|  | //===- InstCombineSelect.cpp ----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visitSelect function. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombine.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, | 
|  | /// returning the kind and providing the out parameter results if we | 
|  | /// successfully match. | 
|  | static SelectPatternFlavor | 
|  | MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(V); | 
|  | if (SI == 0) return SPF_UNKNOWN; | 
|  |  | 
|  | ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition()); | 
|  | if (ICI == 0) return SPF_UNKNOWN; | 
|  |  | 
|  | LHS = ICI->getOperand(0); | 
|  | RHS = ICI->getOperand(1); | 
|  |  | 
|  | // (icmp X, Y) ? X : Y | 
|  | if (SI->getTrueValue() == ICI->getOperand(0) && | 
|  | SI->getFalseValue() == ICI->getOperand(1)) { | 
|  | switch (ICI->getPredicate()) { | 
|  | default: return SPF_UNKNOWN; // Equality. | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: return SPF_UMAX; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: return SPF_SMAX; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: return SPF_UMIN; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: return SPF_SMIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (icmp X, Y) ? Y : X | 
|  | if (SI->getTrueValue() == ICI->getOperand(1) && | 
|  | SI->getFalseValue() == ICI->getOperand(0)) { | 
|  | switch (ICI->getPredicate()) { | 
|  | default: return SPF_UNKNOWN; // Equality. | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: return SPF_UMIN; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: return SPF_SMIN; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: return SPF_UMAX; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: return SPF_SMAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5) | 
|  |  | 
|  | return SPF_UNKNOWN; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetSelectFoldableOperands - We want to turn code that looks like this: | 
|  | ///   %C = or %A, %B | 
|  | ///   %D = select %cond, %C, %A | 
|  | /// into: | 
|  | ///   %C = select %cond, %B, 0 | 
|  | ///   %D = or %A, %C | 
|  | /// | 
|  | /// Assuming that the specified instruction is an operand to the select, return | 
|  | /// a bitmask indicating which operands of this instruction are foldable if they | 
|  | /// equal the other incoming value of the select. | 
|  | /// | 
|  | static unsigned GetSelectFoldableOperands(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return 3;              // Can fold through either operand. | 
|  | case Instruction::Sub:   // Can only fold on the amount subtracted. | 
|  | case Instruction::Shl:   // Can only fold on the shift amount. | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return 1; | 
|  | default: | 
|  | return 0;              // Cannot fold | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSelectFoldableConstant - For the same transformation as the previous | 
|  | /// function, return the identity constant that goes into the select. | 
|  | static Constant *GetSelectFoldableConstant(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("This cannot happen!"); | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return Constant::getNullValue(I->getType()); | 
|  | case Instruction::And: | 
|  | return Constant::getAllOnesValue(I->getType()); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(I->getType(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI | 
|  | /// have the same opcode and only one use each.  Try to simplify this. | 
|  | Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI) { | 
|  | if (TI->getNumOperands() == 1) { | 
|  | // If this is a non-volatile load or a cast from the same type, | 
|  | // merge. | 
|  | if (TI->isCast()) { | 
|  | if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) | 
|  | return 0; | 
|  | // The select condition may be a vector. We may only change the operand | 
|  | // type if the vector width remains the same (and matches the condition). | 
|  | Type *CondTy = SI.getCondition()->getType(); | 
|  | if (CondTy->isVectorTy() && CondTy->getVectorNumElements() != | 
|  | FI->getOperand(0)->getType()->getVectorNumElements()) | 
|  | return 0; | 
|  | } else { | 
|  | return 0;  // unknown unary op. | 
|  | } | 
|  |  | 
|  | // Fold this by inserting a select from the input values. | 
|  | Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), | 
|  | FI->getOperand(0), SI.getName()+".v"); | 
|  | return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, | 
|  | TI->getType()); | 
|  | } | 
|  |  | 
|  | // Only handle binary operators here. | 
|  | if (!isa<BinaryOperator>(TI)) | 
|  | return 0; | 
|  |  | 
|  | // Figure out if the operations have any operands in common. | 
|  | Value *MatchOp, *OtherOpT, *OtherOpF; | 
|  | bool MatchIsOpZero; | 
|  | if (TI->getOperand(0) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = false; | 
|  | } else if (!TI->isCommutative()) { | 
|  | return 0; | 
|  | } else if (TI->getOperand(0) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If we reach here, they do have operations in common. | 
|  | Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, | 
|  | OtherOpF, SI.getName()+".v"); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { | 
|  | if (MatchIsOpZero) | 
|  | return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); | 
|  | else | 
|  | return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); | 
|  | } | 
|  | llvm_unreachable("Shouldn't get here"); | 
|  | } | 
|  |  | 
|  | static bool isSelect01(Constant *C1, Constant *C2) { | 
|  | ConstantInt *C1I = dyn_cast<ConstantInt>(C1); | 
|  | if (!C1I) | 
|  | return false; | 
|  | ConstantInt *C2I = dyn_cast<ConstantInt>(C2); | 
|  | if (!C2I) | 
|  | return false; | 
|  | if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. | 
|  | return false; | 
|  | return C1I->isOne() || C1I->isAllOnesValue() || | 
|  | C2I->isOne() || C2I->isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// FoldSelectIntoOp - Try fold the select into one of the operands to | 
|  | /// facilitate further optimization. | 
|  | Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, | 
|  | Value *FalseVal) { | 
|  | // See the comment above GetSelectFoldableOperands for a description of the | 
|  | // transformation we are doing here. | 
|  | if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { | 
|  | if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(FalseVal)) { | 
|  | if (unsigned SFO = GetSelectFoldableOperands(TVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(TVI); | 
|  | Value *OOp = TVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0, 1 and -1. | 
|  | if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { | 
|  | Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); | 
|  | NewSel->takeName(TVI); | 
|  | BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); | 
|  | BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), | 
|  | FalseVal, NewSel); | 
|  | if (isa<PossiblyExactOperator>(BO)) | 
|  | BO->setIsExact(TVI_BO->isExact()); | 
|  | if (isa<OverflowingBinaryOperator>(BO)) { | 
|  | BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap()); | 
|  | BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap()); | 
|  | } | 
|  | return BO; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { | 
|  | if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && | 
|  | !isa<Constant>(TrueVal)) { | 
|  | if (unsigned SFO = GetSelectFoldableOperands(FVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | Constant *C = GetSelectFoldableConstant(FVI); | 
|  | Value *OOp = FVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0, 1 and -1. | 
|  | if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { | 
|  | Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); | 
|  | NewSel->takeName(FVI); | 
|  | BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); | 
|  | BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), | 
|  | TrueVal, NewSel); | 
|  | if (isa<PossiblyExactOperator>(BO)) | 
|  | BO->setIsExact(FVI_BO->isExact()); | 
|  | if (isa<OverflowingBinaryOperator>(BO)) { | 
|  | BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap()); | 
|  | BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap()); | 
|  | } | 
|  | return BO; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is | 
|  | /// replaced with RepOp. | 
|  | static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, | 
|  | const DataLayout *TD, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | // Trivial replacement. | 
|  | if (V == Op) | 
|  | return RepOp; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return 0; | 
|  |  | 
|  | // If this is a binary operator, try to simplify it with the replaced op. | 
|  | if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) { | 
|  | if (B->getOperand(0) == Op) | 
|  | return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI); | 
|  | if (B->getOperand(1) == Op) | 
|  | return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI); | 
|  | } | 
|  |  | 
|  | // Same for CmpInsts. | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) { | 
|  | if (C->getOperand(0) == Op) | 
|  | return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD, | 
|  | TLI); | 
|  | if (C->getOperand(1) == Op) | 
|  | return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD, | 
|  | TLI); | 
|  | } | 
|  |  | 
|  | // TODO: We could hand off more cases to instsimplify here. | 
|  |  | 
|  | // If all operands are constant after substituting Op for RepOp then we can | 
|  | // constant fold the instruction. | 
|  | if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { | 
|  | // Build a list of all constant operands. | 
|  | SmallVector<Constant*, 8> ConstOps; | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | if (I->getOperand(i) == Op) | 
|  | ConstOps.push_back(CRepOp); | 
|  | else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) | 
|  | ConstOps.push_back(COp); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // All operands were constants, fold it. | 
|  | if (ConstOps.size() == I->getNumOperands()) { | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) | 
|  | return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], | 
|  | ConstOps[1], TD, TLI); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | if (!LI->isVolatile()) | 
|  | return ConstantFoldLoadFromConstPtr(ConstOps[0], TD); | 
|  |  | 
|  | return ConstantFoldInstOperands(I->getOpcode(), I->getType(), | 
|  | ConstOps, TD, TLI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// visitSelectInstWithICmp - Visit a SelectInst that has an | 
|  | /// ICmpInst as its first operand. | 
|  | /// | 
|  | Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, | 
|  | ICmpInst *ICI) { | 
|  | bool Changed = false; | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *CmpLHS = ICI->getOperand(0); | 
|  | Value *CmpRHS = ICI->getOperand(1); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | // Check cases where the comparison is with a constant that | 
|  | // can be adjusted to fit the min/max idiom. We may move or edit ICI | 
|  | // here, so make sure the select is the only user. | 
|  | if (ICI->hasOneUse()) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { | 
|  | // X < MIN ? T : F  -->  F | 
|  | if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) | 
|  | && CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | // X > MAX ? T : F  -->  F | 
|  | else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT) | 
|  | && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_SGT: { | 
|  | // These transformations only work for selects over integers. | 
|  | IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); | 
|  | if (!SelectTy) | 
|  | break; | 
|  |  | 
|  | Constant *AdjustedRHS; | 
|  | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) | 
|  | AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); | 
|  | else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) | 
|  | AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); | 
|  |  | 
|  | // X > C ? X : C+1  -->  X < C+1 ? C+1 : X | 
|  | // X < C ? X : C-1  -->  X > C-1 ? C-1 : X | 
|  | if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || | 
|  | (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) | 
|  | ; // Nothing to do here. Values match without any sign/zero extension. | 
|  |  | 
|  | // Types do not match. Instead of calculating this with mixed types | 
|  | // promote all to the larger type. This enables scalar evolution to | 
|  | // analyze this expression. | 
|  | else if (CmpRHS->getType()->getScalarSizeInBits() | 
|  | < SelectTy->getBitWidth()) { | 
|  | Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); | 
|  |  | 
|  | // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X | 
|  | // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X | 
|  | // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X | 
|  | // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X | 
|  | if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && | 
|  | sextRHS == FalseVal) { | 
|  | CmpLHS = TrueVal; | 
|  | AdjustedRHS = sextRHS; | 
|  | } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && | 
|  | sextRHS == TrueVal) { | 
|  | CmpLHS = FalseVal; | 
|  | AdjustedRHS = sextRHS; | 
|  | } else if (ICI->isUnsigned()) { | 
|  | Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); | 
|  | // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X | 
|  | // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X | 
|  | // zext + signed compare cannot be changed: | 
|  | //    0xff <s 0x00, but 0x00ff >s 0x0000 | 
|  | if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && | 
|  | zextRHS == FalseVal) { | 
|  | CmpLHS = TrueVal; | 
|  | AdjustedRHS = zextRHS; | 
|  | } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && | 
|  | zextRHS == TrueVal) { | 
|  | CmpLHS = FalseVal; | 
|  | AdjustedRHS = zextRHS; | 
|  | } else | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } else | 
|  | break; | 
|  |  | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | CmpRHS = AdjustedRHS; | 
|  | std::swap(FalseVal, TrueVal); | 
|  | ICI->setPredicate(Pred); | 
|  | ICI->setOperand(0, CmpLHS); | 
|  | ICI->setOperand(1, CmpRHS); | 
|  | SI.setOperand(1, TrueVal); | 
|  | SI.setOperand(2, FalseVal); | 
|  |  | 
|  | // Move ICI instruction right before the select instruction. Otherwise | 
|  | // the sext/zext value may be defined after the ICI instruction uses it. | 
|  | ICI->moveBefore(&SI); | 
|  |  | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 | 
|  | // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 | 
|  | // FIXME: Type and constness constraints could be lifted, but we have to | 
|  | //        watch code size carefully. We should consider xor instead of | 
|  | //        sub/add when we decide to do that. | 
|  | if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { | 
|  | if (TrueVal->getType() == Ty) { | 
|  | if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { | 
|  | ConstantInt *C1 = NULL, *C2 = NULL; | 
|  | if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { | 
|  | C1 = dyn_cast<ConstantInt>(TrueVal); | 
|  | C2 = dyn_cast<ConstantInt>(FalseVal); | 
|  | } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { | 
|  | C1 = dyn_cast<ConstantInt>(FalseVal); | 
|  | C2 = dyn_cast<ConstantInt>(TrueVal); | 
|  | } | 
|  | if (C1 && C2) { | 
|  | // This shift results in either -1 or 0. | 
|  | Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); | 
|  |  | 
|  | // Check if we can express the operation with a single or. | 
|  | if (C2->isAllOnesValue()) | 
|  | return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); | 
|  |  | 
|  | Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); | 
|  | return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have an equality comparison then we know the value in one of the | 
|  | // arms of the select. See if substituting this value into the arm and | 
|  | // simplifying the result yields the same value as the other arm. | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal || | 
|  | SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal || | 
|  | SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal || | 
|  | SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal || | 
|  | SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | } | 
|  |  | 
|  | // NOTE: if we wanted to, this is where to detect integer MIN/MAX | 
|  |  | 
|  | if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { | 
|  | if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { | 
|  | // Transform (X == C) ? X : Y -> (X == C) ? C : Y | 
|  | SI.setOperand(1, CmpRHS); | 
|  | Changed = true; | 
|  | } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { | 
|  | // Transform (X != C) ? Y : X -> (X != C) ? Y : C | 
|  | SI.setOperand(2, CmpRHS); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &SI : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a | 
|  | /// PHI node (but the two may be in different blocks).  See if the true/false | 
|  | /// values (V) are live in all of the predecessor blocks of the PHI.  For | 
|  | /// example, cases like this cannot be mapped: | 
|  | /// | 
|  | ///   X = phi [ C1, BB1], [C2, BB2] | 
|  | ///   Y = add | 
|  | ///   Z = select X, Y, 0 | 
|  | /// | 
|  | /// because Y is not live in BB1/BB2. | 
|  | /// | 
|  | static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, | 
|  | const SelectInst &SI) { | 
|  | // If the value is a non-instruction value like a constant or argument, it | 
|  | // can always be mapped. | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I == 0) return true; | 
|  |  | 
|  | // If V is a PHI node defined in the same block as the condition PHI, we can | 
|  | // map the arguments. | 
|  | const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); | 
|  |  | 
|  | if (const PHINode *VP = dyn_cast<PHINode>(I)) | 
|  | if (VP->getParent() == CondPHI->getParent()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, if the PHI and select are defined in the same block and if V is | 
|  | // defined in a different block, then we can transform it. | 
|  | if (SI.getParent() == CondPHI->getParent() && | 
|  | I->getParent() != CondPHI->getParent()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we have a 'hard' case and we can't tell without doing more | 
|  | // detailed dominator based analysis, punt. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: | 
|  | ///   SPF2(SPF1(A, B), C) | 
|  | Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, | 
|  | SelectPatternFlavor SPF1, | 
|  | Value *A, Value *B, | 
|  | Instruction &Outer, | 
|  | SelectPatternFlavor SPF2, Value *C) { | 
|  | if (C == A || C == B) { | 
|  | // MAX(MAX(A, B), B) -> MAX(A, B) | 
|  | // MIN(MIN(a, b), a) -> MIN(a, b) | 
|  | if (SPF1 == SPF2) | 
|  | return ReplaceInstUsesWith(Outer, Inner); | 
|  |  | 
|  | // MAX(MIN(a, b), a) -> a | 
|  | // MIN(MAX(a, b), a) -> a | 
|  | if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || | 
|  | (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || | 
|  | (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || | 
|  | (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) | 
|  | return ReplaceInstUsesWith(Outer, C); | 
|  | } | 
|  |  | 
|  | // TODO: MIN(MIN(A, 23), 97) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// foldSelectICmpAnd - If one of the constants is zero (we know they can't | 
|  | /// both be) and we have an icmp instruction with zero, and we have an 'and' | 
|  | /// with the non-constant value and a power of two we can turn the select | 
|  | /// into a shift on the result of the 'and'. | 
|  | static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, | 
|  | ConstantInt *FalseVal, | 
|  | InstCombiner::BuilderTy *Builder) { | 
|  | const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); | 
|  | if (!IC || !IC->isEquality()) | 
|  | return 0; | 
|  |  | 
|  | if (!match(IC->getOperand(1), m_Zero())) | 
|  | return 0; | 
|  |  | 
|  | ConstantInt *AndRHS; | 
|  | Value *LHS = IC->getOperand(0); | 
|  | if (LHS->getType() != SI.getType() || | 
|  | !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) | 
|  | return 0; | 
|  |  | 
|  | // If both select arms are non-zero see if we have a select of the form | 
|  | // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic | 
|  | // for 'x ? 2^n : 0' and fix the thing up at the end. | 
|  | ConstantInt *Offset = 0; | 
|  | if (!TrueVal->isZero() && !FalseVal->isZero()) { | 
|  | if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) | 
|  | Offset = FalseVal; | 
|  | else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) | 
|  | Offset = TrueVal; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | // Adjust TrueVal and FalseVal to the offset. | 
|  | TrueVal = ConstantInt::get(Builder->getContext(), | 
|  | TrueVal->getValue() - Offset->getValue()); | 
|  | FalseVal = ConstantInt::get(Builder->getContext(), | 
|  | FalseVal->getValue() - Offset->getValue()); | 
|  | } | 
|  |  | 
|  | // Make sure the mask in the 'and' and one of the select arms is a power of 2. | 
|  | if (!AndRHS->getValue().isPowerOf2() || | 
|  | (!TrueVal->getValue().isPowerOf2() && | 
|  | !FalseVal->getValue().isPowerOf2())) | 
|  | return 0; | 
|  |  | 
|  | // Determine which shift is needed to transform result of the 'and' into the | 
|  | // desired result. | 
|  | ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; | 
|  | unsigned ValZeros = ValC->getValue().logBase2(); | 
|  | unsigned AndZeros = AndRHS->getValue().logBase2(); | 
|  |  | 
|  | Value *V = LHS; | 
|  | if (ValZeros > AndZeros) | 
|  | V = Builder->CreateShl(V, ValZeros - AndZeros); | 
|  | else if (ValZeros < AndZeros) | 
|  | V = Builder->CreateLShr(V, AndZeros - ValZeros); | 
|  |  | 
|  | // Okay, now we know that everything is set up, we just don't know whether we | 
|  | // have a icmp_ne or icmp_eq and whether the true or false val is the zero. | 
|  | bool ShouldNotVal = !TrueVal->isZero(); | 
|  | ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; | 
|  | if (ShouldNotVal) | 
|  | V = Builder->CreateXor(V, ValC); | 
|  |  | 
|  | // Apply an offset if needed. | 
|  | if (Offset) | 
|  | V = Builder->CreateAdd(V, Offset); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD)) | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  |  | 
|  | if (SI.getType()->isIntegerTy(1)) { | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { | 
|  | if (C->getZExtValue()) { | 
|  | // Change: A = select B, true, C --> A = or B, C | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | } | 
|  | // Change: A = select B, false, C --> A = and !B, C | 
|  | Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); | 
|  | return BinaryOperator::CreateAnd(NotCond, FalseVal); | 
|  | } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | if (C->getZExtValue() == false) { | 
|  | // Change: A = select B, C, false --> A = and B, C | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  | } | 
|  | // Change: A = select B, C, true --> A = or !B, C | 
|  | Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); | 
|  | return BinaryOperator::CreateOr(NotCond, TrueVal); | 
|  | } | 
|  |  | 
|  | // select a, b, a  -> a&b | 
|  | // select a, a, b  -> a|b | 
|  | if (CondVal == TrueVal) | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | else if (CondVal == FalseVal) | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  |  | 
|  | // select a, ~a, b -> (~a)&b | 
|  | // select a, b, ~a -> (~a)|b | 
|  | if (match(TrueVal, m_Not(m_Specific(CondVal)))) | 
|  | return BinaryOperator::CreateAnd(TrueVal, FalseVal); | 
|  | else if (match(FalseVal, m_Not(m_Specific(CondVal)))) | 
|  | return BinaryOperator::CreateOr(TrueVal, FalseVal); | 
|  | } | 
|  |  | 
|  | // Selecting between two integer constants? | 
|  | if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) | 
|  | if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { | 
|  | // select C, 1, 0 -> zext C to int | 
|  | if (FalseValC->isZero() && TrueValC->getValue() == 1) | 
|  | return new ZExtInst(CondVal, SI.getType()); | 
|  |  | 
|  | // select C, -1, 0 -> sext C to int | 
|  | if (FalseValC->isZero() && TrueValC->isAllOnesValue()) | 
|  | return new SExtInst(CondVal, SI.getType()); | 
|  |  | 
|  | // select C, 0, 1 -> zext !C to int | 
|  | if (TrueValC->isZero() && FalseValC->getValue() == 1) { | 
|  | Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); | 
|  | return new ZExtInst(NotCond, SI.getType()); | 
|  | } | 
|  |  | 
|  | // select C, 0, -1 -> sext !C to int | 
|  | if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { | 
|  | Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); | 
|  | return new SExtInst(NotCond, SI.getType()); | 
|  | } | 
|  |  | 
|  | if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { | 
|  | if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { | 
|  | // Transform (X == Y) ? X : Y  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  | // Transform (X une Y) ? X : Y  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | } | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  |  | 
|  | } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ | 
|  | // Transform (X == Y) ? Y : X  -> X | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  | // Transform (X une Y) ? Y : X  -> Y | 
|  | if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { | 
|  | // This is not safe in general for floating point: | 
|  | // consider X== -0, Y== +0. | 
|  | // It becomes safe if either operand is a nonzero constant. | 
|  | ConstantFP *CFPt, *CFPf; | 
|  | if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && | 
|  | !CFPt->getValueAPF().isZero()) || | 
|  | ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && | 
|  | !CFPf->getValueAPF().isZero())) | 
|  | return ReplaceInstUsesWith(SI, TrueVal); | 
|  | } | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  | } | 
|  | // NOTE: if we wanted to, this is where to detect ABS | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) | 
|  | if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) | 
|  | return Result; | 
|  |  | 
|  | if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) | 
|  | if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) | 
|  | if (TI->hasOneUse() && FI->hasOneUse()) { | 
|  | Instruction *AddOp = 0, *SubOp = 0; | 
|  |  | 
|  | // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) | 
|  | if (TI->getOpcode() == FI->getOpcode()) | 
|  | if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) | 
|  | return IV; | 
|  |  | 
|  | // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is | 
|  | // even legal for FP. | 
|  | if ((TI->getOpcode() == Instruction::Sub && | 
|  | FI->getOpcode() == Instruction::Add) || | 
|  | (TI->getOpcode() == Instruction::FSub && | 
|  | FI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = FI; SubOp = TI; | 
|  | } else if ((FI->getOpcode() == Instruction::Sub && | 
|  | TI->getOpcode() == Instruction::Add) || | 
|  | (FI->getOpcode() == Instruction::FSub && | 
|  | TI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = TI; SubOp = FI; | 
|  | } | 
|  |  | 
|  | if (AddOp) { | 
|  | Value *OtherAddOp = 0; | 
|  | if (SubOp->getOperand(0) == AddOp->getOperand(0)) { | 
|  | OtherAddOp = AddOp->getOperand(1); | 
|  | } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { | 
|  | OtherAddOp = AddOp->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (OtherAddOp) { | 
|  | // So at this point we know we have (Y -> OtherAddOp): | 
|  | //        select C, (add X, Y), (sub X, Z) | 
|  | Value *NegVal;  // Compute -Z | 
|  | if (SI.getType()->isFPOrFPVectorTy()) { | 
|  | NegVal = Builder->CreateFNeg(SubOp->getOperand(1)); | 
|  | } else { | 
|  | NegVal = Builder->CreateNeg(SubOp->getOperand(1)); | 
|  | } | 
|  |  | 
|  | Value *NewTrueOp = OtherAddOp; | 
|  | Value *NewFalseOp = NegVal; | 
|  | if (AddOp != TI) | 
|  | std::swap(NewTrueOp, NewFalseOp); | 
|  | Value *NewSel = | 
|  | Builder->CreateSelect(CondVal, NewTrueOp, | 
|  | NewFalseOp, SI.getName() + ".p"); | 
|  |  | 
|  | if (SI.getType()->isFPOrFPVectorTy()) | 
|  | return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); | 
|  | else | 
|  | return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into one of our operands. | 
|  | if (SI.getType()->isIntegerTy()) { | 
|  | if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) | 
|  | return FoldI; | 
|  |  | 
|  | // MAX(MAX(a, b), a) -> MAX(a, b) | 
|  | // MIN(MIN(a, b), a) -> MIN(a, b) | 
|  | // MAX(MIN(a, b), a) -> a | 
|  | // MIN(MAX(a, b), a) -> a | 
|  | Value *LHS, *RHS, *LHS2, *RHS2; | 
|  | if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { | 
|  | if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) | 
|  | if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, | 
|  | SI, SPF, RHS)) | 
|  | return R; | 
|  | if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) | 
|  | if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, | 
|  | SI, SPF, LHS)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // TODO. | 
|  | // ABS(-X) -> ABS(X) | 
|  | // ABS(ABS(X)) -> ABS(X) | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into a phi node if the condition is a select. | 
|  | if (isa<PHINode>(SI.getCondition())) | 
|  | // The true/false values have to be live in the PHI predecessor's blocks. | 
|  | if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && | 
|  | CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(SI)) | 
|  | return NV; | 
|  |  | 
|  | if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { | 
|  | if (TrueSI->getCondition() == CondVal) { | 
|  | if (SI.getTrueValue() == TrueSI->getTrueValue()) | 
|  | return 0; | 
|  | SI.setOperand(1, TrueSI->getTrueValue()); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { | 
|  | if (FalseSI->getCondition() == CondVal) { | 
|  | if (SI.getFalseValue() == FalseSI->getFalseValue()) | 
|  | return 0; | 
|  | SI.setOperand(2, FalseSI->getFalseValue()); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BinaryOperator::isNot(CondVal)) { | 
|  | SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); | 
|  | SI.setOperand(1, FalseVal); | 
|  | SI.setOperand(2, TrueVal); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) { | 
|  | unsigned VWidth = VecTy->getNumElements(); | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { | 
|  | if (V != &SI) | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) { | 
|  | // Form a shufflevector instruction. | 
|  | SmallVector<Constant *, 8> Mask(VWidth); | 
|  | Type *Int32Ty = Type::getInt32Ty(CV->getContext()); | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Constant *Elem = cast<Constant>(CV->getOperand(i)); | 
|  | if (ConstantInt *E = dyn_cast<ConstantInt>(Elem)) | 
|  | Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0)); | 
|  | else if (isa<UndefValue>(Elem)) | 
|  | Mask[i] = UndefValue::get(Int32Ty); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | Constant *MaskVal = ConstantVector::get(Mask); | 
|  | Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal); | 
|  | return ReplaceInstUsesWith(SI, V); | 
|  | } | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(CondVal)) { | 
|  | return ReplaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |