|  | //===--- Expr.cpp - Expression AST Node Implementation --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Expr class and subclasses. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/CharInfo.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Lexer.h" | 
|  | #include "clang/Lex/LiteralSupport.h" | 
|  | #include "clang/Sema/SemaDiagnostic.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | using namespace clang; | 
|  |  | 
|  | const Expr *Expr::getBestDynamicClassTypeExpr() const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | E = E->ignoreParenBaseCasts(); | 
|  |  | 
|  | // Follow the RHS of a comma operator. | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step into initializer for materialized temporaries. | 
|  | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = MTE->GetTemporaryExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | const CXXRecordDecl *Expr::getBestDynamicClassType() const { | 
|  | const Expr *E = getBestDynamicClassTypeExpr(); | 
|  | QualType DerivedType = E->getType(); | 
|  | if (const PointerType *PTy = DerivedType->getAs<PointerType>()) | 
|  | DerivedType = PTy->getPointeeType(); | 
|  |  | 
|  | if (DerivedType->isDependentType()) | 
|  | return nullptr; | 
|  |  | 
|  | const RecordType *Ty = DerivedType->castAs<RecordType>(); | 
|  | Decl *D = Ty->getDecl(); | 
|  | return cast<CXXRecordDecl>(D); | 
|  | } | 
|  |  | 
|  | const Expr *Expr::skipRValueSubobjectAdjustments( | 
|  | SmallVectorImpl<const Expr *> &CommaLHSs, | 
|  | SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { | 
|  | if ((CE->getCastKind() == CK_DerivedToBase || | 
|  | CE->getCastKind() == CK_UncheckedDerivedToBase) && | 
|  | E->getType()->isRecordType()) { | 
|  | E = CE->getSubExpr(); | 
|  | CXXRecordDecl *Derived | 
|  | = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); | 
|  | Adjustments.push_back(SubobjectAdjustment(CE, Derived)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CE->getCastKind() == CK_NoOp) { | 
|  | E = CE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | 
|  | if (!ME->isArrow()) { | 
|  | assert(ME->getBase()->getType()->isRecordType()); | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { | 
|  | if (!Field->isBitField() && !Field->getType()->isReferenceType()) { | 
|  | E = ME->getBase(); | 
|  | Adjustments.push_back(SubobjectAdjustment(Field)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_PtrMemD) { | 
|  | assert(BO->getRHS()->isRValue()); | 
|  | E = BO->getLHS(); | 
|  | const MemberPointerType *MPT = | 
|  | BO->getRHS()->getType()->getAs<MemberPointerType>(); | 
|  | Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); | 
|  | continue; | 
|  | } else if (BO->getOpcode() == BO_Comma) { | 
|  | CommaLHSs.push_back(BO->getLHS()); | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing changed. | 
|  | break; | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | /// isKnownToHaveBooleanValue - Return true if this is an integer expression | 
|  | /// that is known to return 0 or 1.  This happens for _Bool/bool expressions | 
|  | /// but also int expressions which are produced by things like comparisons in | 
|  | /// C. | 
|  | bool Expr::isKnownToHaveBooleanValue() const { | 
|  | const Expr *E = IgnoreParens(); | 
|  |  | 
|  | // If this value has _Bool type, it is obvious 0/1. | 
|  | if (E->getType()->isBooleanType()) return true; | 
|  | // If this is a non-scalar-integer type, we don't care enough to try. | 
|  | if (!E->getType()->isIntegralOrEnumerationType()) return false; | 
|  |  | 
|  | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_Plus: | 
|  | return UO->getSubExpr()->isKnownToHaveBooleanValue(); | 
|  | case UO_LNot: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only look through implicit casts.  If the user writes | 
|  | // '(int) (a && b)' treat it as an arbitrary int. | 
|  | if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | return CE->getSubExpr()->isKnownToHaveBooleanValue(); | 
|  |  | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | switch (BO->getOpcode()) { | 
|  | default: return false; | 
|  | case BO_LT:   // Relational operators. | 
|  | case BO_GT: | 
|  | case BO_LE: | 
|  | case BO_GE: | 
|  | case BO_EQ:   // Equality operators. | 
|  | case BO_NE: | 
|  | case BO_LAnd: // AND operator. | 
|  | case BO_LOr:  // Logical OR operator. | 
|  | return true; | 
|  |  | 
|  | case BO_And:  // Bitwise AND operator. | 
|  | case BO_Xor:  // Bitwise XOR operator. | 
|  | case BO_Or:   // Bitwise OR operator. | 
|  | // Handle things like (x==2)|(y==12). | 
|  | return BO->getLHS()->isKnownToHaveBooleanValue() && | 
|  | BO->getRHS()->isKnownToHaveBooleanValue(); | 
|  |  | 
|  | case BO_Comma: | 
|  | case BO_Assign: | 
|  | return BO->getRHS()->isKnownToHaveBooleanValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) | 
|  | return CO->getTrueExpr()->isKnownToHaveBooleanValue() && | 
|  | CO->getFalseExpr()->isKnownToHaveBooleanValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Amusing macro metaprogramming hack: check whether a class provides | 
|  | // a more specific implementation of getExprLoc(). | 
|  | // | 
|  | // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. | 
|  | namespace { | 
|  | /// This implementation is used when a class provides a custom | 
|  | /// implementation of getExprLoc. | 
|  | template <class E, class T> | 
|  | SourceLocation getExprLocImpl(const Expr *expr, | 
|  | SourceLocation (T::*v)() const) { | 
|  | return static_cast<const E*>(expr)->getExprLoc(); | 
|  | } | 
|  |  | 
|  | /// This implementation is used when a class doesn't provide | 
|  | /// a custom implementation of getExprLoc.  Overload resolution | 
|  | /// should pick it over the implementation above because it's | 
|  | /// more specialized according to function template partial ordering. | 
|  | template <class E> | 
|  | SourceLocation getExprLocImpl(const Expr *expr, | 
|  | SourceLocation (Expr::*v)() const) { | 
|  | return static_cast<const E *>(expr)->getBeginLoc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SourceLocation Expr::getExprLoc() const { | 
|  | switch (getStmtClass()) { | 
|  | case Stmt::NoStmtClass: llvm_unreachable("statement without class"); | 
|  | #define ABSTRACT_STMT(type) | 
|  | #define STMT(type, base) \ | 
|  | case Stmt::type##Class: break; | 
|  | #define EXPR(type, base) \ | 
|  | case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | } | 
|  | llvm_unreachable("unknown expression kind"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Primary Expressions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Compute the type-, value-, and instantiation-dependence of a | 
|  | /// declaration reference | 
|  | /// based on the declaration being referenced. | 
|  | static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, | 
|  | QualType T, bool &TypeDependent, | 
|  | bool &ValueDependent, | 
|  | bool &InstantiationDependent) { | 
|  | TypeDependent = false; | 
|  | ValueDependent = false; | 
|  | InstantiationDependent = false; | 
|  |  | 
|  | // (TD) C++ [temp.dep.expr]p3: | 
|  | //   An id-expression is type-dependent if it contains: | 
|  | // | 
|  | // and | 
|  | // | 
|  | // (VD) C++ [temp.dep.constexpr]p2: | 
|  | //  An identifier is value-dependent if it is: | 
|  |  | 
|  | //  (TD)  - an identifier that was declared with dependent type | 
|  | //  (VD)  - a name declared with a dependent type, | 
|  | if (T->isDependentType()) { | 
|  | TypeDependent = true; | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | return; | 
|  | } else if (T->isInstantiationDependentType()) { | 
|  | InstantiationDependent = true; | 
|  | } | 
|  |  | 
|  | //  (TD)  - a conversion-function-id that specifies a dependent type | 
|  | if (D->getDeclName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName) { | 
|  | QualType T = D->getDeclName().getCXXNameType(); | 
|  | if (T->isDependentType()) { | 
|  | TypeDependent = true; | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (T->isInstantiationDependentType()) | 
|  | InstantiationDependent = true; | 
|  | } | 
|  |  | 
|  | //  (VD)  - the name of a non-type template parameter, | 
|  | if (isa<NonTypeTemplateParmDecl>(D)) { | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | //  (VD) - a constant with integral or enumeration type and is | 
|  | //         initialized with an expression that is value-dependent. | 
|  | //  (VD) - a constant with literal type and is initialized with an | 
|  | //         expression that is value-dependent [C++11]. | 
|  | //  (VD) - FIXME: Missing from the standard: | 
|  | //       -  an entity with reference type and is initialized with an | 
|  | //          expression that is value-dependent [C++11] | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
|  | if ((Ctx.getLangOpts().CPlusPlus11 ? | 
|  | Var->getType()->isLiteralType(Ctx) : | 
|  | Var->getType()->isIntegralOrEnumerationType()) && | 
|  | (Var->getType().isConstQualified() || | 
|  | Var->getType()->isReferenceType())) { | 
|  | if (const Expr *Init = Var->getAnyInitializer()) | 
|  | if (Init->isValueDependent()) { | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (VD) - FIXME: Missing from the standard: | 
|  | //      -  a member function or a static data member of the current | 
|  | //         instantiation | 
|  | if (Var->isStaticDataMember() && | 
|  | Var->getDeclContext()->isDependentContext()) { | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); | 
|  | if (TInfo->getType()->isIncompleteArrayType()) | 
|  | TypeDependent = true; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (VD) - FIXME: Missing from the standard: | 
|  | //      -  a member function or a static data member of the current | 
|  | //         instantiation | 
|  | if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { | 
|  | ValueDependent = true; | 
|  | InstantiationDependent = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DeclRefExpr::computeDependence(const ASTContext &Ctx) { | 
|  | bool TypeDependent = false; | 
|  | bool ValueDependent = false; | 
|  | bool InstantiationDependent = false; | 
|  | computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, | 
|  | ValueDependent, InstantiationDependent); | 
|  |  | 
|  | ExprBits.TypeDependent |= TypeDependent; | 
|  | ExprBits.ValueDependent |= ValueDependent; | 
|  | ExprBits.InstantiationDependent |= InstantiationDependent; | 
|  |  | 
|  | // Is the declaration a parameter pack? | 
|  | if (getDecl()->isParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  | } | 
|  |  | 
|  | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, | 
|  | ValueDecl *D, bool RefersToEnclosingVariableOrCapture, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs, | 
|  | QualType T, ExprValueKind VK) | 
|  | : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), | 
|  | D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { | 
|  | DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; | 
|  | if (QualifierLoc) { | 
|  | new (getTrailingObjects<NestedNameSpecifierLoc>()) | 
|  | NestedNameSpecifierLoc(QualifierLoc); | 
|  | auto *NNS = QualifierLoc.getNestedNameSpecifier(); | 
|  | if (NNS->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (NNS->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  | } | 
|  | DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; | 
|  | if (FoundD) | 
|  | *getTrailingObjects<NamedDecl *>() = FoundD; | 
|  | DeclRefExprBits.HasTemplateKWAndArgsInfo | 
|  | = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; | 
|  | DeclRefExprBits.RefersToEnclosingVariableOrCapture = | 
|  | RefersToEnclosingVariableOrCapture; | 
|  | if (TemplateArgs) { | 
|  | bool Dependent = false; | 
|  | bool InstantiationDependent = false; | 
|  | bool ContainsUnexpandedParameterPack = false; | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), | 
|  | Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); | 
|  | assert(!Dependent && "built a DeclRefExpr with dependent template args"); | 
|  | ExprBits.InstantiationDependent |= InstantiationDependent; | 
|  | ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; | 
|  | } else if (TemplateKWLoc.isValid()) { | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc); | 
|  | } | 
|  | DeclRefExprBits.HadMultipleCandidates = 0; | 
|  |  | 
|  | computeDependence(Ctx); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, | 
|  | ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, | 
|  | SourceLocation NameLoc, | 
|  | QualType T, | 
|  | ExprValueKind VK, | 
|  | NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  | return Create(Context, QualifierLoc, TemplateKWLoc, D, | 
|  | RefersToEnclosingVariableOrCapture, | 
|  | DeclarationNameInfo(D->getDeclName(), NameLoc), | 
|  | T, VK, FoundD, TemplateArgs); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, | 
|  | ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, | 
|  | ExprValueKind VK, | 
|  | NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs) { | 
|  | // Filter out cases where the found Decl is the same as the value refenenced. | 
|  | if (D == FoundD) | 
|  | FoundD = nullptr; | 
|  |  | 
|  | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | QualifierLoc ? 1 : 0, FoundD ? 1 : 0, | 
|  | HasTemplateKWAndArgsInfo ? 1 : 0, | 
|  | TemplateArgs ? TemplateArgs->size() : 0); | 
|  |  | 
|  | void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); | 
|  | return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, | 
|  | RefersToEnclosingVariableOrCapture, | 
|  | NameInfo, FoundD, TemplateArgs, T, VK); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, | 
|  | bool HasQualifier, | 
|  | bool HasFoundDecl, | 
|  | bool HasTemplateKWAndArgsInfo, | 
|  | unsigned NumTemplateArgs) { | 
|  | assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, | 
|  | NumTemplateArgs); | 
|  | void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); | 
|  | return new (Mem) DeclRefExpr(EmptyShell()); | 
|  | } | 
|  |  | 
|  | SourceLocation DeclRefExpr::getBeginLoc() const { | 
|  | if (hasQualifier()) | 
|  | return getQualifierLoc().getBeginLoc(); | 
|  | return getNameInfo().getBeginLoc(); | 
|  | } | 
|  | SourceLocation DeclRefExpr::getEndLoc() const { | 
|  | if (hasExplicitTemplateArgs()) | 
|  | return getRAngleLoc(); | 
|  | return getNameInfo().getEndLoc(); | 
|  | } | 
|  |  | 
|  | PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, | 
|  | StringLiteral *SL) | 
|  | : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, | 
|  | FNTy->isDependentType(), FNTy->isDependentType(), | 
|  | FNTy->isInstantiationDependentType(), | 
|  | /*ContainsUnexpandedParameterPack=*/false) { | 
|  | PredefinedExprBits.Kind = IK; | 
|  | assert((getIdentKind() == IK) && | 
|  | "IdentKind do not fit in PredefinedExprBitfields!"); | 
|  | bool HasFunctionName = SL != nullptr; | 
|  | PredefinedExprBits.HasFunctionName = HasFunctionName; | 
|  | PredefinedExprBits.Loc = L; | 
|  | if (HasFunctionName) | 
|  | setFunctionName(SL); | 
|  | } | 
|  |  | 
|  | PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) | 
|  | : Expr(PredefinedExprClass, Empty) { | 
|  | PredefinedExprBits.HasFunctionName = HasFunctionName; | 
|  | } | 
|  |  | 
|  | PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, | 
|  | QualType FNTy, IdentKind IK, | 
|  | StringLiteral *SL) { | 
|  | bool HasFunctionName = SL != nullptr; | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), | 
|  | alignof(PredefinedExpr)); | 
|  | return new (Mem) PredefinedExpr(L, FNTy, IK, SL); | 
|  | } | 
|  |  | 
|  | PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, | 
|  | bool HasFunctionName) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), | 
|  | alignof(PredefinedExpr)); | 
|  | return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); | 
|  | } | 
|  |  | 
|  | StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { | 
|  | switch (IK) { | 
|  | case Func: | 
|  | return "__func__"; | 
|  | case Function: | 
|  | return "__FUNCTION__"; | 
|  | case FuncDName: | 
|  | return "__FUNCDNAME__"; | 
|  | case LFunction: | 
|  | return "L__FUNCTION__"; | 
|  | case PrettyFunction: | 
|  | return "__PRETTY_FUNCTION__"; | 
|  | case FuncSig: | 
|  | return "__FUNCSIG__"; | 
|  | case LFuncSig: | 
|  | return "L__FUNCSIG__"; | 
|  | case PrettyFunctionNoVirtual: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unknown ident kind for PredefinedExpr"); | 
|  | } | 
|  |  | 
|  | // FIXME: Maybe this should use DeclPrinter with a special "print predefined | 
|  | // expr" policy instead. | 
|  | std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { | 
|  | ASTContext &Context = CurrentDecl->getASTContext(); | 
|  |  | 
|  | if (IK == PredefinedExpr::FuncDName) { | 
|  | if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { | 
|  | std::unique_ptr<MangleContext> MC; | 
|  | MC.reset(Context.createMangleContext()); | 
|  |  | 
|  | if (MC->shouldMangleDeclName(ND)) { | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) | 
|  | MC->mangleCXXCtor(CD, Ctor_Base, Out); | 
|  | else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) | 
|  | MC->mangleCXXDtor(DD, Dtor_Base, Out); | 
|  | else | 
|  | MC->mangleName(ND, Out); | 
|  |  | 
|  | if (!Buffer.empty() && Buffer.front() == '\01') | 
|  | return Buffer.substr(1); | 
|  | return Buffer.str(); | 
|  | } else | 
|  | return ND->getIdentifier()->getName(); | 
|  | } | 
|  | return ""; | 
|  | } | 
|  | if (isa<BlockDecl>(CurrentDecl)) { | 
|  | // For blocks we only emit something if it is enclosed in a function | 
|  | // For top-level block we'd like to include the name of variable, but we | 
|  | // don't have it at this point. | 
|  | auto DC = CurrentDecl->getDeclContext(); | 
|  | if (DC->isFileContext()) | 
|  | return ""; | 
|  |  | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) | 
|  | // For nested blocks, propagate up to the parent. | 
|  | Out << ComputeName(IK, DCBlock); | 
|  | else if (auto *DCDecl = dyn_cast<Decl>(DC)) | 
|  | Out << ComputeName(IK, DCDecl) << "_block_invoke"; | 
|  | return Out.str(); | 
|  | } | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { | 
|  | if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && | 
|  | IK != FuncSig && IK != LFuncSig) | 
|  | return FD->getNameAsString(); | 
|  |  | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) | 
|  | Out << "virtual "; | 
|  | if (MD->isStatic()) | 
|  | Out << "static "; | 
|  | } | 
|  |  | 
|  | PrintingPolicy Policy(Context.getLangOpts()); | 
|  | std::string Proto; | 
|  | llvm::raw_string_ostream POut(Proto); | 
|  |  | 
|  | const FunctionDecl *Decl = FD; | 
|  | if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) | 
|  | Decl = Pattern; | 
|  | const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); | 
|  | const FunctionProtoType *FT = nullptr; | 
|  | if (FD->hasWrittenPrototype()) | 
|  | FT = dyn_cast<FunctionProtoType>(AFT); | 
|  |  | 
|  | if (IK == FuncSig || IK == LFuncSig) { | 
|  | switch (AFT->getCallConv()) { | 
|  | case CC_C: POut << "__cdecl "; break; | 
|  | case CC_X86StdCall: POut << "__stdcall "; break; | 
|  | case CC_X86FastCall: POut << "__fastcall "; break; | 
|  | case CC_X86ThisCall: POut << "__thiscall "; break; | 
|  | case CC_X86VectorCall: POut << "__vectorcall "; break; | 
|  | case CC_X86RegCall: POut << "__regcall "; break; | 
|  | // Only bother printing the conventions that MSVC knows about. | 
|  | default: break; | 
|  | } | 
|  | } | 
|  |  | 
|  | FD->printQualifiedName(POut, Policy); | 
|  |  | 
|  | POut << "("; | 
|  | if (FT) { | 
|  | for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { | 
|  | if (i) POut << ", "; | 
|  | POut << Decl->getParamDecl(i)->getType().stream(Policy); | 
|  | } | 
|  |  | 
|  | if (FT->isVariadic()) { | 
|  | if (FD->getNumParams()) POut << ", "; | 
|  | POut << "..."; | 
|  | } else if ((IK == FuncSig || IK == LFuncSig || | 
|  | !Context.getLangOpts().CPlusPlus) && | 
|  | !Decl->getNumParams()) { | 
|  | POut << "void"; | 
|  | } | 
|  | } | 
|  | POut << ")"; | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | assert(FT && "We must have a written prototype in this case."); | 
|  | if (FT->isConst()) | 
|  | POut << " const"; | 
|  | if (FT->isVolatile()) | 
|  | POut << " volatile"; | 
|  | RefQualifierKind Ref = MD->getRefQualifier(); | 
|  | if (Ref == RQ_LValue) | 
|  | POut << " &"; | 
|  | else if (Ref == RQ_RValue) | 
|  | POut << " &&"; | 
|  | } | 
|  |  | 
|  | typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; | 
|  | SpecsTy Specs; | 
|  | const DeclContext *Ctx = FD->getDeclContext(); | 
|  | while (Ctx && isa<NamedDecl>(Ctx)) { | 
|  | const ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); | 
|  | if (Spec && !Spec->isExplicitSpecialization()) | 
|  | Specs.push_back(Spec); | 
|  | Ctx = Ctx->getParent(); | 
|  | } | 
|  |  | 
|  | std::string TemplateParams; | 
|  | llvm::raw_string_ostream TOut(TemplateParams); | 
|  | for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); | 
|  | I != E; ++I) { | 
|  | const TemplateParameterList *Params | 
|  | = (*I)->getSpecializedTemplate()->getTemplateParameters(); | 
|  | const TemplateArgumentList &Args = (*I)->getTemplateArgs(); | 
|  | assert(Params->size() == Args.size()); | 
|  | for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { | 
|  | StringRef Param = Params->getParam(i)->getName(); | 
|  | if (Param.empty()) continue; | 
|  | TOut << Param << " = "; | 
|  | Args.get(i).print(Policy, TOut); | 
|  | TOut << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionTemplateSpecializationInfo *FSI | 
|  | = FD->getTemplateSpecializationInfo(); | 
|  | if (FSI && !FSI->isExplicitSpecialization()) { | 
|  | const TemplateParameterList* Params | 
|  | = FSI->getTemplate()->getTemplateParameters(); | 
|  | const TemplateArgumentList* Args = FSI->TemplateArguments; | 
|  | assert(Params->size() == Args->size()); | 
|  | for (unsigned i = 0, e = Params->size(); i != e; ++i) { | 
|  | StringRef Param = Params->getParam(i)->getName(); | 
|  | if (Param.empty()) continue; | 
|  | TOut << Param << " = "; | 
|  | Args->get(i).print(Policy, TOut); | 
|  | TOut << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | TOut.flush(); | 
|  | if (!TemplateParams.empty()) { | 
|  | // remove the trailing comma and space | 
|  | TemplateParams.resize(TemplateParams.size() - 2); | 
|  | POut << " [" << TemplateParams << "]"; | 
|  | } | 
|  |  | 
|  | POut.flush(); | 
|  |  | 
|  | // Print "auto" for all deduced return types. This includes C++1y return | 
|  | // type deduction and lambdas. For trailing return types resolve the | 
|  | // decltype expression. Otherwise print the real type when this is | 
|  | // not a constructor or destructor. | 
|  | if (isa<CXXMethodDecl>(FD) && | 
|  | cast<CXXMethodDecl>(FD)->getParent()->isLambda()) | 
|  | Proto = "auto " + Proto; | 
|  | else if (FT && FT->getReturnType()->getAs<DecltypeType>()) | 
|  | FT->getReturnType() | 
|  | ->getAs<DecltypeType>() | 
|  | ->getUnderlyingType() | 
|  | .getAsStringInternal(Proto, Policy); | 
|  | else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) | 
|  | AFT->getReturnType().getAsStringInternal(Proto, Policy); | 
|  |  | 
|  | Out << Proto; | 
|  |  | 
|  | return Name.str().str(); | 
|  | } | 
|  | if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { | 
|  | for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) | 
|  | // Skip to its enclosing function or method, but not its enclosing | 
|  | // CapturedDecl. | 
|  | if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { | 
|  | const Decl *D = Decl::castFromDeclContext(DC); | 
|  | return ComputeName(IK, D); | 
|  | } | 
|  | llvm_unreachable("CapturedDecl not inside a function or method"); | 
|  | } | 
|  | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | Out << (MD->isInstanceMethod() ? '-' : '+'); | 
|  | Out << '['; | 
|  |  | 
|  | // For incorrect code, there might not be an ObjCInterfaceDecl.  Do | 
|  | // a null check to avoid a crash. | 
|  | if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) | 
|  | Out << *ID; | 
|  |  | 
|  | if (const ObjCCategoryImplDecl *CID = | 
|  | dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) | 
|  | Out << '(' << *CID << ')'; | 
|  |  | 
|  | Out <<  ' '; | 
|  | MD->getSelector().print(Out); | 
|  | Out <<  ']'; | 
|  |  | 
|  | return Name.str().str(); | 
|  | } | 
|  | if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { | 
|  | // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. | 
|  | return "top level"; | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | void APNumericStorage::setIntValue(const ASTContext &C, | 
|  | const llvm::APInt &Val) { | 
|  | if (hasAllocation()) | 
|  | C.Deallocate(pVal); | 
|  |  | 
|  | BitWidth = Val.getBitWidth(); | 
|  | unsigned NumWords = Val.getNumWords(); | 
|  | const uint64_t* Words = Val.getRawData(); | 
|  | if (NumWords > 1) { | 
|  | pVal = new (C) uint64_t[NumWords]; | 
|  | std::copy(Words, Words + NumWords, pVal); | 
|  | } else if (NumWords == 1) | 
|  | VAL = Words[0]; | 
|  | else | 
|  | VAL = 0; | 
|  | } | 
|  |  | 
|  | IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l) | 
|  | : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, | 
|  | false, false), | 
|  | Loc(l) { | 
|  | assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); | 
|  | assert(V.getBitWidth() == C.getIntWidth(type) && | 
|  | "Integer type is not the correct size for constant."); | 
|  | setValue(C, V); | 
|  | } | 
|  |  | 
|  | IntegerLiteral * | 
|  | IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l) { | 
|  | return new (C) IntegerLiteral(C, V, type, l); | 
|  | } | 
|  |  | 
|  | IntegerLiteral * | 
|  | IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) IntegerLiteral(Empty); | 
|  | } | 
|  |  | 
|  | FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l, | 
|  | unsigned Scale) | 
|  | : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false, | 
|  | false, false), | 
|  | Loc(l), Scale(Scale) { | 
|  | assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); | 
|  | assert(V.getBitWidth() == C.getTypeInfo(type).Width && | 
|  | "Fixed point type is not the correct size for constant."); | 
|  | setValue(C, V); | 
|  | } | 
|  |  | 
|  | FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, | 
|  | const llvm::APInt &V, | 
|  | QualType type, | 
|  | SourceLocation l, | 
|  | unsigned Scale) { | 
|  | return new (C) FixedPointLiteral(C, V, type, l, Scale); | 
|  | } | 
|  |  | 
|  | std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { | 
|  | // Currently the longest decimal number that can be printed is the max for an | 
|  | // unsigned long _Accum: 4294967295.99999999976716935634613037109375 | 
|  | // which is 43 characters. | 
|  | SmallString<64> S; | 
|  | FixedPointValueToString( | 
|  | S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); | 
|  | return S.str(); | 
|  | } | 
|  |  | 
|  | FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, | 
|  | bool isexact, QualType Type, SourceLocation L) | 
|  | : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, | 
|  | false, false), Loc(L) { | 
|  | setSemantics(V.getSemantics()); | 
|  | FloatingLiteralBits.IsExact = isexact; | 
|  | setValue(C, V); | 
|  | } | 
|  |  | 
|  | FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) | 
|  | : Expr(FloatingLiteralClass, Empty) { | 
|  | setRawSemantics(IEEEhalf); | 
|  | FloatingLiteralBits.IsExact = false; | 
|  | } | 
|  |  | 
|  | FloatingLiteral * | 
|  | FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, | 
|  | bool isexact, QualType Type, SourceLocation L) { | 
|  | return new (C) FloatingLiteral(C, V, isexact, Type, L); | 
|  | } | 
|  |  | 
|  | FloatingLiteral * | 
|  | FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) FloatingLiteral(C, Empty); | 
|  | } | 
|  |  | 
|  | const llvm::fltSemantics &FloatingLiteral::getSemantics() const { | 
|  | switch(FloatingLiteralBits.Semantics) { | 
|  | case IEEEhalf: | 
|  | return llvm::APFloat::IEEEhalf(); | 
|  | case IEEEsingle: | 
|  | return llvm::APFloat::IEEEsingle(); | 
|  | case IEEEdouble: | 
|  | return llvm::APFloat::IEEEdouble(); | 
|  | case x87DoubleExtended: | 
|  | return llvm::APFloat::x87DoubleExtended(); | 
|  | case IEEEquad: | 
|  | return llvm::APFloat::IEEEquad(); | 
|  | case PPCDoubleDouble: | 
|  | return llvm::APFloat::PPCDoubleDouble(); | 
|  | } | 
|  | llvm_unreachable("Unrecognised floating semantics"); | 
|  | } | 
|  |  | 
|  | void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { | 
|  | if (&Sem == &llvm::APFloat::IEEEhalf()) | 
|  | FloatingLiteralBits.Semantics = IEEEhalf; | 
|  | else if (&Sem == &llvm::APFloat::IEEEsingle()) | 
|  | FloatingLiteralBits.Semantics = IEEEsingle; | 
|  | else if (&Sem == &llvm::APFloat::IEEEdouble()) | 
|  | FloatingLiteralBits.Semantics = IEEEdouble; | 
|  | else if (&Sem == &llvm::APFloat::x87DoubleExtended()) | 
|  | FloatingLiteralBits.Semantics = x87DoubleExtended; | 
|  | else if (&Sem == &llvm::APFloat::IEEEquad()) | 
|  | FloatingLiteralBits.Semantics = IEEEquad; | 
|  | else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) | 
|  | FloatingLiteralBits.Semantics = PPCDoubleDouble; | 
|  | else | 
|  | llvm_unreachable("Unknown floating semantics"); | 
|  | } | 
|  |  | 
|  | /// getValueAsApproximateDouble - This returns the value as an inaccurate | 
|  | /// double.  Note that this may cause loss of precision, but is useful for | 
|  | /// debugging dumps, etc. | 
|  | double FloatingLiteral::getValueAsApproximateDouble() const { | 
|  | llvm::APFloat V = getValue(); | 
|  | bool ignored; | 
|  | V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | return V.convertToDouble(); | 
|  | } | 
|  |  | 
|  | int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { | 
|  | int CharByteWidth = 0; | 
|  | switch(k) { | 
|  | case Ascii: | 
|  | case UTF8: | 
|  | CharByteWidth = target.getCharWidth(); | 
|  | break; | 
|  | case Wide: | 
|  | CharByteWidth = target.getWCharWidth(); | 
|  | break; | 
|  | case UTF16: | 
|  | CharByteWidth = target.getChar16Width(); | 
|  | break; | 
|  | case UTF32: | 
|  | CharByteWidth = target.getChar32Width(); | 
|  | break; | 
|  | } | 
|  | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); | 
|  | CharByteWidth /= 8; | 
|  | assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) | 
|  | && "character byte widths supported are 1, 2, and 4 only"); | 
|  | return CharByteWidth; | 
|  | } | 
|  |  | 
|  | StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, | 
|  | StringKind Kind, bool Pascal, QualType Ty, | 
|  | const SourceLocation *Loc, | 
|  | unsigned NumStrs) { | 
|  | assert(C.getAsConstantArrayType(Ty) && | 
|  | "StringLiteral must be of constant array type!"); | 
|  |  | 
|  | // Allocate enough space for the StringLiteral plus an array of locations for | 
|  | // any concatenated string tokens. | 
|  | void *Mem = | 
|  | C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1), | 
|  | alignof(StringLiteral)); | 
|  | StringLiteral *SL = new (Mem) StringLiteral(Ty); | 
|  |  | 
|  | // OPTIMIZE: could allocate this appended to the StringLiteral. | 
|  | SL->setString(C,Str,Kind,Pascal); | 
|  |  | 
|  | SL->TokLocs[0] = Loc[0]; | 
|  | SL->NumConcatenated = NumStrs; | 
|  |  | 
|  | if (NumStrs != 1) | 
|  | memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); | 
|  | return SL; | 
|  | } | 
|  |  | 
|  | StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, | 
|  | unsigned NumStrs) { | 
|  | void *Mem = | 
|  | C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1), | 
|  | alignof(StringLiteral)); | 
|  | StringLiteral *SL = | 
|  | new (Mem) StringLiteral(C.adjustStringLiteralBaseType(QualType())); | 
|  | SL->CharByteWidth = 0; | 
|  | SL->Length = 0; | 
|  | SL->NumConcatenated = NumStrs; | 
|  | return SL; | 
|  | } | 
|  |  | 
|  | void StringLiteral::outputString(raw_ostream &OS) const { | 
|  | switch (getKind()) { | 
|  | case Ascii: break; // no prefix. | 
|  | case Wide:  OS << 'L'; break; | 
|  | case UTF8:  OS << "u8"; break; | 
|  | case UTF16: OS << 'u'; break; | 
|  | case UTF32: OS << 'U'; break; | 
|  | } | 
|  | OS << '"'; | 
|  | static const char Hex[] = "0123456789ABCDEF"; | 
|  |  | 
|  | unsigned LastSlashX = getLength(); | 
|  | for (unsigned I = 0, N = getLength(); I != N; ++I) { | 
|  | switch (uint32_t Char = getCodeUnit(I)) { | 
|  | default: | 
|  | // FIXME: Convert UTF-8 back to codepoints before rendering. | 
|  |  | 
|  | // Convert UTF-16 surrogate pairs back to codepoints before rendering. | 
|  | // Leave invalid surrogates alone; we'll use \x for those. | 
|  | if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && | 
|  | Char <= 0xdbff) { | 
|  | uint32_t Trail = getCodeUnit(I + 1); | 
|  | if (Trail >= 0xdc00 && Trail <= 0xdfff) { | 
|  | Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Char > 0xff) { | 
|  | // If this is a wide string, output characters over 0xff using \x | 
|  | // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a | 
|  | // codepoint: use \x escapes for invalid codepoints. | 
|  | if (getKind() == Wide || | 
|  | (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { | 
|  | // FIXME: Is this the best way to print wchar_t? | 
|  | OS << "\\x"; | 
|  | int Shift = 28; | 
|  | while ((Char >> Shift) == 0) | 
|  | Shift -= 4; | 
|  | for (/**/; Shift >= 0; Shift -= 4) | 
|  | OS << Hex[(Char >> Shift) & 15]; | 
|  | LastSlashX = I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Char > 0xffff) | 
|  | OS << "\\U00" | 
|  | << Hex[(Char >> 20) & 15] | 
|  | << Hex[(Char >> 16) & 15]; | 
|  | else | 
|  | OS << "\\u"; | 
|  | OS << Hex[(Char >> 12) & 15] | 
|  | << Hex[(Char >>  8) & 15] | 
|  | << Hex[(Char >>  4) & 15] | 
|  | << Hex[(Char >>  0) & 15]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we used \x... for the previous character, and this character is a | 
|  | // hexadecimal digit, prevent it being slurped as part of the \x. | 
|  | if (LastSlashX + 1 == I) { | 
|  | switch (Char) { | 
|  | case '0': case '1': case '2': case '3': case '4': | 
|  | case '5': case '6': case '7': case '8': case '9': | 
|  | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': | 
|  | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': | 
|  | OS << "\"\""; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Char <= 0xff && | 
|  | "Characters above 0xff should already have been handled."); | 
|  |  | 
|  | if (isPrintable(Char)) | 
|  | OS << (char)Char; | 
|  | else  // Output anything hard as an octal escape. | 
|  | OS << '\\' | 
|  | << (char)('0' + ((Char >> 6) & 7)) | 
|  | << (char)('0' + ((Char >> 3) & 7)) | 
|  | << (char)('0' + ((Char >> 0) & 7)); | 
|  | break; | 
|  | // Handle some common non-printable cases to make dumps prettier. | 
|  | case '\\': OS << "\\\\"; break; | 
|  | case '"': OS << "\\\""; break; | 
|  | case '\a': OS << "\\a"; break; | 
|  | case '\b': OS << "\\b"; break; | 
|  | case '\f': OS << "\\f"; break; | 
|  | case '\n': OS << "\\n"; break; | 
|  | case '\r': OS << "\\r"; break; | 
|  | case '\t': OS << "\\t"; break; | 
|  | case '\v': OS << "\\v"; break; | 
|  | } | 
|  | } | 
|  | OS << '"'; | 
|  | } | 
|  |  | 
|  | void StringLiteral::setString(const ASTContext &C, StringRef Str, | 
|  | StringKind Kind, bool IsPascal) { | 
|  | //FIXME: we assume that the string data comes from a target that uses the same | 
|  | // code unit size and endianness for the type of string. | 
|  | this->Kind = Kind; | 
|  | this->IsPascal = IsPascal; | 
|  |  | 
|  | CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); | 
|  | assert((Str.size()%CharByteWidth == 0) | 
|  | && "size of data must be multiple of CharByteWidth"); | 
|  | Length = Str.size()/CharByteWidth; | 
|  |  | 
|  | switch(CharByteWidth) { | 
|  | case 1: { | 
|  | char *AStrData = new (C) char[Length]; | 
|  | std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); | 
|  | StrData.asChar = AStrData; | 
|  | break; | 
|  | } | 
|  | case 2: { | 
|  | uint16_t *AStrData = new (C) uint16_t[Length]; | 
|  | std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); | 
|  | StrData.asUInt16 = AStrData; | 
|  | break; | 
|  | } | 
|  | case 4: { | 
|  | uint32_t *AStrData = new (C) uint32_t[Length]; | 
|  | std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); | 
|  | StrData.asUInt32 = AStrData; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unsupported CharByteWidth"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getLocationOfByte - Return a source location that points to the specified | 
|  | /// byte of this string literal. | 
|  | /// | 
|  | /// Strings are amazingly complex.  They can be formed from multiple tokens and | 
|  | /// can have escape sequences in them in addition to the usual trigraph and | 
|  | /// escaped newline business.  This routine handles this complexity. | 
|  | /// | 
|  | /// The *StartToken sets the first token to be searched in this function and | 
|  | /// the *StartTokenByteOffset is the byte offset of the first token. Before | 
|  | /// returning, it updates the *StartToken to the TokNo of the token being found | 
|  | /// and sets *StartTokenByteOffset to the byte offset of the token in the | 
|  | /// string. | 
|  | /// Using these two parameters can reduce the time complexity from O(n^2) to | 
|  | /// O(n) if one wants to get the location of byte for all the tokens in a | 
|  | /// string. | 
|  | /// | 
|  | SourceLocation | 
|  | StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, | 
|  | const LangOptions &Features, | 
|  | const TargetInfo &Target, unsigned *StartToken, | 
|  | unsigned *StartTokenByteOffset) const { | 
|  | assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && | 
|  | "Only narrow string literals are currently supported"); | 
|  |  | 
|  | // Loop over all of the tokens in this string until we find the one that | 
|  | // contains the byte we're looking for. | 
|  | unsigned TokNo = 0; | 
|  | unsigned StringOffset = 0; | 
|  | if (StartToken) | 
|  | TokNo = *StartToken; | 
|  | if (StartTokenByteOffset) { | 
|  | StringOffset = *StartTokenByteOffset; | 
|  | ByteNo -= StringOffset; | 
|  | } | 
|  | while (1) { | 
|  | assert(TokNo < getNumConcatenated() && "Invalid byte number!"); | 
|  | SourceLocation StrTokLoc = getStrTokenLoc(TokNo); | 
|  |  | 
|  | // Get the spelling of the string so that we can get the data that makes up | 
|  | // the string literal, not the identifier for the macro it is potentially | 
|  | // expanded through. | 
|  | SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); | 
|  |  | 
|  | // Re-lex the token to get its length and original spelling. | 
|  | std::pair<FileID, unsigned> LocInfo = | 
|  | SM.getDecomposedLoc(StrTokSpellingLoc); | 
|  | bool Invalid = false; | 
|  | StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); | 
|  | if (Invalid) { | 
|  | if (StartTokenByteOffset != nullptr) | 
|  | *StartTokenByteOffset = StringOffset; | 
|  | if (StartToken != nullptr) | 
|  | *StartToken = TokNo; | 
|  | return StrTokSpellingLoc; | 
|  | } | 
|  |  | 
|  | const char *StrData = Buffer.data()+LocInfo.second; | 
|  |  | 
|  | // Create a lexer starting at the beginning of this token. | 
|  | Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, | 
|  | Buffer.begin(), StrData, Buffer.end()); | 
|  | Token TheTok; | 
|  | TheLexer.LexFromRawLexer(TheTok); | 
|  |  | 
|  | // Use the StringLiteralParser to compute the length of the string in bytes. | 
|  | StringLiteralParser SLP(TheTok, SM, Features, Target); | 
|  | unsigned TokNumBytes = SLP.GetStringLength(); | 
|  |  | 
|  | // If the byte is in this token, return the location of the byte. | 
|  | if (ByteNo < TokNumBytes || | 
|  | (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { | 
|  | unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); | 
|  |  | 
|  | // Now that we know the offset of the token in the spelling, use the | 
|  | // preprocessor to get the offset in the original source. | 
|  | if (StartTokenByteOffset != nullptr) | 
|  | *StartTokenByteOffset = StringOffset; | 
|  | if (StartToken != nullptr) | 
|  | *StartToken = TokNo; | 
|  | return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); | 
|  | } | 
|  |  | 
|  | // Move to the next string token. | 
|  | StringOffset += TokNumBytes; | 
|  | ++TokNo; | 
|  | ByteNo -= TokNumBytes; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
|  | /// corresponds to, e.g. "sizeof" or "[pre]++". | 
|  | StringRef UnaryOperator::getOpcodeStr(Opcode Op) { | 
|  | switch (Op) { | 
|  | #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Unknown unary operator"); | 
|  | } | 
|  |  | 
|  | UnaryOperatorKind | 
|  | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { | 
|  | switch (OO) { | 
|  | default: llvm_unreachable("No unary operator for overloaded function"); | 
|  | case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc; | 
|  | case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; | 
|  | case OO_Amp:        return UO_AddrOf; | 
|  | case OO_Star:       return UO_Deref; | 
|  | case OO_Plus:       return UO_Plus; | 
|  | case OO_Minus:      return UO_Minus; | 
|  | case OO_Tilde:      return UO_Not; | 
|  | case OO_Exclaim:    return UO_LNot; | 
|  | case OO_Coawait:    return UO_Coawait; | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { | 
|  | switch (Opc) { | 
|  | case UO_PostInc: case UO_PreInc: return OO_PlusPlus; | 
|  | case UO_PostDec: case UO_PreDec: return OO_MinusMinus; | 
|  | case UO_AddrOf: return OO_Amp; | 
|  | case UO_Deref: return OO_Star; | 
|  | case UO_Plus: return OO_Plus; | 
|  | case UO_Minus: return OO_Minus; | 
|  | case UO_Not: return OO_Tilde; | 
|  | case UO_LNot: return OO_Exclaim; | 
|  | case UO_Coawait: return OO_Coawait; | 
|  | default: return OO_None; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Postfix Operators. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, | 
|  | ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t, | 
|  | ExprValueKind VK, SourceLocation rparenloc) | 
|  | : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(), | 
|  | fn->isValueDependent(), fn->isInstantiationDependent(), | 
|  | fn->containsUnexpandedParameterPack()), | 
|  | NumArgs(args.size()) { | 
|  |  | 
|  | unsigned NumPreArgs = preargs.size(); | 
|  | SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs]; | 
|  | SubExprs[FN] = fn; | 
|  | for (unsigned i = 0; i != NumPreArgs; ++i) { | 
|  | updateDependenciesFromArg(preargs[i]); | 
|  | SubExprs[i+PREARGS_START] = preargs[i]; | 
|  | } | 
|  | for (unsigned i = 0; i != args.size(); ++i) { | 
|  | updateDependenciesFromArg(args[i]); | 
|  | SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; | 
|  | } | 
|  |  | 
|  | CallExprBits.NumPreArgs = NumPreArgs; | 
|  | RParenLoc = rparenloc; | 
|  | } | 
|  |  | 
|  | CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, | 
|  | ArrayRef<Expr *> args, QualType t, ExprValueKind VK, | 
|  | SourceLocation rparenloc) | 
|  | : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {} | 
|  |  | 
|  | CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, | 
|  | QualType t, ExprValueKind VK, SourceLocation rparenloc) | 
|  | : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) { | 
|  | } | 
|  |  | 
|  | CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) | 
|  | : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} | 
|  |  | 
|  | CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, | 
|  | EmptyShell Empty) | 
|  | : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { | 
|  | // FIXME: Why do we allocate this? | 
|  | SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs](); | 
|  | CallExprBits.NumPreArgs = NumPreArgs; | 
|  | } | 
|  |  | 
|  | void CallExpr::updateDependenciesFromArg(Expr *Arg) { | 
|  | if (Arg->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (Arg->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (Arg->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (Arg->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  | } | 
|  |  | 
|  | FunctionDecl *CallExpr::getDirectCallee() { | 
|  | return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); | 
|  | } | 
|  |  | 
|  | Decl *CallExpr::getCalleeDecl() { | 
|  | return getCallee()->getReferencedDeclOfCallee(); | 
|  | } | 
|  |  | 
|  | Decl *Expr::getReferencedDeclOfCallee() { | 
|  | Expr *CEE = IgnoreParenImpCasts(); | 
|  |  | 
|  | while (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { | 
|  | CEE = NTTP->getReplacement()->IgnoreParenCasts(); | 
|  | } | 
|  |  | 
|  | // If we're calling a dereference, look at the pointer instead. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { | 
|  | if (BO->isPtrMemOp()) | 
|  | CEE = BO->getRHS()->IgnoreParenCasts(); | 
|  | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { | 
|  | if (UO->getOpcode() == UO_Deref) | 
|  | CEE = UO->getSubExpr()->IgnoreParenCasts(); | 
|  | } | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) | 
|  | return DRE->getDecl(); | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) | 
|  | return ME->getMemberDecl(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// setNumArgs - This changes the number of arguments present in this call. | 
|  | /// Any orphaned expressions are deleted by this, and any new operands are set | 
|  | /// to null. | 
|  | void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { | 
|  | // No change, just return. | 
|  | if (NumArgs == getNumArgs()) return; | 
|  |  | 
|  | // If shrinking # arguments, just delete the extras and forgot them. | 
|  | if (NumArgs < getNumArgs()) { | 
|  | this->NumArgs = NumArgs; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we are growing the # arguments.  New an bigger argument array. | 
|  | unsigned NumPreArgs = getNumPreArgs(); | 
|  | Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; | 
|  | // Copy over args. | 
|  | for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) | 
|  | NewSubExprs[i] = SubExprs[i]; | 
|  | // Null out new args. | 
|  | for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; | 
|  | i != NumArgs+PREARGS_START+NumPreArgs; ++i) | 
|  | NewSubExprs[i] = nullptr; | 
|  |  | 
|  | if (SubExprs) C.Deallocate(SubExprs); | 
|  | SubExprs = NewSubExprs; | 
|  | this->NumArgs = NumArgs; | 
|  | } | 
|  |  | 
|  | /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If | 
|  | /// not, return 0. | 
|  | unsigned CallExpr::getBuiltinCallee() const { | 
|  | // All simple function calls (e.g. func()) are implicitly cast to pointer to | 
|  | // function. As a result, we try and obtain the DeclRefExpr from the | 
|  | // ImplicitCastExpr. | 
|  | const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); | 
|  | if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). | 
|  | return 0; | 
|  |  | 
|  | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); | 
|  | if (!DRE) | 
|  | return 0; | 
|  |  | 
|  | const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
|  | if (!FDecl) | 
|  | return 0; | 
|  |  | 
|  | if (!FDecl->getIdentifier()) | 
|  | return 0; | 
|  |  | 
|  | return FDecl->getBuiltinID(); | 
|  | } | 
|  |  | 
|  | bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { | 
|  | if (unsigned BI = getBuiltinCallee()) | 
|  | return Ctx.BuiltinInfo.isUnevaluated(BI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { | 
|  | const Expr *Callee = getCallee(); | 
|  | QualType CalleeType = Callee->getType(); | 
|  | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { | 
|  | CalleeType = FnTypePtr->getPointeeType(); | 
|  | } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { | 
|  | CalleeType = BPT->getPointeeType(); | 
|  | } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { | 
|  | if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) | 
|  | return Ctx.VoidTy; | 
|  |  | 
|  | // This should never be overloaded and so should never return null. | 
|  | CalleeType = Expr::findBoundMemberType(Callee); | 
|  | } | 
|  |  | 
|  | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | 
|  | return FnType->getReturnType(); | 
|  | } | 
|  |  | 
|  | SourceLocation CallExpr::getBeginLoc() const { | 
|  | if (isa<CXXOperatorCallExpr>(this)) | 
|  | return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); | 
|  |  | 
|  | SourceLocation begin = getCallee()->getBeginLoc(); | 
|  | if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) | 
|  | begin = getArg(0)->getBeginLoc(); | 
|  | return begin; | 
|  | } | 
|  | SourceLocation CallExpr::getEndLoc() const { | 
|  | if (isa<CXXOperatorCallExpr>(this)) | 
|  | return cast<CXXOperatorCallExpr>(this)->getEndLoc(); | 
|  |  | 
|  | SourceLocation end = getRParenLoc(); | 
|  | if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) | 
|  | end = getArg(getNumArgs() - 1)->getEndLoc(); | 
|  | return end; | 
|  | } | 
|  |  | 
|  | OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, | 
|  | SourceLocation OperatorLoc, | 
|  | TypeSourceInfo *tsi, | 
|  | ArrayRef<OffsetOfNode> comps, | 
|  | ArrayRef<Expr*> exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | void *Mem = C.Allocate( | 
|  | totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); | 
|  |  | 
|  | return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned numComps, unsigned numExprs) { | 
|  | void *Mem = | 
|  | C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); | 
|  | return new (Mem) OffsetOfExpr(numComps, numExprs); | 
|  | } | 
|  |  | 
|  | OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, | 
|  | SourceLocation OperatorLoc, TypeSourceInfo *tsi, | 
|  | ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, | 
|  | SourceLocation RParenLoc) | 
|  | : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, | 
|  | /*TypeDependent=*/false, | 
|  | /*ValueDependent=*/tsi->getType()->isDependentType(), | 
|  | tsi->getType()->isInstantiationDependentType(), | 
|  | tsi->getType()->containsUnexpandedParameterPack()), | 
|  | OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), | 
|  | NumComps(comps.size()), NumExprs(exprs.size()) | 
|  | { | 
|  | for (unsigned i = 0; i != comps.size(); ++i) { | 
|  | setComponent(i, comps[i]); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i != exprs.size(); ++i) { | 
|  | if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (exprs[i]->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | setIndexExpr(i, exprs[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | IdentifierInfo *OffsetOfNode::getFieldName() const { | 
|  | assert(getKind() == Field || getKind() == Identifier); | 
|  | if (getKind() == Field) | 
|  | return getField()->getIdentifier(); | 
|  |  | 
|  | return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); | 
|  | } | 
|  |  | 
|  | UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( | 
|  | UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, | 
|  | SourceLocation op, SourceLocation rp) | 
|  | : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, | 
|  | false, // Never type-dependent (C++ [temp.dep.expr]p3). | 
|  | // Value-dependent if the argument is type-dependent. | 
|  | E->isTypeDependent(), E->isInstantiationDependent(), | 
|  | E->containsUnexpandedParameterPack()), | 
|  | OpLoc(op), RParenLoc(rp) { | 
|  | UnaryExprOrTypeTraitExprBits.Kind = ExprKind; | 
|  | UnaryExprOrTypeTraitExprBits.IsType = false; | 
|  | Argument.Ex = E; | 
|  |  | 
|  | // Check to see if we are in the situation where alignof(decl) should be | 
|  | // dependent because decl's alignment is dependent. | 
|  | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | 
|  | if (!isValueDependent() || !isInstantiationDependent()) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | const ValueDecl *D = nullptr; | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | D = DRE->getDecl(); | 
|  | else if (const auto *ME = dyn_cast<MemberExpr>(E)) | 
|  | D = ME->getMemberDecl(); | 
|  |  | 
|  | if (D) { | 
|  | for (const auto *I : D->specific_attrs<AlignedAttr>()) { | 
|  | if (I->isAlignmentDependent()) { | 
|  | setValueDependent(true); | 
|  | setInstantiationDependent(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MemberExpr *MemberExpr::Create( | 
|  | const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, | 
|  | ValueDecl *memberdecl, DeclAccessPair founddecl, | 
|  | DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, | 
|  | QualType ty, ExprValueKind vk, ExprObjectKind ok) { | 
|  |  | 
|  | bool hasQualOrFound = (QualifierLoc || | 
|  | founddecl.getDecl() != memberdecl || | 
|  | founddecl.getAccess() != memberdecl->getAccess()); | 
|  |  | 
|  | bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid(); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, | 
|  | TemplateArgumentLoc>(hasQualOrFound ? 1 : 0, | 
|  | HasTemplateKWAndArgsInfo ? 1 : 0, | 
|  | targs ? targs->size() : 0); | 
|  |  | 
|  | void *Mem = C.Allocate(Size, alignof(MemberExpr)); | 
|  | MemberExpr *E = new (Mem) | 
|  | MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); | 
|  |  | 
|  | if (hasQualOrFound) { | 
|  | // FIXME: Wrong. We should be looking at the member declaration we found. | 
|  | if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { | 
|  | E->setValueDependent(true); | 
|  | E->setTypeDependent(true); | 
|  | E->setInstantiationDependent(true); | 
|  | } | 
|  | else if (QualifierLoc && | 
|  | QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) | 
|  | E->setInstantiationDependent(true); | 
|  |  | 
|  | E->HasQualifierOrFoundDecl = true; | 
|  |  | 
|  | MemberExprNameQualifier *NQ = | 
|  | E->getTrailingObjects<MemberExprNameQualifier>(); | 
|  | NQ->QualifierLoc = QualifierLoc; | 
|  | NQ->FoundDecl = founddecl; | 
|  | } | 
|  |  | 
|  | E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); | 
|  |  | 
|  | if (targs) { | 
|  | bool Dependent = false; | 
|  | bool InstantiationDependent = false; | 
|  | bool ContainsUnexpandedParameterPack = false; | 
|  | E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(), | 
|  | Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); | 
|  | if (InstantiationDependent) | 
|  | E->setInstantiationDependent(true); | 
|  | } else if (TemplateKWLoc.isValid()) { | 
|  | E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc); | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | SourceLocation MemberExpr::getBeginLoc() const { | 
|  | if (isImplicitAccess()) { | 
|  | if (hasQualifier()) | 
|  | return getQualifierLoc().getBeginLoc(); | 
|  | return MemberLoc; | 
|  | } | 
|  |  | 
|  | // FIXME: We don't want this to happen. Rather, we should be able to | 
|  | // detect all kinds of implicit accesses more cleanly. | 
|  | SourceLocation BaseStartLoc = getBase()->getBeginLoc(); | 
|  | if (BaseStartLoc.isValid()) | 
|  | return BaseStartLoc; | 
|  | return MemberLoc; | 
|  | } | 
|  | SourceLocation MemberExpr::getEndLoc() const { | 
|  | SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); | 
|  | if (hasExplicitTemplateArgs()) | 
|  | EndLoc = getRAngleLoc(); | 
|  | else if (EndLoc.isInvalid()) | 
|  | EndLoc = getBase()->getEndLoc(); | 
|  | return EndLoc; | 
|  | } | 
|  |  | 
|  | bool CastExpr::CastConsistency() const { | 
|  | switch (getCastKind()) { | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_BaseToDerived: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | assert(!path_empty() && "Cast kind should have a base path!"); | 
|  | break; | 
|  |  | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | assert(getType()->isObjCObjectPointerType()); | 
|  | assert(getSubExpr()->getType()->isPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | assert(getType()->isObjCObjectPointerType()); | 
|  | assert(getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_ReinterpretMemberPointer: | 
|  | assert(getType()->isMemberPointerType()); | 
|  | assert(getSubExpr()->getType()->isMemberPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_BitCast: | 
|  | // Arbitrary casts to C pointer types count as bitcasts. | 
|  | // Otherwise, we should only have block and ObjC pointer casts | 
|  | // here if they stay within the type kind. | 
|  | if (!getType()->isPointerType()) { | 
|  | assert(getType()->isObjCObjectPointerType() == | 
|  | getSubExpr()->getType()->isObjCObjectPointerType()); | 
|  | assert(getType()->isBlockPointerType() == | 
|  | getSubExpr()->getType()->isBlockPointerType()); | 
|  | } | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | assert(getType()->isBlockPointerType()); | 
|  | assert(getSubExpr()->getType()->isAnyPointerType() && | 
|  | !getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | assert(getType()->isBlockPointerType()); | 
|  | assert(getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_FunctionToPointerDecay: | 
|  | assert(getType()->isPointerType()); | 
|  | assert(getSubExpr()->getType()->isFunctionType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_AddressSpaceConversion: | 
|  | assert(getType()->isPointerType() || getType()->isBlockPointerType()); | 
|  | assert(getSubExpr()->getType()->isPointerType() || | 
|  | getSubExpr()->getType()->isBlockPointerType()); | 
|  | assert(getType()->getPointeeType().getAddressSpace() != | 
|  | getSubExpr()->getType()->getPointeeType().getAddressSpace()); | 
|  | LLVM_FALLTHROUGH; | 
|  | // These should not have an inheritance path. | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_NullToPointer: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_ToVoid: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralCast: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingCast: | 
|  | case CK_ObjCObjectLValueCast: | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_ZeroToOCLOpaqueType: | 
|  | case CK_IntToOCLSampler: | 
|  | case CK_FixedPointCast: | 
|  | assert(!getType()->isBooleanType() && "unheralded conversion to bool"); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_Dependent: | 
|  | case CK_LValueToRValue: | 
|  | case CK_NoOp: | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_LValueBitCast:            // -> bool& | 
|  | case CK_UserDefinedConversion:    // operator bool() | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | case CK_FixedPointToBoolean: | 
|  | CheckNoBasePath: | 
|  | assert(path_empty() && "Cast kind should not have a base path!"); | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *CastExpr::getCastKindName(CastKind CK) { | 
|  | switch (CK) { | 
|  | #define CAST_OPERATION(Name) case CK_##Name: return #Name; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Unhandled cast kind!"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | const Expr *skipImplicitTemporary(const Expr *E) { | 
|  | // Skip through reference binding to temporary. | 
|  | if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | E = Materialize->GetTemporaryExpr(); | 
|  |  | 
|  | // Skip any temporary bindings; they're implicit. | 
|  | if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = Binder->getSubExpr(); | 
|  |  | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *CastExpr::getSubExprAsWritten() { | 
|  | const Expr *SubExpr = nullptr; | 
|  | const CastExpr *E = this; | 
|  | do { | 
|  | SubExpr = skipImplicitTemporary(E->getSubExpr()); | 
|  |  | 
|  | // Conversions by constructor and conversion functions have a | 
|  | // subexpression describing the call; strip it off. | 
|  | if (E->getCastKind() == CK_ConstructorConversion) | 
|  | SubExpr = | 
|  | skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); | 
|  | else if (E->getCastKind() == CK_UserDefinedConversion) { | 
|  | assert((isa<CXXMemberCallExpr>(SubExpr) || | 
|  | isa<BlockExpr>(SubExpr)) && | 
|  | "Unexpected SubExpr for CK_UserDefinedConversion."); | 
|  | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) | 
|  | SubExpr = MCE->getImplicitObjectArgument(); | 
|  | } | 
|  |  | 
|  | // If the subexpression we're left with is an implicit cast, look | 
|  | // through that, too. | 
|  | } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); | 
|  |  | 
|  | return const_cast<Expr*>(SubExpr); | 
|  | } | 
|  |  | 
|  | NamedDecl *CastExpr::getConversionFunction() const { | 
|  | const Expr *SubExpr = nullptr; | 
|  |  | 
|  | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { | 
|  | SubExpr = skipImplicitTemporary(E->getSubExpr()); | 
|  |  | 
|  | if (E->getCastKind() == CK_ConstructorConversion) | 
|  | return cast<CXXConstructExpr>(SubExpr)->getConstructor(); | 
|  |  | 
|  | if (E->getCastKind() == CK_UserDefinedConversion) { | 
|  | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) | 
|  | return MCE->getMethodDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CastExpr::BasePathSizeTy *CastExpr::BasePathSize() { | 
|  | assert(!path_empty()); | 
|  | switch (getStmtClass()) { | 
|  | #define ABSTRACT_STMT(x) | 
|  | #define CASTEXPR(Type, Base)                                                   \ | 
|  | case Stmt::Type##Class:                                                      \ | 
|  | return static_cast<Type *>(this)                                           \ | 
|  | ->getTrailingObjects<CastExpr::BasePathSizeTy>(); | 
|  | #define STMT(Type, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | default: | 
|  | llvm_unreachable("non-cast expressions not possible here"); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXBaseSpecifier **CastExpr::path_buffer() { | 
|  | switch (getStmtClass()) { | 
|  | #define ABSTRACT_STMT(x) | 
|  | #define CASTEXPR(Type, Base)                                                   \ | 
|  | case Stmt::Type##Class:                                                      \ | 
|  | return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); | 
|  | #define STMT(Type, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | default: | 
|  | llvm_unreachable("non-cast expressions not possible here"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, | 
|  | QualType opType) { | 
|  | auto RD = unionType->castAs<RecordType>()->getDecl(); | 
|  | return getTargetFieldForToUnionCast(RD, opType); | 
|  | } | 
|  |  | 
|  | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, | 
|  | QualType OpType) { | 
|  | auto &Ctx = RD->getASTContext(); | 
|  | RecordDecl::field_iterator Field, FieldEnd; | 
|  | for (Field = RD->field_begin(), FieldEnd = RD->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && | 
|  | !Field->isUnnamedBitfield()) { | 
|  | return *Field; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, | 
|  | CastKind Kind, Expr *Operand, | 
|  | const CXXCastPath *BasePath, | 
|  | ExprValueKind VK) { | 
|  | unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>( | 
|  | PathSize ? 1 : 0, PathSize)); | 
|  | // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and | 
|  | // std::nullptr_t have special semantics not captured by CK_LValueToRValue. | 
|  | assert((Kind != CK_LValueToRValue || | 
|  | !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && | 
|  | "invalid type for lvalue-to-rvalue conversion"); | 
|  | ImplicitCastExpr *E = | 
|  | new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); | 
|  | if (PathSize) | 
|  | std::uninitialized_copy_n(BasePath->data(), BasePath->size(), | 
|  | E->getTrailingObjects<CXXBaseSpecifier *>()); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned PathSize) { | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>( | 
|  | PathSize ? 1 : 0, PathSize)); | 
|  | return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); | 
|  | } | 
|  |  | 
|  |  | 
|  | CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, | 
|  | ExprValueKind VK, CastKind K, Expr *Op, | 
|  | const CXXCastPath *BasePath, | 
|  | TypeSourceInfo *WrittenTy, | 
|  | SourceLocation L, SourceLocation R) { | 
|  | unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>( | 
|  | PathSize ? 1 : 0, PathSize)); | 
|  | CStyleCastExpr *E = | 
|  | new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); | 
|  | if (PathSize) | 
|  | std::uninitialized_copy_n(BasePath->data(), BasePath->size(), | 
|  | E->getTrailingObjects<CXXBaseSpecifier *>()); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned PathSize) { | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>( | 
|  | PathSize ? 1 : 0, PathSize)); | 
|  | return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); | 
|  | } | 
|  |  | 
|  | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
|  | /// corresponds to, e.g. "<<=". | 
|  | StringRef BinaryOperator::getOpcodeStr(Opcode Op) { | 
|  | switch (Op) { | 
|  | #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Invalid OpCode!"); | 
|  | } | 
|  |  | 
|  | BinaryOperatorKind | 
|  | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { | 
|  | switch (OO) { | 
|  | default: llvm_unreachable("Not an overloadable binary operator"); | 
|  | case OO_Plus: return BO_Add; | 
|  | case OO_Minus: return BO_Sub; | 
|  | case OO_Star: return BO_Mul; | 
|  | case OO_Slash: return BO_Div; | 
|  | case OO_Percent: return BO_Rem; | 
|  | case OO_Caret: return BO_Xor; | 
|  | case OO_Amp: return BO_And; | 
|  | case OO_Pipe: return BO_Or; | 
|  | case OO_Equal: return BO_Assign; | 
|  | case OO_Spaceship: return BO_Cmp; | 
|  | case OO_Less: return BO_LT; | 
|  | case OO_Greater: return BO_GT; | 
|  | case OO_PlusEqual: return BO_AddAssign; | 
|  | case OO_MinusEqual: return BO_SubAssign; | 
|  | case OO_StarEqual: return BO_MulAssign; | 
|  | case OO_SlashEqual: return BO_DivAssign; | 
|  | case OO_PercentEqual: return BO_RemAssign; | 
|  | case OO_CaretEqual: return BO_XorAssign; | 
|  | case OO_AmpEqual: return BO_AndAssign; | 
|  | case OO_PipeEqual: return BO_OrAssign; | 
|  | case OO_LessLess: return BO_Shl; | 
|  | case OO_GreaterGreater: return BO_Shr; | 
|  | case OO_LessLessEqual: return BO_ShlAssign; | 
|  | case OO_GreaterGreaterEqual: return BO_ShrAssign; | 
|  | case OO_EqualEqual: return BO_EQ; | 
|  | case OO_ExclaimEqual: return BO_NE; | 
|  | case OO_LessEqual: return BO_LE; | 
|  | case OO_GreaterEqual: return BO_GE; | 
|  | case OO_AmpAmp: return BO_LAnd; | 
|  | case OO_PipePipe: return BO_LOr; | 
|  | case OO_Comma: return BO_Comma; | 
|  | case OO_ArrowStar: return BO_PtrMemI; | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { | 
|  | static const OverloadedOperatorKind OverOps[] = { | 
|  | /* .* Cannot be overloaded */OO_None, OO_ArrowStar, | 
|  | OO_Star, OO_Slash, OO_Percent, | 
|  | OO_Plus, OO_Minus, | 
|  | OO_LessLess, OO_GreaterGreater, | 
|  | OO_Spaceship, | 
|  | OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, | 
|  | OO_EqualEqual, OO_ExclaimEqual, | 
|  | OO_Amp, | 
|  | OO_Caret, | 
|  | OO_Pipe, | 
|  | OO_AmpAmp, | 
|  | OO_PipePipe, | 
|  | OO_Equal, OO_StarEqual, | 
|  | OO_SlashEqual, OO_PercentEqual, | 
|  | OO_PlusEqual, OO_MinusEqual, | 
|  | OO_LessLessEqual, OO_GreaterGreaterEqual, | 
|  | OO_AmpEqual, OO_CaretEqual, | 
|  | OO_PipeEqual, | 
|  | OO_Comma | 
|  | }; | 
|  | return OverOps[Opc]; | 
|  | } | 
|  |  | 
|  | bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, | 
|  | Opcode Opc, | 
|  | Expr *LHS, Expr *RHS) { | 
|  | if (Opc != BO_Add) | 
|  | return false; | 
|  |  | 
|  | // Check that we have one pointer and one integer operand. | 
|  | Expr *PExp; | 
|  | if (LHS->getType()->isPointerType()) { | 
|  | if (!RHS->getType()->isIntegerType()) | 
|  | return false; | 
|  | PExp = LHS; | 
|  | } else if (RHS->getType()->isPointerType()) { | 
|  | if (!LHS->getType()->isIntegerType()) | 
|  | return false; | 
|  | PExp = RHS; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that the pointer is a nullptr. | 
|  | if (!PExp->IgnoreParenCasts() | 
|  | ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) | 
|  | return false; | 
|  |  | 
|  | // Check that the pointee type is char-sized. | 
|  | const PointerType *PTy = PExp->getType()->getAs<PointerType>(); | 
|  | if (!PTy || !PTy->getPointeeType()->isCharType()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, | 
|  | ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) | 
|  | : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, | 
|  | false, false), | 
|  | InitExprs(C, initExprs.size()), | 
|  | LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) | 
|  | { | 
|  | sawArrayRangeDesignator(false); | 
|  | for (unsigned I = 0; I != initExprs.size(); ++I) { | 
|  | if (initExprs[I]->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (initExprs[I]->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (initExprs[I]->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (initExprs[I]->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  | } | 
|  |  | 
|  | InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); | 
|  | } | 
|  |  | 
|  | void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { | 
|  | if (NumInits > InitExprs.size()) | 
|  | InitExprs.reserve(C, NumInits); | 
|  | } | 
|  |  | 
|  | void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { | 
|  | InitExprs.resize(C, NumInits, nullptr); | 
|  | } | 
|  |  | 
|  | Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { | 
|  | if (Init >= InitExprs.size()) { | 
|  | InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); | 
|  | setInit(Init, expr); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Expr *Result = cast_or_null<Expr>(InitExprs[Init]); | 
|  | setInit(Init, expr); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void InitListExpr::setArrayFiller(Expr *filler) { | 
|  | assert(!hasArrayFiller() && "Filler already set!"); | 
|  | ArrayFillerOrUnionFieldInit = filler; | 
|  | // Fill out any "holes" in the array due to designated initializers. | 
|  | Expr **inits = getInits(); | 
|  | for (unsigned i = 0, e = getNumInits(); i != e; ++i) | 
|  | if (inits[i] == nullptr) | 
|  | inits[i] = filler; | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isStringLiteralInit() const { | 
|  | if (getNumInits() != 1) | 
|  | return false; | 
|  | const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); | 
|  | if (!AT || !AT->getElementType()->isIntegerType()) | 
|  | return false; | 
|  | // It is possible for getInit() to return null. | 
|  | const Expr *Init = getInit(0); | 
|  | if (!Init) | 
|  | return false; | 
|  | Init = Init->IgnoreParens(); | 
|  | return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isTransparent() const { | 
|  | assert(isSemanticForm() && "syntactic form never semantically transparent"); | 
|  |  | 
|  | // A glvalue InitListExpr is always just sugar. | 
|  | if (isGLValue()) { | 
|  | assert(getNumInits() == 1 && "multiple inits in glvalue init list"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we're sugar if and only if we have exactly one initializer that | 
|  | // is of the same type. | 
|  | if (getNumInits() != 1 || !getInit(0)) | 
|  | return false; | 
|  |  | 
|  | // Don't confuse aggregate initialization of a struct X { X &x; }; with a | 
|  | // transparent struct copy. | 
|  | if (!getInit(0)->isRValue() && getType()->isRecordType()) | 
|  | return false; | 
|  |  | 
|  | return getType().getCanonicalType() == | 
|  | getInit(0)->getType().getCanonicalType(); | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { | 
|  | assert(isSyntacticForm() && "only test syntactic form as zero initializer"); | 
|  |  | 
|  | if (LangOpts.CPlusPlus || getNumInits() != 1) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)); | 
|  | return Lit && Lit->getValue() == 0; | 
|  | } | 
|  |  | 
|  | SourceLocation InitListExpr::getBeginLoc() const { | 
|  | if (InitListExpr *SyntacticForm = getSyntacticForm()) | 
|  | return SyntacticForm->getBeginLoc(); | 
|  | SourceLocation Beg = LBraceLoc; | 
|  | if (Beg.isInvalid()) { | 
|  | // Find the first non-null initializer. | 
|  | for (InitExprsTy::const_iterator I = InitExprs.begin(), | 
|  | E = InitExprs.end(); | 
|  | I != E; ++I) { | 
|  | if (Stmt *S = *I) { | 
|  | Beg = S->getBeginLoc(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Beg; | 
|  | } | 
|  |  | 
|  | SourceLocation InitListExpr::getEndLoc() const { | 
|  | if (InitListExpr *SyntacticForm = getSyntacticForm()) | 
|  | return SyntacticForm->getEndLoc(); | 
|  | SourceLocation End = RBraceLoc; | 
|  | if (End.isInvalid()) { | 
|  | // Find the first non-null initializer from the end. | 
|  | for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), | 
|  | E = InitExprs.rend(); | 
|  | I != E; ++I) { | 
|  | if (Stmt *S = *I) { | 
|  | End = S->getEndLoc(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return End; | 
|  | } | 
|  |  | 
|  | /// getFunctionType - Return the underlying function type for this block. | 
|  | /// | 
|  | const FunctionProtoType *BlockExpr::getFunctionType() const { | 
|  | // The block pointer is never sugared, but the function type might be. | 
|  | return cast<BlockPointerType>(getType()) | 
|  | ->getPointeeType()->castAs<FunctionProtoType>(); | 
|  | } | 
|  |  | 
|  | SourceLocation BlockExpr::getCaretLocation() const { | 
|  | return TheBlock->getCaretLocation(); | 
|  | } | 
|  | const Stmt *BlockExpr::getBody() const { | 
|  | return TheBlock->getBody(); | 
|  | } | 
|  | Stmt *BlockExpr::getBody() { | 
|  | return TheBlock->getBody(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Generic Expression Routines | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isUnusedResultAWarning - Return true if this immediate expression should | 
|  | /// be warned about if the result is unused.  If so, fill in Loc and Ranges | 
|  | /// with location to warn on and the source range[s] to report with the | 
|  | /// warning. | 
|  | bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, | 
|  | SourceRange &R1, SourceRange &R2, | 
|  | ASTContext &Ctx) const { | 
|  | // Don't warn if the expr is type dependent. The type could end up | 
|  | // instantiating to void. | 
|  | if (isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | default: | 
|  | if (getType()->isVoidType()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | case ParenExprClass: | 
|  | return cast<ParenExpr>(this)->getSubExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case CoawaitExprClass: | 
|  | case CoyieldExprClass: | 
|  | return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case ChooseExprClass: | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case UnaryOperatorClass: { | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(this); | 
|  |  | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_Plus: | 
|  | case UO_Minus: | 
|  | case UO_AddrOf: | 
|  | case UO_Not: | 
|  | case UO_LNot: | 
|  | case UO_Deref: | 
|  | break; | 
|  | case UO_Coawait: | 
|  | // This is just the 'operator co_await' call inside the guts of a | 
|  | // dependent co_await call. | 
|  | case UO_PostInc: | 
|  | case UO_PostDec: | 
|  | case UO_PreInc: | 
|  | case UO_PreDec:                 // ++/-- | 
|  | return false;  // Not a warning. | 
|  | case UO_Real: | 
|  | case UO_Imag: | 
|  | // accessing a piece of a volatile complex is a side-effect. | 
|  | if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) | 
|  | .isVolatileQualified()) | 
|  | return false; | 
|  | break; | 
|  | case UO_Extension: | 
|  | return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | WarnE = this; | 
|  | Loc = UO->getOperatorLoc(); | 
|  | R1 = UO->getSubExpr()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case BinaryOperatorClass: { | 
|  | const BinaryOperator *BO = cast<BinaryOperator>(this); | 
|  | switch (BO->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | // Consider the RHS of comma for side effects. LHS was checked by | 
|  | // Sema::CheckCommaOperands. | 
|  | case BO_Comma: | 
|  | // ((foo = <blah>), 0) is an idiom for hiding the result (and | 
|  | // lvalue-ness) of an assignment written in a macro. | 
|  | if (IntegerLiteral *IE = | 
|  | dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) | 
|  | if (IE->getValue() == 0) | 
|  | return false; | 
|  | return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | // Consider '||', '&&' to have side effects if the LHS or RHS does. | 
|  | case BO_LAnd: | 
|  | case BO_LOr: | 
|  | if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || | 
|  | !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | if (BO->isAssignmentOp()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = BO->getOperatorLoc(); | 
|  | R1 = BO->getLHS()->getSourceRange(); | 
|  | R2 = BO->getRHS()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case CompoundAssignOperatorClass: | 
|  | case VAArgExprClass: | 
|  | case AtomicExprClass: | 
|  | return false; | 
|  |  | 
|  | case ConditionalOperatorClass: { | 
|  | // If only one of the LHS or RHS is a warning, the operator might | 
|  | // be being used for control flow. Only warn if both the LHS and | 
|  | // RHS are warnings. | 
|  | const ConditionalOperator *Exp = cast<ConditionalOperator>(this); | 
|  | if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) | 
|  | return false; | 
|  | if (!Exp->getLHS()) | 
|  | return true; | 
|  | return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  |  | 
|  | case MemberExprClass: | 
|  | WarnE = this; | 
|  | Loc = cast<MemberExpr>(this)->getMemberLoc(); | 
|  | R1 = SourceRange(Loc, Loc); | 
|  | R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case ArraySubscriptExprClass: | 
|  | WarnE = this; | 
|  | Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); | 
|  | R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); | 
|  | R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case CXXOperatorCallExprClass: { | 
|  | // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator | 
|  | // overloads as there is no reasonable way to define these such that they | 
|  | // have non-trivial, desirable side-effects. See the -Wunused-comparison | 
|  | // warning: operators == and != are commonly typo'ed, and so warning on them | 
|  | // provides additional value as well. If this list is updated, | 
|  | // DiagnoseUnusedComparison should be as well. | 
|  | const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); | 
|  | switch (Op->getOperator()) { | 
|  | default: | 
|  | break; | 
|  | case OO_EqualEqual: | 
|  | case OO_ExclaimEqual: | 
|  | case OO_Less: | 
|  | case OO_Greater: | 
|  | case OO_GreaterEqual: | 
|  | case OO_LessEqual: | 
|  | if (Op->getCallReturnType(Ctx)->isReferenceType() || | 
|  | Op->getCallReturnType(Ctx)->isVoidType()) | 
|  | break; | 
|  | WarnE = this; | 
|  | Loc = Op->getOperatorLoc(); | 
|  | R1 = Op->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fallthrough for generic call handling. | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case CallExprClass: | 
|  | case CXXMemberCallExprClass: | 
|  | case UserDefinedLiteralClass: { | 
|  | // If this is a direct call, get the callee. | 
|  | const CallExpr *CE = cast<CallExpr>(this); | 
|  | if (const Decl *FD = CE->getCalleeDecl()) { | 
|  | const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); | 
|  | bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr() | 
|  | : FD->hasAttr<WarnUnusedResultAttr>(); | 
|  |  | 
|  | // If the callee has attribute pure, const, or warn_unused_result, warn | 
|  | // about it. void foo() { strlen("bar"); } should warn. | 
|  | // | 
|  | // Note: If new cases are added here, DiagnoseUnusedExprResult should be | 
|  | // updated to match for QoI. | 
|  | if (HasWarnUnusedResultAttr || | 
|  | FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { | 
|  | WarnE = this; | 
|  | Loc = CE->getCallee()->getBeginLoc(); | 
|  | R1 = CE->getCallee()->getSourceRange(); | 
|  |  | 
|  | if (unsigned NumArgs = CE->getNumArgs()) | 
|  | R2 = SourceRange(CE->getArg(0)->getBeginLoc(), | 
|  | CE->getArg(NumArgs - 1)->getEndLoc()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we don't know precisely what we're looking at, let's not warn. | 
|  | case UnresolvedLookupExprClass: | 
|  | case CXXUnresolvedConstructExprClass: | 
|  | return false; | 
|  |  | 
|  | case CXXTemporaryObjectExprClass: | 
|  | case CXXConstructExprClass: { | 
|  | if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { | 
|  | if (Type->hasAttr<WarnUnusedAttr>()) { | 
|  | WarnE = this; | 
|  | Loc = getBeginLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCMessageExprClass: { | 
|  | const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); | 
|  | if (Ctx.getLangOpts().ObjCAutoRefCount && | 
|  | ME->isInstanceMessage() && | 
|  | !ME->getType()->isVoidType() && | 
|  | ME->getMethodFamily() == OMF_init) { | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = ME->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const ObjCMethodDecl *MD = ME->getMethodDecl()) | 
|  | if (MD->hasAttr<WarnUnusedResultAttr>()) { | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCPropertyRefExprClass: | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case PseudoObjectExprClass: { | 
|  | const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); | 
|  |  | 
|  | // Only complain about things that have the form of a getter. | 
|  | if (isa<UnaryOperator>(PO->getSyntacticForm()) || | 
|  | isa<BinaryOperator>(PO->getSyntacticForm())) | 
|  | return false; | 
|  |  | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case StmtExprClass: { | 
|  | // Statement exprs don't logically have side effects themselves, but are | 
|  | // sometimes used in macros in ways that give them a type that is unused. | 
|  | // For example ({ blah; foo(); }) will end up with a type if foo has a type. | 
|  | // however, if the result of the stmt expr is dead, we don't want to emit a | 
|  | // warning. | 
|  | const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); | 
|  | if (!CS->body_empty()) { | 
|  | if (const Expr *E = dyn_cast<Expr>(CS->body_back())) | 
|  | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) | 
|  | if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) | 
|  | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  |  | 
|  | if (getType()->isVoidType()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = cast<StmtExpr>(this)->getLParenLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case CXXFunctionalCastExprClass: | 
|  | case CStyleCastExprClass: { | 
|  | // Ignore an explicit cast to void unless the operand is a non-trivial | 
|  | // volatile lvalue. | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  | if (CE->getCastKind() == CK_ToVoid) { | 
|  | if (CE->getSubExpr()->isGLValue() && | 
|  | CE->getSubExpr()->getType().isVolatileQualified()) { | 
|  | const DeclRefExpr *DRE = | 
|  | dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); | 
|  | if (!(DRE && isa<VarDecl>(DRE->getDecl()) && | 
|  | cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) && | 
|  | !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) { | 
|  | return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, | 
|  | R1, R2, Ctx); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a cast to a constructor conversion, check the operand. | 
|  | // Otherwise, the result of the cast is unused. | 
|  | if (CE->getCastKind() == CK_ConstructorConversion) | 
|  | return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  |  | 
|  | WarnE = this; | 
|  | if (const CXXFunctionalCastExpr *CXXCE = | 
|  | dyn_cast<CXXFunctionalCastExpr>(this)) { | 
|  | Loc = CXXCE->getBeginLoc(); | 
|  | R1 = CXXCE->getSubExpr()->getSourceRange(); | 
|  | } else { | 
|  | const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); | 
|  | Loc = CStyleCE->getLParenLoc(); | 
|  | R1 = CStyleCE->getSubExpr()->getSourceRange(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case ImplicitCastExprClass: { | 
|  | const CastExpr *ICE = cast<ImplicitCastExpr>(this); | 
|  |  | 
|  | // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. | 
|  | if (ICE->getCastKind() == CK_LValueToRValue && | 
|  | ICE->getSubExpr()->getType().isVolatileQualified()) | 
|  | return false; | 
|  |  | 
|  | return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | case CXXDefaultArgExprClass: | 
|  | return (cast<CXXDefaultArgExpr>(this) | 
|  | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); | 
|  | case CXXDefaultInitExprClass: | 
|  | return (cast<CXXDefaultInitExpr>(this) | 
|  | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); | 
|  |  | 
|  | case CXXNewExprClass: | 
|  | // FIXME: In theory, there might be new expressions that don't have side | 
|  | // effects (e.g. a placement new with an uninitialized POD). | 
|  | case CXXDeleteExprClass: | 
|  | return false; | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case CXXBindTemporaryExprClass: | 
|  | return cast<CXXBindTemporaryExpr>(this)->getSubExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case ExprWithCleanupsClass: | 
|  | return cast<ExprWithCleanups>(this)->getSubExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isOBJCGCCandidate - Check if an expression is objc gc'able. | 
|  | /// returns true, if it is; false otherwise. | 
|  | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { | 
|  | const Expr *E = IgnoreParens(); | 
|  | switch (E->getStmtClass()) { | 
|  | default: | 
|  | return false; | 
|  | case ObjCIvarRefExprClass: | 
|  | return true; | 
|  | case Expr::UnaryOperatorClass: | 
|  | return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case ImplicitCastExprClass: | 
|  | return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() | 
|  | ->isOBJCGCCandidate(Ctx); | 
|  | case CStyleCastExprClass: | 
|  | return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case DeclRefExprClass: { | 
|  | const Decl *D = cast<DeclRefExpr>(E)->getDecl(); | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->hasGlobalStorage()) | 
|  | return true; | 
|  | QualType T = VD->getType(); | 
|  | // dereferencing to a  pointer is always a gc'able candidate, | 
|  | // unless it is __weak. | 
|  | return T->isPointerType() && | 
|  | (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case MemberExprClass: { | 
|  | const MemberExpr *M = cast<MemberExpr>(E); | 
|  | return M->getBase()->isOBJCGCCandidate(Ctx); | 
|  | } | 
|  | case ArraySubscriptExprClass: | 
|  | return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { | 
|  | if (isTypeDependent()) | 
|  | return false; | 
|  | return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; | 
|  | } | 
|  |  | 
|  | QualType Expr::findBoundMemberType(const Expr *expr) { | 
|  | assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); | 
|  |  | 
|  | // Bound member expressions are always one of these possibilities: | 
|  | //   x->m      x.m      x->*y      x.*y | 
|  | // (possibly parenthesized) | 
|  |  | 
|  | expr = expr->IgnoreParens(); | 
|  | if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { | 
|  | assert(isa<CXXMethodDecl>(mem->getMemberDecl())); | 
|  | return mem->getMemberDecl()->getType(); | 
|  | } | 
|  |  | 
|  | if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { | 
|  | QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() | 
|  | ->getPointeeType(); | 
|  | assert(type->isFunctionType()); | 
|  | return type; | 
|  | } | 
|  |  | 
|  | assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | Expr* Expr::IgnoreParens() { | 
|  | Expr* E = this; | 
|  | while (true) { | 
|  | if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
|  | if (P->getOpcode() == UO_Extension) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
|  | if (!P->isResultDependent()) { | 
|  | E = P->getResultExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { | 
|  | if (!P->isConditionDependent()) { | 
|  | E = P->getChosenSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr | 
|  | /// or CastExprs or ImplicitCastExprs, returning their operand. | 
|  | Expr *Expr::IgnoreParenCasts() { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  | if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | if (MaterializeTemporaryExpr *Materialize | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = Materialize->GetTemporaryExpr(); | 
|  | continue; | 
|  | } | 
|  | if (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | E = NTTP->getReplacement(); | 
|  | continue; | 
|  | } | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreCasts() { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | if (MaterializeTemporaryExpr *Materialize | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = Materialize->GetTemporaryExpr(); | 
|  | continue; | 
|  | } | 
|  | if (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | E = NTTP->getReplacement(); | 
|  | continue; | 
|  | } | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue | 
|  | /// casts.  This is intended purely as a temporary workaround for code | 
|  | /// that hasn't yet been rewritten to do the right thing about those | 
|  | /// casts, and may disappear along with the last internal use. | 
|  | Expr *Expr::IgnoreParenLValueCasts() { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  | if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
|  | if (P->getCastKind() == CK_LValueToRValue) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } else if (MaterializeTemporaryExpr *Materialize | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = Materialize->GetTemporaryExpr(); | 
|  | continue; | 
|  | } else if (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | E = NTTP->getReplacement(); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | Expr *Expr::ignoreParenBaseCasts() { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  | if (CastExpr *CE = dyn_cast<CastExpr>(E)) { | 
|  | if (CE->getCastKind() == CK_DerivedToBase || | 
|  | CE->getCastKind() == CK_UncheckedDerivedToBase || | 
|  | CE->getCastKind() == CK_NoOp) { | 
|  | E = CE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenImpCasts() { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  | if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | E = P->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | if (MaterializeTemporaryExpr *Materialize | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = Materialize->GetTemporaryExpr(); | 
|  | continue; | 
|  | } | 
|  | if (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | E = NTTP->getReplacement(); | 
|  | continue; | 
|  | } | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreConversionOperator() { | 
|  | if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { | 
|  | if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) | 
|  | return MCE->getImplicitObjectArgument(); | 
|  | } | 
|  | return this; | 
|  | } | 
|  |  | 
|  | /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the | 
|  | /// value (including ptr->int casts of the same size).  Strip off any | 
|  | /// ParenExpr or CastExprs, returning their operand. | 
|  | Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { | 
|  | Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
|  | // We ignore integer <-> casts that are of the same width, ptr<->ptr and | 
|  | // ptr<->int casts of the same width.  We also ignore all identity casts. | 
|  | Expr *SE = P->getSubExpr(); | 
|  |  | 
|  | if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { | 
|  | E = SE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((E->getType()->isPointerType() || | 
|  | E->getType()->isIntegralType(Ctx)) && | 
|  | (SE->getType()->isPointerType() || | 
|  | SE->getType()->isIntegralType(Ctx)) && | 
|  | Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { | 
|  | E = SE; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SubstNonTypeTemplateParmExpr *NTTP | 
|  | = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | E = NTTP->getReplacement(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Expr::isDefaultArgument() const { | 
|  | const Expr *E = this; | 
|  | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | E = M->GetTemporaryExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | E = ICE->getSubExprAsWritten(); | 
|  |  | 
|  | return isa<CXXDefaultArgExpr>(E); | 
|  | } | 
|  |  | 
|  | /// Skip over any no-op casts and any temporary-binding | 
|  | /// expressions. | 
|  | static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { | 
|  | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | E = M->GetTemporaryExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = BE->getSubExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E->IgnoreParens(); | 
|  | } | 
|  |  | 
|  | /// isTemporaryObject - Determines if this expression produces a | 
|  | /// temporary of the given class type. | 
|  | bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { | 
|  | if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) | 
|  | return false; | 
|  |  | 
|  | const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); | 
|  |  | 
|  | // Temporaries are by definition pr-values of class type. | 
|  | if (!E->Classify(C).isPRValue()) { | 
|  | // In this context, property reference is a message call and is pr-value. | 
|  | if (!isa<ObjCPropertyRefExpr>(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Black-list a few cases which yield pr-values of class type that don't | 
|  | // refer to temporaries of that type: | 
|  |  | 
|  | // - implicit derived-to-base conversions | 
|  | if (isa<ImplicitCastExpr>(E)) { | 
|  | switch (cast<ImplicitCastExpr>(E)->getCastKind()) { | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // - member expressions (all) | 
|  | if (isa<MemberExpr>(E)) | 
|  | return false; | 
|  |  | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) | 
|  | if (BO->isPtrMemOp()) | 
|  | return false; | 
|  |  | 
|  | // - opaque values (all) | 
|  | if (isa<OpaqueValueExpr>(E)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::isImplicitCXXThis() const { | 
|  | const Expr *E = this; | 
|  |  | 
|  | // Strip away parentheses and casts we don't care about. | 
|  | while (true) { | 
|  | if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { | 
|  | E = Paren->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp || | 
|  | ICE->getCastKind() == CK_LValueToRValue || | 
|  | ICE->getCastKind() == CK_DerivedToBase || | 
|  | ICE->getCastKind() == CK_UncheckedDerivedToBase) { | 
|  | E = ICE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { | 
|  | if (UnOp->getOpcode() == UO_Extension) { | 
|  | E = UnOp->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const MaterializeTemporaryExpr *M | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = M->GetTemporaryExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) | 
|  | return This->isImplicit(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// hasAnyTypeDependentArguments - Determines if any of the expressions | 
|  | /// in Exprs is type-dependent. | 
|  | bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { | 
|  | for (unsigned I = 0; I < Exprs.size(); ++I) | 
|  | if (Exprs[I]->isTypeDependent()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, | 
|  | const Expr **Culprit) const { | 
|  | // This function is attempting whether an expression is an initializer | 
|  | // which can be evaluated at compile-time. It very closely parallels | 
|  | // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it | 
|  | // will lead to unexpected results.  Like ConstExprEmitter, it falls back | 
|  | // to isEvaluatable most of the time. | 
|  | // | 
|  | // If we ever capture reference-binding directly in the AST, we can | 
|  | // kill the second parameter. | 
|  |  | 
|  | if (IsForRef) { | 
|  | EvalResult Result; | 
|  | if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) | 
|  | return true; | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | default: break; | 
|  | case StringLiteralClass: | 
|  | case ObjCEncodeExprClass: | 
|  | return true; | 
|  | case CXXTemporaryObjectExprClass: | 
|  | case CXXConstructExprClass: { | 
|  | const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); | 
|  |  | 
|  | if (CE->getConstructor()->isTrivial() && | 
|  | CE->getConstructor()->getParent()->hasTrivialDestructor()) { | 
|  | // Trivial default constructor | 
|  | if (!CE->getNumArgs()) return true; | 
|  |  | 
|  | // Trivial copy constructor | 
|  | assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); | 
|  | return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case CompoundLiteralExprClass: { | 
|  | // This handles gcc's extension that allows global initializers like | 
|  | // "struct x {int x;} x = (struct x) {};". | 
|  | // FIXME: This accepts other cases it shouldn't! | 
|  | const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); | 
|  | return Exp->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case DesignatedInitUpdateExprClass: { | 
|  | const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); | 
|  | return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && | 
|  | DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case InitListExprClass: { | 
|  | const InitListExpr *ILE = cast<InitListExpr>(this); | 
|  | if (ILE->getType()->isArrayType()) { | 
|  | unsigned numInits = ILE->getNumInits(); | 
|  | for (unsigned i = 0; i < numInits; i++) { | 
|  | if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ILE->getType()->isRecordType()) { | 
|  | unsigned ElementNo = 0; | 
|  | RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); | 
|  | for (const auto *Field : RD->fields()) { | 
|  | // If this is a union, skip all the fields that aren't being initialized. | 
|  | if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) | 
|  | continue; | 
|  |  | 
|  | // Don't emit anonymous bitfields, they just affect layout. | 
|  | if (Field->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | if (ElementNo < ILE->getNumInits()) { | 
|  | const Expr *Elt = ILE->getInit(ElementNo++); | 
|  | if (Field->isBitField()) { | 
|  | // Bitfields have to evaluate to an integer. | 
|  | llvm::APSInt ResultTmp; | 
|  | if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { | 
|  | if (Culprit) | 
|  | *Culprit = Elt; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | bool RefType = Field->getType()->isReferenceType(); | 
|  | if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ImplicitValueInitExprClass: | 
|  | case NoInitExprClass: | 
|  | return true; | 
|  | case ParenExprClass: | 
|  | return cast<ParenExpr>(this)->getSubExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case ChooseExprClass: | 
|  | if (cast<ChooseExpr>(this)->isConditionDependent()) { | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case UnaryOperatorClass: { | 
|  | const UnaryOperator* Exp = cast<UnaryOperator>(this); | 
|  | if (Exp->getOpcode() == UO_Extension) | 
|  | return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); | 
|  | break; | 
|  | } | 
|  | case CXXFunctionalCastExprClass: | 
|  | case CXXStaticCastExprClass: | 
|  | case ImplicitCastExprClass: | 
|  | case CStyleCastExprClass: | 
|  | case ObjCBridgedCastExprClass: | 
|  | case CXXDynamicCastExprClass: | 
|  | case CXXReinterpretCastExprClass: | 
|  | case CXXConstCastExprClass: { | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  |  | 
|  | // Handle misc casts we want to ignore. | 
|  | if (CE->getCastKind() == CK_NoOp || | 
|  | CE->getCastKind() == CK_LValueToRValue || | 
|  | CE->getCastKind() == CK_ToUnion || | 
|  | CE->getCastKind() == CK_ConstructorConversion || | 
|  | CE->getCastKind() == CK_NonAtomicToAtomic || | 
|  | CE->getCastKind() == CK_AtomicToNonAtomic || | 
|  | CE->getCastKind() == CK_IntToOCLSampler) | 
|  | return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  |  | 
|  | case SubstNonTypeTemplateParmExprClass: | 
|  | return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | case CXXDefaultArgExprClass: | 
|  | return cast<CXXDefaultArgExpr>(this)->getExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | case CXXDefaultInitExprClass: | 
|  | return cast<CXXDefaultInitExpr>(this)->getExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | // Allow certain forms of UB in constant initializers: signed integer | 
|  | // overflow and floating-point division by zero. We'll give a warning on | 
|  | // these, but they're common enough that we have to accept them. | 
|  | if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) | 
|  | return true; | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { | 
|  | const FunctionDecl* FD = getDirectCallee(); | 
|  | if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && | 
|  | FD->getBuiltinID() != Builtin::BI__builtin_assume)) | 
|  | return false; | 
|  |  | 
|  | const Expr* Arg = getArg(0); | 
|  | bool ArgVal; | 
|  | return !Arg->isValueDependent() && | 
|  | Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Look for any side effects within a Stmt. | 
|  | class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { | 
|  | typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; | 
|  | const bool IncludePossibleEffects; | 
|  | bool HasSideEffects; | 
|  |  | 
|  | public: | 
|  | explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) | 
|  | : Inherited(Context), | 
|  | IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } | 
|  |  | 
|  | bool hasSideEffects() const { return HasSideEffects; } | 
|  |  | 
|  | void VisitExpr(const Expr *E) { | 
|  | if (!HasSideEffects && | 
|  | E->HasSideEffects(Context, IncludePossibleEffects)) | 
|  | HasSideEffects = true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Expr::HasSideEffects(const ASTContext &Ctx, | 
|  | bool IncludePossibleEffects) const { | 
|  | // In circumstances where we care about definite side effects instead of | 
|  | // potential side effects, we want to ignore expressions that are part of a | 
|  | // macro expansion as a potential side effect. | 
|  | if (!IncludePossibleEffects && getExprLoc().isMacroID()) | 
|  | return false; | 
|  |  | 
|  | if (isInstantiationDependent()) | 
|  | return IncludePossibleEffects; | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | case NoStmtClass: | 
|  | #define ABSTRACT_STMT(Type) | 
|  | #define STMT(Type, Base) case Type##Class: | 
|  | #define EXPR(Type, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | llvm_unreachable("unexpected Expr kind"); | 
|  |  | 
|  | case DependentScopeDeclRefExprClass: | 
|  | case CXXUnresolvedConstructExprClass: | 
|  | case CXXDependentScopeMemberExprClass: | 
|  | case UnresolvedLookupExprClass: | 
|  | case UnresolvedMemberExprClass: | 
|  | case PackExpansionExprClass: | 
|  | case SubstNonTypeTemplateParmPackExprClass: | 
|  | case FunctionParmPackExprClass: | 
|  | case TypoExprClass: | 
|  | case CXXFoldExprClass: | 
|  | llvm_unreachable("shouldn't see dependent / unresolved nodes here"); | 
|  |  | 
|  | case DeclRefExprClass: | 
|  | case ObjCIvarRefExprClass: | 
|  | case PredefinedExprClass: | 
|  | case IntegerLiteralClass: | 
|  | case FixedPointLiteralClass: | 
|  | case FloatingLiteralClass: | 
|  | case ImaginaryLiteralClass: | 
|  | case StringLiteralClass: | 
|  | case CharacterLiteralClass: | 
|  | case OffsetOfExprClass: | 
|  | case ImplicitValueInitExprClass: | 
|  | case UnaryExprOrTypeTraitExprClass: | 
|  | case AddrLabelExprClass: | 
|  | case GNUNullExprClass: | 
|  | case ArrayInitIndexExprClass: | 
|  | case NoInitExprClass: | 
|  | case CXXBoolLiteralExprClass: | 
|  | case CXXNullPtrLiteralExprClass: | 
|  | case CXXThisExprClass: | 
|  | case CXXScalarValueInitExprClass: | 
|  | case TypeTraitExprClass: | 
|  | case ArrayTypeTraitExprClass: | 
|  | case ExpressionTraitExprClass: | 
|  | case CXXNoexceptExprClass: | 
|  | case SizeOfPackExprClass: | 
|  | case ObjCStringLiteralClass: | 
|  | case ObjCEncodeExprClass: | 
|  | case ObjCBoolLiteralExprClass: | 
|  | case ObjCAvailabilityCheckExprClass: | 
|  | case CXXUuidofExprClass: | 
|  | case OpaqueValueExprClass: | 
|  | // These never have a side-effect. | 
|  | return false; | 
|  |  | 
|  | case CallExprClass: | 
|  | case CXXOperatorCallExprClass: | 
|  | case CXXMemberCallExprClass: | 
|  | case CUDAKernelCallExprClass: | 
|  | case UserDefinedLiteralClass: { | 
|  | // We don't know a call definitely has side effects, except for calls | 
|  | // to pure/const functions that definitely don't. | 
|  | // If the call itself is considered side-effect free, check the operands. | 
|  | const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); | 
|  | bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); | 
|  | if (IsPure || !IncludePossibleEffects) | 
|  | break; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case BlockExprClass: | 
|  | case CXXBindTemporaryExprClass: | 
|  | if (!IncludePossibleEffects) | 
|  | break; | 
|  | return true; | 
|  |  | 
|  | case MSPropertyRefExprClass: | 
|  | case MSPropertySubscriptExprClass: | 
|  | case CompoundAssignOperatorClass: | 
|  | case VAArgExprClass: | 
|  | case AtomicExprClass: | 
|  | case CXXThrowExprClass: | 
|  | case CXXNewExprClass: | 
|  | case CXXDeleteExprClass: | 
|  | case CoawaitExprClass: | 
|  | case DependentCoawaitExprClass: | 
|  | case CoyieldExprClass: | 
|  | // These always have a side-effect. | 
|  | return true; | 
|  |  | 
|  | case StmtExprClass: { | 
|  | // StmtExprs have a side-effect if any substatement does. | 
|  | SideEffectFinder Finder(Ctx, IncludePossibleEffects); | 
|  | Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); | 
|  | return Finder.hasSideEffects(); | 
|  | } | 
|  |  | 
|  | case ExprWithCleanupsClass: | 
|  | if (IncludePossibleEffects) | 
|  | if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case ParenExprClass: | 
|  | case ArraySubscriptExprClass: | 
|  | case OMPArraySectionExprClass: | 
|  | case MemberExprClass: | 
|  | case ConditionalOperatorClass: | 
|  | case BinaryConditionalOperatorClass: | 
|  | case CompoundLiteralExprClass: | 
|  | case ExtVectorElementExprClass: | 
|  | case DesignatedInitExprClass: | 
|  | case DesignatedInitUpdateExprClass: | 
|  | case ArrayInitLoopExprClass: | 
|  | case ParenListExprClass: | 
|  | case CXXPseudoDestructorExprClass: | 
|  | case CXXStdInitializerListExprClass: | 
|  | case SubstNonTypeTemplateParmExprClass: | 
|  | case MaterializeTemporaryExprClass: | 
|  | case ShuffleVectorExprClass: | 
|  | case ConvertVectorExprClass: | 
|  | case AsTypeExprClass: | 
|  | // These have a side-effect if any subexpression does. | 
|  | break; | 
|  |  | 
|  | case UnaryOperatorClass: | 
|  | if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case BinaryOperatorClass: | 
|  | if (cast<BinaryOperator>(this)->isAssignmentOp()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case InitListExprClass: | 
|  | // FIXME: The children for an InitListExpr doesn't include the array filler. | 
|  | if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) | 
|  | if (E->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr()-> | 
|  | HasSideEffects(Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case ChooseExprClass: | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( | 
|  | Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case CXXDefaultArgExprClass: | 
|  | return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( | 
|  | Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case CXXDefaultInitExprClass: { | 
|  | const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); | 
|  | if (const Expr *E = FD->getInClassInitializer()) | 
|  | return E->HasSideEffects(Ctx, IncludePossibleEffects); | 
|  | // If we've not yet parsed the initializer, assume it has side-effects. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CXXDynamicCastExprClass: { | 
|  | // A dynamic_cast expression has side-effects if it can throw. | 
|  | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); | 
|  | if (DCE->getTypeAsWritten()->isReferenceType() && | 
|  | DCE->getCastKind() == CK_Dynamic) | 
|  | return true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case ImplicitCastExprClass: | 
|  | case CStyleCastExprClass: | 
|  | case CXXStaticCastExprClass: | 
|  | case CXXReinterpretCastExprClass: | 
|  | case CXXConstCastExprClass: | 
|  | case CXXFunctionalCastExprClass: { | 
|  | // While volatile reads are side-effecting in both C and C++, we treat them | 
|  | // as having possible (not definite) side-effects. This allows idiomatic | 
|  | // code to behave without warning, such as sizeof(*v) for a volatile- | 
|  | // qualified pointer. | 
|  | if (!IncludePossibleEffects) | 
|  | break; | 
|  |  | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  | if (CE->getCastKind() == CK_LValueToRValue && | 
|  | CE->getSubExpr()->getType().isVolatileQualified()) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXTypeidExprClass: | 
|  | // typeid might throw if its subexpression is potentially-evaluated, so has | 
|  | // side-effects in that case whether or not its subexpression does. | 
|  | return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); | 
|  |  | 
|  | case CXXConstructExprClass: | 
|  | case CXXTemporaryObjectExprClass: { | 
|  | const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); | 
|  | if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) | 
|  | return true; | 
|  | // A trivial constructor does not add any side-effects of its own. Just look | 
|  | // at its arguments. | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXInheritedCtorInitExprClass: { | 
|  | const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); | 
|  | if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LambdaExprClass: { | 
|  | const LambdaExpr *LE = cast<LambdaExpr>(this); | 
|  | for (Expr *E : LE->capture_inits()) | 
|  | if (E->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case PseudoObjectExprClass: { | 
|  | // Only look for side-effects in the semantic form, and look past | 
|  | // OpaqueValueExpr bindings in that form. | 
|  | const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); | 
|  | for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), | 
|  | E = PO->semantics_end(); | 
|  | I != E; ++I) { | 
|  | const Expr *Subexpr = *I; | 
|  | if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) | 
|  | Subexpr = OVE->getSourceExpr(); | 
|  | if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCBoxedExprClass: | 
|  | case ObjCArrayLiteralClass: | 
|  | case ObjCDictionaryLiteralClass: | 
|  | case ObjCSelectorExprClass: | 
|  | case ObjCProtocolExprClass: | 
|  | case ObjCIsaExprClass: | 
|  | case ObjCIndirectCopyRestoreExprClass: | 
|  | case ObjCSubscriptRefExprClass: | 
|  | case ObjCBridgedCastExprClass: | 
|  | case ObjCMessageExprClass: | 
|  | case ObjCPropertyRefExprClass: | 
|  | // FIXME: Classify these cases better. | 
|  | if (IncludePossibleEffects) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Recurse to children. | 
|  | for (const Stmt *SubStmt : children()) | 
|  | if (SubStmt && | 
|  | cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Look for a call to a non-trivial function within an expression. | 
|  | class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> | 
|  | { | 
|  | typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; | 
|  |  | 
|  | bool NonTrivial; | 
|  |  | 
|  | public: | 
|  | explicit NonTrivialCallFinder(const ASTContext &Context) | 
|  | : Inherited(Context), NonTrivial(false) { } | 
|  |  | 
|  | bool hasNonTrivialCall() const { return NonTrivial; } | 
|  |  | 
|  | void VisitCallExpr(const CallExpr *E) { | 
|  | if (const CXXMethodDecl *Method | 
|  | = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { | 
|  | if (Method->isTrivial()) { | 
|  | // Recurse to children of the call. | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  |  | 
|  | void VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | if (E->getConstructor()->isTrivial()) { | 
|  | // Recurse to children of the call. | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  |  | 
|  | void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { | 
|  | if (E->getTemporary()->getDestructor()->isTrivial()) { | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { | 
|  | NonTrivialCallFinder Finder(Ctx); | 
|  | Finder.Visit(this); | 
|  | return Finder.hasNonTrivialCall(); | 
|  | } | 
|  |  | 
|  | /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null | 
|  | /// pointer constant or not, as well as the specific kind of constant detected. | 
|  | /// Null pointer constants can be integer constant expressions with the | 
|  | /// value zero, casts of zero to void*, nullptr (C++0X), or __null | 
|  | /// (a GNU extension). | 
|  | Expr::NullPointerConstantKind | 
|  | Expr::isNullPointerConstant(ASTContext &Ctx, | 
|  | NullPointerConstantValueDependence NPC) const { | 
|  | if (isValueDependent() && | 
|  | (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { | 
|  | switch (NPC) { | 
|  | case NPC_NeverValueDependent: | 
|  | llvm_unreachable("Unexpected value dependent expression!"); | 
|  | case NPC_ValueDependentIsNull: | 
|  | if (isTypeDependent() || getType()->isIntegralType(Ctx)) | 
|  | return NPCK_ZeroExpression; | 
|  | else | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | case NPC_ValueDependentIsNotNull: | 
|  | return NPCK_NotNull; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Strip off a cast to void*, if it exists. Except in C++. | 
|  | if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { | 
|  | if (!Ctx.getLangOpts().CPlusPlus) { | 
|  | // Check that it is a cast to void*. | 
|  | if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { | 
|  | QualType Pointee = PT->getPointeeType(); | 
|  | // Only (void*)0 or equivalent are treated as nullptr. If pointee type | 
|  | // has non-default address space it is not treated as nullptr. | 
|  | // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr | 
|  | // since it cannot be assigned to a pointer to constant address space. | 
|  | bool PointeeHasDefaultAS = | 
|  | Pointee.getAddressSpace() == LangAS::Default || | 
|  | (Ctx.getLangOpts().OpenCLVersion >= 200 && | 
|  | Pointee.getAddressSpace() == LangAS::opencl_generic) || | 
|  | (Ctx.getLangOpts().OpenCL && | 
|  | Ctx.getLangOpts().OpenCLVersion < 200 && | 
|  | Pointee.getAddressSpace() == LangAS::opencl_private); | 
|  |  | 
|  | if (PointeeHasDefaultAS && Pointee->isVoidType() && // to void* | 
|  | CE->getSubExpr()->getType()->isIntegerType())   // from int. | 
|  | return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  | } | 
|  | } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { | 
|  | // Ignore the ImplicitCastExpr type entirely. | 
|  | return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { | 
|  | // Accept ((void*)0) as a null pointer constant, as many other | 
|  | // implementations do. | 
|  | return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const GenericSelectionExpr *GE = | 
|  | dyn_cast<GenericSelectionExpr>(this)) { | 
|  | if (GE->isResultDependent()) | 
|  | return NPCK_NotNull; | 
|  | return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { | 
|  | if (CE->isConditionDependent()) | 
|  | return NPCK_NotNull; | 
|  | return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const CXXDefaultArgExpr *DefaultArg | 
|  | = dyn_cast<CXXDefaultArgExpr>(this)) { | 
|  | // See through default argument expressions. | 
|  | return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const CXXDefaultInitExpr *DefaultInit | 
|  | = dyn_cast<CXXDefaultInitExpr>(this)) { | 
|  | // See through default initializer expressions. | 
|  | return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (isa<GNUNullExpr>(this)) { | 
|  | // The GNU __null extension is always a null pointer constant. | 
|  | return NPCK_GNUNull; | 
|  | } else if (const MaterializeTemporaryExpr *M | 
|  | = dyn_cast<MaterializeTemporaryExpr>(this)) { | 
|  | return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { | 
|  | if (const Expr *Source = OVE->getSourceExpr()) | 
|  | return Source->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  |  | 
|  | // C++11 nullptr_t is always a null pointer constant. | 
|  | if (getType()->isNullPtrType()) | 
|  | return NPCK_CXX11_nullptr; | 
|  |  | 
|  | if (const RecordType *UT = getType()->getAsUnionType()) | 
|  | if (!Ctx.getLangOpts().CPlusPlus11 && | 
|  | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ | 
|  | const Expr *InitExpr = CLE->getInitializer(); | 
|  | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) | 
|  | return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  | // This expression must be an integer type. | 
|  | if (!getType()->isIntegerType() || | 
|  | (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | if (Ctx.getLangOpts().CPlusPlus11) { | 
|  | // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with | 
|  | // value zero or a prvalue of type std::nullptr_t. | 
|  | // Microsoft mode permits C++98 rules reflecting MSVC behavior. | 
|  | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); | 
|  | if (Lit && !Lit->getValue()) | 
|  | return NPCK_ZeroLiteral; | 
|  | else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) | 
|  | return NPCK_NotNull; | 
|  | } else { | 
|  | // If we have an integer constant expression, we need to *evaluate* it and | 
|  | // test for the value 0. | 
|  | if (!isIntegerConstantExpr(Ctx)) | 
|  | return NPCK_NotNull; | 
|  | } | 
|  |  | 
|  | if (EvaluateKnownConstInt(Ctx) != 0) | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | if (isa<IntegerLiteral>(this)) | 
|  | return NPCK_ZeroLiteral; | 
|  | return NPCK_ZeroExpression; | 
|  | } | 
|  |  | 
|  | /// If this expression is an l-value for an Objective C | 
|  | /// property, find the underlying property reference expression. | 
|  | const ObjCPropertyRefExpr *Expr::getObjCProperty() const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | assert((E->getValueKind() == VK_LValue && | 
|  | E->getObjectKind() == OK_ObjCProperty) && | 
|  | "expression is not a property reference"); | 
|  | E = E->IgnoreParenCasts(); | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return cast<ObjCPropertyRefExpr>(E); | 
|  | } | 
|  |  | 
|  | bool Expr::isObjCSelfExpr() const { | 
|  | const Expr *E = IgnoreParenImpCasts(); | 
|  |  | 
|  | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | 
|  | if (!DRE) | 
|  | return false; | 
|  |  | 
|  | const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); | 
|  | if (!Param) | 
|  | return false; | 
|  |  | 
|  | const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); | 
|  | if (!M) | 
|  | return false; | 
|  |  | 
|  | return M->getSelfDecl() == Param; | 
|  | } | 
|  |  | 
|  | FieldDecl *Expr::getSourceBitField() { | 
|  | Expr *E = this->IgnoreParens(); | 
|  |  | 
|  | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_LValueToRValue || | 
|  | (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) | 
|  | E = ICE->getSubExpr()->IgnoreParens(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) | 
|  | if (Field->isBitField()) | 
|  | return Field; | 
|  |  | 
|  | if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { | 
|  | FieldDecl *Ivar = IvarRef->getDecl(); | 
|  | if (Ivar->isBitField()) | 
|  | return Ivar; | 
|  | } | 
|  |  | 
|  | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) | 
|  | if (Field->isBitField()) | 
|  | return Field; | 
|  |  | 
|  | if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) | 
|  | if (Expr *E = BD->getBinding()) | 
|  | return E->getSourceBitField(); | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BinOp->isAssignmentOp() && BinOp->getLHS()) | 
|  | return BinOp->getLHS()->getSourceBitField(); | 
|  |  | 
|  | if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) | 
|  | return BinOp->getRHS()->getSourceBitField(); | 
|  | } | 
|  |  | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) | 
|  | if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) | 
|  | return UnOp->getSubExpr()->getSourceBitField(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Expr::refersToVectorElement() const { | 
|  | // FIXME: Why do we not just look at the ObjectKind here? | 
|  | const Expr *E = this->IgnoreParens(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getValueKind() != VK_RValue && | 
|  | ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr()->IgnoreParens(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) | 
|  | return ASE->getBase()->getType()->isVectorType(); | 
|  |  | 
|  | if (isa<ExtVectorElementExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) | 
|  | if (auto *E = BD->getBinding()) | 
|  | return E->refersToVectorElement(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::refersToGlobalRegisterVar() const { | 
|  | const Expr *E = this->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
|  | if (VD->getStorageClass() == SC_Register && | 
|  | VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isArrow - Return true if the base expression is a pointer to vector, | 
|  | /// return false if the base expression is a vector. | 
|  | bool ExtVectorElementExpr::isArrow() const { | 
|  | return getBase()->getType()->isPointerType(); | 
|  | } | 
|  |  | 
|  | unsigned ExtVectorElementExpr::getNumElements() const { | 
|  | if (const VectorType *VT = getType()->getAs<VectorType>()) | 
|  | return VT->getNumElements(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// containsDuplicateElements - Return true if any element access is repeated. | 
|  | bool ExtVectorElementExpr::containsDuplicateElements() const { | 
|  | // FIXME: Refactor this code to an accessor on the AST node which returns the | 
|  | // "type" of component access, and share with code below and in Sema. | 
|  | StringRef Comp = Accessor->getName(); | 
|  |  | 
|  | // Halving swizzles do not contain duplicate elements. | 
|  | if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") | 
|  | return false; | 
|  |  | 
|  | // Advance past s-char prefix on hex swizzles. | 
|  | if (Comp[0] == 's' || Comp[0] == 'S') | 
|  | Comp = Comp.substr(1); | 
|  |  | 
|  | for (unsigned i = 0, e = Comp.size(); i != e; ++i) | 
|  | if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. | 
|  | void ExtVectorElementExpr::getEncodedElementAccess( | 
|  | SmallVectorImpl<uint32_t> &Elts) const { | 
|  | StringRef Comp = Accessor->getName(); | 
|  | bool isNumericAccessor = false; | 
|  | if (Comp[0] == 's' || Comp[0] == 'S') { | 
|  | Comp = Comp.substr(1); | 
|  | isNumericAccessor = true; | 
|  | } | 
|  |  | 
|  | bool isHi =   Comp == "hi"; | 
|  | bool isLo =   Comp == "lo"; | 
|  | bool isEven = Comp == "even"; | 
|  | bool isOdd  = Comp == "odd"; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumElements(); i != e; ++i) { | 
|  | uint64_t Index; | 
|  |  | 
|  | if (isHi) | 
|  | Index = e + i; | 
|  | else if (isLo) | 
|  | Index = i; | 
|  | else if (isEven) | 
|  | Index = 2 * i; | 
|  | else if (isOdd) | 
|  | Index = 2 * i + 1; | 
|  | else | 
|  | Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); | 
|  |  | 
|  | Elts.push_back(Index); | 
|  | } | 
|  | } | 
|  |  | 
|  | ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, | 
|  | QualType Type, SourceLocation BLoc, | 
|  | SourceLocation RP) | 
|  | : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, | 
|  | Type->isDependentType(), Type->isDependentType(), | 
|  | Type->isInstantiationDependentType(), | 
|  | Type->containsUnexpandedParameterPack()), | 
|  | BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) | 
|  | { | 
|  | SubExprs = new (C) Stmt*[args.size()]; | 
|  | for (unsigned i = 0; i != args.size(); i++) { | 
|  | if (args[i]->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (args[i]->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (args[i]->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (args[i]->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | SubExprs[i] = args[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { | 
|  | if (SubExprs) C.Deallocate(SubExprs); | 
|  |  | 
|  | this->NumExprs = Exprs.size(); | 
|  | SubExprs = new (C) Stmt*[NumExprs]; | 
|  | memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, | 
|  | SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo*> AssocTypes, | 
|  | ArrayRef<Expr*> AssocExprs, | 
|  | SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack, | 
|  | unsigned ResultIndex) | 
|  | : Expr(GenericSelectionExprClass, | 
|  | AssocExprs[ResultIndex]->getType(), | 
|  | AssocExprs[ResultIndex]->getValueKind(), | 
|  | AssocExprs[ResultIndex]->getObjectKind(), | 
|  | AssocExprs[ResultIndex]->isTypeDependent(), | 
|  | AssocExprs[ResultIndex]->isValueDependent(), | 
|  | AssocExprs[ResultIndex]->isInstantiationDependent(), | 
|  | ContainsUnexpandedParameterPack), | 
|  | AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), | 
|  | SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), | 
|  | GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | SubExprs[CONTROLLING] = ControllingExpr; | 
|  | assert(AssocTypes.size() == AssocExprs.size()); | 
|  | std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); | 
|  | std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, | 
|  | SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo*> AssocTypes, | 
|  | ArrayRef<Expr*> AssocExprs, | 
|  | SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack) | 
|  | : Expr(GenericSelectionExprClass, | 
|  | Context.DependentTy, | 
|  | VK_RValue, | 
|  | OK_Ordinary, | 
|  | /*isTypeDependent=*/true, | 
|  | /*isValueDependent=*/true, | 
|  | /*isInstantiationDependent=*/true, | 
|  | ContainsUnexpandedParameterPack), | 
|  | AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), | 
|  | SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), | 
|  | DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | SubExprs[CONTROLLING] = ControllingExpr; | 
|  | assert(AssocTypes.size() == AssocExprs.size()); | 
|  | std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); | 
|  | std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DesignatedInitExpr | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { | 
|  | assert(Kind == FieldDesignator && "Only valid on a field designator"); | 
|  | if (Field.NameOrField & 0x01) | 
|  | return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); | 
|  | else | 
|  | return getField()->getIdentifier(); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, | 
|  | llvm::ArrayRef<Designator> Designators, | 
|  | SourceLocation EqualOrColonLoc, | 
|  | bool GNUSyntax, | 
|  | ArrayRef<Expr*> IndexExprs, | 
|  | Expr *Init) | 
|  | : Expr(DesignatedInitExprClass, Ty, | 
|  | Init->getValueKind(), Init->getObjectKind(), | 
|  | Init->isTypeDependent(), Init->isValueDependent(), | 
|  | Init->isInstantiationDependent(), | 
|  | Init->containsUnexpandedParameterPack()), | 
|  | EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), | 
|  | NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { | 
|  | this->Designators = new (C) Designator[NumDesignators]; | 
|  |  | 
|  | // Record the initializer itself. | 
|  | child_iterator Child = child_begin(); | 
|  | *Child++ = Init; | 
|  |  | 
|  | // Copy the designators and their subexpressions, computing | 
|  | // value-dependence along the way. | 
|  | unsigned IndexIdx = 0; | 
|  | for (unsigned I = 0; I != NumDesignators; ++I) { | 
|  | this->Designators[I] = Designators[I]; | 
|  |  | 
|  | if (this->Designators[I].isArrayDesignator()) { | 
|  | // Compute type- and value-dependence. | 
|  | Expr *Index = IndexExprs[IndexIdx]; | 
|  | if (Index->isTypeDependent() || Index->isValueDependent()) | 
|  | ExprBits.TypeDependent = ExprBits.ValueDependent = true; | 
|  | if (Index->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | // Propagate unexpanded parameter packs. | 
|  | if (Index->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | // Copy the index expressions into permanent storage. | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | } else if (this->Designators[I].isArrayRangeDesignator()) { | 
|  | // Compute type- and value-dependence. | 
|  | Expr *Start = IndexExprs[IndexIdx]; | 
|  | Expr *End = IndexExprs[IndexIdx + 1]; | 
|  | if (Start->isTypeDependent() || Start->isValueDependent() || | 
|  | End->isTypeDependent() || End->isValueDependent()) { | 
|  | ExprBits.TypeDependent = ExprBits.ValueDependent = true; | 
|  | ExprBits.InstantiationDependent = true; | 
|  | } else if (Start->isInstantiationDependent() || | 
|  | End->isInstantiationDependent()) { | 
|  | ExprBits.InstantiationDependent = true; | 
|  | } | 
|  |  | 
|  | // Propagate unexpanded parameter packs. | 
|  | if (Start->containsUnexpandedParameterPack() || | 
|  | End->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | // Copy the start/end expressions into permanent storage. | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr * | 
|  | DesignatedInitExpr::Create(const ASTContext &C, | 
|  | llvm::ArrayRef<Designator> Designators, | 
|  | ArrayRef<Expr*> IndexExprs, | 
|  | SourceLocation ColonOrEqualLoc, | 
|  | bool UsesColonSyntax, Expr *Init) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), | 
|  | alignof(DesignatedInitExpr)); | 
|  | return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, | 
|  | ColonOrEqualLoc, UsesColonSyntax, | 
|  | IndexExprs, Init); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned NumIndexExprs) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), | 
|  | alignof(DesignatedInitExpr)); | 
|  | return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); | 
|  | } | 
|  |  | 
|  | void DesignatedInitExpr::setDesignators(const ASTContext &C, | 
|  | const Designator *Desigs, | 
|  | unsigned NumDesigs) { | 
|  | Designators = new (C) Designator[NumDesigs]; | 
|  | NumDesignators = NumDesigs; | 
|  | for (unsigned I = 0; I != NumDesigs; ++I) | 
|  | Designators[I] = Desigs[I]; | 
|  | } | 
|  |  | 
|  | SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { | 
|  | DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); | 
|  | if (size() == 1) | 
|  | return DIE->getDesignator(0)->getSourceRange(); | 
|  | return SourceRange(DIE->getDesignator(0)->getBeginLoc(), | 
|  | DIE->getDesignator(size() - 1)->getEndLoc()); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitExpr::getBeginLoc() const { | 
|  | SourceLocation StartLoc; | 
|  | auto *DIE = const_cast<DesignatedInitExpr *>(this); | 
|  | Designator &First = *DIE->getDesignator(0); | 
|  | if (First.isFieldDesignator()) { | 
|  | if (GNUSyntax) | 
|  | StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); | 
|  | else | 
|  | StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); | 
|  | } else | 
|  | StartLoc = | 
|  | SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); | 
|  | return StartLoc; | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitExpr::getEndLoc() const { | 
|  | return getInit()->getEndLoc(); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { | 
|  | assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); | 
|  | return getSubExpr(D.ArrayOrRange.Index + 1); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { | 
|  | assert(D.Kind == Designator::ArrayRangeDesignator && | 
|  | "Requires array range designator"); | 
|  | return getSubExpr(D.ArrayOrRange.Index + 1); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { | 
|  | assert(D.Kind == Designator::ArrayRangeDesignator && | 
|  | "Requires array range designator"); | 
|  | return getSubExpr(D.ArrayOrRange.Index + 2); | 
|  | } | 
|  |  | 
|  | /// Replaces the designator at index @p Idx with the series | 
|  | /// of designators in [First, Last). | 
|  | void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, | 
|  | const Designator *First, | 
|  | const Designator *Last) { | 
|  | unsigned NumNewDesignators = Last - First; | 
|  | if (NumNewDesignators == 0) { | 
|  | std::copy_backward(Designators + Idx + 1, | 
|  | Designators + NumDesignators, | 
|  | Designators + Idx); | 
|  | --NumNewDesignators; | 
|  | return; | 
|  | } else if (NumNewDesignators == 1) { | 
|  | Designators[Idx] = *First; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Designator *NewDesignators | 
|  | = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; | 
|  | std::copy(Designators, Designators + Idx, NewDesignators); | 
|  | std::copy(First, Last, NewDesignators + Idx); | 
|  | std::copy(Designators + Idx + 1, Designators + NumDesignators, | 
|  | NewDesignators + Idx + NumNewDesignators); | 
|  | Designators = NewDesignators; | 
|  | NumDesignators = NumDesignators - 1 + NumNewDesignators; | 
|  | } | 
|  |  | 
|  | DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, | 
|  | SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) | 
|  | : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, | 
|  | OK_Ordinary, false, false, false, false) { | 
|  | BaseAndUpdaterExprs[0] = baseExpr; | 
|  |  | 
|  | InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); | 
|  | ILE->setType(baseExpr->getType()); | 
|  | BaseAndUpdaterExprs[1] = ILE; | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { | 
|  | return getBase()->getBeginLoc(); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { | 
|  | return getBase()->getEndLoc(); | 
|  | } | 
|  |  | 
|  | ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, | 
|  | ArrayRef<Expr*> exprs, | 
|  | SourceLocation rparenloc) | 
|  | : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, | 
|  | false, false, false, false), | 
|  | NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { | 
|  | Exprs = new (C) Stmt*[exprs.size()]; | 
|  | for (unsigned i = 0; i != exprs.size(); ++i) { | 
|  | if (exprs[i]->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (exprs[i]->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (exprs[i]->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (exprs[i]->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | Exprs[i] = exprs[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { | 
|  | if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) | 
|  | e = ewc->getSubExpr(); | 
|  | if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) | 
|  | e = m->GetTemporaryExpr(); | 
|  | e = cast<CXXConstructExpr>(e)->getArg(0); | 
|  | while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) | 
|  | e = ice->getSubExpr(); | 
|  | return cast<OpaqueValueExpr>(e); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, | 
|  | EmptyShell sh, | 
|  | unsigned numSemanticExprs) { | 
|  | void *buffer = | 
|  | Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), | 
|  | alignof(PseudoObjectExpr)); | 
|  | return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) | 
|  | : Expr(PseudoObjectExprClass, shell) { | 
|  | PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, | 
|  | ArrayRef<Expr*> semantics, | 
|  | unsigned resultIndex) { | 
|  | assert(syntax && "no syntactic expression!"); | 
|  | assert(semantics.size() && "no semantic expressions!"); | 
|  |  | 
|  | QualType type; | 
|  | ExprValueKind VK; | 
|  | if (resultIndex == NoResult) { | 
|  | type = C.VoidTy; | 
|  | VK = VK_RValue; | 
|  | } else { | 
|  | assert(resultIndex < semantics.size()); | 
|  | type = semantics[resultIndex]->getType(); | 
|  | VK = semantics[resultIndex]->getValueKind(); | 
|  | assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); | 
|  | } | 
|  |  | 
|  | void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), | 
|  | alignof(PseudoObjectExpr)); | 
|  | return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, | 
|  | resultIndex); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, | 
|  | Expr *syntax, ArrayRef<Expr*> semantics, | 
|  | unsigned resultIndex) | 
|  | : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, | 
|  | /*filled in at end of ctor*/ false, false, false, false) { | 
|  | PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; | 
|  | PseudoObjectExprBits.ResultIndex = resultIndex + 1; | 
|  |  | 
|  | for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { | 
|  | Expr *E = (i == 0 ? syntax : semantics[i-1]); | 
|  | getSubExprsBuffer()[i] = E; | 
|  |  | 
|  | if (E->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (E->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (E->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (E->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | if (isa<OpaqueValueExpr>(E)) | 
|  | assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && | 
|  | "opaque-value semantic expressions for pseudo-object " | 
|  | "operations must have sources"); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Child Iterators for iterating over subexpressions/substatements | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // UnaryExprOrTypeTraitExpr | 
|  | Stmt::child_range UnaryExprOrTypeTraitExpr::children() { | 
|  | const_child_range CCR = | 
|  | const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); | 
|  | return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); | 
|  | } | 
|  |  | 
|  | Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { | 
|  | // If this is of a type and the type is a VLA type (and not a typedef), the | 
|  | // size expression of the VLA needs to be treated as an executable expression. | 
|  | // Why isn't this weirdness documented better in StmtIterator? | 
|  | if (isArgumentType()) { | 
|  | if (const VariableArrayType *T = | 
|  | dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) | 
|  | return const_child_range(const_child_iterator(T), const_child_iterator()); | 
|  | return const_child_range(const_child_iterator(), const_child_iterator()); | 
|  | } | 
|  | return const_child_range(&Argument.Ex, &Argument.Ex + 1); | 
|  | } | 
|  |  | 
|  | AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, | 
|  | QualType t, AtomicOp op, SourceLocation RP) | 
|  | : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, | 
|  | false, false, false, false), | 
|  | NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) | 
|  | { | 
|  | assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); | 
|  | for (unsigned i = 0; i != args.size(); i++) { | 
|  | if (args[i]->isTypeDependent()) | 
|  | ExprBits.TypeDependent = true; | 
|  | if (args[i]->isValueDependent()) | 
|  | ExprBits.ValueDependent = true; | 
|  | if (args[i]->isInstantiationDependent()) | 
|  | ExprBits.InstantiationDependent = true; | 
|  | if (args[i]->containsUnexpandedParameterPack()) | 
|  | ExprBits.ContainsUnexpandedParameterPack = true; | 
|  |  | 
|  | SubExprs[i] = args[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { | 
|  | switch (Op) { | 
|  | case AO__c11_atomic_init: | 
|  | case AO__opencl_atomic_init: | 
|  | case AO__c11_atomic_load: | 
|  | case AO__atomic_load_n: | 
|  | return 2; | 
|  |  | 
|  | case AO__opencl_atomic_load: | 
|  | case AO__c11_atomic_store: | 
|  | case AO__c11_atomic_exchange: | 
|  | case AO__atomic_load: | 
|  | case AO__atomic_store: | 
|  | case AO__atomic_store_n: | 
|  | case AO__atomic_exchange_n: | 
|  | case AO__c11_atomic_fetch_add: | 
|  | case AO__c11_atomic_fetch_sub: | 
|  | case AO__c11_atomic_fetch_and: | 
|  | case AO__c11_atomic_fetch_or: | 
|  | case AO__c11_atomic_fetch_xor: | 
|  | case AO__atomic_fetch_add: | 
|  | case AO__atomic_fetch_sub: | 
|  | case AO__atomic_fetch_and: | 
|  | case AO__atomic_fetch_or: | 
|  | case AO__atomic_fetch_xor: | 
|  | case AO__atomic_fetch_nand: | 
|  | case AO__atomic_add_fetch: | 
|  | case AO__atomic_sub_fetch: | 
|  | case AO__atomic_and_fetch: | 
|  | case AO__atomic_or_fetch: | 
|  | case AO__atomic_xor_fetch: | 
|  | case AO__atomic_nand_fetch: | 
|  | case AO__atomic_fetch_min: | 
|  | case AO__atomic_fetch_max: | 
|  | return 3; | 
|  |  | 
|  | case AO__opencl_atomic_store: | 
|  | case AO__opencl_atomic_exchange: | 
|  | case AO__opencl_atomic_fetch_add: | 
|  | case AO__opencl_atomic_fetch_sub: | 
|  | case AO__opencl_atomic_fetch_and: | 
|  | case AO__opencl_atomic_fetch_or: | 
|  | case AO__opencl_atomic_fetch_xor: | 
|  | case AO__opencl_atomic_fetch_min: | 
|  | case AO__opencl_atomic_fetch_max: | 
|  | case AO__atomic_exchange: | 
|  | return 4; | 
|  |  | 
|  | case AO__c11_atomic_compare_exchange_strong: | 
|  | case AO__c11_atomic_compare_exchange_weak: | 
|  | return 5; | 
|  |  | 
|  | case AO__opencl_atomic_compare_exchange_strong: | 
|  | case AO__opencl_atomic_compare_exchange_weak: | 
|  | case AO__atomic_compare_exchange: | 
|  | case AO__atomic_compare_exchange_n: | 
|  | return 6; | 
|  | } | 
|  | llvm_unreachable("unknown atomic op"); | 
|  | } | 
|  |  | 
|  | QualType AtomicExpr::getValueType() const { | 
|  | auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | if (auto AT = T->getAs<AtomicType>()) | 
|  | return AT->getValueType(); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { | 
|  | unsigned ArraySectionCount = 0; | 
|  | while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { | 
|  | Base = OASE->getBase(); | 
|  | ++ArraySectionCount; | 
|  | } | 
|  | while (auto *ASE = | 
|  | dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { | 
|  | Base = ASE->getBase(); | 
|  | ++ArraySectionCount; | 
|  | } | 
|  | Base = Base->IgnoreParenImpCasts(); | 
|  | auto OriginalTy = Base->getType(); | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) | 
|  | if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) | 
|  | OriginalTy = PVD->getOriginalType().getNonReferenceType(); | 
|  |  | 
|  | for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { | 
|  | if (OriginalTy->isAnyPointerType()) | 
|  | OriginalTy = OriginalTy->getPointeeType(); | 
|  | else { | 
|  | assert (OriginalTy->isArrayType()); | 
|  | OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); | 
|  | } | 
|  | } | 
|  | return OriginalTy; | 
|  | } |