|  | //===- JumpThreading.cpp - Thread control through conditional blocks ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Jump Threading pass. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "jump-threading" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include "llvm/DataLayout.h" | 
|  | #include "llvm/Target/TargetLibraryInfo.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumThreads, "Number of jumps threaded"); | 
|  | STATISTIC(NumFolds,   "Number of terminators folded"); | 
|  | STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi"); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | Threshold("jump-threading-threshold", | 
|  | cl::desc("Max block size to duplicate for jump threading"), | 
|  | cl::init(6), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  | // These are at global scope so static functions can use them too. | 
|  | typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; | 
|  | typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; | 
|  |  | 
|  | // This is used to keep track of what kind of constant we're currently hoping | 
|  | // to find. | 
|  | enum ConstantPreference { | 
|  | WantInteger, | 
|  | WantBlockAddress | 
|  | }; | 
|  |  | 
|  | /// This pass performs 'jump threading', which looks at blocks that have | 
|  | /// multiple predecessors and multiple successors.  If one or more of the | 
|  | /// predecessors of the block can be proven to always jump to one of the | 
|  | /// successors, we forward the edge from the predecessor to the successor by | 
|  | /// duplicating the contents of this block. | 
|  | /// | 
|  | /// An example of when this can occur is code like this: | 
|  | /// | 
|  | ///   if () { ... | 
|  | ///     X = 4; | 
|  | ///   } | 
|  | ///   if (X < 3) { | 
|  | /// | 
|  | /// In this case, the unconditional branch at the end of the first if can be | 
|  | /// revectored to the false side of the second if. | 
|  | /// | 
|  | class JumpThreading : public FunctionPass { | 
|  | DataLayout *TD; | 
|  | TargetLibraryInfo *TLI; | 
|  | LazyValueInfo *LVI; | 
|  | #ifdef NDEBUG | 
|  | SmallPtrSet<BasicBlock*, 16> LoopHeaders; | 
|  | #else | 
|  | SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; | 
|  | #endif | 
|  | DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; | 
|  |  | 
|  | // RAII helper for updating the recursion stack. | 
|  | struct RecursionSetRemover { | 
|  | DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; | 
|  | std::pair<Value*, BasicBlock*> ThePair; | 
|  |  | 
|  | RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, | 
|  | std::pair<Value*, BasicBlock*> P) | 
|  | : TheSet(S), ThePair(P) { } | 
|  |  | 
|  | ~RecursionSetRemover() { | 
|  | TheSet.erase(ThePair); | 
|  | } | 
|  | }; | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  | JumpThreading() : FunctionPass(ID) { | 
|  | initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<LazyValueInfo>(); | 
|  | AU.addPreserved<LazyValueInfo>(); | 
|  | AU.addRequired<TargetLibraryInfo>(); | 
|  | } | 
|  |  | 
|  | void FindLoopHeaders(Function &F); | 
|  | bool ProcessBlock(BasicBlock *BB); | 
|  | bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, | 
|  | BasicBlock *SuccBB); | 
|  | bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, | 
|  | const SmallVectorImpl<BasicBlock *> &PredBBs); | 
|  |  | 
|  | bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, | 
|  | PredValueInfo &Result, | 
|  | ConstantPreference Preference); | 
|  | bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, | 
|  | ConstantPreference Preference); | 
|  |  | 
|  | bool ProcessBranchOnPHI(PHINode *PN); | 
|  | bool ProcessBranchOnXOR(BinaryOperator *BO); | 
|  |  | 
|  | bool SimplifyPartiallyRedundantLoad(LoadInst *LI); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char JumpThreading::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", | 
|  | "Jump Threading", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) | 
|  | INITIALIZE_PASS_END(JumpThreading, "jump-threading", | 
|  | "Jump Threading", false, false) | 
|  |  | 
|  | // Public interface to the Jump Threading pass | 
|  | FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } | 
|  |  | 
|  | /// runOnFunction - Top level algorithm. | 
|  | /// | 
|  | bool JumpThreading::runOnFunction(Function &F) { | 
|  | DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); | 
|  | TD = getAnalysisIfAvailable<DataLayout>(); | 
|  | TLI = &getAnalysis<TargetLibraryInfo>(); | 
|  | LVI = &getAnalysis<LazyValueInfo>(); | 
|  |  | 
|  | FindLoopHeaders(F); | 
|  |  | 
|  | bool Changed, EverChanged = false; | 
|  | do { | 
|  | Changed = false; | 
|  | for (Function::iterator I = F.begin(), E = F.end(); I != E;) { | 
|  | BasicBlock *BB = I; | 
|  | // Thread all of the branches we can over this block. | 
|  | while (ProcessBlock(BB)) | 
|  | Changed = true; | 
|  |  | 
|  | ++I; | 
|  |  | 
|  | // If the block is trivially dead, zap it.  This eliminates the successor | 
|  | // edges which simplifies the CFG. | 
|  | if (pred_begin(BB) == pred_end(BB) && | 
|  | BB != &BB->getParent()->getEntryBlock()) { | 
|  | DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName() | 
|  | << "' with terminator: " << *BB->getTerminator() << '\n'); | 
|  | LoopHeaders.erase(BB); | 
|  | LVI->eraseBlock(BB); | 
|  | DeleteDeadBlock(BB); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  |  | 
|  | // Can't thread an unconditional jump, but if the block is "almost | 
|  | // empty", we can replace uses of it with uses of the successor and make | 
|  | // this dead. | 
|  | if (BI && BI->isUnconditional() && | 
|  | BB != &BB->getParent()->getEntryBlock() && | 
|  | // If the terminator is the only non-phi instruction, try to nuke it. | 
|  | BB->getFirstNonPHIOrDbg()->isTerminator()) { | 
|  | // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the | 
|  | // block, we have to make sure it isn't in the LoopHeaders set.  We | 
|  | // reinsert afterward if needed. | 
|  | bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); | 
|  | BasicBlock *Succ = BI->getSuccessor(0); | 
|  |  | 
|  | // FIXME: It is always conservatively correct to drop the info | 
|  | // for a block even if it doesn't get erased.  This isn't totally | 
|  | // awesome, but it allows us to use AssertingVH to prevent nasty | 
|  | // dangling pointer issues within LazyValueInfo. | 
|  | LVI->eraseBlock(BB); | 
|  | if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { | 
|  | Changed = true; | 
|  | // If we deleted BB and BB was the header of a loop, then the | 
|  | // successor is now the header of the loop. | 
|  | BB = Succ; | 
|  | } | 
|  |  | 
|  | if (ErasedFromLoopHeaders) | 
|  | LoopHeaders.insert(BB); | 
|  | } | 
|  | } | 
|  | EverChanged |= Changed; | 
|  | } while (Changed); | 
|  |  | 
|  | LoopHeaders.clear(); | 
|  | return EverChanged; | 
|  | } | 
|  |  | 
|  | /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to | 
|  | /// thread across it. | 
|  | static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { | 
|  | /// Ignore PHI nodes, these will be flattened when duplication happens. | 
|  | BasicBlock::const_iterator I = BB->getFirstNonPHI(); | 
|  |  | 
|  | // FIXME: THREADING will delete values that are just used to compute the | 
|  | // branch, so they shouldn't count against the duplication cost. | 
|  |  | 
|  |  | 
|  | // Sum up the cost of each instruction until we get to the terminator.  Don't | 
|  | // include the terminator because the copy won't include it. | 
|  | unsigned Size = 0; | 
|  | for (; !isa<TerminatorInst>(I); ++I) { | 
|  | // Debugger intrinsics don't incur code size. | 
|  | if (isa<DbgInfoIntrinsic>(I)) continue; | 
|  |  | 
|  | // If this is a pointer->pointer bitcast, it is free. | 
|  | if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | // All other instructions count for at least one unit. | 
|  | ++Size; | 
|  |  | 
|  | // Calls are more expensive.  If they are non-intrinsic calls, we model them | 
|  | // as having cost of 4.  If they are a non-vector intrinsic, we model them | 
|  | // as having cost of 2 total, and if they are a vector intrinsic, we model | 
|  | // them as having cost 1. | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | if (!isa<IntrinsicInst>(CI)) | 
|  | Size += 3; | 
|  | else if (!CI->getType()->isVectorTy()) | 
|  | Size += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Threading through a switch statement is particularly profitable.  If this | 
|  | // block ends in a switch, decrease its cost to make it more likely to happen. | 
|  | if (isa<SwitchInst>(I)) | 
|  | Size = Size > 6 ? Size-6 : 0; | 
|  |  | 
|  | // The same holds for indirect branches, but slightly more so. | 
|  | if (isa<IndirectBrInst>(I)) | 
|  | Size = Size > 8 ? Size-8 : 0; | 
|  |  | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | /// FindLoopHeaders - We do not want jump threading to turn proper loop | 
|  | /// structures into irreducible loops.  Doing this breaks up the loop nesting | 
|  | /// hierarchy and pessimizes later transformations.  To prevent this from | 
|  | /// happening, we first have to find the loop headers.  Here we approximate this | 
|  | /// by finding targets of backedges in the CFG. | 
|  | /// | 
|  | /// Note that there definitely are cases when we want to allow threading of | 
|  | /// edges across a loop header.  For example, threading a jump from outside the | 
|  | /// loop (the preheader) to an exit block of the loop is definitely profitable. | 
|  | /// It is also almost always profitable to thread backedges from within the loop | 
|  | /// to exit blocks, and is often profitable to thread backedges to other blocks | 
|  | /// within the loop (forming a nested loop).  This simple analysis is not rich | 
|  | /// enough to track all of these properties and keep it up-to-date as the CFG | 
|  | /// mutates, so we don't allow any of these transformations. | 
|  | /// | 
|  | void JumpThreading::FindLoopHeaders(Function &F) { | 
|  | SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; | 
|  | FindFunctionBackedges(F, Edges); | 
|  |  | 
|  | for (unsigned i = 0, e = Edges.size(); i != e; ++i) | 
|  | LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); | 
|  | } | 
|  |  | 
|  | /// getKnownConstant - Helper method to determine if we can thread over a | 
|  | /// terminator with the given value as its condition, and if so what value to | 
|  | /// use for that. What kind of value this is depends on whether we want an | 
|  | /// integer or a block address, but an undef is always accepted. | 
|  | /// Returns null if Val is null or not an appropriate constant. | 
|  | static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { | 
|  | if (!Val) | 
|  | return 0; | 
|  |  | 
|  | // Undef is "known" enough. | 
|  | if (UndefValue *U = dyn_cast<UndefValue>(Val)) | 
|  | return U; | 
|  |  | 
|  | if (Preference == WantBlockAddress) | 
|  | return dyn_cast<BlockAddress>(Val->stripPointerCasts()); | 
|  |  | 
|  | return dyn_cast<ConstantInt>(Val); | 
|  | } | 
|  |  | 
|  | /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see | 
|  | /// if we can infer that the value is a known ConstantInt/BlockAddress or undef | 
|  | /// in any of our predecessors.  If so, return the known list of value and pred | 
|  | /// BB in the result vector. | 
|  | /// | 
|  | /// This returns true if there were any known values. | 
|  | /// | 
|  | bool JumpThreading:: | 
|  | ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, | 
|  | ConstantPreference Preference) { | 
|  | // This method walks up use-def chains recursively.  Because of this, we could | 
|  | // get into an infinite loop going around loops in the use-def chain.  To | 
|  | // prevent this, keep track of what (value, block) pairs we've already visited | 
|  | // and terminate the search if we loop back to them | 
|  | if (!RecursionSet.insert(std::make_pair(V, BB)).second) | 
|  | return false; | 
|  |  | 
|  | // An RAII help to remove this pair from the recursion set once the recursion | 
|  | // stack pops back out again. | 
|  | RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); | 
|  |  | 
|  | // If V is a constant, then it is known in all predecessors. | 
|  | if (Constant *KC = getKnownConstant(V, Preference)) { | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | Result.push_back(std::make_pair(KC, *PI)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If V is a non-instruction value, or an instruction in a different block, | 
|  | // then it can't be derived from a PHI. | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I == 0 || I->getParent() != BB) { | 
|  |  | 
|  | // Okay, if this is a live-in value, see if it has a known value at the end | 
|  | // of any of our predecessors. | 
|  | // | 
|  | // FIXME: This should be an edge property, not a block end property. | 
|  | /// TODO: Per PR2563, we could infer value range information about a | 
|  | /// predecessor based on its terminator. | 
|  | // | 
|  | // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if | 
|  | // "I" is a non-local compare-with-a-constant instruction.  This would be | 
|  | // able to handle value inequalities better, for example if the compare is | 
|  | // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. | 
|  | // Perhaps getConstantOnEdge should be smart enough to do this? | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | // If the value is known by LazyValueInfo to be a constant in a | 
|  | // predecessor, use that information to try to thread this block. | 
|  | Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); | 
|  | if (Constant *KC = getKnownConstant(PredCst, Preference)) | 
|  | Result.push_back(std::make_pair(KC, P)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | /// If I is a PHI node, then we know the incoming values for any constants. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *InVal = PN->getIncomingValue(i); | 
|  | if (Constant *KC = getKnownConstant(InVal, Preference)) { | 
|  | Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); | 
|  | } else { | 
|  | Constant *CI = LVI->getConstantOnEdge(InVal, | 
|  | PN->getIncomingBlock(i), BB); | 
|  | if (Constant *KC = getKnownConstant(CI, Preference)) | 
|  | Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | PredValueInfoTy LHSVals, RHSVals; | 
|  |  | 
|  | // Handle some boolean conditions. | 
|  | if (I->getType()->getPrimitiveSizeInBits() == 1) { | 
|  | assert(Preference == WantInteger && "One-bit non-integer type?"); | 
|  | // X | true -> true | 
|  | // X & false -> false | 
|  | if (I->getOpcode() == Instruction::Or || | 
|  | I->getOpcode() == Instruction::And) { | 
|  | ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, | 
|  | WantInteger); | 
|  | ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, | 
|  | WantInteger); | 
|  |  | 
|  | if (LHSVals.empty() && RHSVals.empty()) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *InterestingVal; | 
|  | if (I->getOpcode() == Instruction::Or) | 
|  | InterestingVal = ConstantInt::getTrue(I->getContext()); | 
|  | else | 
|  | InterestingVal = ConstantInt::getFalse(I->getContext()); | 
|  |  | 
|  | SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; | 
|  |  | 
|  | // Scan for the sentinel.  If we find an undef, force it to the | 
|  | // interesting value: x|undef -> true and x&undef -> false. | 
|  | for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) | 
|  | if (LHSVals[i].first == InterestingVal || | 
|  | isa<UndefValue>(LHSVals[i].first)) { | 
|  | Result.push_back(LHSVals[i]); | 
|  | Result.back().first = InterestingVal; | 
|  | LHSKnownBBs.insert(LHSVals[i].second); | 
|  | } | 
|  | for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) | 
|  | if (RHSVals[i].first == InterestingVal || | 
|  | isa<UndefValue>(RHSVals[i].first)) { | 
|  | // If we already inferred a value for this block on the LHS, don't | 
|  | // re-add it. | 
|  | if (!LHSKnownBBs.count(RHSVals[i].second)) { | 
|  | Result.push_back(RHSVals[i]); | 
|  | Result.back().first = InterestingVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | // Handle the NOT form of XOR. | 
|  | if (I->getOpcode() == Instruction::Xor && | 
|  | isa<ConstantInt>(I->getOperand(1)) && | 
|  | cast<ConstantInt>(I->getOperand(1))->isOne()) { | 
|  | ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, | 
|  | WantInteger); | 
|  | if (Result.empty()) | 
|  | return false; | 
|  |  | 
|  | // Invert the known values. | 
|  | for (unsigned i = 0, e = Result.size(); i != e; ++i) | 
|  | Result[i].first = ConstantExpr::getNot(Result[i].first); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to simplify some other binary operator values. | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | assert(Preference != WantBlockAddress | 
|  | && "A binary operator creating a block address?"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { | 
|  | PredValueInfoTy LHSVals; | 
|  | ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, | 
|  | WantInteger); | 
|  |  | 
|  | // Try to use constant folding to simplify the binary operator. | 
|  | for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { | 
|  | Constant *V = LHSVals[i].first; | 
|  | Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); | 
|  |  | 
|  | if (Constant *KC = getKnownConstant(Folded, WantInteger)) | 
|  | Result.push_back(std::make_pair(KC, LHSVals[i].second)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | // Handle compare with phi operand, where the PHI is defined in this block. | 
|  | if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { | 
|  | assert(Preference == WantInteger && "Compares only produce integers"); | 
|  | PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); | 
|  | if (PN && PN->getParent() == BB) { | 
|  | // We can do this simplification if any comparisons fold to true or false. | 
|  | // See if any do. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PredBB = PN->getIncomingBlock(i); | 
|  | Value *LHS = PN->getIncomingValue(i); | 
|  | Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); | 
|  |  | 
|  | Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); | 
|  | if (Res == 0) { | 
|  | if (!isa<Constant>(RHS)) | 
|  | continue; | 
|  |  | 
|  | LazyValueInfo::Tristate | 
|  | ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, | 
|  | cast<Constant>(RHS), PredBB, BB); | 
|  | if (ResT == LazyValueInfo::Unknown) | 
|  | continue; | 
|  | Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); | 
|  | } | 
|  |  | 
|  | if (Constant *KC = getKnownConstant(Res, WantInteger)) | 
|  | Result.push_back(std::make_pair(KC, PredBB)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // If comparing a live-in value against a constant, see if we know the | 
|  | // live-in value on any predecessors. | 
|  | if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { | 
|  | if (!isa<Instruction>(Cmp->getOperand(0)) || | 
|  | cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { | 
|  | Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ | 
|  | BasicBlock *P = *PI; | 
|  | // If the value is known by LazyValueInfo to be a constant in a | 
|  | // predecessor, use that information to try to thread this block. | 
|  | LazyValueInfo::Tristate Res = | 
|  | LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), | 
|  | RHSCst, P, BB); | 
|  | if (Res == LazyValueInfo::Unknown) | 
|  | continue; | 
|  |  | 
|  | Constant *ResC = ConstantInt::get(Cmp->getType(), Res); | 
|  | Result.push_back(std::make_pair(ResC, P)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | // Try to find a constant value for the LHS of a comparison, | 
|  | // and evaluate it statically if we can. | 
|  | if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { | 
|  | PredValueInfoTy LHSVals; | 
|  | ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, | 
|  | WantInteger); | 
|  |  | 
|  | for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { | 
|  | Constant *V = LHSVals[i].first; | 
|  | Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), | 
|  | V, CmpConst); | 
|  | if (Constant *KC = getKnownConstant(Folded, WantInteger)) | 
|  | Result.push_back(std::make_pair(KC, LHSVals[i].second)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(I)) { | 
|  | // Handle select instructions where at least one operand is a known constant | 
|  | // and we can figure out the condition value for any predecessor block. | 
|  | Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); | 
|  | Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); | 
|  | PredValueInfoTy Conds; | 
|  | if ((TrueVal || FalseVal) && | 
|  | ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, | 
|  | WantInteger)) { | 
|  | for (unsigned i = 0, e = Conds.size(); i != e; ++i) { | 
|  | Constant *Cond = Conds[i].first; | 
|  |  | 
|  | // Figure out what value to use for the condition. | 
|  | bool KnownCond; | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { | 
|  | // A known boolean. | 
|  | KnownCond = CI->isOne(); | 
|  | } else { | 
|  | assert(isa<UndefValue>(Cond) && "Unexpected condition value"); | 
|  | // Either operand will do, so be sure to pick the one that's a known | 
|  | // constant. | 
|  | // FIXME: Do this more cleverly if both values are known constants? | 
|  | KnownCond = (TrueVal != 0); | 
|  | } | 
|  |  | 
|  | // See if the select has a known constant value for this predecessor. | 
|  | if (Constant *Val = KnownCond ? TrueVal : FalseVal) | 
|  | Result.push_back(std::make_pair(Val, Conds[i].second)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all else fails, see if LVI can figure out a constant value for us. | 
|  | Constant *CI = LVI->getConstant(V, BB); | 
|  | if (Constant *KC = getKnownConstant(CI, Preference)) { | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | Result.push_back(std::make_pair(KC, *PI)); | 
|  | } | 
|  |  | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// GetBestDestForBranchOnUndef - If we determine that the specified block ends | 
|  | /// in an undefined jump, decide which block is best to revector to. | 
|  | /// | 
|  | /// Since we can pick an arbitrary destination, we pick the successor with the | 
|  | /// fewest predecessors.  This should reduce the in-degree of the others. | 
|  | /// | 
|  | static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { | 
|  | TerminatorInst *BBTerm = BB->getTerminator(); | 
|  | unsigned MinSucc = 0; | 
|  | BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); | 
|  | // Compute the successor with the minimum number of predecessors. | 
|  | unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); | 
|  | for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { | 
|  | TestBB = BBTerm->getSuccessor(i); | 
|  | unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); | 
|  | if (NumPreds < MinNumPreds) { | 
|  | MinSucc = i; | 
|  | MinNumPreds = NumPreds; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MinSucc; | 
|  | } | 
|  |  | 
|  | static bool hasAddressTakenAndUsed(BasicBlock *BB) { | 
|  | if (!BB->hasAddressTaken()) return false; | 
|  |  | 
|  | // If the block has its address taken, it may be a tree of dead constants | 
|  | // hanging off of it.  These shouldn't keep the block alive. | 
|  | BlockAddress *BA = BlockAddress::get(BB); | 
|  | BA->removeDeadConstantUsers(); | 
|  | return !BA->use_empty(); | 
|  | } | 
|  |  | 
|  | /// ProcessBlock - If there are any predecessors whose control can be threaded | 
|  | /// through to a successor, transform them now. | 
|  | bool JumpThreading::ProcessBlock(BasicBlock *BB) { | 
|  | // If the block is trivially dead, just return and let the caller nuke it. | 
|  | // This simplifies other transformations. | 
|  | if (pred_begin(BB) == pred_end(BB) && | 
|  | BB != &BB->getParent()->getEntryBlock()) | 
|  | return false; | 
|  |  | 
|  | // If this block has a single predecessor, and if that pred has a single | 
|  | // successor, merge the blocks.  This encourages recursive jump threading | 
|  | // because now the condition in this block can be threaded through | 
|  | // predecessors of our predecessor block. | 
|  | if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { | 
|  | if (SinglePred->getTerminator()->getNumSuccessors() == 1 && | 
|  | SinglePred != BB && !hasAddressTakenAndUsed(BB)) { | 
|  | // If SinglePred was a loop header, BB becomes one. | 
|  | if (LoopHeaders.erase(SinglePred)) | 
|  | LoopHeaders.insert(BB); | 
|  |  | 
|  | // Remember if SinglePred was the entry block of the function.  If so, we | 
|  | // will need to move BB back to the entry position. | 
|  | bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); | 
|  | LVI->eraseBlock(SinglePred); | 
|  | MergeBasicBlockIntoOnlyPred(BB); | 
|  |  | 
|  | if (isEntry && BB != &BB->getParent()->getEntryBlock()) | 
|  | BB->moveBefore(&BB->getParent()->getEntryBlock()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // What kind of constant we're looking for. | 
|  | ConstantPreference Preference = WantInteger; | 
|  |  | 
|  | // Look to see if the terminator is a conditional branch, switch or indirect | 
|  | // branch, if not we can't thread it. | 
|  | Value *Condition; | 
|  | Instruction *Terminator = BB->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { | 
|  | // Can't thread an unconditional jump. | 
|  | if (BI->isUnconditional()) return false; | 
|  | Condition = BI->getCondition(); | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { | 
|  | Condition = SI->getCondition(); | 
|  | } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { | 
|  | // Can't thread indirect branch with no successors. | 
|  | if (IB->getNumSuccessors() == 0) return false; | 
|  | Condition = IB->getAddress()->stripPointerCasts(); | 
|  | Preference = WantBlockAddress; | 
|  | } else { | 
|  | return false; // Must be an invoke. | 
|  | } | 
|  |  | 
|  | // Run constant folding to see if we can reduce the condition to a simple | 
|  | // constant. | 
|  | if (Instruction *I = dyn_cast<Instruction>(Condition)) { | 
|  | Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI); | 
|  | if (SimpleVal) { | 
|  | I->replaceAllUsesWith(SimpleVal); | 
|  | I->eraseFromParent(); | 
|  | Condition = SimpleVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the terminator is branching on an undef, we can pick any of the | 
|  | // successors to branch to.  Let GetBestDestForJumpOnUndef decide. | 
|  | if (isa<UndefValue>(Condition)) { | 
|  | unsigned BestSucc = GetBestDestForJumpOnUndef(BB); | 
|  |  | 
|  | // Fold the branch/switch. | 
|  | TerminatorInst *BBTerm = BB->getTerminator(); | 
|  | for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { | 
|  | if (i == BestSucc) continue; | 
|  | BBTerm->getSuccessor(i)->removePredecessor(BB, true); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  In block '" << BB->getName() | 
|  | << "' folding undef terminator: " << *BBTerm << '\n'); | 
|  | BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); | 
|  | BBTerm->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the terminator of this block is branching on a constant, simplify the | 
|  | // terminator to an unconditional branch.  This can occur due to threading in | 
|  | // other blocks. | 
|  | if (getKnownConstant(Condition, Preference)) { | 
|  | DEBUG(dbgs() << "  In block '" << BB->getName() | 
|  | << "' folding terminator: " << *BB->getTerminator() << '\n'); | 
|  | ++NumFolds; | 
|  | ConstantFoldTerminator(BB, true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Instruction *CondInst = dyn_cast<Instruction>(Condition); | 
|  |  | 
|  | // All the rest of our checks depend on the condition being an instruction. | 
|  | if (CondInst == 0) { | 
|  | // FIXME: Unify this with code below. | 
|  | if (ProcessThreadableEdges(Condition, BB, Preference)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { | 
|  | // For a comparison where the LHS is outside this block, it's possible | 
|  | // that we've branched on it before.  Used LVI to see if we can simplify | 
|  | // the branch based on that. | 
|  | BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  | if (CondBr && CondConst && CondBr->isConditional() && PI != PE && | 
|  | (!isa<Instruction>(CondCmp->getOperand(0)) || | 
|  | cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { | 
|  | // For predecessor edge, determine if the comparison is true or false | 
|  | // on that edge.  If they're all true or all false, we can simplify the | 
|  | // branch. | 
|  | // FIXME: We could handle mixed true/false by duplicating code. | 
|  | LazyValueInfo::Tristate Baseline = | 
|  | LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), | 
|  | CondConst, *PI, BB); | 
|  | if (Baseline != LazyValueInfo::Unknown) { | 
|  | // Check that all remaining incoming values match the first one. | 
|  | while (++PI != PE) { | 
|  | LazyValueInfo::Tristate Ret = | 
|  | LVI->getPredicateOnEdge(CondCmp->getPredicate(), | 
|  | CondCmp->getOperand(0), CondConst, *PI, BB); | 
|  | if (Ret != Baseline) break; | 
|  | } | 
|  |  | 
|  | // If we terminated early, then one of the values didn't match. | 
|  | if (PI == PE) { | 
|  | unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; | 
|  | unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; | 
|  | CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); | 
|  | BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); | 
|  | CondBr->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for some cases that are worth simplifying.  Right now we want to look | 
|  | // for loads that are used by a switch or by the condition for the branch.  If | 
|  | // we see one, check to see if it's partially redundant.  If so, insert a PHI | 
|  | // which can then be used to thread the values. | 
|  | // | 
|  | Value *SimplifyValue = CondInst; | 
|  | if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) | 
|  | if (isa<Constant>(CondCmp->getOperand(1))) | 
|  | SimplifyValue = CondCmp->getOperand(0); | 
|  |  | 
|  | // TODO: There are other places where load PRE would be profitable, such as | 
|  | // more complex comparisons. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) | 
|  | if (SimplifyPartiallyRedundantLoad(LI)) | 
|  | return true; | 
|  |  | 
|  |  | 
|  | // Handle a variety of cases where we are branching on something derived from | 
|  | // a PHI node in the current block.  If we can prove that any predecessors | 
|  | // compute a predictable value based on a PHI node, thread those predecessors. | 
|  | // | 
|  | if (ProcessThreadableEdges(CondInst, BB, Preference)) | 
|  | return true; | 
|  |  | 
|  | // If this is an otherwise-unfoldable branch on a phi node in the current | 
|  | // block, see if we can simplify. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(CondInst)) | 
|  | if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) | 
|  | return ProcessBranchOnPHI(PN); | 
|  |  | 
|  |  | 
|  | // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. | 
|  | if (CondInst->getOpcode() == Instruction::Xor && | 
|  | CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) | 
|  | return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); | 
|  |  | 
|  |  | 
|  | // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know | 
|  | // "(X == 4)", thread through this block. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant | 
|  | /// load instruction, eliminate it by replacing it with a PHI node.  This is an | 
|  | /// important optimization that encourages jump threading, and needs to be run | 
|  | /// interlaced with other jump threading tasks. | 
|  | bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { | 
|  | // Don't hack volatile/atomic loads. | 
|  | if (!LI->isSimple()) return false; | 
|  |  | 
|  | // If the load is defined in a block with exactly one predecessor, it can't be | 
|  | // partially redundant. | 
|  | BasicBlock *LoadBB = LI->getParent(); | 
|  | if (LoadBB->getSinglePredecessor()) | 
|  | return false; | 
|  |  | 
|  | Value *LoadedPtr = LI->getOperand(0); | 
|  |  | 
|  | // If the loaded operand is defined in the LoadBB, it can't be available. | 
|  | // TODO: Could do simple PHI translation, that would be fun :) | 
|  | if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) | 
|  | if (PtrOp->getParent() == LoadBB) | 
|  | return false; | 
|  |  | 
|  | // Scan a few instructions up from the load, to see if it is obviously live at | 
|  | // the entry to its block. | 
|  | BasicBlock::iterator BBIt = LI; | 
|  |  | 
|  | if (Value *AvailableVal = | 
|  | FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { | 
|  | // If the value if the load is locally available within the block, just use | 
|  | // it.  This frequently occurs for reg2mem'd allocas. | 
|  | //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; | 
|  |  | 
|  | // If the returned value is the load itself, replace with an undef. This can | 
|  | // only happen in dead loops. | 
|  | if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); | 
|  | LI->replaceAllUsesWith(AvailableVal); | 
|  | LI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, if we scanned the whole block and got to the top of the block, | 
|  | // we know the block is locally transparent to the load.  If not, something | 
|  | // might clobber its value. | 
|  | if (BBIt != LoadBB->begin()) | 
|  | return false; | 
|  |  | 
|  | // If all of the loads and stores that feed the value have the same TBAA tag, | 
|  | // then we can propagate it onto any newly inserted loads. | 
|  | MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); | 
|  |  | 
|  | SmallPtrSet<BasicBlock*, 8> PredsScanned; | 
|  | typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; | 
|  | AvailablePredsTy AvailablePreds; | 
|  | BasicBlock *OneUnavailablePred = 0; | 
|  |  | 
|  | // If we got here, the loaded value is transparent through to the start of the | 
|  | // block.  Check to see if it is available in any of the predecessor blocks. | 
|  | for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); | 
|  | PI != PE; ++PI) { | 
|  | BasicBlock *PredBB = *PI; | 
|  |  | 
|  | // If we already scanned this predecessor, skip it. | 
|  | if (!PredsScanned.insert(PredBB)) | 
|  | continue; | 
|  |  | 
|  | // Scan the predecessor to see if the value is available in the pred. | 
|  | BBIt = PredBB->end(); | 
|  | MDNode *ThisTBAATag = 0; | 
|  | Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, | 
|  | 0, &ThisTBAATag); | 
|  | if (!PredAvailable) { | 
|  | OneUnavailablePred = PredBB; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If tbaa tags disagree or are not present, forget about them. | 
|  | if (TBAATag != ThisTBAATag) TBAATag = 0; | 
|  |  | 
|  | // If so, this load is partially redundant.  Remember this info so that we | 
|  | // can create a PHI node. | 
|  | AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); | 
|  | } | 
|  |  | 
|  | // If the loaded value isn't available in any predecessor, it isn't partially | 
|  | // redundant. | 
|  | if (AvailablePreds.empty()) return false; | 
|  |  | 
|  | // Okay, the loaded value is available in at least one (and maybe all!) | 
|  | // predecessors.  If the value is unavailable in more than one unique | 
|  | // predecessor, we want to insert a merge block for those common predecessors. | 
|  | // This ensures that we only have to insert one reload, thus not increasing | 
|  | // code size. | 
|  | BasicBlock *UnavailablePred = 0; | 
|  |  | 
|  | // If there is exactly one predecessor where the value is unavailable, the | 
|  | // already computed 'OneUnavailablePred' block is it.  If it ends in an | 
|  | // unconditional branch, we know that it isn't a critical edge. | 
|  | if (PredsScanned.size() == AvailablePreds.size()+1 && | 
|  | OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { | 
|  | UnavailablePred = OneUnavailablePred; | 
|  | } else if (PredsScanned.size() != AvailablePreds.size()) { | 
|  | // Otherwise, we had multiple unavailable predecessors or we had a critical | 
|  | // edge from the one. | 
|  | SmallVector<BasicBlock*, 8> PredsToSplit; | 
|  | SmallPtrSet<BasicBlock*, 8> AvailablePredSet; | 
|  |  | 
|  | for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) | 
|  | AvailablePredSet.insert(AvailablePreds[i].first); | 
|  |  | 
|  | // Add all the unavailable predecessors to the PredsToSplit list. | 
|  | for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); | 
|  | PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | // If the predecessor is an indirect goto, we can't split the edge. | 
|  | if (isa<IndirectBrInst>(P->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | if (!AvailablePredSet.count(P)) | 
|  | PredsToSplit.push_back(P); | 
|  | } | 
|  |  | 
|  | // Split them out to their own block. | 
|  | UnavailablePred = | 
|  | SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); | 
|  | } | 
|  |  | 
|  | // If the value isn't available in all predecessors, then there will be | 
|  | // exactly one where it isn't available.  Insert a load on that edge and add | 
|  | // it to the AvailablePreds list. | 
|  | if (UnavailablePred) { | 
|  | assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && | 
|  | "Can't handle critical edge here!"); | 
|  | LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, | 
|  | LI->getAlignment(), | 
|  | UnavailablePred->getTerminator()); | 
|  | NewVal->setDebugLoc(LI->getDebugLoc()); | 
|  | if (TBAATag) | 
|  | NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); | 
|  |  | 
|  | AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); | 
|  | } | 
|  |  | 
|  | // Now we know that each predecessor of this block has a value in | 
|  | // AvailablePreds, sort them for efficient access as we're walking the preds. | 
|  | array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); | 
|  |  | 
|  | // Create a PHI node at the start of the block for the PRE'd load value. | 
|  | pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); | 
|  | PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", | 
|  | LoadBB->begin()); | 
|  | PN->takeName(LI); | 
|  | PN->setDebugLoc(LI->getDebugLoc()); | 
|  |  | 
|  | // Insert new entries into the PHI for each predecessor.  A single block may | 
|  | // have multiple entries here. | 
|  | for (pred_iterator PI = PB; PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | AvailablePredsTy::iterator I = | 
|  | std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), | 
|  | std::make_pair(P, (Value*)0)); | 
|  |  | 
|  | assert(I != AvailablePreds.end() && I->first == P && | 
|  | "Didn't find entry for predecessor!"); | 
|  |  | 
|  | PN->addIncoming(I->second, I->first); | 
|  | } | 
|  |  | 
|  | //cerr << "PRE: " << *LI << *PN << "\n"; | 
|  |  | 
|  | LI->replaceAllUsesWith(PN); | 
|  | LI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindMostPopularDest - The specified list contains multiple possible | 
|  | /// threadable destinations.  Pick the one that occurs the most frequently in | 
|  | /// the list. | 
|  | static BasicBlock * | 
|  | FindMostPopularDest(BasicBlock *BB, | 
|  | const SmallVectorImpl<std::pair<BasicBlock*, | 
|  | BasicBlock*> > &PredToDestList) { | 
|  | assert(!PredToDestList.empty()); | 
|  |  | 
|  | // Determine popularity.  If there are multiple possible destinations, we | 
|  | // explicitly choose to ignore 'undef' destinations.  We prefer to thread | 
|  | // blocks with known and real destinations to threading undef.  We'll handle | 
|  | // them later if interesting. | 
|  | DenseMap<BasicBlock*, unsigned> DestPopularity; | 
|  | for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) | 
|  | if (PredToDestList[i].second) | 
|  | DestPopularity[PredToDestList[i].second]++; | 
|  |  | 
|  | // Find the most popular dest. | 
|  | DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); | 
|  | BasicBlock *MostPopularDest = DPI->first; | 
|  | unsigned Popularity = DPI->second; | 
|  | SmallVector<BasicBlock*, 4> SamePopularity; | 
|  |  | 
|  | for (++DPI; DPI != DestPopularity.end(); ++DPI) { | 
|  | // If the popularity of this entry isn't higher than the popularity we've | 
|  | // seen so far, ignore it. | 
|  | if (DPI->second < Popularity) | 
|  | ; // ignore. | 
|  | else if (DPI->second == Popularity) { | 
|  | // If it is the same as what we've seen so far, keep track of it. | 
|  | SamePopularity.push_back(DPI->first); | 
|  | } else { | 
|  | // If it is more popular, remember it. | 
|  | SamePopularity.clear(); | 
|  | MostPopularDest = DPI->first; | 
|  | Popularity = DPI->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, now we know the most popular destination.  If there is more than one | 
|  | // destination, we need to determine one.  This is arbitrary, but we need | 
|  | // to make a deterministic decision.  Pick the first one that appears in the | 
|  | // successor list. | 
|  | if (!SamePopularity.empty()) { | 
|  | SamePopularity.push_back(MostPopularDest); | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | for (unsigned i = 0; ; ++i) { | 
|  | assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); | 
|  |  | 
|  | if (std::find(SamePopularity.begin(), SamePopularity.end(), | 
|  | TI->getSuccessor(i)) == SamePopularity.end()) | 
|  | continue; | 
|  |  | 
|  | MostPopularDest = TI->getSuccessor(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, we have finally picked the most popular destination. | 
|  | return MostPopularDest; | 
|  | } | 
|  |  | 
|  | bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, | 
|  | ConstantPreference Preference) { | 
|  | // If threading this would thread across a loop header, don't even try to | 
|  | // thread the edge. | 
|  | if (LoopHeaders.count(BB)) | 
|  | return false; | 
|  |  | 
|  | PredValueInfoTy PredValues; | 
|  | if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) | 
|  | return false; | 
|  |  | 
|  | assert(!PredValues.empty() && | 
|  | "ComputeValueKnownInPredecessors returned true with no values"); | 
|  |  | 
|  | DEBUG(dbgs() << "IN BB: " << *BB; | 
|  | for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { | 
|  | dbgs() << "  BB '" << BB->getName() << "': FOUND condition = " | 
|  | << *PredValues[i].first | 
|  | << " for pred '" << PredValues[i].second->getName() << "'.\n"; | 
|  | }); | 
|  |  | 
|  | // Decide what we want to thread through.  Convert our list of known values to | 
|  | // a list of known destinations for each pred.  This also discards duplicate | 
|  | // predecessors and keeps track of the undefined inputs (which are represented | 
|  | // as a null dest in the PredToDestList). | 
|  | SmallPtrSet<BasicBlock*, 16> SeenPreds; | 
|  | SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; | 
|  |  | 
|  | BasicBlock *OnlyDest = 0; | 
|  | BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; | 
|  |  | 
|  | for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { | 
|  | BasicBlock *Pred = PredValues[i].second; | 
|  | if (!SeenPreds.insert(Pred)) | 
|  | continue;  // Duplicate predecessor entry. | 
|  |  | 
|  | // If the predecessor ends with an indirect goto, we can't change its | 
|  | // destination. | 
|  | if (isa<IndirectBrInst>(Pred->getTerminator())) | 
|  | continue; | 
|  |  | 
|  | Constant *Val = PredValues[i].first; | 
|  |  | 
|  | BasicBlock *DestBB; | 
|  | if (isa<UndefValue>(Val)) | 
|  | DestBB = 0; | 
|  | else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) | 
|  | DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); | 
|  | else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { | 
|  | DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); | 
|  | } else { | 
|  | assert(isa<IndirectBrInst>(BB->getTerminator()) | 
|  | && "Unexpected terminator"); | 
|  | DestBB = cast<BlockAddress>(Val)->getBasicBlock(); | 
|  | } | 
|  |  | 
|  | // If we have exactly one destination, remember it for efficiency below. | 
|  | if (PredToDestList.empty()) | 
|  | OnlyDest = DestBB; | 
|  | else if (OnlyDest != DestBB) | 
|  | OnlyDest = MultipleDestSentinel; | 
|  |  | 
|  | PredToDestList.push_back(std::make_pair(Pred, DestBB)); | 
|  | } | 
|  |  | 
|  | // If all edges were unthreadable, we fail. | 
|  | if (PredToDestList.empty()) | 
|  | return false; | 
|  |  | 
|  | // Determine which is the most common successor.  If we have many inputs and | 
|  | // this block is a switch, we want to start by threading the batch that goes | 
|  | // to the most popular destination first.  If we only know about one | 
|  | // threadable destination (the common case) we can avoid this. | 
|  | BasicBlock *MostPopularDest = OnlyDest; | 
|  |  | 
|  | if (MostPopularDest == MultipleDestSentinel) | 
|  | MostPopularDest = FindMostPopularDest(BB, PredToDestList); | 
|  |  | 
|  | // Now that we know what the most popular destination is, factor all | 
|  | // predecessors that will jump to it into a single predecessor. | 
|  | SmallVector<BasicBlock*, 16> PredsToFactor; | 
|  | for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) | 
|  | if (PredToDestList[i].second == MostPopularDest) { | 
|  | BasicBlock *Pred = PredToDestList[i].first; | 
|  |  | 
|  | // This predecessor may be a switch or something else that has multiple | 
|  | // edges to the block.  Factor each of these edges by listing them | 
|  | // according to # occurrences in PredsToFactor. | 
|  | TerminatorInst *PredTI = Pred->getTerminator(); | 
|  | for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) | 
|  | if (PredTI->getSuccessor(i) == BB) | 
|  | PredsToFactor.push_back(Pred); | 
|  | } | 
|  |  | 
|  | // If the threadable edges are branching on an undefined value, we get to pick | 
|  | // the destination that these predecessors should get to. | 
|  | if (MostPopularDest == 0) | 
|  | MostPopularDest = BB->getTerminator()-> | 
|  | getSuccessor(GetBestDestForJumpOnUndef(BB)); | 
|  |  | 
|  | // Ok, try to thread it! | 
|  | return ThreadEdge(BB, PredsToFactor, MostPopularDest); | 
|  | } | 
|  |  | 
|  | /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on | 
|  | /// a PHI node in the current block.  See if there are any simplifications we | 
|  | /// can do based on inputs to the phi node. | 
|  | /// | 
|  | bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { | 
|  | BasicBlock *BB = PN->getParent(); | 
|  |  | 
|  | // TODO: We could make use of this to do it once for blocks with common PHI | 
|  | // values. | 
|  | SmallVector<BasicBlock*, 1> PredBBs; | 
|  | PredBBs.resize(1); | 
|  |  | 
|  | // If any of the predecessor blocks end in an unconditional branch, we can | 
|  | // *duplicate* the conditional branch into that block in order to further | 
|  | // encourage jump threading and to eliminate cases where we have branch on a | 
|  | // phi of an icmp (branch on icmp is much better). | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PredBB = PN->getIncomingBlock(i); | 
|  | if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) | 
|  | if (PredBr->isUnconditional()) { | 
|  | PredBBs[0] = PredBB; | 
|  | // Try to duplicate BB into PredBB. | 
|  | if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on | 
|  | /// a xor instruction in the current block.  See if there are any | 
|  | /// simplifications we can do based on inputs to the xor. | 
|  | /// | 
|  | bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { | 
|  | BasicBlock *BB = BO->getParent(); | 
|  |  | 
|  | // If either the LHS or RHS of the xor is a constant, don't do this | 
|  | // optimization. | 
|  | if (isa<ConstantInt>(BO->getOperand(0)) || | 
|  | isa<ConstantInt>(BO->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | // If the first instruction in BB isn't a phi, we won't be able to infer | 
|  | // anything special about any particular predecessor. | 
|  | if (!isa<PHINode>(BB->front())) | 
|  | return false; | 
|  |  | 
|  | // If we have a xor as the branch input to this block, and we know that the | 
|  | // LHS or RHS of the xor in any predecessor is true/false, then we can clone | 
|  | // the condition into the predecessor and fix that value to true, saving some | 
|  | // logical ops on that path and encouraging other paths to simplify. | 
|  | // | 
|  | // This copies something like this: | 
|  | // | 
|  | //  BB: | 
|  | //    %X = phi i1 [1],  [%X'] | 
|  | //    %Y = icmp eq i32 %A, %B | 
|  | //    %Z = xor i1 %X, %Y | 
|  | //    br i1 %Z, ... | 
|  | // | 
|  | // Into: | 
|  | //  BB': | 
|  | //    %Y = icmp ne i32 %A, %B | 
|  | //    br i1 %Z, ... | 
|  |  | 
|  | PredValueInfoTy XorOpValues; | 
|  | bool isLHS = true; | 
|  | if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, | 
|  | WantInteger)) { | 
|  | assert(XorOpValues.empty()); | 
|  | if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, | 
|  | WantInteger)) | 
|  | return false; | 
|  | isLHS = false; | 
|  | } | 
|  |  | 
|  | assert(!XorOpValues.empty() && | 
|  | "ComputeValueKnownInPredecessors returned true with no values"); | 
|  |  | 
|  | // Scan the information to see which is most popular: true or false.  The | 
|  | // predecessors can be of the set true, false, or undef. | 
|  | unsigned NumTrue = 0, NumFalse = 0; | 
|  | for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { | 
|  | if (isa<UndefValue>(XorOpValues[i].first)) | 
|  | // Ignore undefs for the count. | 
|  | continue; | 
|  | if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) | 
|  | ++NumFalse; | 
|  | else | 
|  | ++NumTrue; | 
|  | } | 
|  |  | 
|  | // Determine which value to split on, true, false, or undef if neither. | 
|  | ConstantInt *SplitVal = 0; | 
|  | if (NumTrue > NumFalse) | 
|  | SplitVal = ConstantInt::getTrue(BB->getContext()); | 
|  | else if (NumTrue != 0 || NumFalse != 0) | 
|  | SplitVal = ConstantInt::getFalse(BB->getContext()); | 
|  |  | 
|  | // Collect all of the blocks that this can be folded into so that we can | 
|  | // factor this once and clone it once. | 
|  | SmallVector<BasicBlock*, 8> BlocksToFoldInto; | 
|  | for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { | 
|  | if (XorOpValues[i].first != SplitVal && | 
|  | !isa<UndefValue>(XorOpValues[i].first)) | 
|  | continue; | 
|  |  | 
|  | BlocksToFoldInto.push_back(XorOpValues[i].second); | 
|  | } | 
|  |  | 
|  | // If we inferred a value for all of the predecessors, then duplication won't | 
|  | // help us.  However, we can just replace the LHS or RHS with the constant. | 
|  | if (BlocksToFoldInto.size() == | 
|  | cast<PHINode>(BB->front()).getNumIncomingValues()) { | 
|  | if (SplitVal == 0) { | 
|  | // If all preds provide undef, just nuke the xor, because it is undef too. | 
|  | BO->replaceAllUsesWith(UndefValue::get(BO->getType())); | 
|  | BO->eraseFromParent(); | 
|  | } else if (SplitVal->isZero()) { | 
|  | // If all preds provide 0, replace the xor with the other input. | 
|  | BO->replaceAllUsesWith(BO->getOperand(isLHS)); | 
|  | BO->eraseFromParent(); | 
|  | } else { | 
|  | // If all preds provide 1, set the computed value to 1. | 
|  | BO->setOperand(!isLHS, SplitVal); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to duplicate BB into PredBB. | 
|  | return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new | 
|  | /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for | 
|  | /// NewPred using the entries from OldPred (suitably mapped). | 
|  | static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, | 
|  | BasicBlock *OldPred, | 
|  | BasicBlock *NewPred, | 
|  | DenseMap<Instruction*, Value*> &ValueMap) { | 
|  | for (BasicBlock::iterator PNI = PHIBB->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { | 
|  | // Ok, we have a PHI node.  Figure out what the incoming value was for the | 
|  | // DestBlock. | 
|  | Value *IV = PN->getIncomingValueForBlock(OldPred); | 
|  |  | 
|  | // Remap the value if necessary. | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(IV)) { | 
|  | DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); | 
|  | if (I != ValueMap.end()) | 
|  | IV = I->second; | 
|  | } | 
|  |  | 
|  | PN->addIncoming(IV, NewPred); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ThreadEdge - We have decided that it is safe and profitable to factor the | 
|  | /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB | 
|  | /// across BB.  Transform the IR to reflect this change. | 
|  | bool JumpThreading::ThreadEdge(BasicBlock *BB, | 
|  | const SmallVectorImpl<BasicBlock*> &PredBBs, | 
|  | BasicBlock *SuccBB) { | 
|  | // If threading to the same block as we come from, we would infinite loop. | 
|  | if (SuccBB == BB) { | 
|  | DEBUG(dbgs() << "  Not threading across BB '" << BB->getName() | 
|  | << "' - would thread to self!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If threading this would thread across a loop header, don't thread the edge. | 
|  | // See the comments above FindLoopHeaders for justifications and caveats. | 
|  | if (LoopHeaders.count(BB)) { | 
|  | DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName() | 
|  | << "' to dest BB '" << SuccBB->getName() | 
|  | << "' - it might create an irreducible loop!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); | 
|  | if (JumpThreadCost > Threshold) { | 
|  | DEBUG(dbgs() << "  Not threading BB '" << BB->getName() | 
|  | << "' - Cost is too high: " << JumpThreadCost << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // And finally, do it!  Start by factoring the predecessors is needed. | 
|  | BasicBlock *PredBB; | 
|  | if (PredBBs.size() == 1) | 
|  | PredBB = PredBBs[0]; | 
|  | else { | 
|  | DEBUG(dbgs() << "  Factoring out " << PredBBs.size() | 
|  | << " common predecessors.\n"); | 
|  | PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); | 
|  | } | 
|  |  | 
|  | // And finally, do it! | 
|  | DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '" | 
|  | << SuccBB->getName() << "' with cost: " << JumpThreadCost | 
|  | << ", across block:\n    " | 
|  | << *BB << "\n"); | 
|  |  | 
|  | LVI->threadEdge(PredBB, BB, SuccBB); | 
|  |  | 
|  | // We are going to have to map operands from the original BB block to the new | 
|  | // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to | 
|  | // account for entry from PredBB. | 
|  | DenseMap<Instruction*, Value*> ValueMapping; | 
|  |  | 
|  | BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), | 
|  | BB->getName()+".thread", | 
|  | BB->getParent(), BB); | 
|  | NewBB->moveAfter(PredBB); | 
|  |  | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | 
|  | ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  |  | 
|  | // Clone the non-phi instructions of BB into NewBB, keeping track of the | 
|  | // mapping and using it to remap operands in the cloned instructions. | 
|  | for (; !isa<TerminatorInst>(BI); ++BI) { | 
|  | Instruction *New = BI->clone(); | 
|  | New->setName(BI->getName()); | 
|  | NewBB->getInstList().push_back(New); | 
|  | ValueMapping[BI] = New; | 
|  |  | 
|  | // Remap operands to patch up intra-block references. | 
|  | for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { | 
|  | DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); | 
|  | if (I != ValueMapping.end()) | 
|  | New->setOperand(i, I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We didn't copy the terminator from BB over to NewBB, because there is now | 
|  | // an unconditional jump to SuccBB.  Insert the unconditional jump. | 
|  | BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); | 
|  | NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); | 
|  |  | 
|  | // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the | 
|  | // PHI nodes for NewBB now. | 
|  | AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); | 
|  |  | 
|  | // If there were values defined in BB that are used outside the block, then we | 
|  | // now have to update all uses of the value to use either the original value, | 
|  | // the cloned value, or some PHI derived value.  This can require arbitrary | 
|  | // PHI insertion, of which we are prepared to do, clean these up now. | 
|  | SSAUpdater SSAUpdate; | 
|  | SmallVector<Use*, 16> UsesToRename; | 
|  | for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { | 
|  | // Scan all uses of this instruction to see if it is used outside of its | 
|  | // block, and if so, record them in UsesToRename. | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; | 
|  | ++UI) { | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | if (PHINode *UserPN = dyn_cast<PHINode>(User)) { | 
|  | if (UserPN->getIncomingBlock(UI) == BB) | 
|  | continue; | 
|  | } else if (User->getParent() == BB) | 
|  | continue; | 
|  |  | 
|  | UsesToRename.push_back(&UI.getUse()); | 
|  | } | 
|  |  | 
|  | // If there are no uses outside the block, we're done with this instruction. | 
|  | if (UsesToRename.empty()) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); | 
|  |  | 
|  | // We found a use of I outside of BB.  Rename all uses of I that are outside | 
|  | // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks | 
|  | // with the two values we know. | 
|  | SSAUpdate.Initialize(I->getType(), I->getName()); | 
|  | SSAUpdate.AddAvailableValue(BB, I); | 
|  | SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); | 
|  |  | 
|  | while (!UsesToRename.empty()) | 
|  | SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); | 
|  | DEBUG(dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to | 
|  | // NewBB instead of BB.  This eliminates predecessors from BB, which requires | 
|  | // us to simplify any PHI nodes in BB. | 
|  | TerminatorInst *PredTerm = PredBB->getTerminator(); | 
|  | for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) | 
|  | if (PredTerm->getSuccessor(i) == BB) { | 
|  | BB->removePredecessor(PredBB, true); | 
|  | PredTerm->setSuccessor(i, NewBB); | 
|  | } | 
|  |  | 
|  | // At this point, the IR is fully up to date and consistent.  Do a quick scan | 
|  | // over the new instructions and zap any that are constants or dead.  This | 
|  | // frequently happens because of phi translation. | 
|  | SimplifyInstructionsInBlock(NewBB, TD, TLI); | 
|  |  | 
|  | // Threaded an edge! | 
|  | ++NumThreads; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch | 
|  | /// to BB which contains an i1 PHI node and a conditional branch on that PHI. | 
|  | /// If we can duplicate the contents of BB up into PredBB do so now, this | 
|  | /// improves the odds that the branch will be on an analyzable instruction like | 
|  | /// a compare. | 
|  | bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, | 
|  | const SmallVectorImpl<BasicBlock *> &PredBBs) { | 
|  | assert(!PredBBs.empty() && "Can't handle an empty set"); | 
|  |  | 
|  | // If BB is a loop header, then duplicating this block outside the loop would | 
|  | // cause us to transform this into an irreducible loop, don't do this. | 
|  | // See the comments above FindLoopHeaders for justifications and caveats. | 
|  | if (LoopHeaders.count(BB)) { | 
|  | DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName() | 
|  | << "' into predecessor block '" << PredBBs[0]->getName() | 
|  | << "' - it might create an irreducible loop!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); | 
|  | if (DuplicationCost > Threshold) { | 
|  | DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName() | 
|  | << "' - Cost is too high: " << DuplicationCost << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // And finally, do it!  Start by factoring the predecessors is needed. | 
|  | BasicBlock *PredBB; | 
|  | if (PredBBs.size() == 1) | 
|  | PredBB = PredBBs[0]; | 
|  | else { | 
|  | DEBUG(dbgs() << "  Factoring out " << PredBBs.size() | 
|  | << " common predecessors.\n"); | 
|  | PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); | 
|  | } | 
|  |  | 
|  | // Okay, we decided to do this!  Clone all the instructions in BB onto the end | 
|  | // of PredBB. | 
|  | DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '" | 
|  | << PredBB->getName() << "' to eliminate branch on phi.  Cost: " | 
|  | << DuplicationCost << " block is:" << *BB << "\n"); | 
|  |  | 
|  | // Unless PredBB ends with an unconditional branch, split the edge so that we | 
|  | // can just clone the bits from BB into the end of the new PredBB. | 
|  | BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); | 
|  |  | 
|  | if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { | 
|  | PredBB = SplitEdge(PredBB, BB, this); | 
|  | OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); | 
|  | } | 
|  |  | 
|  | // We are going to have to map operands from the original BB block into the | 
|  | // PredBB block.  Evaluate PHI nodes in BB. | 
|  | DenseMap<Instruction*, Value*> ValueMapping; | 
|  |  | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | 
|  | ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  |  | 
|  | // Clone the non-phi instructions of BB into PredBB, keeping track of the | 
|  | // mapping and using it to remap operands in the cloned instructions. | 
|  | for (; BI != BB->end(); ++BI) { | 
|  | Instruction *New = BI->clone(); | 
|  |  | 
|  | // Remap operands to patch up intra-block references. | 
|  | for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { | 
|  | DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); | 
|  | if (I != ValueMapping.end()) | 
|  | New->setOperand(i, I->second); | 
|  | } | 
|  |  | 
|  | // If this instruction can be simplified after the operands are updated, | 
|  | // just use the simplified value instead.  This frequently happens due to | 
|  | // phi translation. | 
|  | if (Value *IV = SimplifyInstruction(New, TD)) { | 
|  | delete New; | 
|  | ValueMapping[BI] = IV; | 
|  | } else { | 
|  | // Otherwise, insert the new instruction into the block. | 
|  | New->setName(BI->getName()); | 
|  | PredBB->getInstList().insert(OldPredBranch, New); | 
|  | ValueMapping[BI] = New; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if the targets of the branch had PHI nodes. If so, we need to | 
|  | // add entries to the PHI nodes for branch from PredBB now. | 
|  | BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); | 
|  | AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, | 
|  | ValueMapping); | 
|  | AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, | 
|  | ValueMapping); | 
|  |  | 
|  | // If there were values defined in BB that are used outside the block, then we | 
|  | // now have to update all uses of the value to use either the original value, | 
|  | // the cloned value, or some PHI derived value.  This can require arbitrary | 
|  | // PHI insertion, of which we are prepared to do, clean these up now. | 
|  | SSAUpdater SSAUpdate; | 
|  | SmallVector<Use*, 16> UsesToRename; | 
|  | for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { | 
|  | // Scan all uses of this instruction to see if it is used outside of its | 
|  | // block, and if so, record them in UsesToRename. | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; | 
|  | ++UI) { | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | if (PHINode *UserPN = dyn_cast<PHINode>(User)) { | 
|  | if (UserPN->getIncomingBlock(UI) == BB) | 
|  | continue; | 
|  | } else if (User->getParent() == BB) | 
|  | continue; | 
|  |  | 
|  | UsesToRename.push_back(&UI.getUse()); | 
|  | } | 
|  |  | 
|  | // If there are no uses outside the block, we're done with this instruction. | 
|  | if (UsesToRename.empty()) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); | 
|  |  | 
|  | // We found a use of I outside of BB.  Rename all uses of I that are outside | 
|  | // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks | 
|  | // with the two values we know. | 
|  | SSAUpdate.Initialize(I->getType(), I->getName()); | 
|  | SSAUpdate.AddAvailableValue(BB, I); | 
|  | SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); | 
|  |  | 
|  | while (!UsesToRename.empty()) | 
|  | SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); | 
|  | DEBUG(dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | // PredBB no longer jumps to BB, remove entries in the PHI node for the edge | 
|  | // that we nuked. | 
|  | BB->removePredecessor(PredBB, true); | 
|  |  | 
|  | // Remove the unconditional branch at the end of the PredBB block. | 
|  | OldPredBranch->eraseFromParent(); | 
|  |  | 
|  | ++NumDupes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  |