|  | //===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===// | 
|  | // | 
|  | // This pass uses the data structure graphs to implement a simple context | 
|  | // insensitive alias analysis.  It does this by computing the local analysis | 
|  | // graphs for all of the functions, then merging them together into a single big | 
|  | // graph without cloning. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/DataStructure.h" | 
|  | #include "llvm/Analysis/DSGraph.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "Support/Statistic.h" | 
|  |  | 
|  | namespace { | 
|  | class Steens : public Pass, public AliasAnalysis { | 
|  | DSGraph *ResultGraph; | 
|  | DSGraph *GlobalsGraph;  // FIXME: Eliminate globals graph stuff from DNE | 
|  | public: | 
|  | Steens() : ResultGraph(0) {} | 
|  | ~Steens() { assert(ResultGraph == 0 && "releaseMemory not called?"); } | 
|  |  | 
|  | //------------------------------------------------ | 
|  | // Implement the Pass API | 
|  | // | 
|  |  | 
|  | // run - Build up the result graph, representing the pointer graph for the | 
|  | // program. | 
|  | // | 
|  | bool run(Module &M); | 
|  |  | 
|  | virtual void releaseMemory() { delete ResultGraph; ResultGraph = 0; } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll();                    // Does not transform code... | 
|  | AU.addRequired<LocalDataStructures>();   // Uses local dsgraph | 
|  | AU.addRequired<AliasAnalysis>();         // Chains to another AA impl... | 
|  | } | 
|  |  | 
|  | // print - Implement the Pass::print method... | 
|  | void print(std::ostream &O, const Module *M) const { | 
|  | assert(ResultGraph && "Result graph has not yet been computed!"); | 
|  | ResultGraph->writeGraphToFile(O, "steensgaards"); | 
|  | } | 
|  |  | 
|  | //------------------------------------------------ | 
|  | // Implement the AliasAnalysis API | 
|  | // | 
|  |  | 
|  | // alias - This is the only method here that does anything interesting... | 
|  | Result alias(const Value *V1, const Value *V2); | 
|  |  | 
|  | /// canCallModify - Not implemented yet: FIXME | 
|  | /// | 
|  | Result canCallModify(const CallInst &CI, const Value *Ptr) { | 
|  | return MayAlias; | 
|  | } | 
|  |  | 
|  | /// canInvokeModify - Not implemented yet: FIXME | 
|  | /// | 
|  | Result canInvokeModify(const InvokeInst &I, const Value *Ptr) { | 
|  | return MayAlias; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void ResolveFunctionCall(Function *F, const DSCallSite &Call, | 
|  | DSNodeHandle &RetVal); | 
|  | }; | 
|  |  | 
|  | // Register the pass... | 
|  | RegisterOpt<Steens> X("steens-aa", | 
|  | "Steensgaard's alias analysis (DSGraph based)"); | 
|  |  | 
|  | // Register as an implementation of AliasAnalysis | 
|  | RegisterAnalysisGroup<AliasAnalysis, Steens> Y; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ResolveFunctionCall - Resolve the actual arguments of a call to function F | 
|  | /// with the specified call site descriptor.  This function links the arguments | 
|  | /// and the return value for the call site context-insensitively. | 
|  | /// | 
|  | void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call, | 
|  | DSNodeHandle &RetVal) { | 
|  | assert(ResultGraph != 0 && "Result graph not allocated!"); | 
|  | hash_map<Value*, DSNodeHandle> &ValMap = ResultGraph->getScalarMap(); | 
|  |  | 
|  | // Handle the return value of the function... | 
|  | if (Call.getRetVal().getNode() && RetVal.getNode()) | 
|  | RetVal.mergeWith(Call.getRetVal()); | 
|  |  | 
|  | // Loop over all pointer arguments, resolving them to their provided pointers | 
|  | unsigned PtrArgIdx = 0; | 
|  | for (Function::aiterator AI = F->abegin(), AE = F->aend(); | 
|  | AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) { | 
|  | hash_map<Value*, DSNodeHandle>::iterator I = ValMap.find(AI); | 
|  | if (I != ValMap.end())    // If its a pointer argument... | 
|  | I->second.mergeWith(Call.getPtrArg(PtrArgIdx++)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// run - Build up the result graph, representing the pointer graph for the | 
|  | /// program. | 
|  | /// | 
|  | bool Steens::run(Module &M) { | 
|  | assert(ResultGraph == 0 && "Result graph already allocated!"); | 
|  | LocalDataStructures &LDS = getAnalysis<LocalDataStructures>(); | 
|  |  | 
|  | // Create a new, empty, graph... | 
|  | ResultGraph = new DSGraph(); | 
|  | GlobalsGraph = new DSGraph(); | 
|  | ResultGraph->setGlobalsGraph(GlobalsGraph); | 
|  | ResultGraph->setPrintAuxCalls(); | 
|  |  | 
|  | // RetValMap - Keep track of the return values for all functions that return | 
|  | // valid pointers. | 
|  | // | 
|  | hash_map<Function*, DSNodeHandle> RetValMap; | 
|  |  | 
|  | // Loop over the rest of the module, merging graphs for non-external functions | 
|  | // into this graph. | 
|  | // | 
|  | unsigned Count = 0; | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | if (!I->isExternal()) { | 
|  | hash_map<Value*, DSNodeHandle> ValMap; | 
|  | {  // Scope to free NodeMap memory ASAP | 
|  | hash_map<const DSNode*, DSNodeHandle> NodeMap; | 
|  | const DSGraph &FDSG = LDS.getDSGraph(*I); | 
|  | DSNodeHandle RetNode = ResultGraph->cloneInto(FDSG, ValMap, NodeMap); | 
|  |  | 
|  | // Keep track of the return node of the function's graph if it returns a | 
|  | // value... | 
|  | // | 
|  | if (RetNode.getNode()) | 
|  | RetValMap[I] = RetNode; | 
|  | } | 
|  |  | 
|  | // Incorporate the inlined Function's ScalarMap into the global | 
|  | // ScalarMap... | 
|  | hash_map<Value*, DSNodeHandle> &GVM = ResultGraph->getScalarMap(); | 
|  | for (hash_map<Value*, DSNodeHandle>::iterator I = ValMap.begin(), | 
|  | E = ValMap.end(); I != E; ++I) | 
|  | GVM[I->first].mergeWith(I->second); | 
|  |  | 
|  | if ((++Count & 1) == 0)   // Prune nodes out every other time... | 
|  | ResultGraph->removeTriviallyDeadNodes(); | 
|  | } | 
|  |  | 
|  | // FIXME: Must recalculate and use the Incomplete markers!! | 
|  |  | 
|  | // Now that we have all of the graphs inlined, we can go about eliminating | 
|  | // call nodes... | 
|  | // | 
|  | std::vector<DSCallSite> &Calls = | 
|  | ResultGraph->getAuxFunctionCalls(); | 
|  | assert(Calls.empty() && "Aux call list is already in use??"); | 
|  |  | 
|  | // Start with a copy of the original call sites... | 
|  | Calls = ResultGraph->getFunctionCalls(); | 
|  |  | 
|  | for (unsigned i = 0; i != Calls.size(); ) { | 
|  | DSCallSite &CurCall = Calls[i]; | 
|  |  | 
|  | // Loop over the called functions, eliminating as many as possible... | 
|  | std::vector<GlobalValue*> CallTargets; | 
|  | if (CurCall.isDirectCall()) | 
|  | CallTargets.push_back(CurCall.getCalleeFunc()); | 
|  | else | 
|  | CallTargets = CurCall.getCalleeNode()->getGlobals(); | 
|  |  | 
|  | for (unsigned c = 0; c != CallTargets.size(); ) { | 
|  | // If we can eliminate this function call, do so! | 
|  | bool Eliminated = false; | 
|  | if (Function *F = dyn_cast<Function>(CallTargets[c])) | 
|  | if (!F->isExternal()) { | 
|  | ResolveFunctionCall(F, CurCall, RetValMap[F]); | 
|  | Eliminated = true; | 
|  | } | 
|  | if (Eliminated) { | 
|  | CallTargets[c] = CallTargets.back(); | 
|  | CallTargets.pop_back(); | 
|  | } else | 
|  | ++c;  // Cannot eliminate this call, skip over it... | 
|  | } | 
|  |  | 
|  | if (CallTargets.empty()) {        // Eliminated all calls? | 
|  | CurCall = Calls.back();         // Remove entry | 
|  | Calls.pop_back(); | 
|  | } else | 
|  | ++i;                            // Skip this call site... | 
|  | } | 
|  |  | 
|  | // Update the "incomplete" markers on the nodes, ignoring unknownness due to | 
|  | // incoming arguments... | 
|  | ResultGraph->maskIncompleteMarkers(); | 
|  | ResultGraph->markIncompleteNodes(DSGraph::IgnoreFormalArgs); | 
|  |  | 
|  | // Remove any nodes that are dead after all of the merging we have done... | 
|  | // FIXME: We should be able to disable the globals graph for steens! | 
|  | ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals); | 
|  |  | 
|  | DEBUG(print(std::cerr, &M)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // alias - This is the only method here that does anything interesting... | 
|  | AliasAnalysis::Result Steens::alias(const Value *V1, const Value *V2) { | 
|  | assert(ResultGraph && "Result graph has not been computed yet!"); | 
|  |  | 
|  | hash_map<Value*, DSNodeHandle> &GSM = ResultGraph->getScalarMap(); | 
|  |  | 
|  | hash_map<Value*, DSNodeHandle>::iterator I = GSM.find(const_cast<Value*>(V1)); | 
|  | if (I != GSM.end() && I->second.getNode()) { | 
|  | DSNodeHandle &V1H = I->second; | 
|  | hash_map<Value*, DSNodeHandle>::iterator J=GSM.find(const_cast<Value*>(V2)); | 
|  | if (J != GSM.end() && J->second.getNode()) { | 
|  | DSNodeHandle &V2H = J->second; | 
|  | // If the two pointers point to different data structure graph nodes, they | 
|  | // cannot alias! | 
|  | if (V1H.getNode() != V2H.getNode())    // FIXME: Handle incompleteness! | 
|  | return NoAlias; | 
|  |  | 
|  | // FIXME: If the two pointers point to the same node, and the offsets are | 
|  | // different, and the LinkIndex vector doesn't alias the section, then the | 
|  | // two pointers do not alias.  We need access size information for the two | 
|  | // accesses though! | 
|  | // | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we cannot determine alias properties based on our graph, fall back on | 
|  | // some other AA implementation. | 
|  | // | 
|  | return getAnalysis<AliasAnalysis>().alias(V1, V2); | 
|  | } |