|  | //===- InstCombineMulDivRem.cpp -------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, | 
|  | // srem, urem, frem. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombine.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  |  | 
|  | /// simplifyValueKnownNonZero - The specific integer value is used in a context | 
|  | /// where it is known to be non-zero.  If this allows us to simplify the | 
|  | /// computation, do so and return the new operand, otherwise return null. | 
|  | static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { | 
|  | // If V has multiple uses, then we would have to do more analysis to determine | 
|  | // if this is safe.  For example, the use could be in dynamically unreached | 
|  | // code. | 
|  | if (!V->hasOneUse()) return 0; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // ((1 << A) >>u B) --> (1 << (A-B)) | 
|  | // Because V cannot be zero, we know that B is less than A. | 
|  | Value *A = 0, *B = 0, *PowerOf2 = 0; | 
|  | if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), | 
|  | m_Value(B))) && | 
|  | // The "1" can be any value known to be a power of 2. | 
|  | isPowerOfTwo(PowerOf2, IC.getDataLayout())) { | 
|  | A = IC.Builder->CreateSub(A, B); | 
|  | return IC.Builder->CreateShl(PowerOf2, A); | 
|  | } | 
|  |  | 
|  | // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it | 
|  | // inexact.  Similarly for <<. | 
|  | if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) | 
|  | if (I->isLogicalShift() && | 
|  | isPowerOfTwo(I->getOperand(0), IC.getDataLayout())) { | 
|  | // We know that this is an exact/nuw shift and that the input is a | 
|  | // non-zero context as well. | 
|  | if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { | 
|  | I->setOperand(0, V2); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::LShr && !I->isExact()) { | 
|  | I->setIsExact(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { | 
|  | I->setHasNoUnsignedWrap(); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Lots more we could do here: | 
|  | //    If V is a phi node, we can call this on each of its operands. | 
|  | //    "select cond, X, 0" can simplify to "X". | 
|  |  | 
|  | return MadeChange ? V : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MultiplyOverflows - True if the multiply can not be expressed in an int | 
|  | /// this size. | 
|  | static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { | 
|  | uint32_t W = C1->getBitWidth(); | 
|  | APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); | 
|  | if (sign) { | 
|  | LHSExt = LHSExt.sext(W * 2); | 
|  | RHSExt = RHSExt.sext(W * 2); | 
|  | } else { | 
|  | LHSExt = LHSExt.zext(W * 2); | 
|  | RHSExt = RHSExt.zext(W * 2); | 
|  | } | 
|  |  | 
|  | APInt MulExt = LHSExt * RHSExt; | 
|  |  | 
|  | if (!sign) | 
|  | return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); | 
|  |  | 
|  | APInt Min = APInt::getSignedMinValue(W).sext(W * 2); | 
|  | APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); | 
|  | return MulExt.slt(Min) || MulExt.sgt(Max); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyMulInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X | 
|  | return BinaryOperator::CreateNeg(Op0, I.getName()); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  |  | 
|  | // ((X << C1)*C2) == (X * (C2 << C1)) | 
|  | if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) | 
|  | if (SI->getOpcode() == Instruction::Shl) | 
|  | if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | return BinaryOperator::CreateMul(SI->getOperand(0), | 
|  | ConstantExpr::getShl(CI, ShOp)); | 
|  |  | 
|  | const APInt &Val = CI->getValue(); | 
|  | if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C | 
|  | Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2()); | 
|  | BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst); | 
|  | if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); | 
|  | if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); | 
|  | return Shl; | 
|  | } | 
|  |  | 
|  | // Canonicalize (X+C1)*CI -> X*CI+C1*CI. | 
|  | { Value *X; ConstantInt *C1; | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { | 
|  | Value *Add = Builder->CreateMul(X, CI); | 
|  | return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n | 
|  | // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n | 
|  | // The "* (2**n)" thus becomes a potential shifting opportunity. | 
|  | { | 
|  | const APInt &   Val = CI->getValue(); | 
|  | const APInt &PosVal = Val.abs(); | 
|  | if (Val.isNegative() && PosVal.isPowerOf2()) { | 
|  | Value *X = 0, *Y = 0; | 
|  | if (Op0->hasOneUse()) { | 
|  | ConstantInt *C1; | 
|  | Value *Sub = 0; | 
|  | if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) | 
|  | Sub = Builder->CreateSub(X, Y, "suba"); | 
|  | else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) | 
|  | Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); | 
|  | if (Sub) | 
|  | return | 
|  | BinaryOperator::CreateMul(Sub, | 
|  | ConstantInt::get(Y->getType(), PosVal)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (isa<Constant>(Op1)) { | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castNegVal(Op1)) | 
|  | return BinaryOperator::CreateMul(Op0v, Op1v); | 
|  |  | 
|  | // (X / Y) *  Y = X - (X % Y) | 
|  | // (X / Y) * -Y = (X % Y) - X | 
|  | { | 
|  | Value *Op1C = Op1; | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); | 
|  | if (!BO || | 
|  | (BO->getOpcode() != Instruction::UDiv && | 
|  | BO->getOpcode() != Instruction::SDiv)) { | 
|  | Op1C = Op0; | 
|  | BO = dyn_cast<BinaryOperator>(Op1); | 
|  | } | 
|  | Value *Neg = dyn_castNegVal(Op1C); | 
|  | if (BO && BO->hasOneUse() && | 
|  | (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && | 
|  | (BO->getOpcode() == Instruction::UDiv || | 
|  | BO->getOpcode() == Instruction::SDiv)) { | 
|  | Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); | 
|  |  | 
|  | // If the division is exact, X % Y is zero, so we end up with X or -X. | 
|  | if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) | 
|  | if (SDiv->isExact()) { | 
|  | if (Op1BO == Op1C) | 
|  | return ReplaceInstUsesWith(I, Op0BO); | 
|  | return BinaryOperator::CreateNeg(Op0BO); | 
|  | } | 
|  |  | 
|  | Value *Rem; | 
|  | if (BO->getOpcode() == Instruction::UDiv) | 
|  | Rem = Builder->CreateURem(Op0BO, Op1BO); | 
|  | else | 
|  | Rem = Builder->CreateSRem(Op0BO, Op1BO); | 
|  | Rem->takeName(BO); | 
|  |  | 
|  | if (Op1BO == Op1C) | 
|  | return BinaryOperator::CreateSub(Op0BO, Rem); | 
|  | return BinaryOperator::CreateSub(Rem, Op0BO); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// i1 mul -> i1 and. | 
|  | if (I.getType()->isIntegerTy(1)) | 
|  | return BinaryOperator::CreateAnd(Op0, Op1); | 
|  |  | 
|  | // X*(1 << Y) --> X << Y | 
|  | // (1 << Y)*X --> X << Y | 
|  | { | 
|  | Value *Y; | 
|  | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(Op1, Y); | 
|  | if (match(Op1, m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(Op0, Y); | 
|  | } | 
|  |  | 
|  | // If one of the operands of the multiply is a cast from a boolean value, then | 
|  | // we know the bool is either zero or one, so this is a 'masking' multiply. | 
|  | //   X * Y (where Y is 0 or 1) -> X & (0-Y) | 
|  | if (!I.getType()->isVectorTy()) { | 
|  | // -2 is "-1 << 1" so it is all bits set except the low one. | 
|  | APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); | 
|  |  | 
|  | Value *BoolCast = 0, *OtherOp = 0; | 
|  | if (MaskedValueIsZero(Op0, Negative2)) | 
|  | BoolCast = Op0, OtherOp = Op1; | 
|  | else if (MaskedValueIsZero(Op1, Negative2)) | 
|  | BoolCast = Op1, OtherOp = Op0; | 
|  |  | 
|  | if (BoolCast) { | 
|  | Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), | 
|  | BoolCast); | 
|  | return BinaryOperator::CreateAnd(V, OtherOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) { | 
|  | // "In IEEE floating point, x*1 is not equivalent to x for nans.  However, | 
|  | // ANSI says we can drop signals, so we can do this anyway." (from GCC) | 
|  | if (Op1F->isExactlyValue(1.0)) | 
|  | return ReplaceInstUsesWith(I, Op0);  // Eliminate 'fmul double %X, 1.0' | 
|  | } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) { | 
|  | // As above, vector X*splat(1.0) -> X in all defined cases. | 
|  | if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue())) | 
|  | if (F->isExactlyValue(1.0)) | 
|  | return ReplaceInstUsesWith(I, Op0); | 
|  | } | 
|  |  | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castFNegVal(Op1)) | 
|  | return BinaryOperator::CreateFMul(Op0v, Op1v); | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select | 
|  | /// instruction. | 
|  | bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { | 
|  | SelectInst *SI = cast<SelectInst>(I.getOperand(1)); | 
|  |  | 
|  | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y | 
|  | int NonNullOperand = -1; | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 2; | 
|  | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 1; | 
|  |  | 
|  | if (NonNullOperand == -1) | 
|  | return false; | 
|  |  | 
|  | Value *SelectCond = SI->getOperand(0); | 
|  |  | 
|  | // Change the div/rem to use 'Y' instead of the select. | 
|  | I.setOperand(1, SI->getOperand(NonNullOperand)); | 
|  |  | 
|  | // Okay, we know we replace the operand of the div/rem with 'Y' with no | 
|  | // problem.  However, the select, or the condition of the select may have | 
|  | // multiple uses.  Based on our knowledge that the operand must be non-zero, | 
|  | // propagate the known value for the select into other uses of it, and | 
|  | // propagate a known value of the condition into its other users. | 
|  |  | 
|  | // If the select and condition only have a single use, don't bother with this, | 
|  | // early exit. | 
|  | if (SI->use_empty() && SelectCond->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Scan the current block backward, looking for other uses of SI. | 
|  | BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); | 
|  |  | 
|  | while (BBI != BBFront) { | 
|  | --BBI; | 
|  | // If we found a call to a function, we can't assume it will return, so | 
|  | // information from below it cannot be propagated above it. | 
|  | if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) | 
|  | break; | 
|  |  | 
|  | // Replace uses of the select or its condition with the known values. | 
|  | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); | 
|  | I != E; ++I) { | 
|  | if (*I == SI) { | 
|  | *I = SI->getOperand(NonNullOperand); | 
|  | Worklist.Add(BBI); | 
|  | } else if (*I == SelectCond) { | 
|  | *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) : | 
|  | ConstantInt::getFalse(BBI->getContext()); | 
|  | Worklist.Add(BBI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we past the instruction, quit looking for it. | 
|  | if (&*BBI == SI) | 
|  | SI = 0; | 
|  | if (&*BBI == SelectCond) | 
|  | SelectCond = 0; | 
|  |  | 
|  | // If we ran out of things to eliminate, break out of the loop. | 
|  | if (SelectCond == 0 && SI == 0) | 
|  | break; | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This function implements the transforms common to both integer division | 
|  | /// instructions (udiv and sdiv). It is called by the visitors to those integer | 
|  | /// division instructions. | 
|  | /// @brief Common integer divide transforms | 
|  | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: [su]div X, (select Cond, Y, Z) | 
|  | // This does not apply for fdiv. | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // (X / C1) / C2  -> X / (C1*C2) | 
|  | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) | 
|  | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) | 
|  | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { | 
|  | if (MultiplyOverflows(RHS, LHSRHS, | 
|  | I.getOpcode()==Instruction::SDiv)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), | 
|  | ConstantExpr::getMul(RHS, LHSRHS)); | 
|  | } | 
|  |  | 
|  | if (!RHS->isZero()) { // avoid X udiv 0 | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold away this div instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y | 
|  | Value *X = 0, *Z = 0; | 
|  | if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 | 
|  | bool isSigned = I.getOpcode() == Instruction::SDiv; | 
|  | if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || | 
|  | (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) | 
|  | return BinaryOperator::Create(I.getOpcode(), X, Op1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// dyn_castZExtVal - Checks if V is a zext or constant that can | 
|  | /// be truncated to Ty without losing bits. | 
|  | static Value *dyn_castZExtVal(Value *V, Type *Ty) { | 
|  | if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { | 
|  | if (Z->getSrcTy() == Ty) | 
|  | return Z->getOperand(0); | 
|  | } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { | 
|  | if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) | 
|  | return ConstantExpr::getTrunc(C, Ty); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | { | 
|  | // X udiv 2^C -> X >> C | 
|  | // Check to see if this is an unsigned division with an exact power of 2, | 
|  | // if so, convert to a right shift. | 
|  | const APInt *C; | 
|  | if (match(Op1, m_Power2(C))) { | 
|  | BinaryOperator *LShr = | 
|  | BinaryOperator::CreateLShr(Op0, | 
|  | ConstantInt::get(Op0->getType(), | 
|  | C->logBase2())); | 
|  | if (I.isExact()) LShr->setIsExact(); | 
|  | return LShr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X udiv C, where C >= signbit | 
|  | if (C->getValue().isNegative()) { | 
|  | Value *IC = Builder->CreateICmpULT(Op0, C); | 
|  | return SelectInst::Create(IC, Constant::getNullValue(I.getType()), | 
|  | ConstantInt::get(I.getType(), 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (x lshr C1) udiv C2 --> x udiv (C2 << C1) | 
|  | if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { | 
|  | Value *X; | 
|  | ConstantInt *C1; | 
|  | if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { | 
|  | APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); | 
|  | return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | { const APInt *CI; Value *N; | 
|  | if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || | 
|  | match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { | 
|  | if (*CI != 1) | 
|  | N = Builder->CreateAdd(N, | 
|  | ConstantInt::get(N->getType(), CI->logBase2())); | 
|  | if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) | 
|  | N = Builder->CreateZExt(N, Z->getDestTy()); | 
|  | if (I.isExact()) | 
|  | return BinaryOperator::CreateExactLShr(Op0, N); | 
|  | return BinaryOperator::CreateLShr(Op0, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | { Value *Cond; const APInt *C1, *C2; | 
|  | if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { | 
|  | // Construct the "on true" case of the select | 
|  | Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", | 
|  | I.isExact()); | 
|  |  | 
|  | // Construct the "on false" case of the select | 
|  | Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", | 
|  | I.isExact()); | 
|  |  | 
|  | // construct the select instruction and return it. | 
|  | return SelectInst::Create(Cond, TSI, FSI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (zext A) udiv (zext B) --> zext (A udiv B) | 
|  | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) | 
|  | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) | 
|  | return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", | 
|  | I.isExact()), | 
|  | I.getType()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifySDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // sdiv X, -1 == -X | 
|  | if (RHS->isAllOnesValue()) | 
|  | return BinaryOperator::CreateNeg(Op0); | 
|  |  | 
|  | // sdiv X, C  -->  ashr exact X, log2(C) | 
|  | if (I.isExact() && RHS->getValue().isNonNegative() && | 
|  | RHS->getValue().isPowerOf2()) { | 
|  | Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), | 
|  | RHS->getValue().exactLogBase2()); | 
|  | return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); | 
|  | } | 
|  |  | 
|  | // -X/C  -->  X/-C  provided the negation doesn't overflow. | 
|  | if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) | 
|  | if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) | 
|  | return BinaryOperator::CreateSDiv(Sub->getOperand(1), | 
|  | ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a udiv. | 
|  | if (I.getType()->isIntegerTy()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op0, Mask)) { | 
|  | if (MaskedValueIsZero(Op1, Mask)) { | 
|  | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Shl(m_Power2(), m_Value()))) { | 
|  | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) | 
|  | // Safe because the only negative value (1 << Y) can take on is | 
|  | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have | 
|  | // the sign bit set. | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { | 
|  | const APFloat &Op1F = Op1C->getValueAPF(); | 
|  |  | 
|  | // If the divisor has an exact multiplicative inverse we can turn the fdiv | 
|  | // into a cheaper fmul. | 
|  | APFloat Reciprocal(Op1F.getSemantics()); | 
|  | if (Op1F.getExactInverse(&Reciprocal)) { | 
|  | ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal); | 
|  | return BinaryOperator::CreateFMul(Op0, RFP); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer remainder | 
|  | /// instructions (urem and srem). It is called by the visitors to those integer | 
|  | /// remainder instructions. | 
|  | /// @brief Common integer remainder transforms | 
|  | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | if (isa<ConstantInt>(Op1)) { | 
|  | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | } else if (isa<PHINode>(Op0I)) { | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // See if we can fold away this rem instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitURem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyURemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | // X urem C^2 -> X and C-1 | 
|  | { const APInt *C; | 
|  | if (match(Op1, m_Power2(C))) | 
|  | return BinaryOperator::CreateAnd(Op0, | 
|  | ConstantInt::get(I.getType(), *C-1)); | 
|  | } | 
|  |  | 
|  | // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) | 
|  | if (match(Op1, m_Shl(m_Power2(), m_Value()))) { | 
|  | Constant *N1 = Constant::getAllOnesValue(I.getType()); | 
|  | Value *Add = Builder->CreateAdd(Op1, N1); | 
|  | return BinaryOperator::CreateAnd(Op0, Add); | 
|  | } | 
|  |  | 
|  | // urem X, (select Cond, 2^C1, 2^C2) --> | 
|  | //    select Cond, (and X, C1-1), (and X, C2-1) | 
|  | // when C1&C2 are powers of two. | 
|  | { Value *Cond; const APInt *C1, *C2; | 
|  | if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { | 
|  | Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t"); | 
|  | Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f"); | 
|  | return SelectInst::Create(Cond, TrueAnd, FalseAnd); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (zext A) urem (zext B) --> zext (A urem B) | 
|  | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) | 
|  | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) | 
|  | return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), | 
|  | I.getType()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifySRemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer rem common cases | 
|  | if (Instruction *Common = commonIRemTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (Value *RHSNeg = dyn_castNegVal(Op1)) | 
|  | if (!isa<Constant>(RHSNeg) || | 
|  | (isa<ConstantInt>(RHSNeg) && | 
|  | cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { | 
|  | // X % -Y -> X % Y | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, RHSNeg); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a urem. | 
|  | if (I.getType()->isIntegerTy()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { | 
|  | // X srem Y -> X urem Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's a constant vector, flip any negative values positive. | 
|  | if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { | 
|  | Constant *C = cast<Constant>(Op1); | 
|  | unsigned VWidth = C->getType()->getVectorNumElements(); | 
|  |  | 
|  | bool hasNegative = false; | 
|  | bool hasMissing = false; | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (Elt == 0) { | 
|  | hasMissing = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) | 
|  | if (RHS->isNegative()) | 
|  | hasNegative = true; | 
|  | } | 
|  |  | 
|  | if (hasNegative && !hasMissing) { | 
|  | SmallVector<Constant *, 16> Elts(VWidth); | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Elts[i] = C->getAggregateElement(i);  // Handle undef, etc. | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { | 
|  | if (RHS->isNegative()) | 
|  | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *NewRHSV = ConstantVector::get(Elts); | 
|  | if (NewRHSV != C) {  // Don't loop on -MININT | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, NewRHSV); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | return 0; | 
|  | } |