| //===-- SparcInstrInfo.cpp ------------------------------------------------===// |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SparcInternals.h" |
| #include "SparcInstrSelectionSupport.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| #include "llvm/CodeGen/InstrSelectionSupport.h" |
| #include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/Function.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include <stdlib.h> |
| using std::vector; |
| |
| static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*) |
| static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateSETUWConst |
| // |
| // Set a 32-bit unsigned constant in the register `dest', using |
| // SETHI, OR in the worst case. This function correctly emulates |
| // the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). |
| // |
| // The isSigned=true case is used to implement SETSW without duplicating code. |
| // |
| // Optimize some common cases: |
| // (1) Small value that fits in simm13 field of OR: don't need SETHI. |
| // (2) isSigned = true and C is a small negative signed value, i.e., |
| // high bits are 1, and the remaining bits fit in simm13(OR). |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateSETUWConst(const TargetMachine& target, uint32_t C, |
| Instruction* dest, vector<MachineInstr*>& mvec, |
| bool isSigned = false) |
| { |
| MachineInstr *miSETHI = NULL, *miOR = NULL; |
| |
| // In order to get efficient code, we should not generate the SETHI if |
| // all high bits are 1 (i.e., this is a small signed value that fits in |
| // the simm13 field of OR). So we check for and handle that case specially. |
| // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. |
| // In fact, sC == -sC, so we have to check for this explicitly. |
| int32_t sC = (int32_t) C; |
| bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; |
| |
| // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough |
| if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) |
| { |
| miSETHI = Create2OperandInstr_UImmed(SETHI, C, dest); |
| miSETHI->setOperandHi32(0); |
| mvec.push_back(miSETHI); |
| } |
| |
| // Set the low 10 or 12 bits in dest. This is necessary if no SETHI |
| // was generated, or if the low 10 bits are non-zero. |
| if (miSETHI==NULL || C & MAXLO) |
| { |
| if (miSETHI) |
| { // unsigned value with high-order bits set using SETHI |
| miOR = Create3OperandInstr_UImmed(OR, dest, C, dest); |
| miOR->setOperandLo32(1); |
| } |
| else |
| { // unsigned or small signed value that fits in simm13 field of OR |
| assert(smallNegValue || (C & ~MAXSIMM) == 0); |
| miOR = new MachineInstr(OR); |
| miOR->SetMachineOperandReg(0, target.getRegInfo().getZeroRegNum()); |
| miOR->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, |
| sC); |
| miOR->SetMachineOperandVal(2,MachineOperand::MO_VirtualRegister,dest); |
| } |
| mvec.push_back(miOR); |
| } |
| |
| assert((miSETHI || miOR) && "Oops, no code was generated!"); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateSETSWConst |
| // |
| // Set a 32-bit signed constant in the register `dest', with sign-extension |
| // to 64 bits. This uses SETHI, OR, SRA in the worst case. |
| // This function correctly emulates the SETSW pseudo-op for SPARC v9. |
| // |
| // Optimize the same cases as SETUWConst, plus: |
| // (1) SRA is not needed for positive or small negative values. |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateSETSWConst(const TargetMachine& target, int32_t C, |
| Instruction* dest, vector<MachineInstr*>& mvec) |
| { |
| MachineInstr* MI; |
| |
| // Set the low 32 bits of dest |
| CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true); |
| |
| // Sign-extend to the high 32 bits if needed |
| if (C < 0 && (-C) > (int32_t) MAXSIMM) |
| { |
| MI = Create3OperandInstr_UImmed(SRA, dest, 0, dest); |
| mvec.push_back(MI); |
| } |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateSETXConst |
| // |
| // Set a 64-bit signed or unsigned constant in the register `dest'. |
| // Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between. |
| // This function correctly emulates the SETX pseudo-op for SPARC v9. |
| // |
| // Optimize the same cases as SETUWConst for each 32 bit word. |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateSETXConst(const TargetMachine& target, uint64_t C, |
| Instruction* tmpReg, Instruction* dest, |
| vector<MachineInstr*>& mvec) |
| { |
| assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); |
| |
| MachineInstr* MI; |
| |
| // Code to set the upper 32 bits of the value in register `tmpReg' |
| CreateSETUWConst(target, (C >> 32), tmpReg, mvec); |
| |
| // Shift tmpReg left by 32 bits |
| MI = Create3OperandInstr_UImmed(SLLX, tmpReg, 32, tmpReg); |
| mvec.push_back(MI); |
| |
| // Code to set the low 32 bits of the value in register `dest' |
| CreateSETUWConst(target, C, dest, mvec); |
| |
| // dest = OR(tmpReg, dest) |
| MI = Create3OperandInstr(OR, dest, tmpReg, dest); |
| mvec.push_back(MI); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateSETUWLabel |
| // |
| // Set a 32-bit constant (given by a symbolic label) in the register `dest'. |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateSETUWLabel(const TargetMachine& target, Value* val, |
| Instruction* dest, vector<MachineInstr*>& mvec) |
| { |
| MachineInstr* MI; |
| |
| // Set the high 22 bits in dest |
| MI = Create2OperandInstr(SETHI, val, dest); |
| MI->setOperandHi32(0); |
| mvec.push_back(MI); |
| |
| // Set the low 10 bits in dest |
| MI = Create3OperandInstr(OR, dest, val, dest); |
| MI->setOperandLo32(1); |
| mvec.push_back(MI); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateSETXLabel |
| // |
| // Set a 64-bit constant (given by a symbolic label) in the register `dest'. |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateSETXLabel(const TargetMachine& target, |
| Value* val, Instruction* tmpReg, Instruction* dest, |
| vector<MachineInstr*>& mvec) |
| { |
| assert(isa<Constant>(val) || isa<GlobalValue>(val) && |
| "I only know about constant values and global addresses"); |
| |
| MachineInstr* MI; |
| |
| MI = Create2OperandInstr_Addr(SETHI, val, tmpReg); |
| MI->setOperandHi64(0); |
| mvec.push_back(MI); |
| |
| MI = Create3OperandInstr_Addr(OR, tmpReg, val, tmpReg); |
| MI->setOperandLo64(1); |
| mvec.push_back(MI); |
| |
| MI = Create3OperandInstr_UImmed(SLLX, tmpReg, 32, tmpReg); |
| mvec.push_back(MI); |
| |
| MI = Create2OperandInstr_Addr(SETHI, val, dest); |
| MI->setOperandHi32(0); |
| mvec.push_back(MI); |
| |
| MI = Create3OperandInstr(OR, dest, tmpReg, dest); |
| mvec.push_back(MI); |
| |
| MI = Create3OperandInstr_Addr(OR, dest, val, dest); |
| MI->setOperandLo32(1); |
| mvec.push_back(MI); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateUIntSetInstruction |
| // |
| // Create code to Set an unsigned constant in the register `dest'. |
| // Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed. |
| // CreateSETSWConst is an optimization for the case that the unsigned value |
| // has all ones in the 33 high bits (so that sign-extension sets them all). |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateUIntSetInstruction(const TargetMachine& target, |
| uint64_t C, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| static const uint64_t lo32 = (uint32_t) ~0; |
| if (C <= lo32) // High 32 bits are 0. Set low 32 bits. |
| CreateSETUWConst(target, (uint32_t) C, dest, mvec); |
| else if ((C & ~lo32) == ~lo32 && (C & (1 << 31))) |
| { // All high 33 (not 32) bits are 1s: sign-extension will take care |
| // of high 32 bits, so use the sequence for signed int |
| CreateSETSWConst(target, (int32_t) C, dest, mvec); |
| } |
| else if (C > lo32) |
| { // C does not fit in 32 bits |
| TmpInstruction* tmpReg = new TmpInstruction(Type::IntTy); |
| mcfi.addTemp(tmpReg); |
| CreateSETXConst(target, C, tmpReg, dest, mvec); |
| } |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Function: CreateIntSetInstruction |
| // |
| // Create code to Set a signed constant in the register `dest'. |
| // Really the same as CreateUIntSetInstruction. |
| //---------------------------------------------------------------------------- |
| |
| static inline void |
| CreateIntSetInstruction(const TargetMachine& target, |
| int64_t C, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi); |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // Create a table of LLVM opcode -> max. immediate constant likely to |
| // be usable for that operation. |
| //--------------------------------------------------------------------------- |
| |
| // Entry == 0 ==> no immediate constant field exists at all. |
| // Entry > 0 ==> abs(immediate constant) <= Entry |
| // |
| vector<int> MaxConstantsTable(Instruction::OtherOpsEnd); |
| |
| static int |
| MaxConstantForInstr(unsigned llvmOpCode) |
| { |
| int modelOpCode = -1; |
| |
| if (llvmOpCode >= Instruction::BinaryOpsBegin && |
| llvmOpCode < Instruction::BinaryOpsEnd) |
| modelOpCode = ADD; |
| else |
| switch(llvmOpCode) { |
| case Instruction::Ret: modelOpCode = JMPLCALL; break; |
| |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| case Instruction::GetElementPtr: |
| case Instruction::PHINode: |
| case Instruction::Cast: |
| case Instruction::Call: modelOpCode = ADD; break; |
| |
| case Instruction::Shl: |
| case Instruction::Shr: modelOpCode = SLLX; break; |
| |
| default: break; |
| }; |
| |
| return (modelOpCode < 0)? 0: SparcMachineInstrDesc[modelOpCode].maxImmedConst; |
| } |
| |
| static void |
| InitializeMaxConstantsTable() |
| { |
| unsigned op; |
| assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd && |
| "assignments below will be illegal!"); |
| for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) |
| MaxConstantsTable[op] = MaxConstantForInstr(op); |
| for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) |
| MaxConstantsTable[op] = MaxConstantForInstr(op); |
| for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) |
| MaxConstantsTable[op] = MaxConstantForInstr(op); |
| for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) |
| MaxConstantsTable[op] = MaxConstantForInstr(op); |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcInstrInfo |
| // |
| // Purpose: |
| // Information about individual instructions. |
| // Most information is stored in the SparcMachineInstrDesc array above. |
| // Other information is computed on demand, and most such functions |
| // default to member functions in base class MachineInstrInfo. |
| //--------------------------------------------------------------------------- |
| |
| /*ctor*/ |
| UltraSparcInstrInfo::UltraSparcInstrInfo(const TargetMachine& tgt) |
| : MachineInstrInfo(tgt, SparcMachineInstrDesc, |
| /*descSize = */ NUM_TOTAL_OPCODES, |
| /*numRealOpCodes = */ NUM_REAL_OPCODES) |
| { |
| InitializeMaxConstantsTable(); |
| } |
| |
| bool |
| UltraSparcInstrInfo::ConstantMayNotFitInImmedField(const Constant* CV, |
| const Instruction* I) const |
| { |
| if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) |
| return true; |
| |
| if (isa<ConstantPointerNull>(CV)) // can always use %g0 |
| return false; |
| |
| if (const ConstantUInt* U = dyn_cast<ConstantUInt>(CV)) |
| /* Large unsigned longs may really just be small negative signed longs */ |
| return (labs((int64_t) U->getValue()) > MaxConstantsTable[I->getOpcode()]); |
| |
| if (const ConstantSInt* S = dyn_cast<ConstantSInt>(CV)) |
| return (labs(S->getValue()) > MaxConstantsTable[I->getOpcode()]); |
| |
| if (isa<ConstantBool>(CV)) |
| return (1 > MaxConstantsTable[I->getOpcode()]); |
| |
| return true; |
| } |
| |
| // |
| // Create an instruction sequence to put the constant `val' into |
| // the virtual register `dest'. `val' may be a Constant or a |
| // GlobalValue, viz., the constant address of a global variable or function. |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target, |
| Function* F, |
| Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| assert(isa<Constant>(val) || isa<GlobalValue>(val) && |
| "I only know about constant values and global addresses"); |
| |
| // Use a "set" instruction for known constants or symbolic constants (labels) |
| // that can go in an integer reg. |
| // We have to use a "load" instruction for all other constants, |
| // in particular, floating point constants. |
| // |
| const Type* valType = val->getType(); |
| |
| // Unfortunate special case: a ConstantPointerRef is just a |
| // reference to GlobalValue. |
| if (isa<ConstantPointerRef>(val)) |
| val = cast<ConstantPointerRef>(val)->getValue(); |
| |
| if (isa<GlobalValue>(val)) |
| { |
| TmpInstruction* tmpReg = |
| new TmpInstruction(PointerType::get(val->getType()), val); |
| mcfi.addTemp(tmpReg); |
| CreateSETXLabel(target, val, tmpReg, dest, mvec); |
| } |
| else if (valType->isIntegral()) |
| { |
| bool isValidConstant; |
| unsigned opSize = target.DataLayout.getTypeSize(val->getType()); |
| unsigned destSize = target.DataLayout.getTypeSize(dest->getType()); |
| |
| if (! dest->getType()->isSigned()) |
| { |
| uint64_t C = GetConstantValueAsUnsignedInt(val, isValidConstant); |
| assert(isValidConstant && "Unrecognized constant"); |
| |
| if (opSize > destSize || |
| (val->getType()->isSigned() |
| && destSize < target.DataLayout.getIntegerRegize())) |
| { // operand is larger than dest, |
| // OR both are equal but smaller than the full register size |
| // AND operand is signed, so it may have extra sign bits: |
| // mask high bits |
| C = C & ((1U << 8*destSize) - 1); |
| } |
| CreateUIntSetInstruction(target, C, dest, mvec, mcfi); |
| } |
| else |
| { |
| int64_t C = GetConstantValueAsSignedInt(val, isValidConstant); |
| assert(isValidConstant && "Unrecognized constant"); |
| |
| if (opSize > destSize) |
| // operand is larger than dest: mask high bits |
| C = C & ((1U << 8*destSize) - 1); |
| |
| if (opSize > destSize || |
| (opSize == destSize && !val->getType()->isSigned())) |
| // sign-extend from destSize to 64 bits |
| C = ((C & (1U << (8*destSize - 1))) |
| ? C | ~((1U << 8*destSize) - 1) |
| : C); |
| |
| CreateIntSetInstruction(target, C, dest, mvec, mcfi); |
| } |
| } |
| else |
| { |
| // Make an instruction sequence to load the constant, viz: |
| // SETX <addr-of-constant>, tmpReg, addrReg |
| // LOAD /*addr*/ addrReg, /*offset*/ 0, dest |
| |
| // First, create a tmp register to be used by the SETX sequence. |
| TmpInstruction* tmpReg = |
| new TmpInstruction(PointerType::get(val->getType()), val); |
| mcfi.addTemp(tmpReg); |
| |
| // Create another TmpInstruction for the address register |
| TmpInstruction* addrReg = |
| new TmpInstruction(PointerType::get(val->getType()), val); |
| mcfi.addTemp(addrReg); |
| |
| // Put the address (a symbolic name) into a register |
| CreateSETXLabel(target, val, tmpReg, addrReg, mvec); |
| |
| // Generate the load instruction |
| int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 |
| MachineInstr* MI = |
| Create3OperandInstr_SImmed(ChooseLoadInstruction(val->getType()), |
| addrReg, zeroOffset, dest); |
| mvec.push_back(MI); |
| |
| // Make sure constant is emitted to constant pool in assembly code. |
| MachineCodeForMethod::get(F).addToConstantPool(cast<Constant>(val)); |
| } |
| } |
| |
| |
| // Create an instruction sequence to copy an integer register `val' |
| // to a floating point register `dest' by copying to memory and back. |
| // val must be an integral type. dest must be a Float or Double. |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target, |
| Function* F, |
| Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| assert((val->getType()->isIntegral() || isa<PointerType>(val->getType())) |
| && "Source type must be integral (integer or bool) or pointer"); |
| assert(dest->getType()->isFloatingPoint() |
| && "Dest type must be float/double"); |
| |
| // Get a stack slot to use for the copy |
| int offset = MachineCodeForMethod::get(F).allocateLocalVar(target, val); |
| |
| // Get the size of the source value being copied. |
| size_t srcSize = target.DataLayout.getTypeSize(val->getType()); |
| |
| // Store instruction stores `val' to [%fp+offset]. |
| // The store and load opCodes are based on the size of the source value. |
| // If the value is smaller than 32 bits, we must sign- or zero-extend it |
| // to 32 bits since the load-float will load 32 bits. |
| // Note that the store instruction is the same for signed and unsigned ints. |
| const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; |
| Value* storeVal = val; |
| if (srcSize < target.DataLayout.getTypeSize(Type::FloatTy)) |
| { // sign- or zero-extend respectively |
| storeVal = new TmpInstruction(storeType, val); |
| if (val->getType()->isSigned()) |
| CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, |
| mvec, mcfi); |
| else |
| CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, |
| mvec, mcfi); |
| } |
| MachineInstr* store=new MachineInstr(ChooseStoreInstruction(storeType)); |
| store->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, storeVal); |
| store->SetMachineOperandReg(1, target.getRegInfo().getFramePointer()); |
| store->SetMachineOperandConst(2,MachineOperand::MO_SignExtendedImmed,offset); |
| mvec.push_back(store); |
| |
| // Load instruction loads [%fp+offset] to `dest'. |
| // The type of the load opCode is the floating point type that matches the |
| // stored type in size: |
| // On SparcV9: float for int or smaller, double for long. |
| // |
| const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; |
| MachineInstr* load = new MachineInstr(ChooseLoadInstruction(loadType)); |
| load->SetMachineOperandReg(0, target.getRegInfo().getFramePointer()); |
| load->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,offset); |
| load->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, dest); |
| mvec.push_back(load); |
| } |
| |
| // Similarly, create an instruction sequence to copy an FP register |
| // `val' to an integer register `dest' by copying to memory and back. |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target, |
| Function* F, |
| Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| const Type* opTy = val->getType(); |
| const Type* destTy = dest->getType(); |
| |
| assert(opTy->isFloatingPoint() && "Source type must be float/double"); |
| assert((destTy->isIntegral() || isa<PointerType>(destTy)) |
| && "Dest type must be integer, bool or pointer"); |
| |
| int offset = MachineCodeForMethod::get(F).allocateLocalVar(target, val); |
| |
| // Store instruction stores `val' to [%fp+offset]. |
| // The store opCode is based only the source value being copied. |
| // |
| MachineInstr* store=new MachineInstr(ChooseStoreInstruction(opTy)); |
| store->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, val); |
| store->SetMachineOperandReg(1, target.getRegInfo().getFramePointer()); |
| store->SetMachineOperandConst(2,MachineOperand::MO_SignExtendedImmed,offset); |
| mvec.push_back(store); |
| |
| // Load instruction loads [%fp+offset] to `dest'. |
| // The type of the load opCode is the integer type that matches the |
| // source type in size: |
| // On SparcV9: int for float, long for double. |
| // Note that we *must* use signed loads even for unsigned dest types, to |
| // ensure correct sign-extension for UByte, UShort or UInt: |
| // |
| const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; |
| MachineInstr* load = new MachineInstr(ChooseLoadInstruction(loadTy)); |
| load->SetMachineOperandReg(0, target.getRegInfo().getFramePointer()); |
| load->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,offset); |
| load->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, dest); |
| mvec.push_back(load); |
| } |
| |
| |
| // Create instruction(s) to copy src to dest, for arbitrary types |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target, |
| Function *F, |
| Value* src, |
| Instruction* dest, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| bool loadConstantToReg = false; |
| |
| const Type* resultType = dest->getType(); |
| |
| MachineOpCode opCode = ChooseAddInstructionByType(resultType); |
| if (opCode == INVALID_OPCODE) |
| { |
| assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); |
| return; |
| } |
| |
| // if `src' is a constant that doesn't fit in the immed field or if it is |
| // a global variable (i.e., a constant address), generate a load |
| // instruction instead of an add |
| // |
| if (isa<Constant>(src)) |
| { |
| unsigned int machineRegNum; |
| int64_t immedValue; |
| MachineOperand::MachineOperandType opType = |
| ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, |
| machineRegNum, immedValue); |
| |
| if (opType == MachineOperand::MO_VirtualRegister) |
| loadConstantToReg = true; |
| } |
| else if (isa<GlobalValue>(src)) |
| loadConstantToReg = true; |
| |
| if (loadConstantToReg) |
| { // `src' is constant and cannot fit in immed field for the ADD |
| // Insert instructions to "load" the constant into a register |
| target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest, |
| mvec, mcfi); |
| } |
| else |
| { // Create an add-with-0 instruction of the appropriate type. |
| // Make `src' the second operand, in case it is a constant |
| // Use (unsigned long) 0 for a NULL pointer value. |
| // |
| const Type* zeroValueType = |
| isa<PointerType>(resultType) ? Type::ULongTy : resultType; |
| MachineInstr* minstr = |
| Create3OperandInstr(opCode, Constant::getNullValue(zeroValueType), |
| src, dest); |
| mvec.push_back(minstr); |
| } |
| } |
| |
| |
| // Helper function for sign-extension and zero-extension. |
| // For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL. |
| inline void |
| CreateBitExtensionInstructions(bool signExtend, |
| const TargetMachine& target, |
| Function* F, |
| Value* srcVal, |
| Value* destVal, |
| unsigned int numLowBits, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| MachineInstr* M; |
| |
| assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); |
| |
| if (numLowBits < 32) |
| { // SLL is needed since operand size is < 32 bits. |
| TmpInstruction *tmpI = new TmpInstruction(destVal->getType(), |
| srcVal, destVal, "make32"); |
| mcfi.addTemp(tmpI); |
| M = Create3OperandInstr_UImmed(SLLX, srcVal, 32-numLowBits, tmpI); |
| mvec.push_back(M); |
| srcVal = tmpI; |
| } |
| |
| M = Create3OperandInstr_UImmed(signExtend? SRA : SRL, |
| srcVal, 32-numLowBits, destVal); |
| mvec.push_back(M); |
| } |
| |
| |
| // Create instruction sequence to produce a sign-extended register value |
| // from an arbitrary-sized integer value (sized in bits, not bytes). |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateSignExtensionInstructions( |
| const TargetMachine& target, |
| Function* F, |
| Value* srcVal, |
| Value* destVal, |
| unsigned int numLowBits, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, |
| destVal, numLowBits, mvec, mcfi); |
| } |
| |
| |
| // Create instruction sequence to produce a zero-extended register value |
| // from an arbitrary-sized integer value (sized in bits, not bytes). |
| // For SPARC v9, we sign-extend the given operand using SLL; SRL. |
| // The generated instructions are returned in `mvec'. |
| // Any temp. registers (TmpInstruction) created are recorded in mcfi. |
| // Any stack space required is allocated via MachineCodeForMethod. |
| // |
| void |
| UltraSparcInstrInfo::CreateZeroExtensionInstructions( |
| const TargetMachine& target, |
| Function* F, |
| Value* srcVal, |
| Value* destVal, |
| unsigned int numLowBits, |
| vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) const |
| { |
| CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, |
| destVal, numLowBits, mvec, mcfi); |
| } |