|  | //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// \file | 
|  | /// This file implements the targeting of the InstructionSelector class for | 
|  | /// AArch64. | 
|  | /// \todo This should be generated by TableGen. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64InstrInfo.h" | 
|  | #include "AArch64MachineFunctionInfo.h" | 
|  | #include "AArch64RegisterBankInfo.h" | 
|  | #include "AArch64RegisterInfo.h" | 
|  | #include "AArch64Subtarget.h" | 
|  | #include "AArch64TargetMachine.h" | 
|  | #include "MCTargetDesc/AArch64AddressingModes.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" | 
|  | #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" | 
|  | #include "llvm/CodeGen/GlobalISel/Utils.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-isel" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #define GET_GLOBALISEL_PREDICATE_BITSET | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_PREDICATE_BITSET | 
|  |  | 
|  | class AArch64InstructionSelector : public InstructionSelector { | 
|  | public: | 
|  | AArch64InstructionSelector(const AArch64TargetMachine &TM, | 
|  | const AArch64Subtarget &STI, | 
|  | const AArch64RegisterBankInfo &RBI); | 
|  |  | 
|  | bool select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const override; | 
|  | static const char *getName() { return DEBUG_TYPE; } | 
|  |  | 
|  | private: | 
|  | /// tblgen-erated 'select' implementation, used as the initial selector for | 
|  | /// the patterns that don't require complex C++. | 
|  | bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; | 
|  |  | 
|  | bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF, | 
|  | MachineRegisterInfo &MRI) const; | 
|  | bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF, | 
|  | MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | bool selectCompareBranch(MachineInstr &I, MachineFunction &MF, | 
|  | MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | bool selectVectorASHR(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | // Helper to generate an equivalent of scalar_to_vector into a new register, | 
|  | // returned via 'Dst'. | 
|  | MachineInstr *emitScalarToVector(unsigned EltSize, | 
|  | const TargetRegisterClass *DstRC, | 
|  | unsigned Scalar, | 
|  | MachineIRBuilder &MIRBuilder) const; | 
|  |  | 
|  | /// Emit a lane insert into \p DstReg, or a new vector register if None is | 
|  | /// provided. | 
|  | /// | 
|  | /// The lane inserted into is defined by \p LaneIdx. The vector source | 
|  | /// register is given by \p SrcReg. The register containing the element is | 
|  | /// given by \p EltReg. | 
|  | MachineInstr *emitLaneInsert(Optional<unsigned> DstReg, unsigned SrcReg, | 
|  | unsigned EltReg, unsigned LaneIdx, | 
|  | const RegisterBank &RB, | 
|  | MachineIRBuilder &MIRBuilder) const; | 
|  | bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | void collectShuffleMaskIndices(MachineInstr &I, MachineRegisterInfo &MRI, | 
|  | SmallVectorImpl<Optional<int>> &Idxs) const; | 
|  | bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectSplitVectorUnmerge(MachineInstr &I, | 
|  | MachineRegisterInfo &MRI) const; | 
|  | bool selectIntrinsicWithSideEffects(MachineInstr &I, | 
|  | MachineRegisterInfo &MRI) const; | 
|  | bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const; | 
|  | unsigned emitConstantPoolEntry(Constant *CPVal, MachineFunction &MF) const; | 
|  | MachineInstr *emitLoadFromConstantPool(Constant *CPVal, | 
|  | MachineIRBuilder &MIRBuilder) const; | 
|  |  | 
|  | // Emit a vector concat operation. | 
|  | MachineInstr *emitVectorConcat(Optional<unsigned> Dst, unsigned Op1, | 
|  | unsigned Op2, | 
|  | MachineIRBuilder &MIRBuilder) const; | 
|  | MachineInstr *emitExtractVectorElt(Optional<unsigned> DstReg, | 
|  | const RegisterBank &DstRB, LLT ScalarTy, | 
|  | unsigned VecReg, unsigned LaneIdx, | 
|  | MachineIRBuilder &MIRBuilder) const; | 
|  |  | 
|  | ComplexRendererFns selectArithImmed(MachineOperand &Root) const; | 
|  |  | 
|  | ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root, | 
|  | unsigned Size) const; | 
|  |  | 
|  | ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const { | 
|  | return selectAddrModeUnscaled(Root, 1); | 
|  | } | 
|  | ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const { | 
|  | return selectAddrModeUnscaled(Root, 2); | 
|  | } | 
|  | ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const { | 
|  | return selectAddrModeUnscaled(Root, 4); | 
|  | } | 
|  | ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const { | 
|  | return selectAddrModeUnscaled(Root, 8); | 
|  | } | 
|  | ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const { | 
|  | return selectAddrModeUnscaled(Root, 16); | 
|  | } | 
|  |  | 
|  | ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root, | 
|  | unsigned Size) const; | 
|  | template <int Width> | 
|  | ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const { | 
|  | return selectAddrModeIndexed(Root, Width / 8); | 
|  | } | 
|  |  | 
|  | void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI) const; | 
|  |  | 
|  | // Materialize a GlobalValue or BlockAddress using a movz+movk sequence. | 
|  | void materializeLargeCMVal(MachineInstr &I, const Value *V, | 
|  | unsigned char OpFlags) const; | 
|  |  | 
|  | // Optimization methods. | 
|  |  | 
|  | // Helper function to check if a reg def is an MI with a given opcode and | 
|  | // returns it if so. | 
|  | MachineInstr *findMIFromReg(unsigned Reg, unsigned Opc, | 
|  | MachineIRBuilder &MIB) const { | 
|  | auto *Def = MIB.getMRI()->getVRegDef(Reg); | 
|  | if (!Def || Def->getOpcode() != Opc) | 
|  | return nullptr; | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | bool tryOptVectorShuffle(MachineInstr &I) const; | 
|  | bool tryOptVectorDup(MachineInstr &MI) const; | 
|  |  | 
|  | const AArch64TargetMachine &TM; | 
|  | const AArch64Subtarget &STI; | 
|  | const AArch64InstrInfo &TII; | 
|  | const AArch64RegisterInfo &TRI; | 
|  | const AArch64RegisterBankInfo &RBI; | 
|  |  | 
|  | #define GET_GLOBALISEL_PREDICATES_DECL | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_PREDICATES_DECL | 
|  |  | 
|  | // We declare the temporaries used by selectImpl() in the class to minimize the | 
|  | // cost of constructing placeholder values. | 
|  | #define GET_GLOBALISEL_TEMPORARIES_DECL | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_TEMPORARIES_DECL | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #define GET_GLOBALISEL_IMPL | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_IMPL | 
|  |  | 
|  | AArch64InstructionSelector::AArch64InstructionSelector( | 
|  | const AArch64TargetMachine &TM, const AArch64Subtarget &STI, | 
|  | const AArch64RegisterBankInfo &RBI) | 
|  | : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()), | 
|  | TRI(*STI.getRegisterInfo()), RBI(RBI), | 
|  | #define GET_GLOBALISEL_PREDICATES_INIT | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_PREDICATES_INIT | 
|  | #define GET_GLOBALISEL_TEMPORARIES_INIT | 
|  | #include "AArch64GenGlobalISel.inc" | 
|  | #undef GET_GLOBALISEL_TEMPORARIES_INIT | 
|  | { | 
|  | } | 
|  |  | 
|  | // FIXME: This should be target-independent, inferred from the types declared | 
|  | // for each class in the bank. | 
|  | static const TargetRegisterClass * | 
|  | getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB, | 
|  | const RegisterBankInfo &RBI, | 
|  | bool GetAllRegSet = false) { | 
|  | if (RB.getID() == AArch64::GPRRegBankID) { | 
|  | if (Ty.getSizeInBits() <= 32) | 
|  | return GetAllRegSet ? &AArch64::GPR32allRegClass | 
|  | : &AArch64::GPR32RegClass; | 
|  | if (Ty.getSizeInBits() == 64) | 
|  | return GetAllRegSet ? &AArch64::GPR64allRegClass | 
|  | : &AArch64::GPR64RegClass; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (RB.getID() == AArch64::FPRRegBankID) { | 
|  | if (Ty.getSizeInBits() <= 16) | 
|  | return &AArch64::FPR16RegClass; | 
|  | if (Ty.getSizeInBits() == 32) | 
|  | return &AArch64::FPR32RegClass; | 
|  | if (Ty.getSizeInBits() == 64) | 
|  | return &AArch64::FPR64RegClass; | 
|  | if (Ty.getSizeInBits() == 128) | 
|  | return &AArch64::FPR128RegClass; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given a register bank, and size in bits, return the smallest register class | 
|  | /// that can represent that combination. | 
|  | static const TargetRegisterClass * | 
|  | getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits, | 
|  | bool GetAllRegSet = false) { | 
|  | unsigned RegBankID = RB.getID(); | 
|  |  | 
|  | if (RegBankID == AArch64::GPRRegBankID) { | 
|  | if (SizeInBits <= 32) | 
|  | return GetAllRegSet ? &AArch64::GPR32allRegClass | 
|  | : &AArch64::GPR32RegClass; | 
|  | if (SizeInBits == 64) | 
|  | return GetAllRegSet ? &AArch64::GPR64allRegClass | 
|  | : &AArch64::GPR64RegClass; | 
|  | } | 
|  |  | 
|  | if (RegBankID == AArch64::FPRRegBankID) { | 
|  | switch (SizeInBits) { | 
|  | default: | 
|  | return nullptr; | 
|  | case 8: | 
|  | return &AArch64::FPR8RegClass; | 
|  | case 16: | 
|  | return &AArch64::FPR16RegClass; | 
|  | case 32: | 
|  | return &AArch64::FPR32RegClass; | 
|  | case 64: | 
|  | return &AArch64::FPR64RegClass; | 
|  | case 128: | 
|  | return &AArch64::FPR128RegClass; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns the correct subregister to use for a given register class. | 
|  | static bool getSubRegForClass(const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo &TRI, unsigned &SubReg) { | 
|  | switch (TRI.getRegSizeInBits(*RC)) { | 
|  | case 8: | 
|  | SubReg = AArch64::bsub; | 
|  | break; | 
|  | case 16: | 
|  | SubReg = AArch64::hsub; | 
|  | break; | 
|  | case 32: | 
|  | if (RC == &AArch64::GPR32RegClass) | 
|  | SubReg = AArch64::sub_32; | 
|  | else | 
|  | SubReg = AArch64::ssub; | 
|  | break; | 
|  | case 64: | 
|  | SubReg = AArch64::dsub; | 
|  | break; | 
|  | default: | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Couldn't find appropriate subregister for register class."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether \p I is a currently unsupported binary operation: | 
|  | /// - it has an unsized type | 
|  | /// - an operand is not a vreg | 
|  | /// - all operands are not in the same bank | 
|  | /// These are checks that should someday live in the verifier, but right now, | 
|  | /// these are mostly limitations of the aarch64 selector. | 
|  | static bool unsupportedBinOp(const MachineInstr &I, | 
|  | const AArch64RegisterBankInfo &RBI, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const AArch64RegisterInfo &TRI) { | 
|  | LLT Ty = MRI.getType(I.getOperand(0).getReg()); | 
|  | if (!Ty.isValid()) { | 
|  | LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const RegisterBank *PrevOpBank = nullptr; | 
|  | for (auto &MO : I.operands()) { | 
|  | // FIXME: Support non-register operands. | 
|  | if (!MO.isReg()) { | 
|  | LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Can generic operations have physical registers operands? If | 
|  | // so, this will need to be taught about that, and we'll need to get the | 
|  | // bank out of the minimal class for the register. | 
|  | // Either way, this needs to be documented (and possibly verified). | 
|  | if (!TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI); | 
|  | if (!OpBank) { | 
|  | LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (PrevOpBank && OpBank != PrevOpBank) { | 
|  | LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n"); | 
|  | return true; | 
|  | } | 
|  | PrevOpBank = OpBank; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Select the AArch64 opcode for the basic binary operation \p GenericOpc | 
|  | /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID | 
|  | /// and of size \p OpSize. | 
|  | /// \returns \p GenericOpc if the combination is unsupported. | 
|  | static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID, | 
|  | unsigned OpSize) { | 
|  | switch (RegBankID) { | 
|  | case AArch64::GPRRegBankID: | 
|  | if (OpSize == 32) { | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_SHL: | 
|  | return AArch64::LSLVWr; | 
|  | case TargetOpcode::G_LSHR: | 
|  | return AArch64::LSRVWr; | 
|  | case TargetOpcode::G_ASHR: | 
|  | return AArch64::ASRVWr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | } else if (OpSize == 64) { | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_GEP: | 
|  | return AArch64::ADDXrr; | 
|  | case TargetOpcode::G_SHL: | 
|  | return AArch64::LSLVXr; | 
|  | case TargetOpcode::G_LSHR: | 
|  | return AArch64::LSRVXr; | 
|  | case TargetOpcode::G_ASHR: | 
|  | return AArch64::ASRVXr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case AArch64::FPRRegBankID: | 
|  | switch (OpSize) { | 
|  | case 32: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_FADD: | 
|  | return AArch64::FADDSrr; | 
|  | case TargetOpcode::G_FSUB: | 
|  | return AArch64::FSUBSrr; | 
|  | case TargetOpcode::G_FMUL: | 
|  | return AArch64::FMULSrr; | 
|  | case TargetOpcode::G_FDIV: | 
|  | return AArch64::FDIVSrr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | case 64: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_FADD: | 
|  | return AArch64::FADDDrr; | 
|  | case TargetOpcode::G_FSUB: | 
|  | return AArch64::FSUBDrr; | 
|  | case TargetOpcode::G_FMUL: | 
|  | return AArch64::FMULDrr; | 
|  | case TargetOpcode::G_FDIV: | 
|  | return AArch64::FDIVDrr; | 
|  | case TargetOpcode::G_OR: | 
|  | return AArch64::ORRv8i8; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return GenericOpc; | 
|  | } | 
|  |  | 
|  | /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc, | 
|  | /// appropriate for the (value) register bank \p RegBankID and of memory access | 
|  | /// size \p OpSize.  This returns the variant with the base+unsigned-immediate | 
|  | /// addressing mode (e.g., LDRXui). | 
|  | /// \returns \p GenericOpc if the combination is unsupported. | 
|  | static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID, | 
|  | unsigned OpSize) { | 
|  | const bool isStore = GenericOpc == TargetOpcode::G_STORE; | 
|  | switch (RegBankID) { | 
|  | case AArch64::GPRRegBankID: | 
|  | switch (OpSize) { | 
|  | case 8: | 
|  | return isStore ? AArch64::STRBBui : AArch64::LDRBBui; | 
|  | case 16: | 
|  | return isStore ? AArch64::STRHHui : AArch64::LDRHHui; | 
|  | case 32: | 
|  | return isStore ? AArch64::STRWui : AArch64::LDRWui; | 
|  | case 64: | 
|  | return isStore ? AArch64::STRXui : AArch64::LDRXui; | 
|  | } | 
|  | break; | 
|  | case AArch64::FPRRegBankID: | 
|  | switch (OpSize) { | 
|  | case 8: | 
|  | return isStore ? AArch64::STRBui : AArch64::LDRBui; | 
|  | case 16: | 
|  | return isStore ? AArch64::STRHui : AArch64::LDRHui; | 
|  | case 32: | 
|  | return isStore ? AArch64::STRSui : AArch64::LDRSui; | 
|  | case 64: | 
|  | return isStore ? AArch64::STRDui : AArch64::LDRDui; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return GenericOpc; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// Helper function that verifies that we have a valid copy at the end of | 
|  | /// selectCopy. Verifies that the source and dest have the expected sizes and | 
|  | /// then returns true. | 
|  | static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI, | 
|  | const RegisterBankInfo &RBI) { | 
|  | const unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const unsigned SrcReg = I.getOperand(1).getReg(); | 
|  | const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); | 
|  | const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); | 
|  |  | 
|  | // Make sure the size of the source and dest line up. | 
|  | assert( | 
|  | (DstSize == SrcSize || | 
|  | // Copies are a mean to setup initial types, the number of | 
|  | // bits may not exactly match. | 
|  | (TargetRegisterInfo::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) || | 
|  | // Copies are a mean to copy bits around, as long as we are | 
|  | // on the same register class, that's fine. Otherwise, that | 
|  | // means we need some SUBREG_TO_REG or AND & co. | 
|  | (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) && | 
|  | "Copy with different width?!"); | 
|  |  | 
|  | // Check the size of the destination. | 
|  | assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) && | 
|  | "GPRs cannot get more than 64-bit width values"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Helper function for selectCopy. Inserts a subregister copy from | 
|  | /// \p *From to \p *To, linking it up to \p I. | 
|  | /// | 
|  | /// e.g, given I = "Dst = COPY SrcReg", we'll transform that into | 
|  | /// | 
|  | /// CopyReg (From class) = COPY SrcReg | 
|  | /// SubRegCopy (To class) = COPY CopyReg:SubReg | 
|  | /// Dst = COPY SubRegCopy | 
|  | static bool selectSubregisterCopy(MachineInstr &I, MachineRegisterInfo &MRI, | 
|  | const RegisterBankInfo &RBI, unsigned SrcReg, | 
|  | const TargetRegisterClass *From, | 
|  | const TargetRegisterClass *To, | 
|  | unsigned SubReg) { | 
|  | MachineIRBuilder MIB(I); | 
|  | auto Copy = MIB.buildCopy({From}, {SrcReg}); | 
|  | auto SubRegCopy = MIB.buildInstr(TargetOpcode::COPY, {To}, {}) | 
|  | .addReg(Copy.getReg(0), 0, SubReg); | 
|  | MachineOperand &RegOp = I.getOperand(1); | 
|  | RegOp.setReg(SubRegCopy.getReg(0)); | 
|  |  | 
|  | // It's possible that the destination register won't be constrained. Make | 
|  | // sure that happens. | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(I.getOperand(0).getReg())) | 
|  | RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII, | 
|  | MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, | 
|  | const RegisterBankInfo &RBI) { | 
|  |  | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | unsigned SrcReg = I.getOperand(1).getReg(); | 
|  | const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); | 
|  | const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); | 
|  | const TargetRegisterClass *DstRC = getMinClassForRegBank( | 
|  | DstRegBank, RBI.getSizeInBits(DstReg, MRI, TRI), true); | 
|  | if (!DstRC) { | 
|  | LLVM_DEBUG(dbgs() << "Unexpected dest size " | 
|  | << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // A couple helpers below, for making sure that the copy we produce is valid. | 
|  |  | 
|  | // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want | 
|  | // to verify that the src and dst are the same size, since that's handled by | 
|  | // the SUBREG_TO_REG. | 
|  | bool KnownValid = false; | 
|  |  | 
|  | // Returns true, or asserts if something we don't expect happens. Instead of | 
|  | // returning true, we return isValidCopy() to ensure that we verify the | 
|  | // result. | 
|  | auto CheckCopy = [&]() { | 
|  | // If we have a bitcast or something, we can't have physical registers. | 
|  | assert( | 
|  | (I.isCopy() || | 
|  | (!TargetRegisterInfo::isPhysicalRegister(I.getOperand(0).getReg()) && | 
|  | !TargetRegisterInfo::isPhysicalRegister(I.getOperand(1).getReg()))) && | 
|  | "No phys reg on generic operator!"); | 
|  | assert(KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI)); | 
|  | (void)KnownValid; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Is this a copy? If so, then we may need to insert a subregister copy, or | 
|  | // a SUBREG_TO_REG. | 
|  | if (I.isCopy()) { | 
|  | // Yes. Check if there's anything to fix up. | 
|  | const TargetRegisterClass *SrcRC = getMinClassForRegBank( | 
|  | SrcRegBank, RBI.getSizeInBits(SrcReg, MRI, TRI), true); | 
|  | if (!SrcRC) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Is this a cross-bank copy? | 
|  | if (DstRegBank.getID() != SrcRegBank.getID()) { | 
|  | // If we're doing a cross-bank copy on different-sized registers, we need | 
|  | // to do a bit more work. | 
|  | unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC); | 
|  | unsigned DstSize = TRI.getRegSizeInBits(*DstRC); | 
|  |  | 
|  | if (SrcSize > DstSize) { | 
|  | // We're doing a cross-bank copy into a smaller register. We need a | 
|  | // subregister copy. First, get a register class that's on the same bank | 
|  | // as the destination, but the same size as the source. | 
|  | const TargetRegisterClass *SubregRC = | 
|  | getMinClassForRegBank(DstRegBank, SrcSize, true); | 
|  | assert(SubregRC && "Didn't get a register class for subreg?"); | 
|  |  | 
|  | // Get the appropriate subregister for the destination. | 
|  | unsigned SubReg = 0; | 
|  | if (!getSubRegForClass(DstRC, TRI, SubReg)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't determine subregister for copy.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now, insert a subregister copy using the new register class. | 
|  | selectSubregisterCopy(I, MRI, RBI, SrcReg, SubregRC, DstRC, SubReg); | 
|  | return CheckCopy(); | 
|  | } | 
|  |  | 
|  | else if (DstRegBank.getID() == AArch64::GPRRegBankID && DstSize == 32 && | 
|  | SrcSize == 16) { | 
|  | // Special case for FPR16 to GPR32. | 
|  | // FIXME: This can probably be generalized like the above case. | 
|  | unsigned PromoteReg = | 
|  | MRI.createVirtualRegister(&AArch64::FPR32RegClass); | 
|  | BuildMI(*I.getParent(), I, I.getDebugLoc(), | 
|  | TII.get(AArch64::SUBREG_TO_REG), PromoteReg) | 
|  | .addImm(0) | 
|  | .addUse(SrcReg) | 
|  | .addImm(AArch64::hsub); | 
|  | MachineOperand &RegOp = I.getOperand(1); | 
|  | RegOp.setReg(PromoteReg); | 
|  |  | 
|  | // Promise that the copy is implicitly validated by the SUBREG_TO_REG. | 
|  | KnownValid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the destination is a physical register, then there's nothing to | 
|  | // change, so we're done. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(DstReg)) | 
|  | return CheckCopy(); | 
|  | } | 
|  |  | 
|  | // No need to constrain SrcReg. It will get constrained when we hit another | 
|  | // of its use or its defs. Copies do not have constraints. | 
|  | if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) | 
|  | << " operand\n"); | 
|  | return false; | 
|  | } | 
|  | I.setDesc(TII.get(AArch64::COPY)); | 
|  | return CheckCopy(); | 
|  | } | 
|  |  | 
|  | static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) { | 
|  | if (!DstTy.isScalar() || !SrcTy.isScalar()) | 
|  | return GenericOpc; | 
|  |  | 
|  | const unsigned DstSize = DstTy.getSizeInBits(); | 
|  | const unsigned SrcSize = SrcTy.getSizeInBits(); | 
|  |  | 
|  | switch (DstSize) { | 
|  | case 32: | 
|  | switch (SrcSize) { | 
|  | case 32: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_SITOFP: | 
|  | return AArch64::SCVTFUWSri; | 
|  | case TargetOpcode::G_UITOFP: | 
|  | return AArch64::UCVTFUWSri; | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return AArch64::FCVTZSUWSr; | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | return AArch64::FCVTZUUWSr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | case 64: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_SITOFP: | 
|  | return AArch64::SCVTFUXSri; | 
|  | case TargetOpcode::G_UITOFP: | 
|  | return AArch64::UCVTFUXSri; | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return AArch64::FCVTZSUWDr; | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | return AArch64::FCVTZUUWDr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | case 64: | 
|  | switch (SrcSize) { | 
|  | case 32: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_SITOFP: | 
|  | return AArch64::SCVTFUWDri; | 
|  | case TargetOpcode::G_UITOFP: | 
|  | return AArch64::UCVTFUWDri; | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return AArch64::FCVTZSUXSr; | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | return AArch64::FCVTZUUXSr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | case 64: | 
|  | switch (GenericOpc) { | 
|  | case TargetOpcode::G_SITOFP: | 
|  | return AArch64::SCVTFUXDri; | 
|  | case TargetOpcode::G_UITOFP: | 
|  | return AArch64::UCVTFUXDri; | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return AArch64::FCVTZSUXDr; | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | return AArch64::FCVTZUUXDr; | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | default: | 
|  | return GenericOpc; | 
|  | } | 
|  | default: | 
|  | return GenericOpc; | 
|  | }; | 
|  | return GenericOpc; | 
|  | } | 
|  |  | 
|  | static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) { | 
|  | switch (P) { | 
|  | default: | 
|  | llvm_unreachable("Unknown condition code!"); | 
|  | case CmpInst::ICMP_NE: | 
|  | return AArch64CC::NE; | 
|  | case CmpInst::ICMP_EQ: | 
|  | return AArch64CC::EQ; | 
|  | case CmpInst::ICMP_SGT: | 
|  | return AArch64CC::GT; | 
|  | case CmpInst::ICMP_SGE: | 
|  | return AArch64CC::GE; | 
|  | case CmpInst::ICMP_SLT: | 
|  | return AArch64CC::LT; | 
|  | case CmpInst::ICMP_SLE: | 
|  | return AArch64CC::LE; | 
|  | case CmpInst::ICMP_UGT: | 
|  | return AArch64CC::HI; | 
|  | case CmpInst::ICMP_UGE: | 
|  | return AArch64CC::HS; | 
|  | case CmpInst::ICMP_ULT: | 
|  | return AArch64CC::LO; | 
|  | case CmpInst::ICMP_ULE: | 
|  | return AArch64CC::LS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void changeFCMPPredToAArch64CC(CmpInst::Predicate P, | 
|  | AArch64CC::CondCode &CondCode, | 
|  | AArch64CC::CondCode &CondCode2) { | 
|  | CondCode2 = AArch64CC::AL; | 
|  | switch (P) { | 
|  | default: | 
|  | llvm_unreachable("Unknown FP condition!"); | 
|  | case CmpInst::FCMP_OEQ: | 
|  | CondCode = AArch64CC::EQ; | 
|  | break; | 
|  | case CmpInst::FCMP_OGT: | 
|  | CondCode = AArch64CC::GT; | 
|  | break; | 
|  | case CmpInst::FCMP_OGE: | 
|  | CondCode = AArch64CC::GE; | 
|  | break; | 
|  | case CmpInst::FCMP_OLT: | 
|  | CondCode = AArch64CC::MI; | 
|  | break; | 
|  | case CmpInst::FCMP_OLE: | 
|  | CondCode = AArch64CC::LS; | 
|  | break; | 
|  | case CmpInst::FCMP_ONE: | 
|  | CondCode = AArch64CC::MI; | 
|  | CondCode2 = AArch64CC::GT; | 
|  | break; | 
|  | case CmpInst::FCMP_ORD: | 
|  | CondCode = AArch64CC::VC; | 
|  | break; | 
|  | case CmpInst::FCMP_UNO: | 
|  | CondCode = AArch64CC::VS; | 
|  | break; | 
|  | case CmpInst::FCMP_UEQ: | 
|  | CondCode = AArch64CC::EQ; | 
|  | CondCode2 = AArch64CC::VS; | 
|  | break; | 
|  | case CmpInst::FCMP_UGT: | 
|  | CondCode = AArch64CC::HI; | 
|  | break; | 
|  | case CmpInst::FCMP_UGE: | 
|  | CondCode = AArch64CC::PL; | 
|  | break; | 
|  | case CmpInst::FCMP_ULT: | 
|  | CondCode = AArch64CC::LT; | 
|  | break; | 
|  | case CmpInst::FCMP_ULE: | 
|  | CondCode = AArch64CC::LE; | 
|  | break; | 
|  | case CmpInst::FCMP_UNE: | 
|  | CondCode = AArch64CC::NE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectCompareBranch( | 
|  | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { | 
|  |  | 
|  | const unsigned CondReg = I.getOperand(0).getReg(); | 
|  | MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); | 
|  | MachineInstr *CCMI = MRI.getVRegDef(CondReg); | 
|  | if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) | 
|  | CCMI = MRI.getVRegDef(CCMI->getOperand(1).getReg()); | 
|  | if (CCMI->getOpcode() != TargetOpcode::G_ICMP) | 
|  | return false; | 
|  |  | 
|  | unsigned LHS = CCMI->getOperand(2).getReg(); | 
|  | unsigned RHS = CCMI->getOperand(3).getReg(); | 
|  | if (!getConstantVRegVal(RHS, MRI)) | 
|  | std::swap(RHS, LHS); | 
|  |  | 
|  | const auto RHSImm = getConstantVRegVal(RHS, MRI); | 
|  | if (!RHSImm || *RHSImm != 0) | 
|  | return false; | 
|  |  | 
|  | const RegisterBank &RB = *RBI.getRegBank(LHS, MRI, TRI); | 
|  | if (RB.getID() != AArch64::GPRRegBankID) | 
|  | return false; | 
|  |  | 
|  | const auto Pred = (CmpInst::Predicate)CCMI->getOperand(1).getPredicate(); | 
|  | if (Pred != CmpInst::ICMP_NE && Pred != CmpInst::ICMP_EQ) | 
|  | return false; | 
|  |  | 
|  | const unsigned CmpWidth = MRI.getType(LHS).getSizeInBits(); | 
|  | unsigned CBOpc = 0; | 
|  | if (CmpWidth <= 32) | 
|  | CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZW : AArch64::CBNZW); | 
|  | else if (CmpWidth == 64) | 
|  | CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZX : AArch64::CBNZX); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CBOpc)) | 
|  | .addUse(LHS) | 
|  | .addMBB(DestMBB) | 
|  | .constrainAllUses(TII, TRI, RBI); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectVectorSHL( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_SHL); | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const LLT Ty = MRI.getType(DstReg); | 
|  | unsigned Src1Reg = I.getOperand(1).getReg(); | 
|  | unsigned Src2Reg = I.getOperand(2).getReg(); | 
|  |  | 
|  | if (!Ty.isVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | if (Ty == LLT::vector(4, 32)) { | 
|  | Opc = AArch64::USHLv4i32; | 
|  | } else if (Ty == LLT::vector(2, 32)) { | 
|  | Opc = AArch64::USHLv2i32; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Unhandled G_SHL type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  | auto UShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Src2Reg}); | 
|  | constrainSelectedInstRegOperands(*UShl, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectVectorASHR( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_ASHR); | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const LLT Ty = MRI.getType(DstReg); | 
|  | unsigned Src1Reg = I.getOperand(1).getReg(); | 
|  | unsigned Src2Reg = I.getOperand(2).getReg(); | 
|  |  | 
|  | if (!Ty.isVector()) | 
|  | return false; | 
|  |  | 
|  | // There is not a shift right register instruction, but the shift left | 
|  | // register instruction takes a signed value, where negative numbers specify a | 
|  | // right shift. | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | unsigned NegOpc = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (Ty == LLT::vector(4, 32)) { | 
|  | Opc = AArch64::SSHLv4i32; | 
|  | NegOpc = AArch64::NEGv4i32; | 
|  | RC = &AArch64::FPR128RegClass; | 
|  | } else if (Ty == LLT::vector(2, 32)) { | 
|  | Opc = AArch64::SSHLv2i32; | 
|  | NegOpc = AArch64::NEGv2i32; | 
|  | RC = &AArch64::FPR64RegClass; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  | auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg}); | 
|  | constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI); | 
|  | auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg}); | 
|  | constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectVaStartAAPCS( | 
|  | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectVaStartDarwin( | 
|  | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | unsigned ListReg = I.getOperand(0).getReg(); | 
|  |  | 
|  | unsigned ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); | 
|  |  | 
|  | auto MIB = | 
|  | BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri)) | 
|  | .addDef(ArgsAddrReg) | 
|  | .addFrameIndex(FuncInfo->getVarArgsStackIndex()) | 
|  | .addImm(0) | 
|  | .addImm(0); | 
|  |  | 
|  | constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); | 
|  |  | 
|  | MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui)) | 
|  | .addUse(ArgsAddrReg) | 
|  | .addUse(ListReg) | 
|  | .addImm(0) | 
|  | .addMemOperand(*I.memoperands_begin()); | 
|  |  | 
|  | constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AArch64InstructionSelector::materializeLargeCMVal( | 
|  | MachineInstr &I, const Value *V, unsigned char OpFlags) const { | 
|  | MachineBasicBlock &MBB = *I.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | MachineIRBuilder MIB(I); | 
|  |  | 
|  | auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {}); | 
|  | MovZ->addOperand(MF, I.getOperand(1)); | 
|  | MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 | | 
|  | AArch64II::MO_NC); | 
|  | MovZ->addOperand(MF, MachineOperand::CreateImm(0)); | 
|  | constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI); | 
|  |  | 
|  | auto BuildMovK = [&](unsigned SrcReg, unsigned char Flags, unsigned Offset, | 
|  | unsigned ForceDstReg) { | 
|  | unsigned DstReg = ForceDstReg | 
|  | ? ForceDstReg | 
|  | : MRI.createVirtualRegister(&AArch64::GPR64RegClass); | 
|  | auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg); | 
|  | if (auto *GV = dyn_cast<GlobalValue>(V)) { | 
|  | MovI->addOperand(MF, MachineOperand::CreateGA( | 
|  | GV, MovZ->getOperand(1).getOffset(), Flags)); | 
|  | } else { | 
|  | MovI->addOperand( | 
|  | MF, MachineOperand::CreateBA(cast<BlockAddress>(V), | 
|  | MovZ->getOperand(1).getOffset(), Flags)); | 
|  | } | 
|  | MovI->addOperand(MF, MachineOperand::CreateImm(Offset)); | 
|  | constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI); | 
|  | return DstReg; | 
|  | }; | 
|  | unsigned DstReg = BuildMovK(MovZ.getReg(0), | 
|  | AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0); | 
|  | DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0); | 
|  | BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::select(MachineInstr &I, | 
|  | CodeGenCoverage &CoverageInfo) const { | 
|  | assert(I.getParent() && "Instruction should be in a basic block!"); | 
|  | assert(I.getParent()->getParent() && "Instruction should be in a function!"); | 
|  |  | 
|  | MachineBasicBlock &MBB = *I.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | unsigned Opcode = I.getOpcode(); | 
|  | // G_PHI requires same handling as PHI | 
|  | if (!isPreISelGenericOpcode(Opcode) || Opcode == TargetOpcode::G_PHI) { | 
|  | // Certain non-generic instructions also need some special handling. | 
|  |  | 
|  | if (Opcode ==  TargetOpcode::LOAD_STACK_GUARD) | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  |  | 
|  | if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) { | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | const LLT DefTy = MRI.getType(DefReg); | 
|  |  | 
|  | const TargetRegisterClass *DefRC = nullptr; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(DefReg)) { | 
|  | DefRC = TRI.getRegClass(DefReg); | 
|  | } else { | 
|  | const RegClassOrRegBank &RegClassOrBank = | 
|  | MRI.getRegClassOrRegBank(DefReg); | 
|  |  | 
|  | DefRC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>(); | 
|  | if (!DefRC) { | 
|  | if (!DefTy.isValid()) { | 
|  | LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n"); | 
|  | return false; | 
|  | } | 
|  | const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>(); | 
|  | DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI); | 
|  | if (!DefRC) { | 
|  | LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | I.setDesc(TII.get(TargetOpcode::PHI)); | 
|  |  | 
|  | return RBI.constrainGenericRegister(DefReg, *DefRC, MRI); | 
|  | } | 
|  |  | 
|  | if (I.isCopy()) | 
|  | return selectCopy(I, TII, MRI, TRI, RBI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (I.getNumOperands() != I.getNumExplicitOperands()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Generic instruction has unexpected implicit operands\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (selectImpl(I, CoverageInfo)) | 
|  | return true; | 
|  |  | 
|  | LLT Ty = | 
|  | I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{}; | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  |  | 
|  | switch (Opcode) { | 
|  | case TargetOpcode::G_BRCOND: { | 
|  | if (Ty.getSizeInBits() > 32) { | 
|  | // We shouldn't need this on AArch64, but it would be implemented as an | 
|  | // EXTRACT_SUBREG followed by a TBNZW because TBNZX has no encoding if the | 
|  | // bit being tested is < 32. | 
|  | LLVM_DEBUG(dbgs() << "G_BRCOND has type: " << Ty | 
|  | << ", expected at most 32-bits"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const unsigned CondReg = I.getOperand(0).getReg(); | 
|  | MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); | 
|  |  | 
|  | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z | 
|  | // instructions will not be produced, as they are conditional branch | 
|  | // instructions that do not set flags. | 
|  | bool ProduceNonFlagSettingCondBr = | 
|  | !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); | 
|  | if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI)) | 
|  | return true; | 
|  |  | 
|  | if (ProduceNonFlagSettingCondBr) { | 
|  | auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW)) | 
|  | .addUse(CondReg) | 
|  | .addImm(/*bit offset=*/0) | 
|  | .addMBB(DestMBB); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI); | 
|  | } else { | 
|  | auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri)) | 
|  | .addDef(AArch64::WZR) | 
|  | .addUse(CondReg) | 
|  | .addImm(1); | 
|  | constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI); | 
|  | auto Bcc = | 
|  | BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc)) | 
|  | .addImm(AArch64CC::EQ) | 
|  | .addMBB(DestMBB); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI); | 
|  | } | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_BRINDIRECT: { | 
|  | I.setDesc(TII.get(AArch64::BR)); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_BSWAP: { | 
|  | // Handle vector types for G_BSWAP directly. | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  |  | 
|  | // We should only get vector types here; everything else is handled by the | 
|  | // importer right now. | 
|  | if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) { | 
|  | LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only handle 4 and 2 element vectors for now. | 
|  | // TODO: 16-bit elements. | 
|  | unsigned NumElts = DstTy.getNumElements(); | 
|  | if (NumElts != 4 && NumElts != 2) { | 
|  | LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Choose the correct opcode for the supported types. Right now, that's | 
|  | // v2s32, v4s32, and v2s64. | 
|  | unsigned Opc = 0; | 
|  | unsigned EltSize = DstTy.getElementType().getSizeInBits(); | 
|  | if (EltSize == 32) | 
|  | Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8 | 
|  | : AArch64::REV32v16i8; | 
|  | else if (EltSize == 64) | 
|  | Opc = AArch64::REV64v16i8; | 
|  |  | 
|  | // We should always get something by the time we get here... | 
|  | assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?"); | 
|  |  | 
|  | I.setDesc(TII.get(Opc)); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_FCONSTANT: | 
|  | case TargetOpcode::G_CONSTANT: { | 
|  | const bool isFP = Opcode == TargetOpcode::G_FCONSTANT; | 
|  |  | 
|  | const LLT s32 = LLT::scalar(32); | 
|  | const LLT s64 = LLT::scalar(64); | 
|  | const LLT p0 = LLT::pointer(0, 64); | 
|  |  | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | const LLT DefTy = MRI.getType(DefReg); | 
|  | const unsigned DefSize = DefTy.getSizeInBits(); | 
|  | const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); | 
|  |  | 
|  | // FIXME: Redundant check, but even less readable when factored out. | 
|  | if (isFP) { | 
|  | if (Ty != s32 && Ty != s64) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty | 
|  | << " constant, expected: " << s32 << " or " << s64 | 
|  | << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RB.getID() != AArch64::FPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty | 
|  | << " constant on bank: " << RB | 
|  | << ", expected: FPR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The case when we have 0.0 is covered by tablegen. Reject it here so we | 
|  | // can be sure tablegen works correctly and isn't rescued by this code. | 
|  | if (I.getOperand(1).getFPImm()->getValueAPF().isExactlyValue(0.0)) | 
|  | return false; | 
|  | } else { | 
|  | // s32 and s64 are covered by tablegen. | 
|  | if (Ty != p0) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty | 
|  | << " constant, expected: " << s32 << ", " << s64 | 
|  | << ", or " << p0 << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RB.getID() != AArch64::GPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty | 
|  | << " constant on bank: " << RB | 
|  | << ", expected: GPR\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const unsigned MovOpc = | 
|  | DefSize == 32 ? AArch64::MOVi32imm : AArch64::MOVi64imm; | 
|  |  | 
|  | I.setDesc(TII.get(MovOpc)); | 
|  |  | 
|  | if (isFP) { | 
|  | const TargetRegisterClass &GPRRC = | 
|  | DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass; | 
|  | const TargetRegisterClass &FPRRC = | 
|  | DefSize == 32 ? AArch64::FPR32RegClass : AArch64::FPR64RegClass; | 
|  |  | 
|  | const unsigned DefGPRReg = MRI.createVirtualRegister(&GPRRC); | 
|  | MachineOperand &RegOp = I.getOperand(0); | 
|  | RegOp.setReg(DefGPRReg); | 
|  | MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator())); | 
|  | MIB.buildCopy({DefReg}, {DefGPRReg}); | 
|  |  | 
|  | if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineOperand &ImmOp = I.getOperand(1); | 
|  | // FIXME: Is going through int64_t always correct? | 
|  | ImmOp.ChangeToImmediate( | 
|  | ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue()); | 
|  | } else if (I.getOperand(1).isCImm()) { | 
|  | uint64_t Val = I.getOperand(1).getCImm()->getZExtValue(); | 
|  | I.getOperand(1).ChangeToImmediate(Val); | 
|  | } else if (I.getOperand(1).isImm()) { | 
|  | uint64_t Val = I.getOperand(1).getImm(); | 
|  | I.getOperand(1).ChangeToImmediate(Val); | 
|  | } | 
|  |  | 
|  | constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | return true; | 
|  | } | 
|  | case TargetOpcode::G_EXTRACT: { | 
|  | LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); | 
|  | LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | (void)DstTy; | 
|  | unsigned SrcSize = SrcTy.getSizeInBits(); | 
|  | // Larger extracts are vectors, same-size extracts should be something else | 
|  | // by now (either split up or simplified to a COPY). | 
|  | if (SrcTy.getSizeInBits() > 64 || Ty.getSizeInBits() > 32) | 
|  | return false; | 
|  |  | 
|  | I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri)); | 
|  | MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() + | 
|  | Ty.getSizeInBits() - 1); | 
|  |  | 
|  | if (SrcSize < 64) { | 
|  | assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 && | 
|  | "unexpected G_EXTRACT types"); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | unsigned DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64)); | 
|  | MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator())); | 
|  | MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {}) | 
|  | .addReg(DstReg, 0, AArch64::sub_32); | 
|  | RBI.constrainGenericRegister(I.getOperand(0).getReg(), | 
|  | AArch64::GPR32RegClass, MRI); | 
|  | I.getOperand(0).setReg(DstReg); | 
|  |  | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_INSERT: { | 
|  | LLT SrcTy = MRI.getType(I.getOperand(2).getReg()); | 
|  | LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | unsigned DstSize = DstTy.getSizeInBits(); | 
|  | // Larger inserts are vectors, same-size ones should be something else by | 
|  | // now (split up or turned into COPYs). | 
|  | if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32) | 
|  | return false; | 
|  |  | 
|  | I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri)); | 
|  | unsigned LSB = I.getOperand(3).getImm(); | 
|  | unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits(); | 
|  | I.getOperand(3).setImm((DstSize - LSB) % DstSize); | 
|  | MachineInstrBuilder(MF, I).addImm(Width - 1); | 
|  |  | 
|  | if (DstSize < 64) { | 
|  | assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 && | 
|  | "unexpected G_INSERT types"); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | unsigned SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64)); | 
|  | BuildMI(MBB, I.getIterator(), I.getDebugLoc(), | 
|  | TII.get(AArch64::SUBREG_TO_REG)) | 
|  | .addDef(SrcReg) | 
|  | .addImm(0) | 
|  | .addUse(I.getOperand(2).getReg()) | 
|  | .addImm(AArch64::sub_32); | 
|  | RBI.constrainGenericRegister(I.getOperand(2).getReg(), | 
|  | AArch64::GPR32RegClass, MRI); | 
|  | I.getOperand(2).setReg(SrcReg); | 
|  |  | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  | case TargetOpcode::G_FRAME_INDEX: { | 
|  | // allocas and G_FRAME_INDEX are only supported in addrspace(0). | 
|  | if (Ty != LLT::pointer(0, 64)) { | 
|  | LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty | 
|  | << ", expected: " << LLT::pointer(0, 64) << '\n'); | 
|  | return false; | 
|  | } | 
|  | I.setDesc(TII.get(AArch64::ADDXri)); | 
|  |  | 
|  | // MOs for a #0 shifted immediate. | 
|  | I.addOperand(MachineOperand::CreateImm(0)); | 
|  | I.addOperand(MachineOperand::CreateImm(0)); | 
|  |  | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_GLOBAL_VALUE: { | 
|  | auto GV = I.getOperand(1).getGlobal(); | 
|  | if (GV->isThreadLocal()) { | 
|  | // FIXME: we don't support TLS yet. | 
|  | return false; | 
|  | } | 
|  | unsigned char OpFlags = STI.ClassifyGlobalReference(GV, TM); | 
|  | if (OpFlags & AArch64II::MO_GOT) { | 
|  | I.setDesc(TII.get(AArch64::LOADgot)); | 
|  | I.getOperand(1).setTargetFlags(OpFlags); | 
|  | } else if (TM.getCodeModel() == CodeModel::Large) { | 
|  | // Materialize the global using movz/movk instructions. | 
|  | materializeLargeCMVal(I, GV, OpFlags); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } else if (TM.getCodeModel() == CodeModel::Tiny) { | 
|  | I.setDesc(TII.get(AArch64::ADR)); | 
|  | I.getOperand(1).setTargetFlags(OpFlags); | 
|  | } else { | 
|  | I.setDesc(TII.get(AArch64::MOVaddr)); | 
|  | I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE); | 
|  | MachineInstrBuilder MIB(MF, I); | 
|  | MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(), | 
|  | OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  | } | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_LOAD: | 
|  | case TargetOpcode::G_STORE: { | 
|  | LLT PtrTy = MRI.getType(I.getOperand(1).getReg()); | 
|  |  | 
|  | if (PtrTy != LLT::pointer(0, 64)) { | 
|  | LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy | 
|  | << ", expected: " << LLT::pointer(0, 64) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto &MemOp = **I.memoperands_begin(); | 
|  | if (MemOp.getOrdering() != AtomicOrdering::NotAtomic) { | 
|  | LLVM_DEBUG(dbgs() << "Atomic load/store not supported yet\n"); | 
|  | return false; | 
|  | } | 
|  | unsigned MemSizeInBits = MemOp.getSize() * 8; | 
|  |  | 
|  | const unsigned PtrReg = I.getOperand(1).getReg(); | 
|  | #ifndef NDEBUG | 
|  | const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI); | 
|  | // Sanity-check the pointer register. | 
|  | assert(PtrRB.getID() == AArch64::GPRRegBankID && | 
|  | "Load/Store pointer operand isn't a GPR"); | 
|  | assert(MRI.getType(PtrReg).isPointer() && | 
|  | "Load/Store pointer operand isn't a pointer"); | 
|  | #endif | 
|  |  | 
|  | const unsigned ValReg = I.getOperand(0).getReg(); | 
|  | const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI); | 
|  |  | 
|  | const unsigned NewOpc = | 
|  | selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits); | 
|  | if (NewOpc == I.getOpcode()) | 
|  | return false; | 
|  |  | 
|  | I.setDesc(TII.get(NewOpc)); | 
|  |  | 
|  | uint64_t Offset = 0; | 
|  | auto *PtrMI = MRI.getVRegDef(PtrReg); | 
|  |  | 
|  | // Try to fold a GEP into our unsigned immediate addressing mode. | 
|  | if (PtrMI->getOpcode() == TargetOpcode::G_GEP) { | 
|  | if (auto COff = getConstantVRegVal(PtrMI->getOperand(2).getReg(), MRI)) { | 
|  | int64_t Imm = *COff; | 
|  | const unsigned Size = MemSizeInBits / 8; | 
|  | const unsigned Scale = Log2_32(Size); | 
|  | if ((Imm & (Size - 1)) == 0 && Imm >= 0 && Imm < (0x1000 << Scale)) { | 
|  | unsigned Ptr2Reg = PtrMI->getOperand(1).getReg(); | 
|  | I.getOperand(1).setReg(Ptr2Reg); | 
|  | PtrMI = MRI.getVRegDef(Ptr2Reg); | 
|  | Offset = Imm / Size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we haven't folded anything into our addressing mode yet, try to fold | 
|  | // a frame index into the base+offset. | 
|  | if (!Offset && PtrMI->getOpcode() == TargetOpcode::G_FRAME_INDEX) | 
|  | I.getOperand(1).ChangeToFrameIndex(PtrMI->getOperand(1).getIndex()); | 
|  |  | 
|  | I.addOperand(MachineOperand::CreateImm(Offset)); | 
|  |  | 
|  | // If we're storing a 0, use WZR/XZR. | 
|  | if (auto CVal = getConstantVRegVal(ValReg, MRI)) { | 
|  | if (*CVal == 0 && Opcode == TargetOpcode::G_STORE) { | 
|  | if (I.getOpcode() == AArch64::STRWui) | 
|  | I.getOperand(0).setReg(AArch64::WZR); | 
|  | else if (I.getOpcode() == AArch64::STRXui) | 
|  | I.getOperand(0).setReg(AArch64::XZR); | 
|  | } | 
|  | } | 
|  |  | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_SMULH: | 
|  | case TargetOpcode::G_UMULH: { | 
|  | // Reject the various things we don't support yet. | 
|  | if (unsupportedBinOp(I, RBI, MRI, TRI)) | 
|  | return false; | 
|  |  | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); | 
|  |  | 
|  | if (RB.getID() != AArch64::GPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Ty != LLT::scalar(64)) { | 
|  | LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty | 
|  | << ", expected: " << LLT::scalar(64) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr | 
|  | : AArch64::UMULHrr; | 
|  | I.setDesc(TII.get(NewOpc)); | 
|  |  | 
|  | // Now that we selected an opcode, we need to constrain the register | 
|  | // operands to use appropriate classes. | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  | case TargetOpcode::G_FADD: | 
|  | case TargetOpcode::G_FSUB: | 
|  | case TargetOpcode::G_FMUL: | 
|  | case TargetOpcode::G_FDIV: | 
|  |  | 
|  | case TargetOpcode::G_ASHR: | 
|  | if (MRI.getType(I.getOperand(0).getReg()).isVector()) | 
|  | return selectVectorASHR(I, MRI); | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetOpcode::G_SHL: | 
|  | if (Opcode == TargetOpcode::G_SHL && | 
|  | MRI.getType(I.getOperand(0).getReg()).isVector()) | 
|  | return selectVectorSHL(I, MRI); | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetOpcode::G_OR: | 
|  | case TargetOpcode::G_LSHR: | 
|  | case TargetOpcode::G_GEP: { | 
|  | // Reject the various things we don't support yet. | 
|  | if (unsupportedBinOp(I, RBI, MRI, TRI)) | 
|  | return false; | 
|  |  | 
|  | const unsigned OpSize = Ty.getSizeInBits(); | 
|  |  | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); | 
|  |  | 
|  | const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize); | 
|  | if (NewOpc == I.getOpcode()) | 
|  | return false; | 
|  |  | 
|  | I.setDesc(TII.get(NewOpc)); | 
|  | // FIXME: Should the type be always reset in setDesc? | 
|  |  | 
|  | // Now that we selected an opcode, we need to constrain the register | 
|  | // operands to use appropriate classes. | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_UADDO: { | 
|  | // TODO: Support other types. | 
|  | unsigned OpSize = Ty.getSizeInBits(); | 
|  | if (OpSize != 32 && OpSize != 64) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "G_UADDO currently only supported for 32 and 64 b types.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO: Support vectors. | 
|  | if (Ty.isVector()) { | 
|  | LLVM_DEBUG(dbgs() << "G_UADDO currently only supported for scalars.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Add and set the set condition flag. | 
|  | unsigned AddsOpc = OpSize == 32 ? AArch64::ADDSWrr : AArch64::ADDSXrr; | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  | auto AddsMI = MIRBuilder.buildInstr( | 
|  | AddsOpc, {I.getOperand(0).getReg()}, | 
|  | {I.getOperand(2).getReg(), I.getOperand(3).getReg()}); | 
|  | constrainSelectedInstRegOperands(*AddsMI, TII, TRI, RBI); | 
|  |  | 
|  | // Now, put the overflow result in the register given by the first operand | 
|  | // to the G_UADDO. CSINC increments the result when the predicate is false, | 
|  | // so to get the increment when it's true, we need to use the inverse. In | 
|  | // this case, we want to increment when carry is set. | 
|  | auto CsetMI = MIRBuilder | 
|  | .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()}, | 
|  | {AArch64::WZR, AArch64::WZR}) | 
|  | .addImm(getInvertedCondCode(AArch64CC::HS)); | 
|  | constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_PTR_MASK: { | 
|  | uint64_t Align = I.getOperand(2).getImm(); | 
|  | if (Align >= 64 || Align == 0) | 
|  | return false; | 
|  |  | 
|  | uint64_t Mask = ~((1ULL << Align) - 1); | 
|  | I.setDesc(TII.get(AArch64::ANDXri)); | 
|  | I.getOperand(2).setImm(AArch64_AM::encodeLogicalImmediate(Mask, 64)); | 
|  |  | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  | case TargetOpcode::G_PTRTOINT: | 
|  | case TargetOpcode::G_TRUNC: { | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); | 
|  |  | 
|  | const unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const unsigned SrcReg = I.getOperand(1).getReg(); | 
|  |  | 
|  | const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); | 
|  | const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); | 
|  |  | 
|  | if (DstRB.getID() != SrcRB.getID()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DstRB.getID() == AArch64::GPRRegBankID) { | 
|  | const TargetRegisterClass *DstRC = | 
|  | getRegClassForTypeOnBank(DstTy, DstRB, RBI); | 
|  | if (!DstRC) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *SrcRC = | 
|  | getRegClassForTypeOnBank(SrcTy, SrcRB, RBI); | 
|  | if (!SrcRC) | 
|  | return false; | 
|  |  | 
|  | if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || | 
|  | !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DstRC == SrcRC) { | 
|  | // Nothing to be done | 
|  | } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) && | 
|  | SrcTy == LLT::scalar(64)) { | 
|  | llvm_unreachable("TableGen can import this case"); | 
|  | return false; | 
|  | } else if (DstRC == &AArch64::GPR32RegClass && | 
|  | SrcRC == &AArch64::GPR64RegClass) { | 
|  | I.getOperand(1).setSubReg(AArch64::sub_32); | 
|  | } else { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | I.setDesc(TII.get(TargetOpcode::COPY)); | 
|  | return true; | 
|  | } else if (DstRB.getID() == AArch64::FPRRegBankID) { | 
|  | if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) { | 
|  | I.setDesc(TII.get(AArch64::XTNv4i16)); | 
|  | constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_ANYEXT: { | 
|  | const unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const unsigned SrcReg = I.getOperand(1).getReg(); | 
|  |  | 
|  | const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI); | 
|  | if (RBDst.getID() != AArch64::GPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst | 
|  | << ", expected: GPR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI); | 
|  | if (RBSrc.getID() != AArch64::GPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc | 
|  | << ", expected: GPR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); | 
|  |  | 
|  | if (DstSize == 0) { | 
|  | LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DstSize != 64 && DstSize > 32) { | 
|  | LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize | 
|  | << ", expected: 32 or 64\n"); | 
|  | return false; | 
|  | } | 
|  | // At this point G_ANYEXT is just like a plain COPY, but we need | 
|  | // to explicitly form the 64-bit value if any. | 
|  | if (DstSize > 32) { | 
|  | unsigned ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass); | 
|  | BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG)) | 
|  | .addDef(ExtSrc) | 
|  | .addImm(0) | 
|  | .addUse(SrcReg) | 
|  | .addImm(AArch64::sub_32); | 
|  | I.getOperand(1).setReg(ExtSrc); | 
|  | } | 
|  | return selectCopy(I, TII, MRI, TRI, RBI); | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_ZEXT: | 
|  | case TargetOpcode::G_SEXT: { | 
|  | unsigned Opcode = I.getOpcode(); | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()), | 
|  | SrcTy = MRI.getType(I.getOperand(1).getReg()); | 
|  | const bool isSigned = Opcode == TargetOpcode::G_SEXT; | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | const unsigned SrcReg = I.getOperand(1).getReg(); | 
|  | const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); | 
|  |  | 
|  | if (RB.getID() != AArch64::GPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << TII.getName(I.getOpcode()) << " on bank: " << RB | 
|  | << ", expected: GPR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *ExtI; | 
|  | if (DstTy == LLT::scalar(64)) { | 
|  | // FIXME: Can we avoid manually doing this? | 
|  | if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, MRI)) { | 
|  | LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode) | 
|  | << " operand\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const unsigned SrcXReg = | 
|  | MRI.createVirtualRegister(&AArch64::GPR64RegClass); | 
|  | BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG)) | 
|  | .addDef(SrcXReg) | 
|  | .addImm(0) | 
|  | .addUse(SrcReg) | 
|  | .addImm(AArch64::sub_32); | 
|  |  | 
|  | const unsigned NewOpc = isSigned ? AArch64::SBFMXri : AArch64::UBFMXri; | 
|  | ExtI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(NewOpc)) | 
|  | .addDef(DefReg) | 
|  | .addUse(SrcXReg) | 
|  | .addImm(0) | 
|  | .addImm(SrcTy.getSizeInBits() - 1); | 
|  | } else if (DstTy.isScalar() && DstTy.getSizeInBits() <= 32) { | 
|  | const unsigned NewOpc = isSigned ? AArch64::SBFMWri : AArch64::UBFMWri; | 
|  | ExtI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(NewOpc)) | 
|  | .addDef(DefReg) | 
|  | .addUse(SrcReg) | 
|  | .addImm(0) | 
|  | .addImm(SrcTy.getSizeInBits() - 1); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_SITOFP: | 
|  | case TargetOpcode::G_UITOFP: | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | case TargetOpcode::G_FPTOUI: { | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()), | 
|  | SrcTy = MRI.getType(I.getOperand(1).getReg()); | 
|  | const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy); | 
|  | if (NewOpc == Opcode) | 
|  | return false; | 
|  |  | 
|  | I.setDesc(TII.get(NewOpc)); | 
|  | constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | case TargetOpcode::G_INTTOPTR: | 
|  | // The importer is currently unable to import pointer types since they | 
|  | // didn't exist in SelectionDAG. | 
|  | return selectCopy(I, TII, MRI, TRI, RBI); | 
|  |  | 
|  | case TargetOpcode::G_BITCAST: | 
|  | // Imported SelectionDAG rules can handle every bitcast except those that | 
|  | // bitcast from a type to the same type. Ideally, these shouldn't occur | 
|  | // but we might not run an optimizer that deletes them. The other exception | 
|  | // is bitcasts involving pointer types, as SelectionDAG has no knowledge | 
|  | // of them. | 
|  | return selectCopy(I, TII, MRI, TRI, RBI); | 
|  |  | 
|  | case TargetOpcode::G_SELECT: { | 
|  | if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) { | 
|  | LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty | 
|  | << ", expected: " << LLT::scalar(1) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const unsigned CondReg = I.getOperand(1).getReg(); | 
|  | const unsigned TReg = I.getOperand(2).getReg(); | 
|  | const unsigned FReg = I.getOperand(3).getReg(); | 
|  |  | 
|  | unsigned CSelOpc = 0; | 
|  |  | 
|  | if (Ty == LLT::scalar(32)) { | 
|  | CSelOpc = AArch64::CSELWr; | 
|  | } else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64)) { | 
|  | CSelOpc = AArch64::CSELXr; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr &TstMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri)) | 
|  | .addDef(AArch64::WZR) | 
|  | .addUse(CondReg) | 
|  | .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); | 
|  |  | 
|  | MachineInstr &CSelMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CSelOpc)) | 
|  | .addDef(I.getOperand(0).getReg()) | 
|  | .addUse(TReg) | 
|  | .addUse(FReg) | 
|  | .addImm(AArch64CC::NE); | 
|  |  | 
|  | constrainSelectedInstRegOperands(TstMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(CSelMI, TII, TRI, RBI); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | case TargetOpcode::G_ICMP: { | 
|  | if (Ty.isVector()) | 
|  | return selectVectorICmp(I, MRI); | 
|  |  | 
|  | if (Ty != LLT::scalar(32)) { | 
|  | LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty | 
|  | << ", expected: " << LLT::scalar(32) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned CmpOpc = 0; | 
|  | unsigned ZReg = 0; | 
|  |  | 
|  | LLT CmpTy = MRI.getType(I.getOperand(2).getReg()); | 
|  | if (CmpTy == LLT::scalar(32)) { | 
|  | CmpOpc = AArch64::SUBSWrr; | 
|  | ZReg = AArch64::WZR; | 
|  | } else if (CmpTy == LLT::scalar(64) || CmpTy.isPointer()) { | 
|  | CmpOpc = AArch64::SUBSXrr; | 
|  | ZReg = AArch64::XZR; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // CSINC increments the result by one when the condition code is false. | 
|  | // Therefore, we have to invert the predicate to get an increment by 1 when | 
|  | // the predicate is true. | 
|  | const AArch64CC::CondCode invCC = | 
|  | changeICMPPredToAArch64CC(CmpInst::getInversePredicate( | 
|  | (CmpInst::Predicate)I.getOperand(1).getPredicate())); | 
|  |  | 
|  | MachineInstr &CmpMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc)) | 
|  | .addDef(ZReg) | 
|  | .addUse(I.getOperand(2).getReg()) | 
|  | .addUse(I.getOperand(3).getReg()); | 
|  |  | 
|  | MachineInstr &CSetMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr)) | 
|  | .addDef(I.getOperand(0).getReg()) | 
|  | .addUse(AArch64::WZR) | 
|  | .addUse(AArch64::WZR) | 
|  | .addImm(invCC); | 
|  |  | 
|  | constrainSelectedInstRegOperands(CmpMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_FCMP: { | 
|  | if (Ty != LLT::scalar(32)) { | 
|  | LLVM_DEBUG(dbgs() << "G_FCMP result has type: " << Ty | 
|  | << ", expected: " << LLT::scalar(32) << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned CmpOpc = 0; | 
|  | LLT CmpTy = MRI.getType(I.getOperand(2).getReg()); | 
|  | if (CmpTy == LLT::scalar(32)) { | 
|  | CmpOpc = AArch64::FCMPSrr; | 
|  | } else if (CmpTy == LLT::scalar(64)) { | 
|  | CmpOpc = AArch64::FCMPDrr; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: regbank | 
|  |  | 
|  | AArch64CC::CondCode CC1, CC2; | 
|  | changeFCMPPredToAArch64CC( | 
|  | (CmpInst::Predicate)I.getOperand(1).getPredicate(), CC1, CC2); | 
|  |  | 
|  | MachineInstr &CmpMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc)) | 
|  | .addUse(I.getOperand(2).getReg()) | 
|  | .addUse(I.getOperand(3).getReg()); | 
|  |  | 
|  | const unsigned DefReg = I.getOperand(0).getReg(); | 
|  | unsigned Def1Reg = DefReg; | 
|  | if (CC2 != AArch64CC::AL) | 
|  | Def1Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass); | 
|  |  | 
|  | MachineInstr &CSetMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr)) | 
|  | .addDef(Def1Reg) | 
|  | .addUse(AArch64::WZR) | 
|  | .addUse(AArch64::WZR) | 
|  | .addImm(getInvertedCondCode(CC1)); | 
|  |  | 
|  | if (CC2 != AArch64CC::AL) { | 
|  | unsigned Def2Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass); | 
|  | MachineInstr &CSet2MI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr)) | 
|  | .addDef(Def2Reg) | 
|  | .addUse(AArch64::WZR) | 
|  | .addUse(AArch64::WZR) | 
|  | .addImm(getInvertedCondCode(CC2)); | 
|  | MachineInstr &OrMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ORRWrr)) | 
|  | .addDef(DefReg) | 
|  | .addUse(Def1Reg) | 
|  | .addUse(Def2Reg); | 
|  | constrainSelectedInstRegOperands(OrMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(CSet2MI, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | constrainSelectedInstRegOperands(CmpMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI); | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | case TargetOpcode::G_VASTART: | 
|  | return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI) | 
|  | : selectVaStartAAPCS(I, MF, MRI); | 
|  | case TargetOpcode::G_INTRINSIC: | 
|  | return selectIntrinsic(I, MRI); | 
|  | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: | 
|  | return selectIntrinsicWithSideEffects(I, MRI); | 
|  | case TargetOpcode::G_IMPLICIT_DEF: { | 
|  | I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF)); | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); | 
|  | const TargetRegisterClass *DstRC = | 
|  | getRegClassForTypeOnBank(DstTy, DstRB, RBI); | 
|  | RBI.constrainGenericRegister(DstReg, *DstRC, MRI); | 
|  | return true; | 
|  | } | 
|  | case TargetOpcode::G_BLOCK_ADDR: { | 
|  | if (TM.getCodeModel() == CodeModel::Large) { | 
|  | materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } else { | 
|  | I.setDesc(TII.get(AArch64::MOVaddrBA)); | 
|  | auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA), | 
|  | I.getOperand(0).getReg()) | 
|  | .addBlockAddress(I.getOperand(1).getBlockAddress(), | 
|  | /* Offset */ 0, AArch64II::MO_PAGE) | 
|  | .addBlockAddress( | 
|  | I.getOperand(1).getBlockAddress(), /* Offset */ 0, | 
|  | AArch64II::MO_NC | AArch64II::MO_PAGEOFF); | 
|  | I.eraseFromParent(); | 
|  | return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI); | 
|  | } | 
|  | } | 
|  | case TargetOpcode::G_INTRINSIC_TRUNC: | 
|  | return selectIntrinsicTrunc(I, MRI); | 
|  | case TargetOpcode::G_INTRINSIC_ROUND: | 
|  | return selectIntrinsicRound(I, MRI); | 
|  | case TargetOpcode::G_BUILD_VECTOR: | 
|  | return selectBuildVector(I, MRI); | 
|  | case TargetOpcode::G_MERGE_VALUES: | 
|  | return selectMergeValues(I, MRI); | 
|  | case TargetOpcode::G_UNMERGE_VALUES: | 
|  | return selectUnmergeValues(I, MRI); | 
|  | case TargetOpcode::G_SHUFFLE_VECTOR: | 
|  | return selectShuffleVector(I, MRI); | 
|  | case TargetOpcode::G_EXTRACT_VECTOR_ELT: | 
|  | return selectExtractElt(I, MRI); | 
|  | case TargetOpcode::G_INSERT_VECTOR_ELT: | 
|  | return selectInsertElt(I, MRI); | 
|  | case TargetOpcode::G_CONCAT_VECTORS: | 
|  | return selectConcatVectors(I, MRI); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectIntrinsicTrunc( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | const LLT SrcTy = MRI.getType(I.getOperand(0).getReg()); | 
|  |  | 
|  | // Select the correct opcode. | 
|  | unsigned Opc = 0; | 
|  | if (!SrcTy.isVector()) { | 
|  | switch (SrcTy.getSizeInBits()) { | 
|  | default: | 
|  | case 16: | 
|  | Opc = AArch64::FRINTZHr; | 
|  | break; | 
|  | case 32: | 
|  | Opc = AArch64::FRINTZSr; | 
|  | break; | 
|  | case 64: | 
|  | Opc = AArch64::FRINTZDr; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | unsigned NumElts = SrcTy.getNumElements(); | 
|  | switch (SrcTy.getElementType().getSizeInBits()) { | 
|  | default: | 
|  | break; | 
|  | case 16: | 
|  | if (NumElts == 4) | 
|  | Opc = AArch64::FRINTZv4f16; | 
|  | else if (NumElts == 8) | 
|  | Opc = AArch64::FRINTZv8f16; | 
|  | break; | 
|  | case 32: | 
|  | if (NumElts == 2) | 
|  | Opc = AArch64::FRINTZv2f32; | 
|  | else if (NumElts == 4) | 
|  | Opc = AArch64::FRINTZv4f32; | 
|  | break; | 
|  | case 64: | 
|  | if (NumElts == 2) | 
|  | Opc = AArch64::FRINTZv2f64; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Opc) { | 
|  | // Didn't get an opcode above, bail. | 
|  | LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Legalization would have set us up perfectly for this; we just need to | 
|  | // set the opcode and move on. | 
|  | I.setDesc(TII.get(Opc)); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectIntrinsicRound( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | const LLT SrcTy = MRI.getType(I.getOperand(0).getReg()); | 
|  |  | 
|  | // Select the correct opcode. | 
|  | unsigned Opc = 0; | 
|  | if (!SrcTy.isVector()) { | 
|  | switch (SrcTy.getSizeInBits()) { | 
|  | default: | 
|  | case 16: | 
|  | Opc = AArch64::FRINTAHr; | 
|  | break; | 
|  | case 32: | 
|  | Opc = AArch64::FRINTASr; | 
|  | break; | 
|  | case 64: | 
|  | Opc = AArch64::FRINTADr; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | unsigned NumElts = SrcTy.getNumElements(); | 
|  | switch (SrcTy.getElementType().getSizeInBits()) { | 
|  | default: | 
|  | break; | 
|  | case 16: | 
|  | if (NumElts == 4) | 
|  | Opc = AArch64::FRINTAv4f16; | 
|  | else if (NumElts == 8) | 
|  | Opc = AArch64::FRINTAv8f16; | 
|  | break; | 
|  | case 32: | 
|  | if (NumElts == 2) | 
|  | Opc = AArch64::FRINTAv2f32; | 
|  | else if (NumElts == 4) | 
|  | Opc = AArch64::FRINTAv4f32; | 
|  | break; | 
|  | case 64: | 
|  | if (NumElts == 2) | 
|  | Opc = AArch64::FRINTAv2f64; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Opc) { | 
|  | // Didn't get an opcode above, bail. | 
|  | LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Legalization would have set us up perfectly for this; we just need to | 
|  | // set the opcode and move on. | 
|  | I.setDesc(TII.get(Opc)); | 
|  | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectVectorICmp( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | unsigned SrcReg = I.getOperand(2).getReg(); | 
|  | unsigned Src2Reg = I.getOperand(3).getReg(); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  |  | 
|  | unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); | 
|  | unsigned NumElts = DstTy.getNumElements(); | 
|  |  | 
|  | // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b | 
|  | // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16 | 
|  | // Third index is cc opcode: | 
|  | // 0 == eq | 
|  | // 1 == ugt | 
|  | // 2 == uge | 
|  | // 3 == ult | 
|  | // 4 == ule | 
|  | // 5 == sgt | 
|  | // 6 == sge | 
|  | // 7 == slt | 
|  | // 8 == sle | 
|  | // ne is done by negating 'eq' result. | 
|  |  | 
|  | // This table below assumes that for some comparisons the operands will be | 
|  | // commuted. | 
|  | // ult op == commute + ugt op | 
|  | // ule op == commute + uge op | 
|  | // slt op == commute + sgt op | 
|  | // sle op == commute + sge op | 
|  | unsigned PredIdx = 0; | 
|  | bool SwapOperands = false; | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate(); | 
|  | switch (Pred) { | 
|  | case CmpInst::ICMP_NE: | 
|  | case CmpInst::ICMP_EQ: | 
|  | PredIdx = 0; | 
|  | break; | 
|  | case CmpInst::ICMP_UGT: | 
|  | PredIdx = 1; | 
|  | break; | 
|  | case CmpInst::ICMP_UGE: | 
|  | PredIdx = 2; | 
|  | break; | 
|  | case CmpInst::ICMP_ULT: | 
|  | PredIdx = 3; | 
|  | SwapOperands = true; | 
|  | break; | 
|  | case CmpInst::ICMP_ULE: | 
|  | PredIdx = 4; | 
|  | SwapOperands = true; | 
|  | break; | 
|  | case CmpInst::ICMP_SGT: | 
|  | PredIdx = 5; | 
|  | break; | 
|  | case CmpInst::ICMP_SGE: | 
|  | PredIdx = 6; | 
|  | break; | 
|  | case CmpInst::ICMP_SLT: | 
|  | PredIdx = 7; | 
|  | SwapOperands = true; | 
|  | break; | 
|  | case CmpInst::ICMP_SLE: | 
|  | PredIdx = 8; | 
|  | SwapOperands = true; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled icmp predicate"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This table obviously should be tablegen'd when we have our GISel native | 
|  | // tablegen selector. | 
|  |  | 
|  | static const unsigned OpcTable[4][4][9] = { | 
|  | { | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8, | 
|  | AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8, | 
|  | AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8}, | 
|  | {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8, | 
|  | AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8, | 
|  | AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8} | 
|  | }, | 
|  | { | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16, | 
|  | AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16, | 
|  | AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16}, | 
|  | {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16, | 
|  | AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16, | 
|  | AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */} | 
|  | }, | 
|  | { | 
|  | {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32, | 
|  | AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32, | 
|  | AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32}, | 
|  | {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32, | 
|  | AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32, | 
|  | AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */} | 
|  | }, | 
|  | { | 
|  | {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64, | 
|  | AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64, | 
|  | AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */}, | 
|  | {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, | 
|  | 0 /* invalid */} | 
|  | }, | 
|  | }; | 
|  | unsigned EltIdx = Log2_32(SrcEltSize / 8); | 
|  | unsigned NumEltsIdx = Log2_32(NumElts / 2); | 
|  | unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx]; | 
|  | if (!Opc) { | 
|  | LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI); | 
|  | const TargetRegisterClass *SrcRC = | 
|  | getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true); | 
|  | if (!SrcRC) { | 
|  | LLVM_DEBUG(dbgs() << "Could not determine source register class.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0; | 
|  | if (SrcTy.getSizeInBits() == 128) | 
|  | NotOpc = NotOpc ? AArch64::NOTv16i8 : 0; | 
|  |  | 
|  | if (SwapOperands) | 
|  | std::swap(SrcReg, Src2Reg); | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  | auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg}); | 
|  | constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI); | 
|  |  | 
|  | // Invert if we had a 'ne' cc. | 
|  | if (NotOpc) { | 
|  | Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp}); | 
|  | constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI); | 
|  | } else { | 
|  | MIB.buildCopy(DstReg, Cmp.getReg(0)); | 
|  | } | 
|  | RBI.constrainGenericRegister(DstReg, *SrcRC, MRI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr *AArch64InstructionSelector::emitScalarToVector( | 
|  | unsigned EltSize, const TargetRegisterClass *DstRC, unsigned Scalar, | 
|  | MachineIRBuilder &MIRBuilder) const { | 
|  | auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {}); | 
|  |  | 
|  | auto BuildFn = [&](unsigned SubregIndex) { | 
|  | auto Ins = | 
|  | MIRBuilder | 
|  | .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar}) | 
|  | .addImm(SubregIndex); | 
|  | constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI); | 
|  | return &*Ins; | 
|  | }; | 
|  |  | 
|  | switch (EltSize) { | 
|  | case 16: | 
|  | return BuildFn(AArch64::hsub); | 
|  | case 32: | 
|  | return BuildFn(AArch64::ssub); | 
|  | case 64: | 
|  | return BuildFn(AArch64::dsub); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectMergeValues( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode"); | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); | 
|  | assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation"); | 
|  |  | 
|  | // At the moment we only support merging two s32s into an s64. | 
|  | if (I.getNumOperands() != 3) | 
|  | return false; | 
|  | if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32) | 
|  | return false; | 
|  | const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI); | 
|  | if (RB.getID() != AArch64::GPRRegBankID) | 
|  | return false; | 
|  |  | 
|  | auto *DstRC = &AArch64::GPR64RegClass; | 
|  | unsigned SubToRegDef = MRI.createVirtualRegister(DstRC); | 
|  | MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(), | 
|  | TII.get(TargetOpcode::SUBREG_TO_REG)) | 
|  | .addDef(SubToRegDef) | 
|  | .addImm(0) | 
|  | .addUse(I.getOperand(1).getReg()) | 
|  | .addImm(AArch64::sub_32); | 
|  | unsigned SubToRegDef2 = MRI.createVirtualRegister(DstRC); | 
|  | // Need to anyext the second scalar before we can use bfm | 
|  | MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(), | 
|  | TII.get(TargetOpcode::SUBREG_TO_REG)) | 
|  | .addDef(SubToRegDef2) | 
|  | .addImm(0) | 
|  | .addUse(I.getOperand(2).getReg()) | 
|  | .addImm(AArch64::sub_32); | 
|  | MachineInstr &BFM = | 
|  | *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri)) | 
|  | .addDef(I.getOperand(0).getReg()) | 
|  | .addUse(SubToRegDef) | 
|  | .addUse(SubToRegDef2) | 
|  | .addImm(32) | 
|  | .addImm(31); | 
|  | constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(BFM, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg, | 
|  | const unsigned EltSize) { | 
|  | // Choose a lane copy opcode and subregister based off of the size of the | 
|  | // vector's elements. | 
|  | switch (EltSize) { | 
|  | case 16: | 
|  | CopyOpc = AArch64::CPYi16; | 
|  | ExtractSubReg = AArch64::hsub; | 
|  | break; | 
|  | case 32: | 
|  | CopyOpc = AArch64::CPYi32; | 
|  | ExtractSubReg = AArch64::ssub; | 
|  | break; | 
|  | case 64: | 
|  | CopyOpc = AArch64::CPYi64; | 
|  | ExtractSubReg = AArch64::dsub; | 
|  | break; | 
|  | default: | 
|  | // Unknown size, bail out. | 
|  | LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr *AArch64InstructionSelector::emitExtractVectorElt( | 
|  | Optional<unsigned> DstReg, const RegisterBank &DstRB, LLT ScalarTy, | 
|  | unsigned VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const { | 
|  | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); | 
|  | unsigned CopyOpc = 0; | 
|  | unsigned ExtractSubReg = 0; | 
|  | if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Couldn't determine lane copy opcode for instruction.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *DstRC = | 
|  | getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true); | 
|  | if (!DstRC) { | 
|  | LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI); | 
|  | const LLT &VecTy = MRI.getType(VecReg); | 
|  | const TargetRegisterClass *VecRC = | 
|  | getRegClassForTypeOnBank(VecTy, VecRB, RBI, true); | 
|  | if (!VecRC) { | 
|  | LLVM_DEBUG(dbgs() << "Could not determine source register class.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The register that we're going to copy into. | 
|  | unsigned InsertReg = VecReg; | 
|  | if (!DstReg) | 
|  | DstReg = MRI.createVirtualRegister(DstRC); | 
|  | // If the lane index is 0, we just use a subregister COPY. | 
|  | if (LaneIdx == 0) { | 
|  | auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {}) | 
|  | .addReg(VecReg, 0, ExtractSubReg); | 
|  | RBI.constrainGenericRegister(*DstReg, *DstRC, MRI); | 
|  | return &*Copy; | 
|  | } | 
|  |  | 
|  | // Lane copies require 128-bit wide registers. If we're dealing with an | 
|  | // unpacked vector, then we need to move up to that width. Insert an implicit | 
|  | // def and a subregister insert to get us there. | 
|  | if (VecTy.getSizeInBits() != 128) { | 
|  | MachineInstr *ScalarToVector = emitScalarToVector( | 
|  | VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder); | 
|  | if (!ScalarToVector) | 
|  | return nullptr; | 
|  | InsertReg = ScalarToVector->getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | MachineInstr *LaneCopyMI = | 
|  | MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx); | 
|  | constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI); | 
|  |  | 
|  | // Make sure that we actually constrain the initial copy. | 
|  | RBI.constrainGenericRegister(*DstReg, *DstRC, MRI); | 
|  | return LaneCopyMI; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectExtractElt( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT && | 
|  | "unexpected opcode!"); | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const LLT NarrowTy = MRI.getType(DstReg); | 
|  | const unsigned SrcReg = I.getOperand(1).getReg(); | 
|  | const LLT WideTy = MRI.getType(SrcReg); | 
|  | (void)WideTy; | 
|  | assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() && | 
|  | "source register size too small!"); | 
|  | assert(NarrowTy.isScalar() && "cannot extract vector into vector!"); | 
|  |  | 
|  | // Need the lane index to determine the correct copy opcode. | 
|  | MachineOperand &LaneIdxOp = I.getOperand(2); | 
|  | assert(LaneIdxOp.isReg() && "Lane index operand was not a register?"); | 
|  |  | 
|  | if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find the index to extract from. | 
|  | auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI); | 
|  | if (!VRegAndVal) | 
|  | return false; | 
|  | unsigned LaneIdx = VRegAndVal->Value; | 
|  |  | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); | 
|  | MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg, | 
|  | LaneIdx, MIRBuilder); | 
|  | if (!Extract) | 
|  | return false; | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectSplitVectorUnmerge( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | unsigned NumElts = I.getNumOperands() - 1; | 
|  | unsigned SrcReg = I.getOperand(NumElts).getReg(); | 
|  | const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const LLT SrcTy = MRI.getType(SrcReg); | 
|  |  | 
|  | assert(NarrowTy.isVector() && "Expected an unmerge into vectors"); | 
|  | if (SrcTy.getSizeInBits() > 128) { | 
|  | LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  |  | 
|  | // We implement a split vector operation by treating the sub-vectors as | 
|  | // scalars and extracting them. | 
|  | const RegisterBank &DstRB = | 
|  | *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI); | 
|  | for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) { | 
|  | unsigned Dst = I.getOperand(OpIdx).getReg(); | 
|  | MachineInstr *Extract = | 
|  | emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB); | 
|  | if (!Extract) | 
|  | return false; | 
|  | } | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectUnmergeValues( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && | 
|  | "unexpected opcode"); | 
|  |  | 
|  | // TODO: Handle unmerging into GPRs and from scalars to scalars. | 
|  | if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() != | 
|  | AArch64::FPRRegBankID || | 
|  | RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() != | 
|  | AArch64::FPRRegBankID) { | 
|  | LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar " | 
|  | "currently unsupported.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The last operand is the vector source register, and every other operand is | 
|  | // a register to unpack into. | 
|  | unsigned NumElts = I.getNumOperands() - 1; | 
|  | unsigned SrcReg = I.getOperand(NumElts).getReg(); | 
|  | const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const LLT WideTy = MRI.getType(SrcReg); | 
|  | (void)WideTy; | 
|  | assert(WideTy.isVector() && "can only unmerge from vector types!"); | 
|  | assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() && | 
|  | "source register size too small!"); | 
|  |  | 
|  | if (!NarrowTy.isScalar()) | 
|  | return selectSplitVectorUnmerge(I, MRI); | 
|  |  | 
|  | MachineIRBuilder MIB(I); | 
|  |  | 
|  | // Choose a lane copy opcode and subregister based off of the size of the | 
|  | // vector's elements. | 
|  | unsigned CopyOpc = 0; | 
|  | unsigned ExtractSubReg = 0; | 
|  | if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits())) | 
|  | return false; | 
|  |  | 
|  | // Set up for the lane copies. | 
|  | MachineBasicBlock &MBB = *I.getParent(); | 
|  |  | 
|  | // Stores the registers we'll be copying from. | 
|  | SmallVector<unsigned, 4> InsertRegs; | 
|  |  | 
|  | // We'll use the first register twice, so we only need NumElts-1 registers. | 
|  | unsigned NumInsertRegs = NumElts - 1; | 
|  |  | 
|  | // If our elements fit into exactly 128 bits, then we can copy from the source | 
|  | // directly. Otherwise, we need to do a bit of setup with some subregister | 
|  | // inserts. | 
|  | if (NarrowTy.getSizeInBits() * NumElts == 128) { | 
|  | InsertRegs = SmallVector<unsigned, 4>(NumInsertRegs, SrcReg); | 
|  | } else { | 
|  | // No. We have to perform subregister inserts. For each insert, create an | 
|  | // implicit def and a subregister insert, and save the register we create. | 
|  | for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) { | 
|  | unsigned ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass); | 
|  | MachineInstr &ImpDefMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF), | 
|  | ImpDefReg); | 
|  |  | 
|  | // Now, create the subregister insert from SrcReg. | 
|  | unsigned InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass); | 
|  | MachineInstr &InsMI = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), | 
|  | TII.get(TargetOpcode::INSERT_SUBREG), InsertReg) | 
|  | .addUse(ImpDefReg) | 
|  | .addUse(SrcReg) | 
|  | .addImm(AArch64::dsub); | 
|  |  | 
|  | constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI); | 
|  |  | 
|  | // Save the register so that we can copy from it after. | 
|  | InsertRegs.push_back(InsertReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've created any necessary subregister inserts, we can | 
|  | // create the copies. | 
|  | // | 
|  | // Perform the first copy separately as a subregister copy. | 
|  | unsigned CopyTo = I.getOperand(0).getReg(); | 
|  | auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {}) | 
|  | .addReg(InsertRegs[0], 0, ExtractSubReg); | 
|  | constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI); | 
|  |  | 
|  | // Now, perform the remaining copies as vector lane copies. | 
|  | unsigned LaneIdx = 1; | 
|  | for (unsigned InsReg : InsertRegs) { | 
|  | unsigned CopyTo = I.getOperand(LaneIdx).getReg(); | 
|  | MachineInstr &CopyInst = | 
|  | *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo) | 
|  | .addUse(InsReg) | 
|  | .addImm(LaneIdx); | 
|  | constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI); | 
|  | ++LaneIdx; | 
|  | } | 
|  |  | 
|  | // Separately constrain the first copy's destination. Because of the | 
|  | // limitation in constrainOperandRegClass, we can't guarantee that this will | 
|  | // actually be constrained. So, do it ourselves using the second operand. | 
|  | const TargetRegisterClass *RC = | 
|  | MRI.getRegClassOrNull(I.getOperand(1).getReg()); | 
|  | if (!RC) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RBI.constrainGenericRegister(CopyTo, *RC, MRI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectConcatVectors( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && | 
|  | "Unexpected opcode"); | 
|  | unsigned Dst = I.getOperand(0).getReg(); | 
|  | unsigned Op1 = I.getOperand(1).getReg(); | 
|  | unsigned Op2 = I.getOperand(2).getReg(); | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  | MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder); | 
|  | if (!ConcatMI) | 
|  | return false; | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AArch64InstructionSelector::collectShuffleMaskIndices( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI, | 
|  | SmallVectorImpl<Optional<int>> &Idxs) const { | 
|  | MachineInstr *MaskDef = MRI.getVRegDef(I.getOperand(3).getReg()); | 
|  | assert( | 
|  | MaskDef->getOpcode() == TargetOpcode::G_BUILD_VECTOR && | 
|  | "G_SHUFFLE_VECTOR should have a constant mask operand as G_BUILD_VECTOR"); | 
|  | // Find the constant indices. | 
|  | for (unsigned i = 1, e = MaskDef->getNumOperands(); i < e; ++i) { | 
|  | MachineInstr *ScalarDef = MRI.getVRegDef(MaskDef->getOperand(i).getReg()); | 
|  | assert(ScalarDef && "Could not find vreg def of shufflevec index op"); | 
|  | // Look through copies. | 
|  | while (ScalarDef->getOpcode() == TargetOpcode::COPY) { | 
|  | ScalarDef = MRI.getVRegDef(ScalarDef->getOperand(1).getReg()); | 
|  | assert(ScalarDef && "Could not find def of copy operand"); | 
|  | } | 
|  | if (ScalarDef->getOpcode() != TargetOpcode::G_CONSTANT) { | 
|  | // This be an undef if not a constant. | 
|  | assert(ScalarDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF); | 
|  | Idxs.push_back(None); | 
|  | } else { | 
|  | Idxs.push_back(ScalarDef->getOperand(1).getCImm()->getSExtValue()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | AArch64InstructionSelector::emitConstantPoolEntry(Constant *CPVal, | 
|  | MachineFunction &MF) const { | 
|  | Type *CPTy = CPVal->getType(); | 
|  | unsigned Align = MF.getDataLayout().getPrefTypeAlignment(CPTy); | 
|  | if (Align == 0) | 
|  | Align = MF.getDataLayout().getTypeAllocSize(CPTy); | 
|  |  | 
|  | MachineConstantPool *MCP = MF.getConstantPool(); | 
|  | return MCP->getConstantPoolIndex(CPVal, Align); | 
|  | } | 
|  |  | 
|  | MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool( | 
|  | Constant *CPVal, MachineIRBuilder &MIRBuilder) const { | 
|  | unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF()); | 
|  |  | 
|  | auto Adrp = | 
|  | MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {}) | 
|  | .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE); | 
|  |  | 
|  | MachineInstr *LoadMI = nullptr; | 
|  | switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) { | 
|  | case 16: | 
|  | LoadMI = | 
|  | &*MIRBuilder | 
|  | .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp}) | 
|  | .addConstantPoolIndex(CPIdx, 0, | 
|  | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  | break; | 
|  | case 8: | 
|  | LoadMI = &*MIRBuilder | 
|  | .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp}) | 
|  | .addConstantPoolIndex( | 
|  | CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | 
|  | break; | 
|  | default: | 
|  | LLVM_DEBUG(dbgs() << "Could not load from constant pool of type " | 
|  | << *CPVal->getType()); | 
|  | return nullptr; | 
|  | } | 
|  | constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI); | 
|  | return LoadMI; | 
|  | } | 
|  |  | 
|  | /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given | 
|  | /// size and RB. | 
|  | static std::pair<unsigned, unsigned> | 
|  | getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) { | 
|  | unsigned Opc, SubregIdx; | 
|  | if (RB.getID() == AArch64::GPRRegBankID) { | 
|  | if (EltSize == 32) { | 
|  | Opc = AArch64::INSvi32gpr; | 
|  | SubregIdx = AArch64::ssub; | 
|  | } else if (EltSize == 64) { | 
|  | Opc = AArch64::INSvi64gpr; | 
|  | SubregIdx = AArch64::dsub; | 
|  | } else { | 
|  | llvm_unreachable("invalid elt size!"); | 
|  | } | 
|  | } else { | 
|  | if (EltSize == 8) { | 
|  | Opc = AArch64::INSvi8lane; | 
|  | SubregIdx = AArch64::bsub; | 
|  | } else if (EltSize == 16) { | 
|  | Opc = AArch64::INSvi16lane; | 
|  | SubregIdx = AArch64::hsub; | 
|  | } else if (EltSize == 32) { | 
|  | Opc = AArch64::INSvi32lane; | 
|  | SubregIdx = AArch64::ssub; | 
|  | } else if (EltSize == 64) { | 
|  | Opc = AArch64::INSvi64lane; | 
|  | SubregIdx = AArch64::dsub; | 
|  | } else { | 
|  | llvm_unreachable("invalid elt size!"); | 
|  | } | 
|  | } | 
|  | return std::make_pair(Opc, SubregIdx); | 
|  | } | 
|  |  | 
|  | MachineInstr *AArch64InstructionSelector::emitVectorConcat( | 
|  | Optional<unsigned> Dst, unsigned Op1, unsigned Op2, | 
|  | MachineIRBuilder &MIRBuilder) const { | 
|  | // We implement a vector concat by: | 
|  | // 1. Use scalar_to_vector to insert the lower vector into the larger dest | 
|  | // 2. Insert the upper vector into the destination's upper element | 
|  | // TODO: some of this code is common with G_BUILD_VECTOR handling. | 
|  | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); | 
|  |  | 
|  | const LLT Op1Ty = MRI.getType(Op1); | 
|  | const LLT Op2Ty = MRI.getType(Op2); | 
|  |  | 
|  | if (Op1Ty != Op2Ty) { | 
|  | LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys"); | 
|  | return nullptr; | 
|  | } | 
|  | assert(Op1Ty.isVector() && "Expected a vector for vector concat"); | 
|  |  | 
|  | if (Op1Ty.getSizeInBits() >= 128) { | 
|  | LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // At the moment we just support 64 bit vector concats. | 
|  | if (Op1Ty.getSizeInBits() != 64) { | 
|  | LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits()); | 
|  | const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI); | 
|  | const TargetRegisterClass *DstRC = | 
|  | getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2); | 
|  |  | 
|  | MachineInstr *WidenedOp1 = | 
|  | emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder); | 
|  | MachineInstr *WidenedOp2 = | 
|  | emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder); | 
|  | if (!WidenedOp1 || !WidenedOp2) { | 
|  | LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Now do the insert of the upper element. | 
|  | unsigned InsertOpc, InsSubRegIdx; | 
|  | std::tie(InsertOpc, InsSubRegIdx) = | 
|  | getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits()); | 
|  |  | 
|  | if (!Dst) | 
|  | Dst = MRI.createVirtualRegister(DstRC); | 
|  | auto InsElt = | 
|  | MIRBuilder | 
|  | .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()}) | 
|  | .addImm(1) /* Lane index */ | 
|  | .addUse(WidenedOp2->getOperand(0).getReg()) | 
|  | .addImm(0); | 
|  | constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI); | 
|  | return &*InsElt; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::tryOptVectorDup(MachineInstr &I) const { | 
|  | // Try to match a vector splat operation into a dup instruction. | 
|  | // We're looking for this pattern: | 
|  | //    %scalar:gpr(s64) = COPY $x0 | 
|  | //    %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF | 
|  | //    %cst0:gpr(s32) = G_CONSTANT i32 0 | 
|  | //    %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32) | 
|  | //    %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32) | 
|  | //    %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, | 
|  | //                                             %zerovec(<2 x s32>) | 
|  | // | 
|  | // ...into: | 
|  | // %splat = DUP %scalar | 
|  | // We use the regbank of the scalar to determine which kind of dup to use. | 
|  | MachineIRBuilder MIB(I); | 
|  | MachineRegisterInfo &MRI = *MIB.getMRI(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | using namespace TargetOpcode; | 
|  | using namespace MIPatternMatch; | 
|  |  | 
|  | // Begin matching the insert. | 
|  | auto *InsMI = | 
|  | findMIFromReg(I.getOperand(1).getReg(), G_INSERT_VECTOR_ELT, MIB); | 
|  | if (!InsMI) | 
|  | return false; | 
|  | // Match the undef vector operand. | 
|  | auto *UndefMI = | 
|  | findMIFromReg(InsMI->getOperand(1).getReg(), G_IMPLICIT_DEF, MIB); | 
|  | if (!UndefMI) | 
|  | return false; | 
|  | // Match the scalar being splatted. | 
|  | unsigned ScalarReg = InsMI->getOperand(2).getReg(); | 
|  | const RegisterBank *ScalarRB = RBI.getRegBank(ScalarReg, MRI, TRI); | 
|  | // Match the index constant 0. | 
|  | int64_t Index = 0; | 
|  | if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index) | 
|  | return false; | 
|  |  | 
|  | // The shuffle's second operand doesn't matter if the mask is all zero. | 
|  | auto *ZeroVec = findMIFromReg(I.getOperand(3).getReg(), G_BUILD_VECTOR, MIB); | 
|  | if (!ZeroVec) | 
|  | return false; | 
|  | int64_t Zero = 0; | 
|  | if (!mi_match(ZeroVec->getOperand(1).getReg(), MRI, m_ICst(Zero)) || Zero) | 
|  | return false; | 
|  | for (unsigned i = 1, e = ZeroVec->getNumOperands() - 1; i < e; ++i) { | 
|  | if (ZeroVec->getOperand(i).getReg() != ZeroVec->getOperand(1).getReg()) | 
|  | return false; // This wasn't an all zeros vector. | 
|  | } | 
|  |  | 
|  | // We're done, now find out what kind of splat we need. | 
|  | LLT VecTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | LLT EltTy = VecTy.getElementType(); | 
|  | if (VecTy.getSizeInBits() != 128 || EltTy.getSizeInBits() < 32) { | 
|  | LLVM_DEBUG(dbgs() << "Could not optimize splat pattern < 128b yet"); | 
|  | return false; | 
|  | } | 
|  | bool IsFP = ScalarRB->getID() == AArch64::FPRRegBankID; | 
|  | static const unsigned OpcTable[2][2] = { | 
|  | {AArch64::DUPv4i32gpr, AArch64::DUPv2i64gpr}, | 
|  | {AArch64::DUPv4i32lane, AArch64::DUPv2i64lane}}; | 
|  | unsigned Opc = OpcTable[IsFP][EltTy.getSizeInBits() == 64]; | 
|  |  | 
|  | // For FP splats, we need to widen the scalar reg via undef too. | 
|  | if (IsFP) { | 
|  | MachineInstr *Widen = emitScalarToVector( | 
|  | EltTy.getSizeInBits(), &AArch64::FPR128RegClass, ScalarReg, MIB); | 
|  | if (!Widen) | 
|  | return false; | 
|  | ScalarReg = Widen->getOperand(0).getReg(); | 
|  | } | 
|  | auto Dup = MIB.buildInstr(Opc, {I.getOperand(0).getReg()}, {ScalarReg}); | 
|  | if (IsFP) | 
|  | Dup.addImm(0); | 
|  | constrainSelectedInstRegOperands(*Dup, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::tryOptVectorShuffle(MachineInstr &I) const { | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return false; | 
|  | if (tryOptVectorDup(I)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectShuffleVector( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | if (tryOptVectorShuffle(I)) | 
|  | return true; | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | unsigned Src1Reg = I.getOperand(1).getReg(); | 
|  | const LLT Src1Ty = MRI.getType(Src1Reg); | 
|  | unsigned Src2Reg = I.getOperand(2).getReg(); | 
|  | const LLT Src2Ty = MRI.getType(Src2Reg); | 
|  |  | 
|  | MachineBasicBlock &MBB = *I.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  |  | 
|  | // G_SHUFFLE_VECTOR doesn't really have a strictly enforced constant mask | 
|  | // operand, it comes in as a normal vector value which we have to analyze to | 
|  | // find the mask indices. If the mask element is undef, then | 
|  | // collectShuffleMaskIndices() will add a None entry for that index into | 
|  | // the list. | 
|  | SmallVector<Optional<int>, 8> Mask; | 
|  | collectShuffleMaskIndices(I, MRI, Mask); | 
|  | assert(!Mask.empty() && "Expected to find mask indices"); | 
|  |  | 
|  | // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if | 
|  | // it's originated from a <1 x T> type. Those should have been lowered into | 
|  | // G_BUILD_VECTOR earlier. | 
|  | if (!Src1Ty.isVector() || !Src2Ty.isVector()) { | 
|  | LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8; | 
|  |  | 
|  | SmallVector<Constant *, 64> CstIdxs; | 
|  | for (auto &MaybeVal : Mask) { | 
|  | // For now, any undef indexes we'll just assume to be 0. This should be | 
|  | // optimized in future, e.g. to select DUP etc. | 
|  | int Val = MaybeVal.hasValue() ? *MaybeVal : 0; | 
|  | for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { | 
|  | unsigned Offset = Byte + Val * BytesPerElt; | 
|  | CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | // Use a constant pool to load the index vector for TBL. | 
|  | Constant *CPVal = ConstantVector::get(CstIdxs); | 
|  | MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder); | 
|  | if (!IndexLoad) { | 
|  | LLVM_DEBUG(dbgs() << "Could not load from a constant pool"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DstTy.getSizeInBits() != 128) { | 
|  | assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty"); | 
|  | // This case can be done with TBL1. | 
|  | MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder); | 
|  | if (!Concat) { | 
|  | LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The constant pool load will be 64 bits, so need to convert to FPR128 reg. | 
|  | IndexLoad = | 
|  | emitScalarToVector(64, &AArch64::FPR128RegClass, | 
|  | IndexLoad->getOperand(0).getReg(), MIRBuilder); | 
|  |  | 
|  | auto TBL1 = MIRBuilder.buildInstr( | 
|  | AArch64::TBLv16i8One, {&AArch64::FPR128RegClass}, | 
|  | {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()}); | 
|  | constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI); | 
|  |  | 
|  | auto Copy = | 
|  | MIRBuilder | 
|  | .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {}) | 
|  | .addReg(TBL1.getReg(0), 0, AArch64::dsub); | 
|  | RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive | 
|  | // Q registers for regalloc. | 
|  | auto RegSeq = MIRBuilder | 
|  | .buildInstr(TargetOpcode::REG_SEQUENCE, | 
|  | {&AArch64::QQRegClass}, {Src1Reg}) | 
|  | .addImm(AArch64::qsub0) | 
|  | .addUse(Src2Reg) | 
|  | .addImm(AArch64::qsub1); | 
|  |  | 
|  | auto TBL2 = | 
|  | MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0).getReg()}, | 
|  | {RegSeq, IndexLoad->getOperand(0).getReg()}); | 
|  | constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI); | 
|  | constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr *AArch64InstructionSelector::emitLaneInsert( | 
|  | Optional<unsigned> DstReg, unsigned SrcReg, unsigned EltReg, | 
|  | unsigned LaneIdx, const RegisterBank &RB, | 
|  | MachineIRBuilder &MIRBuilder) const { | 
|  | MachineInstr *InsElt = nullptr; | 
|  | const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; | 
|  | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); | 
|  |  | 
|  | // Create a register to define with the insert if one wasn't passed in. | 
|  | if (!DstReg) | 
|  | DstReg = MRI.createVirtualRegister(DstRC); | 
|  |  | 
|  | unsigned EltSize = MRI.getType(EltReg).getSizeInBits(); | 
|  | unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first; | 
|  |  | 
|  | if (RB.getID() == AArch64::FPRRegBankID) { | 
|  | auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder); | 
|  | InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg}) | 
|  | .addImm(LaneIdx) | 
|  | .addUse(InsSub->getOperand(0).getReg()) | 
|  | .addImm(0); | 
|  | } else { | 
|  | InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg}) | 
|  | .addImm(LaneIdx) | 
|  | .addUse(EltReg); | 
|  | } | 
|  |  | 
|  | constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI); | 
|  | return InsElt; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectInsertElt( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT); | 
|  |  | 
|  | // Get information on the destination. | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | const LLT DstTy = MRI.getType(DstReg); | 
|  | unsigned VecSize = DstTy.getSizeInBits(); | 
|  |  | 
|  | // Get information on the element we want to insert into the destination. | 
|  | unsigned EltReg = I.getOperand(2).getReg(); | 
|  | const LLT EltTy = MRI.getType(EltReg); | 
|  | unsigned EltSize = EltTy.getSizeInBits(); | 
|  | if (EltSize < 16 || EltSize > 64) | 
|  | return false; // Don't support all element types yet. | 
|  |  | 
|  | // Find the definition of the index. Bail out if it's not defined by a | 
|  | // G_CONSTANT. | 
|  | unsigned IdxReg = I.getOperand(3).getReg(); | 
|  | auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI); | 
|  | if (!VRegAndVal) | 
|  | return false; | 
|  | unsigned LaneIdx = VRegAndVal->Value; | 
|  |  | 
|  | // Perform the lane insert. | 
|  | unsigned SrcReg = I.getOperand(1).getReg(); | 
|  | const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI); | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | if (VecSize < 128) { | 
|  | // If the vector we're inserting into is smaller than 128 bits, widen it | 
|  | // to 128 to do the insert. | 
|  | MachineInstr *ScalarToVec = emitScalarToVector( | 
|  | VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder); | 
|  | if (!ScalarToVec) | 
|  | return false; | 
|  | SrcReg = ScalarToVec->getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | // Create an insert into a new FPR128 register. | 
|  | // Note that if our vector is already 128 bits, we end up emitting an extra | 
|  | // register. | 
|  | MachineInstr *InsMI = | 
|  | emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder); | 
|  |  | 
|  | if (VecSize < 128) { | 
|  | // If we had to widen to perform the insert, then we have to demote back to | 
|  | // the original size to get the result we want. | 
|  | unsigned DemoteVec = InsMI->getOperand(0).getReg(); | 
|  | const TargetRegisterClass *RC = | 
|  | getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize); | 
|  | if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { | 
|  | LLVM_DEBUG(dbgs() << "Unsupported register class!\n"); | 
|  | return false; | 
|  | } | 
|  | unsigned SubReg = 0; | 
|  | if (!getSubRegForClass(RC, TRI, SubReg)) | 
|  | return false; | 
|  | if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { | 
|  | LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize | 
|  | << "\n"); | 
|  | return false; | 
|  | } | 
|  | MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {}) | 
|  | .addReg(DemoteVec, 0, SubReg); | 
|  | RBI.constrainGenericRegister(DstReg, *RC, MRI); | 
|  | } else { | 
|  | // No widening needed. | 
|  | InsMI->getOperand(0).setReg(DstReg); | 
|  | constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectBuildVector( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR); | 
|  | // Until we port more of the optimized selections, for now just use a vector | 
|  | // insert sequence. | 
|  | const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); | 
|  | const LLT EltTy = MRI.getType(I.getOperand(1).getReg()); | 
|  | unsigned EltSize = EltTy.getSizeInBits(); | 
|  | if (EltSize < 16 || EltSize > 64) | 
|  | return false; // Don't support all element types yet. | 
|  | const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI); | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; | 
|  | MachineInstr *ScalarToVec = | 
|  | emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC, | 
|  | I.getOperand(1).getReg(), MIRBuilder); | 
|  | if (!ScalarToVec) | 
|  | return false; | 
|  |  | 
|  | unsigned DstVec = ScalarToVec->getOperand(0).getReg(); | 
|  | unsigned DstSize = DstTy.getSizeInBits(); | 
|  |  | 
|  | // Keep track of the last MI we inserted. Later on, we might be able to save | 
|  | // a copy using it. | 
|  | MachineInstr *PrevMI = nullptr; | 
|  | for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) { | 
|  | // Note that if we don't do a subregister copy, we can end up making an | 
|  | // extra register. | 
|  | PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB, | 
|  | MIRBuilder); | 
|  | DstVec = PrevMI->getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | // If DstTy's size in bits is less than 128, then emit a subregister copy | 
|  | // from DstVec to the last register we've defined. | 
|  | if (DstSize < 128) { | 
|  | // Force this to be FPR using the destination vector. | 
|  | const TargetRegisterClass *RC = | 
|  | getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize); | 
|  | if (!RC) | 
|  | return false; | 
|  | if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { | 
|  | LLVM_DEBUG(dbgs() << "Unsupported register class!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned SubReg = 0; | 
|  | if (!getSubRegForClass(RC, TRI, SubReg)) | 
|  | return false; | 
|  | if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { | 
|  | LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize | 
|  | << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Reg = MRI.createVirtualRegister(RC); | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  |  | 
|  | MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {}) | 
|  | .addReg(DstVec, 0, SubReg); | 
|  | MachineOperand &RegOp = I.getOperand(1); | 
|  | RegOp.setReg(Reg); | 
|  | RBI.constrainGenericRegister(DstReg, *RC, MRI); | 
|  | } else { | 
|  | // We don't need a subregister copy. Save a copy by re-using the | 
|  | // destination register on the final insert. | 
|  | assert(PrevMI && "PrevMI was null?"); | 
|  | PrevMI->getOperand(0).setReg(I.getOperand(0).getReg()); | 
|  | constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the | 
|  | /// ID if it exists, and 0 otherwise. | 
|  | static unsigned findIntrinsicID(MachineInstr &I) { | 
|  | auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) { | 
|  | return Op.isIntrinsicID(); | 
|  | }); | 
|  | if (IntrinOp == I.operands_end()) | 
|  | return 0; | 
|  | return IntrinOp->getIntrinsicID(); | 
|  | } | 
|  |  | 
|  | /// Helper function to emit the correct opcode for a llvm.aarch64.stlxr | 
|  | /// intrinsic. | 
|  | static unsigned getStlxrOpcode(unsigned NumBytesToStore) { | 
|  | switch (NumBytesToStore) { | 
|  | // TODO: 1, 2, and 4 byte stores. | 
|  | case 8: | 
|  | return AArch64::STLXRX; | 
|  | default: | 
|  | LLVM_DEBUG(dbgs() << "Unexpected number of bytes to store! (" | 
|  | << NumBytesToStore << ")\n"); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectIntrinsicWithSideEffects( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | // Find the intrinsic ID. | 
|  | unsigned IntrinID = findIntrinsicID(I); | 
|  | if (!IntrinID) | 
|  | return false; | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | // Select the instruction. | 
|  | switch (IntrinID) { | 
|  | default: | 
|  | return false; | 
|  | case Intrinsic::trap: | 
|  | MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1); | 
|  | break; | 
|  | case Intrinsic::aarch64_stlxr: | 
|  | unsigned StatReg = I.getOperand(0).getReg(); | 
|  | assert(RBI.getSizeInBits(StatReg, MRI, TRI) == 32 && | 
|  | "Status register must be 32 bits!"); | 
|  | unsigned SrcReg = I.getOperand(2).getReg(); | 
|  |  | 
|  | if (RBI.getSizeInBits(SrcReg, MRI, TRI) != 64) { | 
|  | LLVM_DEBUG(dbgs() << "Only support 64-bit sources right now.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned PtrReg = I.getOperand(3).getReg(); | 
|  | assert(MRI.getType(PtrReg).isPointer() && "Expected pointer operand"); | 
|  |  | 
|  | // Expect only one memory operand. | 
|  | if (!I.hasOneMemOperand()) | 
|  | return false; | 
|  |  | 
|  | const MachineMemOperand *MemOp = *I.memoperands_begin(); | 
|  | unsigned NumBytesToStore = MemOp->getSize(); | 
|  | unsigned Opc = getStlxrOpcode(NumBytesToStore); | 
|  | if (!Opc) | 
|  | return false; | 
|  |  | 
|  | auto StoreMI = MIRBuilder.buildInstr(Opc, {StatReg}, {SrcReg, PtrReg}); | 
|  | constrainSelectedInstRegOperands(*StoreMI, TII, TRI, RBI); | 
|  | } | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64InstructionSelector::selectIntrinsic( | 
|  | MachineInstr &I, MachineRegisterInfo &MRI) const { | 
|  | unsigned IntrinID = findIntrinsicID(I); | 
|  | if (!IntrinID) | 
|  | return false; | 
|  | MachineIRBuilder MIRBuilder(I); | 
|  |  | 
|  | switch (IntrinID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_crypto_sha1h: | 
|  | unsigned DstReg = I.getOperand(0).getReg(); | 
|  | unsigned SrcReg = I.getOperand(2).getReg(); | 
|  |  | 
|  | // FIXME: Should this be an assert? | 
|  | if (MRI.getType(DstReg).getSizeInBits() != 32 || | 
|  | MRI.getType(SrcReg).getSizeInBits() != 32) | 
|  | return false; | 
|  |  | 
|  | // The operation has to happen on FPRs. Set up some new FPR registers for | 
|  | // the source and destination if they are on GPRs. | 
|  | if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) { | 
|  | SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass); | 
|  | MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)}); | 
|  |  | 
|  | // Make sure the copy ends up getting constrained properly. | 
|  | RBI.constrainGenericRegister(I.getOperand(2).getReg(), | 
|  | AArch64::GPR32RegClass, MRI); | 
|  | } | 
|  |  | 
|  | if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) | 
|  | DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass); | 
|  |  | 
|  | // Actually insert the instruction. | 
|  | auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg}); | 
|  | constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI); | 
|  |  | 
|  | // Did we create a new register for the destination? | 
|  | if (DstReg != I.getOperand(0).getReg()) { | 
|  | // Yep. Copy the result of the instruction back into the original | 
|  | // destination. | 
|  | MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg}); | 
|  | RBI.constrainGenericRegister(I.getOperand(0).getReg(), | 
|  | AArch64::GPR32RegClass, MRI); | 
|  | } | 
|  |  | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectArithImmed - Select an immediate value that can be represented as | 
|  | /// a 12-bit value shifted left by either 0 or 12.  If so, return true with | 
|  | /// Val set to the 12-bit value and Shift set to the shifter operand. | 
|  | InstructionSelector::ComplexRendererFns | 
|  | AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const { | 
|  | MachineInstr &MI = *Root.getParent(); | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // This function is called from the addsub_shifted_imm ComplexPattern, | 
|  | // which lists [imm] as the list of opcode it's interested in, however | 
|  | // we still need to check whether the operand is actually an immediate | 
|  | // here because the ComplexPattern opcode list is only used in | 
|  | // root-level opcode matching. | 
|  | uint64_t Immed; | 
|  | if (Root.isImm()) | 
|  | Immed = Root.getImm(); | 
|  | else if (Root.isCImm()) | 
|  | Immed = Root.getCImm()->getZExtValue(); | 
|  | else if (Root.isReg()) { | 
|  | MachineInstr *Def = MRI.getVRegDef(Root.getReg()); | 
|  | if (Def->getOpcode() != TargetOpcode::G_CONSTANT) | 
|  | return None; | 
|  | MachineOperand &Op1 = Def->getOperand(1); | 
|  | if (!Op1.isCImm() || Op1.getCImm()->getBitWidth() > 64) | 
|  | return None; | 
|  | Immed = Op1.getCImm()->getZExtValue(); | 
|  | } else | 
|  | return None; | 
|  |  | 
|  | unsigned ShiftAmt; | 
|  |  | 
|  | if (Immed >> 12 == 0) { | 
|  | ShiftAmt = 0; | 
|  | } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { | 
|  | ShiftAmt = 12; | 
|  | Immed = Immed >> 12; | 
|  | } else | 
|  | return None; | 
|  |  | 
|  | unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt); | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); }, | 
|  | }}; | 
|  | } | 
|  |  | 
|  | /// Select a "register plus unscaled signed 9-bit immediate" address.  This | 
|  | /// should only match when there is an offset that is not valid for a scaled | 
|  | /// immediate addressing mode.  The "Size" argument is the size in bytes of the | 
|  | /// memory reference, which is needed here to know what is valid for a scaled | 
|  | /// immediate. | 
|  | InstructionSelector::ComplexRendererFns | 
|  | AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root, | 
|  | unsigned Size) const { | 
|  | MachineRegisterInfo &MRI = | 
|  | Root.getParent()->getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | if (!Root.isReg()) | 
|  | return None; | 
|  |  | 
|  | if (!isBaseWithConstantOffset(Root, MRI)) | 
|  | return None; | 
|  |  | 
|  | MachineInstr *RootDef = MRI.getVRegDef(Root.getReg()); | 
|  | if (!RootDef) | 
|  | return None; | 
|  |  | 
|  | MachineOperand &OffImm = RootDef->getOperand(2); | 
|  | if (!OffImm.isReg()) | 
|  | return None; | 
|  | MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg()); | 
|  | if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT) | 
|  | return None; | 
|  | int64_t RHSC; | 
|  | MachineOperand &RHSOp1 = RHS->getOperand(1); | 
|  | if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64) | 
|  | return None; | 
|  | RHSC = RHSOp1.getCImm()->getSExtValue(); | 
|  |  | 
|  | // If the offset is valid as a scaled immediate, don't match here. | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size))) | 
|  | return None; | 
|  | if (RHSC >= -256 && RHSC < 256) { | 
|  | MachineOperand &Base = RootDef->getOperand(1); | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.add(Base); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); }, | 
|  | }}; | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Select a "register plus scaled unsigned 12-bit immediate" address.  The | 
|  | /// "Size" argument is the size in bytes of the memory reference, which | 
|  | /// determines the scale. | 
|  | InstructionSelector::ComplexRendererFns | 
|  | AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root, | 
|  | unsigned Size) const { | 
|  | MachineRegisterInfo &MRI = | 
|  | Root.getParent()->getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | if (!Root.isReg()) | 
|  | return None; | 
|  |  | 
|  | MachineInstr *RootDef = MRI.getVRegDef(Root.getReg()); | 
|  | if (!RootDef) | 
|  | return None; | 
|  |  | 
|  | if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, | 
|  | }}; | 
|  | } | 
|  |  | 
|  | if (isBaseWithConstantOffset(Root, MRI)) { | 
|  | MachineOperand &LHS = RootDef->getOperand(1); | 
|  | MachineOperand &RHS = RootDef->getOperand(2); | 
|  | MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg()); | 
|  | MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg()); | 
|  | if (LHSDef && RHSDef) { | 
|  | int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue(); | 
|  | unsigned Scale = Log2_32(Size); | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) { | 
|  | if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); }, | 
|  | }}; | 
|  |  | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.add(LHS); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); }, | 
|  | }}; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Before falling back to our general case, check if the unscaled | 
|  | // instructions can handle this. If so, that's preferable. | 
|  | if (selectAddrModeUnscaled(Root, Size).hasValue()) | 
|  | return None; | 
|  |  | 
|  | return {{ | 
|  | [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, | 
|  | [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, | 
|  | }}; | 
|  | } | 
|  |  | 
|  | void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB, | 
|  | const MachineInstr &MI) const { | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT"); | 
|  | Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), MRI); | 
|  | assert(CstVal && "Expected constant value"); | 
|  | MIB.addImm(CstVal.getValue()); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | InstructionSelector * | 
|  | createAArch64InstructionSelector(const AArch64TargetMachine &TM, | 
|  | AArch64Subtarget &Subtarget, | 
|  | AArch64RegisterBankInfo &RBI) { | 
|  | return new AArch64InstructionSelector(TM, Subtarget, RBI); | 
|  | } | 
|  | } |