64RegClass); | 
|  | return std::make_pair(0U, &Mips::AFGR64RegClass); | 
|  | } | 
|  | break; | 
|  | case 'c': // register suitable for indirect jump | 
|  | if (VT == MVT::i32) | 
|  | return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); | 
|  | if (VT == MVT::i64) | 
|  | return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); | 
|  | // This will generate an error message | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 'l': // use the `lo` register to store values | 
|  | // that are no bigger than a word | 
|  | if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) | 
|  | return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); | 
|  | return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); | 
|  | case 'x': // use the concatenated `hi` and `lo` registers | 
|  | // to store doubleword values | 
|  | // Fixme: Not triggering the use of both hi and low | 
|  | // This will generate an error message | 
|  | return std::make_pair(0U, nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> R; | 
|  | R = parseRegForInlineAsmConstraint(Constraint, VT); | 
|  |  | 
|  | if (R.second) | 
|  | return R; | 
|  |  | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue Result; | 
|  |  | 
|  | // Only support length 1 constraints for now. | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: break; // This will fall through to the generic implementation | 
|  | case 'I': // Signed 16 bit constant | 
|  | // If this fails, the parent routine will give an error | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getSExtValue(); | 
|  | if (isInt<16>(Val)) { | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'J': // integer zero | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getZExtValue(); | 
|  | if (Val == 0) { | 
|  | Result = DAG.getTargetConstant(0, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'K': // unsigned 16 bit immediate | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | uint64_t Val = (uint64_t)C->getZExtValue(); | 
|  | if (isUInt<16>(Val)) { | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'L': // signed 32 bit immediate where lower 16 bits are 0 | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getSExtValue(); | 
|  | if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'N': // immediate in the range of -65535 to -1 (inclusive) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getSExtValue(); | 
|  | if ((Val >= -65535) && (Val <= -1)) { | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'O': // signed 15 bit immediate | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getSExtValue(); | 
|  | if ((isInt<15>(Val))) { | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'P': // immediate in the range of 1 to 65535 (inclusive) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | EVT Type = Op.getValueType(); | 
|  | int64_t Val = C->getSExtValue(); | 
|  | if ((Val <= 65535) && (Val >= 1)) { | 
|  | Result = DAG.getTargetConstant(Val, DL, Type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS, Instruction *I) const { | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (!AM.HasBaseReg) // allow "r+i". | 
|  | break; | 
|  | return false; // disallow "r+r" or "r+r+i". | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // The Mips target isn't yet aware of offsets. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVT MipsTargetLowering::getOptimalMemOpType( | 
|  | uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, | 
|  | bool ZeroMemset, bool MemcpyStrSrc, | 
|  | const AttributeList &FuncAttributes) const { | 
|  | if (Subtarget.hasMips64()) | 
|  | return MVT::i64; | 
|  |  | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | 
|  | bool ForCodeSize) const { | 
|  | if (VT != MVT::f32 && VT != MVT::f64) | 
|  | return false; | 
|  | if (Imm.isNegZero()) | 
|  | return false; | 
|  | return Imm.isZero(); | 
|  | } | 
|  |  | 
|  | unsigned MipsTargetLowering::getJumpTableEncoding() const { | 
|  |  | 
|  | // FIXME: For space reasons this should be: EK_GPRel32BlockAddress. | 
|  | if (ABI.IsN64() && isPositionIndependent()) | 
|  | return MachineJumpTableInfo::EK_GPRel64BlockAddress; | 
|  |  | 
|  | return TargetLowering::getJumpTableEncoding(); | 
|  | } | 
|  |  | 
|  | bool MipsTargetLowering::useSoftFloat() const { | 
|  | return Subtarget.useSoftFloat(); | 
|  | } | 
|  |  | 
|  | void MipsTargetLowering::copyByValRegs( | 
|  | SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, | 
|  | SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, | 
|  | SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, | 
|  | unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, | 
|  | MipsCCState &State) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); | 
|  | unsigned NumRegs = LastReg - FirstReg; | 
|  | unsigned RegAreaSize = NumRegs * GPRSizeInBytes; | 
|  | unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); | 
|  | int FrameObjOffset; | 
|  | ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); | 
|  |  | 
|  | if (RegAreaSize) | 
|  | FrameObjOffset = | 
|  | (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - | 
|  | (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); | 
|  | else | 
|  | FrameObjOffset = VA.getLocMemOffset(); | 
|  |  | 
|  | // Create frame object. | 
|  | EVT PtrTy = getPointerTy(DAG.getDataLayout()); | 
|  | // Make the fixed object stored to mutable so that the load instructions | 
|  | // referencing it have their memory dependencies added. | 
|  | // Set the frame object as isAliased which clears the underlying objects | 
|  | // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all | 
|  | // stores as dependencies for loads referencing this fixed object. | 
|  | int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
|  | InVals.push_back(FIN); | 
|  |  | 
|  | if (!NumRegs) | 
|  | return; | 
|  |  | 
|  | // Copy arg registers. | 
|  | MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); | 
|  | const TargetRegisterClass *RC = getRegClassFor(RegTy); | 
|  |  | 
|  | for (unsigned I = 0; I < NumRegs; ++I) { | 
|  | unsigned ArgReg = ByValArgRegs[FirstReg + I]; | 
|  | unsigned VReg = addLiveIn(MF, ArgReg, RC); | 
|  | unsigned Offset = I * GPRSizeInBytes; | 
|  | SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, | 
|  | DAG.getConstant(Offset, DL, PtrTy)); | 
|  | SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), | 
|  | StorePtr, MachinePointerInfo(FuncArg, Offset)); | 
|  | OutChains.push_back(Store); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy byVal arg to registers and stack. | 
|  | void MipsTargetLowering::passByValArg( | 
|  | SDValue Chain, const SDLoc &DL, | 
|  | std::deque<std::pair<unsigned, SDValue>> &RegsToPass, | 
|  | SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, | 
|  | MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, | 
|  | unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, | 
|  | const CCValAssign &VA) const { | 
|  | unsigned ByValSizeInBytes = Flags.getByValSize(); | 
|  | unsigned OffsetInBytes = 0; // From beginning of struct | 
|  | unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); | 
|  | unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); | 
|  | EVT PtrTy = getPointerTy(DAG.getDataLayout()), | 
|  | RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); | 
|  | unsigned NumRegs = LastReg - FirstReg; | 
|  |  | 
|  | if (NumRegs) { | 
|  | ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); | 
|  | bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); | 
|  | unsigned I = 0; | 
|  |  | 
|  | // Copy words to registers. | 
|  | for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { | 
|  | SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, | 
|  | DAG.getConstant(OffsetInBytes, DL, PtrTy)); | 
|  | SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, | 
|  | MachinePointerInfo(), Alignment); | 
|  | MemOpChains.push_back(LoadVal.getValue(1)); | 
|  | unsigned ArgReg = ArgRegs[FirstReg + I]; | 
|  | RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); | 
|  | } | 
|  |  | 
|  | // Return if the struct has been fully copied. | 
|  | if (ByValSizeInBytes == OffsetInBytes) | 
|  | return; | 
|  |  | 
|  | // Copy the remainder of the byval argument with sub-word loads and shifts. | 
|  | if (LeftoverBytes) { | 
|  | SDValue Val; | 
|  |  | 
|  | for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; | 
|  | OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { | 
|  | unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; | 
|  |  | 
|  | if (RemainingSizeInBytes < LoadSizeInBytes) | 
|  | continue; | 
|  |  | 
|  | // Load subword. | 
|  | SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, | 
|  | DAG.getConstant(OffsetInBytes, DL, | 
|  | PtrTy)); | 
|  | SDValue LoadVal = DAG.getExtLoad( | 
|  | ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), | 
|  | MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment); | 
|  | MemOpChains.push_back(LoadVal.getValue(1)); | 
|  |  | 
|  | // Shift the loaded value. | 
|  | unsigned Shamt; | 
|  |  | 
|  | if (isLittle) | 
|  | Shamt = TotalBytesLoaded * 8; | 
|  | else | 
|  | Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; | 
|  |  | 
|  | SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, | 
|  | DAG.getConstant(Shamt, DL, MVT::i32)); | 
|  |  | 
|  | if (Val.getNode()) | 
|  | Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); | 
|  | else | 
|  | Val = Shift; | 
|  |  | 
|  | OffsetInBytes += LoadSizeInBytes; | 
|  | TotalBytesLoaded += LoadSizeInBytes; | 
|  | Alignment = std::min(Alignment, LoadSizeInBytes); | 
|  | } | 
|  |  | 
|  | unsigned ArgReg = ArgRegs[FirstReg + I]; | 
|  | RegsToPass.push_back(std::make_pair(ArgReg, Val)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy remainder of byval arg to it with memcpy. | 
|  | unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; | 
|  | SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, | 
|  | DAG.getConstant(OffsetInBytes, DL, PtrTy)); | 
|  | SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, | 
|  | DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); | 
|  | Chain = DAG.getMemcpy(Chain, DL, Dst, Src, | 
|  | DAG.getConstant(MemCpySize, DL, PtrTy), | 
|  | Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, | 
|  | /*isTailCall=*/false, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | MemOpChains.push_back(Chain); | 
|  | } | 
|  |  | 
|  | void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, | 
|  | SDValue Chain, const SDLoc &DL, | 
|  | SelectionDAG &DAG, | 
|  | CCState &State) const { | 
|  | ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); | 
|  | unsigned Idx = State.getFirstUnallocated(ArgRegs); | 
|  | unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); | 
|  | MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); | 
|  | const TargetRegisterClass *RC = getRegClassFor(RegTy); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); | 
|  |  | 
|  | // Offset of the first variable argument from stack pointer. | 
|  | int VaArgOffset; | 
|  |  | 
|  | if (ArgRegs.size() == Idx) | 
|  | VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes); | 
|  | else { | 
|  | VaArgOffset = | 
|  | (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - | 
|  | (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); | 
|  | } | 
|  |  | 
|  | // Record the frame index of the first variable argument | 
|  | // which is a value necessary to VASTART. | 
|  | int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); | 
|  | MipsFI->setVarArgsFrameIndex(FI); | 
|  |  | 
|  | // Copy the integer registers that have not been used for argument passing | 
|  | // to the argument register save area. For O32, the save area is allocated | 
|  | // in the caller's stack frame, while for N32/64, it is allocated in the | 
|  | // callee's stack frame. | 
|  | for (unsigned I = Idx; I < ArgRegs.size(); | 
|  | ++I, VaArgOffset += RegSizeInBytes) { | 
|  | unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); | 
|  | FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); | 
|  | SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Store = | 
|  | DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo()); | 
|  | cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( | 
|  | (Value *)nullptr); | 
|  | OutChains.push_back(Store); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, | 
|  | unsigned Align) const { | 
|  | const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); | 
|  |  | 
|  | assert(Size && "Byval argument's size shouldn't be 0."); | 
|  |  | 
|  | Align = std::min(Align, TFL->getStackAlignment()); | 
|  |  | 
|  | unsigned FirstReg = 0; | 
|  | unsigned NumRegs = 0; | 
|  |  | 
|  | if (State->getCallingConv() != CallingConv::Fast) { | 
|  | unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); | 
|  | ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); | 
|  | // FIXME: The O32 case actually describes no shadow registers. | 
|  | const MCPhysReg *ShadowRegs = | 
|  | ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; | 
|  |  | 
|  | // We used to check the size as well but we can't do that anymore since | 
|  | // CCState::HandleByVal() rounds up the size after calling this function. | 
|  | assert(!(Align % RegSizeInBytes) && | 
|  | "Byval argument's alignment should be a multiple of" | 
|  | "RegSizeInBytes."); | 
|  |  | 
|  | FirstReg = State->getFirstUnallocated(IntArgRegs); | 
|  |  | 
|  | // If Align > RegSizeInBytes, the first arg register must be even. | 
|  | // FIXME: This condition happens to do the right thing but it's not the | 
|  | //        right way to test it. We want to check that the stack frame offset | 
|  | //        of the register is aligned. | 
|  | if ((Align > RegSizeInBytes) && (FirstReg % 2)) { | 
|  | State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); | 
|  | ++FirstReg; | 
|  | } | 
|  |  | 
|  | // Mark the registers allocated. | 
|  | Size = alignTo(Size, RegSizeInBytes); | 
|  | for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); | 
|  | Size -= RegSizeInBytes, ++I, ++NumRegs) | 
|  | State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); | 
|  | } | 
|  |  | 
|  | State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, | 
|  | MachineBasicBlock *BB, | 
|  | bool isFPCmp, | 
|  | unsigned Opc) const { | 
|  | assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && | 
|  | "Subtarget already supports SELECT nodes with the use of" | 
|  | "conditional-move instructions."); | 
|  |  | 
|  | const TargetInstrInfo *TII = | 
|  | Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | // To "insert" a SELECT instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = ++BB->getIterator(); | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   setcc r1, r2, r3 | 
|  | //   bNE   r1, r0, copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB  = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Next, add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | if (isFPCmp) { | 
|  | // bc1[tf] cc, sinkMBB | 
|  | BuildMI(BB, DL, TII->get(Opc)) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addMBB(sinkMBB); | 
|  | } else { | 
|  | // bne rs, $0, sinkMBB | 
|  | BuildMI(BB, DL, TII->get(Opc)) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addReg(Mips::ZERO) | 
|  | .addMBB(sinkMBB); | 
|  | } | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  |  | 
|  | BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) | 
|  | .addReg(MI.getOperand(2).getReg()) | 
|  | .addMBB(thisMBB) | 
|  | .addReg(MI.getOperand(3).getReg()) | 
|  | .addMBB(copy0MBB); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && | 
|  | "Subtarget already supports SELECT nodes with the use of" | 
|  | "conditional-move instructions."); | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | // D_SELECT substitutes two SELECT nodes that goes one after another and | 
|  | // have the same condition operand. On machines which don't have | 
|  | // conditional-move instruction, it reduces unnecessary branch instructions | 
|  | // which are result of using two diamond patterns that are result of two | 
|  | // SELECT pseudo instructions. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = ++BB->getIterator(); | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   setcc r1, r2, r3 | 
|  | //   bNE   r1, r0, copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Next, add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // bne rs, $0, sinkMBB | 
|  | BuildMI(BB, DL, TII->get(Mips::BNE)) | 
|  | .addReg(MI.getOperand(2).getReg()) | 
|  | .addReg(Mips::ZERO) | 
|  | .addMBB(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  |  | 
|  | // Use two PHI nodes to select two reults | 
|  | BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) | 
|  | .addReg(MI.getOperand(3).getReg()) | 
|  | .addMBB(thisMBB) | 
|  | .addReg(MI.getOperand(5).getReg()) | 
|  | .addMBB(copy0MBB); | 
|  | BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg()) | 
|  | .addReg(MI.getOperand(4).getReg()) | 
|  | .addMBB(thisMBB) | 
|  | .addReg(MI.getOperand(6).getReg()) | 
|  | .addMBB(copy0MBB); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // FIXME? Maybe this could be a TableGen attribute on some registers and | 
|  | // this table could be generated automatically from RegInfo. | 
|  | unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | // Named registers is expected to be fairly rare. For now, just support $28 | 
|  | // since the linux kernel uses it. | 
|  | if (Subtarget.isGP64bit()) { | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("$28", Mips::GP_64) | 
|  | .Default(0); | 
|  | if (Reg) | 
|  | return Reg; | 
|  | } else { | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("$28", Mips::GP) | 
|  | .Default(0); | 
|  | if (Reg) | 
|  | return Reg; | 
|  | } | 
|  | report_fatal_error("Invalid register name global variable"); | 
|  | } |