|  | //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This header file implements the operating system Host concept. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/DataStream.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Config/config.h" | 
|  | #include <string.h> | 
|  |  | 
|  | // Include the platform-specific parts of this class. | 
|  | #ifdef LLVM_ON_UNIX | 
|  | #include "Unix/Host.inc" | 
|  | #endif | 
|  | #ifdef LLVM_ON_WIN32 | 
|  | #include "Windows/Host.inc" | 
|  | #endif | 
|  | #ifdef _MSC_VER | 
|  | #include <intrin.h> | 
|  | #endif | 
|  | #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | #include <mach/mach.h> | 
|  | #include <mach/mach_host.h> | 
|  | #include <mach/host_info.h> | 
|  | #include <mach/machine.h> | 
|  | #endif | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  Implementations of the CPU detection routines | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ | 
|  | || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  |  | 
|  | /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the | 
|  | /// specified arguments.  If we can't run cpuid on the host, return true. | 
|  | static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, | 
|  | unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { | 
|  | #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) | 
|  | #if defined(__GNUC__) | 
|  | // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. | 
|  | asm ("movq\t%%rbx, %%rsi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgq\t%%rbx, %%rsi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value)); | 
|  | return false; | 
|  | #elif defined(_MSC_VER) | 
|  | int registers[4]; | 
|  | __cpuid(registers, value); | 
|  | *rEAX = registers[0]; | 
|  | *rEBX = registers[1]; | 
|  | *rECX = registers[2]; | 
|  | *rEDX = registers[3]; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) | 
|  | #if defined(__GNUC__) | 
|  | asm ("movl\t%%ebx, %%esi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgl\t%%ebx, %%esi\n\t" | 
|  | : "=a" (*rEAX), | 
|  | "=S" (*rEBX), | 
|  | "=c" (*rECX), | 
|  | "=d" (*rEDX) | 
|  | :  "a" (value)); | 
|  | return false; | 
|  | #elif defined(_MSC_VER) | 
|  | __asm { | 
|  | mov   eax,value | 
|  | cpuid | 
|  | mov   esi,rEAX | 
|  | mov   dword ptr [esi],eax | 
|  | mov   esi,rEBX | 
|  | mov   dword ptr [esi],ebx | 
|  | mov   esi,rECX | 
|  | mov   dword ptr [esi],ecx | 
|  | mov   esi,rEDX | 
|  | mov   dword ptr [esi],edx | 
|  | } | 
|  | return false; | 
|  | // pedantic #else returns to appease -Wunreachable-code (so we don't generate | 
|  | // postprocessed code that looks like "return true; return false;") | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, | 
|  | unsigned &Model) { | 
|  | Family = (EAX >> 8) & 0xf; // Bits 8 - 11 | 
|  | Model  = (EAX >> 4) & 0xf; // Bits 4 - 7 | 
|  | if (Family == 6 || Family == 0xf) { | 
|  | if (Family == 0xf) | 
|  | // Examine extended family ID if family ID is F. | 
|  | Family += (EAX >> 20) & 0xff;    // Bits 20 - 27 | 
|  | // Examine extended model ID if family ID is 6 or F. | 
|  | Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string sys::getHostCPUName() { | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) | 
|  | return "generic"; | 
|  | unsigned Family = 0; | 
|  | unsigned Model  = 0; | 
|  | DetectX86FamilyModel(EAX, Family, Model); | 
|  |  | 
|  | bool HasSSE3 = (ECX & 0x1); | 
|  | GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
|  | bool Em64T = (EDX >> 29) & 0x1; | 
|  |  | 
|  | union { | 
|  | unsigned u[3]; | 
|  | char     c[12]; | 
|  | } text; | 
|  |  | 
|  | GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); | 
|  | if (memcmp(text.c, "GenuineIntel", 12) == 0) { | 
|  | switch (Family) { | 
|  | case 3: | 
|  | return "i386"; | 
|  | case 4: | 
|  | switch (Model) { | 
|  | case 0: // Intel486 DX processors | 
|  | case 1: // Intel486 DX processors | 
|  | case 2: // Intel486 SX processors | 
|  | case 3: // Intel487 processors, IntelDX2 OverDrive processors, | 
|  | // IntelDX2 processors | 
|  | case 4: // Intel486 SL processor | 
|  | case 5: // IntelSX2 processors | 
|  | case 7: // Write-Back Enhanced IntelDX2 processors | 
|  | case 8: // IntelDX4 OverDrive processors, IntelDX4 processors | 
|  | default: return "i486"; | 
|  | } | 
|  | case 5: | 
|  | switch (Model) { | 
|  | case  1: // Pentium OverDrive processor for Pentium processor (60, 66), | 
|  | // Pentium processors (60, 66) | 
|  | case  2: // Pentium OverDrive processor for Pentium processor (75, 90, | 
|  | // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, | 
|  | // 150, 166, 200) | 
|  | case  3: // Pentium OverDrive processors for Intel486 processor-based | 
|  | // systems | 
|  | return "pentium"; | 
|  |  | 
|  | case  4: // Pentium OverDrive processor with MMX technology for Pentium | 
|  | // processor (75, 90, 100, 120, 133), Pentium processor with | 
|  | // MMX technology (166, 200) | 
|  | return "pentium-mmx"; | 
|  |  | 
|  | default: return "pentium"; | 
|  | } | 
|  | case 6: | 
|  | switch (Model) { | 
|  | case  1: // Pentium Pro processor | 
|  | return "pentiumpro"; | 
|  |  | 
|  | case  3: // Intel Pentium II OverDrive processor, Pentium II processor, | 
|  | // model 03 | 
|  | case  5: // Pentium II processor, model 05, Pentium II Xeon processor, | 
|  | // model 05, and Intel Celeron processor, model 05 | 
|  | case  6: // Celeron processor, model 06 | 
|  | return "pentium2"; | 
|  |  | 
|  | case  7: // Pentium III processor, model 07, and Pentium III Xeon | 
|  | // processor, model 07 | 
|  | case  8: // Pentium III processor, model 08, Pentium III Xeon processor, | 
|  | // model 08, and Celeron processor, model 08 | 
|  | case 10: // Pentium III Xeon processor, model 0Ah | 
|  | case 11: // Pentium III processor, model 0Bh | 
|  | return "pentium3"; | 
|  |  | 
|  | case  9: // Intel Pentium M processor, Intel Celeron M processor model 09. | 
|  | case 13: // Intel Pentium M processor, Intel Celeron M processor, model | 
|  | // 0Dh. All processors are manufactured using the 90 nm process. | 
|  | return "pentium-m"; | 
|  |  | 
|  | case 14: // Intel Core Duo processor, Intel Core Solo processor, model | 
|  | // 0Eh. All processors are manufactured using the 65 nm process. | 
|  | return "yonah"; | 
|  |  | 
|  | case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile | 
|  | // processor, Intel Core 2 Quad processor, Intel Core 2 Quad | 
|  | // mobile processor, Intel Core 2 Extreme processor, Intel | 
|  | // Pentium Dual-Core processor, Intel Xeon processor, model | 
|  | // 0Fh. All processors are manufactured using the 65 nm process. | 
|  | case 22: // Intel Celeron processor model 16h. All processors are | 
|  | // manufactured using the 65 nm process | 
|  | return "core2"; | 
|  |  | 
|  | case 21: // Intel EP80579 Integrated Processor and Intel EP80579 | 
|  | // Integrated Processor with Intel QuickAssist Technology | 
|  | return "i686"; // FIXME: ??? | 
|  |  | 
|  | case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model | 
|  | // 17h. All processors are manufactured using the 45 nm process. | 
|  | // | 
|  | // 45nm: Penryn , Wolfdale, Yorkfield (XE) | 
|  | return "penryn"; | 
|  |  | 
|  | case 26: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 45 nm process. | 
|  | case 29: // Intel Xeon processor MP. All processors are manufactured using | 
|  | // the 45 nm process. | 
|  | case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz. | 
|  | // As found in a Summer 2010 model iMac. | 
|  | case 37: // Intel Core i7, laptop version. | 
|  | case 44: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 32 nm process. | 
|  | case 46: // Nehalem EX | 
|  | case 47: // Westmere EX | 
|  | return "corei7"; | 
|  |  | 
|  | // SandyBridge: | 
|  | case 42: // Intel Core i7 processor. All processors are manufactured | 
|  | // using the 32 nm process. | 
|  | case 45: | 
|  | return "corei7-avx"; | 
|  |  | 
|  | // Ivy Bridge: | 
|  | case 58: | 
|  | return "core-avx-i"; | 
|  |  | 
|  | case 28: // Most 45 nm Intel Atom processors | 
|  | case 38: // 45 nm Atom Lincroft | 
|  | case 39: // 32 nm Atom Medfield | 
|  | case 53: // 32 nm Atom Midview | 
|  | case 54: // 32 nm Atom Midview | 
|  | return "atom"; | 
|  |  | 
|  | default: return (Em64T) ? "x86-64" : "i686"; | 
|  | } | 
|  | case 15: { | 
|  | switch (Model) { | 
|  | case  0: // Pentium 4 processor, Intel Xeon processor. All processors are | 
|  | // model 00h and manufactured using the 0.18 micron process. | 
|  | case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon | 
|  | // processor MP, and Intel Celeron processor. All processors are | 
|  | // model 01h and manufactured using the 0.18 micron process. | 
|  | case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, | 
|  | // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron | 
|  | // processor, and Mobile Intel Celeron processor. All processors | 
|  | // are model 02h and manufactured using the 0.13 micron process. | 
|  | return (Em64T) ? "x86-64" : "pentium4"; | 
|  |  | 
|  | case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D | 
|  | // processor. All processors are model 03h and manufactured using | 
|  | // the 90 nm process. | 
|  | case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, | 
|  | // Pentium D processor, Intel Xeon processor, Intel Xeon | 
|  | // processor MP, Intel Celeron D processor. All processors are | 
|  | // model 04h and manufactured using the 90 nm process. | 
|  | case  6: // Pentium 4 processor, Pentium D processor, Pentium processor | 
|  | // Extreme Edition, Intel Xeon processor, Intel Xeon processor | 
|  | // MP, Intel Celeron D processor. All processors are model 06h | 
|  | // and manufactured using the 65 nm process. | 
|  | return (Em64T) ? "nocona" : "prescott"; | 
|  |  | 
|  | default: | 
|  | return (Em64T) ? "x86-64" : "pentium4"; | 
|  | } | 
|  | } | 
|  |  | 
|  | default: | 
|  | return "generic"; | 
|  | } | 
|  | } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { | 
|  | // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There | 
|  | // appears to be no way to generate the wide variety of AMD-specific targets | 
|  | // from the information returned from CPUID. | 
|  | switch (Family) { | 
|  | case 4: | 
|  | return "i486"; | 
|  | case 5: | 
|  | switch (Model) { | 
|  | case 6: | 
|  | case 7:  return "k6"; | 
|  | case 8:  return "k6-2"; | 
|  | case 9: | 
|  | case 13: return "k6-3"; | 
|  | case 10: return "geode"; | 
|  | default: return "pentium"; | 
|  | } | 
|  | case 6: | 
|  | switch (Model) { | 
|  | case 4:  return "athlon-tbird"; | 
|  | case 6: | 
|  | case 7: | 
|  | case 8:  return "athlon-mp"; | 
|  | case 10: return "athlon-xp"; | 
|  | default: return "athlon"; | 
|  | } | 
|  | case 15: | 
|  | if (HasSSE3) | 
|  | return "k8-sse3"; | 
|  | switch (Model) { | 
|  | case 1:  return "opteron"; | 
|  | case 5:  return "athlon-fx"; // also opteron | 
|  | default: return "athlon64"; | 
|  | } | 
|  | case 16: | 
|  | return "amdfam10"; | 
|  | case 20: | 
|  | return "btver1"; | 
|  | case 21: | 
|  | return "bdver1"; | 
|  | default: | 
|  | return "generic"; | 
|  | } | 
|  | } | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | std::string sys::getHostCPUName() { | 
|  | host_basic_info_data_t hostInfo; | 
|  | mach_msg_type_number_t infoCount; | 
|  |  | 
|  | infoCount = HOST_BASIC_INFO_COUNT; | 
|  | host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
|  | &infoCount); | 
|  |  | 
|  | if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; | 
|  |  | 
|  | switch(hostInfo.cpu_subtype) { | 
|  | case CPU_SUBTYPE_POWERPC_601:   return "601"; | 
|  | case CPU_SUBTYPE_POWERPC_602:   return "602"; | 
|  | case CPU_SUBTYPE_POWERPC_603:   return "603"; | 
|  | case CPU_SUBTYPE_POWERPC_603e:  return "603e"; | 
|  | case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; | 
|  | case CPU_SUBTYPE_POWERPC_604:   return "604"; | 
|  | case CPU_SUBTYPE_POWERPC_604e:  return "604e"; | 
|  | case CPU_SUBTYPE_POWERPC_620:   return "620"; | 
|  | case CPU_SUBTYPE_POWERPC_750:   return "750"; | 
|  | case CPU_SUBTYPE_POWERPC_7400:  return "7400"; | 
|  | case CPU_SUBTYPE_POWERPC_7450:  return "7450"; | 
|  | case CPU_SUBTYPE_POWERPC_970:   return "970"; | 
|  | default: ; | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | std::string sys::getHostCPUName() { | 
|  | // Access to the Processor Version Register (PVR) on PowerPC is privileged, | 
|  | // and so we must use an operating-system interface to determine the current | 
|  | // processor type. On Linux, this is exposed through the /proc/cpuinfo file. | 
|  | const char *generic = "generic"; | 
|  |  | 
|  | // Note: We cannot mmap /proc/cpuinfo here and then process the resulting | 
|  | // memory buffer because the 'file' has 0 size (it can be read from only | 
|  | // as a stream). | 
|  |  | 
|  | std::string Err; | 
|  | DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); | 
|  | if (!DS) { | 
|  | DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); | 
|  | return generic; | 
|  | } | 
|  |  | 
|  | // The cpu line is second (after the 'processor: 0' line), so if this | 
|  | // buffer is too small then something has changed (or is wrong). | 
|  | char buffer[1024]; | 
|  | size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); | 
|  | delete DS; | 
|  |  | 
|  | const char *CPUInfoStart = buffer; | 
|  | const char *CPUInfoEnd = buffer + CPUInfoSize; | 
|  |  | 
|  | const char *CIP = CPUInfoStart; | 
|  |  | 
|  | const char *CPUStart = 0; | 
|  | size_t CPULen = 0; | 
|  |  | 
|  | // We need to find the first line which starts with cpu, spaces, and a colon. | 
|  | // After the colon, there may be some additional spaces and then the cpu type. | 
|  | while (CIP < CPUInfoEnd && CPUStart == 0) { | 
|  | if (CIP < CPUInfoEnd && *CIP == '\n') | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == 'c') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'p') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'u') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == ':') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd) { | 
|  | CPUStart = CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && | 
|  | *CIP != ',' && *CIP != '\n')) | 
|  | ++CIP; | 
|  | CPULen = CIP - CPUStart; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | while (CIP < CPUInfoEnd && *CIP != '\n') | 
|  | ++CIP; | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | return generic; | 
|  |  | 
|  | return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) | 
|  | .Case("604e", "604e") | 
|  | .Case("604", "604") | 
|  | .Case("7400", "7400") | 
|  | .Case("7410", "7400") | 
|  | .Case("7447", "7400") | 
|  | .Case("7455", "7450") | 
|  | .Case("G4", "g4") | 
|  | .Case("POWER4", "970") | 
|  | .Case("PPC970FX", "970") | 
|  | .Case("PPC970MP", "970") | 
|  | .Case("G5", "g5") | 
|  | .Case("POWER5", "g5") | 
|  | .Case("A2", "a2") | 
|  | .Case("POWER6", "pwr6") | 
|  | .Case("POWER7", "pwr7") | 
|  | .Default(generic); | 
|  | } | 
|  | #elif defined(__linux__) && defined(__arm__) | 
|  | std::string sys::getHostCPUName() { | 
|  | // The cpuid register on arm is not accessible from user space. On Linux, | 
|  | // it is exposed through the /proc/cpuinfo file. | 
|  | // Note: We cannot mmap /proc/cpuinfo here and then process the resulting | 
|  | // memory buffer because the 'file' has 0 size (it can be read from only | 
|  | // as a stream). | 
|  |  | 
|  | std::string Err; | 
|  | DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); | 
|  | if (!DS) { | 
|  | DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); | 
|  | return "generic"; | 
|  | } | 
|  |  | 
|  | // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line | 
|  | // in all cases. | 
|  | char buffer[1024]; | 
|  | size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); | 
|  | delete DS; | 
|  |  | 
|  | StringRef Str(buffer, CPUInfoSize); | 
|  |  | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | Str.split(Lines, "\n"); | 
|  |  | 
|  | // Look for the CPU implementer line. | 
|  | StringRef Implementer; | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("CPU implementer")) | 
|  | Implementer = Lines[I].substr(15).ltrim("\t :"); | 
|  |  | 
|  | if (Implementer == "0x41") // ARM Ltd. | 
|  | // Look for the CPU part line. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("CPU part")) | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
|  | .Case("0x926", "arm926ej-s") | 
|  | .Case("0xb02", "mpcore") | 
|  | .Case("0xb36", "arm1136j-s") | 
|  | .Case("0xb56", "arm1156t2-s") | 
|  | .Case("0xb76", "arm1176jz-s") | 
|  | .Case("0xc08", "cortex-a8") | 
|  | .Case("0xc09", "cortex-a9") | 
|  | .Case("0xc20", "cortex-m0") | 
|  | .Case("0xc23", "cortex-m3") | 
|  | .Case("0xc24", "cortex-m4") | 
|  | .Default("generic"); | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #else | 
|  | std::string sys::getHostCPUName() { | 
|  | return "generic"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features){ | 
|  | return false; | 
|  | } |