| //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements whole program optimization of virtual calls in cases |
| // where we know (via bitset information) that the list of callee is fixed. This |
| // includes the following: |
| // - Single implementation devirtualization: if a virtual call has a single |
| // possible callee, replace all calls with a direct call to that callee. |
| // - Virtual constant propagation: if the virtual function's return type is an |
| // integer <=64 bits and all possible callees are readnone, for each class and |
| // each list of constant arguments: evaluate the function, store the return |
| // value alongside the virtual table, and rewrite each virtual call as a load |
| // from the virtual table. |
| // - Uniform return value optimization: if the conditions for virtual constant |
| // propagation hold and each function returns the same constant value, replace |
| // each virtual call with that constant. |
| // - Unique return value optimization for i1 return values: if the conditions |
| // for virtual constant propagation hold and a single vtable's function |
| // returns 0, or a single vtable's function returns 1, replace each virtual |
| // call with a comparison of the vptr against that vtable's address. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/Analysis/BitSetUtils.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Utils/Evaluator.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| |
| #include <set> |
| |
| using namespace llvm; |
| using namespace wholeprogramdevirt; |
| |
| #define DEBUG_TYPE "wholeprogramdevirt" |
| |
| // Find the minimum offset that we may store a value of size Size bits at. If |
| // IsAfter is set, look for an offset before the object, otherwise look for an |
| // offset after the object. |
| uint64_t |
| wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, |
| bool IsAfter, uint64_t Size) { |
| // Find a minimum offset taking into account only vtable sizes. |
| uint64_t MinByte = 0; |
| for (const VirtualCallTarget &Target : Targets) { |
| if (IsAfter) |
| MinByte = std::max(MinByte, Target.minAfterBytes()); |
| else |
| MinByte = std::max(MinByte, Target.minBeforeBytes()); |
| } |
| |
| // Build a vector of arrays of bytes covering, for each target, a slice of the |
| // used region (see AccumBitVector::BytesUsed in |
| // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, |
| // this aligns the used regions to start at MinByte. |
| // |
| // In this example, A, B and C are vtables, # is a byte already allocated for |
| // a virtual function pointer, AAAA... (etc.) are the used regions for the |
| // vtables and Offset(X) is the value computed for the Offset variable below |
| // for X. |
| // |
| // Offset(A) |
| // | | |
| // |MinByte |
| // A: ################AAAAAAAA|AAAAAAAA |
| // B: ########BBBBBBBBBBBBBBBB|BBBB |
| // C: ########################|CCCCCCCCCCCCCCCC |
| // | Offset(B) | |
| // |
| // This code produces the slices of A, B and C that appear after the divider |
| // at MinByte. |
| std::vector<ArrayRef<uint8_t>> Used; |
| for (const VirtualCallTarget &Target : Targets) { |
| ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed |
| : Target.BS->Bits->Before.BytesUsed; |
| uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() |
| : MinByte - Target.minBeforeBytes(); |
| |
| // Disregard used regions that are smaller than Offset. These are |
| // effectively all-free regions that do not need to be checked. |
| if (VTUsed.size() > Offset) |
| Used.push_back(VTUsed.slice(Offset)); |
| } |
| |
| if (Size == 1) { |
| // Find a free bit in each member of Used. |
| for (unsigned I = 0;; ++I) { |
| uint8_t BitsUsed = 0; |
| for (auto &&B : Used) |
| if (I < B.size()) |
| BitsUsed |= B[I]; |
| if (BitsUsed != 0xff) |
| return (MinByte + I) * 8 + |
| countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); |
| } |
| } else { |
| // Find a free (Size/8) byte region in each member of Used. |
| // FIXME: see if alignment helps. |
| for (unsigned I = 0;; ++I) { |
| for (auto &&B : Used) { |
| unsigned Byte = 0; |
| while ((I + Byte) < B.size() && Byte < (Size / 8)) { |
| if (B[I + Byte]) |
| goto NextI; |
| ++Byte; |
| } |
| } |
| return (MinByte + I) * 8; |
| NextI:; |
| } |
| } |
| } |
| |
| void wholeprogramdevirt::setBeforeReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = -(AllocBefore / 8 + 1); |
| else |
| OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); |
| OffsetBit = AllocBefore % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setBeforeBit(AllocBefore); |
| else |
| Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); |
| } |
| } |
| |
| void wholeprogramdevirt::setAfterReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = AllocAfter / 8; |
| else |
| OffsetByte = (AllocAfter + 7) / 8; |
| OffsetBit = AllocAfter % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setAfterBit(AllocAfter); |
| else |
| Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); |
| } |
| } |
| |
| VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS) |
| : Fn(Fn), BS(BS), |
| IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {} |
| |
| namespace { |
| |
| // A slot in a set of virtual tables. The BitSetID identifies the set of virtual |
| // tables, and the ByteOffset is the offset in bytes from the address point to |
| // the virtual function pointer. |
| struct VTableSlot { |
| Metadata *BitSetID; |
| uint64_t ByteOffset; |
| }; |
| |
| } |
| |
| namespace llvm { |
| |
| template <> struct DenseMapInfo<VTableSlot> { |
| static VTableSlot getEmptyKey() { |
| return {DenseMapInfo<Metadata *>::getEmptyKey(), |
| DenseMapInfo<uint64_t>::getEmptyKey()}; |
| } |
| static VTableSlot getTombstoneKey() { |
| return {DenseMapInfo<Metadata *>::getTombstoneKey(), |
| DenseMapInfo<uint64_t>::getTombstoneKey()}; |
| } |
| static unsigned getHashValue(const VTableSlot &I) { |
| return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^ |
| DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); |
| } |
| static bool isEqual(const VTableSlot &LHS, |
| const VTableSlot &RHS) { |
| return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset; |
| } |
| }; |
| |
| } |
| |
| namespace { |
| |
| // A virtual call site. VTable is the loaded virtual table pointer, and CS is |
| // the indirect virtual call. |
| struct VirtualCallSite { |
| Value *VTable; |
| CallSite CS; |
| |
| void replaceAndErase(Value *New) { |
| CS->replaceAllUsesWith(New); |
| if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { |
| BranchInst::Create(II->getNormalDest(), CS.getInstruction()); |
| II->getUnwindDest()->removePredecessor(II->getParent()); |
| } |
| CS->eraseFromParent(); |
| } |
| }; |
| |
| struct DevirtModule { |
| Module &M; |
| IntegerType *Int8Ty; |
| PointerType *Int8PtrTy; |
| IntegerType *Int32Ty; |
| |
| MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; |
| |
| DevirtModule(Module &M) |
| : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), |
| Int8PtrTy(Type::getInt8PtrTy(M.getContext())), |
| Int32Ty(Type::getInt32Ty(M.getContext())) {} |
| |
| void buildBitSets(std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets); |
| bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<BitSetInfo> &BitSetInfos, |
| uint64_t ByteOffset); |
| bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<ConstantInt *> Args); |
| bool tryUniformRetValOpt(IntegerType *RetType, |
| ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryUniqueRetValOpt(unsigned BitWidth, |
| ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<VirtualCallSite> CallSites); |
| |
| void rebuildGlobal(VTableBits &B); |
| |
| bool run(); |
| }; |
| |
| struct WholeProgramDevirt : public ModulePass { |
| static char ID; |
| WholeProgramDevirt() : ModulePass(ID) { |
| initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); |
| } |
| bool runOnModule(Module &M) { |
| if (skipModule(M)) |
| return false; |
| |
| return DevirtModule(M).run(); |
| } |
| }; |
| |
| } // anonymous namespace |
| |
| INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", |
| "Whole program devirtualization", false, false) |
| char WholeProgramDevirt::ID = 0; |
| |
| ModulePass *llvm::createWholeProgramDevirtPass() { |
| return new WholeProgramDevirt; |
| } |
| |
| void DevirtModule::buildBitSets( |
| std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) { |
| NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets"); |
| if (!BitSetNM) |
| return; |
| |
| DenseMap<GlobalVariable *, VTableBits *> GVToBits; |
| Bits.reserve(BitSetNM->getNumOperands()); |
| for (auto Op : BitSetNM->operands()) { |
| auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1)); |
| if (!OpConstMD) |
| continue; |
| auto BitSetID = Op->getOperand(0).get(); |
| |
| Constant *OpConst = OpConstMD->getValue(); |
| if (auto GA = dyn_cast<GlobalAlias>(OpConst)) |
| OpConst = GA->getAliasee(); |
| auto OpGlobal = dyn_cast<GlobalVariable>(OpConst); |
| if (!OpGlobal) |
| continue; |
| |
| uint64_t Offset = |
| cast<ConstantInt>( |
| cast<ConstantAsMetadata>(Op->getOperand(2))->getValue()) |
| ->getZExtValue(); |
| |
| VTableBits *&BitsPtr = GVToBits[OpGlobal]; |
| if (!BitsPtr) { |
| Bits.emplace_back(); |
| Bits.back().GV = OpGlobal; |
| Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize( |
| OpGlobal->getInitializer()->getType()); |
| BitsPtr = &Bits.back(); |
| } |
| BitSets[BitSetID].insert({BitsPtr, Offset}); |
| } |
| } |
| |
| bool DevirtModule::tryFindVirtualCallTargets( |
| std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) { |
| for (const BitSetInfo &BS : BitSetInfos) { |
| if (!BS.Bits->GV->isConstant()) |
| return false; |
| |
| auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer()); |
| if (!Init) |
| return false; |
| ArrayType *VTableTy = Init->getType(); |
| |
| uint64_t ElemSize = |
| M.getDataLayout().getTypeAllocSize(VTableTy->getElementType()); |
| uint64_t GlobalSlotOffset = BS.Offset + ByteOffset; |
| if (GlobalSlotOffset % ElemSize != 0) |
| return false; |
| |
| unsigned Op = GlobalSlotOffset / ElemSize; |
| if (Op >= Init->getNumOperands()) |
| return false; |
| |
| auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts()); |
| if (!Fn) |
| return false; |
| |
| // We can disregard __cxa_pure_virtual as a possible call target, as |
| // calls to pure virtuals are UB. |
| if (Fn->getName() == "__cxa_pure_virtual") |
| continue; |
| |
| TargetsForSlot.push_back({Fn, &BS}); |
| } |
| |
| // Give up if we couldn't find any targets. |
| return !TargetsForSlot.empty(); |
| } |
| |
| bool DevirtModule::trySingleImplDevirt( |
| ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // See if the program contains a single implementation of this virtual |
| // function. |
| Function *TheFn = TargetsForSlot[0].Fn; |
| for (auto &&Target : TargetsForSlot) |
| if (TheFn != Target.Fn) |
| return false; |
| |
| // If so, update each call site to call that implementation directly. |
| for (auto &&VCallSite : CallSites) { |
| VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( |
| TheFn, VCallSite.CS.getCalledValue()->getType())); |
| } |
| return true; |
| } |
| |
| bool DevirtModule::tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<ConstantInt *> Args) { |
| // Evaluate each function and store the result in each target's RetVal |
| // field. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.Fn->arg_size() != Args.size() + 1) |
| return false; |
| for (unsigned I = 0; I != Args.size(); ++I) |
| if (Target.Fn->getFunctionType()->getParamType(I + 1) != |
| Args[I]->getType()) |
| return false; |
| |
| Evaluator Eval(M.getDataLayout(), nullptr); |
| SmallVector<Constant *, 2> EvalArgs; |
| EvalArgs.push_back( |
| Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); |
| EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); |
| Constant *RetVal; |
| if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || |
| !isa<ConstantInt>(RetVal)) |
| return false; |
| Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); |
| } |
| return true; |
| } |
| |
| bool DevirtModule::tryUniformRetValOpt( |
| IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // Uniform return value optimization. If all functions return the same |
| // constant, replace all calls with that constant. |
| uint64_t TheRetVal = TargetsForSlot[0].RetVal; |
| for (const VirtualCallTarget &Target : TargetsForSlot) |
| if (Target.RetVal != TheRetVal) |
| return false; |
| |
| auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); |
| for (auto Call : CallSites) |
| Call.replaceAndErase(TheRetValConst); |
| return true; |
| } |
| |
| bool DevirtModule::tryUniqueRetValOpt( |
| unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // IsOne controls whether we look for a 0 or a 1. |
| auto tryUniqueRetValOptFor = [&](bool IsOne) { |
| const BitSetInfo *UniqueBitSet = 0; |
| for (const VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.RetVal == (IsOne ? 1 : 0)) { |
| if (UniqueBitSet) |
| return false; |
| UniqueBitSet = Target.BS; |
| } |
| } |
| |
| // We should have found a unique bit set or bailed out by now. We already |
| // checked for a uniform return value in tryUniformRetValOpt. |
| assert(UniqueBitSet); |
| |
| // Replace each call with the comparison. |
| for (auto &&Call : CallSites) { |
| IRBuilder<> B(Call.CS.getInstruction()); |
| Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy); |
| OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset); |
| Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, |
| Call.VTable, OneAddr); |
| Call.replaceAndErase(Cmp); |
| } |
| return true; |
| }; |
| |
| if (BitWidth == 1) { |
| if (tryUniqueRetValOptFor(true)) |
| return true; |
| if (tryUniqueRetValOptFor(false)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool DevirtModule::tryVirtualConstProp( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<VirtualCallSite> CallSites) { |
| // This only works if the function returns an integer. |
| auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); |
| if (!RetType) |
| return false; |
| unsigned BitWidth = RetType->getBitWidth(); |
| if (BitWidth > 64) |
| return false; |
| |
| // Make sure that each function does not access memory, takes at least one |
| // argument, does not use its first argument (which we assume is 'this'), |
| // and has the same return type. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || |
| !Target.Fn->arg_begin()->use_empty() || |
| Target.Fn->getReturnType() != RetType) |
| return false; |
| } |
| |
| // Group call sites by the list of constant arguments they pass. |
| // The comparator ensures deterministic ordering. |
| struct ByAPIntValue { |
| bool operator()(const std::vector<ConstantInt *> &A, |
| const std::vector<ConstantInt *> &B) const { |
| return std::lexicographical_compare( |
| A.begin(), A.end(), B.begin(), B.end(), |
| [](ConstantInt *AI, ConstantInt *BI) { |
| return AI->getValue().ult(BI->getValue()); |
| }); |
| } |
| }; |
| std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, |
| ByAPIntValue> |
| VCallSitesByConstantArg; |
| for (auto &&VCallSite : CallSites) { |
| std::vector<ConstantInt *> Args; |
| if (VCallSite.CS.getType() != RetType) |
| continue; |
| for (auto &&Arg : |
| make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { |
| if (!isa<ConstantInt>(Arg)) |
| break; |
| Args.push_back(cast<ConstantInt>(&Arg)); |
| } |
| if (Args.size() + 1 != VCallSite.CS.arg_size()) |
| continue; |
| |
| VCallSitesByConstantArg[Args].push_back(VCallSite); |
| } |
| |
| for (auto &&CSByConstantArg : VCallSitesByConstantArg) { |
| if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) |
| continue; |
| |
| if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) |
| continue; |
| |
| if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) |
| continue; |
| |
| // Find an allocation offset in bits in all vtables in the bitset. |
| uint64_t AllocBefore = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); |
| uint64_t AllocAfter = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); |
| |
| // Calculate the total amount of padding needed to store a value at both |
| // ends of the object. |
| uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; |
| for (auto &&Target : TargetsForSlot) { |
| TotalPaddingBefore += std::max<int64_t>( |
| (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); |
| TotalPaddingAfter += std::max<int64_t>( |
| (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); |
| } |
| |
| // If the amount of padding is too large, give up. |
| // FIXME: do something smarter here. |
| if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) |
| continue; |
| |
| // Calculate the offset to the value as a (possibly negative) byte offset |
| // and (if applicable) a bit offset, and store the values in the targets. |
| int64_t OffsetByte; |
| uint64_t OffsetBit; |
| if (TotalPaddingBefore <= TotalPaddingAfter) |
| setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, |
| OffsetBit); |
| else |
| setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, |
| OffsetBit); |
| |
| // Rewrite each call to a load from OffsetByte/OffsetBit. |
| for (auto Call : CSByConstantArg.second) { |
| IRBuilder<> B(Call.CS.getInstruction()); |
| Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); |
| if (BitWidth == 1) { |
| Value *Bits = B.CreateLoad(Addr); |
| Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); |
| Value *BitsAndBit = B.CreateAnd(Bits, Bit); |
| auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); |
| Call.replaceAndErase(IsBitSet); |
| } else { |
| Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); |
| Value *Val = B.CreateLoad(RetType, ValAddr); |
| Call.replaceAndErase(Val); |
| } |
| } |
| } |
| return true; |
| } |
| |
| void DevirtModule::rebuildGlobal(VTableBits &B) { |
| if (B.Before.Bytes.empty() && B.After.Bytes.empty()) |
| return; |
| |
| // Align each byte array to pointer width. |
| unsigned PointerSize = M.getDataLayout().getPointerSize(); |
| B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); |
| B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); |
| |
| // Before was stored in reverse order; flip it now. |
| for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) |
| std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); |
| |
| // Build an anonymous global containing the before bytes, followed by the |
| // original initializer, followed by the after bytes. |
| auto NewInit = ConstantStruct::getAnon( |
| {ConstantDataArray::get(M.getContext(), B.Before.Bytes), |
| B.GV->getInitializer(), |
| ConstantDataArray::get(M.getContext(), B.After.Bytes)}); |
| auto NewGV = |
| new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), |
| GlobalVariable::PrivateLinkage, NewInit, "", B.GV); |
| NewGV->setSection(B.GV->getSection()); |
| NewGV->setComdat(B.GV->getComdat()); |
| |
| // Build an alias named after the original global, pointing at the second |
| // element (the original initializer). |
| auto Alias = GlobalAlias::create( |
| B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", |
| ConstantExpr::getGetElementPtr( |
| NewInit->getType(), NewGV, |
| ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, 1)}), |
| &M); |
| Alias->setVisibility(B.GV->getVisibility()); |
| Alias->takeName(B.GV); |
| |
| B.GV->replaceAllUsesWith(Alias); |
| B.GV->eraseFromParent(); |
| } |
| |
| bool DevirtModule::run() { |
| Function *BitSetTestFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::bitset_test)); |
| if (!BitSetTestFunc || BitSetTestFunc->use_empty()) |
| return false; |
| |
| Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); |
| if (!AssumeFunc || AssumeFunc->use_empty()) |
| return false; |
| |
| // Find all virtual calls via a virtual table pointer %p under an assumption |
| // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p |
| // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair |
| // (effectively the identity of the virtual function) and store to CallSlots. |
| DenseSet<Value *> SeenPtrs; |
| for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end(); |
| I != E;) { |
| auto CI = dyn_cast<CallInst>(I->getUser()); |
| ++I; |
| if (!CI) |
| continue; |
| |
| // Search for virtual calls based on %p and add them to DevirtCalls. |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<CallInst *, 1> Assumes; |
| findDevirtualizableCalls(DevirtCalls, Assumes, CI); |
| |
| // If we found any, add them to CallSlots. Only do this if we haven't seen |
| // the vtable pointer before, as it may have been CSE'd with pointers from |
| // other call sites, and we don't want to process call sites multiple times. |
| if (!Assumes.empty()) { |
| Metadata *BitSet = |
| cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); |
| Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); |
| if (SeenPtrs.insert(Ptr).second) { |
| for (DevirtCallSite Call : DevirtCalls) { |
| CallSlots[{BitSet, Call.Offset}].push_back( |
| {CI->getArgOperand(0), Call.CS}); |
| } |
| } |
| } |
| |
| // We no longer need the assumes or the bitset test. |
| for (auto Assume : Assumes) |
| Assume->eraseFromParent(); |
| // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we |
| // may use the vtable argument later. |
| if (CI->use_empty()) |
| CI->eraseFromParent(); |
| } |
| |
| // Rebuild llvm.bitsets metadata into a map for easy lookup. |
| std::vector<VTableBits> Bits; |
| DenseMap<Metadata *, std::set<BitSetInfo>> BitSets; |
| buildBitSets(Bits, BitSets); |
| if (BitSets.empty()) |
| return true; |
| |
| // For each (bitset, offset) pair: |
| bool DidVirtualConstProp = false; |
| for (auto &S : CallSlots) { |
| // Search each of the vtables in the bitset for the virtual function |
| // implementation at offset S.first.ByteOffset, and add to TargetsForSlot. |
| std::vector<VirtualCallTarget> TargetsForSlot; |
| if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID], |
| S.first.ByteOffset)) |
| continue; |
| |
| if (trySingleImplDevirt(TargetsForSlot, S.second)) |
| continue; |
| |
| DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second); |
| } |
| |
| // Rebuild each global we touched as part of virtual constant propagation to |
| // include the before and after bytes. |
| if (DidVirtualConstProp) |
| for (VTableBits &B : Bits) |
| rebuildGlobal(B); |
| |
| return true; |
| } |